
1

Knowledge about lights along a line
François SCHWARZENTRUBER

Abstract—In this article, we are going to talk about spatial sit-
uations. Every agent (human, camera etc.) and every proposition
(lamp, object, etc.) are located in the space (here a line) and we
express properties over a situation using standard epistemic logic
language possibly extended with public announcements. We study
links between validities of this geometricalversion of epistemic
logic and the standard one. We also investigate complexities of
model checking and satisfiability.

Keywords: Multi-agent system. Epistemic logic. Spatial rea-
soning. Public announcements. Pedagogical tool. Complexity
theory. Polynomial hierarchy.

I. I NTRODUCTION

Many authors in logic and in Artificial Intelligence [5]
developed epistemic logic and studied mathematical properties
of it. Epistemic logic is theoretical and may be difficult to
explain to students. This is the reason why in this article we
are going to study a concrete example of multi-agent system.
Let us take a line. We are going to put lamps and agents
on this line as shown in the Figure 1. Now the question is
“what do agents know about lamps and knowledge of other
agents about lamps”? This system has been implemented as
a pedagogical tool in order to illustrate any epistemic logic
course. Indeed, students can easily understand some epistemic
logic on concrete examples:

• Agent a sees the lampp on, so he knowsp;
a

☼
p

• Agent a does not see the lampp, so he does not know

whetherp or ¬p;
☼
p a

• Agent a sees another agentb seeing the lampp on, so

agenta knows agentb knowsp;
a b

☼
p

• Agent a sees another agentb, and the lampp, but agent
a sees that agentb is not looking in the direction of the
lampp, so agenta knows agentb does not know whether

p or ¬p;
a

☼
p b

• Agenta and agentb are looking at each other and there is
the lampp between them, so there is common knowledge
that p is true. This kind of situations have already been

considered in [8].
a

☼
p b

This approach can be compared to the approach in [2] for
first order logic. In [2], you put objects like cube, pyramids
and you can then write formulas in first order logic to check
properties over those objects. Here the approach is similar:

you put agents and lamps and then you can write formulas in
epistemic logic to check whether properties over those agents
and lamps are true.

Generally speaking many examples of epistemic situation
mix time and space. The link between time and knowledge
(perfect recall etc.) has been studied and you can find a
survey in [3]. There exists also some work linking space and
knowledge like in [10]: they provide a logic with a spatial
modal operator dealing with topology and an epistemic modal
operator. Here, our approach is different: we want to deal
with a spatially grounded epistemic logic. We are not going to
provide operators in the language to deal with space but only
provide an epistemic operator for each agent in the language.
The semantics will then directly rely on the geometrical
properties of a line. We would like to describe a situation
but directly by the graphical and natural representation of the
system and not with a Kripke structure. We can formalize well
known toy examples as Russian cards [13], Muddy children
([4], [11], [3]) or the prisoner’s test. For instance:
• The Muddy children. The spatial configuration

is the following: two children are looking at
each other. One knows the other’s forehead
is dirty. But one does not know he is

dirty.
☼

a’s forehead_dirty a b
☼

b’s forehead_dirty

• The prisoner’s test. There are three prisoners on a
line. Each prisoner must guess the color of his head.

☼
pr1’s head pr1

�
pr2’s head pr2

☼
pr3’s head pr3

Another motivation would be video surveillance. Proposi-
tions are objects we have to take care of. Agents are camera.
We then can specify the video surveillance with epistemic
logic formulas. Another possible application may be robots’
space and knowledge reasoning because robots evolve in
our spatial world. A last application could be video games.
In many role playing games or strategy games, players or
non-playing characters can have knowledge about the virtual
world. The behaviours of a non-playing character can then
be described by the game designer using a knowledge based
programming language. For instance, the designer can specify
that the guardian of the castle gets crazy if he knows that
the door of the castle is open. A preliminary work about
formalizing the video game Thief has been done in [7].

A piece of software is available on the Web Site http://www.
irit.fr/~Francois.Schwarzentruber/agentsandlamps/. It provides
a model-checker: you specify the graphical situation and a
formula written using epistemic modal operators and/or public
announcements operators. In this article:

2

• We are going to present the semantics of the geometric
version of epistemic logic in section II;

• We are going to deal with the model checking and
satisfiability problems’ complexities in section III;

• In section IV, we will add public announcements to our
language to model examples like Muddy children;

• In section V, we are going to present the current imple-
mentation.

II. SEMANTICS

We are going to define a new logic based on the same
language than the epistemic logicS5n [5]. S5n is the logic of
frames where relations are equivalence relations. Here we are
defining a logic where the semantics is based on a geometric
point of view.

A. Language

Our logic is based on the same language asS5n’s one. Let
us recall the language of the epistemic logicS5n [5].

Definition 1 (language):
Let ATM be a countable set of atomic propositions. LetAGT
be a countable set of agents. The languageLAGT is defined by
the following BNF:

ϕ ::= > | p | ϕ ∧ ϕ | ¬ϕ | Kaψ

wherep ∈ ATM anda ∈ AGT.
As usual,ϕ ∨ ψ =def ¬(¬ϕ ∧ ¬ψ). K̂aψ =

def ¬Ka¬ψ.
Notice that we can only deal with knowledge (operator

Ka) and states of lamps (propositionp is true means that
the lamp calledp is on) in the language. One may expect
to deal also with position of lamps, position of agents or
maybe spatial topologic operator like in [10] etc. This may
be very interesting, especially in all applications cited in the
introduction. For instance, we can not express a sentence like
“the guardian knows that the beetle isnear the old man.” but
we can say “The guardian knows that the beetle knows the
old man’s hat is red.” (KguardianKbeetleold_man_red) Here
we have preferred to keep the language of classical epistemic
logic for two reasons:
• a pedagogical tool for understanding epistemic logic

should be simple and should have a simple syntax;
• to focus on complexity results with the simple expressiv-

ity asS5n.

B. Definitions

The semantics is not defined with a class of models but
directly from what a concrete situation is. From this, we
will obtain a spatially grounded epistemic logic. Aworld
is situation where all agents have alocation (position and
direction where they look), alllamps (atomic propositions)
have alocation and astate(on or off). Formally:

Definition 2 (world):
A world w is a tuple〈pAGT, dAGT, pATM , π〉 where:
• pAGT : AGT→ R;
• dAGT : AGT→ {−1,+1};
• pATM : ATM → R;

1

☼
p1 2

�
p2 3

☼
p3

Fig. 1. Example of a world

• π : ATM → {⊥,>}.
The set of all worlds is notedW .

