

Proceedings of the Second International Workshop on

The Interplay between
Usability Evaluation and
Software Development

I-USED 2009

Editors:

Silvia Abrahao
Kasper Hornbæk
Effie Lai‐Chong Law
Jan Stage

Title: Proceedings of the Second International Workshop on the Interplay between Usability
Evaluation and Software Development (I-USED 2009)

Editors: Silvia Abrahão, Kasper Hornbæk, Effie L-C Law and Jan Stage

Also appeared online as CEUR-WS.org/Vol-490 in
CEUR Workshop Proceedings (ISSN 1613-0073)
(http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/)

I-USED 2009

2nd International Workshop on the Interplay between
Usability Evaluation and Software Development

Held at Interact 2009 in Uppsala, Sweden on August 24, 2009

Motivation
Software development is highly challenging. Despite many significant successes, several software
development projects fail completely or produce software with serious limitations, including (1) lack of
usefulness, i.e. the system does not adequately support the core tasks of the user, (2) unsuitable designs
of user interactions and interfaces, (3) lack of productivity gains or even reduced productivity despite
heavy investments in information technology (Gould & Lewis 1985, Strassman 1985, Brooks 1987,
Matthiasen & Stage 1992, Nielsen 1993, Attewell 1994, Landauer 1995).

Broadly speaking, two approaches have been taken to address these limitations. The first approach is to
employ evaluation activities in a software development project in order to determine and improve the
usability of the software, i.e. the effectiveness, efficiency and satisfaction with which users achieve
their goals (ISO 1998, Frøkjær et al. 2000). To help software developers’ work with usability within
this approach, more than 20 years of research in Human-Computer Interaction (HCI) has created and
compared techniques for evaluating usability (Lewis 1982; Nielsen & Mack 1994).

The second approach is based on the significant advances in techniques and methodologies for user
interface design that have been achieved in the last decades. In particular, researchers in user interface
design have worked on improving the usefulness of information technology by focusing on a deeper
understanding on how to extract and understand user needs. Their results today constitute the areas of
participatory design and user-centered design (e.g. Greenbaum & Kyng 1991, Beyer & Holtzblatt 1998,
Bødker, Kensing & Simonsen 2004).

In addition, the Software Engineering (SE) community has recognized that usability does not only
affect the design of user interfaces but the software system development as a whole. In particular,
efforts are focused on explaining the implications of usability for requirements gathering (Juristo et al.,
2007), software architecture design (Bass, John & Kates 2001; Bass & John 2003), and the selection of
software components (Perry & Wolf 1992).

However, the interplay between these two fields, and between the activities they advocate to be
undertaken in software development, have been limited. Integrating usability evaluation at relevant
points in software development (and in particular to the user interface design) with successful and to-
the-point results has proved difficult. In addition, research in Human-Computer Interaction (HCI) and
Software Engineering (SE) has been done mainly independently of each other with no in substantial
exchange of results and sparse efforts to combine the techniques of the two approaches. Larry
Constantine, a prominent software development researcher, and his colleagues express it this way:
“Integrating usability into the software development process is not easy or obvious” (Juristo et al. 2001,
p. 21).

http://users.dsic.upv.es/workshops/i-used09/references.html
http://users.dsic.upv.es/workshops/i-used09/references.html

Theme & Goals
The goal of this workshop is to bring together researchers and practitioners from the HCI and SE fields
to determine the state-of-the-art in the interplay between usability evaluation and software development
and to generate ideas for new and improved relations between these activities. The aim is to base the
determination of the current state on empirical studies. Presentations of new ideas on how to improve
the interplay between HCI & SE to the design of usable software systems should also be based on
empirical studies. Within this focus, topics of discussion include, but are not limited to:

• Which artifacts of software development are useful as the basis for usability evaluations?
• How do the specific artifacts obtained during software development influence the techniques

that are relevant for the usability evaluation?
• In which forms are the results of usability evaluations supplied back into software development

(including the UI design)?
• What are the characteristics of usability evaluation results that are needed in software

development?
• Do existing usability evaluation methods deliver the results that are needed in user interface

design?
• How can usability evaluation be integrated more directly in user interface design?
• How can usability evaluation methods be applied in emerging techniques for user interface

design?
• How can usability evaluation methods be integrated to novel approaches for software

development (e.g., model-driven development, agile development).

Target audience
Participants are accepted on the basis of their submitted papers. We aim at 15 with a maximum of 20
participants. The intended audience is primarily software engineering and human-computer interaction
researchers who are working with the theme. The workshop should also be relevant for practitioners
who have experiences with and ideas for improving the interplay between HCI and SE.

Relevance to the Field
The main contribution is the determination of state-of-the-art and the identification of areas for
improvement and further research. The HCI field includes a rich variety of techniques for either
usability evaluation or user interface design. But there are very few methodological guidelines for the
interplay between these key activities; and more important, there are few guidelines on how to properly
integrate these two activities in a software development process.

Workshop Organizers
• Silvia Abrahao, Universidad Politécnica de Valencia, Spain
• Kasper Hornbæk, University of Copenhagen, Denmark
• Effie Lai-Chong Law, ETH Zürich, Switzerland and University of Leicester, United Kingdom
• Jan Stage, Aalborg University, Denmark

Program Committee
• Nigel Bevan, Professional Usability Services, United Kingdom
• Ann Blandford, University College of London, United Kingdom
• Cristina Cachero, Universidad de Alicante, Spain
• Maria Francesca Costabile, University of Bari, Italy
• Peter Forbrig, Universität Rostock, Germany
• Asbjørn Følstad, SINTEF, Norway
• Emilio Insfran, Universidad Politécnica de Valencia, Spain
• Maristella Matera, Politecnico di Milano, Italy
• Philippe Palanque, IRIT, France
• Fabio Paternò, ISTI-CNR, Italy
• Isidro Ramos, Universidad Politécnica de Valencia, Spain
• Martin Schmettow, Passau University, Germany

Other Reviewers
• Emanuel Montero, Universidad Politécnica de Valencia, Spain

Workshop Website
http://users.dsic.upv.es/workshops/i-used09/

http://users.dsic.upv.es/workshops/i-used09/

Table of Contents

Keynote Speech

User Centred Design and Agile Software Development Processes:
Friends or Foes?
Helen Petrie

Usability and User-Centred Design

1. Criteria for Selecting Methods in User Centred Design
Nigel Bevan

2. The Usability Paradox
Mark Santcroos, Arnold Vermeeren and Ingrid Mulder

Usability Evaluation in Modern Development Processes

3. Use of Abstraction during User Interface Development
Ebba Hvannberg

4. A Measurement-Based for Adopting Usability Engineering Methods
and Tools
Eduard Metzker and Ahmed Seffah

5. Towards a Usability Evaluation Process for Model-Driven Web
Development
Adrian Fernandez, Emilio Insfran and Silvia Abrahão

6. Playability as Extension of Quality in Use in Video Games
José González, Francisco Montero, Natalia Zea and Francisco
Gutiérrez Vela

7. Designing, Developing, Evaluating the Invisible? Usability Evaluation
and Software Development in Ubiquitous Computing
Tom Gross

Usability Studies

8. Bringing Usability Evaluation into Practice: Field Studies in Two
Software Organizations
Jakob O. Bak, Kim Nguyen, Peter Risgaard and Jan Stage

9. Is Usability Getting Unpopular?
Marta Larusdottir, Olof Haraldsdottir and Brigt Mikkelsen

10. Early User-Testing Before Programming Improves Software Quality
John Sören Pettersson and Jenny Nilsson

Criteria for selecting methods in user-centred design
Nigel Bevan

Professional Usability Services
12 King Edwards Gardens, London W3 9RG, UK

mail@nigelbevan.com
www.nigelbevan.com

ABSTRACT
The ISO TR 16982 technical report which provides guidance on
the use of usability methods is being revised as ISO 9241-230.
This paper describes the procedure currently being suggested for
selecting user-centred design methods. The best practices in ISO
PAS 18152 are prioritised based on the assessed benefits and
risks, then the most appropriate methods to achieve the best
practices are identified.

SELECTING USER-CENTRED DESIGN METHODS
Previous approaches to methods selection have focussed on the
strengths and weaknesses of individual methods (e.g. [3]), and
their cost benefits (e.g [1]). However the reason for using
usability methods is to make specific contributions to user-centred
design. As Wixon [6] says, “the goal is to produce, in the quickest
time, a successful product that meets specifications with the
fewest resources, while minimizing risk”. “In the world of
usability work on real products embedded in a corporate and
business framework, we must focus on factors of success, such as
how effectively the method introduces usability improvements
into the product.”

The approach suggested in this paper is to first identify the
necessary user centred design activities, then select the most
appropriate methods based on the design and organisational
context.

The proposed steps needed to select user-centred methods for a
project are:

1. Identify which categories of human-system (HS) best practice
activities in Annex A can increase business benefits or reduce
project risks.

For any category of system development activity in column 1
of Annex A, the UCD professional can reference the best
practice activities in column 2 (and read the explanation of
them in ISO PAS 18152 if necessary). They can then use
Annex C to help judge to what extent carrying out or not
carrying out these activities will influence the final usability
of the product, and hence result in potential business benefits
from improved usability, or in project risks from inadequate
usability [2].

2. For the selected categories of best practice activities choose
the most appropriate methods:

a) To what extent will each possible method listed in
column 3 of Annex A achieve the best practices?

NOTE This relies on the expertise of the UCD
professional supported by the documentation of the

methods, such as that being developed by the Usability
Body of Knowledge [5].

b) How cost effective is each possible method likely to be?

The most cost-effective methods can be selected by
using Annex B to identify the method types, and then
taking account of the associated strengths, weakness and
constraints of each method type (examples of which are
given in Annex D):

• Constraints: time, cost, skills available, access
to stakeholders and other users (Tables 4, 5 and
8 from 16982).

• The nature of the task: complexity, amount of
training required, consequences of errors, time
pressure (Table 6 from 16982).

• The nature of the product: whether new,
complexity (Table 7 from 16982).

• Context of use: range of contexts, how well
understood (Table 9, to be done).

The selection of appropriate methods can be carried out as part of
project planning, and may also be reviewed prior to each system
development activity.

As the development of ISO 9241-230 is in the early stages,
feedback on this proposed approach s welcomed.

REFERENCES
[1] Bevan, N. (2005). Cost benefits framework and case studies.

In: Bias, R.G. & Mayhew, D.J. (eds) (2005). Cost-Justifying
Usability: An Update for the Internet Age. Morgan
Kaufmann.

[2] Bevan, N. (2008) Reducing risk through Human Centred
Design. Proceedings of I-USED 2008, Pisa, September
2008.

[3] ISO TR 16982 (2002). Usability methods supporting
human-centred design

[4] ISO PAS 18152 (2003). A specification for the process
assessment of human-system issues.

[5] UPA (2009) Usability Body of Knowledge.
www.usabilitybok.org

[6] Wixon, D. (2003) Evaluating usability methods: why the
current literature fails the practitioner. Interactions, 10 (4)
pp. 28-34.

Annex A. Examples of methods that can be used to support HS best practices
Activity category Best practices for risk mitigation UCD methods and techniques
1. Envisioning
opportunities

• Identify expected context of use of systems [forthcoming needs, trends and
expectations].
• Analyze the system concept [to clarify objectives, their viability and risks].

-Future workshop
-Preliminary field visit
-Focus groups
-Photo surveys
-Simulations of future use environments
-In-depth analysis of work and lifestyles

• Describe the objectives which the user or user organization wants to achieve
through use of the system.

-Participatory workshops
-Field observations and ethnography
-Consult stakeholders
-Human factors analysis

2. System
scoping

• Define the scope of the context of use for the system. -Context of use analysis
3. Understanding
needs
a) Context of use

• Identify and analyze the roles of each group of stakeholders likely to be
affected by the system.
• Describe the characteristics of the users.
• Describe the cultural environment/ organizational/ management regime.
• Describe the characteristics of any equipment external to the system and the
working environment.
• Describe the location, workplace equipment and ambient conditions.
• Decide the goals, behaviours and tasks of the organization that influence
human resources
• Present context and human resources options and constraints to the project
stakeholders.

-Success critical stakeholder identification
-Field Observations and ethnography
-Participatory workshop
-Work context analysis
-Context of use analysis
-Event data analysis
-Participatory workshops
-Contextual enquiry

b) Tasks

• Analyze the tasks and worksystem.

-Task analysis
-Cognitive task analysis
-Work context analysis

c) Usability needs

• Perform research into required system usability. -Investigate required system usability
-Usability benchmarking
-Heuristic/expert evaluation

d) Design options

• Generate design options for each aspect of the system related to its use and its
effect on stakeholders.
• Produce user-centred solutions for each design option.

-Early prototyping & usability evaluation
-Develop simulations
-Parallel design (tiger testing)

4. Requirements
a) Context
requirements

• Analyze the implications of the context of use.
• Present context of use issues to project stakeholders for use in the development
or operation of the system.

-Define the intended context of use
including boundaries

b) Infrastructure
requirements

• Identify, specify and produce the infrastructure for the system.
• Build required competencies into training and awareness programs.
• Define the global numbers, skills and supporting equipment needed to achieve
those tasks.

-Identify staffing requirements and any
training or support needed to ensure that
users achieve acceptable performance

c) User
requirements

• Set and agree the expected behaviour and performance of the system with
respect to the user.
• Develop an explicit statement of the user requirements for the system.
• Analyze the user requirements.
• Generate and agree on measurable criteria for the system in its intended
context of use.

-Scenarios
-Personas
-Storyboards
-Establish performance and satisfaction
goals for specific scenarios of use
-Define detailed user interface
requirements
-Prioritize requirements (eg QFD)

5. Architecting
solutions
a) System
architecting

• Generate design options for each aspect of the system related to its use and its
effect on stakeholders.
• Produce user-centred solutions for each design option.
• Design for customization.
• Develop simulation or trial implementation of key aspects of the system for the
purposes of testing with users.
• Distribute functions between the human, machine and organizational elements
of the system best able to fulfil each function.
• Develop a practical model of the user's work from the requirements, context of
use, allocation of function and design constraints for the system.
• Produce designs for the user-related elements of the system that take account
of the user requirements, context of use and HF data.
• Produce a description of how the system will be used.

-Function allocation
-Generate design options
-Develop prototypes
-Develop simulations

b) Human
elements

• Decide the goals, behaviours and tasks of the organization [that influence
human resources]
• Define the global numbers, skills and supporting equipment needed to achieve
those tasks.
• Identify current tasking/duty
• Analyze gap between existing and future provision
• Identify skill requirements for each role

-Work domain analysis
-Task analysis
-Participatory design
-Workload assessment
-Human performance model
-Design for alertness
-Plan staffing

• Predict staff wastage between present and future.
• Calculate the available staffing, taking account of working hours, attainable
effort and non-availability factor
• Identify and allocate the functions to be performed Functional decomposition
and allocation of function.
• Specify and produce job designs and competence/ skills required to be
delivered
• Calculate the required number of personnel.
• Generate costed options for delivery of training and/or redeployment
• Evolve options and constraints into an optimal [training] implementation plan
(4.3.5)
• Define how users will be re-allocated, dismissed, or transferred to other duties.
• Predict staff wastage between present and future.
• Calculate the available staffing, taking account of working hours, attainable
effort and nonavailability factor.
• Compare to define gap and communicate requirement to design of staffing
solutions.

c) Hardware
elements

See a) System architecting.

-Prototyping and usability evaluation
-Physical ergonomics
-Participatory design

d) Software
elements

See a) System architecting.

-User interface guidelines and standards
-Prototyping and usability evaluation
-Participatory design

6. Life-cycle
planning
a) Planning

• Develop a plan to achieve and maintain usability throughout the life of the
system.
• Identify the specialist skills required and plan how to provide them.

-Plan to achieve and maintain usability
-Plan use of HSI data to mitigate risks

b) Risks • Plan and manage use of HF data to mitigate risks related to HS issues.
• Evaluate the current severity of emerging threats to system usability and other
HS risks and the effectiveness of mitigation measures.
• Take effective mitigation to address risks to system usability.

-HSI program risk analysis

c) User
involvement

• Identify the HS issues and aspects of the system that require user input.
• Define a strategy and plan for user involvement.
• Select and use the most effective method to elicit user input.
• Customize tools and methods as necessary for particular projects/stages.
• Seek and exploit expert guidance and advice on HS issues.

-Identify HSI issues and aspects of the
system requiring user input
-Develop a plan for user involvement
-Select and use the most effective methods
-Customize tools and methods as
necessary

d) Acquisition • Take account of stakeholder and user issues in acquisition activities. -Common Industry Format
e) Human
resources

• Implement the HR strategy that gives the organisation a mechanism for
implementing and recording lessons learnt
• Enable and encourage people and teams to work together to deliver the
organization's objectives.
• Create capability to meet system requirements in the future (conduct
succession planning)
• Develop and trial training solution to representative users.
• Deliver final training solutions to designated staff according to agreed
timetable.
• Provide means for user feedback [on human issues].

7. Evaluation

a) Risks

• Assess the health and well-being risks to the users of the system.
• Assess the risks to the community and environment arising from human error
in the use of the system.
• Evaluate the current severity of emerging threats to system usability and other
HS risks and the effectiveness of mitigation measures.
• Assess the risks of not involving end users in each evaluation.

-Risk analysis (process and product)

b) Plan and
execute

• Collect user input on the usability of the developing system.
• Revise design and safety features using feedback from evaluations.
• Plan the evaluation.
• Identify and analyze the conditions under which a system is to be tested or
otherwise evaluated.
• Check that the system is fit for evaluation.
• Carry out and analyze the evaluation according to the evaluation plan.
• Understand and act on the results of the evaluation.

-Obtain user feedback on usability
-Use models and simulation

c) Validation • Test that the system meets the requirements of the users, the tasks and the
environment, as defined in its specification.
• Assess the extent to which usability criteria and other HS requirements are
likely to be met by the proposed design.

-Compare with requirements
-Common Industry Format for usability
reports
-Performance measurement

d) HSI knowledge • Review the system for adherence to applicable human science knowledge,
style guides, standards, guidelines, regulations and legislation.

e) Staffing • Decide how many people are needed to fulfill the strategy and what ranges of
competence they need.

HR

• Develop and trial training solution to representative users.
• Conduct assessments of usability [relating to HR].
• Interpret the findings
• Validate the data.
• Check that the data are being used.

8. Negotiating
commitments
a) business case

• Contribute to the business case for the system.
• Include HS review and sign-off in all reviews and decisions

-Program risk analysis

b) requirements • Analyze the user requirements.
• Present these requirements to project stakeholders for use in the development
and operation of the system.
• Identify any staffing gap and communicate requirement to design of staffing
solutions.

-Value-based practices and principles
(identify success critical stakeholder
requirements)
-Common Industry Specification for
Usability Requirements
-Environment/organization assessment

9. Development
and evolution

• Maintain contact with users and the client organization throughout the
definition, development and introduction of a system.
• Evolve options and constraints into an implementation strategy covering
technical, integration, and planning and manning issues.
•

-Risk analysis (process and product)
-User feedback on usability
-Use models and simulation
-Guidelines: Common Industry Format
for usability reports
-Performance measurement

10. Monitoring
and control

• Analyze feedback on the system during delivery and inform the organization
of emerging issues.
• Manage the life cycle plan to address HS issues.
• Take effective mitigation to address risks to system usability.
• Take account of user input and inform users.
• Identify emerging HS issues.
• Understand and act on the results of the evaluation.
• Produce and promulgate a validated statement of staffing shortfall by number
and range of competence.

-Organizational and environmental
context analysis
-Risk Analysis
-User feedback
-Work context analysis

11. Operations
and retirement

a) Operations

• Analyze feedback on the system during delivery and inform the organization
of emerging issues.
• Produce personnel strategy.
• Review the system for adherence to applicable human science knowledge,
style guides, standards, guidelines, regulations and legislation.
• Deliver training and other forms of awareness-raising to users and support
staff.
• Assess the effect of change on the usability of the system.
• Review the health and well-being risks to the users of the system.
• Review the risks to the community and environment arising from human error
in the use of the system.
• Take action on issues arising from in-service assessment.
• Perform research to refine and consolidate operation and support strategy for
the system.

-Work context analysis
-Organizational and environmental
context analysis

b) Retirement • Collect and analyze in-service reports to generate updates or lessons learnt for
the next version of the system.
• Identify risks and health and safety issues associated with removal from
service and destruction of the system.
• Define how users will be re-allocated, dismissed, or transferred to other duties.
• Plan break-up of social structures.
• Debriefing and retrospective analysis for replacement system.

12. Organizational
capability
improvement
a) HSI capability
data collection,
analysis, and
improvement

• Identify and use the most suitable data formats for exchanging HF data.
• Have a policy for HF data management.
• Perform research to develop HF data as required.
• Produce coherent data standards and formats.
• Define rules for the management of data.
• Develop and maintain adequate data search methods.
• Feedback into future HR procurement, training and delivery strategies.

-Assess and improve HSI capability

b) Organizational
skill/career and
infrastructure
development
planning and
execution

• Define usability as a competitive asset
• Set usability, health and safety objectives for systems
• Follow competitive situation in the market place
• Develop user-centred infrastructure.
• Relate HS issues to business benefits.
• Establish and communicate a policy for human-centeredness.
• Include HR and user-centred elements in support and control procedures.
• Define and maintain HCD and HR infrastructure and resources.
• Increase and maintain awareness of usability.
• Develop or provide staff with suitable HS skills.
• Take account of HS issues in financial management
• Assess and improve HS capability in processes that affect usability, health and

-Develop and maintain HSI infrastructure
and resources
-Identify required HSI skills
-Provide staff with HSI skills
-Establish and communicate a policy on
HSI
-Maintain an awareness of usability

safety.
• Develop a common terminology for HS issues with the organization.
• Facilitate personal and technical interactions related to HS issues.
• Feedback into future HR procurement, training and delivery strategies.
• Create capability to meet system requirements in the future (conduct
succession planning)
• Identify any opportunities for redeployment.
• Develop a strategy for [HR] data gathering

ANNEX B. METHOD TYPES
This table (in its final version) will cross-reference the methods and techniques in Annex A to the different method types in the columns of
the tables in Annex D, thus enabling the criteria in Annex D to be applied to the methods and techniques in Annex A.

