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ABSTRACT primary method for creating a ‘virtuous cycle’ between satits

and search. Previous approaches like Microsearch and Sieman
Search engines like FALCON-S have assumed that the Semantic
Web - at least as represented by the native RDF triples inddnk
Data - and the hypertext Web search to be entirely disparatex-

ing and searching them differently [4], although moves bs;nSe-

tic search engines like Sindice to index microformat and R
blurring this distinction [11]. Relevance feedback usyatiproves
information retrieval performance, but almost always tedback

is used to improve rankings over a single source of data. Geln
approach is to use relevance feedback from hypertext Weablsea
of which there is a massive amount of data available, to ingro
the retrieval of Semantic Web data. We focus on retrievirig-re
vant data in the first position, as one problem exhibited hy&@e

tic Web search engines like FALCON-S and even Microsearch is
the retrieval of far too much Semantic Web data, with mucht of i
being irrelevant. We imagine that what interests applicatievel-

Relevance feedback is one method for creating a ‘virtuoatety

- as put by Baeza-Yates - between semantics and search.- Previ
ous approaches to search have generally considered thenema
Web and hypertext Web search to be entirely disparate, ingex
and searching over different domains. While relevancelfaekl
have traditionally improved information retrieval perfoance, rel-
evance feedback is normally used to improve rankings of glesin
data-set. Our novel approach is to use relevance feedbatkhy-
pertext Web search to improve the retrieval of Semantic \Wehb.d
We also inspect whether relevance feedback from Semantic We
data can improve hypertext Web search results. In both cases
evaluation based on certain kinds of informational queabstract
concepts, people, and places) selected from a query loguandrh
judges show that relevance feedback works: relevance &e&db
from hypertext Web search can improve the retrieval of S¢iman
Web data, and vice versa. We evaluate our work over a widesrang . . .
of algorithms, and show it improves baseline performancthese Opers the most would bg selecting a small famount of high tqual!
queries for deployed systems as well, such as the SematictSe Semantic Web data, which would have a high assurance of being

engine FALCON-S and the commercial Web search engine Yahoo! ‘2Pout the same thing’ as the query. This data could be automa

search cally consumed by applications like maps and calendar progr

' or displayed in some special format by the result page ofehech

engine.

1. INTRODUCTION 9
There has recently been a return of interest in ‘Semanticcea

In particular, this seems inspired mostly by the Linked Datita- 2. SYSTEM DESIGN ]

tive, that has released a massive amount of structured dattaeo In order to deal with these problems, we will empl@jevance

Web from a diverse range of sources, leading to the rise afape ~ feedback, the use of explicit relevance judgements from users of a

ized Semantic Web search engines and more interest in thibjlos ~ guery in order to expand the query. By ‘expand the query, " we

ities of combining structured data and ad-hoc informatimieval mean that the usually rather short query is expanded intoéamu
from traditional hypertext search. The hypothesis put fodhby larger query by adding words from the known relevant documen
Baeza-Yates is that the search for structured data - caflethan- ~ For example, the selection of a document by a user and tagingt
tic Search’ - can be used to improve traditional ad-hoc imfation on the document for some period of time is a sign of relevamnbe.
retrieval for Web search engines [2], and that techniques fin- hypothesis of relevance feedback, as pioneered by Rocatiteei
formation retrieval can be used to improve structured qteicu- SMART retrieval system, is that the relevant documentsaisiam-
larly on the Semantic Web. While this is restrictive, we wisume ~ biguate and in general give a better description of the méiion
from hereon that ‘Semantic Search’ refers to indexing atriexe need of the query than the query itself [18]. This has beewstio

ing Semantic Web data, as given by the Linked Data Web and as9eneral toimprove retrieval performance significantightio early
done by engines like Sindice and FALCON-S, and hypertextbea  Studies and in later work like relevance modelling that eael-

refers to the indexing and retrieval of hypertext documentshe evance directly from the indexed documents rather tharicttpl
World Wide Web as done by search engines like Google and Yahoo Waiting for the user to make a relevance judgement [8].

search. We also assume a traditional, ad-hoc informatiwievel Semantic search engines exist, but their rankings are ktmbe
system for both kinds of search. sub-optimal. This is even true for hypertext search engimesme

We are the first to suggest that relevance feedback may be the€xtent. So, our novel solution is to use selected hyperteti-w
Copyright is held by the author/owner(s) pages as relevance feedback for improving the ranking ob&&m

VWWM2009, April 20-24, 2009, Madrid, Spain. Web data. In our sc_)lutit_)n, we run the query agfiinst the hyper-
] text Web search engine first and collect relevance judgeirrh



this. We then use these judgments to expand the query witiyhig
weighted words from the relevant documents. The expanded/qu

is used to re-rank the results retrieved by a Semantic Wettlsea
engine specializing in indexing Linked Data in RDF. We cameo
pare both Semantic Web data and hypertext data by congiderin
both to be ‘bags of words’. Semantic Web data can be flattened,
and URIs can be reduced to ‘words’ by the following steps:

e Reduce to last rightmost hierarchical component.

e If URI contains a fragment identifier (#), consider all clara
ters right of the fragment the last most hierarchical compo-
nent.

e Remove non-rightmost hierarchical component.
e Tokenise on space, capitalization, and underscore.

So,the URht t p: / / ww. exanpl e. or g/ hasAr chi t ect
would be reduced to two tokens, ‘has’ and ‘architect.” We also
then run the process backwards, using selected Semantidateb
as relevance feedback to improve hypertext Web search. i§his
not unfeasible, as one could consider the ‘consumption’eoh&n-
tic Web data by a program to be a judgement of relevance.