In a world〈pAGT, dAGT, pATM , π〉, pAGT(a) denotes the posi-
tion of agenta. dAGT(a) denotes the direction where the agent
a looks: if dAGT(a) = +1, the agenta will look on the right and
if dAGT(a) = −1, he will look on the left.pATM (p) denotes the
position of the lamp saying whetherp is true or not.π(p) = >
iff the lamp “p” is on. π(p) = ⊥ means that the lamp “p” is
off.

We have defined a world in the more close to the reality
manner: that is to say using the real numbers. We could also
consider locations of agents and lamps as a total preorder over
ATM ∪AGT. Considering a total preorder is discussed at the
end of this section and total preorder is used in Section III.
Here we prefer to use the Definition 8 whose advantage is that
it can be easily generalized to dimensionn ≥ 2: you just have
to replaceR by Rn and to adapt the notion of direction. In
dimension 2 or more, total preorders can no longer be used.

We can also discuss the Definition 8 by the way propositions
are treated. Here, a propositionp is associated to a point
pATM (p). This seems to be the simple way to define the
semantics. But be aware that in some cases this is a limitation:
• Maybe a propositionp can be associated to a set of points.

For instance, if you are at home, you can know it rains
either by looking towards the window of the leftL or the
window of the rightR. Hence, here the propositionrain
may be associated to the set of points{L,R};

• Maybe you want that a lamp is associated not to a
proposition but more generally to a formula. For instance,
when you know that the alarm system located on pointP
is on, you in fact know that either there is an oil problem
or overheating. Hence, here the point is associated to the
formula oil_problem ∨ overheating.

Here we stay with the simple definition for two reasons:
• it is easier for a pedagogical tool to have a simple and

clear semantics;
• it is easier for us to begin study a simple case.
Definition 3 (cone):

Let us consider a worldw = 〈pAGT, dAGT, pATM , π〉. We note
cone(a) the set{pAGT(a) + λ.dAGT(a) | λ ∈ R+}.
cone(a) denotes all the set of points the agenta sees.

Example 1:The Figure 1 gives us an example of a world
w. We have:
• pAGT(1) = 0; pAGT(2) = 2; pAGT(3) = 4;
• dAGT(1) = +1; dAGT(2) = −1; dAGT(3) = −1;
• pATM (p1) = 1; pATM (p2) = 3; pATM (p3) = 5;
• π(p1) = >;π(p2) = ⊥;π(p3) = >;
• cone(1) = [0,+∞[;
• cone(2) =]−∞, 2];

3

• cone(3) =]−∞, 4].

Now we are going to define the epistemic relation over worlds.
wRau means that agenta can not distinguishw from u. In
other words,wRau iff agenta sees the same things inw and
u. Formally:

Definition 4 (epistemic relation):
Let a ∈ AGT. We define the relationRa over worlds:
〈pAGT, dAGT, pATM , π〉Ra〈p′AGT, d

′
AGT, p

′
ATM , π

′〉 iff for all b ∈
AGT, for all p ∈ ATM ,
• if pAGT(b) ∈ cone(a) then

pAGT(b) = p
′
AGT(b) anddAGT(b) = d

′
AGT(b);

• if pAGT(b) 6∈ cone(a) thenp′AGT(b) 6∈ cone(a);
• if pATM (p) ∈ cone(a) then

pATM (p) = p
′
ATM (p) andπ(p) = π′(p)

• if pATM (p) 6∈ cone(a) thenp′ATM (p) 6∈ cone(a).
Briefly, suppose thatwRau. If agenta see the agentb in the

world w, then he will also see agentb in world u and agentb
will have the same location (position and direction). If agent
a does not see agentb in the worldw, then he also does not
see agentb in u. If agenta see the lampp in the worldw,
then he will also see the lampp in world u. The lamp will
have the same position and state both inw andu. If agenta
does not see the lampp in w, then he will also not see the
lamp p in u.

Until now, we have finally defined a modelM =
〈W, (Ra)a∈AGT, ν〉 whereν maps each worldw ∈ W to πw.
From now, the truth conditions is standard:

Definition 5 (truth conditions):
Let w ∈W . We definew |= ϕ by induction:
• w |= >;
• w |= p iff π(p) = >
• w |= ϕ ∧ ψ iff w |= ϕ andw |= ψ;
• w |= ¬ϕ iff w 6|= ϕ;
• w |= Kaψ iff for all w′, wRaw′ impliesw′ |= ψ.

C. Comparison with epistemic logic

Now we are going to compare the epistemic logicS5n and
the set of validities we obtain with the truth conditions of
Definition 12. First we give the definition of validities.

Definition 6 (set of validities):
We denote the set of all validities byL☼1D , that is to say,
L☼1D = {ϕ ∈ LAGT | ∀w ∈W,w |= ϕ}.

In “L☼1D ”, “ 1D” stands for “one dimension” (a line). Now,
we can see that our setL☼1D contains all validities ofS5n.

Proposition 1: S5n ⊆ L☼1D .
Proof: We prove that for alla ∈ AGT, the relation

Ra is an equivalence relation. Hence, the modelM
is a model of the logic S5n and satisfies validities
of S5n. We have to prove reflexivity, symmetry and
transitivity. Let us just begin to prove transitivity. Suppose
we have: 〈pAGT, dAGT, pATM , π〉Ra〈p′AGT, d

′
AGT, p

′
ATM , π

′〉
and 〈p′AGT, d

′
AGT, p

′
ATM , π

′〉Ra〈p′′AGT, d
′′
AGT, p

′′
ATM , π

′′〉. Let us
prove that〈pAGT, dAGT, pATM , π〉Ra〈p′′AGT, d

′′
AGT, p

′′
ATM , π

′′〉.
First we havepAGT(a) ∈ cone(a). SopAGT(a) = p

′
AGT(a) =

p′′AGT(a) and dAGT(a) = d′AGT(a) = d′′AGT(a). In other words,
cone(a) = cone′(a) = cone′′(a).

