
Ontology Driven
Dynamic Web Interface

Generation

Andréia Luna1, Daniel Schwabe1
1 Pontifícia Universidade Católica do Rio de Janeiro,

Rio de Janeiro, Brazil
{amluna, dschwabe}@ inf.puc-rio.br

Abstract. In this Web 2.0 era, the browsers perform ever-richer graphical
interfaces. This paper discusses an approach to web applications interface
design that employs the semantic web primitives and it is expressive enough to
model most common Rich Internet Application functionalities. It proposes an
abstract interface description language and a whole software environment that
could make it possible to the application designer to automatically generate an
executable interface from an abstract description.

Keywords: Semantic Web, Model-Driven Development, Rich Internet
Applications, Web User Interface.

1 Introduction

In this Web 2.0 era, the browsers perform ever-richer graphical interfaces. Today,
virtually every type of application can benefit from the ubiquity of Web browsers
without compromising the user experience: social networking sites, online tickets
reservation systems, shopping or auction sites and collaborative text editors are just
some examples of applications built on rich Web clients.

The separation between logic and presentation in the software design is
recommended by the widely used MVC (Model-View-Controller) pattern. Design
methods for hypermedia applications are aimed at introducing models in different
abstraction levels to capture the requirements and the operation of web applications in
various perspectives. For example, conceptual modeling, navigation and presentation
aspects are usually dealt with separately by Web development methods.

The goal of this work is to propose a model capable of describing interface
elements as interaction objects, not only as presentation ones. In the Web 2.0 context,
interface objects are provided with behavior and they react to events, making it
insufficient to describe only their static attributes.

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

16

2 Abstract Interfaces Modeling

The Abstract Data View (ADV) design model was originally created to specify
clearly and formally the separation of the user interface from the application
component of a software system, and to provide a systematic design method that is
independent of specific application environments, in order to lead to a high degree of
reuse of designs for both interface and application components. [1] The user's
interactions with the components of application, called Abstract Data Objects
(ADOs), are modeled through the corresponding Abstract Data Views (ADVs), which
are able to express both ADOs’ perception properties and the events they can handle.

The ADV formalism is used by the Object-Oriented Hypermedia Design Model
(OOHDM), during the Abstract Interface Design activity. [2] As a notation for the
Semantic Hypermedia Design Method (SHDM) 1 [3] proposes an Abstract Widgets
Ontology for the abstract interfaces design, a Concrete Widgets Ontology, which
describes the interface elements available in the specific application environments,
such as the elements of an HTML page, and a set of rules for mapping between the
two ontologies. Thus, the designer of an application can automatically generate a
concrete interface from an abstract interface description.

The Abstract Widgets Ontology provides a formalism to express both the structure
and the layout of an interface. However, to express the interface objects’ behavior in
reaction to external events, the SHDM method does not yet have a notation. To fill
this gap, the following describes an extended ontology with enough expressiveness to
model the dynamic aspects of the interfaces present in Web 2.0 applications, and a
compiler for this language: a tool that reads a high level description of the an
interface’s operation and generates the executable code in the target platform.

2.1 Extended Abstract Widgets Ontology

The OWL Abstract Widgets Ontology aims to describe how the data objects (ADOs)
will be presented, detailing the visible elements (ADVs) that will be available to the
user. Its main concepts are:

AbstractInterfaceElement: this class represents all the possible abstract widgets and
is a generalization of the following subclasses:

ElementExhibitor: represents elements that exhibit some type of content, such
as a text or an image;

SimpleActivator: represents an element capable of reacting to external events,
such as a link or an action button;

IndefiniteVariable: represents elements that allow the user to enter data
through the keyboard, for example, a text box on a form;

PredefinedVariable: represents elements that allow the selection of a subset
from a set of predefined values, such as buttons and check boxes;

CompositeInterfaceElement: represents a composition of abstract elements;

1 SHDM is an evolution of OOHDM method that employs the Semantic Web formalisms and

primitives.