3. SELECTING QUERIES

In order to select real queries from users in order to teshgur

pothesis, we used the query log of a popular hypertext search
gine, the Web search query log of approximately 15 millios- di
tinct queries from Microsoft Live Search. This query log tzined
6,623,635 unique queries corrected for capitalisatione frain
issue in using a query log is to get rid of navigational anddra
actional queries. A straightforward gazetteer-based aledhased
named entity recogniser was employed to discover the naines o
people and places [10], based off a list of names maintaiyed b
the Social Security Administration and a place name datapes
vided by the Alexandria Digital Library Project. From qudog
total of 509,659 queries were identified as either peopldamgs
by the named-entity recogniser, and we call these querigt/
queries. Employing WordNet to represent abstract concepts, we
chose queries recognised by WordNet thattmte a hyponym and
hypernym. This resulted in a more restricted 16,698 quehat
are supposed to be about abstract concept, which weaaépt
queries. In order to select a subset of informational queries fol-eva
uation, we selected 100 queries identified as abstract ptshby
WordNet and then 100 queries identified as either peopleawegl
by the named entity recogniser, for a total of 200 queriesiege
for evaluation. Constraints were placed on crawled URIsh $hat
at least 10 Semantic Web documents were crawled for eacly,quer
leading to a total of 1,000 Semantic Web documents abouiesnti
and 1,000 Semantic Web documents about concepts, for aofotal
2,000 experimental results. Then, the same experimentay dog
was used to crawl the hypertext Web, resulting in a total 00Q,
web-pages about entities and 1,000 web-pages about cendéat
web-pages were retrieved using Yahoo! Search. A randona-sele
tion of ten queries from the concept queries is given in Tadad
another random selection of ten entity queries is given Ilera.
As one can tell, the queries about entities and conceptspaeads
across quite diverse domains, ranging from entities oweations
(El Salvador) and people (both fictional such as Harry Pattet
non-fictional such as Earl May) and for concepts over a wtarige
of abstraction, from sociology to ale.

ashville north caroling
harry potter

orlando florida

ellis college
university of phoenix
keith urban

carolina

el salvador

san antonio

earl may

P OoO~NOUITA, WNPEP

0

Table 1: 10 Selected Entity Queries

131
133
134
135
136
137
138
139
140
141

sociology
clutch
telephone
ale

pillar
sequoia
aster
bedroom
tent

cinch

Table 2: 10 Selected Concept Queries

3.1 Relevance Judgements

For each of the 200 experimental queries, 10 hypertext web-
pages and 10 Semantic Web documents need to be judged for rele
vance, leading to a total of 4,000 human judgements for aeley
in total for our entire experiment. The human judges eachegdd
25 queries presented in a randomized order, and were giwaala t
of 3 hours to test the entire sample for relevancy. No rebeasc
were part of the rating. The judges were each presented fittst w
ten hypertext web-pages and then with ten Semantic Web docu-
ments. So for each query, the judge determines relevanc20for
results, first 10 web-pages and then 10 Semantic Web docament
leading to a total of 20 judgements per query per judge. Eachr
sult therefore was judged by three judges, with a total of@iQ¢s
used in the entire experiment. So over a single sessionutige$
gave judgements to 20 distinct results. The judges werengive
structions and trained on 10 sample results (5 web-pages Sed
mantic Web results). The human judges are forced to makeybina
judgments of relevance, so each result must be either relevir-
relevant to the query.In their instructions, relevance definedas
whether or not a result is about the same thing as the query, which
can be determined if accurate information about the information
need is expressed by the result.

To expand, a number of types of Web results that would ordi-
narily be considered relevant are therefore excluded. fticpéar,
there is a restriction that the relevant information musptesent
in the result itself. This excludes possibly relevant infation that
is accessible via outbound links, even a single link. All mamof
results that are collections of links are excluded fromvatey, in-
cluding both ‘link farms’ purposely designed to be highiynkad
by page-rank based search engines, as well as legitimatetahr
ries of high-quality links to relevant information. Thesebls are
excluded precisely because the information, even if it Ig adink
transversal away, is still not directly present in the ested result.

By this same principle, results that merely redirect to heote-
source via some method besides the standardised HTTP rsethod
are excluded, since a redirection can be considered a kihidkof



Search query 1: sociology

Ex:

They would be considered relevant only if additional infatian
was included in the result besides the redirection itself.

In order to aid the judges, a Web-based interface was créated
present the queries and results to the judges. Althoughten in
face that presented the queries and the search interfacaamaer
similar to search engines was created, human judges pdfarr
interface that presented them the judgement results ecadiate,
forcing them to view a rendering of the web-page associaiéd w
each URI originally offered by the search engine. For eagiehy
text web-page, the web-page was rendered using the Fireéix W
Browser and PageSaver Pro 2.0. For each Semantic Web docu-_. ) ]
ment, the result was rendered (i.e. the triples, any agsakiext in Figure 1: The interface used to judge web-page results for relevancy.
the subject, and any associated Semantic Web documentjray us
the open-source Disco Hyperdata Browser with Firéfdx both
cases, the resulting rendering of the Web representatisrsassed Search query: sociology
at 469 x 631 pixel resolution. The reason that the web-page was
rendered instead of a link given directly to the URI is beeaos
the unstable state of the Web, especially the hypertext \Egbn
caching the HTML would have risked losing much of the graphic
element of the hypertext Web. By creating ‘snapshot’ reindst
each judge at any given time was guaranteed to be given the sam
experience in the experiment and to be presented with thepagé
inits intended visual form. One side-effect of this is thabapages
that heavily depended on non-standardised technologjgs@iins
would not render and were thus presented as blank screentshot
the user. The user-interface broke the evaluation into tejss

le of Relevant Result

URL: http:/fen.wikipedia.orgiwiki/Sociology
Title: So.

ay - Wikip:

About: Timeline of sociology ']
» : deorg

ta Spoce: dope

ject,
le sociology for a general description of the subject.

