
P2P Concept Search: Some Preliminary Results ∗

Fausto Giunchiglia
Department of Information

Engineering
and Computer Science

University of Trento, Italy
fausto@disi.unitn.it

Uladzimir Kharkevich
Department of Information

Engineering
and Computer Science

University of Trento, Italy
kharkevi@disi.unitn.it

S.R.H Noori
Department of Information

Engineering
and Computer Science

University of Trento, Italy
noori@disi.unitn.it

ABSTRACT
Concept Search extends syntactic search, i.e., search based
on the computation of string similarity between words, with
semantic search, i.e., search based on the computation of
semantic relations between complex concepts. It allows us
to deal with ambiguity of natural language. P2P Concept
Search extends Concept Search by allowing distributed se-
mantic search over structured P2P network. The key idea is
to exploit distributed background knowledge and indices.

1. INTRODUCTION
Concept Search (CSearch) [1] extends syntactic search with
semantics. The main idea is to keep the same machinery
which has made syntactic search so successful, but to mod-
ify it so that, whenever possible, syntactic search is sub-
stituted with semantic search, thus improving the system
performance. As a special case, when no semantic informa-
tion is available, CSearch reduces to syntactic search, i.e.,
the results produced by CSearch and syntactic search are
the same. In this paper, we propose an approach called P2P
Concept Search which extends CSearch allowing semantic
search on top of distributed hash table (DHT) [2].

2. P2P CONCEPT SEARCH
P2P Concept Search extends CSearch in several dimensions.
First, we extend the reasoning with respect to a single back-
ground knowledge (BK) T to the reasoning with respect to
the BK TP2P which is distributed among all the peers in the
network. Second, we extend the centralized inverted index
(II) to distributed index build on top of DHT.

CSearch
Knowledge(T→TP2P),Index(II→DHT)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P2P CSearch

2.1 Distributed Background Knowledge
To access the background knowledge T , stored on a single
peer, CSearch uses the following three methods:

∗A long version of this paper is available at
http://eprints.biblio.unitn.it/archive/00001585/

getConcepts(W) returns a set of all the possible mean-
ings (atomic concepts A) for word W. For example, get-
Concepts(canine) → {canine-1 (’conical tooth’), canine-2
(’mammal with long muzzles’)}. Note that in this example,
atomic concepts are represented as lemma-sn, where lemma
is the lemma of the word, and sn is the sense number in BK.

getChildren(A) returns a set of all the more specific atomic
concepts which are directly connected to the given atomic
concept A in T . For example, getChildren(carnivore-1) →
{canine-2, feline-1}.

getParents(A) returns a set of all the more general atomic
concepts which are directly connected to the atomic concept
A in T . For example, getParents(dog-1) → {canine-2}.

In order to provide access to background knowledge TP2P

distributed over all the peers in the P2P network, we cre-
ate distributed background knowledge DBK. In DBK, each
atomic concept A is represented as a 3-tuple: A = 〈AID,
POS, GLOSS〉, where AID is a unique concept ID; POS is a
part of speech; and GLOSS is a natural language description
of A. In the rest of the paper, for the sake of presentation,
instead of complete representation 〈AID, POS, GLOSS〉 we
use just lemma-sn. DBK is created on top of a DHT. Atomic
concepts are indexed by words using the DHT ’put’ oper-
ation, e.g., put(canine, {canine-1, canine-2}). Moreover,
every atomic concept is also indexed by related atomic con-
cepts together with the corresponding relations (’v’ or ’w’).
We use a modification of the DHT ’put’ operation put(A,
B, Rel), which stores atomic concept B with relation Rel on
the peer responsible for (a hash of) atomic concept A, e.g.,
put(canine-2, dog-1, ’v’), put(canine-2, carnivore-1, ’w’).

After DBK has been created, getConcepts(W) can be im-
plemented by using the DHT ’get’ operation, i.e., getCon-
cepts(W) = get(W). Both methods getChildren(A) and get-
Parents(A) are implemented by using a modified DHT ’get’
operation get(A, Rel), i.e., getChildren(A) = get(W, ’v’)
and getParents(A) = get(W, ’w’). The operation get(A,
Rel) finds a peer responsible for concept A and retrieve only
those atomic concepts B which are in relation Rel with A.

2.2 Indexing and Retrieval
In CSearch, we can search for documents describing complex
concepts which are semantically related to complex concepts
in the user query. We assume that, when a user is searching
for a concept, she is also interested in more specific concepts.

Formally a query answer QA(Cq, T) is defined as follows:

QA(Cq, T) = {d | ∃Cd ∈ d, s.t. T |= Cd v Cq} (1)

where Cq is a complex query concept extracted from the
query q, Cd is a document complex concept extracted from
the document d, and T is a terminological knowledge base
(i.e., the BK) which is used in order to check if Cd v Cq.

