
Towards ECSSE: live Web of Data search and integration

Richard Cyganiak
Digital Enterprise

Research Institute,
National University of Ireland,

Galway
richard@cyganiak.de

Michele Catasta
Digital Enterprise

Research Institute,
National University of Ireland,

Galway
michele.catasta@deri.org

Giovanni Tummarello
Digital Enterprise

Research Institute,
National University of Ireland,

Galway
giovanni.tummarello@deri.org

ABSTRACT
We illustrate the works toward implementing an Entity Cen-
tric Semantic Search Engine (ECSSE). ECSSE leverages the
Sindice Semantic Web Index to find and combine together
semantically structured data published on the web. With
respect to previous Semantic Web Data integrators, EC-
SSE, uses an holistic approach in which large scale semantic
web indexing, logic reasoning, data aggregation heuristics,
ad hoc ontology consolidation, external services and user in-
teraction all play together to create rich entity descriptions
and live, embeddable data mash ups.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.3.3 [Information Search and Retrieval]: Information
filtering; H.3.3 [Information Search and Retrieval]: Se-
lection process

General Terms
Entity Search, Data Smushing

Keywords
Sindice, ECSSE, OKKAM

1. INTRODUCTION
In the last two years, the amount of structured data available
on the Web in interoperable format (Web of Data) has grown
by several orders of magnitude. The phenomena mainly re-
sponsible for this are Semantic Web Linked Data, Microfor-
mats and the emergence of RDFa.

The Linking Open Data effort1 has made available online
hundreds of millions of RDF based entity descriptions in
datasets like DBpedia, Uniprot, Geonames etc. While most

1http://esw.w3.org/topic/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData

of the efforts are still due to a relatively small number of in-
stitutions and individuals, the amount of information made
available is stunning, with billions of semantic statements
estimated online [5] and growing rapidly.

Microformats2, on the other hands, have enjoyed a good
following especially in the Web 2.0 community, with large
web sites embedding them to provide at least some element
of structured information in certain pages (Among these one
can cite, e.g., LinkedIn, YouTube, Digg, Last.FM, Facebook
and many others). While we are not aware of updated public
statistics for the use of microformats, it is safe to say that
the number of RDF triple equivalent is also reaching billions.

RDFa, W3C recommendation for serializing RDF inside HTML
[1], is also proving more and more popular as it enjoys the
simplicity of Microformats while allowing easy extensions.

While the amount web data and its growth have been no-
table, few applications still make it clear why producing this
data is valuable to the end user and to the data producers
themselves.

So far, probably the most notable has been Yahoo Search
Monkey3. Search Monkey is a functionality integrated in
the Yahoo search engine that provided enhanced visual rep-
resentation of results from pages containing structured data
in microformats or RDF. While this certainly provides some
incentives for web data producers, Search Monkey limits it-
self to visual enhancements on its single result listing.

In this paper we present our works toward an Entity Cen-
tric Semantic Search Engine (ECSSE), an search application
that leverages the Sindice Semantic Web Index [10] to au-
tomatically integrate and make use of information coming
from multiple web sources.

Possibly more interesting, ECSSE doubles as interactive tool
for on the fly creation of semantic data mash ups displaying
live web of data information. The user is given the ability to
refine the mash ups, adding and removing sources as needed,
and the final, live, mash up can be embedded in any Web
page using JavaScript tags.

2. ON NAVIGATING THE WEB OF DATA
2http://microformats.org
3http://developer.yahoo.com/searchmonkey/



Navigating the web of data, has been long time desiderata
for the Semantic Web community. While single datasets, e.g.
DBpedia, can be interactively navigated, the goal of hav-
ing environments where information would automatically or
semi automatically be displayed from multiple sources has
been elusive.

In one such environments, information would flow to the user
simply becouse it is relevant to the entity currently visual-
ized or the user task at end. As a result, this would demon-
strate “reuse of information outside the context in which it
has been created”, possibly one of the most appealing goals
in semantic web research.