boxifthe resukis

Figure 2: The interface used to judge Semantic Web results for rele-
vancy

e Judging relevant results from a hypertext Web search: the
judge was given the search terms created by an actual human

user for a query and an example relevant web-page whose
full snapshot could be viewed by clicking on it. A full ren- @nd moderate agreement. For Web-page results enty,0.5216

dering of the retrieved web-page was presented to the user,(p < .05, 95% Confidence interva).5150, 0.5282]), also indicat-

with its title and summary (as produced by Yahoo! Search) N9 the rejection of the_ null hypothesis and moderate ages¢m
easily viewed by the judge as in Figure 1. The judge clicked Lastly, for only Semantic Web results,= 0.5925 (p < .05, 95%

on the check-box if the result is considered relevant. Gther Confidence interval0.5859, 0.5991]), is also indicating the null
wise, the web-page was by default recorded as not relevant. "YPOthesis is to be rejected and moderate agreement. Sd, in a
The web-page results were presented to the judge one at a25€S there is ‘moderate’ agreement, which is sufficiergrgthe

time, ten times for each query. general difficulty of producing perfectly reliable releegnjudg-
’ ments. Interestingly enough, the difference:ibetween the web-

e Judging relevant results from a Semantic WWeb search: next, page results and Semantic Web results show that the judges we
the judge assessed all the Semantic Web results for rejevanc actuallyslightly more reliable in their relevancy judgements of in-
These results were retrieved from the Semantic Web using formation from the Semantic Web rather than the hypertex.We
the same interface displayed to the judge in Step 1 as shownThis is likely due to the more widely varying nature of the gtext
in Figure 2, and a title was displayed by retrieving any lit- results, as compared to the more consistent informaticatatra of
eral values fronr df s: | abel properties and a summary  Semantic Web results.
by retrieving any literal values fromdf s: conment val- Were judges more reliable with entities or concepts? Reealc
ues. Using the same interface as in Step 1, the judge had tolating the s for all results based on entity queries,= 0.5989
determine whether or not the Semantic Web results are rele- (p < .05, 95% Confidence intervelD.5923, 0.6055]), while for all
vant. results based on concept queries was 0.5447 (p < .05, 95%

Confidence intervgD.5381, 0.5512]). So it appears that judges are
After the ratings were completed, Fliess'sorrect statistic was  sjightly more reliable discovering information about &es rather
taken in-order to test the re“ablllty of intel’-judge agmt over than ConceptS, backing the claim made by Hayes et al. thisg the
the relevancy ranking [6]. Simple percentage agreemerdtisuf- more agreement in general about ‘less’ abstract thingspiiiaple
fiCient, as it does not take into account the likelihood OWCO' and places rather than abstract Concepts [7] Howevelem is

incidental agreement by the judges. Fleiss'doth corrects for il very similar and moderate for both information aboutites
chance agreement and can be used for more than two judges46].  and concepts.

null hypothesis is that the judges cannot distinguish eele¥rom For the queries, much of the data is summarised in Table 3.1.
irrelevant results, and so are judging results randomlyer@li; for ‘Hypertext’ means that the result was taken only over theshgxt

both relevance judgements over Semantic Web results anel web weh results and ‘Semantic Web’ indicates the same for theaem
page resultsy = 0.5724 (p < .05, 95% Confidence interval  tic Web results. The percentages for resolved and unresdbre
[05678, 05771]), indicating the I’ejection of the null hypotheSiS ‘hypertext’ and ‘Semantic Web’ were taken over the hyparm)d
The Disco Hyperdata Browser, a browser that ren- Semantic Web relevancy corpora in order to allow direct carp
ders Semantc Web data to HTML, is available at SOn. The percentages for ‘Top Relevant' and ‘Non-Top Reigva
http://ww4. wi wi ss. fu-berlin.de/bizer/ng4j/discol. were computed as percentages over all relevant queriesoceext




Results: Hypertext | Semantic Web
Resolved: 197 (98%) | 132 (66%)
Unresolved: 3 (2%) 68 (34%)

Top Relevant: 121 (61%)| 76 (58%)
Non-Top Relevant| 76 (39%) | 56 (42%)

Table 3: Results of Hypertext and Semantic Web Relevance
Judgements

cludes unresolved queries. For ease of reference, a piefchthe
hypertext relevancy is given in Figure 3 and for the Semaneb
relevancy in Figure 4.

Non-Top Relevant
Unresolved P

Top Relevant

Figure 3: Results of Querying the Hypertext Web.

Non-Top Relevant

Unresolved

Top Relevant

Figure 4: Results of Querying the Semantic Web.

Resolved queries arejueries that return at least one relevant re-
sult in the top 10 results, whilanresolved arequeries that return
no relevant queries in the top 10 results. Over both hypertext and
Semantic search, there were 71 (18%) unresolved querieditha

is more compelling for relevance feedback is the number lef re
vant results that wergeot the top-ranked result. Again over both
searches, there were 132 (33.0%) queries where a relewauit re
wasnot in the top position of the returned results. For the hypértex
Web there were 76 (39%) queries with a non-top relevant tiesul
while for the Semantic Web, there were 56 (42%) of all queries
that had a non-top relevant result. So, while queries on the S
mantic Web are more likely to turn up no relevant results, wae
relevant query is returned, both for the hypertext Web aed3é-
mantic Web it is quite likely that a relevant result will be time
non-top position of the result list.

4. INFORMATION RETRIEVAL FRAMEWORK

In our experiment we tested two general kinds of informatin
trieval frameworks: vector-space models and language motte
the vector-space model, where document models are considered to
be vectors of terms (usually calledrds as they are usually, al-
though not exclusively, from natural language) where thighiag
function and query expansion has no principled basis begde
pirical results, although ranking is done via cosine distama nat-
ural comparison metric between vectors. The key to succébs w
vector-space models tends to be the tuning of the paramefers
their weighing function. However, while fine-turning thgsaram-
eters has led to much practical success in informatiorereti the
parameters have little formally-proven basis but are atteased
on common-sense heuristics like document length and asel@g
ument length.