From now on, ifpAGT(b) ∈ cone(a), thenpAGT(b) = p
′
AGT(b)

and dAGT(b) = d′AGT(b). But, we have effectivelly,pAGT(b) =
p′AGT(b) and cone(a) = cone′(a). So p′AGT(b) ∈ cone

′(a). So
p′AGT(b) = p

′′
AGT(b) andd′AGT(b) = d

′′
AGT(b). Finally, pAGT(b) =

p′′AGT(b) anddAGT(b) = d
′′
AGT(b). The other cases are treated in

the same manner.
The semantics ofKap in L☼1D corresponds to the fact

that the agenta sees the lightp and the lightp is on. More
generally,Kaψ means that the agenta has the proof thatψ.
That is why we have those validities inL☼1D :

Proposition 2: Let p, q ∈ ATM .
|=L☼1D K1(p ∨ q)→ K1p ∨K1q.
|=L☼1D K1(¬p ∨ ¬q)→ K1¬p ∨K1¬q.
If p 6= q, |=L☼1D K1(p ∨ ¬q)→ K1p ∨K1¬q

Proof: Let us prove|=L☼1D K1(p ∨ q) → K1p ∨ K1q.
Let w = 〈pAGT, dAGT, pATM , π〉 be a world such thatw |=
K1(p ∨ q). We are going to prove that eitherw |= K1p or
w |= K1q. We havepATM (p) ∈ cone(1) or pATM (q) ∈
cone(1). Indeed, if we suppose the contrary, that is to say
pATM (p) 6∈ cone(1) and pATM (q) 6∈ cone(1), there exists a
world u = 〈pAGT, dAGT, pATM , π

′〉 such thatπ′(p) = ⊥ and
π′(q) = ⊥ andwR1u. Hence,w 6|= K1(p∨ q). Contradiction.
So pATM (p) ∈ cone(1) or pATM (q) ∈ cone(1). For instance,
pATM (p) ∈ cone(1). And for all u ∈ R1(w), πu(p) = >. So
w |= K1p. The other cases are treated in the same manner.

Informally, K1(p ∨ q) means that agent1 has a proof that
p ∨ q. In other words, either he seesp on, or he seesq on.
Hence, eitherK1p orK1q. Nevertheless,K1(ϕ∨ψ)→ K1ϕ∨
K1ψ is not valid inL☼1D .

Notice that there are crucial differences betweenS5n and
L☼1D :
• S5n is defined as the logic of aclassof frames and has

the property of uniform substitution. If|=S5n ϕ[p], we
have|=S5n ϕ[ψ/p] for every formulaψ ∈ LAGT;

• On the contrary (see Definition 12),L☼1D is defined
as the set of formulas valid onone model: the model
M. As the definition ofRa (Definition 4) depends on
worlds, and especially on valuations, it is not surprising
that L☼1D does not have the property of uniform sub-
stitution. A just one model semantics may seem a poor
pedagogical application. But, the modelM is big (if AGT
and ATM are finite, the size ofM is exponential in
card(ATM ∪ AGT). In fact, you can imagine the model
M to be a kind of canonical model. The modelM is
made up with many connected components. For instance,
Figure 2 and 8 show two connected components of the
modelM.

Now, here is a Proposition showing that we can have
common knowledge only whenK1K2p ∧K2K1p.

Proposition 3: We have:
|=L☼1D K1K2p ∧ K2K1p → K1K2K1 . . .K2 . . . p where

“K1K2K1 . . .K2 . . . ” denotes any finite sequence ofK1 and
K2.

Proof: Let w = 〈pAGT, dAGT, pATM , π〉 be world such
that w |= K1K2p ∧ K2K1p. We want to prove thatw |=
K1K2K1 . . .K2 . . . p. We are going to prove that:
• pAGT(2) ∈ cone(1);

4

• pAGT(1) ∈ cone(2);
• pATM (p) ∈ cone(1);
• pATM (p) ∈ cone(2).
Let us provepATM (p) ∈ cone(1) by contradiction. Suppose

that pATM (p) 6∈ cone(1). Thus there exists a worldw′ =
〈p′AGT, d

′
AGT, p

′
ATM , π

′〉 such thatwR1w′ andπ′(p) = ⊥.
We havew′ 6|= p so w′ 6|= K2p. So w 6|= K1K2p.

Contradiction.
Same proof forpATM (p) ∈ cone(2).
Let us prove thatpAGT(2) ∈ cone(1) by contradiction.

Suppose thatpAGT(2) 6∈ cone(1). Thus there exists a world
w′ = 〈p′AGT, d

′
AGT, p

′
ATM , π

′〉 such thatw R1w
′ and d′AGT(2)

is such thatpATM (p) 6∈ cone′(2). Thus, there exists a world
w′′ = 〈p′′AGT, d

′′
AGT, p

′′
ATM , π

′′〉 such thatw′R2w′′ andπ′′(p) =
⊥. Sow′ 6|= K2p. Hencew 6|= K1K2p. Contradiction.

Same proof forpAGT(1) ∈ cone(2).
Now we can prove by induction onn that for n ∈ N, for

all u ∈ (R1 ◦R2)n(w), we have:

• pAGT(2) ∈ cone(1);
• pAGT(1) ∈ cone(2);
• pATM (p) ∈ cone(1);
• pATM (p) ∈ cone(2).
• π(p) = >.

Hencew |= K1K2K1 . . .K2 . . . p.

The validity K1K2p ∧ K2K1p → K1K2K1 . . .K2 . . . p
expresses that ifK1K2p ∧K2K1p then the state of the lamp
p is the topic of amutual social perception, studied in [8].

Corollary 1: If n ≥ 2 or card(ATM) ≥ 2, S5n (L☼1D .
Proof: The formulaK1(p∨q)→ K1p∨K1q andK1K2p∧

K2K1p→ K1K2K1p are inL☼1Dbut are not valid inS5n.
More surprising is the fact that common knowledge is not

guaranteed byK1K2ϕ ∧ K2K1ϕ for all ϕ. More precisely,
K1K2ϕ ∧K2K1ϕ→ K1K2K1ϕ is notL☼1D -valid for all ϕ.
Look at the model of the Figure 2: agent 1 = agent in blue.
agent 2 = agent in red. Consider the world on the bottom
on the right. Let us call itw. We havew |= K1K2¬K2p ∧
K2K1¬K2p. But, we havew 6|= K1K2K1¬K2p. Indeed there
existsw′ such thatwR1 ◦R2 ◦R1w′ such thatw′ |= K2p.

Nevertheless, there are other formulas where it remains true.
For instance, we have|=L☼1D K1K2K3p ∧ K2K1K3p →
K1K2K1 . . .K2 . . .K3p.

Question 1:What aboutK1K2ϕ ∧K2K1ϕ → K1K2K1ϕ
if ϕ do not contain agent 1 or 2? Do we have a characterisation
or exhibit an interesting set of formulasϕ such thatK1K2ϕ∧
K2K1ϕ→ K1K2K1ϕ holds?

