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ABSTRACT
Relevance feedback is one method for creating a ‘virtuous cycle’
- as put by Baeza-Yates - between semantics and search. Previ-
ous approaches to search have generally considered the Semantic
Web and hypertext Web search to be entirely disparate, indexing
and searching over different domains. While relevance feedback
have traditionally improved information retrieval performance, rel-
evance feedback is normally used to improve rankings of a single
data-set. Our novel approach is to use relevance feedback from hy-
pertext Web search to improve the retrieval of Semantic Web data.
We also inspect whether relevance feedback from Semantic Web
data can improve hypertext Web search results. In both cases, an
evaluation based on certain kinds of informational queries(abstract
concepts, people, and places) selected from a query log and human
judges show that relevance feedback works: relevance feedback
from hypertext Web search can improve the retrieval of Semantic
Web data, and vice versa. We evaluate our work over a wide range
of algorithms, and show it improves baseline performance onthese
queries for deployed systems as well, such as the Semantic Search
engine FALCON-S and the commercial Web search engine Yahoo!
search.

1. INTRODUCTION
There has recently been a return of interest in ‘Semantic Search.’

In particular, this seems inspired mostly by the Linked Datainitia-
tive, that has released a massive amount of structured data on the
Web from a diverse range of sources, leading to the rise of special-
ized Semantic Web search engines and more interest in the possibil-
ities of combining structured data and ad-hoc information retrieval
from traditional hypertext search. The hypothesis put forward by
Baeza-Yates is that the search for structured data - called ‘Seman-
tic Search’ - can be used to improve traditional ad-hoc information
retrieval for Web search engines [2], and that techniques from in-
formation retrieval can be used to improve structured data,particu-
larly on the Semantic Web. While this is restrictive, we willassume
from hereon that ‘Semantic Search’ refers to indexing and retriev-
ing Semantic Web data, as given by the Linked Data Web and as
done by engines like Sindice and FALCON-S, and hypertext search
refers to the indexing and retrieval of hypertext documentson the
World Wide Web as done by search engines like Google and Yahoo
search. We also assume a traditional, ad-hoc information retrieval
system for both kinds of search.

We are the first to suggest that relevance feedback may be the
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primary method for creating a ‘virtuous cycle’ between semantics
and search. Previous approaches like Microsearch and Semantic
Search engines like FALCON-S have assumed that the Semantic
Web - at least as represented by the native RDF triples in Linked
Data - and the hypertext Web search to be entirely disparate,index-
ing and searching them differently [4], although moves by Seman-
tic search engines like Sindice to index microformat and RDFa is
blurring this distinction [11]. Relevance feedback usually improves
information retrieval performance, but almost always the feedback
is used to improve rankings over a single source of data. Our novel
approach is to use relevance feedback from hypertext Web search,
of which there is a massive amount of data available, to improve
the retrieval of Semantic Web data. We focus on retrieving rele-
vant data in the first position, as one problem exhibited by Seman-
tic Web search engines like FALCON-S and even Microsearch is
the retrieval of far too much Semantic Web data, with much of it
being irrelevant. We imagine that what interests application devel-
opers the most would be selecting a small amount of high quality
Semantic Web data, which would have a high assurance of being
‘about the same thing’ as the query. This data could be automati-
cally consumed by applications like maps and calendar programs,
or displayed in some special format by the result page of the search
engine.

2. SYSTEM DESIGN
In order to deal with these problems, we will employrelevance

feedback, theuse of explicit relevance judgements from users of a
query in order to expand the query. By ‘expand the query, ’ we
mean that the usually rather short query is expanded into a much
larger query by adding words from the known relevant documents.
For example, the selection of a document by a user and their staying
on the document for some period of time is a sign of relevance.The
hypothesis of relevance feedback, as pioneered by Rocchio in the
SMART retrieval system, is that the relevant documents willdisam-
biguate and in general give a better description of the information
need of the query than the query itself [18]. This has been shown in
general to improve retrieval performance significantly, both in early
studies and in later work like relevance modelling that creates rel-
evance directly from the indexed documents rather than explicitly
waiting for the user to make a relevance judgement [8].

Semantic search engines exist, but their rankings are knownto be
sub-optimal. This is even true for hypertext search enginesto some
extent. So, our novel solution is to use selected hypertext web-
pages as relevance feedback for improving the ranking of Semantic
Web data. In our solution, we run the query against the hyper-
text Web search engine first and collect relevance judgements from



this. We then use these judgments to expand the query with highly-
weighted words from the relevant documents. The expanded query
is used to re-rank the results retrieved by a Semantic Web search
engine specializing in indexing Linked Data in RDF. We can com-
pare both Semantic Web data and hypertext data by considering
both to be ‘bags of words’. Semantic Web data can be flattened,
and URIs can be reduced to ‘words’ by the following steps:

• Reduce to last rightmost hierarchical component.

• If URI contains a fragment identifier (#), consider all charac-
ters right of the fragment the last most hierarchical compo-
nent.

• Remove non-rightmost hierarchical component.

• Tokenise on space, capitalization, and underscore.

So, the URIhttp://www.example.org/hasArchitect
would be reduced to two tokens, ‘has’ and ‘architect.’ We canalso
then run the process backwards, using selected Semantic Webdata
as relevance feedback to improve hypertext Web search. Thisis
not unfeasible, as one could consider the ‘consumption’ of Seman-
tic Web data by a program to be a judgement of relevance.