Another approach, thianguage model approach, takes a for-
mally principled generative probabilistic approach toedetining
the ranking and weighting function. Instead of each docurhen
ing considered some parametrised word-frequency vetioidac-
uments are each considered to be samples from an underlgibg p
abilistic language modeM p, of which D itself is only a single
observation. In this manner, the quepycan itself also be consid-
ered a sample from a language model. In early language nmaglell
efforts [13], the probability that the language model of autoent
would generate the query was the ranking function of the docu
ment. A more sophisticated approach to language modelaenssi
that the query was a sample from an underlyiaigvance model
of unknown relevant documents, but that the model could be es
timated by computing the co-occurrence of the query ternk wi
every term in the vocabulary. In this way, the query itselsWast
considered a limited sample, so the it is automatically egpd
before the search has even begun by re-sampling the urgrlyi
relevance model.

In detail, we will now inspect the various weighting and riaagk
functions of the two frameworks. A number of different opiso
for the parameters of each weighting function, and the gpate

not have any results. For the hypertext Web search, only 3 (2% ranking function, will be considered.

queries were unresolved, while 68 (34%) of the queries were-u
solved for the Semantic Web. This simply means that the lgper
search engines almost always returned at least one rel@siits

in the top 10, but that for the Semantic Web almost a third bf al
queries did not return any relevant result. This only me&eset

is much information that does not yet have a relevant formhen t
Semantic Web, unless it is hidden by poor-ranking by FALCON-

4.1 \Vector Space Models

4.1.1 Representation

Each vector-space model had as a parameter the factohe
maximumwindow size, which is the number of words, ranked in
descending order of frequency, that are used in the documeait

Another question is how many queries had a relevant result asels (D), the representation of a single document. Words with a zero

their top result? In general, 197 queries (50%) had topedmtkl-
evant results over both Semantic Web and hypertext searalv- H
ever, while the hypertext Web search had 121 (61%) top-anke
relevant results, for the Semantic Web there was only ha8&8%)
top-ranked results. A lack of top-ranked results becomescpa
larly acute on the Semantic Web for queries about conceptat\W

frequency are excluded from the document model, and theydsier
given byQ.
4.1.2 Weighting Function: BM25

The current state of the art weighting function for vectpace
models isBM 25, one of a family of weighting functions explored



by Roberson [15] and a descendant of thielf weighting scheme
pioneered by Sparck Jones and Robertson [14]. In partjowia
will use a version 0BM25 with the slight performance-enhancing
modifications used in the InQuery system [1]. This weightolgeme
has been carefully optimized and routinely shows exceplenfor-
mance in TREC [5] competitions. The InQuery BM25 function
assigns the following weight to a wordoccurring in a document
D:

n(g, D)
n(q, D) + 0.5+ 1.5—4__

log (0.5 + N/df(q))
log (1.0 +log N)

Dq = @)

avg(dl)

The BM 25 weighting function is summed for every tegne Q.
For everyq, BM 25 calculates the number of occurrences of a term
q from the query in the documen?, n(q, D), and then weighs this
by the length of documentl of documentD in comparison to the
average document lengtlvg(dl). This is in essence the equivalent
of term frequency irt f.idf. The BM25 weighting function then
takes into account the total number of docume¥itand the docu-
ment frequenciedf(q) of the query term. This second component
is theidf component of classicalf.idf .

4.1.3 Comparison Function: Cosine and InQuery

The vector-space models have an intuitive comparison ifumct
in the form of cosine measurements. In particular, the eosom-
parison function is given by Equation 2, for a documéhtwith
query@, where bothD and(@ contain: words, iterating over all
words.

cos(D,Q) = D-Q _ 2q @aDe 2
7 D[R />, 02,/%, D2

The only question is whether or not the vectors should be nor-
malised to have a Euclidean weight of 1, and whether or not the
query terms themselves should be weighted. We investigste b
options. The classical cosine is givenaasine, which normalises
the vector lengths and then proceeds to weight both the deens
and the vector terms b A/25. The version without normalisa-
tion is calledinquery after thelnQuery system [1]. Thenquery
comparison function is the sameasine except without normal-
isation each word in the query can be considered to haveramifo
weighing.

4.1.4 Relevance: Okapi, LCA, and Ponte

There are quite a few options on how to expand queries in a
vector-space model. One popular and straightforward ndefirst
proposed byRocchio [18] and at one point used by ti@kapi sys-
tem [16], is to expand the query by taking the average ofj ttedal
relevant document model8, with a documentD € R, and then
simply replacing the querg) with the topm words from averaged
relevant document models. This process is given by Equatard
is referred to askapi:

Okapi(Q Z D

DGR

(©)

Another state of the art query expansion technique is knawvn a
Local Content Analysis (Ica) [19]. Given a queryQ with query
termsq; ...qr and a set of result® and a set of relevant documents
R, then LC' A ranks everyw € V by Equation 4, where: is the
size of the relevant document®, idf,, is the inverse document
frequency of wordw, and D, and D,, are the frequencies of the

wordsw andq € @ in relevant documenb € R.

idfy
I1 (0.1 4 L/logn log } Dqu> ()
TER

e 1/idfw

After each wordw € V has been ranked biya, then the query
given by LCA is just the topn words given bylca. Local Con-
tent Analysis attempts to select words from relevant docum®
expand the query that have limited ambiguity, and so it does e
tra processing compared to thkeapi method that simply averages
the most frequent words in the relevant documents. In coisqar
Local Content Analysis performs an operation similar ireeffto
tf.idf on the possibly relevant terms, and so attempting by virtue
of weighing to select only words that both appear frequently with
terms in query; but have a low overall frequencyd(.,) in the re-
sult set {df.).