D. A compact representation

Last but not the least, you can remark that if we want
to deal with model-checking, satisfiability problem and other
algorithmic problems, we need a compact representation that
an algorithm can manipulate. Worlds are difficult to manip-
ulate: in particular, it is unadapted thatRa(w) is infinite
given a agenta and a worldw. According to the Definition
8, the setW is infinite. Nevertheless, the semantics do not
depend on positions of lamps and agents but only on how

�

� �

Fig. 2. Some worlds of the modelM

they are ordered on the line. For instance,
☼
p a and

☼
p a stands for the same world. We can

define the notion ofdescription of a worldw: it is simply a
total preorder over all propositions and agents appearing in a
formula, plusdAGT andπ. Notice that we can do this because
the space is a line. If our space wereRn (n ≥ 2), the notion
of total preorder would unfortunately not be suited anymore.

Definition 7 (description of a world):
A description of a worldw is a tuple〈<, dAGT, π〉 where:

• ≤ is a total preorder overAGT∪ATM ;
• dAGT : AGT→ {−1,+1};
• π : ATM → {⊥,>}.
We can also define the epistemic relation between two

description of a worldw:

Definition 8 (epistemic relation):
Let a ∈ AGT. We define theepistemic relationRa on the set
of descriptions of worlds bywRav iff:

• if dAGT(a) = +1,

– for all x ∈ AGT∪ATM , (x ≤w a iff x ≤v a);
– for all x, y ∈ AGT∪ ATM such thata ≤w x and
a ≤w y, we have (x ≤w y iff x ≤v y);

– for all x ∈ AGT, a ≤w x implies dAGTw(x) =
dAGTv(y);

– for all x ∈ ATM , a ≤w x implies πw(x) = πv(y).

• if dAGT(a) = −1,
– for all x ∈ AGT∪ATM , (x ≥w a iff x ≥v a);
– for all x, y ∈ AGT∪ ATM such thata ≥w x and
a ≥w y, we have (x ≥w y iff x ≥v y);

– for all x ∈ AGT, a ≥w x implies dAGTw(x) =
dAGTv(y);

– for all x ∈ ATM , a ≥w x implies πw(x) = πv(y).

5

In the same way, we can define an epistemic model. We
can define truth conditions of a formulaϕ in LAGT over the
set of descriptions of worlds, using the epistemic relation. We
can prove that we obtain the same validities.

Definition 9 (extracting description of world from a world):

Given a world w, we define the description of world
d(w) by:

• for all x, y ∈ AGT∪ ATM , x ≤d(w) y iff p(x) ≤R p(y)
wherep(x) stands forpAGT(x) if x ∈ AGT or pATM (x)
if x ∈ ATM ;

• dAGTw = dAGTd(w);
• πw = πv.

Proposition 4: For all w ∈ W , for all ϕ ∈ LAGT, w |= ϕ
iff d(w) |= ϕ.

Proof: By induction onϕ.
In the case of one dimension, we simply rewrite mapping

from ATM or AGT to real numbers into a total preorder over
ATM ∪AGT. In the case of two or more dimensions, it is an
open problem how to represent a world in a compact way.

III. M ODEL-CHECKING AND SATISFIABILITY PROBLEM

For definitions for complexity class and for more details
about the problem QSAT (quantified boolean formulas satisfi-
ability problem), the reader may refer to [9].

A. Definitions

Now we are going to recall the classical problem of model-
checking and satisfiability. The problem of model-checking
consists on testing if a given formulaϕ is true in a given
world w. Satisfiability problem consists to test if there exists
a worldw in which a given formulaϕ is true.

Definition 10 (model-checking ofL☼1D
AGT,ATM):

Let AGT be a set of agents andATM a set of atoms. We
call model-checking ofL☼1D

AGT,ATM problem the following
problem:

• Input: a formulaϕ ∈ LAGT, a description of a worldw
where only atoms and agents occurring inϕ are given;

• Output: Yes iff we havew |=L☼1D ϕ. No, otherwise.

In the previous Definition, we give a description of a world
w that is to say a total preorder over all agents and propositions
occurring inϕ where we say for each agent if he is look on
the left or on the right and for each proposition if it is true
or not. We do not care about propositions or agents not in the
formulaϕ. The description ofw is thenfinite.

Definition 11 (L☼1D
AGT-satisfiability problem):

Let AGT be a set of agents. We callL☼1D
AGT-satisfiability

problem the following problem:

• Input: a formulaϕ ∈ LAGT;
• Output: Yes iff there exists a worldw such thatw |=L☼1D
ϕ. No, otherwise.

function check(w,ϕ)
match (ϕ)

>:
return >;

p ∈ ATM :
return > if p is true inw;
return ⊥ if p is false inw;

ψ1 ∧ ψ2:
return check(w,ψ1) ∧ check(w,ψ2);

¬ψ:
return ¬check(w,ψ);

Kaψ:
for u ∈ Ra(w) do

if check(u, ψ) = ⊥ then
return ⊥;

endIf
endFor
return >;

endMatch
endFunction

Fig. 3. A PSPACE-algorithm for model-checking ofL☼1DAGT

B. PSPACE-ness upper-bound of the two problems

In this subsection, we are going to give PSPACE-ness
upper-bound of the model checking problem and also of the
satisfiability problem. As you will see, the proof are directly
given with algorithms using a polynomial amount of memory
(Figures 3 and 4).

Proposition 5: Let AGT be any set of agents. The model-
checking ofL☼1D

AGT problem is in PSPACE.
Proof:

You can take a look at the recursive algorithm of Figure 3.
We have to prove three points: terminaison, correctness and
PSPACE-ness.

1) First let us prove terminaison by induction onϕ. Let
T (ϕ) be the property “for every worldw, the call
check(w,ϕ) terminates”.

• check(w,>) andcheck(w, p) terminates. SoT (>)
andT (p);

• Let us prove thatcheck(w,Kaψ) terminates. By
induction, T (ψ) so every callcheck(u, ψ) termi-
nates. So the callcheck(w,Kaψ) terminates and
T (Kaψ);

• Other cases are treated in the same manner.

2) Secondly, we have to prove correctness. Correctness
corresponds to the propertyC(ϕ) defined by “for all
world w, w |= ϕ iff check(w,ϕ) = >”. We also prove
C(ϕ) for all formulaϕ by induction.

