
Early user-testing before programming
improves software quality

John Sören Pettersson
Department of Information Systems

Karlstad University
Karlstad, Sweden
+4654 700 2553

John_Soren.Pettersson@kau.se

Jenny Nilsson
Department of Information Systems

Karlstad University
Karlstad, Sweden
+4654 700 1135

Jenny.Nilsson@kau.se

ABSTRACT
This position statement does not focus on usability although it
presents data from a software up-date cycle where several
usability- and user-centred methods were used. The important
lesson learnt is that a better (more complete) specification before
programming results in fewer errors in the code and that such a
specification can be reached by user tests of interactive mockups.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
Elicitation methods.

D.2.2 [Software Engineering]: Design Tools and Techniques –
Evolutionary prototyping, User interfaces.

General Terms
Design, Experimentation, Human Factors.

Keywords
Software quality, Early user-testing, Wizard-of-Oz prototyping.

1. CASE STUDY
Frequent testing of developing software can certainly increase the
usability in the program. However, as we found in a case study,
the method seems to continuously introduce changed or new
requirements which in turn results in more complex code and
thereby more errors. This case study consisted of a large update
cycle of a software package in the area of decision support system
for civil protection. The update involved a complete re-
programming of the four largest modules. Several smaller updates
had been made prior to the large update cycle, and requirements
for the update had (as always) been collected from the large user
groups. The organisation had routines for collecting requirements
from users, client organisations, and other stakeholders.

There was thus much resemblance of their approach to
principles found in user-centric approaches such as the MUST
method [2]. The organisation had however recognised that usa-
bility was an issue even if the type of functions provided by the

system was requested by client organisations and their employees.
They had also included a continuous process of debugging using
experienced users and content experts in their update cycles. One
can say that the developers were not aware of the methodological
critique expressed in one paper as “Close Co-operation with the
Customer Does Not Equal Good Usability” [4] (cf. also [1]).
Through an HCI student’s exam work for the organisation, its
developers became aware of the Wizard-of-Oz method by which
one can test mocked up designs as if they were already
implemented [3]. A more experienced Wizard (second author)
was hired as a usability expert and design-aide and stayed through
the 3-year update project of the software package.

Due to the size of the project, the Wizard could not pre-test
every module: one of the four largest modules was not mocked up
in advanced. Figure 1 shows the two user-centred processes
employed in this large update project (the debugging commenced
half a year after programming had started).

TWO ALTERNATIVE USER-CENTRED PROCESSES

 EUT

No-EUT

Requirements specification

Requirements
from users

Requirements
from users

Early User-Testing (EUT)

Two cycles with
redesign of UI

and some other
specifications

_

Programming with
debugging

Repeated
evaluations by
experienced

users, content
experts and
HCI-expert

Repeated
evaluations by
experienced

users, content
experts and
HCI-expert

Usable and error-free program modules

Figure 1. Flow of work with and without Early User-Testing

2. ERROR RATES
The debugging process showed an interesting difference in the
number of errors found in the module lacking pre-testing and a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Table 1. Error rates relative to program size (MB and # of files)

Prio 1 Prio 2 + 3 Priority 1,2,3 Error type

Program # / MB # / files # / MB # / files # / MB # / files

Early User-tested module of 1.5 MB and 145 files 4.67 0.05 68.00 0.70 72.67 0.75

Not-EUT module of 2.0 MB and 230 files 32.50 0.28 101.00 0.88 133.50 1.16

Error rates proportionally (EUT / Not-EUT) 0.14 0.17 0.67 0.80 0.54 0.65
Note: Priority 3 was in the error reports noted as “Next version”, often new requirements, while Priority 1 was “critical errors”.

comparable pre-tested module. Table 1 indicates both the size (in
MB) and the number of files of the two modules. Error rates are
given both in relation to size and number of files. The EUT-
developed module has about one-fifth of the error rate of the not-
EUT module for the “Prio 1” errors (called “critical errors” in the
debugging reports). In total, the error rate for the first module is
only half of what was found in the second module.