Method type

Usability methods and techniques O
bs

er
va

tio
n

of
 u

se
rs

Pe
rf

or
m

an
ce

-r
el

at
ed

m

ea
su

re
m

en
ts

C

rit
ic

al
-in

ci
de

nt

an
al

ys
is

Q

ue
st

io
nn

ai
re

s

In
te

rv
ie

w
s

Th
in

ki
ng

 a
lo

ud

C
ol

la
bo

ra
tiv

e
de

si
gn

an

d
ev

al
ua

tio
n

C
re

at
iv

ity
 m

et
ho

ds

D
oc

um
en

t-b
as

ed

m
et

ho
ds

M

od
el

-b
as

ed

m
et

ho
ds

Ex

pe
rt

 e
va

lu
at

io
n

A
ut

om
at

ed

ev
al

ua
tio

n

Assess and improve HSI capability
Cognitive task analysis
Common Industry Format for usability reports
Common Industry Specification for Usability
Requirements

Compare with requirements
Consult stakeholders
Context of use analysis
Contextual enquiry
Customize tools and methods as necessary
Define detailed user interface requirements
Define the intended context of use including boundaries
Design for alertness
Develop a plan for user involvement
Develop and maintain HSI infrastructure and resources
Develop prototypes
Develop simulations
Early prototyping and usability evaluation
Environment/organization assessment
Establish and communicate a policy on HSI
Establish performance and satisfaction goals for specific
scenarios of use

Event data analysis
Field observations and ethnography
Focus groups
Function allocation
Future workshop
Generate design options
Guidelines: Common Industry Format for usability
reports

Heuristic/expert evaluation
HR
HSI program risk analysis
Human factors analysis
Human performance model

Identify HSI issues and aspects of the system requiring
user input

Identify required HSI skills
Identify staffing requirements and any training or
support needed to ensure that users achieve acceptable
performance

In‐depth analysis of work and lifestyles
Investigate required system usability
Maintain an awareness of usability
Obtain user feedback on usability
Organizational and environmental context analysis
Parallel design (tiger testing)
Participatory design
Participatory workshop
Performance measurement
Personas
Photo surveys
Physical ergonomics
Plan staffing
Plan to achieve and maintain usability
Plan use of HSI data to mitigate risks
Preliminary field visit
Prioritize requirements (eg QFD)
Program risk analysis
Prototyping and usability evaluation
Provide staff with HSI skills
Risk analysis (process and product)
Scenarios
Select and use the most effective methods
Simulations of future working environments
Storyboards
Success critical stakeholder identification
Task analysis
Usability benchmarking
Use models and simulation
User feedback
User feedback on usability
User interface guidelines and standards
Value‐based practices and principles (identify success
critical stakeholder requirements)

Work context analysis
Workload assessment

ANNEX C: BUSINESS BENEFITS AND PROJECT RISKS
Developing a product with increased usability can provide
business benefits (Table C1, column 1). Conversely, developing
a product with inadequate usability can risk not achieving stated
project objectives (Table C1, column 2).

The ultimate goal of system development is to produce a system
that satisfies the needs of its operational stakeholders (including
users, operators, administrators, maintainers and the general
public) within acceptable levels of the resources of its
development stakeholders (including funders, acquirers,
developers and suppliers). Operational stakeholders need a
system that is effective, efficient and satisfying. Developing and
delivering systems that satisfy all of these success-critical

stakeholders usually requires managing a complex set of risks
such as usage uncertainties, schedule uncertainties, supply
issues, requirements changes, and uncertainties associated with
technology maturity and technical design.

The additional expenditure needed for human centred activities
is often difficult to justify because the budget holder for project
development often may not personally gain from the potential
business benefits such as increased sales or reduced whole life
costs. Project managers may therefore be more influenced by the
risks of not achieving stated project objectives. It is thus useful
to understand both the potential cost benefits of usability and the
associated risks when justifying resources for usability.

Table C1. Benefits and risks associated with usability
Business benefit Risk
A. Reduced development costs A: Increased development costs to produce an acceptable

system
• Detecting and fixing usability problems early in the development

process
• Not detecting and fixing usability problems early in the

development process
• Reducing the cost of future redesign or radical change of the

architecture to make future versions of the product more usable
• Increasing the cost of future redesign or radical change of

the architecture to make future versions of the product
more usable

• Reduced costs due to only necessary functionality • Increased costs due to unnecessary functionality
• Reduced costs due to minimising documentation • Increased costs due to additional documentation
• Reducing the risk of product failure • Product fails
B: Web site usability: improved web sales B: Web site usability: poor web sales
• Users more frequently find products that they want to purchase • Users cannot find products that they want to purchase
• Users more easily find additional information (e.g. delivery, return

and warranty information)
• Users cannot find additional information (e.g. delivery,

return and warranty information)
• Satisfied users are more likely to make repeat purchases • Dissatisfied users do not make repeat purchases
• Users trust the web site (with personal information and to operate

correctly)
• Users do not trust the web site (with personal information

and to operate correctly)
• Users recommend the web site to others • Users do not recommend the web site to others
• Web site increases sales through other channels • Web site fails to increase sales through other channels
• Reduced support costs • Increased support costs
C: Product usability: improved product sales C: Product usability: poor product sales
• Improve the competitive edge by marketing the products or services

as easy to use
• Competitors gain advantage by marketing competitive

products or services as easy to use
• Satisfied customers make repeat purchases or recommend the

product to others
• Dissatisfied customers do not make repeat purchases or

recommend the product to others
• Good ratings for usability in product reviews • Poor ratings for usability in product reviews
• Improve the brand • Brand damage
D: Improved productivity: benefits to purchasing organisation D: Poor productivity: risks to purchasing organisation
• Faster learning and better retention of information • Slower learning and poorer retention of information
• Reduced task time and increased productivity • Increased task time and reduced productivity
• Reduced employee errors that have to be corrected later • Increased employee errors that have to be corrected later
• Reduced employee errors that impact on the quality of service • Increased employee errors that impact on the quality of

service
• Reduced staff turnover as a result of higher satisfaction and

motivation
• Increased staff turnover as a result of lower satisfaction

and motivation
• Reduced time spent by other staff providing assistance when users

encounter difficulties
• Increased time spent by other staff providing assistance

when users encounter difficulties
E: Reduced support and maintenance costs E: Increased support and maintenance costs
• Reduced support and help line costs • Increased support and help line costs
• Reduced costs of training • Increased costs of training
• Reduced maintenance costs • Increased maintenance costs

ANNEX D. EXAMPLES OF CRITERIA FOR METHOD SELECTION, FROM ISO TR 16982

The Usability Paradox

Mark Santcroos
∗Communication, Media and

Information Technology
Rotterdam University

P.O. Box 25035, 3001 HA
Rotterdam, The Netherlands
m.a.santcroos@hro.nl

Arnold Vermeeren
Human Information and
Communication Design

Dept. of Industrial Design
Delft University of Technology
Landbergstraat 15, 2628 CE

Delft, The Netherlands
a.p.o.s.vermeeren@tudelft.nl

Ingrid Mulder∗†
†ID-StudioLab

Dept. of Industrial Design
Delft University of Technology
Landbergstraat 15, 2628 CE

Delft, The Netherlands
mulderi@acm.org

ABSTRACT
This position paper describes the issues surrounding teach-
ing Human Centered Software Engineering (HCSE). We iden-
tify a lack of methods in software engineering practices in
new media projects. To get a better understanding of that,
we are currently conducting a study to identify the current
practices in the new media industry. The Human Centered
ICT Toolkit is discussed, what it achieved, and what is miss-
ing. Looking at problems from an educational viewpoint, we
propose to create an integrated HCSE approach by improv-
ing the descriptions of methods and their relations giving
richer meaning to students and improving understanding of
HCSE.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

General Terms
Management, Documentation, Design, Human Factors, Stan-
dardization

Keywords
Human Centered, Software Engineering, SE, Education, CASE,
UCD, HCI

1. INTRODUCTION
The Rotterdam University’s School of Communication, Me-
dia and Information Technology (CMI) has a broad scope,
with six bachelor studies ranging from (visual) Design to
Technical Informatics. With this wide range of expertise,
CMI established a research center on Human Centered Infor-
mation and Communication Technology to conduct research
in the field of human-computer interaction, intelligent envi-
ronments and exploiting these technologies to understand
human behavior and user experience as well as informing
the design of innovative technology and interactive media.

1.1 Mediatechnology
One of the six studies within CMI is Mediatechnology, a
software engineering degree primarily developing for the web
and mobile. This field distinguishes itself from traditional
software in the degree of user interaction that is involved.
Consequently it has usability as a higher priority. Based
on discussions we have learned that (almost) none of the
organizations in this industry are using formalized methods
and methodologies in their development process. In order to
get more insight into this new field of software engineering,
recently a study has been started. In this study we want
to identify distinctive characteristics of media projects and
what methods are being used for software evaluation and
usability testing.

1.2 Research approach
All of our third year students have an internship in industry.
During this period students are asked to report in detail
about how their employer’s software engineering process is
arranged. In particular, they look at how clients and end-
users are involved, what methods, techniques and models
are used, how and when tests and evaluations are performed.
Where possible, also information about whether the projects
are finished within time and budget will be gathered.

1.3 Human Centered ICT Toolkit
One of the recent results of our group is the Human Cen-
tered ICT toolkit[3]. It offers an overview of methods and
tools available for different phases (research, concept, de-
sign, development and implementation) in a project. Figure
1 shows the (iterative) phases. The higher goal was to guide
Human Computer Interaction (HCI) and Software Engineer-
ing (SE) researchers and practitioners (i.e. the students of
our six bachelor studies) and to enable them to develop a
shared understanding of the overlapping fields of SE and
HCI. It was constructed for the following goals:

• A guide to easily get an overview of user centered de-
sign and evaluation methods for interactive software
and media;

• An overview of methods, tools and techniques available
in literature and online resources; student’s realistic
projects).

• An overview of methods, tools and techniques learned
and applied in CMI courses;

Figure 1: The Human Centered ICT Toolkit

• An overview of techniques and tools being employed
in different IT- and media enhanced sectors (i.e. stu-
dent’s realistic projects).

The results from the described industry survey as well as
the toolkit presenting the overview of the existing methods
will be guiding the design and teaching of the curriculum of
all six studies.

While the toolkit is a good start in listing the various meth-
ods, not all of the original goals have been reached. In the
next section we touch upon possible solution scenarios for
the identified issues.

2. USABILITY PARADOX
Essential in HCSE is usability testing. In recent years many
methods for user-centered design have been developed and
many tools are at hand. The design has even been standard-
ized by ISO 13407[1]. The Usability Engineering Lifecycle
approach [4] is a well-known example of implementing the
user-centered design approach showing how the various ele-
ments of such an approach link to software engineering ac-
tivities. It refers to a general development approach (rapid
prototyping) as well as to the Object-Oriented Software En-
gineering approach OOSE [2]. However, we still see many
suboptimal products and interfaces that do not meet usabil-
ity quality standards. Therefore it can be said that usability
practices are apparently not consequently applied. Reasons
for this can very from business to technical arguments. In
the remainder of this work we reflect upon some directions
for improving usability practice adoption.

2.1 Information loss
We define the (human centered) software development pro-
cess as the product of the five phases analysis, concept, de-
sign, development and implementation, as taken from the
toolkit model. In an ideal world, people involved in this
process are all around the same table, together with all the
stakeholders of their product. The real world is far from
the ideal situation. However, different phases are handled
by different people not sitting around the same table. Han-
dover from one phase to the other is most often done in
writing and important information gets lost, resembling the
Chinese Whisper game, getting worse with every step.

2.2 Integrated approach
Currently, the model (and implementation) of the toolkit is
flat which makes it unscalable when it grows and therefore
it’s adoption difficult. While it was not claimed that the
model is linear, it does not ensure handover of information
between the various phases. To remove the loss of infor-
mation between the phases it is needed that a dimension is

added that describes the input and output of every method.
By giving the description more descriptive information, it
can be made more valuable to students. By adding this
dimension to the model and the methods described in it,
students might get a better understanding of the intrinsic
purpose of the methods and can also better judge how the
various methods can be used together.

2.3 CASE tool
To facilitate the proposed integrated approach we argue for
the development of a CASE tool build on top of the toolkit.
This will primarily be targeted for education. We realize
that the use for the real world could be limited, as it has
to fit with regular workflow. By using the CASE tool in
software engineering processes undertaken by students, all
kinds of data can be gathered. This information could be
used for further studies regarding the process.

3. CONCLUSIONS
In this position paper we identify that there is a problem
with the adoption of usability practices. We also experience
a lack of standardization in the field of new media software
development. Our conclusion is that these both facts con-
tribute to a fuzzy teaching model for HCSE.

Future results from the study that we initiated to identify
software practices in this new media industry will hopefully
give more guidance for developing HCSE courses. More de-
scriptive information enables the students to have a better
understanding of the issues at hand.

We also believe that the final outcome of this research will
be of benefit to the new media industry if we can educate
the market through our students.

4. ACKNOWLEDGMENTS
We thank our colleagues for the discussions. In particular
Bas Leurs for his leading role on the toolkit and Geert de
Haan for his comments on this paper.

5. REFERENCES
[1] ISO 13407:1999. Human-centred design processes for

interactive systems. ISO, Geneva, Switzerland.

[2] I. Jacobson. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison Wesley, 1992.

[3] B. Leurs and I. Mulder. UCD education beyond the
textbook: practicing a human-centered attitude. In
proceedings of CHI Nederland Conference, 2009.

[4] D. Mayhew. The usability engineering lifecycle: A
practitioner’s handbook for user interface design.
Morgan Kaufmann Publishers, 1999.

Use of Abstraction during User Interface Development
A Position paper

Ebba Þóra Hvannberg
University of Iceland

Hjardarhaga 2-6, 107 Reykjavik, Iceland

+354 525 4702

ebba@hi.is

ABSTRACT
This paper postulates a thesis claiming that abstraction is an
essential part of communication during user interface
development, that models are a way of expressing those
abstractions and that user interface developers and software
engineers need the same language for communication. Motivated
by described myths and desired model characteristics stated in the
literature, several counterarguments and arguments are given to
the thesis, backed up with results from empirical research studies.
The paper concludes with a plan of action to bring the thesis
forward.

Categories and Subject Descriptors
H5.2 [User Interfaces]: models

General Terms
Human Factors

Keywords
Models, Abstraction, Development

1. INTRODUCTION
During software development, good communication within a
development team and between a team and the stakeholders is
essential. Many development lifecycle models have been
suggested, and since participatory design, most if not all lifecycle
models have emphasized inclusion of users. Recent agile models
include two characteristics which involve users; writing some
kind of user stories and letting the buyer of the product decide
upon the next features in the product. Agile methods also stress
that communication within teams are important, but they do
discourage heavy documentation, processes or tools usage.
Communication within a team is sometimes between different
roles. The gap between software engineering and user interface
development has been addressed to an extent in the literature and
the conclusion is that whatever method is used the difficulties in

communication between the software developers and usability
specialists must be tackled [1]. We can all agree that
communication is important, but how, what and why? Engineers
have long communicated by means of mathematics, structural
(architectures) and behavioural models (electrical engineers).
They communicate about materials, structures of buildings, input
and output of processes or systems. Computer scientists on the
other hand express things with logic or computer programs.
Because it seems so easy to change programs or write new ones,
unlike concrete materials such as metal or cement, programmers
think that modeling is not necessary, and in the race for fast
products to market, they skip the preparation and planning and
dive right into the implementation [2].

Because of inherent complexity of software, or maintenance,
computer scientists tend to abstract from details for easier
comprehension during development. Much of the effort of
research in software engineering has been on how to communicate
and articulate this abstraction. Early, this abstraction appeared as
functions, with input and output as descriptions of change of
states of the machine, then as user defined data structures. This
was followed by entity-relationship models which had a strong
influence on data modelling. Finally, since few decades,
abstraction has been dominant in object-orientation, where
abstraction occurs in forms of inheritance and encapsulation.
Reuse was the anticipated return on investment of abstraction,
initially with the concept of classes but when that did not meet
expectations, recent developments have centered more on
components and services as a form of abstraction.

There have been different suggestions of specializing descriptions
of user interfaces from descriptions of software in general, such as
patterns for user interfaces, frameworks and classes to user
interface programming [3]. Instead of specialization from general
software models, others have designed models for user interfaces
independent of software development, such as cognitive models
[4] . With the advent of the web as a platform, specific languages
have been developed and engineering tools developed such as
Web-ML and OO-H [5]. There have thus been countless
attempts to devise specific models for user interaction, and while
they are useful as such they will probably not be widely used by
software developers, or in an interdisciplinary team of software
developers and user interface designers [1]. Those models which
are based on software engineering models such as UML-Web
based Engineering (UWE) are perhaps more likely to be used in
such teams [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

From time to time, or should I say continuously, the research
community has been trying to discover why developers refrain
from using models as abstractions of software, be it informal or
formal. As in the case of formal methods, scientists have tried to
elicit myths and refute them [7]. Sometimes these myths have
been denied with facts, sometimes with general arguments. Myths
are drawn from speculations, here say or common knowledge in
the area. While it is useful to gather such tacit knowledge present
it explicitly, we need to conduct more empirical research
investigating usage of models. A few such studies and my own
results have motivated several statements of arguments for user
interface modeling. The next section states a thesis, followed by
counter arguments and arguments for that thesis. The paper
concludes with a plan of actions.

2. THE THESIS
I postulate that a good way to communicate user interface designs,
and hence results of usability evaluations, is through abstractions.
I postulate that models as a form of abstraction are the best way to
discuss and argue about a user interface development. The models
are created during the requirements, design activities, used to
assist during evaluation, used to express, understand and even
predict results of an evaluation, and used to redesign a user
interface to fix a usability problem uncovered during evaluation.
Finally, I claim that for the task we need software development
models in order to bridge the gap between user interface and
software designers.

3. COUNTER ARGUMENT
Probably, not everyone agrees with the stated position. In the
following, let us examine some of the counter arguments, some of
which are motivated by the characteristics of good models, i.e.
abstraction, understandability, accuracy, predictability and
inexpensiveness [2], others which are motivated by myths stated
in the literature [1, 7].

3.1 Working software over comprehensive
documentation
 One of the principles of agile development is working software
over comprehensive documentation. Daily face to face meetings
and frequent changing of roles or activities is meant to make up
for lack of documentation. Knowledge is tacit and not explicit [8].

Modelling is a process which aids in describing and abstraction
what is to be built. In support of this counterargument Ambler [9]
refers to Constantine [10] who says that it is a misconception that
agilists do not model. The truth is, Ambler states, that they do
model, but that they discourage extensive modelling up-front but
encourage active modelling along the way. Ambler supports this
by referring to agile methods’ literature, but also acknowledges
that the models are sometimes rather informal.

Further, some of the misunderstanding of models is that their
impact is to be mainly achieved through the end product. Instead,
modelling is a dynamic activity and much is gained by the
interaction which the modelling activity facilitates

3.2 Models are difficult to create and few
know how to make them
Not many modeling languages have been created exclusively for
user interface design or for that matter software development. The
predominant one for software development is UML and it is quite
large containing a number of different model types. The types of
problems architects describe are scattered information among
different model views, incompleteness of models, disproportion,
i.e. more details in some parts than others and inconsistencies
between teams. Furthermore, architects claim that models are
sometimes used informally and there are a lack of modeling
conventions [11]. A study on the use of UML demonstrated that
those with more UML experience used it more extensively than
those with less experience, suggesting that analysts need time to
learn how to use the UML language well [12].

While I agree that modeling can be an intricate activity, I don’t
think it is the models themselves that are difficult to create, but it
is the activity of abstraction which is hard. Successful user
interface designers will always need to learn how to abstract.
Some will learn it through modeling; others will learn it implicitly
as they gain experience. With models they are forced to do it but
they can avoid it they don’t use models, with unpredictable
results.

3.3 Creating models are costly and not worth
the effort
Creating models, especially if supporting tools are unavailable,
can be a difficult and time consuming effort. Not only are models
difficult to create but also evolve ensuring that the models are
synchronized with the implementation. A survey says that 52.5
percent of practitioners finish modeling when the model is
complete, 33.8 percent of practitioners say that a model is done
when it has passed a review or an inspection, and 32.8 percent of
practitioners say that the deadline is the stopping criterion.
Whereas the completeness of a model is more often a stopping
criterion in larger projects, a deadline is more often a halting
criterion for smaller projects [11]. These numbers tell us that
models are created in different ways, and in the cases where the
models are not complete, developers do not take full advantage of
the benefits of models, namely model driven development where
code is automatically generated from models [2].

A study we conducted recently showed that over 30% of the
defects could be blamed on faulty dialogue or navigational design,
yet only a few of those defects were fixed [13]. Why? We
speculate that the reason may be that it was estimated too difficult
to fix the usability problems because the solutions required a
revised user interface architecture and hence were too costly or
even too difficult to make.

Our conclusion, from our own and other research studies, is that it
is very costly not to create models, and that unless models are
complete, their full benefits are not reaped.

3.4 Models are limited to describing those
characteristics of user interfaces which do not
concern presentation
Models, especially very abstract ones, do not capture experience
very well. To understand emotional experience, we need a
detailed contextual implementation.

A survey among 171 analysts showed that of seven different types
of UML diagrams and narratives, class diagrams were used most
frequently, with 73% of the analysts saying that they were used in
at least two-thirds of their projects. Use case diagrams were
second, use case narratives fourth (44%), but statechart diagrams
came sixth, with less than 30% of the analysts saying that
statecharts are used in at least 2/3 of the projects. On the other
hand when analysts were asked to mark those diagrams which
were never used, class diagrams ranked the lowest with only 3%
to 25% for collaboration diagrams, ranked the highest [11].

In this same survey, respondents were asked for the usefulness of
the different diagrams. Interestingly, whereas statechart diagrams
were used much less frequently than class diagrams, they ranked
second in usefulness after class diagrams.

If we were to ask user interface developers, I speculate that class
diagrams are only useful for conceptual modelling, but activity
diagrams and then state charts diagrams would be ranked higher
in terms of providing new information not found in use case
narratives.

Conceptual modelling is still very useful in user interface design.
Our study showed that around 23% of defects uncovered could be
attributed to wrong conceptual models [13]. As we see in UML
there are a number of different types of diagrams and this is what
we should aim for in user interface modelling, but we need to link
the different models together such as the presentation models to
the structural and behavioural models, or else the developers will
complain that there is a disconnect between the models.

3.5 Users do not understand models
In a user-centered development, it is imperative to involve users at
all stages of development. It is also critical to include a multi-
disciplinary group of experts. Therefore, the communication
language needs to be familiar to all. Undeniably, artifacts such as
low-fidelity prototypes, story boards, scenarios and use case
narratives are very accessible to users, and countless research
papers have claimed the usefulness of informal models of user
interaction design such as scenarios and prototypes.

The results of a study on how UML is used, partly refutes this
counterclaim. While the study’ results reveal that stakeholders are
most likely to use use case narratives and use case diagrams,
clients are involved in developing, reviewing and approving other
components more than expected. All of the clients interviewed in
the study welcomed the use of UML and some even showed
insight into its usage [12]. As expected, client involvement is
highest with use case narratives, 76%, and lowest for statechart
diagrams.

