Use of Abstraction during User Interface Development
A Position paper

Ebba béra Hvannberg
University of Iceland

Hjardarhaga 2-6, 107 Reykjavik, Iceland
+354 525 4702
ebba@bhi.is

ABSTRACT

This paper postulates a thesis claiming that afisbra is an
essential part of communication during user intaEfa
development, that models are a way of expressingseth
abstractions and that user interface developers softare
engineers need the same language for communicifiotivated
by described myths and desired model charactevistated in the
literature, several counterarguments and argumeetsgiven to
the thesis, backed up with results from empirieakarch studies.
The paper concludes with a plan of action to bring thesis
forward.

Categories and Subject Descriptors
H5.2 [User Interfaced: models

General Terms
Human Factors

Keywords

Models, Abstraction, Development

1. INTRODUCTION

During software development, good communicationhimita
development team and between a team and the stdkehas
essential. Many development lifecycle models haveenb
suggested, and since participatory design, masitifall lifecycle
models have emphasized inclusion of users. Regglet models
include two characteristics which involve usersjtimg some
kind of user stories and letting the buyer of thedpict decide
upon the next features in the product. Agile methaldo stress
that communication within teams are important, iy do
discourage heavy documentation, processes or tosége.
Communication within a team is sometimes betwedferdint
roles. The gap between software engineering and inteface
development has been addressed to an extent litetteture and
the conclusion is that whatever method is useddiffieulties in

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oe finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

Conference’04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

communication between the software developers asability

specialists must be tackled [1]. We can all agréat t
communication is important, but how, what and wkyR®jineers
have long communicated by means of mathematicactatal

(architectures) and behavioural models (electrieabineers).
They communicate about materials, structures dfllmgs, input

and output of processes or systems. Computer stiemn the
other hand express things with logic or computeogmms.

Because it seems so easy to change programs ermnefit ones,
unlike concrete materials such as metal or cenmogrammers
think that modeling is not necessary, and in thee rfor fast
products to market, they skip the preparation alashrpng and
dive right into the implementation [2].

Because of inherent complexity of software, or rmance,
computer scientists tend to abstract from details éasier
comprehension during development. Much of the effof
research in software engineering has been on h@artonunicate
and articulate this abstraction. Early, this aition appeared as
functions, with input and output as descriptionscbfinge of
states of the machine, then as user defined datetigtes. This
was followed by entity-relationship models whichdha strong
influence on data modelling. Finally, since few aldes,
abstraction has been dominant in object-orientatiomere
abstraction occurs in forms of inheritance and psakation.
Reuse was the anticipated return on investmentbefraction,
initially with the concept of classes but when tkda not meet
expectations, recent developments have centerede nmor
components and services as a form of abstraction.

There have been different suggestions of speaiglidescriptions
of user interfaces from descriptions of softwargémeral, such as
patterns for user interfaces, frameworks and ctadse user
interface programming [3]. Instead of specializatfoom general
software models, others have designed models faringerfaces
independent of software development, such as degmnitodels
[4] . With the advent of the web as a platform,cifie languages
have been developed and engineering tools develspel as
Web-ML and OO-H [5]. There have thus been cogsstle
attempts to devise specific models for user intevacand while
they are useful as such they will probably not haely used by
software developers, or in an interdisciplinarynteaf software
developers and user interface designers [1]. Thuzdels which
are based on software engineering models such ak-Whb
based Engineering (UWE) are perhaps more likelpegaised in
such teams [6].

From time to time, or should | say continuouslye tfesearch
community has been trying to discover why develsp&frain

from using models as abstractions of software,theformal or

formal. As in the case of formal methods, sciestisve tried to
elicit myths and refute them [7]. Sometimes thesghm have
been denied with facts, sometimes with generalraggiis. Myths
are drawn from speculations, here say or commonvlatge in

the area. While it is useful to gather such tanitwledge present
it explicitly, we need to conduct more empiricalsearch

investigating usage of models. A few such studie$ my own

results have motivated several statements of angisnfer user
interface modeling. The next section states a shésilowed by

counter arguments and arguments for that thesie péper
concludes with a plan of actions.

2. THE THESIS

| postulate that a good way to communicate userfexte designs,
and hence results of usability evaluations, isuftoabstractions.
| postulate that models as a form of abstractientlae best way to
discuss and argue about a user interface develdpittesm models
are created during the requirements, design &e8yitused to
assist during evaluation, used to express, undetsémd even
predict results of an evaluation, and used to igdea user
interface to fix a usability problem uncovered dgrievaluation.
Finally, | claim that for the task we needftware development
models in order to bridge the gap between user interfaice

software designers.

3. COUNTER ARGUMENT

Probably, not everyone agrees with the stated iposiin the
following, let us examine some of the counter argnts, some of
which are motivated by the characteristics of goeadels, i.e.
abstraction, understandability, accuracy, predidgtép and
inexpensivened?], others which are motivated by myths stated
in the literature [1, 7].

3.1 Working software over comprehensive

documentation

One of the principles of agile development is vilgksoftware
over comprehensive documentation. Daily face t@ faeetings
and frequent changing of roles or activities is miea make up
for lack of documentation. Knowledge is tacit ard explicit [8].