So far two notable approaches have been demonstrated. In
2006, the SWSE Semantic Search engine demonstrated large
scale aggregation of Semantic Web data [4]. Possibly for the
first time, thanks to the use of a scalable cluster infrastruc-
ture, SWSE could collect and contain a significant part of
the data available on the Semantic Web so to be able to ag-
gregate information pages with elements coming from mul-
tiple sources talking about the same entity. To perform such
entity information consolidation, SWSE strictly adhered to
the theoretical rules of the Semantic Web:consolidation via
reuse of the same identifier across different data sources
and several forms of lightweight reasoning such as explicit
SameAs statements, OWL Inverse Functional Properties etc
[6].

As a result, the engine displayed two peculiar side effects,
as discussed in [4]. On the one hand, for each textual query
indicating an entity, multiple Semantic Web Entities would
be displayed, mostly due to the very scarce reuse of URIs
across different sources 4. On the other hand, when often
information would be wrongly aggregated due to errors or
different interpretations of semantic properties across differ-
ent datasets. For example, if a property, e.g foaf:homepage,
is defined as Inverse Functional Property, then all the en-
tities that had this value set to null would share the same,
erroneous aggregated set of statements.

A completely different approach, is that of the Tim Berners
Lee initiated Tabulator project[7].

In Tabulator, the idea is to leverage the linked data princi-
ple: data published on the Web in RDF should have deref-
erenciable identifiers (URIs). If this is the case, then the
identifier doubles as a network location, so it is possible to
fetch the description of the entity by resolving, e.g. with an
HTTP lookup, the identifier itself.

In Tabulator, once the user enters a starting resolvable URI,
the entity description is fetched and the contained state-
ments are displayed, typically in form of a statement tree.
The interesting part comes when the user decides to inves-
tigate on one of the leaf of said tree. If the leaf is itself
a resolvable URI, then the description of the URI is also
fetched and the new statements coming from the new loca-
tion are therefore added to the old ones. This, in practice,
creates a live data mash ups driven by how the user decides

4e.g. http://swse.deri.org/list?keyword=giovanni+tummarello
returns 44 RDF nodes each with different informations
attached

to explore the graph.

This approach, while fascinating in theory, suffers for certain
shortcomings. In theory, for tabulator to consistently return
information, the resources should always contain backlinks,
that is, all the statements that are known to be in com-
mon with other dereferenciable resources. This is clearly a
daunting maintenance task which is much against the nature
of the web and the way people create their dataspaces. In
ECSSE, we will see that this role is fulfilled instead by the
Sindice index. A further shortcoming is the dependence on
identifier reuse. If a dataset doesn’t mention explicitly the
URI for the same conceptual resource in another dataset, no
browsing and data mash up can be possible.

3. ECSSE: PROCESSING WORKFLOW
ECSSE revolves around the creation of Entity Profiles. An
entity profile is a summary of an entity that is presented to
the user in a visual interface. Entity profile usually include
information that is aggregated from more than one source.
The basic structure of an entity profile is a set of key-value
pairs that describe the entity. Entity profiles often refer to
other entities, for example the profile of a person might refer
to their publications.

A source, in our terminology, is a Web document that con-
tains structured data. Examples include RDF/XML doc-
uments, HTML pages with embedded RDFa markup, or
HTML pages with embedded microformats.

There are several ways how a user can instruct ECSSE to
display an entity profile:

1. Based on a keyword query

2. By following a hyperlink from one entity profile to an-
other

3. By accessing a permalink to an entity profile (possibly
created by another user) or simply by visualizing a web
page where a Javascript tag embeds an entity profile
via a permalink.

The process of creating an entity profile involves the follow-
ing main steps, which are described in detail later in this
section:

Initial source acquisition: A set of initial sources is iden-
tified based on keyword search, explicitly named URIs.

Fetching and parsing: The content of the sources is re-
trieved from a web cache, or directly from the web for
a limited number of cache misses. Structured data is
extracted from each source.