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

17

AbstractInterface: represents the final composition of all elements of the abstract
interface.

Fig. 1. Widgets Class Diagram

These are some properties defined for these classes:
hasElementExhibitor: It indicates the ElementExhibitor element that composes an

element of the same type mapped as a Link;
hasInterfaceElement: It indicates which AbstractInterfaceElement instances

compose the element;
loadTarget: It indicates the widget where the interface referenced by the property

targetInterface should be loaded;
loadTransition: It indicates the widget where the interface referenced by the

property transitionInterface should be loaded;
targetInterface: It indicates which AbstractInterface instance will be displayed

when the element is activated;
transitionInterface: It indicates which AbstractInterface instance will be displayed

during the operation referenced by the property fromOperation;
visualizationText: It represents a value that should be displayed by the element.

However, to capture the dynamic aspects of a widget, the ontology should be able

to define some concepts present in the formalism of the ADV-Charts (a generalization
of StateCharts [4] and ObjectCharts [5]), such as states, transitions and events. Thus,
the Abstract Widgets Ontology was extended to include the following classes:

Transition: this class represents the changes of state in the interface;
RhetoricalStructure: represents a set of animations;

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

18

Animation: a change on the interface elements, which happens during a transition
or in response to an event:

InsertElement: is an entrance animation, for the insertion of an element
belonging to the destination state. It indicates the emergence of a new element
during the transition;

RemoveElement: is an exit animation, for the removal of an element belonging
to the current state. It indicates the absence of the element in the destination state;

MatchElements: is a maintenance animation, which performs transformations
to match the parameters of an element in the current state and another in the
destination state. It indicates the presence of the element in the two states of a
transition;

TradeElements: is a substitution animation, which performs the transformation
of an element in the current state into another in the destination state. It indicates
a relationship between the elements;

EmphasizeElement: is an animation to highlight an element, altering it as a
way to to emphasize it during the transition. It indicates that an action is being
performed.

Event: the occurrence of an action on an interface element:
onActivate: indicates that a SimpleActivator was activated;
onBlur: indicates that a data entry element lost focus;
onFocus: indicates that a data entry element got focus;
onHover: indicates that a mouse pointer was moved over an element;
onChange: indicates that a data entry element lost focus after its content has

been modified;
onSelect: indicates that the text in a data entry element was selected;

Some properties defined for these new classes are:
afterAnimation: It states the sequence in which the animations occur within a

rhetorical structure;
afterRhetoricalStructure: It states the order in which the rhetorical structures occur

within a transition;
effect: It indicates the effect presented by an animation;
fromInterface: It indicates the initial interface of the transition;
hasAnimations: It indicates which animations compose a rhetorical structure;
hasElement: It indicates which element takes part in the animation;
hasRhetoricalStructures: It indicates which rhetorical structures compose a

transition;
hasTargetElement: It indicates which element in the destination state takes part in

the animation;
onElement: It indicates the element on which the event occurs;
onEvent: It indicates the event that triggers an animation sequence;
parameters: It indicates the animation effect parameters;
toInterface: It indicates the final interface of the transition.

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

19

Fig. 2. Animations Class Diagram

2.2 Extended Concrete Widgets Ontology

This ontology describes classes of concrete interface elements, available in different
application environments, namely:

ConcreteInterfaceElement: instances of this class represent the elements available
in web applications interfaces, for example, the elements of an HTML page. It has the
following subclasses:

Label: represents concrete elements that display text;
Image: represents concrete elements that display pictures;
Composition: represents compositions of concrete elements;
Table: represents concrete elements that display tabular data;
TableHeader: represents a table header;
TableBody: represents a table body;
TableFooter: represents a table footer;
TableRow: represents a table row;
TableCell: represents a table cell;
Form: represents compositions of data entry fields;
TextArea: represents a data entry field with n rows and m columns;
TextBox: represents a data entry field with one row and n columns;
CheckBox: represents a data entry field that can hold only two possible values:

selected or not selected. When we use groups of elements of this kind, it is
possible to select more than one at a time;

ComboBox: represents a data entry field that holds a list f options;
RadioButton: represents a data entry field that can hold only two possible

values: selected or not selected. When we use groups of elements of this kind, it
is possible to select just one at a time;

Link: represents web navigation links;
Button: represents concrete elements that can trigger an action.