3. SELECTING QUERIES
In order to select real queries from users in order to test ourhy-

pothesis, we used the query log of a popular hypertext searchen-
gine, the Web search query log of approximately 15 million dis-
tinct queries from Microsoft Live Search. This query log contained
6,623,635 unique queries corrected for capitalisation. The main
issue in using a query log is to get rid of navigational and trans-
actional queries. A straightforward gazetteer-based and rule-based
named entity recogniser was employed to discover the names of
people and places [10], based off a list of names maintained by
the Social Security Administration and a place name database pro-
vided by the Alexandria Digital Library Project. From querylog
total of 509,659 queries were identified as either people or places
by the named-entity recogniser, and we call these queriesentity
queries. Employing WordNet to represent abstract concepts, we
chose queries recognised by WordNet that areboth a hyponym and
hypernym. This resulted in a more restricted 16,698 queriesthat
are supposed to be about abstract concept, which we callconcept
queries. In order to select a subset of informational queries for eval-
uation, we selected 100 queries identified as abstract concepts by
WordNet and then 100 queries identified as either people or places
by the named entity recogniser, for a total of 200 queries needed
for evaluation. Constraints were placed on crawled URIs, such that
at least 10 Semantic Web documents were crawled for each query,
leading to a total of 1,000 Semantic Web documents about entities
and 1,000 Semantic Web documents about concepts, for a totalof
2,000 experimental results. Then, the same experimental query log
was used to crawl the hypertext Web, resulting in a total of 1,000
web-pages about entities and 1,000 web-pages about concepts. The
web-pages were retrieved using Yahoo! Search. A random selec-
tion of ten queries from the concept queries is given in Table3 and
another random selection of ten entity queries is given in Table 3.
As one can tell, the queries about entities and concepts are spread
across quite diverse domains, ranging from entities over locations
(El Salvador) and people (both fictional such as Harry Potterand
non-fictional such as Earl May) and for concepts over a whole range
of abstraction, from sociology to ale.

1 ashville north carolina
2 harry potter
3 orlando florida
4 ellis college
5 university of phoenix
6 keith urban
7 carolina
8 el salvador
9 san antonio
10 earl may

Table 1: 10 Selected Entity Queries

131 sociology
133 clutch
134 telephone
135 ale
136 pillar
137 sequoia
138 aster
139 bedroom
140 tent
141 cinch

Table 2: 10 Selected Concept Queries

3.1 Relevance Judgements
For each of the 200 experimental queries, 10 hypertext web-

pages and 10 Semantic Web documents need to be judged for rele-
vance, leading to a total of 4,000 human judgements for relevance
in total for our entire experiment. The human judges each judged
25 queries presented in a randomized order, and were given a total
of 3 hours to test the entire sample for relevancy. No researchers
were part of the rating. The judges were each presented first with
ten hypertext web-pages and then with ten Semantic Web docu-
ments. So for each query, the judge determines relevance for20
results, first 10 web-pages and then 10 Semantic Web documents,
leading to a total of 20 judgements per query per judge. Each re-
sult therefore was judged by three judges, with a total of 30 judges
used in the entire experiment. So over a single session, the judges
gave judgements to 20 distinct results. The judges were given in-
structions and trained on 10 sample results (5 web-pages and5 Se-
mantic Web results). The human judges are forced to make binary
judgments of relevance, so each result must be either relevant or ir-
relevant to the query.In their instructions, relevance wasdefinedas
whether or not a result is about the same thing as the query, which
can be determined if accurate information about the information
need is expressed by the result.

To expand, a number of types of Web results that would ordi-
narily be considered relevant are therefore excluded. In particular,
there is a restriction that the relevant information must bepresent
in the result itself. This excludes possibly relevant information that
is accessible via outbound links, even a single link. All manner of
results that are collections of links are excluded from relevancy, in-
cluding both ‘link farms’ purposely designed to be highly ranked
by page-rank based search engines, as well as legitimate directo-
ries of high-quality links to relevant information. These hubs are
excluded precisely because the information, even if it is only a link
transversal away, is still not directly present in the retrieved result.
By this same principle, results that merely redirect to another re-
source via some method besides the standardised HTTP methods
are excluded, since a redirection can be considered a kind oflink.



They would be considered relevant only if additional information
was included in the result besides the redirection itself.

In order to aid the judges, a Web-based interface was createdto
present the queries and results to the judges. Although an inter-
face that presented the queries and the search interface in amanner
similar to search engines was created, human judges preferred an
interface that presented them the judgement results one-at-a-time,
forcing them to view a rendering of the web-page associated with
each URI originally offered by the search engine. For each hyper-
text web-page, the web-page was rendered using the Firefox Web
Browser and PageSaver Pro 2.0. For each Semantic Web docu-
ment, the result was rendered (i.e. the triples, any associated text in
the subject, and any associated Semantic Web document) by using
the open-source Disco Hyperdata Browser with Firefox.1 In both
cases, the resulting rendering of the Web representation was saved
at 469× 631 pixel resolution. The reason that the web-page was
rendered instead of a link given directly to the URI is because of
the unstable state of the Web, especially the hypertext Web.Even
caching the HTML would have risked losing much of the graphic
element of the hypertext Web. By creating ‘snapshot’ renderings,
each judge at any given time was guaranteed to be given the same
experience in the experiment and to be presented with the web-page
in its intended visual form. One side-effect of this is that web-pages
that heavily depended on non-standardised technologies orplug-ins
would not render and were thus presented as blank screen shots to
the user. The user-interface broke the evaluation into two steps:

• Judging relevant results from a hypertext Web search: the
judge was given the search terms created by an actual human
user for a query and an example relevant web-page whose
full snapshot could be viewed by clicking on it. A full ren-
dering of the retrieved web-page was presented to the user
with its title and summary (as produced by Yahoo! Search)
easily viewed by the judge as in Figure 1. The judge clicked
on the check-box if the result is considered relevant. Other-
wise, the web-page was by default recorded as not relevant.
The web-page results were presented to the judge one at a
time, ten times for each query.