What is worrying is that models which are not useful with clients
may be useful for programmers, thus creating a gap between the
two groups.

4. ARGUMENT
In this section we restate our claims and support them.

4.1 Abstraction is key to communication
With abstraction we are able to discuss main interactions and
principles in the software without burying it in too many details.
Abstraction makes it easier to plan, verify and design. Abstraction
allows us to present different views of the user interaction.

4.2 Models are a good way to communicate
during user interface development
Sketches, scenarios or storyboards are all different types of
models, since they describe the real end product but leave out
some of its details. Diaper states that “HCI is an engineering
discipline and therefore must model the real world that is assumed
to exist, notwithstanding how poor and partial might be our
models of it.“ [14]. Diaper emphasises the importance of task
models since they describe a series of events or activities in time.
He doesn‘t exclude other models but says that they play a lesser
role. Seffah and Metzker acknowledge that task models are widely
used in the user interface community but warn that they may
describe functionality more than usability, thus not fulfilling the
objectives of the user interface developer.

One of the desirable characteristics of models is that they should
be predictive. Prediction does not only include foreseeing the
behaviour of the user and the system through simulation, but also
modelling of the development activity itself and not just the
artefacts. With increased emphasis on approaches for the whole
lifecycle, including maintenance, we need to include models for
evaluations of user interfaces. Modelling evaluation results should
help us predict whether a defect is likely to be fixed, whether an
evaluator is likely to uncover defects, whether components are
likely to be faulty etc.

4.3 Software development models can serve
user interaction design and other components’
designs
In communication between people a disagreement is often due to
misunderstanding. We say that people don’t speak the same
language. To close the gap between software engineers and user
interaction designers they need to speak the same language.
Different dialects can be permissible but not different languages.

5. CONCLUSION
Current research gives evidence that user interface designers need
better help in their work. The number of defects found and the
increasing criticality of user interfaces demands that we continue
searching for better ways to communicate and apply abstractions
in interaction designs.

The counter arguments stated in this position paper are however
real threats to this believe. I think these threats can be lessened
with the following plan of action:

1. Develop a domain specific modelling language for user
interface design which can be used by an
interdisciplinary team of user interface designers and
software developers.

2. Offer tutorials and develop body of knowledge for user
interface modelling as an abstraction and
communication activity.

6. REFERENCES
1. Seffah, A. and E. Metzker, The obstacles and myths of

usability and software engineering. Commun. ACM,
2004. 47(12): p. 71-76.

2. Selic, B., The pragmatics of model-driven development.
Software, IEEE, 2003. 20(5): p. 19-25.

3. Myers, B.A. and M.B. Rosson, Survey on user interface
programming, in Proceedings of the SIGCHI
conference on Human factors in computing systems.
1992, ACM: Monterey, California, United States.

4. de Haan, G., G.C. van der Veer, and J.C. van Vliet,
Formal modelling techniques in human-computer
interaction. Acta Psychologica, 1991. 78(1-3): p. 27-67.

5. Abrahão, S., et al. A Model-Driven Measurement
Procedure for Sizing Web Applications: Design,
Automation and Validation in MoDELS 2007: Springer-
Verlag

6. Koch, N. and A. Kraus. The expressive power of UML-
based engineering. . in Second International Workshop
on Web Oriented Software Techonlogy (CYTED). 2002.

7. Bowen, J.P. and M.G. Hinchey, Seven more myths of
formal methods. Software, IEEE, 1995. 12(4): p. 34-41.

8. Pikkarainen, M., et al., The impact of agile practices on
communication in software development. Empirical
Software Engineering, 2008. 13(3): p. 303-337.

9. Ambler, S., Tailoring Usability into Agile Software
Development Projects, in Maturing Usability, quality in
Software, Interaction and Value, Effie Lai-Chong Law,
Ebba Thora Hvannberg, and G. Cockton, Editors. 2008,
Springer-verlag London. p. 75-95.

10. Constantine, L. Process Agility and Software Usability:
Toward Lightweight Usage-

 Centered Design. Accessed on April 25, 2006. 2001
[cited 2009; Available from:
www.foruse.com/articles/agiledesign.pdf

11. Lange, C.F.J., M.R.V. Chaudron, and J. Muskens, In
practice: UML software architecture and design
description, in Software, IEEE. 2006. p. 40-46.

12. Dobing, B. and J. Parsons, How UML is used. Commun.
ACM, 2006. 49(5): p. 109-113.

13. Law, E.L.-C., et al., Impacts of Classification of
Usability Problems (CUP) on System Redesign in
Usability and User-Centered Design in Software
Development: Case Studies and Real Life Applications,
Ann Blandford, et al., Editors. 2010, in review, IGI

14. Diaper, D., The discipline of HCI. Interacting with
Computers, 1989. 1(1): p. 3-5.

Adoption of Usability Engineering Methods:
A Measurement-Based Strategy

 Eduard Metzker

Vector Informatik, Stuggart Germany
eduard.metzker@gmx.net

 Ahmed Seffah
EHL-LHR, Lausanne Switzerland

seffah.ahmed@ehl.ch

ABSTRACT
In the context of a software development organization, two
strategies are possible for introducing and institutionalizing
new usability engineering methods. The first one, expert-based
institutionalization, require to resort to third party companies
or experts that can, based its previous expertise, assist the
team in selecting, implementing and institutionalizing
usability engineering methods and tools. The second one, a
measurement-based strategy, is based on empirical evidence
for learning and assessing the appropriateness, usefulness of a
usability engineering method. This paper proposed to combine
these two approaches in a single process metrics support
environment for selecting and institutionalizing usability
engineering methods. The proposed approach has been
validated via in a cross-organizational empirical study
involving several software engineers from five mediums to
large sized software development companies.

Keywords
Metrics, usability, usability engineering methods,
institutionalization, adoption, software developments
organization

1. INTRODUCTION

Within the scope of this research, by adoption we refer to the
process and the related tools for selecting the appropriate new
software development technology while assessing their
suitability to the project needs and size as well as the
capability of the personnel to use effectively and efficiently
the new established technology. Adoption has been always a
key challenge for software development organizations [28]. It
was reported that the management staff commitment and the
involvement of the personnel represent the top factors that
impact on the success with a new technology when first
introduced [27, 29, and 30].

However, despite management efforts made by organizations
to render the transition more “user-friendly”, the associated
help and training material, although precise and perfectly
describing the new method are often delivered in an esoteric
and unreadable language. Another important factor is that
organizations and managers are usually overly optimist in
their employees’ ability to quickly master a new technology.
The reality is that understanding how to apply the technology
is a long and arduous process.

Furthermore, there is little hard evidence backing up new
technology to be adopted, and their costs and benefits are
rarely understood [1]. Without this data, choosing a particular
technology or methodology for a project at hand essentially is
a random act with many consequences [2]. The findings from
a very large survey made by Standish group, new technology
is one of the top ten reasons for projects failure or success
[27].

In order to support and effective adoption, a new metrics-
based approach comprising a process model and a support
environment are presented in this paper. A large case study
was developed to assess the acceptance of the approach by
development teams. The evaluation involved 44 professional
software engineers from five medium to large-sized
organizations. The evaluation method is discussed including
context, method, subjects, procedure and results. Implications
of the results on the design of metrics-based strategy are
discussed for adopting new technology and assessing their
acceptance by project teams. Based on the results, a set of
guidelines is derived to optimize the acceptance of metrics
exploitation approaches by project personnel.

2. THE PROPOSED METRICS SUPPORT
ENVIRONMENT

The overall goal of the proposed approach, called Adoption-
Centric Usability Engineering (ACUE), is to facilitate the
adoption of UE methods by software engineering practitioners
and thereby improve their integration into existing software
development methodologies and practices. ACUE is designed
to support project teams in institutionalizing this abstract
knowledge about UE methods and to help them transfer this
knowledge into their development processes. UE methods are
perceived as integrated into an existing software development
process when they are adopted by the project team, i.e. when
they are accepted and performed by the project team.

ACUE exploits empirical data collected in different projects to
yield stronger evidence on how the method works in a certain
context. The data form an empirical base to guide the
improvement of UE methods and to facilitate the informed
selection and deployment of UE methods in future projects. If
this approach is applied repeatedly in a number of projects
over time, it leads to an incremental construction of a body of
evidence to guide usability engineering method selection
(Figure 1).

Figure 1: The overall view of ACUE approach

The support environment is called ESPrEE (Evidence-based
Software PRocess Evolution Environment). The components
of ESPrEE are integrated via a web portal and they be
remotely accessed using any web browser. Its core
functionalities are:

• At the beginning of a new project, the metrics-based

method selection component of the environment is used
to configure the set of usability engineering methods that
will be applied in the project

• After the method selection has been completed, the
environment generates a project-specific hyper-media
workspace in which the methods selected are graphically
visualized according to the project phases in which their
usage is intended

• At the completion of major project phases or in post
mortem sessions [13], the quality of the methods
employed is assessed by the project team against a
quality model. For this purpose quality models contain a
set of quality factors and carefully defined rating scales

The core of the system is a fuzzy multi-criteria decision-
making engine. The characteristics of the usability methods
and projects are defined as sets of fuzzy sets. Based on these
models the engine is able to compute similarity measures for
projects and methods to facilitate decisions based on analogy.
The engine is coupled with and assessment component. If a
method receives a poor assessment in a certain project context,
the method’s characteristics are automatically adapted to
reduce the probability of the method being selected in similar
projects. On the other hand, if a method has successfully been
applied in a certain project, its characteristics are adapted to

increase its probability of selection in similar projects in the
future.

The characteristics of the project are specified using the
context models stored in the repository. A context model
includes context factors to describe various project constraints
such as the resources available in the project or the type of
product to be developed. Each context model consists of a set
of factors that can have nominal, ordinal or interval scale
measures [11]. An example for an ordinal factor that describes
a property of a product to be developed is ‘user interface
interaction complexity’. This factor may have three
characteristics ‘text-based interface’, ‘graphical user interface’
or ’multi-modal interface’. Depending on the project
characteristics, appropriate methods are suggested by the
system. Candidate methods are ranked according to two
different criteria: (1) similarity between the method and the
project characteristics, (2) results of assessments from project
teams that used the methods in previous projects.

Within, the system the usability engineering methods are
provided in the format of method packages. Each package
contains a textual description of a method that is structured
according to the pyramid principle [12]. Auxiliary material
such as templates, checklists and tools is linked to each
package. This material facilitates easy compliance of the
method described. The process guidance remains passive and
does not enforce the performance of the methods proposed.

The constraints of industrial software development projects
often enforce the invention of new methods or the adaptation
and streamlining of existing methods. For these reasons the
environments provides means for capturing methods and
integrating them into the repository.

3. EVALUATION

3.1. Specific purpose of the evaluation

A large number of measurement programs are suspended or -
in the worst case – failed. This is because the measurement
program is not accepted by stakeholders for the following
reasons [3, 4, 5, 6 and 7]:

1. The measurement process is perceived as tedious and

time consuming
2. Effort and benefits of the program are poorly distributed
3. The impact on daily practice is perceived as being too

low to justify sustained effort
4. Metrics support tools and/or processes are difficult to use

To examine if the proposed approach addresses these issues,
the evaluation study was designed with the following
questions in mind:

• Does each member of the project team understand the

basic principles and structure of the method without
extensive training?

• How do project managers assess the potential quantitative
effects of the approach on their practices? Would they
use the approach in their setting?

• Which problems the project personnel may face when
applying the metrics support tool underlying the proposed
framework?

3.2. Context of the evaluation

We used a set of five medium- to large-size software
engineering companies developing advanced next-generation
home entertainment systems, driver assistance technology for
passenger cars and military support systems. The usability of
these systems has been recognized by the organizations as a
crucial quality factor. While usability engineering methods
[10] are well-know by these companies to ensure the
development of software with high usability, no experience
with usability engineering was available in the engineering
teams. ESPrEE was configured for this environment.
Appropriate context and quality models were defined and
usability engineering methods were captured in method
packages. Resources included successful methods invented in
previous industrial engineering projects such as reported in
[16], methods distilled from literature on usability engineering
[10, 17, 18], and recent research results such as Spencer’s
‘streamlined cognitive walkthrough’[19]. This initial
population of the support tool was performed by a team of
professional usability engineering experts and took about 2.5
man-months of effort. The participating organizations were
part of a government-supported software engineering research
consortium. However, no organization committed to adopt the
approach prior to the evaluation.

3.3 The Subjects

All 44 subjects participated in the study on a voluntary basis.
Of them, 39 are full-time employees working as software
engineers for the companies described in section 3.2. Five
subjects were graduate students working for the companies on
a part-time basis. The subjects were involved in developing
highly interactive software systems in a variety of domains,
e.g. driver assistance systems, home entertainment, and
military defense systems. Based on their experience with the
development of highly interactive systems, the subjects were
classified into three groups: new employees (NE, 10),
software engineers (SE, 21), and usability engineers (UE, 13)
[10]. In the following, these groups are referred to as user
groups for reasons of simplicity.

3.4 Method
In this study, Davis’ technology acceptance model (TAM)
[14] was used. TAM’s assessment dimensions ‘perceived
utility’ and ‘perceived ease of use’ were extended while
adding ‘understandability’ as a third dimension. TAM
postulates that tool acceptance can be predicted by measuring
two dimensions: the perceived usefulness (PU) and the
perceived ease-of-use (PEU) of a system.

The perceived usefulness of the system expresses the
“subjective probability that using a specific application
system will increase (the user’s) job performance within
an organizational context”, i.e. it is a measure for the
perceived utility of the system.

The perceived ease-of-use is the main factor that
influences the acceptance of a system. Davis defines
perceived ease-of-use as “the degree to which the user
expects the target system to be free of effort”, i.e. it is a
measure for the usability of a system.

Together, perceived ease-of-use and perceived
usefulness constitute the person’s attitude toward using
a system. The attitude (A) and the perceived ease-of-use
(PEU) influence the behavioral intention (BI) which can
be used to predict the actual use of the system. The
technology acceptance model (TAM)

TAM’s dimension of perceived utility was further divided into
the following sub-dimensions:

• Perceived compatibility with daily practice
• Perceived increase in efficiency
• Perceived usefulness
• Perceived support of working tasks

The sub-dimension of perceived utility was measured by
qualitative effects analysis while usability was examined by
studying user behavior during the user’s interaction with the
metrics support environment [10]. Understandability was
examined via a knowledge test in which the subjects answered
questions on the concepts of the overall approach and the
metrics support environment. The knowledge test was
performed before and after the interaction with the tool to
study if and how the understanding of the concepts by the
subjects changes.

To implement the study two basic techniques were deployed:
questionnaires and scenario-based task solution. The purpose
of the two questionnaires deployed (q1 and q2) are
summarized in table 1.

Table 1: Purpose of the questionnaires deployed
 Data collected
q1 • Subject characteristics (age, qualification, professional experience)

• Typical role of subject in the software engineering process
• The subjects knowledge on the concepts of the approach and the metrics environment (pre-test, based

on the introductory material supplied)

q2 • The subjects knowledge on the concepts of the approach and the metrics environment (post-test,
based on the scenario-guided interaction with the metrics environment)

• The subjects assessment of the utility and usability of the metrics environment

The scenario-based tasks that were specific for each user
group forms the core of the evaluation. While the subjects
were working on a task, behavioral data and any comments
made while thinking out loud were captured as a basis for
improving the metrics environment. Section 4.5 describes the
tasks that were performed by the subjects while the exact
evaluation procedure and deployment of the methods is
described in section 4.6.

4.5 Tasks
To identify potential problems and study the acceptance of the
metrics support environment under realistic conditions,
specific usage scenarios were developed for each user group.
Each scenario reflects the role of the subject and details the
tasks to be solved.

All scenarios were embedded in a cover story that set a
common background for all scenarios. Scenario S0 is
equivalent for all user groups. In S0, the subjects were allowed
to freely explore all components of the metrics environment.
The other tasks to be solved in each scenario are different
among the user groups (Table 2).

Table 2: Tasks to be solved in scenarios
 Tasks
NE-S1 Find an explanation of the term usability engineering. Mark the section for later exploration.
NE-S2 Find an introductory article about evaluation and tests. Review the material supplied.
NE-S3 Open the hypermedia workspace for the project DIGital. Find and open the method package on

heuristic evaluation.
SE-S1 Browse all method packages available for project DIGital. Find and display a package on heuristic

evaluation. Assess the quality of the method heuristic evaluation.
SE-S2 Comment the method ‚heuristic evaluation‘. Edit the method ‚heuristic evaluation‘. Extend the

method package with a checklist to be used in ‚heuristic evaluation‘.
SE-S3 Create a new method package. Fill the package with given raw input material. Specify the meta-

data of the methods context model. Link the package to related packages.
UE-S1 Create a new project PORTAL. Choose a context model and specify the project characteristics via

the context model. Choose appropriate method packages based on the project characteristics
specified. Trigger generation of hypermedia workspace for the project PORTAL.

UE-S2 Manage access to the hypermedia workspace for the project PORTAL. Invite project team
members. Manage access levels of project team members.

3.6. Test procedure and scripts

Prior to the evaluation sessions, all the subjects received
introductory material. It described the concepts of the metrics
approach and the components of the related environment.
Single subjects, who, for some reason, had no access to the
material prior to the evaluation, were given the opportunity to
study printouts of the material. Each subject had an individual
session, no group sessions were performed.

The evaluation session started with a short introduction of the
participants, the procedure, and the objectives of the study.
The subjects were explicitly informed that the goal of the
evaluation was to assess the utility of the approach and not the
capabilities of the participants and that all data would be
treated confidentially. First questionnaire q1 was handed out.
Next the tasks to be solved were handed out in form of
scenarios. Scenario S0 was performed by each participant to
promote a free exploration of the system. The time for S0 was
limited to 20 minutes. Next, the group-specific scenarios were
handed out to the subjects. No time limit was set for task
completion. The subjects were encouraged to articulate
impressions and problems and think aloud while performing

the tasks. After the tasks of all scenarios were completed,
questionnaire q2 was handed out to the subject. The evaluation
is concluded with a brief free discussion.

Two observers were involved in each evaluation session. One
observer recorded the behavioral data, while the other was
responsible for writing down comments from the subjects
were thinking aloud. During the session, the subjects worked
with a laptop with each evaluation lasting of roughly two
hours.

4. RESULTS AND FINDINGS

The qualitative effects analysis shows that the proposed
metrics-based strategy is strongly accepted by the main target
group. However the support environment receives higher-
than-average ratings from all subject groups.

4.1 Understandability of the approach

The understanding of the metrics collection approach and the
metrics support environment by the subjects was measured
before and after usage of the support system via the

questionnaires q1 and q2. After reading the introductory
material, the average percentage of correct answers was 36%.
Subsequent to performing the scenario-based tasks, this value
doubled, being up to 63%. The performance of the groups and
the overall performance of the subjects are depicted in figure
2. It shows that even the relatively short time of usage of the
metrics environment led to a significant increase in the
understanding of the concepts and components of the
approach. The increased understanding of the overall approach
was lowest in the group of new employees (NE). However this
can be easily explained since their scenarios (NE-S1-S3) did
not comprise the usage of all components of the metrics
support system.

63%
36%

62%
35%

71%
35%

48%
43%

0% 20% 40% 60% 80%

post-test pre-test

NE

SE

UE

∅

Figure 2: Pre- and post-test scores in knowledge tests with
respect to subject groups (in percentage of correctly
answered questions)

4.2 Usefulness of the approach

For the qualitative effects analysis, the subjects were asked to
assess the properties of the metrics support environments
along with the utility dimensions defined in section 3.4Each
subject filled out questionnaire q2 after performing the
scenario-specific tasks. For this reason questionnaire q2
includes a number of items to be rated on a five-level Likert
scale [20] for each dimension. Figure 3 sets out the results of
the qualitative effects analysis. The bars represent ratings of
the assessment dimensions. The mean ratings were calculated
for each dimension and grouped according to the subject
groups.

3,7

4,3

3,4

3,6

3,7

4,1

3,5

3,5

3,3

3,9

3,1

3,4

4,4

4,5

4,4

4,3

3,4

3,7

3,3

3,4

1 2 3 4 5

compatibility with daily practice
increase in knowledge
usefulness as a tool
increase in the efficiency of UE
support of task

NE

SE

UE

∅

Figure 3: Results of the qualitative effects analysis
(assessment scores for utility dimensions with respect to
user group, 1: very low, 5: very high)

The results indicate that the approach and its support
environment were generally assessed by all groups as higher-
than-average useful and reasonable. All subjects seem to
highly appreciate the potential of the approach for increasing
their knowledge of usability engineering methods. The
dimension ‘task support’ receives the highest scores from the
UE group. This corresponds with the pre-configuration of the
support environment with usability engineering methods and
the subjects role as usability engineers. It could be concluded
that the assessment of this dimension by the other groups
could be further enhanced, if also usability engineering
methods for other areas such as ‘requirements engineering’ or
methods for enhancing programmer productivity were
integrated into the method repository of the metrics
environment. This result underpins the necessity to provide
benefits for all groups of project personnel involved in metrics
collection and exploitation.

4.3 Recommendations for usability
improvements

The behavioral data and user comments recorded during task
performance suggest that there is potential for improving the
usability of the metrics support environment. The distribution
of usability issues identified by subjects across the client
components of the metrics support environment are presented
in figure 4.

Most improvement suggestions are related to the components
for process guidance and metrics-based decision support. The
high number of usability issues identified for the process
guidance component can be partially explained by the fact,
that the scenarios of all user groups (NE, SE, UE) included
interaction with the process guidance component.

30%

32%

20%

11%

7%

0% 10% 20% 30% 40%

cross component issues
web portal
method assessment and improvement component
process guidance component
metrics-based method selection component

Figure 4: Distribution of the usability issues identified over
client components of metrics support environment

One issue is that more assistance in working with the UE
methods is appreciated by the subjects. In particular novice
users could profit from concepts such as wizards to augment
metrics capturing. Moreover the consistency between the
applications should be increased. Finally the parts of the
terminology used in the graphical user interfaces of the
metrics environment should be revised for more
comprehensible terms. One example given was that subjects
suggested changing the term “project context model” to
“project characteristics”.

5. A CONCLUDING REMARK

In this paper, an approach for adopting UE methods was
proposed. It consists of a three-phased process. First, usability
engineering methods are selected for a new project based on
the projects constraints. Then the project team is supported in

deploying the methods in the project. Finally the project
assesses the quality of the methods deployed. The approach is
supported by a tool, an intranet that offers a web-based
support system. The approach has been successfully
implemented in industry.