The query answer defined in Equation 1, can be extended
to the case of distributed search by taking into account that
the document collection DP2P is equivalent to the union
of all the documents stored in the network and also that
background knowledge TP2P is distributed among peers.

QA(Cq,TP2P)={d ∈ DP2P |∃Cd∈d, s.t. TP2P |=CdvCq} (2)

In P2P CSearch, complex concepts are computed in the same
way as in CSearch (for more details see [1]). The only dif-
ference is that now if an atomic concept is not found in
the local background knowledge T , then TP2P is queried in-
stead. After complex concepts are computed, the indexing
of documents is performed as follows. Every peer computes
a set of atomic concepts A which appear in the representa-
tions of peer’s documents. For every atomic concept A, the
peer computes a set of documents d which contain A. For
every pair 〈A, d〉, the peer computes a set S(d, A) of all the
complex document concepts Cd in d, which contain A.

S(d, A) = {Cd∈d | A∈Cd} (3)

For every A, the peer sends document summaries corre-
sponding to A, i.e., pairs 〈d, S(d, A)〉, to a peer pA respon-
sible for A in DBK. The peer pA indexes these summaries
using the local CSearch.

The query answer, defined in Equation 2, is computed by
using a recursive algorithm described below. The algorithm
takes as input complex query concept Cq and computes as
output a query answer QA in five macro steps:

Step 1 A peer pI initiates the query process for complex
query concept Cq and initialize the query answer QA.

Step 2 For every conjunctive component uAq in Cq, pI se-
lects concept A in uAq with the smallest number of
more specific atomic concepts. For every selected A,
Cq is propagated to the peer pA responsible for A.

Step 3 pA receives the query concept Cq and locally (by
using CSearch) computes a set of documents which be-
long to the query answer. The results are sent directly
to pI . On receiving new results, pI merges them with
QA. An (intermediate) result is shown to the user.

Step 4 pA computes a set Cms of all more specific atomic
concepts B which are directly connected to the given
atomic concept A in TP2P . Cms is computed by query-
ing locally stored (direct) more specific concepts.

Step 5 pA propagates Cq to all the peers pB responsible for
concepts B in Cms, i.e., Step 2 is repeated on all pB .

An example of how the query answer QA(Cq,TP2P,A) is com-
puted is given in Figure 1. Peers, represented as small
circles, are organized in a DHT overlay, represented as a

MS Concepts:

canine-2 {dog-1, wolf-1}

CSearch index:

canine-2 <D4, 1, [1]>

carnivore-1 <D4, 1, [1]>

population-4 <D4, 1, [1]>

Cq = little-4 canine-2

PI
Pcanine-2

Pdog-1

Pwolf-1

MS Concepts:

wolf-1 {}

CSearch index:

wolf-1 {}

MS Concepts:

dog-1 {}

CSearch index:

dog-1 <D1, 1, [1]>

canine-2 <D1, 1, [1]>

little-4 <D1, 1, [1]>

Documents:
runsmall-4 baby-3 dog-1 D1: 21

fast-1growcanine-2 population-4 D4: 1 2 3

…

…

Figure 1: Query Answering

ring. A query consisting of a single query concept Cq =
little-4 u canine-2 is submitted to peer PI . Let us assume
that atomic concept canine-2 has smaller number of more
specific atomic concepts then concept little-4. In this case,
Cq is propagated to a peer Pcanine-2, i.e., the peer responsi-
ble for atomic concept canine-2. The query propagation is
shown as a firm line in Figure 1. Pcanine-2 searches in a lo-
cal CSearch index with Cq. No results are found. Pcanine-2
collects all the atomic concepts which are more specific then
canine-2, i.e., dog-1 and wolf -1. Query concept Cq is prop-
agated to peers Pdog-1 and Pwolf-1. Pdog-1 finds no results
while Pdog-1 finds document D1. D1 is an answer because
it contains concept small-4 u baby-3 u dog-1 which is more
specific than little-4 u canine-2. D1 is sent to PI , which
presents it to the user. The results propagation is shown as
a dash line in Figure 1. Both peers Pdog-1 and Pwolf-1 have
no more specific concepts than dog-1 and wolf -1, therefore
they do not propagate Cq to any other peers.

3. CONCLUSIONS
In this paper, we have presented an approach, called P2P
CSearch, which allows for a semantic search on top of distrib-
uted hash table (DHT). P2P CSerarch addresses the scal-
ability problem of CSerarch and the ambiguity problem of
natural language in P2P syntactic search. Future work in-
cludes the development of document relevance metrics based
on semantic similarity of query and document descriptions
and evaluating the efficiency of the proposed solution.

4. REFERENCES
[1] Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya

Zaihrayeu. Concept search. In Proc. of ESWC’09,
Lecture Notes in Computer Science. Springer, 2009.

[2] John Risson and Tim Moors. Survey of research
towards robust peer-to-peer networks: Search methods.
Computer Networks, 50:3485–3521, 2006.