3) Finally, we prove thatcheck only requires a polyno-
mial amount of memory. Just be careful at the line
“ for u ∈ Ra(w) do ”: although Ra(w) may be of
size exponential we do not compute it. Here we only
enumerate here elements ofRa(w) one by one. This
can be done using only a linear amount of memory.
This part is technical but I will nevertheless give some
details how to implement a enumeration of elements of
Ra(w).
The block:

6

for u ∈ Ra(w) do
if check(u, ψ) = ⊥ then

return ⊥;
endIf

endFor

can be rewritten in a unreadable block using a linear
amount of memory in (*):

u := first_permutation(w)
while ¬is_last_permutation(u) do

if u ∈ Ra(w)
if check(u, ψ) = ⊥ then

return ⊥;
endIf

endIf
u := next_permutation(u);

endWhile

where:

• assuming we have an order< over permutations of
elements appearing inw, first_permutation(w)
gives, using a linear amount of memory, the first
permutation we can make with elements ofw; For

instance, ifw = 0
☼
p

, first_permutation(w)

can be 0
�
p

;

• next_permutation(u) is a function, using a linear
amount of memory, giving the<-successor ofu;
For instance, we may have:

– next_permutation(0
�
p
) = 0

☼
p

;

– next_permutation(0
☼
p
) =

0

☼
p

;

– next_permutation(
0

☼
p
) =

�
p 0 etc.

• is_last_permutation(u) = > iff u has no<-
successor.

Now, we can prove by induction onϕ the following
property for allϕ, P(ϕ) defined as “for all worldw,
the callcheck(w,ϕ) needsO(|ϕ|× |w|) memory cells”.

• P(>) andP(p) are true;
• Let us proveP(ψ1∧ψ2). The first callcheck(w,ϕ1)

needsO(|ϕ1| × |w|) by hypothesis of induction.
Then we can release all the memory cells used for
the sub-callcheck(w,ϕ1) and we can treat the call
check(w,ϕ2). It needsO(|ϕ2| × |w|). Hence, the
sub-call check(w,ϕ1 ∧ ϕ2) needsmax(O(|ϕ1| ×
|w|), O(|ϕ2|×|w|)) = O(|ϕ|×|w|). SoP(ψ1∧ψ2).

function sat(ϕ)
w := choose_world_with_symbols_in(ϕ)
return check1(w,ϕ)

endFunction

Fig. 4. A PSPACE-algorithm for satisfiability problem ofL☼1DAGT

card(AGT) L☼1D
AGT−md L☼1D

AGT− sat
1 Σ1-hard, inΔ2-hard Σ2-complete
n ∈ N, n ≥ 2 Σn-hard, in?? Σn+1-hard, in??
∞ PSPACE-complete PSPACE-complete

card(AGT) S5card(AGT) − sat
1 NP-complete
n ≥ 2 PSPACE-complete
∞ PSPACE-complete

Fig. 5. Table of complexities

• Now, we prove P(Kaψ). By induction, every
sub-call check(w,ψ) needs at mostO(|ψ| × |w|)
memory cells. Furthermore, we needO(|w|) for
first_permutation(w), is_last_permutation(u)
and next_permutation(u) and also to keep the
local variableu in memory. So we need,O(|ψ| ×
|w|) +O(|w|) = O(|ϕ| × |w|).

Finally, P(ϕ) is true for all ϕ. In other words, the
algorithm of Figure 3 only use a polynomial number
of memory cells (we take in account (*)).

Proposition 6: Let AGTbe any set of agents. TheL☼1D
AGT-

satisfiability problem is in PSPACE.
Proof: You can read the algorithm of Figure 4. The

algorithm consists in guessing non-deterministically a world
w and then call the routinecheck of Figure 3 to check ifϕ is
true inw. So, the problem is NPSPACE, hence from Savitch’s
theorem [12], it is PSPACE.

Now we are going to investigate more in details com-
plexities of the model checking and satisfiability problem
depending on the size ofAGT. The table of Figure 5 sums
up all results we have. There is also the recall of complexity
results aboutS5n satisfiability problem as comparison.

C. When AGT is infinite: PSPACE-complete

We recall the complexity result about QBF formulas satis-
fiability problem:

Theorem 1:The QSAT-problem defined as following:
• Input: a formulaϕ = ∃~p1∀~p2∃~p3∀~p4 . . . Qn~pnψ where:

– n is any integer;
– ψ is a boolean formula;
– andQi = ∀ if i is even andQi = ∃ if i is odd;
– ~pj is a finite set of variables for eachj.

• Output: Yes iff |=QBF ϕ. No, otherwise.
is PSPACE-complete.

Now the following Proposition gives a translation of a
QBF-instance into aL☼1D -model-checking instance or aL☼1D -
satisfiability problem instance.

7

Proposition 7: Let ϕ = ∃~p1∀~p2∃~p3∀~p4 . . . Qn~pnψ be a
formula of the logic QBF. We definef(ϕ) by induction:

• f(ψ) = ψ;
• f(∀~pi...Qn~pnψ) = Ki−1(puti → f(∃~pi+1...Qn~pnψ);
• f(∃~pi...Qn~pnψ) = K̂i−1(puti ∧ f(∀~pi+1...Qn~pnψ);

where:

• puta =
∧
i∈{a+1...2n} ¬K

if
a~pi ∧

∧
i∈{1...a}K

if
a~pi;

• K if
a~p =

∧
q∈~pK

if
aq;

• K if
aq = Kaq ∨Ka¬q.

We have equivalence between:

• |=QBF ϕ;
• put1 ∧ f(∀~p2∃~p3∀~p4 . . . Qn~pnψ) is L☼1D

AGT-satisfiable;
• and w |=L☼1D f(ϕ) wherew ∈ W0 whereW0 is the

set of all worlds where agent0 is completely on the left

looking to the left. (we noteW0 = “ 0 . . . ”).

Proof: We are going to note for allU ⊆ W , U |= ϕ iff
for all u ∈ U , u |= ϕ. We are going to prove by induction
|=QBF ϕ iff W0 |=L☼1D f(ϕ). We are going to note for all
i ∈ N, for all valuationν[~p1, . . . ~pi],

Wi(ν[~p1, . . . ~pi])

‖def

“ 0
☼

~ν(p1) 1
☼

ν(~p2) 2 . . .
☼
ν(~pi) i ...′′.