Resource ranking: The structured data extracted from
each source is broken down into chunks that each de-
scribe distinct entities. These chunks, called resource
descriptions, are ranked based on a number of crite-
ria, most importantly proximity to the given keyword
query. The top descriptions are selected for inclusion
in the entity profile.



Source set expansion: The set of sources is expanded based
on owl:sameAs links and inverse functional properties
found in the descriptions. Similarly new sources can
potentially found levering the OKKAM entity naming
service (see later for a description). All these newly
discovered sources are again fetched, parsed and ranked.

Entity profile creation: The descriptions are merged into
a single entity profile.

Property consolidation and ranking: Often different prop-
erties (keys in the key-value pairs that describe the
entity) express the same thing. Properties are con-
solidated based on simple linguistic heuristics and a
manually-created set of consolidation rules. Proper-
ties are ranked for display purposes.

Value labeling: For key-value pairs where the value is not
a literal value but a reference to another resource (usu-
ally by URI), a best-effort attempt is made to retrieve
a good label for the resource. This might cause addi-
tional retrievals from the web cache or the web.

Value consolidation: If a property has several values with
identical or very similar labels, they are collapsed into
one value for visual presentation. Values are ordered.

Source list refinement: After the entity profile is presented
to the user, they can refine the list of sources by re-
moving poor sources (that talk about a different en-
tity or introduce noise), by requesting more sources
(which will cause lower-ranked sources to be retrieved
and merged into the profile), or by adding further key-
words (which will cause a new set of initial sources to
be acquired and merged into the profile).

3.1 Data acquisition
ECSSE operates on data collected as part of the Sindice[10]
project.

The Sindice infrastructure uses the RDF data model as a
lingua franca that hides the syntactic differences between
source formats. A set of parsers, which we are currently
publishing as open source under the name any23 5, is used
to extract RDF data from those different formats. Different
RDF serialization formats (RDF/XML, Notation 3, Turtle,
N-Triples, RDFa) are supported, as well as several microfor-
mats (hCard, hEvent, hListing, hResume and others). Con-
ceptually, any format for which a converter or extractor into
RDF is available, can provide input for ECSSE and Sindice.

Sindice collects data from the web using a number of tech-
niques: web crawling, RDF dump indexing based on Seman-
tic Sitemaps[2], and receiving update notifications (pings)
from sources such as PingTheSemanticWeb.com and our
own ping interface.

After documents have been fetched from the Web and their
structured data parts have been extracted, the structured
part is stored in a highly specialized index that facilitates
keyword queries as well as more advanced query forms based
on triple patterns. The index, based on information retrieval

5http://code.google.com/p/any23/

technology, as well as part of the infrastructure is described
in [10][8].

The structured data extracted from web documents is also
stored in the HBase based page repository, which allows sub-
sequent fast access to the documents’ contents without in-
curring the cost of web retrieval. It is simply a large dis-
tributed hash map that contains the content fetched from
each URL that Sindice knows about, as well as additional
metadata, most notably an inference closure computed over
the document’s RDF graph using the quarantined reasoning
technique described in [3].

3.2 Requesting an entity profile
The process of creating an entity profile takes three inputs,
each of which is optional:

1. A keyword search phrase

2. A number of source URLs

3. A number of resource identifiers (URIs)

The difference between the last two items is that a source
URL names a document, which is accessible on the web,
and might contain descriptions of any number of entities. A
resource identifier names a specific entity, but may or may
not be resolvable to a web document.

The initial user interface shown to an ECSSE user presents
an input box that allows entry of either a search phrase, or a
single resource identifier. Other combinations of inputs are
accessed through hyperlinks either from within ECSSE or
from a permalink.

3.3 Initial source acquisition
The first challenge is to identify a set of initial sources that
describe the entity sought for by the user. This is performed
via textual or URI search on the Sindice index and yields to
a set of of source URLs that are added to the input source
URL set.

Next, a search for each resource identifier is performed in the
Sindice index. The Sindice index does not only allow search
for keywords, but also for URIs mentioned in documents.
This allows us to find documents that mention a certain
identifier, and thus are likely to contribute useful structured
information to the description of the entity named by the
identifier.

