Early user-testing before programming
Improves software quality

John Sdren Pettersson
Department of Information Systems
Karlstad University
Karlstad, Sweden
+4654 700 2553

John_Soren.Pettersson@kau.se

ABSTRACT

This position statement does not focus on usabidlitiiough it
presents data from a software up-date cycle wheneeral

usability- and user-centred methods were used. ifffprtant
lesson learnt is that a better (more complete)ifipation before
programming results in fewer errors in the code #rad such a
specification can be reached by user tests ofaotie mockups.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications —
Elicitation methods.

D.2.2 [Software Engineering]: Design Tools and Techniques
Evolutionary prototyping, User interfaces.

General Terms
Design, Experimentation, Human Factors.

Keywords
Software quality, Early user-testing, Wizard-of-@mtotyping.

1. CASE STUDY

Frequent testing of developing software can cdstantrease the
usability in the program. However, as we found inage study,
the method seems to continuously introduce charmedew

requirements which in turn results in more comptexie and
thereby more errors. This case study consisted lafge update
cycle of a software package in the area of decisigport system
for civil protection. The update involved a complere-

programming of the four largest modules. Severallemupdates
had been made prior to the large update cycle reqdirements
for the update had (as always) been collected ffmrlarge user
groups. The organisation had routines for collectiequirements
from users, client organisations, and other stakishs.

There was thus much resemblance of their approach t

principles found in user-centric approaches suclihasMUST
method [2]. The organisation had however recognibedl usa-
bility was an issue even if the type of functiomsvyided by the

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oremistribute to lists,
requires prior specific permission and/or a fee.

Conference’04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

Jenny Nilsson
Department of Information Systems
Karlstad University
Karlstad, Sweden
+4654 700 1135

Jenny.Nilsson@kau.se

system was requested by client organisations agiddémployees.
They had also included a continuous process of gigthg using
experienced users and content experts in theirtapgales. One
can say that the developers were not aware of #thadological
critique expressed in one paper as “Close Co-dperatith the
Customer Does Not Equal Good Usability” [4] (cfsal[1]).
Through an HCI student’s exam work for the orgamisa its
developers became aware of the Wizard-of-Oz methodhich
one can test mocked up designs as if they wereadre
implemented [3]. A more experienced Wizard (secamthor)
was hired as a usability expert and design-aidestaged through
the 3-year update project of the software package.

Due to the size of the project, the Wizard could pre-test
every module: one of the four largest modules wasmocked up
in advanced. Figure 1 shows the two user-centrextegses
employed in this large update project (the debuggimmmenced
half a year after programming had started).

TWO ALTERNATIVE USER-CENTRED PROCESSES
EUT No-EUT

Requirements
from users

Requirements

Requirements specification
q p from users

Two cycles with
redesign of Ul

Early User-Testing (EUT)
and some other

specifications
Repeated Repeated
evaluations by || evaluations by
Programming with experienced experienced
debugging users, content || users, content
experts and experts and
HCl-expert HCl-expert

Figure 1. Flow of work with and without Early User-Testing

Usable and error-free program modules

2. ERROR RATES

The debugging process showed an interesting differen the
number of errors found in the module lacking pr&itey and a

Tablel. Error ratesrelativeto program size (M B and # of files)

Error type Priol Prio2+3 Priority 1,2,3
N #IMB | #/ files #/MB #1 files #/MB #1 files
Early User-tested module of 1.5 MB and 145 files 4.67 0.05 68.00 0.70 72.67 0.75
Not-EUT module of 2.0 MB and 230 files 32.50 0.28 101.00 0.88 133.50 1.16
Error rates proportionally (EUT / Not-EUT) 0.14 0.17 0.67 0.80 0.54 0.65

Note: Priority 3 was in the error reports noted as “Nextsion”, often new requirements, while Priorityas “critical errors”.

comparable pre-tested module. Table 1 indicatels that size (in
MB) and the number of files of the two modules.cEmrates are
given both in relation to size and number of fildhe EUT-
developed module has about one-fifth of the erate bf the not-
EUT module for the “Prio 1” errors (called “criticarrors” in the
debugging reports). In total, the error rate far finst module is
only half of what was found in the second module.