The final method we will use is the heuristic method developed
by Ponte [12], which we calbonte. Like lca, ponte ranks each
wordw € V, but it does so differently. Instead of taking a heuristic-
approach likeOkapi or LC'A, it takes a probabilistic approach.
Given a set of relevant documenks € D, Ponte’s approach es-
timates the probability of each word € V' being in the relevant
document,P(w|D), divided by its overall probability of the word
to occur in the result®(w). Then thePonte approach gives each
w € V a score as given in Equation 5 and then expands the query
by using then most relevant words as ranked by their scores.

Ponte(w; R) Zl < w|D)

DeER

lea(w; Q) =

®)

4.2 Language Models

4.2.1 Representation

Language modelling frameworks in information retrievaine
sent each document as a language model given by an underlying
multinomial probability distribution of word occurrence§ hus,
for each wordw € V there is a value that gives how likely an
observation of wordv is given D, i.e. P(w|up(v)) [13]. The doc-
ument model distribution p (v) is then estimated using the param-
eter\p, which allows a linear interpolation that takes into acdoun
the background probability of observingin the entire collection
C. This is given in Equation 6.

n(w, D) n(w, C)
1D 2vev (v, C)

The parametekp just takes into account the relative likelihood
of the word as observed in the given docum&ntompared to the
word given the entire collection of documerds |D| is the total
number of words in documer®, while n(w, D) is the frequency
of word d in documentD. Further,n(w, C) is the frequency of
occurrence of the word in the entire collectiorC' divided by the
occurrence of all words in collectionC'.

4.2.2 Language Modeling Baseline

When no relevance judgments are available, the languagelmod
ing approach ranks documenisby the probability that the query
Q could be observed during repeated random sampling from the
distributionup (+). The typical sampling process assumes that words
are drawn independently, with replacement, leading to oHevl-
ing retrieval score being assigned to docum®nt

P(Q|D) = H up(Q

qinQ

uD(w) = )\D

+ (1 =Ap) (6)

@)



The ranking function in equation (7) is callegery-likelihood
ranking and is used as a baseline for our language-modetjper-e
iments.

4.2.3 Language Models and Relevance Feedback

The classical language-modeling approach to IR does net pro
vide a natural mechanism to perform relevance feedback. -How
ever, a popular extension of the approach involves estimgai
relevance-based modek in addition to the document-based model
up, and comparing the resulting language models using infooma
theoretic measures. Estimation@f has been described above,
so this section will describe two ways of estimating thevatee
modelur, and a way of measuring distance betwegnandup
for the purposes of document ranking.

Let R = ry...r; be the set ok relevant documents, identified
during the feedback process. One way of constructing a Eggu

Note that either thaveraged relevance model z, .4 Or thecon-
catenated relevance model:z, .., can be used in equation (11).
We refer to the former asn and to the latter aff in the following
experiments.

5. FEEDBACK EVALUATION
5.1 Hypertext to Semantic Web Feedback

5.1.1 Results

A number of parameters were tested for our system to deter-
mine which parameters provide the best results. For eacheof t
parameter combinations, we compared the use of relevarde fe
back to a baseline system which did not use relevance fekdbac
yet used the same parameters with the exception of any neleva

model of R is to average the document models of each document feedback-related parameters. The baseline system withedt

in the set:

1y 1 n(w,r)
URavg (W) = % Zur'i(w) =% Z Tl (8)

I

Heren(w, ;) is the number of times the word occurs in the’th
relevant document, arjd;| is the length of that document. Another
way to estimate the same distribution would becoacatenate all
relevant documents into one long string of text, and countdwo
frequencies in that string:

Zf:l n(w7ri)
k
Zi:l |7'Z|

Here the numeratoy_"_, n(w, ;) represents the total number of
times the wordw occurs in the concatenated string, and the de-
nominator is the length of the concatenated string. Thewiffce
between equations (8) and (9) is that the former treats el@ecy
ument equally, regardless of its length, whereas the |&tenrs
longer documents (they are not individually penalized hydiing
their contributing frequencies(w, ;) by their length|r;|).

©)

UR,con (w) -

4.2.4 Comparison Function: Cross Entropy

We now want to re-compute the retrieval score of docunient
based on the estimated language model of the relevant ¢lass
What is needed is a principled way of comparing a relevanageino
ur against a document language model. One way of compar-
ing probability that has shown the best performance in doglir
information retrieval research [9] is cross entropy. Ititely, cross
entropy is an information-theoretic measure that meashesaver-
age number of bits needed to identify the probability ofritsition
p being generated j§ was encoded using given probability distri-
bution p rather thary itself. For the discrete case this is defined
as:

H(p,q) = = > p(z)log(q(x)) (10)

If one considers that ther = p and that document model dis-
tribution up = ¢, then the two models can be compared directly
using cross-entropy, as shown in Equation 11. This use afscro
entropy also fulfills the Probability Ranking Principle asalis di-
rectly comparable to vector-space ranking via cosine [9].

—H (ugl[up) = Y ur(w)logup(w) (11)

weV

back can also be considered an unsupervised algorithmge whi
the relevance-feedback systems supervised algorithme Nt

in machine-learning terms, the hypertext web-paesan be con-
sidered to be training data, while the Semantic Web datan be
considered to be test data. The hypertext web-pages andn8ema
Web data are disjoint set®)(N R = ). For evaluation we used
mean average precision, with the standard Wilcoxian sgh&nd
mean average precision.