• Judging relevant results from a Semantic Web search: next,
the judge assessed all the Semantic Web results for relevancy.
These results were retrieved from the Semantic Web using
the same interface displayed to the judge in Step 1 as shown
in Figure 2, and a title was displayed by retrieving any lit-
eral values fromrdfs:label properties and a summary
by retrieving any literal values fromrdfs:comment val-
ues. Using the same interface as in Step 1, the judge had to
determine whether or not the Semantic Web results are rele-
vant.

After the ratings were completed, Fliess’sκ correct statistic was
taken in-order to test the reliability of inter-judge agreement over
the relevancy ranking [6]. Simple percentage agreement is not suf-
ficient, as it does not take into account the likelihood of purely co-
incidental agreement by the judges. Fleiss’sκ both corrects for
chance agreement and can be used for more than two judges [6].The
null hypothesis is that the judges cannot distinguish relevant from
irrelevant results, and so are judging results randomly. Overall, for
both relevance judgements over Semantic Web results and web-
page results,κ = 0.5724 (p < .05, 95% Confidence interval
[0.5678, 0.5771]), indicating the rejection of the null hypothesis
1The Disco Hyperdata Browser, a browser that ren-
ders Semantic Web data to HTML, is available at
http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/.

Figure 1: The interface used to judge web-page results for relevancy.

Figure 2: The interface used to judge Semantic Web results for rele-
vancy

and moderate agreement. For Web-page results only,κ = 0.5216
(p < .05, 95% Confidence interval[.5150, 0.5282]), also indicat-
ing the rejection of the null hypothesis and moderate agreement.
Lastly, for only Semantic Web results,κ = 0.5925 (p < .05, 95%
Confidence interval[0.5859, 0.5991]), is also indicating the null
hypothesis is to be rejected and moderate agreement. So, in all
cases there is ‘moderate’ agreement, which is sufficient given the
general difficulty of producing perfectly reliable relevancy judg-
ments. Interestingly enough, the difference inκ between the web-
page results and Semantic Web results show that the judges were
actuallyslightly more reliable in their relevancy judgements of in-
formation from the Semantic Web rather than the hypertext Web.
This is likely due to the more widely varying nature of the hypertext
results, as compared to the more consistent informational nature of
Semantic Web results.

Were judges more reliable with entities or concepts? Recalcu-
lating theκ for all results based on entity queries,κ = 0.5989
(p < .05, 95% Confidence interval[0.5923, 0.6055]), while for all
results based on concept queries wasκ = 0.5447 (p < .05, 95%
Confidence interval[0.5381, 0.5512]). So it appears that judges are
slightly more reliable discovering information about entities rather
than concepts, backing the claim made by Hayes et al. that there is
more agreement in general about ‘less’ abstract things likepeople
and places rather than abstract concepts [7]. However, agreement is
still very similar and moderate for both information about entities
and concepts.

For the queries, much of the data is summarised in Table 3.1.
‘Hypertext’ means that the result was taken only over the hypertext
Web results and ‘Semantic Web’ indicates the same for the Seman-
tic Web results. The percentages for resolved and unresolved for
‘hypertext’ and ‘Semantic Web’ were taken over the hypertext and
Semantic Web relevancy corpora in order to allow direct compari-
son. The percentages for ‘Top Relevant’ and ‘Non-Top Relevant’
were computed as percentages over all relevant queries, andso ex-



Results: Hypertext Semantic Web
Resolved: 197 (98%) 132 (66%)
Unresolved: 3 (2%) 68 (34%)
Top Relevant: 121 (61%) 76 (58%)
Non-Top Relevant: 76 (39%) 56 (42%)

Table 3: Results of Hypertext and Semantic Web Relevance
Judgements

cludes unresolved queries. For ease of reference, a pie-chart for the
hypertext relevancy is given in Figure 3 and for the SemanticWeb
relevancy in Figure 4.

Non−Top Relevant

Top Relevant

Unresolved

Figure 3: Results of Querying the Hypertext Web.

Top Relevant

Non−Top Relevant

Unresolved

Figure 4: Results of Querying the Semantic Web.

Resolved queries arequeries that return at least one relevant re-
sult in the top 10 results, whileunresolved arequeries that return
no relevant queries in the top 10 results. Over both hypertext and
Semantic search, there were 71 (18%) unresolved queries that did
not have any results. For the hypertext Web search, only 3 (2%)
queries were unresolved, while 68 (34%) of the queries were unre-
solved for the Semantic Web. This simply means that the hypertext
search engines almost always returned at least one relevantresults
in the top 10, but that for the Semantic Web almost a third of all
queries did not return any relevant result. This only means there
is much information that does not yet have a relevant form on the
Semantic Web, unless it is hidden by poor-ranking by FALCON-S.

Another question is how many queries had a relevant result as
their top result? In general, 197 queries (50%) had top-ranked rel-
evant results over both Semantic Web and hypertext search. How-
ever, while the hypertext Web search had 121 (61%) top-ranked
relevant results, for the Semantic Web there was only had 76 (58%)
top-ranked results. A lack of top-ranked results becomes particu-
larly acute on the Semantic Web for queries about concepts. What

is more compelling for relevance feedback is the number of rele-
vant results that werenot the top-ranked result. Again over both
searches, there were 132 (33.0%) queries where a relevant result
wasnot in the top position of the returned results. For the hypertext
Web there were 76 (39%) queries with a non-top relevant result,
while for the Semantic Web, there were 56 (42%) of all queries
that had a non-top relevant result. So, while queries on the Se-
mantic Web are more likely to turn up no relevant results, when a
relevant query is returned, both for the hypertext Web and the Se-
mantic Web it is quite likely that a relevant result will be inthe
non-top position of the result list.