It is not meaningful to compare program modules without
considering the relative complexity of each module. The two other
EUT-modules were only half the size of the one we select for this
error comparison but contained, relative to their size, many more
errors than the modules in Table 1. However, these other modules
contained specific, database-related complexities and can only be
used for certain comparisons (2.2).

2.1 The debugging process
The debugging process commenced nearly a year before the final
launch of the new version. The debugging was conducted by three
groups which were very familiar with the functional requirements:
a group of very experienced users, the HCI expert, and the content
managers for the different modules’ databases.

The bug-finding by experienced users sometimes resulted in
new requirements coming up. Interestingly, this was also the case
for the debugging made by the content experts (who had not been
involved in the pre-tests before programming; they had only seen
and accepted the requirements specifications).

2.2 New requirements
For the first module in Table 1 there was only 4 new requirements
coming up in the extensive debugging process while for the
second module there was 13. This we hold to be the source of
many of the other errors. When new functions are introduced into
the developing process, it is harder for the programmers to
maintain a clean and easily predictable code.

That early user-testing can capture many requirements was
shown by a third module, smaller in size than the two modules in
Table 1 (0.7 MB and consisting of only 55 files). This third
module mainly consisted of a library and the content expert of this
module found many faults during the debugging process: among
these were in effect 24 new requirements. In the HCI expert’s (i.e.
Wizard’s) opinion, most of the new requirements would have
been possible to spot if the content expert had been included in
the pre-testing, which could have been done without the wizard
setting up special test scenarios for content experts. This is
important when the Wizard-of-Oz method is used as the method
incurs some extra costs when mockups have to be prepared before
tests.

3. EARLY USER-TESTING
The much criticized Waterfall model for systems development,
where all specifications should be settled before the laborious
tasks of modelling and programming take place, admittedly has
some advantages, but only if all requirements really can be settled
in advanced. By early prototyping designers can approach this
goal. In the case study, the Wizard-of-Oz method was used with
user interfaces often based on previous versions of the system.
What was needed was elaboration of the interaction design and
uncovering interdependences between various function
requirements. This was met by the WOz prototyping, which was
conducted in two rounds: a first one on a rough design with 8
participants; a second one six months later on a detailed design
with 5 participants. Although the interaction is ‘real’ in WOz
experiments, the graphics can be crude in early design phases.

Setting up a WOz environment for testing is laborious as the
Wizard must have control over what the user sees on the monitor
(and hears from the loudspeakers), but in our research group we
have developed a ‘general-purpose’ WOz system which we call
Ozlab ,which facilitates the setting up of tests enormously (cf. e.g.
[5]). A WOz set-up also allows designers to probe their own
designs and find interaction bugs even before testing.

Still to evaluate is how much more costs the error-correction
took in comparison with the cost for the Wizard work, but from
our experiences of this project (and noting the difference in
salaries between usability people and programmers…) it seems a
safe bet that the EUT injected as in Figure 1 pays of very well to
say nothing of how much frustration is saves.

4. REFERENCES
[1] Ambler, S.W. 2004. Tailoring Usability into Agile Software

Development Projects. Maturing Usability, eds. Law,
Hvannberg & Cockton. Pp 75-95. Springer-Verlag

[2] Bødker, K., Kensing, F. and Simonsen, J. 2004. Participatory
IT Design. Designing for Business and Workplace Realities.
MIT Press.

[3] Gould, J. D. and Lewis, C. 1985. Designing for usability: key
principles and what designers think. Com. ACM 28:300-311.

[4] Jokela, T. and Abrahamsson, P. 2004. Usability Assessment
of an Extreme Programming Project: Close Co-operation
with the Customer Does Not Equal Good Usability. PROFES
2004 Proceedings, pp 393-407. Springer-Verlag.

[5] Molin, L. 2004. Wizard-of-Oz Prototyping for Cooperative
Interaction Design of Graphical User Interfaces. Proceedings
of the Third Nordic Conference on Human-Computer
Interaction, 23-27 October, Tampere, Finland, pp. 425-428.