Modelling is a process which aids in describing ahdtraction
what is to be built. In support of this counterargunt Ambler [9]

refers to Constantine [10] who says that it is acminception that
agilists do not model. The truth is, Ambler statémt they do
model, but that they discourage extensive modellipgront but

encourage active modelling along the way. Amblegrpsuts this

by referring to agile methods’ literature, but aklcknowledges
that the models are sometimes rather informal.

Further, some of the misunderstanding of modeltha their
impact is to be mainly achieved through the endipet Instead,
modelling is a dynamic activity and much is gainked the
interaction which the modelling activity facilitate

3.2 Models are difficult to create and few

know how to make them

Not many modeling languages have been created sixely for

user interface design or for that matter softwareetbpment. The
predominant one for software development is UML drnisl quite

large containing a number of different model typEse types of
problems architects describe are scattered infeammaamong
different model views, incompleteness of modelspdiportion,
i.e. more details in some parts than others andnisistencies
between teams. Furthermore, architects claim thatlets are
sometimes used informally and there are a lack ofiefing

conventions [11]. A study on the use of UML demcetstd that
those with more UML experience used it more exiexigithan

those with less experience, suggesting that amsahetd time to
learn how to use the UML language well [12].

While | agree that modeling can be an intricateviagt | don't

think it is the models themselves that are diffital create, but it
is the activity of abstraction which is hard. Swefal user
interface designers will always need to learn hawabstract.
Some will learn it through modeling; others wilala it implicitly

as they gain experience. With models they are &btoedo it but
they can avoid it they don't use models, with udmtable
results.

3.3 Creating models are costly and not worth
the effort

Creating models, especially if supporting tools aravailable,
can be a difficult and time consuming effort. Nofyoare models
difficult to create but also evolve ensuring thiaé tmodels are
synchronized with the implementation. A surveysstyat 52.5
percent of practitioners finish modeling when thedel is

complete, 33.8 percent of practitioners say thatoalel is done
when it has passed a review or an inspection, &l @ercent of
practitioners say that the deadline is the stoppinigerion.

Whereas the completeness of a model is more oftstogping

criterion in larger projects, a deadline is moréenfa halting
criterion for smaller projects [11]. These numbesl us that
models are created in different ways, and in treesavhere the
models are not complete, developers do not takediviantage of
the benefits of models, namely model driven develept where
code is automatically generated from models [2].

A study we conducted recently showed that over 3ff%he
defects could be blamed on faulty dialogue or ratidgal design,
yet only a few of those defects were fixed [13]. W¥hWe
speculate that the reason may be that it was dstihtao difficult
to fix the usability problems because the solutisequired a
revised user interface architecture and hence veerecostly or
even too difficult to make.

Our conclusion, from our own and other researctiss, is that it
is very costly not to create models, and that untesdels are
complete, their full benefits are not reaped.

3.4 Models are limited to describing those
characteristics of user interfaces which do not

concern presentation

Models, especially very abstract ones, do not captuperience
very well. To understand emotional experience, veedn a
detailed contextual implementation.

A survey among 171 analysts showed that of sevifgrelit types
of UML diagrams and narratives, class diagrams weed most
frequently, with 73% of the analysts saying thatytlvere used in
at least two-thirds of their projects. Use casegmdims were
second, use case narratives fourth (44%), butcstatediagrams
came sixth, with less than 30% of the analysts ngpythat

statecharts are used in at least 2/3 of the psjé&n the other
hand when analysts were asked to mark those diagretmch

were never used, class diagrams ranked the lowidstonly 3%

to 25% for collaboration diagrams, ranked the hagfigl].

In this same survey, respondents were asked fongbkilness of
the different diagrams. Interestingly, whereasestaart diagrams
were used much less frequently than class diagrdmag, ranked
second in usefulness after class diagrams.

If we were to ask user interface developers, | glag¢e that class
diagrams are only useful for conceptual modellibgt activity

diagrams and then state charts diagrams would rdedahigher
in terms of providing new information not found irse case
narratives.

Conceptual modelling is still very useful in useterface design.
Our study showed that around 23% of defects uneaveould be
attributed to wrong conceptual models [13]. As we 1 UML

there are a number of different types of diagrant this is what
we should aim for in user interface modelling, tmetneed to link
the different models together such as the presentatodels to
the structural and behavioural models, or elsedtheslopers will
complain that there is a disconnect between theetaod

3.5 Users do not understand models

In a user-centered development, it is imperativievolve users at
all stages of development. It is also critical telude a multi-
disciplinary group of experts. Therefore, the comioation

language needs to be familiar to all. Undeniabfifaats such as
low-fidelity prototypes, story boards, scenariosd amse case
narratives are very accessible to users, and @amtlesearch
papers have claimed the usefulness of informal itsode user

interaction design such as scenarios and protatypes

The results of a study on how UML is used, paréfutes this
counterclaim. While the study’ results reveal thtakeholders are
most likely to use use case narratives and use daggams,
clients are involved in developing, reviewing amg@ving other
components more than expected. All of the clientsrviewed in
the study welcomed the use of UML and some everwstio
insight into its usage [12]. As expected, clientalvement is
highest with use case narratives, 76%, and low@ssthtechart
diagrams.