4. INFORMATION RETRIEVAL FRAMEWORK
In our experiment we tested two general kinds of informationre-

trieval frameworks: vector-space models and language models. In
thevector-space model, where document models are considered to
be vectors of terms (usually calledwords as they are usually, al-
though not exclusively, from natural language) where the weighing
function and query expansion has no principled basis besides em-
pirical results, although ranking is done via cosine distance, a nat-
ural comparison metric between vectors. The key to success with
vector-space models tends to be the tuning of the parametersof
their weighing function. However, while fine-turning theseparam-
eters has led to much practical success in information retrieval, the
parameters have little formally-proven basis but are instead based
on common-sense heuristics like document length and average doc-
ument length.

Another approach, thelanguage model approach, takes a for-
mally principled generative probabilistic approach to determining
the ranking and weighting function. Instead of each document be-
ing considered some parametrised word-frequency vector, the doc-
uments are each considered to be samples from an underlying prob-
abilistic language modelMD, of which D itself is only a single
observation. In this manner, the queryQ can itself also be consid-
ered a sample from a language model. In early language modelling
efforts [13], the probability that the language model of a document
would generate the query was the ranking function of the docu-
ment. A more sophisticated approach to language model considers
that the query was a sample from an underlyingrelevance model
of unknown relevant documents, but that the model could be es-
timated by computing the co-occurrence of the query terms with
every term in the vocabulary. In this way, the query itself was just
considered a limited sample, so the it is automatically expanded
before the search has even begun by re-sampling the underlying
relevance model.

In detail, we will now inspect the various weighting and ranking
functions of the two frameworks. A number of different options
for the parameters of each weighting function, and the appropriate
ranking function, will be considered.

4.1 Vector Space Models

4.1.1 Representation
Each vector-space model had as a parameter the factorm, the

maximumwindow size, which is the number of words, ranked in
descending order of frequency, that are used in the documentmod-
els (D), the representation of a single document. Words with a zero
frequency are excluded from the document model, and the query is
given byQ.

4.1.2 Weighting Function: BM25
The current state of the art weighting function for vector-space

models isBM25, one of a family of weighting functions explored



by Roberson [15] and a descendant of thetf.idf weighting scheme
pioneered by Spärck Jones and Robertson [14]. In particular, we
will use a version ofBM25 with the slight performance-enhancing
modifications used in the InQuery system [1]. This weightingscheme
has been carefully optimized and routinely shows excellentperfor-
mance in TREC [5] competitions. The InQuery BM25 function
assigns the following weight to a wordq occurring in a document
D:

Dq =
n(q, D)

n(q, D) + 0.5 + 1.5 dl
avg(dl)

log (0.5 + N/df(q))

log (1.0 + log N)
(1)

TheBM25 weighting function is summed for every termq ∈ Q.
For everyq, BM25 calculates the number of occurrences of a term
q from the query in the documentD, n(q, D), and then weighs this
by the length of documentdl of documentD in comparison to the
average document lengthavg(dl). This is in essence the equivalent
of term frequency intf.idf . TheBM25 weighting function then
takes into account the total number of documentsN and the docu-
ment frequenciesdf(q) of the query term. This second component
is theidf component of classicaltf.idf .

4.1.3 Comparison Function: Cosine and InQuery
The vector-space models have an intuitive comparison function

in the form of cosine measurements. In particular, the cosine com-
parison function is given by Equation 2, for a documentD with
queryQ, where bothD andQ containi words, iterating over alli
words.

cos(D, Q) =
D · Q

|D||Q|
=

P

q
QqDq

q

P

q
Q2

q

q

P

q
D2

q

(2)

The only question is whether or not the vectors should be nor-
malised to have a Euclidean weight of 1, and whether or not the
query terms themselves should be weighted. We investigate both
options. The classical cosine is given ascosine, which normalises
the vector lengths and then proceeds to weight both the queryterms
and the vector terms byBM25. The version without normalisa-
tion is calledinquery after theInQuery system [1]. Theinquery
comparison function is the same ascosine except without normal-
isation each word in the query can be considered to have uniform
weighing.

4.1.4 Relevance: Okapi, LCA, and Ponte
There are quite a few options on how to expand queries in a

vector-space model. One popular and straightforward method, first
proposed byRocchio [18] and at one point used by theOkapi sys-
tem [16], is to expand the query by taking the average of thej total
relevant document modelsR, with a documentD ∈ R, and then
simply replacing the queryQ with the topm words from averaged
relevant document models. This process is given by Equation3 and
is referred to asokapi:

Okapi(Q) =
1

j

X

D∈R

D (3)

Another state of the art query expansion technique is known as
Local Content Analysis (lca) [19]. Given a queryQ with query
termsq1...qk and a set of resultsD and a set of relevant documents
R, thenLCA ranks everyw ∈ V by Equation 4, wheren is the
size of the relevant documentsR, idfw is the inverse document
frequency of wordw, andDq andDw are the frequencies of the

wordsw andq ∈ Q in relevant documentD ∈ R.

lca(w; Q) =
Y

q∈Q

 

0.1 +
1/ log n

1/idfw

log
X

r∈R

DqDw

!idfq

(4)

After each wordw ∈ V has been ranked bylca, then the query
given by LCA is just the topm words given bylca. Local Con-
tent Analysis attempts to select words from relevant documents to
expand the query that have limited ambiguity, and so it does ex-
tra processing compared to theokapi method that simply averages
the most frequent words in the relevant documents. In comparison,
Local Content Analysis performs an operation similar in effect to
tf.idf on the possibly relevant terms, and so attempting by virtue
of weighing to select only wordsw that both appear frequently with
terms in queryq but have a low overall frequency (idfw) in the re-
sult set (idfw).