Now we have a list of sources that potentially describe the
entity signified by the user query. The list is naturally
ranked: Sources directly specified in the input come first,
and the other sources are ranked as returned by the Sindice
index.

If the source list is long, it is trimmed. The desired length is
still subject to experimentation, but 25 sources seems to be a
good compromise of response time, data variety, and it is still
manageable in the user interface. If there is a large number
of sources from a single domain, then these are dropped with
preference. This ensures a larger data variety and produces



what appears to be a more interesting default search result.
The user interface has then a control for requesting more
resources, which repeats the process with a higher source
cutoff limit.

3.4 Fetching and parsing
In the next step, we retrieve the RDF content extracted from
each source. This uses a three-tier cache system: First, a
memcached server is consulted. Second, the page repository
is queried. Third, an HTTP request to the source URL is
performed to retrieve its contents. In the third case, the
Sindice parsers and extractors are invoked to get the struc-
tured content from the source. Whatever the result, it is
stored in memcached to speed up subsequent requests.

If a successful request to the web was performed, then the
source URL is sent to the ping manager module of Sindice,
which ensures it will be scheduled for later fetching by the
main Sindice infrastructure. This will result in adding it to
the index and the page repository, including triples inferred
during reasoning. Web requests especially if users browse
from one entity profile to another referred entity. It is a
nice way of discovering new sources that are relevant to user
interests, and a low-cost method (compared to undirected
web crawling) of increasing the coverage of the Sindice index
and the page repository.

3.5 Resource ranking
The structured RDF graph extracted from each source is
broken down into chunks (called resource descriptions) that
each describe distinct entities. This is made easy by the use
of the RDF data model. A resource description contains the
outgoing and incoming RDF triples of a specific resource.

In some cases it would be desirable to include more infor-
mation into a resource description. An example are geo-
graphic locations, which are often attached to a resource via
a property such as foaf:based_near, which points to an-
other resource, often an RDF blank node, which in turn has
properties geo:lat and geo:long that give the geographical
coordinates. Obviously it would be good to have the co-
ordinates included in the resource description, even though
they are only indirectly attached to the resource in ques-
tion. This could be solved either by manually identifying
commonly occurring cases such as the one given here, or by
using generic heuristics based on graph shape, e.g. include
linked blank nodes that have less than a certain number of
outgoing triples.

We discard trivial resource descriptions (e.g. those that con-
tain just one triple).

As an example of a decomposition into resource descriptions,
consider the case of a typical FOAF6 file that describes a
person. It will be decomposed into one resource description
for the file’s owner, one (small) description for each of their
friends listed in the profile, and possibly one description for
the FOAF document itself (containing statements about its
foaf:maker and foaf:primaryTopic.

Resource descriptions are now ranked. If the resource has

6http://www.foaf-project.org/

one of the resource identifiers from the source acquisition
step, then it will immediately receive a large boost, as there
is almost total certainty that it described the entity in ques-
tion.

Each description will be matched and scored against the
keyword phrase, considering both RDF literals and (with a
lower score) words in URIs. This helps to pick out the cor-
rect resource in cases such as FOAF files, which talk about
multiple people, but it is easy to select the right one given
a name.

Very small entities are slightly reduced in score, because
experimental results show they are unlikely to contain inter-
esting information, while cluttering up the source list in the
user interface.

Resource descriptions below a certain threshold are removed
from consideration. We now have a ranked list of descrip-
tions that are hoped to describe the same entity. Of course,
since fuzzy keyword matching is used in several places in the
process, the result will often contain false positives.

A first cut of our algorithm used only the highest-ranking
resource description from each source, discarding all others.
This has proven to be problematic, as our ranking sometimes
would score the document resource description higher than
the description of the person or other entity described in
the document, because both might have the same, highly
salient, label. By including both, we leave the problem to
the user, instead of risking the wrong pick.