Instead of evaluating the approach in an isolated longitudinal
case study, a study was performed to examine the acceptance
of the approach by practitioners from various organizations.
The acceptance was measured in scenario-driven evaluation
sessions, by capturing the understandability, perceived utility
and perceived usability of the approach. The results indicate
that the approach is accepted by the subject groups examined.
We recommend using the study described as a template to
estimate the initial acceptance when introducing tool
supported measurement programs into organizations. Such
studies can be useful for early identification of acceptance
problems that hamper the log-term success of metrics
programs. The usability of the metrics environment will be
further improved using the feedback gathered.

6. ACKNOWLEDGEMENTS

Part of the empirical study presented in this paper was
originally conducted at Daimler Chrysler. We would like to
thank Elke Wetzstein and Gerd Jan Tschoepe from the
Institute for Industrial Psychology of the Humboldt University
Berlin for their support in preparing and conducting the
evaluation sessions. Part of this research work was funded by
the BMBF (German Ministry for Research and Education)
under the project EMBASSI (01IL904I). We would like to
thank also the National Science and Engineering Research
Council of Canada and Daimler Chrysler for their financial
support to the human-centered software engineering group at
Concordia University.

REFERENCES

[1] D. E. Perry, A. A. Porter, and L. G. Votta,

“Empirical Studies of Software Engineering: A
Roadmap,” in Proc. International Conference on
Software Engineering (ICSE2000), 2000, pp. 345 -
355.

[2] V. R. Basili, F. Shull, and F. Lanubile, “Building
Knowledge Through Families of Experiments,”
IEEE Transactions on Software Engineering, vol.
25, pp. 456-473, 1999.

[3] D. R. Goldenson, A. Gopal, and T. Mukhopadhyay,
“Determinants of Success in Software Measurement
Programs: Initial Results,” in Proc. Sixth IEEE
International Symposium on Software Metrics,
1999, pp. 10-21.

[4] B. G. Silverman, “Software Cost and Productivity
Improvements: An Analogical View,” IEEE
Computer, vol. May 1985, pp. 86-96, 1985.

[5] R. T. Hughes, “Expert Judgment as an Estimating
Method,” Information and Software Technology, pp.
67-75, 1996.

[6] F. Niessink and H. Van Vliet, “Measurements
Should Generate Value, Rather than Data.,” in Proc.
Sixth IEEE International Symposium on Software
Metrics, 1999, pp. 31-39.

[7] O. Laitenberger and H. M. Dreyer, “Evaluating the
Usefulness and the Ease of Use of a Web-based
Inspection Data Collection Tool,” in Proc. Fifth
IEEE International Symposium on Software Metrics,
1998.

[8] S. Komi-Sirviö, P. Parviainen, and J. Ronkainen,
“Measurement Automation: Methodological
Background and Practical Solutions - A Multiple
Case Study,” in Proc. 7th IEEE International
Software Metrics Symposium, 2001, pp. 306-316.

[9] L. Rosenberg and L. Hyatt, “Developing a
Successful Metrics Program,” in Proc. 8th Annual
Software Technology Conference, 1996.

[10] J. Nielsen, Usability Engineering: Morgan Kaufman
Publishers, 1994.

[11] L. Briand, K. El Emam, and S. Morasca, “On the
Application of Measurement Theory in Software
Engineering,” Empirical Software Engineering, vol.
1, pp. 61-88, 1996.

[12] B. Minto, The Pyramid Principle - Logic in Writing
and Thinking, 3rd ed. London: Minto International
Inc., 1987.

[13] A. Birk, T. Dingsøyr, and T. Stålhane, “Postmortem:
Never Leave a Project without it,” IEEE Software,
vol. 19, pp. 43-45, 2002.

[14] F. D. Davis, “A Technology Acceptance Model for
Empirically Testing New End-User Information
Systems: Theory and Results,,” in MIT Sloan
School of Management. Cambridge, MA, USA: MIT
Sloan School of Management, 1986.

[15] B. A. Kitchenham, “Evaluating Software
Engineering Methods and Tools,” ACM SIGSoft
Software Engineering Notes, pp. 11-15, 1996.

[16] E. Metzker and M. Offergeld, “An Interdisciplinary
Approach for Successfully Integrating Human-
Centered Design Methods Into Development
Processes Practiced by Industrial Software
Development Organizations,” in Engineering for
Human Computer Interaction: 8th IFIP International
Conference, EHCI 2001(EHCI'01), Lecture Notes in
Computer Science, R. Little and L. Nigay, Eds.
Toronto, Canada: Springer, 2001, pp. 21-36.

[17] L. L. Constantine and L. A. D. Lockwood, Software
for Use: A Practical Guide to the Models and
Methods of Usage-Centered Design: Addison-
Wesley, 1999.

[18] D. J. Mayhew, The Usability Engineering Lifecycle:
A Practioner's Handbook for User Interface Design:
Morgan Kaufman Publishers, 1999.

[19] R. Spencer, “The Streamlined Cognitive
Walkthrough Method: Working Around Social
Constraints Encountered in a Software Development
Company,” in Proc. Conference on Human Factors
in Computing Systems (CHI'00), 2000, pp. 353-359.

[20] C. M. Judd, E. R. Smith, and L. H. Kidder, Research
Methods in Social Relations, 6 ed: Harcourt Brace
Jovanovich College Publishers, 1991.

[21] G. F. Smith and S. T. March, “Design and Natural
Science Research on Information Technology,”
Decision Support Systems, vol. 15, pp. 251-266,
1995.

[22] R. D. Galliers and F. F. Land, “Choosing
Appropriate Information Systems Research
Methodologies,” Communications of the ACM, vol.
30, pp. 900-902, 1987.

[23] T. DeMarco and T. Lister, Peopleware: Productive
Projects and Teams, 2. ed. New York: Dorset House
Publishing, 1999.

[24] Y. Malhotra and D. F. Galletta, “Extending the
Technology Acceptance Model to Account for
Social Influence: Theoretical Bases and Empirical
Validation,” in Proc. Thirty-Second Annual Hawaii
International Conference on System Sciences, 1999,
pp. pp. 1006.

[25] A. Cockburn, Agile Software Development:
Addison Wesley Longman, 2001.

[26] N. Juristo and A. M. Moreno, Basics of Software
Engineering Experimentation. Dordrecht: Kluwer
Academic Publishers, 2001.

[27] Standish Group. “CHAOS Chronicles or CHAOS: A
Recipe For Success”. 1995.

[28] Bayer, J. and Melone, N. Adoption of Software
Engineering Innovations in Organizations. Technical
Report CMU/SEI-89-TR-017, Software Engineering
Institute, Carnegie Mellon University.

[29] Desmarais M.C., Leclair R., Fiset J.Y., Talbi H.
“Cost-Justifying Electronic Performance Support
Systems.” Communications of the ACM, Vol. 40,
No. 7, July 1997.

[30] Howard R. “Software Process Maturity: Measuring
Its Impact on Productivity and Quality.” IEEE
International Software Metrics Symposium, May
1993.

Towards a Usability Evaluation Process for Model-
Driven Web Development

Adrian Fernandez
ISSI Research Group

 Department of Information Systems
and Computation - Universidad

Politécnica de Valencia, Camino de
Vera, s/n, 46022, Valencia, Spain.

+34 96 387 73 50

afernandez@dsic.upv.es

Emilio Insfran
ISSI Research Group

 Department of Information Systems
and Computation - Universidad

Politécnica de Valencia, Camino de
Vera, s/n, 46022, Valencia, Spain.

+34 96 387 73 50

einsfran@dsic.upv.es

Silvia Abrahão
ISSI Research Group

 Department of Information Systems
and Computation - Universidad

Politécnica de Valencia, Camino de
Vera, s/n, 46022, Valencia, Spain.

+34 96 387 73 50

sabrahao@dsic.upv.es

ABSTRACT
This paper presents an approach to integrate usability

evaluations into Model-Driven Web development processes.

Our main motivation is to define a generic usability evaluation

process which can be instantiated into any concrete Web

development process that follows a Model-Driven Development

(MDD) approach. A preliminary version of a Web Usability

Model was defined in order to support this usability evaluation

process at several stages. This Web Usability Model

decomposes the usability sub-characteristics (from the Software

Quality Model proposed in the ISO/IEC 25000 SQuaRE

standard) into other sub-characteristics and measurable

attributes. Web metrics are intended to be associated to

measurable attributes in order to quantify them. Our approach is

intended to perform usability evaluations at several stages of a

Web Development process. In this paper, we show how

usability evaluations at final user interface (UI) can provide

feedback about changes in order to improve usability issues at

intermediate artifacts (Platform-Independent Models and

Platform-Specific Models) or at transformations rules among

these intermediate artifacts.

Categories and Subject Descriptors
D.2.9 [Management]: Software quality assurance, D.2.8

[Metrics]: product metrics. H5.2 [User Interfaces]:

Evaluation/methodology

General Terms
Measurement, Design.

Keywords
Web Usability Model, Usability Evaluation, Web Metrics,

Model-Driven Development.

1. INTRODUCTION
Usability in Web applications is a crucial factor since the ease

or difficulty that users experience with this kind of systems will

determine their success or failure. Web applications are

increasing its importance in industrial domains; thereby, the

need for usability evaluation methods that are specifically

crafted for the Web domain has become critical.

Usability evaluations methods for Web applications can be

supported by a quality model which defines usability as a

quality characteristic that is decomposed into specific attributes

that are easier to measure. Although there are several proposes

in this field, most of these approaches [12],[13] only consider

usability evaluation at final stages when the product is almost

completed where correcting its usability problems is more

difficult. It is widely accepted that evaluations performed at

each phase of Web applications development is a critical part of

ensuring that the product will actually be used and be effective

for its intended purpose. We argue that integrating usability

issues into the MDD approach can be an effective way to reach

this objective since the quality evaluation of intermediate

artifacts (models that specify an entire Web application), is

applied in all steps of the process [2]. A Web development

process that follows a MDD approach basically transforms

models that are independent from implementation details

(Platform-Independent Models - PIM) into other models that

contain specific aspects from a concrete platform (Platform-

Specific Models - PSM). Transformation rules, which are

applied at PSMs, are able to automatically generate the Web

application source code (Code Model - CM).

This paper presents an approach to integrate usability

evaluation into any Model-Driven Web Development method

by defining a usability evaluation process. This Web Usability

Model has been defined by decomposing the usability sub-

characteristics (from the Software Quality Model proposed in

the ISO/IEC 25000 SQuaRE standard) into other sub-

characteristics and measurable attributes taking into account

ergonomic criteria proposed in Bastien and Scapin [4].

Although our approach is intended to perform usability

evaluations at several stages of a Web development process, in

this paper, we mainly focus on how evaluations at final user

interface (Code Model) can provide feedback about changes in

order to improve usability issues at intermediate artifacts (PIM

and PSM models) produced at early stages of the Web

development process and at transformations rules among these

intermediate artifacts.

This paper is organized as follows. Section 2 discusses related

work that report usability evaluation processes for Web

applications. Section 3 presents our approach to integrate

usability evaluations into Model-Driven Web Development.

Section 4 presents our Web Usability Model that supports our

approach. Section 5 shows a brief example of how the usability

evaluation process can be instantiated into a concrete Web

development method. We mainly focus on evaluations at final

user interface. Finally, Section 6 presents discussions and

further work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

I-USED ’09, August 24, 2009, Upssala, Sweeden.

2. RELATED WORK
There are several approaches that deal with Web usability

evaluation, for instance, Ivory [16], Olsina and Rossi [13],

Calero et al. [5], Seffah et al. [15], and Moraga et al. [12].

Ivory [16] presents a methodology for evaluating information-

centric Web sites. The methodology proposes five stages:

identifying an exhaustive set of quantitative interface measures

such as the amount of text on a page, color usage, consistency,

etc; computing measures for a large sample of rated interfaces;

deriving statistical models from the measures and ratings; using

the models to predict ratings for new interfaces; and validating

model prediction.

Olsina and Rossi [13] proposed the Web Quality Evaluation

Method (WebQEM) to define an evaluation process in four

technical phases: Quality requirements definition and

specification (specifying characteristics and attributes based on

the ISO/IEC 9126-1 [9]. such as usability, functionality,

reliability, and effectiveness and taking into account Web

audience’s needs), elementary evaluation (applying metrics to

quantify attributes), global evaluation (selecting aggregation

criteria and a scoring model), and conclusion (giving

recommendations). Nevertheless, evaluations take place mainly

when the application is completed.

Calero et al. [5] present the Web Quality Model (WQM), which

is intended to evaluate a Web application according to three

dimensions: Web features (content, presentation, and

navigation); quality characteristics based on the ISO/IEC 9126-

1 (functionality, reliability, usability, efficiency, portability, and

maintainability); and lifecycle processes (development,

operation and maintenance) including organizational processes

such as project management and reuse program management.

WQM has been used to classify, according to these three

dimensions, a total of 326 Web metrics taken from the existing

literature. An evaluation process can be defined by selecting the

most useful set of metrics to construct a “total Web quality”

expression that could be used to quantify the quality of a given

Web application. However, guidelines on how to define this

process have not been provided.

Seffah et al. [15] present the Quality in Use Integrated

Measurement (QUIM) as a consolidated model for usability

measurement in Web applications. An editor tool has presented

to define measurement plans collecting data from different

combinations of metrics proposed in the model. QUIM

combines existing models from ISO/IEC 9126-1 [9], ISO/IEC

9241-11 [8], and others. It decomposes usability into factors,

and then into criteria. In this approach, a criterion can belong to

different factors. Finally, these criteria are decomposed into

specific metrics that can quantify the criteria.

Moraga et al. [12] present a usability model towards portlet

evaluation. Portlets are pluggable user interface software

components that are managed and displayed in a web portal.

The portlet usability model is based on the sub-characteristics

from ISO/IEC 9126 (understandability, learnability and

compliance), nevertheless, the operability sub-characteristic

was replaced by customizability which is closer to the portlet

context. The usability evaluation process proposed is based on a

number of ranking with acceptance thresholds in order to

quantify the sub-characteristics from the models.

The majority of these approaches evaluate Web applications in

order to suggest changes at design or implementation stages. It

implies that more efforts and resources must be invested into

code maintenance. This fact does not occur in a MDD approach

where only the maintenance of models is required since source

code can be automatically generated from the intermediate

artifacts (PIM and PSM models).

In previous work, Abrahão and Insfran [3] proposed a usability

model for early evaluation in model-driven architecture

environments. Usability was decomposed into the same sub-

characteristics as the ones in the ISO/IEC 9126 (learnability,

understandability, operability, and compliance), and then

decomposed again, into more detailed sub-characteristics and

attributes. However, the model did not provide metrics for

measuring the model attributes and it was not proposed

specifically for the Web domain. Panach et al. [14] presents an

adaptation from the previous model to the Web domain in order

to evaluate usability at PIM models for a concrete and

proprietary Model-Driven Web Development approach.

As far as we know, there is no proposal for a generic usability

evaluation process supported by a usability model in the Model-

Driven Web Development context.

3. THE USABILITY EVALUATION

PROCESS
Since the adoption of Model-Driven Development (MDD) in

the industrial domain has increased recently, our approach is

intended to integrate usability issues into a Model-Driven Web

Development. Web development methods that follow this

approach such as OO-H [7], WebML [6], or UWE [11] support

the development of a Web application by defining different

views (models), including at least one structural model, a

navigational model, and an abstract presentation model. These

methods also provide model transformations and automatic

code generation.

The usability of a Web application obtained as a result of a

MDD process can be assessed at different abstraction levels

(PIM, PSM and CM). Our proposal is intended to use a Web

Usability Model, which is a set of sub-characteristics

decomposed into measurable attributes that can be quantified by

metrics. The Web Usability Model can be applied to assess the

models from each abstraction level (see Fig.1). However, not all

the measurable attributes can be evaluated at all the abstraction

levels. The higher abstraction level, the less attributes can be

considered. In addition, feedback that is obtained after the

artifact evaluation has different targets depending on the

abstraction level:

1. At the PIM level it is possible to assess models that

specify the Web application independently of platform

details such as: presentation models, navigational models,

dialogue models, etc. (1 in Fig.1). The set of measurable

attributes that can be evaluated at this level is mainly

related to how the information will be accessed by users

and how this information will be presented by abstract UI

patterns (i.e. navigability, information density, etc).

However, this set of attributes may differ depending on

the PIM expressiveness from each Web development

method. This evaluation will generate a usability report in

order to provide feedback about how to correct these PIM

models.

2. At the PSM level it is possible to assess the concrete

interface models related to a specific platform (2 in

Fig.1). The set of measurable attributes that can be

evaluated at this level is wider since it includes attributes

related with specific software components (widgets) that

cannot be considered at PIM level (i.e. behavior of

explore bars, visual feedback from radio buttons,

etc).This evaluation will generate a usability report in

order to provide feedback to previous stages about how to

correct the PIM and PSM models, as well as the

transformation rules among them.

3. At the CM level it is possible to evaluate the final user

interface (3 in Fig.1). The set of measurable attributes that

can be evaluated at this level is the widest since more

aspects related to the end-user perspective can be

considered (i.e. browser compatibility, metaphor

recognition, subjective appealing, etc). This evaluation

will also generate a usability report in order to provide

feedback to previous stages about how to correct the PIM

and PSM models, as well as the transformation rules

among them, and code generation rules among PSM and

CM.

The former evaluations can be applied in an iterative way until

the models (PIM, PSM, and CM) have the required level of

usability. In order to integrate these evaluations into a

framework, a usability evaluation process should be defined as

an inspection method that guides evaluators on how the Web

Usability Model can be applied. This inspection method could

be defined in order to be compliant with the Quality Evaluation

Division proposed in the ISO/IEC 2504n SQuaRE series [10].

The main steps to be included are:

1. Establish evaluation requirements such as the purpose of

evaluation, identification of Web application type, and

selection of the more relevant sub-characteristics of the

Web Usability Model taking into account the users’

needs.

2. Specify the evaluation concerning with the establishment

of the artifacts to be evaluated (PIM, PSM or CM);

selection of metrics associated to the attributes selected

from the Web Usability Model; specification of the

calculation formulas of these metrics taking into account

the abstraction level of the artifact and the modeling

primitives from the concrete Model-Driven Web

development method; establishment of rating levels for

these metrics; establishment of criteria for global

assessment; and the definition of templates to report

usability problems.

3. Design the evaluation plan describing the evaluator tasks

schedule.

4. Execute the evaluation by applying the selected Web

metrics in order to detect usability problems.

5. Generate the usability reports providing feedback in order

to improve the intermediate artifacts (PIM and PSM) or

transformation rules.

6. Analysis of changes suggested by usability reports and

selection of the alternatives taking into account criteria

such as level and priority of usability problems, resources

needed to apply changes, etc.

It should be noted that this process is defined to be instantiated

into any concrete Model-Driven Web Development method.

The instantiation implies to know the modeling primitives of

the concrete Model-Driven Web development method in order

to be able to specify the calculation formula of the metrics and

to understand the traceability between models. This traceability

helps the evaluator to establish the source of the usability

problems (PIMs, PSMs or transformations rules among them).

4. THE WEB USABILITY MODEL
The SQuaRE standard [10] proposes three different views for a

quality model. These views are related to the context where the

model will be applied: Software Quality Model to evaluate a

concrete software product; Data Quality Model to evaluate the

quality of the data managed in the product; and Quality in Use

Model to evaluate how the stakeholders achieve their goals in a

specific context of use.

Our Web Usability Model is an adaptation and extension from

the usability model for model-driven development presented in

Abrahão and Insfran [3], specifically, the model was adapted to

be compliant with the Software Quality Model proposed in the

SQuaRE.

The main quality characteristics of the software quality model

are: functionality, security, interoperability, reliability,

operability (usability) and efficiency. Although the term

operability and ease of use have been proposed in SQuaRE to

rename usability and operability sub-characteristic,

respectively, we prefer to use the term usability and operability

in this work to avoid misunderstandings in terminology.

Usability can be decomposed into the five sub-characteristics

proposed in SQuaRE [10]: learnability, understandability, ease

of use (operability), attractiveness and compliance. The former

three sub-characteristics are related to user performance and can

be quantified mainly using objective measures. The last two

sub-characteristics are related to the perception of the end-user

or evaluator using the Web Application and can be quantified

mainly using subjective measures.

The former three sub-characteristics were decomposed into

other sub-characteristics or measurable attributes, taking into

account the ergonomic criteria proposed in Bastien and Scapin

[4]:

i. Learnability refers to the attributes of a Web application

that facilitate learning: a) help facilities such as on-line

Fig. 1 Integrating a Usability Evaluation Process into a Model-Driven Web development process

help, contact section, etc; b) predictability, which refers to

the ease with which a user can determine the result of

his/her future actions (i.e. significance of link/image titles);

c) informative feedback in response to user actions; and d)

memorability as a measure of how quickly and accurately

users can remember how to use a Web application that they

have used before.

ii. Understandability refers to the attributes of a Web

application that facilitate understanding: a) optical legibility

of texts and images (e.g., font size, text contrast); b)

readability, which involves aspects of information-grouping

cohesiveness and density; c) familiarity, the ease with

which a user recognizes the user interface components and

views their interaction as natural; d) brevity, which is

related to the reduction of user cognitive effort; and finally,

e) user guidance, which is related to message quality,

immediate feedback (to show the current user state), and

navigability (to guide the user and to improve the access to

the Web content).

iii. Operability refers to the attributes of a Web application that
facilitate user control and operation: a) execution facilities

such as compatible browsers, plug-ins needed, and update

frequency; b) data validity of the user inputs; c)

controllability of the services execution such as cancel,

undo and redo support; d) capability of adaptation which

refers to the capacity of the Web application to be adapted

to the users’ needs and preferences and e) consistency in the

execution of services and control behavior.

The last two sub-characteristics are related to the perception of

the end-user (attractiveness) or evaluator (compliance) using

the Web Application:

iv. Attractiveness refers to the attributes of a Web application
that are related to the aesthetic design. They can be

quantified by measuring the UI uniformity in terms of font

style (color, face and size), background color, and position

of elements.

v. Compliance can be measured by assessing the agreement of
the proposed Web Usability Model with respect to the

standard SQuaRE and several Web design style guides.

Once the sub-characteristics have been identified, Web metrics

are associated to the measurable attributes in order to quantify

them. Values obtained from these Web metrics will allow us to

interpret if measurable attributes contribute to achieving certain

usability level in the Web application. The metrics included in

our model were mainly extracted from the survey presented in

Calero et al. [5]. We only selected those metrics that were

theoretically and/or empirically validated. In addition, we

proposed new metrics for several measurable attributes that

were not appropriated covered by this survey.