The final method we will use is the heuristic method developed
by Ponte [12], which we callponte. Like lca, ponte ranks each
wordw ∈ V , but it does so differently. Instead of taking a heuristic-
approach likeOkapi or LCA, it takes a probabilistic approach.
Given a set of relevant documentsR ∈ D, Ponte’s approach es-
timates the probability of each wordw ∈ V being in the relevant
document,P (w|D), divided by its overall probability of the word
to occur in the resultsP (w). Then thePonte approach gives each
w ∈ V a score as given in Equation 5 and then expands the query
by using them most relevant words as ranked by their scores.

Ponte(w; R) =
X

D∈R

log

„

P (w|D)

P (w)

«

(5)

4.2 Language Models

4.2.1 Representation
Language modelling frameworks in information retrieval repre-

sent each document as a language model given by an underlying
multinomial probability distribution of word occurrences. Thus,
for each wordw ∈ V there is a value that gives how likely an
observation of wordw is givenD, i.e. P (w|uD(v)) [13]. The doc-
ument model distributionuD(v) is then estimated using the param-
eterλD, which allows a linear interpolation that takes into account
the background probability of observingw in the entire collection
C. This is given in Equation 6.

uD(w) = λD
n(w, D)

|D|
+ (1 − λD)

n(w, C)
P

v∈V
n(v, C)

(6)

The parameterλD just takes into account the relative likelihood
of the word as observed in the given documentD compared to the
word given the entire collection of documentsC. |D| is the total
number of words in documentD, while n(w, D) is the frequency
of word d in documentD. Further,n(w, C) is the frequency of
occurrence of the wordw in the entire collectionC divided by the
occurrence of all wordsv in collectionC.

4.2.2 Language Modeling Baseline
When no relevance judgments are available, the language model-

ing approach ranks documentsD by the probability that the query
Q could be observed during repeated random sampling from the
distributionuD(·). The typical sampling process assumes that words
are drawn independently, with replacement, leading to the follow-
ing retrieval score being assigned to documentD:

P (Q|D) =
Y

qinQ

uD(Q) (7)



The ranking function in equation (7) is calledquery-likelihood
ranking and is used as a baseline for our language-modeling exper-
iments.

4.2.3 Language Models and Relevance Feedback
The classical language-modeling approach to IR does not pro-

vide a natural mechanism to perform relevance feedback. How-
ever, a popular extension of the approach involves estimating a
relevance-based modeluR in addition to the document-based model
uD , and comparing the resulting language models using information-
theoretic measures. Estimation ofuD has been described above,
so this section will describe two ways of estimating the relevance
modeluR, and a way of measuring distance betweenuQ anduD

for the purposes of document ranking.
Let R = r1. . .rk be the set ofk relevant documents, identified

during the feedback process. One way of constructing a language
model ofR is to average the document models of each document
in the set:

uR,avg(w) =
1

k

k
X

i=1

uri
(w) =

1

k

k
X

i=1

n(w, ri)

|ri|
(8)

Heren(w, ri) is the number of times the wordw occurs in thei′th
relevant document, and|ri| is the length of that document. Another
way to estimate the same distribution would be toconcatenate all
relevant documents into one long string of text, and count word
frequencies in that string:

uR,con(w) =

Pk

i=1 n(w, ri)
Pk

i=1 |ri|
(9)

Here the numerator
Pk

i=1 n(w, ri) represents the total number of
times the wordw occurs in the concatenated string, and the de-
nominator is the length of the concatenated string. The difference
between equations (8) and (9) is that the former treats everydoc-
ument equally, regardless of its length, whereas the latterfavors
longer documents (they are not individually penalized by dividing
their contributing frequenciesn(w, ri) by their length|ri|).

4.2.4 Comparison Function: Cross Entropy
We now want to re-compute the retrieval score of documentD

based on the estimated language model of the relevant classuR.
What is needed is a principled way of comparing a relevance model
uR against a document language modeluD . One way of compar-
ing probability that has shown the best performance in empirical
information retrieval research [9] is cross entropy. Intuitively, cross
entropy is an information-theoretic measure that measuresthe aver-
age number of bits needed to identify the probability of distribution
p being generated ifp was encoded using given probability distri-
bution p rather thanq itself. For the discrete case this is defined
as:

H(p, q) = −
X

x

p(x)log(q(x)) (10)

If one considers that theuR = p and that document model dis-
tribution uD = q, then the two models can be compared directly
using cross-entropy, as shown in Equation 11. This use of cross
entropy also fulfills the Probability Ranking Principle andso is di-
rectly comparable to vector-space ranking via cosine [9].

−H(uR||uD) =
X

w∈V

uR(w) log uD(w) (11)

Note that either theaveraged relevance modeluR,avg or thecon-
catenated relevance modeluR,con can be used in equation (11).
We refer to the former asrm and to the latter astf in the following
experiments.

5. FEEDBACK EVALUATION

5.1 Hypertext to Semantic Web Feedback

5.1.1 Results
A number of parameters were tested for our system to deter-

mine which parameters provide the best results. For each of the
parameter combinations, we compared the use of relevance feed-
back to a baseline system which did not use relevance feedback,
yet used the same parameters with the exception of any relevance
feedback-related parameters. The baseline system withoutfeed-
back can also be considered an unsupervised algorithms, while
the relevance-feedback systems supervised algorithm. Note that
in machine-learning terms, the hypertext web-pagesR can be con-
sidered to be training data, while the Semantic Web dataD can be
considered to be test data. The hypertext web-pages and Semantic
Web data are disjoint sets (D ∩ R = ∅). For evaluation we used
mean average precision, with the standard Wilcoxian sign-test and
mean average precision.