3.6 Source set expansion
If the number of highly-scoring resource descriptions is low
at this point, then an attempt is made to discover additional
sources, based on the RDF data we have already retrieved
and established to likely describe the target entity. We ob-
tain new resource identifiers for the target entity using four
methods:

1. If the selected resource descriptions are centered on a
URI (not a blank node), then this URI is considered.

2. If the resource descriptions include any owl:sameAs

links, then the target URIs are considered.

3. If the resource descriptions include any OWL inverse
functional properties (IFPs) from a hardcoded list (e.g.
foaf:mbox and foaf:homepage), then a Sindice index
search for other resources having the same IFP value
is performed. (Resources having the same value for an
IFP are considered equivalent under OWL inference
rules.)

4. By means of a query to the OKKAM service. OKKAM
is an experimental service which assigns names to en-
tities on the web [9]. OKKAM returns resource identi-
fiers along with a confidence value. Any resource iden-
tifiers whose confidence value exceed a certain thresh-
old are added to the set of input resource identifiers.
We observe that currently the number of entities that
are reliably recognized by the OKKAM service is still
low, as not many OKKAM ids can be found out in the



web, so this step will often not produce a result. In
the case where it returns results however, it is a high-
quality identifier that is likely to contribute relevant
results to the next steps.

Any resource identifiers discovered using these methods will
be fed into the process at the Fetching and Parsing step.

3.7 Entity profile creation
All selected resource descriptions are merged into a single
entity profile. This simply means that all key-value pairs
from all resource descriptions are combined into a single de-
scription. A reference to the original source is kept for each
value.

3.8 Property consolidation and ranking
Often different properties (keys in the key-value pairs that
describe the entity) express the same thing. The next step
is to consolidate the potentially large and chaotic list of
properties into a simpler list that is more meaningful to the
user. In RDF, properties are named with URIs; we consider
only the last segment (“local part”) of the URI. By conven-
tion, this local part is usually a good name for the property,
written in CamelCase or with underscores or dashes, which
are converted back into a more readable string consisting of
space-separated words. In the future, we should also check
the definition of the property (obtainable by dereferencing
its URI, and often already in the page repository) for an
rdfs:label.

The next step is to treat both incoming triples (of the shape
“other-entity - relationship - our-entity”) and outgoing triples
(of the form “our-entity - relationship - value” or “our-entity
- relationship - other-entity”) as outgoing triples. This is
done simply by flipping the incoming triples around, and
adding an inverse flag to the relationship. For example, A
creator B becomes A is creator of B.

Next, we apply some simple english-language heuristics on
the property names. This is based on observing properties
typically used in the wild. The heuristics are:

• remove initial “has” (e.g. in “has title”)

• remove initial “holds” (e.g. in “holds role”)

• remove initial “gives” (e.g. in “gives presentation”)

• remove final “of” and flip property (e.g. in “member
of”)

• remove surrounding “is ... of” and flip property (e.g.
in “is topic of”)

Next, we apply a manually-compiled list of approximately 50
preferred terms. For example, we replace all of the following
property names with the preferred term “web page”: work
info homepage, workplace homepage, page, school home-
page, weblog, website, public home page, url, web. Spe-
cial attention has been given to terms that can be used in
customized ways in the user interface: labels, depictions (im-
ages), short descriptions, web links.

Next, we drop a number of properties that are of little
value in an end-user interface, e.g. foaf:mbox_sha1sum or
rdfs:seeAlso.

The ad-hoc list of rules is easily changeable. So far, it has
been fine-tuned mostly for producing good results with pro-
files of people, but we observe that it takes very little effort
to extend it into new areas, which seems to be a good invest-
ment for any area where there exists a significant amount of
data that uses a common set of properties.

After consolidation, properties are ranked. We use a simple
ranking metric: the number of sources that have values for
the property. This will push generic properties such as “la-
bel” and “type” to the top. The number of distinct values
for the property is also factored in: Properties where many
sources agree on one or a few values (as observable e.g. with
a person’s name or homepage) receive a boost.