As an example, we show some definitions of new proposed

metrics that can be associated to attributes of the Web Usability

Model:

• Number of different font styles for textual links: This metric

is defined as number of different font style combinations

(size, face, and color) for all textual links in the same

navigation category. (Scale type: absolute value greater or

equal to 1). The interpretation is: more than one style

combination in the same navigation category means that

font style uniformity is not insured. This metric is

associated to the font style uniformity attribute, which

belongs to the attractiveness sub-characteristic (iv).

• Proportion of elements that show current user state: This

metric is defined as the ratio between the number of

elements that show feedback about the current user state

and the total number of elements that are required to have

this feedback capability. (Scale type: ratio between 0 and

1). The interpretation is: values closer to 1 indicate that user

can obtain feedback about his/her current state in the Web

application. This metric is associated to the immediate

feedback attribute, which belongs to the user guidance sub-

characteristic (ii. e).

Web metrics definitions from the Web Usability Model are

generic, and their calculation formula must be instantiated by

identifying variables from this formula in the modeling

primitives of the concrete Web development method for each

abstraction level (PIM, PSM or CM). Not all the metrics can be

defined at all the abstraction levels, for instance, the former

metric can be applied at PIM level (if style properties are

defined at the abstract UI) or at CM level (if style properties are

defined in Cascading Style Sheets files). However, the second

metric only can be defined at PSM or CM level since the

feedback depends on the widget behavior from the concrete

interface.

5. INSTANTIATION OF THE USABILITY

EVALUATION PROCESS
In this section, we show an overview of how the previous

usability process can be instantiated into a concrete Web

development methodology. As an example, we selected the OO-

H [7] method.

The OO-H method [7] provides designers with the semantics

and notation for developing Web applications. The set of

conceptual models that represents the different concerns of a

Web application are: the specification of content requirements

(Class Model) and the specification of functional requirements

in terms of navigation needs (Navigation Model, NAD). A

merge between the class and navigation models results in an

Abstract Presentation Diagram as an integrated PIM model,

which presents an abstract user interface as a collection of

abstract pages. APD can be refined by a pattern catalog. Finally,

platform-specific models (PSMs) are automatically obtained

from the APD, from which source code (CM) can be

automatically generated.

Next, we show as an example, a brief description about the

steps involved in our usability evaluation process.

Step 1 (See Section 3): The purpose is to evaluate the usability

of a Web application developed following the OO-H method.

The selected Web application is a task management system

developed for a Web development company located in Alicante,

Spain. Finally, the attributes chosen were font style uniformity

to evaluate the attractiveness sub-characteristic, and immediate

feedback to evaluate the user guidance sub-characteristic, at

least to some extent.

Step 2 (See Section 3): The artifacts selected for this evaluation

were the final UIs (Code Model). The metrics selected to

evaluate the previous attributes were Number of different font

styles for text links and Proportion of elements that show

current user state (see explanation of each metric in Section 4).

The rating level for the former metric was established at no UP

for values equal to 1; low UP for values equal to 2; medium UP

for values equal to 3; and critical UP for values greater than 3.

The rating level for the second metric was established at no UP

for values equal to 1; low UP for values in the range [0.8, 1};

medium UP for values [0.5, 0.8} and critical UP for values [0,

0.5}. The usability report is defined as a list of usability

problems (UP) detected with the next fields: description of the

UP, level of the UP (critical, medium, or low), source of the

problem (model), occurrences, and recommendations to correct

it. More fields can be defined such as priority, impact, etc.

Step 3 (See Section 3): In this case, the evaluator is the same

developer. The task assigned was the evaluation of all the user

interfaces (CM) in order to present a usability report which will

contain the usability problems detected with all the proposed

fields filled in.

Step 4 (See Section 3): As an example, we only show the

execution of the evaluation of one user interface (CM). Figure 2

shows a user interface automatically generated (Code Model)

that represents the task management functionality of the Web

application.

The selected metrics were applied:

1. Number of different font styles for textual links 1: The

textual links that appears in the user interface (Fig. 2) are

Tasks, Reports, Contacts and Exit from the top menu; and

New Folder, All tasks, Pending tasks, Ended tasks, and

Tasks out of date from the left menu. In the first

navigation category (top menu), the value of the metric is

2 since the links Tasks, Reports, Contacts are displayed in

a different style from the Exit link, which is displayed in a

different color and it is also underlined. In the second

navigation category (left menu), the value of the metric is

also 2 since the links New Folder, Pending tasks, Ended

tasks, and Tasks out of date Contacts are displayed in a

different style from the All tasks, which is displayed in a

different font face and font size. The rating level of the

metric (see Step 2) indicates the existence of a low

usability problem (UP001) for each menu.

2. Proportion of elements that show current user state 1:

The user interface must show the current user state, it

means, the current section and the current task that is

being performed. There are three types of elements that

show the current user state in the Web application: the

tabs from the top menu (Tasks, Reports, and Contacts);

the shape changes of the cursor when it is pointing on a

textbox; and the highlight effects of a textbox when it has

focus. Since the tabs are the only type of element that

does not explicitly show the section in which the user is

1 It should be note that both metrics must be applied to all the

user interfaces of the entire Web application.

currently interacting, the value of the metric is 2/3=0.66.

The rating level of the metric (see Step 2) indicates the

existence of a medium usability problem (UP002).

Steps 5 and 6 (See Section 3): The usability problems detected

after applying the previous metrics, can be explained in a

usability report that contains the UP001 (See Table 1) and the

UP002 (See Table 2).

Table 1. Usability problem detected: UP001

id UP001

Description

The links Tasks, Reports, and Contacts

are displayed in a font style that is

different from the font style of the Exit

link. The same problem occurs with the

all tasks link that is displayed in a font

style that is different to the used in the

links: New Folder, Pending tasks, Ended

tasks, and Tasks out of date.

Affected attribute Attractiveness / font style uniformity.

Level Low (rating level: 2).

Source of the

problem

Abstract Presentation Diagram (PIM

model).

Occurrences 2 occurrences (top menu and left menu)

Recommendations

Change the font style properties for the

links Tasks, Reports, Contacts and all

tasks in the Abstract Presentation

Diagram. In this PIM model font style

properties can be defined.

Table 2. Usability problem detected: UP002

id UP002

Description
Tabs do not show the current user state in

the Web application.

Affected attribute
Understandability/ User Guidance/

Immediate feedback.

Level Medium (rating level: 0.66)

Source of the

problem

The transformation rule that maps the

representation of the tabs: Task, Reports

and Contacts (PIM level) with the

specific widget of the platform that shows

the tabs (PSM).

Occurrences
1 occurrence for each UI that shows these

tabs.

Recommendations

The widget target of the transformation

rule should be changed for other widget

with a highlight feature when a tab is

clicked.

After analyzing and applying the proposed recommendations, a

more usable Web application can be obtained without to need

maintenance of source code.

6. DISCUSSIONS AND FUTHER WORK
This paper has presented a proposal in progress to integrate a

usability evaluation process into Model-Driven Web

development processes. The purpose of our work is to give an

outline of a generic usability evaluation process supported by a

Web Usability Model. A preliminary version of a usability

evaluation process supported by a Web usability Model has

been presented. Our Web Usability Model decomposes the

Fig.2 Example of a User interface automatically

generated (Code Model)

usability sub-characteristics (from the Software Quality Model

proposed in the ISO/IEC 25000 SQuaRE standard) into other

sub-characteristics and measurable attributes taking into

account ergonomic criteria. Web metrics were associated to

measurable attributes in order to quantify them. Finally, a brief

example has been shown in order to illustrate how the usability

evaluation process can be instantiated into a concrete Web

development method that follows the MDD approach. Although

our example only shows a CM evaluation providing feedback to

PIM models or transformations between PIM and PSM models,

the usability evaluation process can evaluate intermediate

artifacts (PIM and PSM models) by selecting metrics that their

calculation formula has been defined to be applied to concrete

PIM and PSM models (i.e., depth and breadth of a navigational

map [1] associated to the navigability attribute).

We believe that the inherent features of model-driven

development processes (e.g., traceability between models by

means of model transformations) provide a suitable

environment for performing usability evaluations. Specifically,

if the usability of an automatically generated user interface can

be assessed, the usability of any future user interface produced

by this approach could be predicted. In other words, we are

talking about a user interface that is usable by construction [2],

at least to some extent.

In this way, usability can be taken into account throughout the

entire Web development process, enabling Web applications to

be developed with better quality thereby reducing effort at the

maintenance stage.

Further work is intended to:

• Perform an entire instantiation of the usability

evaluation process into the OO-H method.

• Define guidelines in order to guide evaluators on how

the Web Usability Model can be applied

• Explore aggregation mechanisms for aggregating

values obtained by individual metrics, and perform

analyses of the impact on how the attributes affect

(negatively or positively) other attributes of the Web

Usability Model.

• Instantiate the evaluation process into different

Model-Driven Web Development methods in order to

improve our approach.

• Develop a tool to support the entire usability

evaluation process. The tool will be able to manage

the Web Usability Model by creating a repository of

catalogued metrics following the SQuaRE patterns.

7. ACKNOWLEDGMENTS
This work is financed by META project (ref. TIN2006-15175-

C05-05), the Quality-driven Model Transformation Project

from the Universidad Politécnica de Valencia. The authors

thank Jaime Gomez from Universidad de Alicante for his

valuable help in providing the generated Web application and

its models used to illustrate our usability evaluation process.

8. REFERENCES
[1] Abrahão, S., Condori-Fernández, N., Olsina, L., and

Pastor, O. 2003. Defining and Validating Metrics for

Navigational Models. Proc. of the 9th Inter. IEEE

Software Metrics Symposium, 200-210.

[2] Abrahão, S., Iborra, E., and Vanderdonckt J. 2007.
Usability Evaluation of User Interfaces Generated with a

Model-Driven Architecture Tool. Maturing Usability.

Springer HCI series, Vol. 10, 3-32.

[3] Abrahão, S. and Insfran, E. 2006. Early Usability
Evaluation in Model-Driven Architecture Environments.

Proc. of the 6th IEEE International Conference on Quality

Software. IEEE Computer Society, 287-294.

[4] Bastien, J.M. and Scapin, D.L. 1993. Ergonomic criteria
for the evaluation of human-computer interfaces. Tech.

Rep. num.156. INRIA, Rocquencourt, France.

[5] Calero C., Ruiz J., and Piattini M. 2005. Classifying Web
metrics using the Web quality model. Emerald Group

Publishing Limited. Vol. 29(3), 227-248.

[6] Ceri, S., Fraternali, P., and Bongio, A. 2000. Web
Modeling Language (WebML): A Modeling Language for

Designing Web Sites. Proc. of the 9th WWW Conference,

137-157.

[7] Gómez, J., Cachero, C., and Pastor, O. 2001. Conceptual
Modeling of Device-Independent Web Applications. IEEE

MultiMedia, Vol. 8(2), 26-39.

[8] ISO/IEC. 1998. ISO/IEC 9241-11, Ergonomic

Requirements for Office Work with Visual Display

Terminals (VDTs), Part 11: Guidance on Usability.

[9] ISO/IEC. 2001. ISO/IEC 9126-1 Standard, Software
Engineering, Product Quality - Part 1: Quality Model.

[10] ISO/IEC. 2005. ISO/IEC 25000 series, Software

Engineering, Software Product Quality Requirements and

Evaluation (SQuaRE).

[11] Kraus, A., Knapp, A., and Koch, N. 2006. Model-Driven
Generation of Web Applications in UWE. 3rd Inter.

Workshop on Model-Driven Web Engineering.

[12] Moraga, M.A, Calero, C., Piattini, M., and Diaz, O. 2007.
Improving a portlet usability model. Software Quality

Control, Vol. 15(2), 155-177.

[13] Olsina, L. and Rossi, G. 2002. Measuring Web
Application Quality with WebQEM. IEEE Multimedia,

Vol. 9(4), 20-29.

[14] Panach, J., Condori-Fernández, N., Valverde, F., Aquino,
N., and Pastor, O. 2007. Towards an Early Usability

Evaluation for Web Applications. International Conference

on Software Process and Product Measurement. LNCS

Springer Vol. 4895, 32-45.

[15] Seffah, A., Donyaee, M., Kline, R.B., and Padda, H.K.
2006. Usability Measurement and Metrics: A Consolidated

Model. Software Quality Journal, Vol. 14(2), 159-178.

[16] Ivory, M.Y. 2001. An Empirical Foundation for
Automated Web Interface Evaluation. PhD Thesis.

University of California, Berkeley, Computer Science

Division.

Playability as Extension of Quality in Use in Video Games
J. L. González Sánchez
Software Engineering Dept.

University of Granada
C/Periodista Daniel Saucedo

Aranda s/n E-18071
(Granada–Spain)

+34 958 242 812

joseluisgs@ugr.es

F. Montero Simarro
Software Engineering Dept.

University of Castilla - La
Mancha

Campus Universitario s/n
E-02071 (Albacete–Spain)

+34 967 599 200 Ext.: 2468

fmontero@dsi.uclm.es

N. Padilla Zea

Software Engineering Dept.
University of Granada

C/Periodista Daniel Saucedo
Aranda s/n E-18071

(Granada–Spain)

+34 958 240 849

npadilla@ugr.es

F. L. Gutiérrez Vela
Software Engineering Dept.

University of Granada
C/Periodista Daniel Saucedo

Aranda s/n E-18071
(Granada–Spain)

+34 958 242 812

fgutierr@ugr.es

ABSTRACT

The quality of a software product is a main objective that every

interactive system should aspire. There are many challenges to

achieve this quality that require a previous characterization to

ensure it. The International Standards Quality Models help to

characterize the quality of a software system. But, there are some

products that present „special‟ quality requirements. In this paper

we focus on special interactive systems: Video Games, whose

quality requirements are different than traditional software. This

additional dimension is called „Playability‟. In this paper, an

extension of Quality in use Model for Playability decomposition

(PQM) is introduced. In our playability quality model metrics are

also considered and interpreted. Finally, we review different

usability evaluation methods in order to identify what are the best

evaluation methods for supporting playability evaluation tasks.

Categories and Subject Descriptors

H.1.2 [Information Systems]: User/Machine Systems - Human

factors

General Terms

Design, Experimentation, Human Factors.

Keywords

Quality in Use, Interactive Systems, Video Games, Playability,

Usability, User Experience.

1. INTRODUCTION
The Interactive Software Federation of Europe (ISFE) reveals new

research findings that video games and entertainment systems

collectively make up the biggest industry in terms of turnover,

more so than music and cinema. We can deduce that videogames

have become the preferred game of choice, exerting significant

social and cultural influence over children, teens and adults [18].

As the quality of software has a direct bearing on product success

and the User Experience, it should be taken into account

throughout product development (hardware or software), so as to

achieve the optimum experience for the player. The importance of

video games in the actual society justifies the need to ask if the

means of quality in this type of software is similar from the

definition of the interactive or desktops software quality definition

to guarantee an optimal User Experience.

In this work, we analyze how the game experience presents

characteristics that are not explicitly in the quality standards

models and why the usability or quality in use is not sufficient in

video games context. We present a quality in use model for video

games using playability to extend it for entertainment systems,

with different attributes, facets and metrics to characterize the

player experience with videogames.

2. THE QUALITY IN A SOFTWARE

PRODUCT
When a Desktop System (DS) or Traditional Interactive System,

such as a word processor, is developed, the main objective is that

users can execute a set of tasks in a predetermined context, for

example working in an office. The quality of this kind of systems

has two main components: The first covers the functional aspects

(functional utility) with two points of view: internally and

externally. It has focused on disciplines such as Software

Engineering. Another component indicates the means by which

users can achieve this functionality. It is denominated Usability

which has a great importance in HCI discipline. Usability

represents a measure of product use whereby users achieve

concrete objectives within a specific context of use.

Usability has been characterized in different international

standards. ISO 9241-11:1998 [13] presents and define the

Usability only as a characteristic of the process of use. In ISO/IEC

9226-1:2001[11] usability appears integrated in the properties of

any software product. But, it is important to remark that the means

of usability in the different standards models is not the same. In

the first standard usability is: effectiveness, efficiency and

satisfaction. But, in the second it is the easy of learning,

understanding, operability and the attractiveness when use a

software system.

These discrepancies between the standards are present in the

following standards models. In ISO/IEC TR 9126-4: 2004 [12]

appears the concept denominated Quality in Use whose definition

is the same as the usability, but add the attribute of security.

Recently, ISO/IEC 25010:2009 [10] makes its contribution in this

direction. The quality of a software system is described in terms

of its elements and the interaction process. In this standard the

Usability it is not one of the quality factor, it is an attribute of the

Quality in Use with the flexibility and the security and they are

associated to the interaction or process of use. Accepted

recommendation in user interfaces design to improve the user

experience can be found in [17, 22].

3. THE QUALITY IN VIDEO GAMES
The researches in HCI context have centred their objectives to

study the user‟s abilities and cognitive process forgetting the

emotional dimension. A new concept, which is called User

Experience (UX) [9], appears with this dimension. In

entertainment systems it is only a partial vision of the reality,

because it does not take into account all the quality attributes that

influence the use of this „special‟ interactive systems. These

attributes identify the Player Experience (PX).

As we remarked previously, a videogame can be considered a

„special‟ interactive system, in that it is used for leisure purposes

by users seeking fun and entertainment. Whereas the purpose of a

desktop system is to execute a task, determined by a clear

functional objective, our objectives when playing a videogame are

more likely to be diverse and subjective. A videogame is not

conceived for the user to deal with daily tasks, but rather it has a

very specific objective: to make the player feel good when playing

it. This objective is more subjective and personal than traditional

software. Important recommendation for designing entertainment

systems, based on this idea, can be found in [15, 21].

We propose that analyzing the quality of a videogame purely in

terms of its Usability or Quality in Use is not sufficient – we need

to consider not only functional values but also a set of specific

non-functional values, given the properties of videogames.

Additional factors to be considered might include, for example:

rules of play; goals; storytelling techniques; virtual world

recreation; character design, and so on. In other words, the PX

could be much more complex than the UX. Hence we need to

establish a set of attributes and properties to identify and measure

the experience of players playing a videogame. These properties

indicate to us whether a game is „playable‟ or not – that is, they

will identify the Playability of the video game. Later, we can use

its properties to ensure the quality of a video game through a

process led by playability goals to improve experience when

players play the videogame, PX. In Table 1 we present the

differences between some goal to achieve in the design of an

optimal User Experience and Player Experience [16].

Playability is a live topic in the scientific community; it has been

studied from different points of view and with different objectives

without consensus on its definition or the elements that

characterise it. We have identified two specific strands of

research: Playability as only Usability in video games context

(understanding and control of the game system), and research

based on particular elements of video games [5, 15]. In the second

line of research, we find references to: Playability in the quality of

game elements [16, 20]. There are few studies focused on defining

Playability formally, [4, 14], but without specific reference to

Playability attributes or properties to characterize it. Playability is

based on Usability, but in the context of video games, goes much

further. Furthermore, Playability is not limited to the degree of

„fun‟ or „entertainment‟ experienced when playing a game.

Although these are primary objectives, they are concepts so

subjective. It entails to extend and complete formally the User

Experience characteristics with players’ dimensions using a broad

set of attributes and properties in order to measure the Player

Experience.

In previous works, González Sánchez et al [6, 7, 8] proposed the

characterization of the Player Experience with a video game based

on Playability (PM, Playability Model), showing which attributes

and examples of their properties are needed to analyze the „game

experience‟. They present a conceptual framework for analysis of

player experience and its relationship with the most common

elements that may form part of video game architecture.

Table 1. Different objectives between UX and PX Design

UX Usability Goals:

Productivity

PX Playability Goals:

Entertainment

1. Task completion

2. Eliminate errors

3. External reward

4. Outcome-based rewards

5. Intuitive

6. Reduce workload

7. Assumes technology need

to be humanized

1. Entertainment

2. Fun to beat obstacles

3. Intrinsic reward

4. Process is its own reward

5. New things to learn

6. Increase workload

7. Assumes humans need to

be challenged

4. PLAYABILITY AS QUALITY OF GAME

EXPERIENCE
To characterize the quality of game experience we will make use

of a precise and complete analysis of Playability, attributes, and a

conceptual framework to evaluate it in any video game, either

from the viewpoint of the game as an interactive process or from

the player who performed/plays with it [7, 8]. This

characterization must be coherent with existed standard,

especially the most recent because we understand that they are the

most consensual and complete.

As we have remarked, the quality of a software product has two

main points to be analyzed: the quality of process and the quality

of product. We need to consider additional aspects related to the

user experience/player, which are related to the emotional aspects

of interaction with video games.

In [8] we defined Playability as:

‘a set of properties that describe the Player Experience using a

specific game system whose main objective is to provide

enjoyment and entertainment, by being credible and satisfying,

when the player plays alone or in company’.

It is important to emphasise the „satisfying‟ and „credible‟

dimensions. The former is more difficult to measure in video

games than in desktop systems due to the high degree of

subjectivity of non-functional objectives. Similarly, the latter

depends on the degree to which players assimilate and become

absorbed in the game during play – also difficult to measure

objectively with traditional usability test. The Definition of

Playability can be based on Quality in Use, but it should be added

the above attributes. Also, the definition of particular properties or

Quality in Use must be rewriting. For example „Effectiveness‟ in

a video game is not related to the speed with which a task can be

completed, because typically a player will play for entertainment

and relax, this being one of the game‟s main objective. With all of

these considerations, Playability represents

‘the degree in which specific player achieve specific game goals

with effectiveness, efficiency, flexibility, security and, especially,

satisfaction in a playable context of use.‟

In Fig. 1 we present our Playability Quality Model (PQM) as an

extension of the Quality in Use model ([2, 10]). It is focus on

video games software applications. Next each quality factor and

attribute in our quality model will be defined following the

previously mentioned ISO standard.

Fig. 1. Quality model for playability

 Effectiveness: We define the degree to which specific users

(players) can achieve the proposed goals with precision and

completeness in the context of use, the video game.

 Efficiency: It is the degree to which specific users (players)

can achieve the goals proposed by investing an appropriate

amount of resources in relation to the effectiveness achieved

in a context of use, the video game. This factor is determined

by the ease of learning and immersion.

 Flexibility: It is the degree to which the video game can be

used in different contexts or by different player or game

profiles.

 Safety: It is acceptable level of risk to the player health or

data in a context of use, the video game.

 Satisfaction: It is the degree to which users (players) are

satisfied in a context of use, the video game. In this factor we

consider various attributes such as fun, attractiveness,

motivation, emotion or sociable.

Playability analysis is a very complex process due to the different

perspectives that we can use to analyze the various parts of video

game architecture. In this work, we propose a classification of

these perspectives based on six Facets of Playability (PF). Each

facet allows us to identify the different attributes and properties of

Playability that are affected by the different elements of video

game architecture [7]. The six Facets of Playability are:

 Intrinsic Playability: This is the Playability inherent in the

nature of the videogame itself and how it is presented to the

player. It is closely related to Game Core.