The induction hypothesis is:

ν[~p1, . . . ~pi−1] |=QBF Qi~pi . . . Qn~pnψ

iff

Wi−1(~p1, . . . ~pi−1) |=L☼1D f(Qi~pi . . . Qn~pnψ)

.
The basis case correspond toi = n+1. It is the propositional

case. We have:

ν[~p1, . . . ~pn] |=QBF ψ iff Wn(~p1, . . . ~pn) |=L☼1D ψ.

Now we can attack the induction case. Let us prove
for i odd. ν[~p1, . . . ~pi−1] |=QBF Qi~pi . . . Qn~pnψ
means that there exists a valuationν(pi) such that
ν[~p1, . . . ~pi] |=QBF Qi+1~pi+1 . . . Qn~pnψ. By induction,
it means thatWi(~p1, . . . ~pi) |=L☼1D f(Qi~pi . . . Qn~pnψ).

But for all wi−1 ∈ Wi−1(~p1, . . . ~pi−1) and for all wi ∈
Wi(~p1, . . . ~pi), we have:

• wi−1Ri−1wi;
• wi |= puti. Indeed, for allj > i, we havew |= ¬K if

i ~pj
because agentj does not see lamps~pj in wi. On the
contrary, for all j < i, we havew |= K if

i ~pj because
agenti do see lamps~pj in wi (the valuation of lamps
~pj is the same in all worldsu ∈ Ri(wi)). The technical
proof of wi |= puti is left to the reader.

As f(∃~pi . . . Qn~pnψ) = K̂i−1(puti ∧ f(∀~pi+1 . . . Qn~pnψ),
we have:
Wi−1(~p1, . . . ~pi−1) |=L☼1D f(∃~pi . . . Qn~pnψ). We ensure

that it is equivalent.
The case wherei is even is similar.

Immediately from this translation, we deduce the lower
bound for model-checking inL☼1D .

Corollary 2: Let AGT an infinite enumerable set of agents.
The model-checking problem ofL☼1D

AGT is PSPACE-hard.
Proof: Reduction via Proposition 7 and Theorem 1 in

order to the PSPACE-hardness and Proposition6.
In the same way we have:
Corollary 3: Let AGT an infinite enumerable set of agents.

The satisfiability problem ofL☼1D
AGT is PSPACE-hard.

D. When AGT is finite

We recall the complexity result about QBF formulas satis-
fiability problem but when the nesting of∀ and∃ is bounded
by a fixed integern.

Theorem 2:Let n be a integer. The QSATn-problem de-
fined as following:
• Input: a formulaϕ = ∃~p1∀~p2∃~p3∀~p4 . . . Qn~pnψ whereψ

is a boolean formula, andQi = ∀ if i is even andQi = ∃
if i is odd;

• Output: Yes iff |=QBF ϕ. No, otherwise.
is Σn-complete.
The Theorem 2 only differ from Theorem 1 by the fact that
n is no more a input of the problem but is now fixed inside
the problem. For each integern, we have defined the QSATn-
problem. There is a enumerable number of problems.

In the same way, this precise complexity result of QBF
combined with the translation of QBF toL☼1Dallows us
to have complexity lower bounds of model-checking and
satisfiability problem when the cardinality of the setAGT is
finite and fixed.

Corollary 4: Let AGT a finite set of agents. The model-
checking problem ofL☼1D

AGT is Σcard(AGT)P-hard.
Proof: Reduction via Proposition 7 and Theorem2.

Corollary 5: Let AGT a finite set of agents. The satisfiabil-
ity problem ofL☼1D

AGT is Σcard(AGT)+1P-hard.
Proof: Reduction via Proposition 7 and Theorem2.

E. Whencard(AGT) = 1

Unfortunately we do not have a precise complexity upper-
bound for those problems in the general case whencard(AGT)
is finite. Nevertheless, we have the exact complexity when
card(AGT) = 1.

Proposition 8: The model-checking problem ofL☼1D
{1} is

in Δ2P.
Proof: The figure 6 gives us anΔ2P-algorithm (a P-

algorithm with NP-oracles) for the model-checking problem
of L☼1D

{1}. Given a worldw, first we compute theV of
propositions occurring inϕ that the agent 1 sees andI
the set of propositions the agent 1 does not see. Then we
can replace each occurrencep of a propositionp from V

8

function check1(w,ϕ)
V := set of variables that agent1 sees inw;
I := set of variables that agent1 does not see inw;
ψ := ψ in which we replace eachp ∈ V by πw(p);
ψ := ψ in which we replace eachp ∈ I not in the scope
of a K1 by πw(p);
while there existsK1χ subformula ofψ, whereχ is a
boolean formulado

if oracle− sat(¬χ) then
ψ := ψ in which we replaceK1χ by ⊥;

else
ψ := ψ in which we replaceK1χ by >;

endIf
endWhile
return PCL({⊥,>})− sat(ψ);

endFunction

Fig. 6. AΔ2P -algorithm for model checking ofL☼1D {1}

function sat(ϕ)
w := choose_world_with_symbols_in(ϕ)
return check1(w,ϕ)

endFunction

Fig. 7. OptimalΣ2P-algorithm for satisfiability problem ofL☼1D {1}

in ϕ by the corresponding valuationπw(p). Concerning a
propositionp ∈ I, we only replace occurrences which are
not in the scope of aK1. For instance, ifp ∈ I, q ∈ V , and
πw(p) = >, πw(q) = ⊥ p ∧ q ∨ K1(p ∨ q) is replaced by
> ∧ ⊥ ∨ K1(p ∨ ⊥). Then we test satisfiability of boolean
formulas¬χ such thatK1χ is a subformula ofψ and replace
K1χ by⊥ if ¬χ is satisfiable and by> otherwise. At the end,
we obtain a boolean formulaψ containing no variables. We
test its satisfiability withPCL({⊥,>})− sat(ψ). Notice the
while -loop is done in linear time because there are a linear
number of subformulas inψ.

Proposition 9: The satisfiability problem ofL☼1D
{1} is

Σ2P-complete.
Proof:

The hardness comes from Corollary 5. The Figure 7 gives
us anΣ2P-algorithm (a NP-algorithm with NP-oracles) for the
satisfiability problem ofL☼1D

{1}.

F. When AGT andATM are both finite

Proposition 10: Let ATM a finite set of agents and
AGT = {1}. The satisfiability problem and model-checking
of L☼1D

{1} is in P.
Proof: We adapt algorithms of the figure 6 and 7 in order

to have an optimal polynomial algorithm. More precisely:

• You replacechoose_world_with_symbols_in in Figure
7 by a loop over all worlds. You can notice that the set
of all possible worlds is fixed, that is to say it does not
depend onϕ;

• oracle − sat can now run in polynomial time because
there is a fixed number ofpropositions.