3.9 Value labeling
For key-value pairs where the value is not a literal value
(such as a name or a date), but a reference to another re-
source (usually by URI), a best-effort attempt is made to
retrieve a good label for the resource:

1. The original source RDF graph in which the resource
was found is examined for typical label property, such
as foaf:name or dc:title or rdfs:label.

2. If nothing is found, and it is a URI, it will be resolved
against the page repository or the web, as described
above in Fetching and Parsing.

3. If nothing is found, and it is a URI, then the last part of
the URI will be used in a manner similar as described
above for property names.

A typical entity profile can refer to dozens or hundreds of
other entities, so this is an expensive process. Yet it is very
important for a decent user experience. We consider showing
a quality label much more desirable than showing a URI or
some fragment of a URI, and it is practically a requirement
to allow a user to make sense of the entity profile. The
labels also feed into further ECSSE requests: When a user
wants to follow a link to another entity, then the underlying
resource identifier(s) as well as the label are used to submit
a new ECSSE request in order to produce the linked entity’s
profile.

To achieve responsiveness despite the large required num-
ber of page repository or web requests, the initial profile
displayed to the user will only contain labels produced by
method 1 and 3 above. The additional labels are retrieved
while the user already sees the profile and will be displayed
incrementally using AJAX requests.

Another obvious method of reducing processing requirements
that we have not yet implemented would be to show only the
first N values for each property. If a person has 200 contacts
in their FOAF profile, only the first 10 could be shown by
default until the user takes action to show the rest.



3.10 Value consolidation
If a property has several values with identical or very simi-
lar labels, then they are collapsed into one value to improve
the visual presentation. For example, several sources that
describe a scientist can state that they have authored a cer-
tain paper, using different identifiers for the paper. Without
label-based consolidation, the paper would appear several
times because the identifiers are not the same. After la-
bel consolidation, it appears only once. Both identifiers are
retained internally. A click on the paper will cause a new
ECSSE search that has the label and both of the URIs as
input.

Since labels are retrieved and displayed incrementally, the
value consolidation has to be performed in the same fashion.

3.11 Source list refinement
After the entity profile is presented to the user, they can
refine the result by adding or removing sources.

Almost any entity profile initially includes some poor sources
that add noise to the results. Mixed into the desired entity
profile are other entities that have the same or a similar
name, or that for other reason ranked highly in the text
search portions. The user interface allows quick removal of
these. Widgets for source removal exist in the list of sources,
and next to each value that is displayed in the profile. If
the profile shows a poor label or unrelated depiction for the
entity, a quick click will remove the offending source, and
the next-best label or depiction will automatically take its
place if present.

Since the profile is based on a fixed number of resources, it
will often show only a subset of what is known about the
entity. There is a button for including more sources in the
source list. It will retrieve more sources from Sindice, run
the usual processing, and mix the results into the profile.

We plan to include widgets that facilitate retrieval of more
information of a specific kind. For example, if a person’s en-
tity profile shows several academic publications that come
from sources on a certain domain, then it is likely that fetch-
ing more sources from that domain will yield more publica-
tions.

Another situation is when the search yields not much use-
ful information about the desired entity, or the useful in-
formation is drowned out by unrelated noise. This occurs
if the chosen search phrase does not reliably yield informa-
tion about the desired entity. There is an analogous case
in traditional web search: If the results are poor, an expe-
rienced search engine user will try slightly different search
terms to narrow or broaden or skew the results. We want
to enable similar behavior to allow a user to interactively
refine the results. At the moment, the user can enter a new
search phrase, the entire process will be repeated, and the
profile from the new search will be mixed in with the pre-
vious results. This is not optimal; it would be better if the
new results were skewed towards the set of sources that the
user retained from the previous search. This is subject to
ongoing experimentation.

3.12 Implementation

Figure 1 summarizes the implementation architecture of the
ECSSE system. ECSSE is built on top of the Sindice in-
frastructure and uses the Sindice Index, the Sindice Page
Repository, the Sindice Fetcher, and the any23 parser suite.
ECSSE submits ping notifications to the publicly available
Sindice ping submission API.