 Mechanical Playability: This is related to the quality of the

videogame as a software system. It is associated to the Game

Engine

 Interactive Playability: This is associated with player

interaction and videogame user interface development. It is

strongly connected to the Game Interface.

 Artistic Playability: This facet relates to the quality of the

artistic and aesthetic rendering in the game elements (visual

graphics, melodies, storyline and storytelling).

 Intrapersonal Playability or Personal Playability: This refers

to the individual outlook, perceptions and feelings that the

videogame produces in each placer and as such has a high

subjective value.

 Interpersonal Playability or Social Playability: This refers to

the feelings and perceptions of users, and the group awareness

that arise when a game is played in company, be it in a

competitive, cooperative or collaborative way.

The overall Playability of a videogame, then, is the sum total of

values across all attributes in the different Facets of Playability. It

is crucial to optimize Playability across the different facets in

order to guarantee the best Player Experience.

5. PLAYABILITY AS MEASURE OF

QUALITY IN A VIDEO GAME
We complete Quality in Use model based on Playability with the

identification and association of metrics to the identified factors

and attributes. To approach this task we use the international

standards and we have adapted the different metrics and measures

to evaluate and test video games.

The metrics, Table 2, have as objective the estimation of the

quality of Player Experience with video games. Each column

reflects the characterization of the different identified metrics.

These characteristics are: the name of the metric, the objective

that we analyze with it, its formula, the interpretation of the

numerical value and the type of evaluation to estimate its value.

We must to remark all the indentified metrics are focused in the

use of the video game. Hence, the evaluation essentially requires

test with players, observation to players when are playing and in

players‟ satisfaction case the realization of questionnaires when

they complete the playtime.

Playability evaluation is related to evaluation of the user’s

performance and satisfaction when using the game, product or

system in a real or simulated entertainment environment.

In this paper, see Table 2, we identified many relationships

between playability and quality in use metrics, and we think that

quality in use metrics are useful for playability evaluation. But

some metrics should be interpreted in a different manner. For

instance, if we have traditional software products, effectiveness

metrics in international standards introduce tasks effectiveness or

task completion as metrics. But when a game and playability is

considered, we need to speak in terms of ‘goals’ in entertainment

game context, as the challenges that the game introduced.

In a similar manner, error frequency metric in traditional software

has sense, and a value closer to 0 is the better, but in games we

propose attempt frequency as metric, and we can find values

closer to 0 if expert players are playing, and closer to 1 if novice

or clumsy players are considered. Normally, games introduce

difficulties to capture and suck new players; a very simple game is

not attractive, because it will be bored.

The personalization is an advisable factor in video games because

in this software exists many design elements that try to distract,

and to accompany the form of interaction. It should be flexible,

for example supporting different interaction techniques: keys,

pads, controls, menus, sounds and so on. The attribute of

accessibility, however desirable and enforceable, traditionally has

not enjoyed much attention in the development of video games.

Nowadays this is changing and the presence of this attribute

contributes to the use of it in the video game interface and

mechanics.

Table 2. Metrics associated to playability attributes

Metric name Purpose Formula Interpretation
Evaluation

method

Effectiveness

Goal effectiveness
What proportion of the goals is

achieved correctly?
M1 = |1-ΣAi|

Ai proportional value of each missing

M1 ϵ [0, 1], the closer to 1

the better
User test

Goal completion
What proportion of the goals

are completed?

X = A/B

A = n. of goals completed

B = total number of attempted goals

M1 ϵ [0, 1], the closer to 1

the better
User test

Number of attempt
What is the frequency of

attempts?
X = A

A = n. of attempts made by the player

Expert player closer to 0. At

the beginning > 0
User test

Efficiency

Goal time
How long does it take to

complete a goal? X = Ta
Novice players will have

more time
User test

Goal efficiency How efficient are the users? X = M1/T
X ϵ [0, 1], closer to middle

value
User test

Relative user

efficiency

How efficient is a player

compared to an expert?

X = A/B

A = ordinary player’s goal efficiency

B = expert player’s goal efficiency

M1 ϵ [0, 1], the closer to 1

the better
User test

Flexibility

Accessibility

What proportion of the goals

can be achieved by using

alternative ways of interaction?

X = A/B

A = goals with alternative interactions

B = total number of goals

M1 ϵ [0, 1], the closer to 1

the better
User test

Personalization

What proportion of the

personalization options are

used by the players?

X = A/B

A = personalized elements

B = elements in the game

M1 ϵ [0, 1], if closer to 1

original interaction way,

perhaps should be changed

User test

Safety

User health and

safety

What is the incidence of health

problems among users of the

product?

X = 1 – A / B

A = number of players reporting

problems

B = total number of players

M1 ϵ [0, 1], the closer to 1

the better
User test

Software damage
What is the incidence of

software corruption?

X = 1 – A / B

A = n. occurrences of soft. corruption

B = total number of usage situations

M1 ϵ [0, 1], the closer to 1

the better
User test

Satisfaction

Satisfaction scale How satisfied is the player?

X = A/B

A = questionnaire producing

psychometric scales

B = population average

X>0 the larger the better
User test +

questionnaires

Satisfaction

questionnaire

How satisfied is the user with

specific software features?

X = ΣAi /n

A i= response to a question

B = number of responses

Compare with previous

values, or with population

average

User test +

questionnaires

Discretionary usage

What proportion of potential

users choose to use the

system?

X = A/B

A = number of times that specific

software functions are used

B = number of times players are intended

to be used

M1 ϵ [0, 1], the closer to 1

the better

Observation of

usage

Socialization

What proportion of potential

users choose to use the

system?

X = A/B

A = number of times that game is used in

a collaborative environment

B = number of times that game is used

M1 ϵ [0, 1], the closer to 1

collaborative game, closer to

0 personal game

Observation of

usage

Accessibility is a quality attribute considered in the definition of

quality in use. In our playability model proposal, that attribute is

also considered. Accessibility problems can be considered to be

usability problems for particular group of players e.g. those with

disabilities. If a player cannot understand what is said in cut

scenes or cannot hear the footsteps of someone sneaking up

behind him or her, because the player suffers from an auditory

disability or if the game does not support the use of specific input

devices such as one handed controllers or sip and puff joysticks

that allow severely physical disabled players to play the game.

The safety is an important factor nowadays in video games. The

game process is not only a static and mental activity. In some

cases, it demands physical requirements, for example game

controls that demands and important corporal or physical effort

and their effects can be sometimes potentially dangerous or not

very recommendable to the player health if the player carries out

this activity for a long time.

Satisfaction is the most important attribute in videogames due to

different aspects can be considered in it: cognitive, emotional,

physical, fun and social. The estimation of the degree of

satisfaction in a video game is realized using questionnaires and

observing the player during the game process and analyzing the

user preferences in the different game sessions with video games.

Probably, when games are considered the more important or

determinant quality attribute is the achieved satisfaction rating.

This attribute is subjective and in our playability quality model is

enriched by using additional quality attributes and sub-attributes.

Thanks to proposed metrics, the quality model of the player

experience with videogames based on playability, (PQM) is

complete as [1] recommend for quality models developing.

In last column of Table 2 different playability evaluation methods

are suggested for each metric. These evaluation methods are the

same that we use for usability evaluation. In the next section, we

will discuss different evaluation methods; our main goal will be

use these methods for playability evaluation purposes.

6. PLAYABILITY EVALUATION

METHODS
This section reviews usability evaluation methods (UEMs)

gathered in different reports from MAUSE project. MAUSE

project was a COST Action, COST 294 from 2004 to 2009. The

ultimate goal of MAUSE was to bring more science to bear on

UEM development, evaluation, and comparison, aiming for

results that can be transferred to industry and educators, thus

leading to increased competitiveness of European industry and

benefit to the public. In this paper, we are focused on another

quality factor; playability and we want to discuss if UEM are

useful as playability evaluation.

In COST 294, four major research and development activities

were implemented by four working groups. Concretely, working

group 1 did a critical review and analysis of individual UEMs.

The primary goal of this activity was to build a refined,

substantiated and consolidated knowledge-pool about usability

evaluation, based on the expertise, experiences, and research

works of the participating project partners. Different reports were

written and [19] were used in this paper as input.

In order to evaluate previous proposed metrics and quality model

we need to specific playability evaluation methods (PEMs). In

[19] three categories of evaluation methods were gathered: Data

gathering and modeling methods (DGMM), User Interactions

evaluation methods (UIEM), Collaborative methods (CM) and

Mixed methodologies (MM),

First group, DGMM, is used for gaining knowledge about users

and their activities. Two subcategories were distinguished: Data

gathering methods (DGM) and Modeling methods (MM). These

evaluation methods are useful for playability evaluation, but not

always. Surveys and questionnaires come from social sciences,

where surveys are commonly used and questionnaires are methods

for recording and collecting information. In this context, games

can be used by many kinds of user, for instance preschool

children; 2 to 5 years old, surveys and questionnaires useful

because it is also for them to verbalize their options. Think-aloud

protocol is not a solution, because even school children ages 6 to

10 years may have difficulty with concurrent thinking aloud and

they cannot be left alone.

Modeling methods (MM) are often associated with specific data

gathering methods or their combination. In this set of methods, an

example is especially interesting, Personas [3]. It is a precise

descriptive model of the user, what user whishes to achieve and

why. But this method is more a User-Centered Design

complement. We think that other techniques associated, such as

ConcurTaskTrees (CTT) or K-Made, are not useful when

playability is considered. Normally, games need very complex

models, because they have many interaction freedom degrees;

games and activities for entertainment are rich interactive

applications, where users can do things in many different ways.

Table 3. Heuristics and principles for game designing

 (Korhonen and Koivisto, 2006) (Rouse, 2001)

1. Don‟t waste the player‟s time.
2. Prepare for interruptions.
3. Take other persons into

account.
4. Follow standard conventions.
5. Provide gameplay help.
6. Differentiation between

device UI and the game UI

should be evident.
7. Use terms that are familiar to

the player.
8. Status of the characters and

the game should be clearly

visible.
9. The Player should have clear

goals.
10. Support a wide range of

players and playing styles.
11. Don‟t encourage repetitive

and boring tasks.

1. Consistent World.
2. Understand the Game-

World‟s Bounds.
3. Reasonable Solutions to

Work.
4. Direction.
5. Accomplish a Task

Incrementally
6. Be Immersed.
7. Fail.
8. A Fair Chance.
9. Not Need to repeat

themselves.
10. Not Get Hopelessly Stuck.
11. To Do, Not to Watch.
12. Do Not Know What They

Want, But They Know It

When They See It.

User Interaction Evaluation Methods (UIEM) are explicitly

targeted towards evaluation. Knowledge-based and empirical

methods are considered in this group. In these methods experts

and experience is considered, but games are different from others

kind of applications and heuristics or principles for them are not

the same than Shneiderman [22] or Nielsen‟s principles [7]. In

Table 3 some meaningful heuristics for game designing are shown

[9, 10].

We think that user testing, observation and user testing (see Table

2 – „Evaluation method‟ column) are the best manner in order to

playability evaluation. Many times these user testing are done

with children and we must to know that tests cannot be done with

children younger than 18 without the permission and supervision

of their parents. Questionnaires are useful tool for playability

evaluation too, but sometimes cannot be used, because children

are too much young.

7. CONCLUSIONS AND FUTURE WORK
The quality of a system is the result of the quality of the system

elements and their interaction. But every software applications are

not equal. In this paper, games and entertainment software are

considered. In this context, playability is our main quality

measure and we presented a playability quality model based on

international standard and the interaction component of the quality

is especially taken into account.

We identified a direct connection between quality in use and

playability. Quality in use is a useful concept when interaction

with traditional software is evaluated. But games are different in

many aspects from others kinds of software. In this paper,

meaningful differences between games and traditional software in

the quality model, metrics, and principles or heuristics were

identified. In our proposal, the main contributions in playability

characterization are related with the player‟s satisfaction and

ISO/IEC 25010 [10, 19] was enriched in order to evaluate the

interaction with games. Our metrics are ISO 9126-4 [12] inspired,

but in this paper different interpretation and additional metrics are

presented.

Nevertheless, these metrics need to be used and validated by using

real games and evaluations experiments, and, in this moment, we

are doing several evaluations in order to validate the proposed

metrics.

8. ACKNOWLEDGMENTS
This research is financed by: the Spanish International

Commission for Science and Technology (CICYT); the DESACO

Project (TIN2008-06596-C02); and the F.P.U. Programme of the

Ministry of Science and Innovation, Spain. Thanks to MAUSE

project and COST nº. 294.

9. REFERENCES
[1] Basili, Victor R. and Weiss, D., “A Methodology for

Collecting Valid Software Engineering Data”, IEEE

Transactions On Software Engineering, pp 728-738. Nov.

(1984).

[2] Bevan, N. Extending Quality in use to provide a framework

for usability measurement. Proceedings of HCI International

2009, San Diego, California, USA. (2009)

[3] Cooper, A. The Inmates are Running the Asylum. SAMS,

(1999).

[4] Fabricatore, C., Nussbaum, M., Rosas, R.: Playability in

Action Video Games: A Qualitative Design Model. Human-

Computer Interaction, Vol 17, pp. 311-368 (2002).

[5] Federoff, M.: Heuristic and Usability Guidelines for the

Creation and Evaluation of Fun Video Games. Master

Thesis, University (2002).

[6] González Sánchez, J. L.; Gutiérrez, F. L.; Cabrera, M.;

Padilla Zea, N.: Design of adaptative videogame interfaces: a

practical case of use in special education. Computer-Aided

Design of User Interfaces VI. Lopez Jaquero, V.; Montero

Simarro, F.; Molina Masso, J.P.; Vanderdonckt, J. (Eds.).

Springer (2009),

[7] González Sánchez, J. L.; Padilla Zea, N.; Gutiérrez, F. L.:

From Usability to Playability: Itroduction to the Player-

Centred Video Game Development Procces Proceedings of

HCI International 2009, San Diego, California, USA. (2009)

[8] González Sánchez, J. L.; Padilla Zea, N.; Gutiérrez, F. L.;

Cabrera, C.: De la Usabilidad a la Jugabilidad: Diseño de

Videojuegos Centrado en el Jugador, In Proceedings of

INTERACCION-2008, pp. 99-109. (2008).

[9] Hassenzahl, M.; Tractinsky, N.: User Experience – A

Research Agenda. Behaviour and Information Technology,

Vol. 25, N. 2. pp. 91-97 (2006).

[10] ISO/IEC 25010-3: Systems and software engineering:

Software product quality and system quality in use models.

(2009).

[11] ISO/IEC 9126-1: Software engineering – Product quality -

Part 1: Quality model. (2001).

[12] ISO/IEC TR 9126-4: Software engineering – Product quality

Part 4: Quality in use metrics. (2004).

[13] ISO 9241-11: Ergonomic requirements for office work with

visual display terminals (VDTs) Part 11: Guidance on

Usability. (1998).

[14] Järvien, A., Heliö, S., Mäyrä, F.: Communication and

Community in Digital Entertainment Services. Prestudy

Research Report. Hypermeda Lab. University of Tampere

(2002).

[15] Korhonen, H., Koivisto, E.: Playability Heuristic for Mobile

Games. MobileHCI‟06. ACM 1-59593-390-5/06/0009

(2006).

[16] Lazzaro, N.: The Four Fun Keys. Book Chapter in Game

Usability. Advancing from the Experts for Advancing the

Player Experience. Morgan Kaufmann, Burlington. (2008).

[17] Nielsen, J., Usability Engineering. Morgan Kaufmann, San

Francisco. (1994).

[18] Provenzo, E.: Video kids. Cambridge: Harvard University

Press (1991).

[19] R3UEMs: Review, Report and Refine Workshop (2007)

Abstract: The current proceedings reflect the work conducted

so far, and the contributions within WG1 of COST294-

MAUSE project, as it will be discussed in its 3rd.

International Workshop, Athens, March 5, 2007: “Review,

Report and Refine Usability Evaluation Methods (R3

UEMs)”. Dominique Scapin and Effie Law (Eds.)

[20] Rollings, A., Morris, D.: Game Architecture and Design. Ed.

New Riders Games (2003).

[21] Rouse III, R. Game Design: Theory and practice. Wordware

game developer‟s library. (2001).

[22] Shneiderman, B. Designing the user interface. Addison-

Wesley Publishing. (1998).

Designing, Developing, Evaluating the Invisible? —
Usability Evaluation and Software Development in Ubiquitous Computing

Tom Gross
Faculty of Media

Bauhaus-University Weimar
Bauhausstr. 11, 99423 Weimar, Germany

+49 3643 58-3710
tom.gross(at)medien.uni-weimar.de

ABSTRACT
This position paper for the 2nd International Workshop on the
Interplay between Usability Evaluation and Software
Development (I-USED 2009) introduces some strengths of
Ubiquitous Computing as well as some challenges it entails for
the software development and usability evaluation; in
particular it presents a user-centred design process for
ubiquitous computing.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation] :
User Interfaces – Evaluation/Methodology; Prototyping; User-
Centred Design.

General Terms
Human Factors.

Keywords
Software Development; Usability Evaluation; Ubiquitous
Computing.

1. INTRODUCTION
Ubiquitous Computing (UbiComp) provides new opportunities
and poses new challenges to software development and the
usability evaluation. According to Mark Weiser who coined
this term, UbiComp ‘enhances computer use by making many
computers available throughout the physical environment,
while making them effectively invisible to the user’ [11].
Instead of explicit input from devices such as a keyboard or a
mouse, UbiComp systems typically get implicit input from
users’ interaction with their physical environment through
everyday objects. Besides the advantages of the resulting
invisibility and unobtrusiveness for the users, UbiComp
entails a variety of challenges for their software development
and usability evaluation.

2. CHALLENGES
The challenges that are mentioned in the literature include both
the general unobtrusiveness [2], but also the complex
interactions that make use of natural input technologies [2]
with a great number of interaction partners [4] and through
distributed devices [3] in a large physical space [4]. The fact
that UbiComp is often seen as everyday computing, which i s
‘characterised by continuously present, integrative, and

unobtrusive interaction’ [1] induces further challenges such as
highly mobile users [3, 5], interaction on small devices [3],
timing difficulties through concurring interactions [10], and
environmental factors that cannot be controlled [6].

3. SOLUTIONS
Methods from Human-Computer Interaction (HCI) have already
been integrated into software development life cycles, but the
process of finding and integrating designated methods into the
UbiComp development life cycle is still in its early stages. In
HCI, for instance, Jokela [8, 9] has extended the ISO 13407
standard ‘ISO 13407: 1999 - Human-Centred Design Processes
for Interactive Systems’ [7]. This ISO 13407 regulates the
design processes of the four phases: understanding and
specifying the context of use, specifying the requirements,
producing design results, and evaluating the design against the
requirements in a loop from the first phase to the last, and then
restarting with the first phase in an iterative cycle. We have
extended and adapted this life cycle to fit to the specific needs
of UbiComp (cf. Figure 1).

A general challenge in integrating methods into the design and
development life cycle for UbiComp is to find or define natural
and unobtrusive methods that reflect the nature and
characteristics of UbiComp and everyday computing. In this
2nd International Workshop on the Interplay between
Usability Evaluation and Software Development (I-USED 2009)
workshop I would be particularly interested in discussing new
approaches for the integration of usability concepts and
methods into the software development processes—including
traditional single-user systems, cooperative systems as well as
particularly UbiComp systems.

4. CONCLUSIONS
Tom Gross is professor for Computer-Supported Cooperative
Work and head of the Cooperative Media Lab at the Faculty of
Media of the Bauhaus-University Weimar, Germany. His
research interests include Computer-Supported Cooperative
Work, Human-Computer Interaction, and Ubiquitous
Computing. Since beginning of 2008 he is Prorektor (vice-
president) of the Bauhaus-University Weimar. From 1999 to
2003 he was a senior researcher at the Fraunhofer Institute for
Applied Information Technology FIT in St. Augustin,
Germany. He holds a diploma and a doctorate degree in Applied
Computer Science from the Johannes Kepler University Linz,
Austria.

ACKNOWLEDGEMENTS
Thanks to the members of the Cooperative Media
Lab—especially to Christoph Beckmann and Maximilian
Schirmer.

REFERENCES
[1] Abowd, G.D. and Mynatt, E. Charting Past, Present, and

Future Research in Ubiquitous Computing. ACM
Transactions on Computer-Human Interaction 7, 1 (Sept.
2000). pp. 29-58.

[2] Carter, S. and Mankoff, J. Prototypes in the Wild: Lessons
from Three Ubicomp Systems. IEEE Pervasive Computing
4, 4 (2005). pp. 51-57.

[3] Crabtree, A., Benford, S., Greenhalgh, C., Tennent, P.,
Chalmers, M. and Brown, B. Supporting Ethnographic
Studies of Ubiquitous Computing in the Wild. In
Proceedings of the 6th Conference on Designing
Interactive Systems – DIS 2006 (Jun. 26-28, University
Park, PA, USA). ACM, New York, NY, USA, 2006. pp. 60-
69.

[4] Dey, A.K. Evaluation of Ubiquitous Computing Systems:
Evaluating the Predictability of Systems. In Proceedings
of the 3rd International Conference on Ubiquitous
Computing – UbiComp 2001 (Sept. 30-Oct. 2, Atlanta,
GA, USA). Springer-Verlag, 2001.

[5] Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B. and
Landay, J.A. MyExperience: A System for In Situ Tracing
and Capturing of User Feedback on Mobile Phones. In
Proceedings of the 5th International Conference on
Mobile Systems, Applications and Services – MobiSys
2007 (Jun. 11-14, San Juan, Puerto Rico). ACM, New
York, NY, USA, 2007. pp. 57-70.

[6] Iachello, G., Truong, K.N., Abowd, G.D., Hayes, G.R. and
Stevens, M. Prototyping and Sampling Experience to
Evaluate Ubiquitous Computing Privacy in the Real World.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems – CHI 2006 (Apr. 24-27,
Montreal, Quebec, Canada). ACM, New York, NY, USA,
2006. pp. 1009-1018.

[7] ISO. ISO 13407: 1999 - Human-Centred Design Processes
for Interactive Systems. ISO - International Organisation
for Standardisation,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalo
gue_detail.htm?csnumber=21197, 2008. (Accessed
24/4/2009).

[8] Jokela, T. Making User-Centred Design Common
Sense: Striving for an Unambiguous and Communicative
UCD Process Model. In 2nd Nordic Conference on Human-
Computer Interaction - NordiCHI 2002 (Oct. 19-23,
Aarhus, Denmark). ACM, N.Y., 2002. pp. 19-26.