For vector-space models, tl&api, lca, andponte relevance
weighting functions were all run, each trying both thejuery
and cosine comparison functions. The primary parameter to be
varied was thevindow size (m) top frequency non-zero words to
be used in the vectors for both the query model and the docu-
ment models. Baselines for bothhsine andinquery were run
with no relevance feedback. The parameterwas varied over
5,10, 20, 50, 100, 300, 1000, 3000. The results in terms of mean
average precision are given in Figure 5.
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Figure 5: Average Precision Scores for Vector-space Model Parame-

ters: Relevance Feedback From Hypertext to Semantic Web

Interestingly enoughpkapi relevance feedback weighting with
a window size of 100 and aimquery comparison was the best,
with a mean average precision of 0.893#4 £ .05). It outper-
formed the baseline afiquery, which has an average precision of
0.5595 p < .05). Overall,lca did not perform as well, often per-
forming below the baseline, although its performance iaseel as
the window size increased, reaching an average precisi®262
with m = 3000 (p < .05). However, given that a window-size of
10,000 covered most documents, increasing the window size w
not likely result in better performance frofna. The ponte rele-
vance feedback performed very well, reaching a maximum MAP



0.8756 with a window-size of 300 using.query weighing, and
so was insignificantly different fronmquery (p > .05). Lastly,
both ponte and okapi experienced a significant decrease in per- document basis before creating the average relevance madel
formance asn was increased, so it appears that the window sizes contrast,inquery andt¢f do not normalise:inquery compares
of 300 and 100 are indeed optimal. Also, as regards comparing weighted term frequencies, anfl constructs a relevance model by
baselinesjnquery outperformedtosine (p < .05).

For language models, both averaged relevance maodeland
concatenated relevance modefswere investigated, with the pri-

mary pattern beingn, the number of non-zero probability words

used in the relevance model. The parametaexras varied between

100,300,1000,3000,and 10000. Remember that the querylisode

the relevance model for the language model-based framewaik

is best practice in relevance modelling,

the relevance isodere

not smoothed, but a number of different smoothing pararaévet
were investigated for the cross entropy comparison fungtiang-
ing from ¢ between 0.01,0.10,0.20, 0.50,0.80,0.90, and 0.99. The normalise the models, as that will almost certainly dampenet-

results are given in Figure 6.
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Figure 6: Average Precision Scores for Language Model Parameters:
Relevance Feedback From Hypertext to Semantic Web

The highest performing language model waswith a cross-
entropye of .2 and am of 10,000, which produced an average pre-
cision of 0.8611, which was significantly higher than theglaage
model baseline of 0.5043 (< .05) using again amn of 10,000 for
document models and with a cross entremf .99). Rather inter-
estingly,t f always outperformedm, andrm’s best performance
had a MAP of 0.7223 using anof .1 and am of 10,000.

5.1.2 Discussion

Of all parameter combinations, thé&api relevance feedback
works best in combination with a moderate sized word-window
(m 100) and with theinquery weighting scheme. It should
be noted its performance is identical from a statisticahdpaint
with ponte, but as both relevance feedback components are sim-
ilar and both useénquery comparison and3 M 25 weighing, the
algorithms are very similar. One observation is in ordetgrtbat
for vector modelsinquery always outperformedosine, and that
for language modelsf always outperformedm. Despite the dif-
fering frameworks of vector-space models and language mode
both cosine andrm share the common characteristic of normali-
sation. In essence, botlasine andrm normalise by documents:

cosine normalises term frequencies per vector before comparing
vectors, whilerm constructs a relevance model on a per-relevant

combining all the relevance documents and then creatingelee
vance model from theaw pool of all relevant document models.
Thus it appears the answer is that any kind of normalisation b

length of the document hurts performance. The reason fsrighi
likely because the text automatically extracted from htgerdoc-
uments is ‘messy, being of low quality and bursty, with High
varying document lengths. As observed earlier [11], the arho

of triples in Semantic Web documents follow a power-law,lsré

are wildly varying document lengths of both the relevanceleho
and the document models. Due to these factors, it is unwise to

fect of valuable features like crucial keywords (such asi$and
‘tourist’ in disambiguating variousi f f el -related queries). Then
the reasonB M 25-based vector models in particular perform so
well is that they are able to effectively keep track of botfmtdre-
quency and inverse term frequency accurately. Unlike mitbstro
algorithms,B M 25 provides a slight amount of rather unprincipled
non-linearity in the importance of the various variableg][1This

is important, as it provides a way of extenuating the efféaire
particular parameter (in our case, likely term frequenay iamerse
term frequency) and then massively lowering the power offaro
parameter (in our case, likely the document length).

5.2 Semantic Web to Hypertext Feedback

In this section, we assume that the user or agent program has
somehow accessed or otherwise examined the associatathdesc
tions from the Semantic Web URIs, and these associatediplescr
tions then form a relevant document model that is comparég-to
pertext documents in order to produce rankings. In this iz,
feedback cycle has been reversed.

5.2.1 Results
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Figure 7: Average Precision Scores for Vector-space Model Parame-
ters: Relevance Feedback From Semantic Web to Hypertext

The results for using Semantic Web documents as relevaede fe



back for hypertext Web search are surprisingly promisindghe T
same parameters as explored in Section 5.1.1 were agaioredpl
The average precision results for vector-space modelsiea m
Figure 7. The general trends from Section 5.1.1 were sirimildnis
new data-set. In particulavkapi with a window size of 100 and
theinquery comparison function again performed best with an av-
erage precision of 0.6423  .05). Also ponte performed almost
the same, again an insignificant difference frokapi, producing
with the same window size of 100 an average precision of .613
(p > .05) . Utilising again a large window of 3,000¢a had an
average precision @f.5359 (p < .05). Similarly, inquery consis-
tently outperformedosine in comparison, withinguery having a
baseline average precision of 0.4643< .05) in comparison with
the average precision ebsine being 0.3470 < .05).