For vector-space models, theokapi, lca, andponte relevance
weighting functions were all run, each trying both theinquery
and cosine comparison functions. The primary parameter to be
varied was thewindow size (m) top frequency non-zero words to
be used in the vectors for both the query model and the docu-
ment models. Baselines for bothcosine and inquery were run
with no relevance feedback. The parameterm was varied over
5, 10, 20, 50, 100, 300, 1000, 3000. The results in terms of mean
average precision are given in Figure 5.
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Figure 5: Average Precision Scores for Vector-space Model Parame-
ters: Relevance Feedback From Hypertext to Semantic Web

Interestingly enough,okapi relevance feedback weighting with
a window size of 100 and aninquery comparison was the best,
with a mean average precision of 0.8914 (p < .05). It outper-
formed the baseline ofinquery, which has an average precision of
0.5595 (p < .05). Overall,lca did not perform as well, often per-
forming below the baseline, although its performance increased as
the window size increased, reaching an average precision of0.6262
with m = 3000 (p < .05). However, given that a window-size of
10,000 covered most documents, increasing the window size will
not likely result in better performance fromlca. Theponte rele-
vance feedback performed very well, reaching a maximum MAP



0.8756 with a window-size of 300 usinginquery weighing, and
so was insignificantly different frominquery (p > .05). Lastly,
both ponte andokapi experienced a significant decrease in per-
formance asm was increased, so it appears that the window sizes
of 300 and 100 are indeed optimal. Also, as regards comparing
baselines,inquery outperformedcosine (p < .05).

For language models, both averaged relevance modelsrm and
concatenated relevance modelstf were investigated, with the pri-
mary pattern beingm, the number of non-zero probability words
used in the relevance model. The parameterm was varied between
100,300,1000,3000,and 10000. Remember that the query model is
the relevance model for the language model-based frameworks. As
is best practice in relevance modelling, the relevance models were
not smoothed, but a number of different smoothing parameters forǫ
were investigated for the cross entropy comparison function, rang-
ing from ǫ between 0.01,0.10,0.20, 0.50,0.80,0.90, and 0.99. The
results are given in Figure 6.

Figure 6: Average Precision Scores for Language Model Parameters:
Relevance Feedback From Hypertext to Semantic Web

The highest performing language model wastf with a cross-
entropyǫ of .2 and am of 10,000, which produced an average pre-
cision of 0.8611, which was significantly higher than the language
model baseline of 0.5043 (p < .05) using again anm of 10,000 for
document models and with a cross entropyǫ of .99). Rather inter-
estingly,tf always outperformedrm, andrm’s best performance
had a MAP of 0.7223 using anǫ of .1 and am of 10,000.

5.1.2 Discussion
Of all parameter combinations, theokapi relevance feedback

works best in combination with a moderate sized word-window
(m = 100) and with theinquery weighting scheme. It should
be noted its performance is identical from a statistical standpoint
with ponte, but as both relevance feedback components are sim-
ilar and both useinquery comparison andBM25 weighing, the
algorithms are very similar. One observation is in order; note that
for vector models,inquery always outperformedcosine, and that
for language modelstf always outperformedrm. Despite the dif-
fering frameworks of vector-space models and language models,
both cosine andrm share the common characteristic of normali-
sation. In essence, bothcosine andrm normalise by documents:

cosine normalises term frequencies per vector before comparing
vectors, whilerm constructs a relevance model on a per-relevant
document basis before creating the average relevance model. In
contrast,inquery and tf do not normalise:inquery compares
weighted term frequencies, andtf constructs a relevance model by
combining all the relevance documents and then creating therele-
vance model from theraw pool of all relevant document models.

Thus it appears the answer is that any kind of normalisation by
length of the document hurts performance. The reason for this is
likely because the text automatically extracted from hypertext doc-
uments is ‘messy,’ being of low quality and bursty, with highly
varying document lengths. As observed earlier [11], the amount
of triples in Semantic Web documents follow a power-law, so there
are wildly varying document lengths of both the relevance model
and the document models. Due to these factors, it is unwise to
normalise the models, as that will almost certainly dampen the ef-
fect of valuable features like crucial keywords (such as ‘Paris’ and
‘tourist’ in disambiguating variouseiffel-related queries). Then
the reasonBM25-based vector models in particular perform so
well is that they are able to effectively keep track of both term fre-
quency and inverse term frequency accurately. Unlike most other
algorithms,BM25 provides a slight amount of rather unprincipled
non-linearity in the importance of the various variables [17]. This
is important, as it provides a way of extenuating the effect of one
particular parameter (in our case, likely term frequency and inverse
term frequency) and then massively lowering the power of another
parameter (in our case, likely the document length).

5.2 Semantic Web to Hypertext Feedback
In this section, we assume that the user or agent program has

somehow accessed or otherwise examined the associated descrip-
tions from the Semantic Web URIs, and these associated descrip-
tions then form a relevant document model that is compared tohy-
pertext documents in order to produce rankings. In this way,the
feedback cycle has been reversed.

5.2.1 Results

Figure 7: Average Precision Scores for Vector-space Model Parame-
ters: Relevance Feedback From Semantic Web to Hypertext

The results for using Semantic Web documents as relevance feed-



back for hypertext Web search are surprisingly promising. The
same parameters as explored in Section 5.1.1 were again explored.
The average precision results for vector-space models are given in
Figure 7. The general trends from Section 5.1.1 were similarin this
new data-set. In particular,okapi with a window size of 100 and
theinquery comparison function again performed best with an av-
erage precision of 0.6423 (p < .05). Alsoponte performed almost
the same, again an insignificant difference fromokapi, producing
with the same window size of 100 an average precision of 0.6131
(p > .05) . Utilising again a large window of 3,000,lca had an
average precision of0.5359 (p < .05). Similarly, inquery consis-
tently outperformedcosine in comparison, withinquery having a
baseline average precision of 0.4643 (p < .05) in comparison with
the average precision ofcosine being 0.3470 (p < .05).