[9] Jokela, T. A Method-Independent Process Model of User-
Centred Design. In Hammond, J., Gross, T. and Wesson,
J., eds. Usability: Gaining a Competitive Edge. Kluwer
Academic Publishers, Dortrecht, NL, 2002. pp. 23-38.

[10] Kellar, M., Reilly, D., Hawkey, K., Rodgers, M., MacKay,
B., Dearman, D., Ha, V., MacInnes, W.J., Nunes, M.,
Parker, K., Whalen, T. and Inkpen, K.M. It's a Jungle Out
There: Practical Considerations for Evaluation in the City.
In Extended Abstracts on Human Factors in Computing
Systems – CHI 2005 (Apr. 2-7, Portland, OR, USA). ACM,
New York, NY, USA, 2005. pp. 1533-1536.

[11] Weiser, M. Some Computer Science Issues in Ubiquitous
Computing. Communications of the ACM 36, 7 (July
1993). pp. 75-84.

Figure 1. User-Centred Design Process for Ubiquitous Computing.

Bringing Usability Evaluation into Practice:
Field Studies in Two Software Organizations

Jakob Otkjær Bak
TARGIT A/S
Aalborgvej 94

DK-9800 Hjørring
Denmark

jb@targit.com

Kim Nguyen
Logica

Fredrik Bajers Vej 1
DK-9220 Aalborg East

Denmark
kimmeren@gmail.com

Peter Risgaard
EUCNORD

Hånbækvej 50
DK-9900 Frederikshavn

Denmark
pri@eucnord.dk

Jan Stage
Aalborg University

Department of
Computer Science

DK-9220 Aalborg East
Denmark

jans@cs.aau.dk

ABSTRACT
This paper explores how obstacles to usability evaluations in a
software organization can be affected. We present two field
studies, each conducted in a software organization that had no
previous experience with usability evaluation. In each study, we
first interviewed key stakeholders to identify their opinion about
significant obstacles to conducting usability evaluations. Then we
demonstrated the benefits of a usability evaluation by evaluating
the usability of one of their software products, while being
observed by the developers, and presenting the evaluation results
to the developers. Finally, the key stakeholders were interviewed
again to establish the effect of the demonstration. The
demonstration of benefits had a positive effect on some of the key
obstacles, while others were unaffected. One organization
expressed future plans for conducting usability evaluations while
the other was still reluctant.

Categories and Subject Descriptors
H.5.2. [Information Interfaces and Presentation]: User
Interfaces – Evaluation/methodology. K.6.1 [Management of
Computing and Information Systems]: Project and People
Management – Staffing, Systems development, Training.

General Terms
Experimentation, Human Factors.

Keywords
Usability evaluation, software organizations, development
practice, empirical study.

1. INTRODUCTION
Usability is a fundamental attribute of interactive systems [7], and
it is critical to their success or failure on the market [10].
Evaluation of usability has been documented to be economically
feasible because of increased sales [11], increased user
productivity [12], decreased training costs [4] and decreased
needs for user support [20]. Despite these facts, many software

organizations are still not conducting any form of usability
evaluation in their development process [21].

There have been considerable efforts to affect the obstacles that
prevent these software organizations from deploying usability
evaluation techniques. A major approach has provided techniques
that are supposed to ease the deployment. This approach has only
had limited success and mostly in software organizations that are
already conducting usability evaluations. The reason may be that
most of the proposed techniques are highly technical and designed
by experts to be used by experts or at least by well-trained
professionals [3].

A basically different approach has been to affect key
stakeholders’ attitudes to usability evaluation. This has mostly
been done on a general level by documenting how other
organizations have benefitted from deploying usability evaluation
techniques in their development process. A study found that
collection of user data, setting usability goals and conducting
usability walkthroughs had a positive effect [13]. Another study
documented that deployment of user-centered design in the
development life cycle of a software company, specifically by
integration of use cases in the development process, supported
decision making [17].Karat provides evidence about the cost and
benefit of usability evaluation [11]. The difficulty is, however,
that often the cost is paid by the software organization, while the
benefit is gained by the customer. Yet there are exceptions. A
study established that evaluation of software for usability can lead
to increased sale of products [12]. Another study demonstrated
that the need for user support decreased with better usability [20].
Experience with deployment of usability work is usually focused
on larger organizations. However, a study in a smaller
organization also presents activities that were successful [5].
Another study focused specifically on usability evaluation and
concludes that quick, cheap and effective evaluations can be
conducted [19].

Only few studies have focused on affecting the attitudes to
usability evaluation on a specific level; that is in a particular
software organization. This paper reports from two field studies,
where we tried to overcome obstacles to usability evaluation by
affecting the attitudes of key stakeholders. This was done by
demonstrating how that particular organization could benefit from
deploying usability evaluation in their development process. In
section 2 we present related work on affecting obstacles to
usability evaluation. Section 3 presents the method used in of the
two field studies. In section 4, we provide the results from the
field studies. In section 5, we discuss our results. Finally, section
6 provides the conclusion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. RELATED WORK
The majority of studies that try to affect obstacles to usability
evaluation focuses on usability guidelines and methods for
incorporating usability in the development process. Gould and
Lewis were among the first to provide guidelines for the
deployment of usability in the design process [6]. A study
questioned the relevance of guidelines to usability and discussed
appropriate sources of guidance [3]. Overall guidelines directed at
the developers are widely used. A study identified the gap
between designers and users as the major obstacle to deploying
usability and suggested usability engineering methodologies to
help overcome this obstacle [23]. Grudin presented suggestions to
overcome this gap based on long term experiences [8].

Solutions to overcome organizational obstacles to usability
evaluation are presented in some papers. They tend to advise what
usability practitioners can do to sell usability to the organization.
Mayhew suggests three phases and for each phase how, why and
what to do to sell usability [16]. A study concluded that
communicating the message of usability is not enough; the facts
must be solid and documented [24]. Another study complements
this by concluding that experiences with usability have to be
presented in a way that appeals to upper management’s mindset
with emphasis on the monetary benefits [1].

Resource-related obstacles have also been studied. Based on
experiences from several organizations, Nielsen states that there
are considerable monetary benefits from conducting usability
evaluations [18]. A study emphasized that automation is a way to
complement existing usability evaluation methods [9].

Only a few researchers have tried to measure the effect of
deploying new usability methods in software organizations. One
study concluded that nurturing the developers’ skills in user-
centered design was a major factor in developing more usable
systems [22]. A different study provided a usability engineer to a
software organization. This helped developers shift focus toward
design and assume a role as the users’ advocate [2].

3. METHOD
We have conducted field studies in two software organizations,
where we tried to demonstrate the benefits of usability evaluation
in an ongoing development process.

3.1 Company A
The company had, at the time of the study, 150 employees with
headquarter in Denmark and branches in Canada, USA and
Romania. Its business was separated in four units: supply chain
solutions, postal solutions, airport solutions and care management
solutions. Our collaboration was with the care management
solution unit that had 12 employees, of which 7 were software
developers. The system we evaluated was a planning module for a
healthcare management system used by nurses and home
assistants to plan both care for citizens and staff working hours.
The system had been developed some years before and updated
regularly. Initially, it had a non-graphical user interface. Later, it
was supplemented with a graphical user interface.

The company’s motivation for participating was curiosity about
usability evaluation and a desire to see if it could be integrated in
the development process without being too costly. It was not
triggered by customer demands.

Participants. Three participants from company A were involved
in the collaboration; a section manager, a developer and a user
consultant. The section manager was in charge of the
development team, the developer was responsible for the user
interface design and the user consultant was responsible for
contact to users and for their education.

Procedure. The study was conducted in 3 steps. The first step
was an initial meeting with the section manager of the care
management solutions department, the user consultant and the
developer responsible of the user interface design. The purpose
was to determine obstacles to usability evaluation in the company
and select the part of the system to evaluate. After the meeting,
the three participants were asked to write down weaknesses and
obstacles to integration of usability in their development process.

The second step was the evaluation of the system. We used the
Instant Data Analysis (IDA) method [14]. After the evaluation,
the test results were emailed to the three participants and
subsequently presented in combination with redesign proposals.

After a month, the third step was conducted. A meeting was held,
where the developer and user consultant were interviewed about
their experiences with the usability evaluation and its result. They
were also asked if any changes had been made to the system or
their work process. A telephone interview was conducted with the
section manager who was asked the same questions.

Setting. The meetings were held in a conference room in the
company. The usability tests were conducted with real users and
took place at the users’ workplaces. The user consultant and
developer observed the first test session.

Data collection and analysis. We recorded of the interviews and
collected the forms with opinions about weaknesses and
obstacles. Each interview was conducted according to an
interview guide [15]. Later, the recorded interviews were
condensed using a method called “condensation of meaning” [15],
and this outcome was then analyzed. The analysis was conducted
by two persons separately. These two persons individually
pointed out statements from the condensed data and grouped them
into obstacles. Finally, the they negotiated a joint list of
weaknesses and obstacles.

3.2 Company B
The company produced wireless technology. At the time of the
study, it was divided into four units: technology, consumer
products, network systems and healthcare. There were 180
employees, most of them located in the headquarter in Denmark.
There were branches in USA, Hong Kong and Romania. Our
collaboration with this company was carried out with the
healthcare unit that had 10 employees, where 5 of them were
developers. The system evaluated, was a device for home use by
elderly people to send health data to a monitoring center. This
system was recently developed and had a simple user interface.

The company’s motivation for participating was an initial interest
in usability evaluation, based on knowledge about another
company’s successful experiences. Furthermore, the customer of
the product in question required a usability evaluation.

Participants. Throughout the collaboration, the main contact
person was the user consultant for the product in question. The
user consultant was responsible for verification and quality

assessment of the product. In addition, a developer observed and
provided technical assistance during the usability evaluation.

Procedure. The study was conducted in three steps. The first step
was an introductory meeting with the user consultant. The
purpose was to gain an overview of the product and clarify mutual
expectations.

The second step was the usability evaluation. The results from the
evaluation were emailed the day after the evaluation. Interviews
were made shortly after. The results from the evaluation were
presented along with redesign proposals at a meeting.

The third step involved two parts. Six months after the evaluation,
the user consultant was interviewed to assess the effect. Two
months later, the user consultant was interviewed again about the
current obstacles in the company.

Table 1. Essential statements from company A and B before
and after the trial evaluation.

Obstacle Initial statements Final statements
Resource
demands

Company A: “It would be
a high increase in the price
and maybe delay the
development two weeks or
more. The customer should
then be ready to pay
100.000 kr. more than
now.”

Company B: “...when we
don’t know what is needed
to conduct an evaluation,
then it will probably take
too much of our time.”

Company A: “I can see it
being conducted on special
products or occasions,
places where we deem it
extra important or are
suspicious about a poorly
designed user interface. But
nothing regularly, there is
typically no time for it in our
development process.”

Company B: “There are no
resources for usability tests,
we really want to, but
there’s no money for it at the
moment.”

Lack of
knowledge

Company A: “Knowledge
about the right solution is
an obstacle to integrating
usability evaluation in the
development process.”

Company B: “...we have
very little knowledge about
usability evaluations.”

Company A: “... the
evaluations gave an insight
into how the system was
actually used by a
prospective end user.”

Company B: “I have gained
some knowledge, but not
enough to conduct an
evaluation on my own.”

User
involve-
ment

Company A: “The users
don’t think enough about
what they are shown. If
they see something smart,
they want it. They don’t
think about the problems a
new solution can
generate.”

Company A: “The usability
problems occurred
unexpectedly, and related
more to user errors or lack
of users’ understanding.”

Structure
of the
system

Company A: “Often, the
database layer and other
function-related layers are
limiting the user interface.
You lock a lot in the
beginning of the project.”

Company A: “...the
development system and
environment is not up to
date.”

Manage-
ment
interests

 Company A: “I actually
don’t think the need for
usability evaluations is
apparent to upper
management. Usability is
taken for granted...”

Setting. Most meetings were held at company B. The post-
evaluation meeting was held at the university, and the evaluation
was conducted in our usability laboratory.

Data collection and analysis. The interviews with the user
consultant were video recorded. Each interview was based on an
interview guide [15]. The recordings were processed with
“condensation of meaning” [15]. The analysis was done in exactly
the same way as with company A.

4. Results
This section presents the results of our study in the two software
organizations. The results are summarized in Table 1.

4.1 Resource Demands
The two software organizations initially had some obstacles in
common. Both were convinced that usability evaluation was very
time consuming and costly, as stated by the section manager in
company A. The developer and user consultant also agreed that
time and money were major obstacles. The main obstacle was the
expectation about the time it would take to conduct the
evaluations and make software changes.

Company B was looking for an inexpensive opportunity to
evaluate the usability of their product. The resource demands of
usability evaluation were underlined by the user consultant from
company B in the following way; “The resource demand will
always be an obstacle” and “... when we don’t know what is
needed to conduct an evaluation, it will probably take too much of
our time”.

In the final meetings, both organizations still stated resources in
relation to time and money as being a main obstacle. It was most
prominent in company B, where the user consultant made
statements such as “We don’t have the resources to conduct a
usability test.” and “... it would take too much time for us ... we
don’t have the experience”.

Company A expressed this obstacle both in the interviews and the
forms. In a discussion of gains from usability evaluations, the user
consultant said “... it would be too expensive to reveal the
problems this way”. When asked about the downsides of usability
evaluation, the developer stated “I still think a lot of time is spent
on it. You really don’t have much time here”. The user consultant
stressed that resources is the most important factor “It all comes
down to resources; the bottom line is always the focus point.”

Resource demand as a main obstacle was also apparent in the
forms. The section manager did only consider it relevant for
special cases. On the other hand, he was surprised by the prompt
delivery of results, and the user consultant concurred “The results
were delivered very fast. I assumed it would take 3-4 weeks.”

The resource demand of introducing usability evaluation was
initially one of the major obstacles for both companies. The use of
the low-cost method [14], gave the user consultant from company
A an entirely different view “It changed my idea of how much
time usability evaluations take.” The section manager’s attitude
also changed. The change in company B was even more
prominent as the user consultant expressed “If there is money for
usability evaluation, we will certainly deploy it in the
development process”.

4.2 Lack of Knowledge
Both companies stated that their knowledge of usability
evaluation was initially at a very low level. Company B had some
knowledge from another software organization that conducted
usability evaluations, but only on the general level that usability
evaluation can give useful information to developers. They did
not have any knowledge about usability work practices. Company
A had some knowledge from another department, where a
usability evaluation had been conducted once, but no evaluations
had ever been done in the care management unit. The lack of
knowledge also extended to the users’ application of the system
as the section manager stated “It would be great to get the
knowledge into the organization; this could be used by the
developers to make the product more usable for the end user.”
The developer agreed; “We lack knowledge about the users’
professional world.”

Lack of knowledge about usability evaluations was still expressed
as an obstacle for both companies after the demonstration of
usability evaluation. For company A, this applied to knowledge
about evaluations and usability in general. The developer stated
“As a developer, I find it hard to decide when to involve users in
the development process.” In relation to the question when users
should be involved, the section manager said “Usability
evaluations can only be conducted in the final phases of a
development process.” The lack of knowledge about usability
evaluation was also expressed by the user consultant from
company B “I have gained some knowledge, but not enough to
conduct an evaluation on my own.”

The lack of knowledge regarding the users’ application of the
system as well as usability evaluation in general was the obstacle
that was affected most in our study. An example of this was given
by the user consultant in company A “...three of us discussed a
design solution, but we were not able to agree, so we called a user
and found the answer ... if you want something tested, you can
just grab a user and ask for his or her opinion.” This approach had
not been employed prior to our demonstration of usability
evaluation. The demonstration made the employees experience
that users can be involved in a constructive way in the
development process. Other statements from the user consultant
in company A underlined that the usability evaluation gave
insight into the users’ work routines “Your tests show that it has a
lot to do with work routines, and that has given us motivation for
following up in the next release.” The importance of the
evaluators was also stressed “Your tests show some subconscious
things, and the users don’t catch them themselves. There has to be
an observer to catch those things.”

In the post-evaluation meeting and the final meeting with
company B, several findings pertaining to the lack knowledge
were emphasized. The user consultant and developer expressed a
general satisfaction with the evaluation. Observing all sessions as
they happened, gave them “… an insight into the way the system
was actually used by a prospective end user”, as expressed by the
user consultant. The evaluations revealed problems that had not
previously been identified by the user consultant or developer.
Both of them agreed upon the usefulness of this insight and
thereby of the evaluations. In the final meeting with the user
consultant, these attitudes and viewpoints were still completely
intact. She said “When our new product is almost finished, it will
be evaluated in the same manner ...”

The insights gained from the usability evaluations were also
mentioned in the final meeting with the user consultant “You can
tell if the system is intuitive to use, if they can push the right
buttons and read the display. These are things we cannot answer
by discussing it in the development department. It is things we
don’t think about.” The user consultant also stated that the results
from the evaluation were of great use in her daily work. In certain
design discussions, she was able to use the results as examples of
actual user behaviour. The introduction also had an impact on the
user consultant’s knowledge about usability evaluations. Initially,
she had no knowledge about it, but in the final meeting she
mentioned; “If we need a test of a future product, we know what
usability evaluation is and what it can be used for, and we know
when to test. So we can use this process for a lot of purposes.”

4.3 User Involvement
The two software organizations differed considerably in their
thinking about end users. Company B wanted the end users to be
able to use the product with a minimum of training and a very
small and easy to read manual. In company A, the user consultant
expressed “Our system is so complex that training is a necessity;
in no way would the end user ever be able to use the system
without the training we give them.”

The users were contributing with proposals for changes to the
system developed by company A, but this was actually considered
more of a complication. For example, the developer mentioned
“The users lack knowledge about the development process and
the time it takes”, and the user consultant stated “The users do not
have an overview of the system and its structure, and they might
disagree about new functionality.” The section manager also
mentioned difficulties related to the involvement of the end users
“The users don’t think enough about what they’re shown. If they
see something smart, they want it. They don’t think about the
problems a feature can generate.”

After the demonstration, obstacles relating to user involvement
were only expressed in company A. The user consultant spoke of
their users as being too numerous and geographically spread “...
to reach out to 50% or even 10% of our users, that cannot be
done. We have too many users.” Furthermore, usability evaluation
of a product during development would be hard to conduct,
because they would be forced to use inexperienced users, which
would make the tests difficult “...it would most likely “drown” in
explanations of the new functions.” The section manager
expressed a similar concern about involving users in an evaluation
“For the users to be involved in a test, they would have to be
pulled away from their work. That costs money for the customer
and will be a burden.” Company A was also reluctant to involve
users, because their understanding of the problems found in the
usability evaluation was that it was the users’ lack of knowledge
about the system that caused the problems, as expressed by the
developer “The usability problems occurred unexpectedly, and
related more to user errors or lack of users’ understanding.”.

The introduction of usability evaluation gave the participants
from company A a deeper insight into the users’ way of using the
system. Yet this insight also emphasized user involvement as an
obstacle. For example, the user consultant expressed it this way
“Are the problems occurring just because the users have adopted a
wrong work routine ... the users lack an understanding of the use
of the system.”

4.4 Structure of the System
Company A had an obstacle regarding the structure of the system.
This was expressed by the section manager. The developer also
mentioned the difficulties with the system structure “The system
is used in different ways. With major changes there is a risk of
removing existing functionality and introducing new errors in
properly working parts of the system.” Although the structure in
itself is not an obstacle to usability evaluation, correcting the
problems found could be very difficult as expressed by the user
consultant “Some parts of the system are hardcoded and cannot be
changed, although the users see it as a small change.”

The introduction of usability evaluation had no tangible effect on
this obstacle, but reveals a need to prepare developers for
potential changes in the system structure.

4.5 Management Interests
The participants from company A expressed an obstacle in
relation to management, but only after the demonstration. When
asked how apparent the importance of usability was for
management, the developer said “I actually don’t think it’s
apparent for management. Usability is taken for granted ...” The
user consultant stated in relation to this obstacle “My attitude and
position to the matter isn’t opposed to it, but reprioritization has
to come from the management level.” In company B, the obstacle
of management interests was also expressed by the user
consultant “Management has decided to postpone usability
evaluations until sales have gone up.”

This obstacle was not identified in the initial statements, but only
in the final statements. It emerged because of our direct question
whether the company would consider deploying usability
evaluation in the development process in the near future.

5. Discussion
The results of this study show that specific obstacles such as the
resource demands and lack of knowledge about users and
usability evaluation methods have been affected. The quick
feedback from the evaluation to the software organization was a
significant reason why company A would consider usability
evaluation in the future. The fact that the participants from the
two software organizations observed one or more test sessions
increased their insight into the methodology and the users’ ways
of using the system considerable. This was clear from the positive
comments that participants from both companies made about
observing the tests.

The fact that the software organizations were affected by
observing the benefits of usability evaluation is a valuable
contribution of this study, and should be a point of focus in
further research. This is also where this study differs from related
work within this area. As mentioned in section 2, many of the
previous studies have focused on providing guidelines or
principles for deploying usability practices. The purpose of these
has been to ease the deployment of usability evaluation in the
development process [3, 6]. In contrast, the purpose of our study
was to let company representatives observe the benefits of
usability evaluation.

An important factor when deploying usability evaluation is the
motivation of the software organization. In our study we observed
a different motivation between the two software organizations.

Company A’s motivation for participating in the experiment was
curiosity about the nature of usability evaluation and its practical
use. Company B had a need to gain knowledge about usability
evaluation because of customer demands. This difference in
motivation might have had an impact on the obstacles identified.
For example, the number of obstacles identified in company B
was only two, while it in company A was four before the
introduction and five after. Moreover, an obstacle identified in
company A related to the users and the difficulties of meeting
with the users. Company B also had difficulties with creating
contact with users, but it was not expressed as an obstacle.
Overall, company A had a tendency to see obstacles rather than
benefits of usability evaluation, which indicate a lack of
motivation that makes it even more difficult to deploy usability
evaluation.

To increase the motivation, a software organization needs to
experience that usability evaluation can fulfill relevant needs.
Company B was more willing to deploy usability evaluations than
company A after the demonstration. Another factor relating to the
greater effect might have been that the employees from company
B observed all the sessions of the usability evaluation, whereas
the employees from company A, observed only one session. The
experiences with company A also showed that decisions to
integrate and prioritize evaluations had to come from top level
management. Therefore it could be beneficial to include
participants from that level in a demonstration.

6. Conclusion
The purpose of this study was to observe how the introduction of
usability evaluation affects significant obstacles to usability
evaluation in software organizations. To inquire into this, a
usability evaluation was demonstrated to two software
organizations. This included that we conducted a usability
evaluation and presented the evaluation results to the two
software organizations.