The ECSSE processing workflow is implemented partially in
a set of Java servlets hosted in a Tomcat application server,
and partially client-side in Javascript. Moving parts of the
processing to the client side has improved responsiveness of
the user interface. The static parts of the user interface are
implemented as a Ruby on Rails application.

ECSSE also invokes the public OKKAM service.

4. ECSSE IN ACTION
ECSSE, at the time of the writing, is still in a preliminary al-
pha release: it can be tested at http://sindice.com/ecsse
but it has not yet been publicly announced.

In this section we will illustrate how ECSSE presents itself
to the end user and comment on some interesting specific
results. Commenting on specific results is by no mean in-
tended to be an evaluation, which we will perform qualita-
tively and quantitatively in future works , but gives an idea
of the potentiality of the system.

ECSSE for Giovanni Tummarello

In case of researcher “Giovanni Tummarello”, 14 sources are
presented. Interestingly, some of these sources are not RDF
native. For example, we can spot among the results Tum-
marello’s public Facebook profile, which provides a micro-
format adding one more picture to the mash up, along with
that provided by other sources such as, for example, the one
coming from the DERI institute team page7. From the same
source come other useful bit of information such as his work
phone number, some of the publications and related projects
etc.

A number of results presents the OKKAM logo next to them
as they have been obtained by querying the OKKAM service
for Tummarello’s identifier and then using Sindice to locate
sources mentioning it. While the result of this aggregation
is, partly, shown in Figure ??.

ECSSE for Eyal Oren

In case of researcher “Eyal Oren”, ECSSE performs well but
includes wrong source (Eyal Podell, whose daughter is called
Oren). The user is then presented with the right picture
of Eyal Oren, a list of publications coming from different
sources as in the previous case but an ”‘abstract”’ description
in which the name is different and the person is indicated to
be an actor. It is truly straightforward to spot this mistake
and, by hovering the mouse on top of the wrong description,
to spot the highlighted source where this data comes from.
Similarly, the user could have noticed that many sources
(11) had“Eyal Oren”as main label, while only one had“Eyal
Podell”. Hovering on top of the wrong label and pressing the

7http://www.deri.ie/about/team/



Infrastructure

Backend
Services

Frontend/UI

OKKAM
Service

Label Servlet

Ping 
Manager

Sindice Index Sindice Page Repository
(HBase)

Fetcher

any23 Parsers

Web

In-browser UI (Javascript)Server-side UI 
(Ruby on Rails)

ECSSE

Entity Profile Servlet

Figure 1: Implementation architecture of ECSSE

X button next to the datasource that becomes highlighted
is all that it takes to clean the information profile of all the
bits of information from that source.

In this case the wrong data source could have been avoided
by a better entity matching algorithm. This query, and the
consequent workflow, are interesting however as they make
clear that the visual inspection of data, even in its mashed
up form, can be effective and efficient at spotting wrong data
sources.

ECSSE for Trento

Querying for the Italian city “Trento” ecsse doesn’t return
many hits mostly becouse a limited number of semantic data
sources are available. We do see, however, data from DBPe-
dia, Geonames, and data coming from several people profile
where trento is mentioned as home town.

Possibly the most interesting aspect of this query, however,
is how multiple sources that describe formally different en-
tities can be put together in the mash up, resulting in a
practically useful unified profile. As an example, the city of
Trento is Disjoint from the entity “province of Trento”, e.g.
in wikipedia. Yet using the two dbpedia entries at the same
time in ECSSE (which is suggested by the set of sources au-
tomatically returns) yields to results which are meaningful
to a human user. For example the final entity profile about
trento would contain also an overall map of Italy with the
trento province highlighted and the name of many neigh-
boring towns (these pieces of info coming from the province
source), which in certain context can be considered relevant
pieces of information for the Trento entity.

5. DISCUSSION AND CONCLUSIONS

While ECSSE is by no mean the first data aggregator for
the Semantic Web, its contribution is to show that exciting
possibilities lie in an holistic approach for data discovery and
consolidation.