The results for language modelling were similar to the tssol
Section 5.1.1 and are given in Figure 8, although a few diffees
are worth comment. The best performing language modeltyfas
with am of 10,000 and a cross entropy smoothing faetéo .5,
which produced an average precision of .6549<(.05). In con-
trast, the best-performingn, with am of 3,000 and:=.5, only had
an average precision of 0.4858 € .05). Thet f relevance models
consistently performed better tham relevance modelg(< .05).
The baseline for language modelling was also fairly poohwit
average performance of 0.4284< .05). This was the ‘best’ base-
line using again ann of 10,000 for document models and cross
entropy smoothing of .99. The general trends from the previous
experiment then held, except the smoothing factor was mog m
erate and the difference betweghand rm was even more pro-
nounced. However, the primary difference worth noting wes t
best performing: f language model outperformed, if barely, the
okapi (BM25 andinquery) vector model by a relatively small
but still significant margin of .0126. Statistically, theffdrence
was significant < .05).
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Figure 8: Average Precision Scores for Language Model Parameters:
Relevance Feedback From Hypertext to Semantic Web

5.2.2 Discussion

Why ist f relevance modelling better tha\ 25 andinquery
vector-space models in using relevance feedback from these

language terms extracted from RDF terms (such as ‘sub cfass o
from r df s: subC assOf ), while often irregular, will either be
repeated very heavily or fall into the sparse long tail. Enhtgo
conditions can then be dealt with by the generatiferelevance
models, since the long tail of automatically generated wdrdm
RDF will blend into the long tail of natural language termada
the probabilistic model can properly ‘dampen’ without neiswy

to heuristic-driven non-linearities. Therefore, it is amee level
not surprising that even hypertext Web search results cambe
proved by Semantic Web data, because used in combinatibn wit
the right relevance feedback parameters, in essence tlestayp
search engine is being ‘seeded’ with high-quality strieduand
accurate descriptions of the referent of the query to be fized
query expansion.

5.3 tRelevance Feedback against Deployed Sys-
ems

One area we have not explored is how our system performssigain
systems that are actually deployed, as our previous worlahas
evaluated against systems and parameters we created caibcifi
for experimental evaluation. For example, our performancgec-
tion 5.1.1 and Section 5.2.1 was only compared to baselimas t
were versions of our weighting function without a relevafesd-
back component.

While that particular baseline is principled, the obvioesded
comparison is against actual deployed commercial or aciadsis
tems where the precise parameters deployed may not be lgublic
available and so not easily simulated experimentally. Thaéowus
baselines to choose to test against the Semantic Web sewyicle e
FALCON-S, from which we derived our original Semantic Web
data in the experiment. We used the original ranking of the to
10 results given by FALCON-S to calculate its average pregcjs
0.6985. We then compared both the best baselingiery, as well
as the bestdkapi with inquery andm = 100) feedback based
system in Figure 9. As shown, our feedback based system ¢jad si
nificantly (p < .05) better average precision (0.8914) than both
FALCON-S (0.6985) and the baseline without feedback:(.05).
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Figure 9: Summary of Best Average Precision Scores: Relevance
Feedback From Hypertext to Semantic Web

tic Web to hypertext? Rather shockingly, as the Semantic Web  Average precision does not have an intuitive interpretatiye-

data is mostly manually high-quality curated data from sesr
like DBPedia, the actual natural language fragments on #e S
mantic Web, found for example in Wikipedia abstracts, arehmnu
better samples of natural language than the natural laegsamy-
ples found in hypertext. Furthermore, the distribution reditural’

sides the simple fact that a system with better averagesioeaiill

in general deliver more accurate results closer to the topattic-
ular, we are interested in havirggly the most relevant RDF data
accessible from a single URI returned for tbp result. The exper-
iment, in Table 3.1, shows that for a significant minority dRld



| Results:

Top Relevant:
Non-Top Relevant;
Non-Top Entities
Non-Top Concepts

| Feedback | FALCON-S |
118 (89%)| 76 (58%)
14 (11%) | 56 (42%)
9 (64%) | 23 (41%)
5(36%) | 33 (59%)

Table 4: Table Comparing Hypertext-based Relevance Feed-
back and FALCON-S

(42%), FALCON-S returned a non-relevant Semantic Web URI as
the top result. Our feedback system achieves an averagsiprec
gain of 20% over FALCON-S. While a 20% gain in average pre-
cision may not seem huge, in reality the effect is quite dtamma
particularly as regards boosting relevant Semantic URthedop
rank of the results. In Table 4, we present clear results of dur
best parameterskapi — inquerym = 100 lead to the most rele-
vant Semantic data in the top result. In particular, notizg how
89% of resolved queries now have relevant data at the tofiqnosi
as opposed to 58%. This would result in a noticeable gainriope
mance for users, which we would argue allows Semantic Web dat
to be retrieved with high-enough accuracy for actual daplent.
While performance is boosted for both entities and concéipes
main improvement comes from concept queries. Indeed, azpbn
queries are often one word and often ambiguous — not to mentio

the case where the name of a concept has been taken over by som

company, music band, or product — it should not be surprigiag
results for concept queries are considerably boosted kyaete
feedback. Results for entity queries are also boosted, mndoav

the most difficult kind of URI for our system to disambiguat.
quick inspection of the results reveals that the entity igsethat
gave both FALCON-S and our feedback system problems were
mainly very difficult queries which has a number of SemantabW
URIs that all share similar natural language content irrthg$oci-
ated descriptions. An example would be a query smriny and
cher , which results in a number of distinct Semantic Web URIs:
one forCher, another one fogonny and Cher the band, and another
for “The Sonny Side of Cher,” an album by Cher. For concepis, o
difficult concept was the quenyock. Although the system was
able to disambiguate the musical sense from the geologicees
there was a large cluster of Semantic Web URIs for rock music,
ranging fromHard Rock to Rock Music to Alternative Rock. With

a large cluster of very similar Semantic Web data, it is nopss-

ing that both our system and FALCON-S had difficulty with eént
queries. ??2??2??272??22??7?777?