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

20

The ontology defines the following properties for these classes:
HTMLtag: It indicates the HTML tag that will be used in the default translation of

a specific element;
sortable: It indicates if the table is sortable.

2.3 Mapping Abstract Widgets into Concrete Widgets

The Abstract Widgets Ontology also provides vocabulary that allows you to map
AbstractInterfaceElement and AbstractInterface instances into
ConcreteInterfaceElement instances. This can be used to automate the generation of
concrete interfaces.

In order to ensure that an abstract interface description will be translated into a
piece of valid HTML code, some consistency rules were also defined. They constrain
which concrete elements can represent an abstract one (mapsTo relationship), and
which HTML tags can represent a concrete element. (concreteElement property).

2.4 Mapping Data Objects into Abstract Widgets

As we have already mentioned, the abstract interface design describes how users will
perceive and interact with the application data objects. Therefore, the specification of
abstract widgets must be able to express the mapping between corresponding
elements in model and view layers.

Based on the SHDM primitives, we propose the extension of the Abstract Widgets
Ontology with the following properties:

fromAttribute: It indicates which attribute in the SHDM navigational ontology
corresponds to the abstract element;

fromClass: It indicates which class in the SHDM navigational ontology
corresponds to the abstract element;

fromContext: It indicates which context in the SHDM navigational ontology the
nodes displayed in the interface belongs to;

fromIndex: It indicates which index in the SHDM navigational ontology will be
displayed in the interface;

fromOperation: It indicates which operation in the SHDM navigational ontology
will be triggered by the abstract element.

2.5 An Abstract Interface Modeling Example

Consider a web application that is meant to help users compare prices from leading
travel agencies. After users provide information about destination and departure date,
the application queries a set of travel operators about packages prices and displays the
results in a list ordered by price.

The concrete interface showing which partners are being queried as well the
available results may look like Figure 3.

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

21

It displays two lists whose items are travel agencies’ logos. An item is moved from
one list to another as the query to a partner’s web service is answered. Let us see how
both interface’s structure and behavior can be modeled using the described ontology.
We use an XML syntax to write the abstract interface description.

Fig. 3. Sample Concrete Interface2

The following listing is the abstract interface description. It defines two lists –
QueryResultsList and AvailableAgenciesList – whose items are compositions of
displaying widgets (CompositeInterfaceElements) that represent PackagePrice and
AvailableAgency data objects respectively. But we also need to map these abstract
elements into concrete ones, which is made by setting the mapsTo property.

<AbstractInterface name="PriceComparison"
mapsTo="Composition" >

 <CompositeInterfaceElement name="QueryResultsList"
mapsTo="Composition" >

 <CompositeInterfaceElement name="PackagePrice"
mapsTo="Composition" fromClass="TravelPackage" >

 <ElementExhibitor name="PackageAgencyLogo"
mapsTo="Image" fromAttribute="pckgAgencyLogo" />

 <ElementExhibitor name="PackageAgencyPrice"
mapsTo="Label" fromAttribute="pckgAgencyPrice" />

 </CompositeInterfaceElement>

 </CompositeInterfaceElement>

 <CompositeInterfaceElement
name="AvailableAgenciesList" mapsTo="Composition" >

 <CompositeInterfaceElement name="AvailableAgency"
mapsTo="Composition" fromClass="TravelAgency" >

2 http://www.alibabuy.com/

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

22

 <ElementExhibitor name="AgencyLogo" mapsTo="Image"
fromAttribute="agencyLogo" />

 </CompositeInterfaceElement>

 </CompositeInterfaceElement>

 </AbstractInterface>

We will not discuss the data object mapping for this example, but focus on the
dynamic aspects of such an interface. We need to specify the animation that must take
place when a new item is inserted in the QueryResultsList composition. This is a
maintenance animation (MatchElements) between the AvailableAgency (from) and
PackagePrice (to) widgets, which presents a Switch effect to the user, i.e., the first
widget is faded out while the last is faded in. This could be accomplished by the
following Transition specification:

 <Transition name="QueryResponse"
toInterface="PriceComparison">

 <RhetoricalStrucure name="QueryResult">

 <MatchElements name="MovingItemsAnimation"
parameters="duration: 3.0" effect="switch">

 <AbstractInterfaceElement
name="PackagePrice" />

 <AbstractInterfaceElement
name="AvailableAgency" />

 </MatchElements>

 </RhetoricalStrucure>

 </Transition>

3 Ontology Driven Web-Based User Interface Generation

Once we have defined a language for abstract interfaces description, it is possible to
build a compiler for this language, capable of generating the code for concrete
interfaces. An abstract interface is a high level representation of the interactions
between the user and application. The concrete interface is a representation of the
interface widgets that takes into account the technology used. In the particular case of
the Web-Based User Interface Generator described in this work, the concrete
interfaces are represented in XHTML + RDFa3

The compilation of an abstract description generates concrete interfaces; however,
there are some references that can only be resolved at runtime. For example, the
specification of a SimpleActivator may define that the target interface (targetInterface
property) should be loaded within a widget in the current interface (loadTarget

3 RDFa stands for Resource Description Framework attributes, a set of extensions to the

XHTML language, proposed by the W3C consortium, to express structured data.[6]

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

23

property). Rendering a concrete interface as an HTML page and resolving such
references are functions of the Concrete Interface Renderer.

The concrete interfaces representation language is XHTML/RDFa. RDFa attributes
are used to express the mapping between interface widgets and application
components: typeof RDFa attribute translates fromClass CompositeInterfaceElement
property, while property RDFa attribute translates fromAttribute
AbstractInterfaceElement property.

Since most concrete widgets may not be supposed to display a constant value, but
only hold the reference to an attribute in the application data model, the concrete
interfaces need a runtime environment capable of resolving these references
dynamically. The system component responsible for providing the execution
environment for the concrete interfaces is called Web User Interface Runtime (WUI-
Runtime).

Fig. 4. System Architecture

The Concrete Interface Interpreter runs on the WUI-Runtime client side and it is
responsible for interpreting the semantic annotations in the HTML pages rendered by
the system. These annotations are provided by the RDFa code and they indicate, for
instance, which data object should be displayed in the interface or which operation of
the model should be triggered when an event occurs at the interface. Thus, after the
HTML page is loaded on the client side, a set of Javascript functions should request
the actual data and present them using the HTML annotated code as display template
for the objects. This Javascript library is also responsible for performing animations in
response to interface changes and events.

The concrete interfaces runtime machine also introduces a message queue-based
protocol for asynchronous communication between the model and view layers. Using
this architecture, the client is able to consume the partial results of a request
processing. This is achieved by the implementation of a Transaction concept, which
replaces the traditional request/response cycle between client and server.

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

24

In a conventional web application, when the client makes a request, we feel the
effect of a synchronous call, i.e., the user has to wait for the page to be refreshed
before being able to interact with the application again. On the other hand, Ajax
technology allows asynchronous communication between client and server, which
prevents the user from having to hold on at each request. However, using transactions,
it is possible to achieve an even higher degree of asynchronicity.

A transaction occurs inside the context of an HTTP session, and is represented by a
unique identifier, with a FIFO data structure attached. Responses generated by the
execution of a query or operation in the model are queued there. The runtime
environment needs, therefore, a server side component for the management of
transactions: the generation of identifiers and the insertion/removal of elements in the
response queue.

Fig. 5. Transaction Conceptual Scheme

Sending a request characterizes the beginning of a new transaction. However, the
method executed by the application does not send a response directly to the client. In
fact, it will store the results of its execution in the transaction response queue. In
addition, after sending the request, the client starts a loop to consume the results as
soon as they become available in the response queue. This makes it possible to track
the execution of an action by its partial results – without having to wait until the
whole processing has been completed before receiving any return. The format for the
data interchange follows the JavaScript Object Notation (JSON).