The results for language modelling were similar to the results in
Section 5.1.1 and are given in Figure 8, although a few differences
are worth comment. The best performing language model wastf
with a m of 10,000 and a cross entropy smoothing factorǫ to .5,
which produced an average precision of .6549 (p < .05). In con-
trast, the best-performingrm, with am of 3,000 andǫ=.5, only had
an average precision of 0.4858 (p < .05). Thetf relevance models
consistently performed better thanrm relevance models (p < .05).
The baseline for language modelling was also fairly poor with an
average performance of 0.4284 (p < .05). This was the ‘best’ base-
line using again anm of 10,000 for document models and cross
entropy smoothingǫ of .99. The general trends from the previous
experiment then held, except the smoothing factor was more mod-
erate and the difference betweentf andrm was even more pro-
nounced. However, the primary difference worth noting was that
best performingtf language model outperformed, if barely, the
okapi (BM25 and inquery) vector model by a relatively small
but still significant margin of .0126. Statistically, the difference
was significant (p < .05).

Figure 8: Average Precision Scores for Language Model Parameters:
Relevance Feedback From Hypertext to Semantic Web

5.2.2 Discussion
Why is tf relevance modelling better thanBM25 andinquery

vector-space models in using relevance feedback from the Seman-
tic Web to hypertext? Rather shockingly, as the Semantic Web
data is mostly manually high-quality curated data from sources
like DBPedia, the actual natural language fragments on the Se-
mantic Web, found for example in Wikipedia abstracts, are much
better samples of natural language than the natural language sam-
ples found in hypertext. Furthermore, the distribution of ‘natural’

language terms extracted from RDF terms (such as ‘sub class of’
from rdfs:subClassOf), while often irregular, will either be
repeated very heavily or fall into the sparse long tail. These two
conditions can then be dealt with by the generativetf relevance
models, since the long tail of automatically generated words from
RDF will blend into the long tail of natural language terms, and
the probabilistic model can properly ‘dampen’ without resorting
to heuristic-driven non-linearities. Therefore, it is on some level
not surprising that even hypertext Web search results can beim-
proved by Semantic Web data, because used in combination with
the right relevance feedback parameters, in essence the hypertext
search engine is being ‘seeded’ with high-quality structured and
accurate descriptions of the referent of the query to be usedfor
query expansion.

5.3 Relevance Feedback against Deployed Sys-
tems

One area we have not explored is how our system performs against
systems that are actually deployed, as our previous work hasall
evaluated against systems and parameters we created specifically
for experimental evaluation. For example, our performancein Sec-
tion 5.1.1 and Section 5.2.1 was only compared to baselines that
were versions of our weighting function without a relevancefeed-
back component.

While that particular baseline is principled, the obvious needed
comparison is against actual deployed commercial or academic sys-
tems where the precise parameters deployed may not be publicly
available and so not easily simulated experimentally. The obvious
baselines to choose to test against the Semantic Web search engine,
FALCON-S, from which we derived our original Semantic Web
data in the experiment. We used the original ranking of the top
10 results given by FALCON-S to calculate its average precision,
0.6985. We then compared both the best baseline,inquery, as well
as the best (okapi with inquery andm = 100) feedback based
system in Figure 9. As shown, our feedback based system had sig-
nificantly (p < .05) better average precision (0.8914) than both
FALCON-S (0.6985) and the baseline without feedback (p < .05).

Figure 9: Summary of Best Average Precision Scores: Relevance
Feedback From Hypertext to Semantic Web

Average precision does not have an intuitive interpretation, be-
sides the simple fact that a system with better average precision will
in general deliver more accurate results closer to the top. In partic-
ular, we are interested in havingonly the most relevant RDF data
accessible from a single URI returned for thetop result. The exper-
iment, in Table 3.1, shows that for a significant minority of URIs



Results: Feedback FALCON-S

Top Relevant: 118 (89%) 76 (58%)
Non-Top Relevant: 14 (11%) 56 (42%)

Non-Top Entities 9 (64%) 23 (41%)
Non-Top Concepts 5 (36%) 33 (59%)

Table 4: Table Comparing Hypertext-based Relevance Feed-
back and FALCON-S

(42%), FALCON-S returned a non-relevant Semantic Web URI as
the top result. Our feedback system achieves an average precision
gain of 20% over FALCON-S. While a 20% gain in average pre-
cision may not seem huge, in reality the effect is quite dramatic,
particularly as regards boosting relevant Semantic URIs tothe top
rank of the results. In Table 4, we present clear results of how our
best parametersokapi − inquerym = 100 lead to the most rele-
vant Semantic data in the top result. In particular, notice that now
89% of resolved queries now have relevant data at the top position,
as opposed to 58%. This would result in a noticeable gain in perfor-
mance for users, which we would argue allows Semantic Web data
to be retrieved with high-enough accuracy for actual deployment.

While performance is boosted for both entities and concepts, the
main improvement comes from concept queries. Indeed, as concept
queries are often one word and often ambiguous – not to mention
the case where the name of a concept has been taken over by some
company, music band, or product – it should not be surprisingthat
results for concept queries are considerably boosted by relevance
feedback. Results for entity queries are also boosted, and are now
the most difficult kind of URI for our system to disambiguate.A
quick inspection of the results reveals that the entity queries that
gave both FALCON-S and our feedback system problems were
mainly very difficult queries which has a number of Semantic Web
URIs that all share similar natural language content in their associ-
ated descriptions. An example would be a query for ‘sonny and
cher,’ which results in a number of distinct Semantic Web URIs:
one forCher, another one forSonny and Cher the band, and another
for “The Sonny Side of Cher,’ an album by Cher. For concepts, one
difficult concept was the queryrock. Although the system was
able to disambiguate the musical sense from the geological sense,
there was a large cluster of Semantic Web URIs for rock music,
ranging fromHard Rock to Rock Music to Alternative Rock. With
a large cluster of very similar Semantic Web data, it is not surpris-
ing that both our system and FALCON-S had difficulty with certain
queries. ????????????????