Fig. 8. World for Muddy children

IV. PUBLIC ANNOUNCEMENTS

As done in [11] we can extend our framework with public
announcements. This is essentially motivated by modelling
examples like Muddy children. With public announcements,
an agent will be able to learn something about the part of the
actual world which he can not see. The technique is classical:
we add an operator[ϕ!] and we define semantics as inS5n.

A. Definitions

Our new languageL!AGT is defined by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Kaψ | [ϕ!]ϕ

wherep ∈ ATM anda ∈ AGT.

From now, we do not only parameter|= with a world but
also with the set of worlds.

Definition 12 (truth conditions):
Let U a set of worlds (U ⊆ W). Let w ∈ U . We define
U,w |= ϕ by induction:

• U,w |= p iff π(p) = >
• U,w |= ϕ ∧ ψ iff U,w |= ϕ andU,w |= ψ;
• U,w |= ¬ϕ iff U,w 6|= ϕ;
• U,w |= Kaψ iff for all w′ ∈ U , wRaw′ impliesU,w′ |=
ψ;

• U,w |= [ϕ!]ψ iff U,w |= ϕ implies U ∩
{w′ ∈ U | U,w′ |= ϕ}, w |= ψ.

The set of validities we obtain is notedL☼1D ! =
{ϕ |W,w |= ϕ} whereW is the set of all worlds defined
Definition 8.

B. Example

Now we are going to study the Muddy children example.
This example is also studied in [11]. You can also find this
example in [4] and [3] with more than two children. The
situation is the following: there are two children named 1
and 2. Their foreheads are dirty. They see each others. The
situation is represented by the worldw shown in Figure 8
in the top left. One child do not know if he is dirty or not
but he knows the state of the forehead of the other one. We
introduce two propositions:p stands for “1’s forehead is dirty”
andq stands for “1’s forehead is dirty”.

We have:

• W,w |= K1q ∧K2p;
• W,w |= ¬K1p ∧ ¬K1(¬p) ∧ ¬K2(¬q).

Then:

• the father says at least one of them are dirty;

9

Fig. 9. World for Muddy children after having announcedϕ1

Fig. 10. World for Muddy children after having announcedϕ1 andϕ2

• the children answer that they do not know whether they
are dirty of not.

Formally, we also have:

W,w |= [ϕ1!][ϕ2!](K1p ∧K2q)

where:

• ϕ1 = p ∨ q;
• ϕ2 = (¬K1p ∨ ¬K1¬p) ∧ (¬K2q ∨ ¬K2¬q).

We verify that after having announcedϕ1, we only consider
worlds in Figure 9. Then we only consider the initial worldw
drawn in 10.

C. Complexity

BecauseL☼1D ! is a conservative extension ofL☼1D , we
inherit from the lower bound results both for model-checking
and satisfiability. In fact, we keep the PSPACE-ness upper-
bound with public announcements.

Proposition 11: The model-checking and satisfiability
problem inL☼1D ! is PSPACE-complete.

Proof: The Figure 11 gives an algorithm for model-
checking. As usual,w is a world,ϕ is a formula. The second
argumentC is a list of formulas and stands for thecontext: if
C = [] (empty list), it corresponds to the whole set of worlds
otherwise it is a list of announced formulas used to update the
model. More precisely, let us define:

• W [] =W ;
• W [ψ1:C

′] = {w ∈WC′ |WC′ , w |= ψ1}.

We want:

• mc(w,C, ϕ) returns true iffWC , w |= ϕ;
• inupdatedM(w,C) returns true iffw ∈WC .

We have to prove terminaison, correctness and complexity.
Let us begin to prove terminaison. First of all, we are going
to introduce an order≺ over all possible inputs(C,ϕ) of the
functionmc! of Figure 11.

We define(C,ϕ) ≺ (D,ψ) by:

• |C|+ |ϕ| < |D|+ |ψ|;

• or

{
|C|+ |ϕ| = |D|+ |ψ|
and |ϕ| < |ψ|

where

function mc!(w,C, ϕ)
match (ϕ)

>:
return >;

p ∈ ATM :
return > if p is true inw;
return ⊥ if p is false inw;

ψ1 ∧ ψ2:
return mc!(w,C, ψ1) ∧mc!(w,C, ψ2);

¬ψ:
return ¬mc!(w,C, ψ);

Kaψ:
for u ∈ Ra(w) do

if inupdatedM(u,C) and
mc!(u, ψ) = ⊥ then

return ⊥;
endIf

endFor
return >;

[ψ1!]ψ2:
if mc!(w,C, ψ1) then

return mc!(w, [ψ1 : C], ψ2)
else

return >
endIf

endMatch
endFunction

Fig. 11. Algorithm for model-checking inL☼1D !

• |ϕ|, |ψ| denotes the length (number of symbols) inϕ,ψ;
• |C|, |D| denotes also the number of symbols inC, D.

More precisely:

– |[]| = 0;
– |[ψ1 : C ′]| = |ψ1|+ |C ′|.

The order≺ is well-founded and we can use it to prove
terminaison by induction.

• Basic case:(∅, p) etc.
• Induction case: you just have to see thatmc!(w,C, ϕ)

will only call mc!(u,D, ψ) with (D,ψ) ≺ (C,ϕ). For
instance, whenmc!(w,C, ϕ) calls inupdatedM(u,C)
which callsmc!(w,C ′, ψ), we have|C ′| + |ψ| = |C| <
|C|+ |ϕ|.

Correction and the fact that the algorithm runs using a
polynomial space can also be proved by induction using the
order≺.

The hardness comes from the fact thatL☼1D ! is a conser-
vative extension ofL☼1D and the model checking ofL☼1D is
PSPACE-hard (Corollary 2).

Concerning the satisfiability, we can make the same remark
than in the proof of Proposition6.

The upper-bound in special cases (AGT finite etc.) has not
been studied yet.

From now, we are to discuss about the implementation and
develop the example of the Muddy children.

10

function inpudatedM(w,C)
match (C)

[]: return >;
[ψ : C ′]: mc!(w,C ′, ψ);

endMatch
endFunction

Fig. 12. Algorithm for testing if a worldw is in the updated model formulas
in C

V. I MPLEMENTATION

You can find an implementation on the Web site. You can
put positions and directions of agents and positions and states
of lamps on your own. Then you can write down a formula
and check if your formula is true in the world you have drawn.