3.1 A Concrete Interface Generation and Execution Example

Let us return to our previous airfare comparison web site example. We have already
discussed how we can model the structure and the behavior of an interface that
displays the results of a query for travel packages prices. Now it’s time to consider the
data object mapping for the interface widgets. Since the lists’ items in Fig. 3 represent
travel agencies and travel packages (AvailableAgency and PackagePrice), they have
to be mapped into the TravelAgency and TravelPackage classes respectively
(fromClass property). The ElementExhibitor widgets are mapped into the
corresponding classes attributes (fromAttribute property).

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

25

Compiling the abstract interface description will generate a piece of
XHTML+RDFa code that is just a display template for the agencies and packages:

 <div id='QueryResultsList'>

 <div id='PackagePrice' style='display: none'
typeof='TravelPackage'>

 <img id='PackageAgencyLogo'
property='pckgAgencyLogo' src='#'
alt='pckgAgencyLogo'/>

 <p id='PackageAgencyPrice'
property='pckgAgencyPrice'> pckgAgencyPrice </p>

 </div>

 </div>

 <div id='AvailableAgenciesList'>

 <div id='AvailableAgency' style='display: none'
typeof='TravelAgency'>

 <img id='AgencyLogo' property='agencyLogo'
src='#' alt='agencyLogo'/>

 </div>

 </div>

The sequence diagram in Figure 6 shows the interaction between the WUI-
Runtime and the web application. The user submits a form and, in response, the
Concrete Interfaces Interpreter initiates a transaction for the “List Packages Prices”
request. Then, the application provides the available travel agencies list and starts to
query each of them (“Query Package Price” loop). As the queries are answered, the
results are queued, instead of sent to the client. Within the “Pop Response” loop, the
client-side WUI-Runtime component will use the semantic annotations in the concrete
interface code (typeof and property RDFa attributes) as a mapping between the actual
data objects and the interface widgets. Due to the asynchronous communication and
since our sample interface is meant to present both the progress and the results of an
action performed by the application, the Javascript library will create one HTML
image and one HTML paragraph element for every travel agency that answers the
query as soon as the response is available. Otherwise, the user would not see any
result until all the agencies had answered the queries.

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

26

Fig. 6. Transaction Sequence Diagram

4 Conclusion

The Abstract Widgets Ontology proposed by [3] provides a formalism to express both
the structure and the layout of an interface, and which data object properties should be
presented. This work contribution is to extend that ontology with a vocabulary
capable of modeling the interface behaviour, not only its structure. It also introduces
the transaction concept which relies on asynchronous communication, but can also
enhance it.

References

1. Cowan, D.; Lucena, C.: Abstract Data Views: An Interface Specification Concept to
Enhance Design for Reuse. In: IEEE Transactions on Software Engineering Volume 21,
Issue 3 (1995)

2. Schwabe, D.; Rossi, G.: The Object-Oriented Hypermedia Design Model (OOHDM),
http://www.telemidia.pucrio.br/oohdm/oohdm.html

3. Moura, S.: Desenvolvimento de Interfaces para Aplicações Hipermídia na Web Semântica.,
http://www.tecweb.inf.puc-
rio.br/autoria/space/Arquivos/Interface+Abstrata+%28Sabrina%29.ppt

4. Antunes, D. C.: Statecharts. Bate Byte Magazine, Issue 36 (1994)
5. Coleman, D.; Hayes, F.; Bear, S.: Introducing Objectcharts or How to Use Statecharts in

Object-Oriented Design. In: IEEE Transactions on Software Engineering Volume 18, Issue
1 (1992)

6. Adida, B.; Birbeck M.: RDFa Primer. Bridging the Human and Data Webs,
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014

IWWOST 2009 | Papers June 23, 2009 | San Sebastian, Spain

27