Although less impressive than the results for using hypertext
web-pages for relevance feedback for the Semantic Web, the feed-
back cycle from the Semantic Web to hypertext does improves sig-
nificantly the results of even commercial hypertext web-engines, at
least for our set of queries about concepts and entities. Thehyper-
text results for our experiment were given by Yahoo! Web Search,
and we calculated a mean average precision for Yahoo! Web search
to be 0.4039. This is slightly less than our baselineinquery rank-
ing, which had an average precision of of 0.4643. As shown in Fig-
ure 10, our feedback based system performs significantly (p < .05)
better than Yahoo! Web Search and (p < .05) the baselineinquery
system.

5.3.1 Discussion
These results are not in need of a large discussion, as they clearly

show our relevance feedback method works significantly better than
various baselines, both internal baselines and state of theart com-
mercial hypertext search engines and Semantic Web search en-

Figure 10: Summary of Best Average Precision Scores: Relevance
Feedback From Semantic Web to Hypertext

gines. The parametrisation of the precise information retrieval com-
ponents used in our system is not entirely arbitrary, as argued above
in Section 5.1.2 and Section 5.2.2. The gain of our relevancefeed-
back system, a respectable 19% in average precision over theen-
gine FALCON-S, intuitively makes the ability of our system to
place the correct URI in response to a query acceptable for most
users. The most difficult step is to select the precise correct Se-
mantic Web data for the user’s need, and in this regard, even small
differences can make a huge impact, so a move to 89% average pre-
cision for a given natural language query makes a large difference.

Second, by incorporating human relevance from the Semantic
Web, we make substantial gains over state of the art baselinesys-
tems for hypertext Web search. One important factor is the con-
stant assault of hypertext search engines by spammers and others.
Given the prevalence of a search engine optimisation and spam-
ming industry, it is not surprising that the average precision of even
a commercial hypertext engine is not the best, and that it performs
less well by a mean average precision of 29% than Semantic Web
search engines. Semantic Web search engines have a much smaller
and cleaner world of data to deal with than the unruly hypertext
Web. Thus, even with relevance from the Semantic Web, an aver-
age precision of 69% is impressive, although far from the almost
oracle-like powers of 89% precision. Improving hypertext Web
search is difficult even with relevance feedback. Even with the help
of relevance feedback from the Semantic Web, hypertext search is
unlikely to achieve near-perfect results anytime soon.

6. FUTURE WORK
There are a number of areas where our project needs to be more

thoroughly integrated with other approaches and improved.The
primary expected criticism of this work is likely the choiceof FALCON-
S and Yahoo Web search as a baseline, and that we should try over
other Semantic Search engines and hypertext Web search engines,
and we leave this for future work. However, there are also much to
be done as regards scaling and queries with no relevant results.

6.0.2 Scaling to the Web
While language models, particularly generative models as given

by [9], should in general have theoretically higher performance
than vector-space models, we showed a slight but significantly bet-
ter performance for vector-space than language models in relevance
feedback from hypertext web-pages to the Semantic Web, likely
due to the parameters of the language model being generated by the



infamously messy and non-parametric natural language dataof the
Web. Furthermore, the reason why large-scale search engines do
not in general implement language models for information retrieval
is that the computational complexity of calculating distributions
over billions of documents does not scale. However, there isrea-
son to believe that relevance models could be scaled to work with
Web search in general and Semantic Web search in particular if they
built their language sample from a ‘clean’ and suitably large sample
of natural language (as was done in our relevance-feedback exper-
iment using relevant Semantic Web results) then these relevance
models would be more effective. The computational complexity
could be reduced via caching and the use of Bloom filters for the
language model. This, combined with some sort of statistical query
expansion that would help a user resolve ambiguous queries like
rock into rock music or geological rock, would likely
get our performance to about 89%. Further natural language pro-
cessing, including better stemming and lemmatization, would also
likely improve performance. Lastly, our system and experiment
was only aproof of concept system, and it was tested only over a
relatively small (although statistically significant) number of users
and queries automatically harvested from a query engine. Far better
would be to deploy this system with a global-scale hypertextsearch
engine.

6.0.3 Creation of New Semantic Web data
One of the looming deficits of our system is that for a substantial

amount of our queries there areno relevant Semantic Web URIs
with accessible. This amount is estimated to be 34% of all queries,
almost as many as there were queries where non-relevant Semantic
data was the first result. However, these queries with no Semantic
Web URIs in generaldo have relevant information on the hyper-
text Web, if not the Semantic Web. In this manner, the automatic
generation of Semantic Web triples from natural language text as
explored by Brewster et al. [3] could be used in combination with
our system to create new URIs, with accessible and automatically
generated Semantic Web data, in response to user queries.

7. CONCLUSION
These preliminary results of our experiment demonstrate that

our approach of using feedback from hypertext Web search helps
users discover relevant Semantic Web data. The gain is significant
over both baseline systems without feedback and the state ofthe
art page-rank based mechanism used by FALCON-S and Yahoo!
Web search. These results, due to the significant and randomised
number of queries used and the fact that relevance judgements in-
volved three judges, point to a high reliability for these results, so
we have reason to be believe the results will scale. Also, thereverse
works as well: Assuming that applications are actually using struc-
tured data like the data on the Semantic Web, this can help serve as
query expansion data for queries on the hypertext Web. The oper-
ative question is: Why does this work? It is precisely because the
samekind of information is encoded in hypertext and the Semantic
Web results, these two disparate sets of data can be used as rele-
vance feedback for each other, beginning the first step in literally
creating a “virtuous cycle” between semantics and search, acycle
driven by relevance feedback from users [2].
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