What is worrying is that models which are not ubefith clients
may be useful for programmers, thus creating alggween the
two groups.

4. ARGUMENT

In this section we restate our claims and supbeint

4.1 Abstraction is key to communication
With abstraction we are able to discuss main ictevas and
principles in the software without burying it inotanany details.
Abstraction makes it easier to plan, verify andigtesAbstraction
allows us to present different views of the uségraction.

4.2 Models are a good way to communicate

during user interface development

Sketches, scenarios or storyboards are all diffetgpes of
models, since they describe the real end produttidave out
some of its details. Diaper states that “HCI is emgineering
discipline and therefore must model the real wthkt is assumed
to exist, notwithstanding how poor and partial nidie our
models of it.“ [14]. Diaper emphasises the impoct of task
models since they describe a series of eventstivitass in time.
He doesn't exclude other models but says that i@y a lesser
role. Seffah and Metzker acknowledge that task fsoale widely
used in the user interface community but warn thaty may
describe functionality more than usability, thug fdfilling the
objectives of the user interface developer.

One of the desirable characteristics of modelfas they should
be predictive. Prediction does not only includeefmeing the
behaviour of the user and the system through stoulabut also
modelling of the development activity itself andtrjast the
artefacts. With increased emphasis on approachrethéowhole
lifecycle, including maintenance, we need to ineludodels for
evaluations of user interfaces. Modelling evaluatiesults should
help us predict whether a defect is likely to beedi, whether an
evaluator is likely to uncover defects, whether ponents are
likely to be faulty etc.

4.3 Software development models can serve
user interaction design and other components’
designs

In communication between people a disagreemerites aue to
misunderstanding. We say that people don't speak stime
language. To close the gap between software engireesl user
interaction designers they need to speak the samguage.
Different dialects can be permissible but not défe languages.

5. CONCLUSION

Current research gives evidence that user intedasgners need
better help in their work. The number of defectanfd and the
increasing criticality of user interfaces demartust tve continue
searching for better ways to communicate and appstractions
in interaction designs

The counter arguments stated in this position paperowever
real threats to this believe. | think these threas be lessened
with the following plan of action:

1. Develop a domain specific modelling language farus
interface design which can be wused by an
interdisciplinary team of user interface designarsl
software developers.

2.

Offer tutorials and develop body of knowledge feeu
interface modelling as an abstraction and
communication activity.

6. REFERENCES

1.

Seffah, A. and E. MetzkeThe obstacles and myths of
usability and software engineeringcommun. ACM,
2004.47(12): p. 71-76.

Selic, B.,The pragmatics of model-driven development.
Software, IEEE, 20020(5): p. 19-25.

Myers, B.A. and M.B. RossoBurvey on user interface
programming in Proceedings of the SIGCHI
conference on Human factors in computing systems
1992, ACM: Monterey, California, United States.

de Haan, G., G.C. van der Veer, and J.C. vaet\Vli
Formal modelling techniques in human-computer
interaction.Acta Psychologica, 19978(1-3): p. 27-67.
Abrah&o, S., et alA Model-Driven Measurement
Procedure for Sizing Web Applications: Design,
Automation and Validatiom MoDELS2007: Springer-
Verlag

Koch, N. and A. KrausThe expressive power of UML-
based engineering.in Second International Workshop
on Web Oriented Software Techonlogy (CYTEDP2.
Bowen, J.P. and M.G. Hinche$even more myths of
formal methodsSoftware, IEEE, 1993.2(4): p. 34-41.

8.

10.

11.

12.

13.

14.

Pikkarainen, M., et alThe impact of agile practices on
communication in software developmerEmpirical
Software Engineering, 20083(3): p. 303-337.

Ambler, S.,Tailoring Usability into Agile Software
Development Projectsn Maturing Usability, quality in
Software, Interaction and Valu&ffie Lai-Chong Law,
Ebba Thora Hvannberg, and G. Cockton, Editors. 2008
Springer-verlag London. p. 75-95.

Constantine, LProcess Agility and Software Usability:
Toward Lightweight Usage-

Centered Design. Accessed on Agbil 2006. 2001
[cited 2009; Available from:
www.foruse.com/articles/agiledesign.pdf

Lange, C.F.J., M.R.V. Chaudron, and J. Muskéms,
practice: UML software architecture and design
description in Software, IEEE2006. p. 40-46.

Dobing, B. and J. Parsomtow UML is usedCommun.
ACM, 2006.49(5): p. 109-113.

Law, E.L.-C., et al.Impacts of Classification of
Usability Problems (CUP) on System Redesign
Usability and User-Centered Design in Software
Development: Case Studies and Real Life Application
Ann Blandford, et al., Editors. 2010, in review| IG
Diaper, D.,The discipline of HCl.Interacting with
Computers, 1989 (1): p. 3-5.