In ECSSE, elements such as large scale semantic web in-
dexing, logic reasoning, data aggregation heuristics, ad hoc
ontology consolidation and, last but not least, user inter-
action and refinement, all play together to provide entity
descriptions which become live, embeddable data mash ups.

As a result, preliminary results indicate that ECSSE man-
ages to work surprisingly well, finding and aggregating dif-
ferent sources in a useful way. A query for the name of active
semantic web researchers often finds publications from many
sites, pictures, social networking and contact info and relate
projects.

When ECSSE Automatic selection fails, the user can in-
tuitively recognize this by spotting, for example, a wrong
entity type or wrong data statements or by seeing that mul-
tiple sources confirm one statement while others come from
only one source. When this happens, the user can intuitively
eliminate the wrong datasource. Similarly, the possibility of
adding new datasources and considering two otherwise sep-
arated entities as one is intuitive and practically useful.

The way by which the user can quickly adapt the mash up
possibly for his/her intended target goal inspires the general
thought that a little semantic might in fact go a long way, at
least in making it easy for a human to do the last step (and
validate, by accepting the final list of sources “crystallized”
in the permalink).

As a result, we believe that ECSSE style embeddable mash
ups could be effective at providing incentives for for pub-



Figure 2: ECSSE Screenshot for the query “Giovanni Tummarello”

lishing Semantic Web data: data elements from any web
source could potentially be shown on any web page, possi-
bly rewarding the data provider with back link and branding
opportunity.

Similarly, user themselves who would use ECSSE mash ups,
e.g. to display CV like information on one’s homepage,
would have a reason to ask for the creation of more seman-
tic data, e.g. by a conference web site about a published
paper.

6. ACKNOWLEDGMENTS
This work was partially supported by the FP7 EU Large-
scale Integrating Project OKKAM - Enabling a Web of En-
tities (contract no. ICT-215032). For more details, visit
http://www.okkam.org/.

7. REFERENCES
[1] B. Adida, M. Birbeck, S. McCarron, and

S. Pemberton. Rdfa in xhtml: Syntax and processing.
Technical Report http://www.w3.org/TR/2008/REC-
rdfa-syntax-20081014, W3C, October
2008.

[2] R. Cyganiak, H. Stenzhorn, R. Delbru, S. Decker1,
and G. Tummarello. Semantic sitemaps: Efficient and
flexible access to datasets on the semantic web. In
Proceedings of the European Semantic Web
Conference, 2008.

[3] R. Delbru, A. Polleres, S. Decker, and G. Tummarello.
Context dependent reasoning for semantic documents

in sindice. In In Proceedings of the 4th International
Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS), 2008.

[4] A. Harth, A. Hogan, R. Delbru, J. Umbrich,
S. O’Riain, and S. Decker. Swse: Answers before links!
In Semantic Web Challenge, ISWC, pages –1–1, 2007.

[5] M. Hausenblas, Halb, Raimond, and T. Heath. What
is the size of the semantic web? In I-Semantics 2008:
International Conference on Semantic Systems, 2008,
2008.

[6] A. Hogan, A. Harth, and S. Decker. Performing object
consolidation on the semantic web data graph. In
Proceedings of 1st I3: Identity, Identifiers,
Identification Workshop, pages –1–1. I3, 2007.

[7] T. B. Lee, Y. Chen, L. Chilton, D. Connolly,
R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analyzing linked data on the
semantic web. In In Procedings of the 3rd
International Semantic Web User Interaction
Workshop (SWUI06, page 06, 2006.

[8] P. Mika and G. Tummarello. Web semantics in the
clouds. Intelligent Systems, IEEE, 23(5):82–87, 2008.

[9] B. B. Paolo Bouquet, Heiko Stoermer. An entity name
system (ens) for the semantic web. In Proceedings of
the European Semantic Web Conference, 2008.

[10] G. Tummarello, R. Delbru, and E. Oren. Sindice.com:
Weaving the open linked data. pages 552–565. 2008.