Although less impressive than the results for using hyperte
web-pages for relevance feedback for the Semantic Webe#tk f
back cycle from the Semantic Web to hypertext does improges s
nificantly the results of even commercial hypertext webhees, at
least for our set of queries about concepts and entities hyper-
text results for our experiment were given by Yahoo! Web &gar
and we calculated a mean average precision for Yahoo! Weblsea
to be 0.4039. This is slightly less than our baselinguery rank-
ing, which had an average precision of of 0.4643. As showrign F
ure 10, our feedback based system performs significgmtty (05)
better than Yahoo! Web Search apd< .05) the baselinénquery
system.

5.3.1 Discussion

These results are not in need of a large discussion, as thashcl
show our relevance feedback method works significantleb#tan
various baselines, both internal baselines and state artteom-

09 -
08 —
07 —
08

2 0s

Average
Precision

0d

03

02

01

Feedback System

Yahoo! Web Search
(Language Model / TF
e O e b o 2 Piferent Hypertet nformation Retrieval Systems

InQuery No Feedback

Figure 10: Summary of Best Average Precision Scores: Relevance
Feedback From Semantic Web to Hypertext

gines. The parametrisation of the precise informationewdf com-
ponents used in our system is not entirely arbitrary, asatgiove
in Section 5.1.2 and Section 5.2.2. The gain of our relevéeed-
back system, a respectable 19% in average precision oventhe
gine FALCON-S, intuitively makes the ability of our system t
lace the correct URI in response to a query acceptable fet mo
sers. The most difficult step is to select the precise coBee
mantic Web data for the user’s need, and in this regard, eveii s
differences can make a huge impact, so a move to 89% average pr
cision for a given natural language query makes a largerdiffee.
Second, by incorporating human relevance from the Semantic
Web, we make substantial gains over state of the art basgfsie
tems for hypertext Web search. One important factor is the co
stant assault of hypertext search engines by spammers lagic ot
Given the prevalence of a search engine optimisation anch-spa
ming industry, it is not surprising that the average precisf even
a commercial hypertext engine is not the best, and that fopas
less well by a mean average precision of 29% than Semantic Web
search engines. Semantic Web search engines have a mudérsmal
and cleaner world of data to deal with than the unruly hyperte
Web. Thus, even with relevance from the Semantic Web, an aver
age precision of 69% is impressive, although far from theosim
oracle-like powers of 89% precision. Improving hypertexetwW
search is difficult even with relevance feedback. Even wighttelp
of relevance feedback from the Semantic Web, hypertextbaar
unlikely to achieve near-perfect results anytime soon.

6. FUTURE WORK

There are a number of areas where our project needs to be more
thoroughly integrated with other approaches and improvEde
primary expected criticism of this work is likely the choiceFALCON-

S and Yahoo Web search as a baseline, and that we should try ove
other Semantic Search engines and hypertext Web searatesngi
and we leave this for future work. However, there are alsolmac

be done as regards scaling and queries with no relevantsesul

6.0.2 Scaling to the Web

While language models, particularly generative modelsiang
by [9], should in general have theoretically higher perfance
than vector-space models, we showed a slight but significhat-
ter performance for vector-space than language modelteivarce
feedback from hypertext web-pages to the Semantic Welly like

mercial hypertext search engines and Semantic Web search endue to the parameters of the language model being genenathd b



infamously messy and non-parametric natural languageodaite
Web. Furthermore, the reason why large-scale search endme
not in general implement language models for informatiarieeal

is that the computational complexity of calculating distitions
over billions of documents does not scale. However, thereds
son to believe that relevance models could be scaled to withk w
Web search in general and Semantic Web search in parti€thayi
built their language sample from a ‘clean’ and suitably éesgmple
of natural language (as was done in our relevance-feedbauek-e
iment using relevant Semantic Web results) then theseamtev
models would be more effective. The computational compjexi
could be reduced via caching and the use of Bloom filters fer th
language model. This, combined with some sort of statisgjicary
expansion that would help a user resolve ambiguous quekies |
rock intorock rmusi c orgeol ogi cal rock, would likely
get our performance to about 89%. Further natural language p
cessing, including better stemming and lemmatization,ldvaiso
likely improve performance. Lastly, our system and expenm
was only aproof of concept system, and it was tested only over a
relatively small (although statistically significant) nber of users
and queries automatically harvested from a query enginebdtter
would be to deploy this system with a global-scale hyperearch
engine.

6.0.3 Creation of New Semantic Web data

One of the looming deficits of our system is that for a subsant
amount of our queries there ane relevant Semantic Web URIs
with accessible. This amount is estimated to be 34% of alligsie
almost as many as there were queries where non-relevanniema
data was the first result. However, these queries with no Stna
Web URIs in generatio have relevant information on the hyper-
text Web, if not the Semantic Web. In this manner, the autmmat
generation of Semantic Web triples from natural languageds
explored by Brewster et al. [3] could be used in combinatidtt w
our system to create new URIs, with accessible and autoatigtic
generated Semantic Web data, in response to user queries.

7. CONCLUSION

These preliminary results of our experiment demonstras¢ th
our approach of using feedback from hypertext Web seargbshel
users discover relevant Semantic Web data. The gain idfismi
over both baseline systems without feedback and the stateeof
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art page-rank based mechanism used by FALCON-S and Yahoo![17]

Web search. These results, due to the significant and rasddmi
number of queries used and the fact that relevance judgerirent
volved three judges, point to a high reliability for theseulks, so
we have reason to be believe the results will scale. Alsagerse
works as well: Assuming that applications are actually gisimuc-
tured data like the data on the Semantic Web, this can help ssr
query expansion data for queries on the hypertext Web. The op
ative question is: Why does this work? It is precisely beeathe
samekind of information is encoded in hypertext and the Semantic
Web results, these two disparate sets of data can be usetkas re
vance feedback for each other, beginning the first steperaliy
creating a “virtuous cycle” between semantics and searchicle
driven by relevance feedback from users [2].
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