The results show that the introduction of usability evaluation
provided the software organizations with insight into the users’
use of the system. Furthermore, they experienced that usability
evaluations are not nearly as resource demanding as expected.
This illustrates that the stakeholders’ attitudes to these obstacles
were affected. However, none of the obstacles identified in the
two software organizations were completely resolved. Two of the
initial obstacles, user involvement and structure of the system,
were not affected by the demonstration of usability evaluationl.

This study shows that it is possible to motivate software
organizations toward usability evaluation. This was achieved
through the approach in which the companies’ products were
evaluated. This underlines the relevance of research in this topic
based on other approaches than providing guidelines and
principles, which has been covered to a great extent.

There are some important limitations to our study. The two
software organizations were quite similar. Also, we interviewed
quite few persons in these organizations. In both organizations,
we focused in particular on the benefits and time taken; we did
not deal explicitly with the costs for the two organizations. The
main source of data was interviews combined with forms in one
of the organizations. Finally, the specific method used in the
evaluations might have affected the results. It would be

interesting to extend the study to more organizations and
stakeholders and use different methods both for data collection
and for the evaluation.

Acknowledgments. The research behind this paper was partly
financed by the Danish Research Councils (grant numbers 2106-
04-0022 and 2106-08-0011). We are very grateful to the two
software organizations and the stakeholders that participated in
the study. We would also like to thank the anonymous reviewers
for their comments and advice.

References
[1] Sarah Bloomer, Rachel Croft. Pitching usability to your

organization. In interactions, ACM Press, 1998, (4,6), pages
18-26. ISSN: 1072-5520.

[2] Inger Boivie, Jan Gulliksen, Bengt G¨oransson. The lonesome
cowboy: A study of the usability designer role in systems
development. In Interacting with Computers, Elsevier
Science B.V., (18,4), 2006, pages 601-634.

[3] Jim Carter. Incorporating standards and guidelines in an
approach that balances usability concerns for developers and
end users. In Interacting with Computers, Elsevier Science
B.V., (12,2), 1999, pages 179-206.

[4] Susan M. Dray, Clare Marie Karat. Human factors cost
justification for an internal development project. In
Costjustifying usability, Academic Press, Inc., 1994, pages
111-122. ISBN: 0-12-095810-4.

[5] Carola B. Fellenz. Introducing usability into smaller
organizations. In interactions, ACM Press, 1997, pages 29-
33. ISSN: 1072-5520.

[6] John D. Gould, Clayton Lewis. Designing for usability: key
principles and what designers think. In Communications of
the ACM, ACM Press, 1985, (28,3), pages 300-311.

[7] Toni Granollers. User Centred Design Process Model.
Integration of Usability Engineering and Software
Engineering. In Proceedings of interact 2003. Found at:
http://www.griho.udl.es/publicacions/2003/Doctoral%20
Consortium%20(Interact%2003).pdf, last seen April 11th
2007.

[8] Jonathan Grudin. Obstacles to user involvement in software
product development, with implications for CSCW. In
International Journal of Man-Machine Studies, Academic
Press Ltd., 1991, (34,3), pages 435-452. ISSN: 0020-7373.

[9] Melody Y. Ivory, Marti A Hearst. The state of the art in
automating usability evaluation of user interfaces. In ACM
Comput. Surv., ACM Press, 2001, (33,4), pages 470-516.
ISSN: 0360-0300.

[10] Claire Marie Karat. A business case approach to usability
cost justification. In Cost justifying usability, Academic
Press, Inc., 1994. ISBN: 0-12-095810-4.

[11] Clare Marie Karat. A Comparison of User Interface
Evaluation Methods. In Usability Inspection Methods, 1994,
pages 203-233. ISBN: 0-471-01877-5.

[12] Clare Marie Karat. Cost-justifying usability engineering in
the software life cycle. In Handbook of Human-Computer

Interaction, Elsevier Science Inc., 2nd edition, 1997, pages
767- 778. ISBN: 0444818626.

[13] Brenda Kerton. Introducing usability at London Life
insurance company: a process perspective. In CHI ’97: CHI
’97 extended abstracts on Human factors in computing
systems, ACM Press, 1997, pages 77-78. ISBN: 0-89791-
926-2.

[14] Jesper Kjeldskov, Mikael B. Skov, Jan Stage. Instant data
analysis: conducting usability evaluations in a day. In
NordiCHI ’04: Proceedings of the third Nordic conference
on Humancomputer interaction, ACM Press, 2004. ISBN: 1-
58113-857-1.

[15] Steinar Kvale. Interview - En introduktion til det kvalitative
forskningsinterview. Hans Reitzel, 2.edition, 1998. ISBN:
87-412-2816-2.

[16] Deborah J. Mayhew. Business: Strategic development of the
usability engineering function. In interactions, ACM Press,
1999, (6,5), pages 27-34. ISSN: 1072-5520.

[17] Karsten Nebe, Lennart Gr¨otzbach. Aligning user centered
design activities with established software development
practices. In NordiCHI ’06: Proceedings of the 4th Nordic
conference on Human-computer interaction, ACM Press,
2006, pages 485-486. ISBN: 1-59593-325-5.

[18] Jakob Nielsen. Why GUI panic is good panic. In
interactions, ACM Press, 1994, (2,1), pages 55-58. ISSN:
1072-5520.

[19] Jerilyn Prescott, Matt Crichton. Usability testing: a quick,
cheap, and effective method. In SIGUCCS ’99: Proceedings
of the 27th annual ACM SIGUCCS conference on User
services, ACM Press, 1999, pages 176-179. ISBN: 1-58113-
144-5.

[20] S. Reed Who defines usability? You do!. In PC//Computing,
(Dec), 1992, pages 220-232. ISBN: 0-12-095810-4.

[21] Stephanie Rosenbaum, Sarah Bloomer, Dave Rinehart,
Janice Rohn, Ken Dye, Judee Humburg, Jakob Nielsen,
DennisWixon. What makes strategic usability fail?: lessons
learned from the field. In CHI ’99: CHI ’99 extended
abstracts on human factors in computing systems, ACM
Press, 1999, pages 93-94,. ISBN: 1-58113-158-5.

[22] Ahmed Seffah, Alina Andreevskaia. Empowering software
engineers in human-centered design. In ICSE ’03:
Proceedings of the 25th International Conference on
Software Engineering, IEEE Computer Society, 2003, pages
653-658.

[23] Desir Sy. Bridging the communication gap in the workplace
with usability engineering. In SIGDOC ’94: Proceedings of
the 12th annual international conference on Systems
documentation, ACM Press, 1994, pages 208-212. ISBN: 0-
89791-681-6.

[24] Leslie Tudor. Obstacles to user involvement in software
product development, with implications for CSCW. In
Human factors: does your management hear you?, ACM
Press, 1998, (5,1), pages 16-24. ISSN: 1072-5520.

User Involvement in Icelandic Software Industry
Marta Kristin Larusdottir

Reykjavik University
Kringlan 1

103 Reykjavik, Iceland
+354-599 6200

marta@ru.is

Olöf Una Haraldsdottir
Reykjavik University

Kringlan 1
103 Reykjavik, Iceland

+354-599 6200

olofh06@ru.is

Bright Agnar Mikkelsen
Reykjavik University

Kringlan 1
103 Reykjavik, Iceland

+354-599 6200

brigt06@ru.is

ABSTRACT
This paper reports the first results from a recent study done on
user involvement in Icelandic software industry. A questionnaire
survey was made to gather information on the software processes
used and to what extent user involvement methods are used by
software developers in the different processes.

The results show that the majority of the respondents use their
own process where they have adjusted their development process
to their needs. More than one third of the respondents use the
agile process Scrum. That group is the most skeptical one when
rating the importance of usability in software development.
Meetings are the most popular method for involving users.

Categories and Subject Descriptors
H.5.2[User Interfaces] User-centered design, Theory and
methods.
Keywords
Software processes, User involvement methods, User centered
software development.

1. INTRODUCTION
A numbers of studies have been done in different countries to
gather information on how practitioners use methods for
involving users in the software development, e. g. [1, 2, 4, 5, 7,
9]. When the results from these studies are compared, it can be
seen that the emphasis in one country can differ to some extent to
the emphasis in another country regarding user involvement
methods used and how the respondents rate the methods. A study
like this has not been done in Iceland so far.
The agile software development process has been growing in
popularity in Iceland for the last five years or so, where the Scrum
process has been the most popular one. In Scrum the projects are
split up in two to four weeks long iterations called sprints, each
ending up with a potential shippable product. Scrum heavily
emphasizes on self organizing and well compounded teams,
typically with 6 – 8 interdisciplinary team members [6].
Traditional Scrum has been criticized for not involving users in
their software process and for not adequately address their

usability needs, for example in [8].
In this paper the following research questions are analyzed:

• What software processes are used in the Icelandic
software industry today?

• How do software developers rate the importance of
usability? Is there some variance according to the
process used?

• Which methods do software developers use to involve
users in the software development? Is there some
variance according to the process used?

2. MATERIALS AND METHOD
An online questionnaire was created in the QuestionPro tool for
gathering data on the research questions. The target respondents
were software developers in Iceland. There are not that many
specialists in Human-Computer Interaction in Iceland so the
software developers are the ones that contact users during the
software development and they should have had one or two
course in their education for learning methods to involve users.
The survey was sent out to two mailing lists, one containing 100
members called the Agile-group and the other containing
approximately 100 women in information technology (IT-
women). The survey was also posted on Facebook within a group
of the Computer Scientists Association containing 256 members.
It is possible that the mailing lists and the group overlap and
therefore we estimate that the survey reached approximately 300
target respondents.
According to the Federation of Icelandic Industries [3] there were
2.071 jobs in the Icelandic Software Industry in the year 2004. It
is hard to say what the number is now because between 2004 and
2008 there was a big growth in the field but in October 2008 the
financial crisis changed the picture a lot. Still the software
industry has not been as much affected as other industries, so we
estimate that there were around 2.000 employees working in the
software industry at the time of the survey.
The number of respondents was 82 so we estimate that around
25% of the people contacted did respond. The majority of the
respondents 93% had B. Sc. degree or M. Sc. Degree in either
Computer Science or Engineering. More than half of the
respondents or 54% had 10 years experience or more in the
software industry. More than half of the respondents 56% were
male and 44% women. According to the Federation of Icelandic
Industries [3], 24% of the employees in software industry in
Iceland were women in 2004, so our sample is biased towards
women.
Right now we are analyzing the data, so this paper describes the
first results from the survey.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Interact 2009, August 24–28, 2009, Uppsala, Sweden.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

3. RESULTS
In the following answers to the three research questions will be
described.

3.1 The software processes used
When asked about the process that the developers use for software
development, 44% of the respondents say that they use their own
process, where they have probably adjusted some known process
to their needs. Furthermore 37% use Scrum, which has grown in
popularity the last five years or so in Iceland. The remaining 19%
use other processes, including for example the Waterfall process
and Extreme programming.

3.2 The importance of usability
When asked to rate the importance of usability the definition of
usability was first described to them in the following way:
“Usability is a qualitative attribute that assesses how easy user
interfaces are to use. Usability is mainly made up of three factors:
Effectiveness – Can the users solve their tasks with the software?
Efficiency – Can the user solve their tasks without major
problems? Satisfaction – How satisfied are the users?” The
respondents were asked to answer if they agreed or disagreed to
the statement that usability is important for the success of the
software. The developers that used Scrum were the most
skeptical, as can be seen on Figure 1. Twelve percent of the
respondents that use the Scrum process answer that usability is
neither important nor unimportant. Sixty one (61%) said they
strongly agree, but 72% of those that use their own process said
they strongly agreed to the statement. One explanation could be
that the Scrum process is primarily used in some industrial sectors
where usability indeed is not such important. Further analysis of
the data is needed to check that.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scrum Own process Other processes

Ok
Agree
Strongly agree

3.3 User involvement methods used
When asked what user involvement methods the developers had
used the results show that some of the methods are used in all
processes but for other methods there is bigger variance. Meeting
with users are very commonly used in all processes but
questionnaires and guidelines are not much used. It is a rather
positive result for the participants of this workshop that the
Think-aloud method is used by around half of the respondents and
the participants using Scrum are the ones that have the highest
number of usage of the Think-aloud method.

4. CONCLUSIONS
One third of the Icelandic developers use the Scrum process and
that group does not rate usability as highly as developers using
other processes. We do not have any results explaining this yet,
but this is really worth looking at in future work. When looking at
what user involvement methods are used in each development
process this trend is not that obvious. The surprising result there is
that the most popular method is meetings with users even though
that has not been taught in any text books on user involvement.

5. REFERENCES
[1] Bygstad, B., Ghinea, G., & Brevik, E. (2008). Software

development methods and usability: Perspectives from a
survey in the software industry in Norway. Interacting with
computers , 375-385.

[2] Gulliksen, J., Boivie, I., Persson, J., Hector, A., Herulf, L.
(2004). Making a difference: a survey of the usability
profession in Sweden. Proc. of NordiCHI 2004, ACM Press
(2004), 207-215.

[3] IT and Communication Technology in Iceland. (n.d.).
Retrieved 15th of May, 2009, from Ice Trade Directory:
http://www.icetradedirectory.com/icelandexport2/english/ind
ustry_sectors_in_iceland/it_and_communication_technology
_in_iceland/

[4] K. Vredenburg, Mao, J. Y., Smith, P. W., Carey, T. (2002) A
Survey of User-Centered Design Practice. Proc. CHI 2000,
CHI Letters 4(1), 471-478.

[5] Rosenbaum, S, Rohn, J. A., Humburg, J. A. (2000). Toolkit
for Strategic Usability: Results from Workshops, Panels, and
Surveys. Proc. CHI 2000, CHI Letters 2(1), 337-344.

[6] Schwaber, K. (1995). Scrum development process.
OOPSLA’95 Worshop on Business Object Design and
Implementation.

[7] Seffah, A., Metzker, E. (2004). The Obstacles and Myths of
Usability and Software Engineering, Communications of the
ACM (2004), 47(12), 71-76.

[8] Singh, M. (2008). U-SCRUM: An Agile Methodology for
Promoting Usability. AGILE '08. Conference, (pp. 555-560).

[9] Venturi, G., Troost, J. (2004). Survey on the UCD
integration in the industry. Proc. NordiCHI 2004, ACM
press (2004), 449-452.

Figure 1: Usability is important

Table 1: The User Involvement Methods used in each
software development process

Early user-testing before programming
improves software quality

John Sören Pettersson
Department of Information Systems

Karlstad University
Karlstad, Sweden
+4654 700 2553

John_Soren.Pettersson@kau.se

Jenny Nilsson
Department of Information Systems

Karlstad University
Karlstad, Sweden
+4654 700 1135

Jenny.Nilsson@kau.se

ABSTRACT
This position statement does not focus on usability although it
presents data from a software up-date cycle where several
usability- and user-centred methods were used. The important
lesson learnt is that a better (more complete) specification before
programming results in fewer errors in the code and that such a
specification can be reached by user tests of interactive mockups.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
Elicitation methods.

D.2.2 [Software Engineering]: Design Tools and Techniques –
Evolutionary prototyping, User interfaces.

General Terms
Design, Experimentation, Human Factors.

Keywords
Software quality, Early user-testing, Wizard-of-Oz prototyping.

1. CASE STUDY
Frequent testing of developing software can certainly increase the
usability in the program. However, as we found in a case study,
the method seems to continuously introduce changed or new
requirements which in turn results in more complex code and
thereby more errors. This case study consisted of a large update
cycle of a software package in the area of decision support system
for civil protection. The update involved a complete re-
programming of the four largest modules. Several smaller updates
had been made prior to the large update cycle, and requirements
for the update had (as always) been collected from the large user
groups. The organisation had routines for collecting requirements
from users, client organisations, and other stakeholders.

There was thus much resemblance of their approach to
principles found in user-centric approaches such as the MUST
method [2]. The organisation had however recognised that usa-
bility was an issue even if the type of functions provided by the

system was requested by client organisations and their employees.
They had also included a continuous process of debugging using
experienced users and content experts in their update cycles. One
can say that the developers were not aware of the methodological
critique expressed in one paper as “Close Co-operation with the
Customer Does Not Equal Good Usability” [4] (cf. also [1]).
Through an HCI student’s exam work for the organisation, its
developers became aware of the Wizard-of-Oz method by which
one can test mocked up designs as if they were already
implemented [3]. A more experienced Wizard (second author)
was hired as a usability expert and design-aide and stayed through
the 3-year update project of the software package.

Due to the size of the project, the Wizard could not pre-test
every module: one of the four largest modules was not mocked up
in advanced. Figure 1 shows the two user-centred processes
employed in this large update project (the debugging commenced
half a year after programming had started).

TWO ALTERNATIVE USER-CENTRED PROCESSES

 EUT

No-EUT

Requirements specification

Requirements
from users

Requirements
from users

Early User-Testing (EUT)

Two cycles with
redesign of UI

and some other
specifications

_

Programming with
debugging

Repeated
evaluations by
experienced

users, content
experts and
HCI-expert

Repeated
evaluations by
experienced

users, content
experts and
HCI-expert

Usable and error-free program modules

Figure 1. Flow of work with and without Early User-Testing

2. ERROR RATES
The debugging process showed an interesting difference in the
number of errors found in the module lacking pre-testing and a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Table 1. Error rates relative to program size (MB and # of files)

Prio 1 Prio 2 + 3 Priority 1,2,3 Error type

Program # / MB # / files # / MB # / files # / MB # / files

Early User-tested module of 1.5 MB and 145 files 4.67 0.05 68.00 0.70 72.67 0.75

Not-EUT module of 2.0 MB and 230 files 32.50 0.28 101.00 0.88 133.50 1.16

Error rates proportionally (EUT / Not-EUT) 0.14 0.17 0.67 0.80 0.54 0.65
Note: Priority 3 was in the error reports noted as “Next version”, often new requirements, while Priority 1 was “critical errors”.

comparable pre-tested module. Table 1 indicates both the size (in
MB) and the number of files of the two modules. Error rates are
given both in relation to size and number of files. The EUT-
developed module has about one-fifth of the error rate of the not-
EUT module for the “Prio 1” errors (called “critical errors” in the
debugging reports). In total, the error rate for the first module is
only half of what was found in the second module.

It is not meaningful to compare program modules without
considering the relative complexity of each module. The two other
EUT-modules were only half the size of the one we select for this
error comparison but contained, relative to their size, many more
errors than the modules in Table 1. However, these other modules
contained specific, database-related complexities and can only be
used for certain comparisons (2.2).

2.1 The debugging process
The debugging process commenced nearly a year before the final
launch of the new version. The debugging was conducted by three
groups which were very familiar with the functional requirements:
a group of very experienced users, the HCI expert, and the content
managers for the different modules’ databases.

The bug-finding by experienced users sometimes resulted in
new requirements coming up. Interestingly, this was also the case
for the debugging made by the content experts (who had not been
involved in the pre-tests before programming; they had only seen
and accepted the requirements specifications).

2.2 New requirements
For the first module in Table 1 there was only 4 new requirements
coming up in the extensive debugging process while for the
second module there was 13. This we hold to be the source of
many of the other errors. When new functions are introduced into
the developing process, it is harder for the programmers to
maintain a clean and easily predictable code.

That early user-testing can capture many requirements was
shown by a third module, smaller in size than the two modules in
Table 1 (0.7 MB and consisting of only 55 files). This third
module mainly consisted of a library and the content expert of this
module found many faults during the debugging process: among
these were in effect 24 new requirements. In the HCI expert’s (i.e.
Wizard’s) opinion, most of the new requirements would have
been possible to spot if the content expert had been included in
the pre-testing, which could have been done without the wizard
setting up special test scenarios for content experts. This is
important when the Wizard-of-Oz method is used as the method
incurs some extra costs when mockups have to be prepared before
tests.

3. EARLY USER-TESTING
The much criticized Waterfall model for systems development,
where all specifications should be settled before the laborious
tasks of modelling and programming take place, admittedly has
some advantages, but only if all requirements really can be settled
in advanced. By early prototyping designers can approach this
goal. In the case study, the Wizard-of-Oz method was used with
user interfaces often based on previous versions of the system.
What was needed was elaboration of the interaction design and
uncovering interdependences between various function
requirements. This was met by the WOz prototyping, which was
conducted in two rounds: a first one on a rough design with 8
participants; a second one six months later on a detailed design
with 5 participants. Although the interaction is ‘real’ in WOz
experiments, the graphics can be crude in early design phases.

Setting up a WOz environment for testing is laborious as the
Wizard must have control over what the user sees on the monitor
(and hears from the loudspeakers), but in our research group we
have developed a ‘general-purpose’ WOz system which we call
Ozlab ,which facilitates the setting up of tests enormously (cf. e.g.
[5]). A WOz set-up also allows designers to probe their own
designs and find interaction bugs even before testing.

Still to evaluate is how much more costs the error-correction
took in comparison with the cost for the Wizard work, but from
our experiences of this project (and noting the difference in
salaries between usability people and programmers…) it seems a
safe bet that the EUT injected as in Figure 1 pays of very well to
say nothing of how much frustration is saves.

4. REFERENCES
[1] Ambler, S.W. 2004. Tailoring Usability into Agile Software

Development Projects. Maturing Usability, eds. Law,
Hvannberg & Cockton. Pp 75-95. Springer-Verlag

[2] Bødker, K., Kensing, F. and Simonsen, J. 2004. Participatory
IT Design. Designing for Business and Workplace Realities.
MIT Press.

[3] Gould, J. D. and Lewis, C. 1985. Designing for usability: key
principles and what designers think. Com. ACM 28:300-311.

[4] Jokela, T. and Abrahamsson, P. 2004. Usability Assessment
of an Extreme Programming Project: Close Co-operation
with the Customer Does Not Equal Good Usability. PROFES
2004 Proceedings, pp 393-407. Springer-Verlag.

[5] Molin, L. 2004. Wizard-of-Oz Prototyping for Cooperative
Interaction Design of Graphical User Interfaces. Proceedings
of the Third Nordic Conference on Human-Computer
Interaction, 23-27 October, Tampere, Finland, pp. 425-428.

	Preface.pdf
	2nd International Workshop on the Interplay between Usability Evaluation and Software Development
	Held at Interact 2009 in Uppsala, Sweden on August 24, 2009

	Preface.pdf
	2nd International Workshop on the Interplay between Usability Evaluation and Software Development
	Held at Interact 2009 in Uppsala, Sweden on August 24, 2009

	TOC.pdf
	Keynote Speech
	Usability and User-Centred Design
	Usability Evaluation in Modern Development Processes
	Usability Studies

	paper_08.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. METHOD
	3.1 Company A
	3.2 Company B

	4. Results
	4.1 Resource Demands
	4.2 Lack of Knowledge
	4.3 User Involvement
	4.4 Structure of the System
	4.5 Management Interests

	5. Discussion
	6. Conclusion
	References