It is not meaningful to compare program modulesheuit
considering the relative complexity of each modiilee two other
EUT-modules were only half the size of the one eled for this
error comparison but contained, relative to thie,smany more
errors than the modules in Table 1. However, tloglser modules
contained specific, database-related complexitiesaan only be
used for certain comparisons (2.2).

2.1 Thedebugging process

The debugging process commenced nearly a yeareb#ferfinal

launch of the new version. The debugging was catedioy three
groups which were very familiar with the functiomefiuirements:
a group of very experienced users, the HCI exped,the content
managers for the different modules’ databases.

The bug-finding by experienced users sometimedtessin
new requirements coming up. Interestingly, this aiz® the case
for the debugging made by the content experts (adtbnot been
involved in the pre-tests before programming; they only seen
and accepted the requirements specifications).

2.2 New requirements

For the first module in Table 1 there was only #wmequirements
coming up in the extensive debugging process wfilethe
second module there was 13. This we hold to besthece of
many of the other errors. When new functions an@duced into
the developing process, it is harder for the pnognars to
maintain a clean and easily predictable code.

That early user-testing can capture many requiréneas
shown by a third module, smaller in size than the modules in
Table 1 (0.7 MB and consisting of only 55 files)hig third
module mainly consisted of a library and the cohéxpert of this
module found many faults during the debugging pssc@mong
these were in effect 24 new requirements. In thé éi@ert’s (i.e.
Wizard’s) opinion, most of the new requirements ldobhave
been possible to spot if the content expert hach reeuded in
the pre-testing, which could have been darigout the wizard
setting up special test scenarios for content experhis is
important when the Wizard-of-Oz method is usedhasrhethod
incurs some extra costs when mockups have to lpame before
tests.

3. EARLY USER-TESTING
The much criticized Waterfall model for systems elepment,
where all specifications should be settled befdre aborious
tasks of modelling and programming take place, &ddiy has
some advantages, bonly if all requirements really can be settled
in advanced By early prototyping designers can approach this
goal. In the case study, the Wizard-of-Oz method wsed with
user interfaces often based on previous versionthefsystem.
What was needed was elaboration of the interaaiesign and
uncovering interdependences between various fumctio
requirements. This was met by the WOz prototypimlgich was
conducted in two rounds: a first one on a roughgtesiith 8
participants; a second one six months later ontaildd design
with 5 participants. Although the interaction igal’ in WOz
experiments, the graphics can be crude in earligadghases.

Setting up a WOz environment for testing is labosi@as the
Wizard must have control over what the user seeth@monitor
(and hears from the loudspeakers), but in our rekegroup we
have developed a ‘general-purpose’ WOz system wiiehcall
Ozlab ,which facilitates the setting up of testsremusly (cf. e.g.
[5]). A WOz set-up also allows designers to proheirt own
designs and find interaction bugs even beforengsti

Still to evaluate is how much more costs the ecarection
took in comparison with the cost for the Wizard kyobut from
our experiences of this project (and noting thefediince in
salaries between usability people and programmeiis sgems a
safe bet that the EUT injected as in Figure 1 pdysery well to
say nothing of how much frustration is saves.

4. REFERENCES

[1] Ambler, S.W. 2004. Tailoring Usability into Agileo8ware
Development Projects. Maturing Usability, eds. Law,
Hvannberg & Cockton. Pp 75-95. Springer-Verlag

[2] Bgadker, K., Kensing, F. and Simonsen, J. 2004 idhaatory
IT Design. Designing for Business and Workplaceliies.
MIT Press.

[3] Gould, J. D. and Lewis, C. 1985. Designing for ll#gbkey
principles and what designers think. Com. ACM 28-30.1.

[4] Jokela, T. and Abrahamsson, P. 2004. Usability #ssent
of an Extreme Programming Project: Close Co-opamati
with the Customer Does Not Equal Good UsabilityCFHES
2004 Proceedings, pp 393-407. Springer-Verlag.

[5] Molin, L. 2004. Wizard-of-Oz Prototyping for Coop¢ive
Interaction Design of Graphical User Interface@adeedings
of the Third Nordic Conference on Human-Computer
Interaction, 23-27 October, Tampere, Finland, [25-428.