This program offers a concrete example to illustrate epis-
temic logic to students.

A. Description

The program is written in Scheme for the easy use of data
structures and recursive programming. Haskell could also be
a well-suited language especially for the lazy evaluation en-
abling us to write a program which seems to use a exponential
amount of memory whereas it uses only a polynomial amount
of memory. Here are the main Scheme functions:

• (mc world formula) computes if the formula
formula is true in the worldworld ;

• (mc-with-context world context
formula) computes of the formulaformula is
true in the world world but we restrict our check
computations only on worlds satisfying the formula
context ;

• (worldset-delete-not-satisfying
worldset formula) removes from the set of
world worldset all worlds which does not satisfy the
formula formula . This function is used to deal with
updated models;

• (world-getpossibleworlds world agent)
computes the set of all possible worlds for agentagent
in world world .

In order to be human readable, the implementation does
not run in polynomial space but in exponential time. For
instance the function(world-getpossibleworlds w
a) computes reallyall worlds inRa(w).

B. Practising Muddy children

You can describe thecurrent situation(world w on the top
left in Figure 8 by((p #t) (1 <) (2 >) (q #t)) .
Notice that we are not going to construct the Kripke structure
by hand. When you draw a Kripke model, you can easily
mistakes all the more so the model is theoretical. Here we
just enjoy specifyinggraphically the situation. The Kripke
structure is then generated on-the-fly by the algorithm. You
can test ifW,w |= K1p ∧K2q by calling

(mc ’((p #t) (1 <) (2 >) (q #t)) ((1
knows p) and (2 knows q))) .

The function returns#f meaning that we do not have
W,w |= K1p ∧K2q.

We ask the computer the different worlds the agent1
imagine. To do this we write

(world-getpossibleworlds ’((p #t) (1 <)
(2 >) (q #t)) 1) .

The system gives:
(((p #t) (1 <) (2 >) (q #t))

((p #f) (1 <) (2 >) (q #t))) .
We can now test if the formulaW,w |= [ϕ1!][ϕ2!](K1p ∧

K2q). You simply write
(mc ’((p #t) (1 <) (2 >) (q #t))

(announce (p or q) (announce ((not (1
knows p)) and (not (2 knows q))) ((1 knows
p) and (2 knows q)))))

The system answers#t .

VI. CONCLUSION

The epistemic logicS5n is a general and theoretical frame-
work for the representation of knowledge. In this paper, we
have studied a spatially grounded epistemic logic. We have
investigated two aspects of knowledge learning:

• With L☼1D , we can reason about what agents know by
learning only with their eyes (when they are located on
a line space);

• With L☼1D ! we can reason about what agents know by
looking at their environments and by listening to public
announcements.

Of course the case of the line is restrictive. The case of the
plane or of the space may be more interesting. Nevertheless,
this paper gives complexity results for model-checking and
satisfiability problem for the case of the line. Even the line
looks like easy, problems are already PSPACE-complete if
the number of agents is not bounded. We conjecture that
the complexity of this logic for dimensionn ≥ 2 remains
PSPACE-complete.

From now, there are two main perspectives: to adapt this
logic to the case of two dimensions [1] and to study properly
complexity of model checking and satisfiability with/without
public announcements. Other perspectives are numerous:

• fill the Figure 5. The exact complexity classes of model
checking and satisfiabilityL☼1D

AGT when AGT is finite
are still open questions;

• Study and implement the logic with agents and lamps
in the plane [1] and compare it to the logic in the line.
Writing down the semantics is quite easy: you just have to
replaceR by R2 in Definition 8 and tune the definition of
directions and Definition 3. The main difficulty is to find
a compact representation in order to deal with the model
checking and satisfiability problem. In two dimensions
it is no more possible to consider a total preorder on
elements. Finding a good equivalent of Definition 7
satisfying Proposition 4 in the case of dimension 2 or
more is still an open problem.

• Study the logic in the 3D-space and compare it to the
one in the plane (I guess we obtain the same validities);

11

• Find an axiomatization of those logics in order to under-
stand better how they work;

• Study if it is possible to have a normal form (like for S5,
where all formulas are equivalent to a formula of modal
degree 1 [6]);

• Extend with a common knowledge operator. Will the
complexity of the satisfiability problem also increase and
become EXPTIME-complete?

• Extend with private communications between agents.

Acknowledgements.
I thank Philippe Balbiani, Olivier Gasquet, Andreas Herzig,

Emiliano Lorini and the reviewers for their different helpful
remarks.

REFERENCES

[1] Edwin Abbott Abbott. Flatland. Basil Blackwell, 1884.
[2] Jon Barwise and John Etchemendy.Tarski’s World: Version 4.0 for

Macintosh (Center for the Study of Language and Information - Lecture
Notes). Center for the Study of Language and Information/SRI, 1993.

[3] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[4] V. Goranko and M. Otto.Handbook of Modal Logic, chapter Model
Theory of Modal Logic, pages 255–325. Elsevier, 2006.

[5] Joseph Y. Halpern and Yoram Moses. A guide to completeness
and complexity for modal logics of knowledge and belief.Artificial
Intelligence, 54(3):319–379, 1992.

[6] G. E. Hughes and M. J. Cresswell.An Introduction to Modal Logic.
Methuen and Co., 1968.

[7] Ethan Kennerly, Andreas Witzel, and Jonathan A. Zvesper. Thief belief
(extended abstract). Presented at Logic and the Simulation of Interaction
and Reasoning 2 (LSIR2) Workshop at IJCAI-09, July 2009.

[8] E. Lorini, L. Tummolini, and A. Herzig. Establishing mutual beliefs
by joint attention: towards a formal model of public events. In Mon-
ica Bucciarelli Bruno G. Bara, Lawrence Barsalou, editor,Proceedings
of the XXVII Annual Conference of the Cognitive Science Society, pages
1325–1330. Lawrence Erlbaum, 2005.

[9] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley,
1994.

[10] Rohit Parikh, Lawrence S. Moss, and Chris Steinsvold. Topology and
epistemic logic. InHandbook of Spatial Logics, pages 299–341. 2007.

[11] Jan Plaza. Logics of public communications.Synthese, 158(2):165–179,
2007.

[12] Walter J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities.J. Comput. Syst. Sci., 4(2):177–192, 1970.

[13] Hans P. van Ditmarsch, Wiebe van der Hoek, Ron van der Meyden, and
Ji Ruan. Model checking russian cards.Electr. Notes Theor. Comput.
Sci., 149(2):105–123, 2006.

