Knowledge about lights along a line
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Abstract—In this article, we are going to talk about spatial sit- you put agents and lamps and then you can write formulas in
uations. Every agent (human, camera etc.) and every proposition epistemic logic to check whether properties over those agents
(lamp, object, etc.) are located in the space (here a line) and we and lamps are true

express properties over a situation using standard epistemic logic . . . .

language possibly extended with public announcements. We study .Ge'nerally speaking ma”Y examples Of epistemic situation
links between validities of this geometricalversion of epistemic MiX time and space. The link between time and knowledge
logic and the standard one. We also investigate complexities of (perfect recall etc.) has been studied and you can find a

model checking and satisfiability. survey in [3]. There exists also some work linking space and

Keywords: Multi-agent system. Epistemic logic. Spatial re&howledge like in [10]: they provide a logic with a spatial
soning. Public announcements. Pedagogical tool. ComplexigPdal operator dealing with topology and an epistemic modal

theory. Polynomial hierarchy. operator. Here, our approach is different. we want to deal
with a spatially grounded epistemic logic. We are not going to
|. INTRODUCTION provide operators in the language to deal with space but only

] provide an epistemic operator for each agent in the language.

developed epistemic logic and studied mathematical properti e se_mant|cs \_N'” then d|rectl)_/ rely on the georr_1etnpal
of it. Epistemic logic is theoretical and may be difficult tooropgrtles of a line. We. would like to describe a ;ltuat|on
explain to students. This is the reason why in this article wit directly by the_ graphl_cal and natural representation of the
are going to study a concrete example of multi-agent syste stem and not with a Kripke structure. We can formallze_ wel
Let us take a line. We are going to put lamps and age gown toy examples as Rus,5|an cards .[13]‘ Muddy children
on this line as shown in the Figure 1. Now the question A1, [11], [3]) or the prisoner’s test. For instance:

“what do agents know about lamps and knowledge of othere The Muddy children. The spatial configuration
agents about lamps"? This system has been implemented as iS the following: two children are looking at

a pedagogical tool in order to illustrate any epistemic logic €ach other. One knows the others forehead
course. Indeed, students can easily understand some epistemicis  dirty. But one does not know he s

Many authors in logic and in Artificial Intelligence [5

logic on concrete examples:
SRR e dirty. X ¢ X
o Agenta sees the lamp on, so he knowgp; » | a'sforehead dity ¢ P b'sforehead dirty
a
o Agenta does not see the lamp so he does not know , The prisoners test. There are three prisoners on a
L & line. Each prisoner must guess the color of his head.
whetherp or —p;
P a I A
« Agenta sees another agentseeing the lamp on, so pri'shead pr; pra'shead pry prs'shead prg
agenta knows agent knowsp: NI e _ Another motivation would be video surveillance. Proposi-
a b p tions are objects we have to take care of. Agents are camera.

. Agenta sees another ageh’t and the |amm, but agent We then can SpeCify the video surveillance with epiStemiC
a sees that ageritis not looking in the direction of the logic formulas. Another possible application may be robots’
lampp, so agent: knows agenb does not know whether space and knowledge reasoning because robots evolve in

4 G our spatial world. A last application could be video games.
p Or —p; b In many role playing games or strategy games, players or
a b non-playing characters can have knowledge about the virtual

« Agenta and agenb are looking at each other and there igyorid. The behaviours of a non-playing character can then
the lampp between them, so there is common knowledgge described by the game designer using a knowledge based
that p is true. This kind of situations have already beeBrogramming language. For instance, the designer can specify

that the guardian of the castle gets crazy if he knows that

el & the door of the castle is open. A preliminary work about

a p ° formalizing the video game Thief has been done in [7].

A piece of software is available on the Web Site http://www.
This approach can be compared to the approach in [2] fioit.fr/~Francois.Schwarzentruber/agentsandlamps/. It provides

first order logic. In [2], you put objects like cube, pyramida model-checker: you specify the graphical situation and a

and you can then write formulas in first order logic to chectormula written using epistemic modal operators and/or public

properties over those objects. Here the approach is similannouncements operators. In this article:

considered in [8]




« We are going to present the semantics of the geometric
version of epistemic logic in section II; ¢ % u % it

« We are going to deal with the model checking and 1
satisfiability problems’ complexities in section lll;

« In section IV, we will add public announcements to Oug;y 4.
language to model examples like Muddy children;

« In section V, we are going to present the current imple-
mentation. o m: ATM — {L, T}

The set of all worlds is notedl’.
Il. SEMANTICS In a world (pacT, dacT, paTa, ), PacT(a) denotes the posi-
We are going to define a new logic based on the sartien of agenta. dagt(a) denotes the direction where the agent
language than the epistemic logié,, [5]. S5, is the logic of a looks: if dagt(a) = +1, the agent will look on the right and
frames where relations are equivalence relations. Here we #réagt(a) = —1, he will look on the leftp 472/ (p) denotes the
defining a logic where the semantics is based on a geomep@sition of the lamp saying whethgiis true or notzr(p) = T
point of view. iff the lamp “p” is on. 7(p) = L means that the lampp" is
off.
A. Language We have defined a world in the more close to the reality
manner: that is to say using the real numbers. We could also
consider locations of agents and lamps as a total preorder over
ATM UAGT. Considering a total preorder is discussed at the
end of this section and total preorder is used in Section Ill.
Here we prefer to use the Definition 8 whose advantage is that
it can be easily generalized to dimension> 2: you just have
to replaceR by R™ and to adapt the notion of direction. In
=T ploAe|—p| Kt dimension 2 or more, total prgo_rgiers can no longer be l_J§ed.
“ We can also discuss the Definition 8 by the way propositions
wherep € ATM anda € AGT. are treated. Here, a propositignis associated to a point
As usual,p V ¢ =%/ —(=p A —1p). Kaip =%f =K,—~p.  paru(p). This seems to be the simple way to define the
Notice that we can only deal with knowledge (operataemantics. But be aware that in some cases this is a limitation:
K,) and states of lamps (propositignis true means that , Maybe a propositiop can be associated to a set of points.
the lamp calledp is on) in the language. One may expect  For instance, if you are at home, you can know it rains
to deal also with position of lamps, position of agents or eijther by looking towards the window of the Iditor the
maybe spatial topologic operator like in [10] etc. This may  window of the rightR. Hence, here the propositiomin
be very interesting, especially in all applications cited in the  may be associated to the set of poiffs, R};
introduction. For instance, we can not express a sentence likg Maybe you want that a lamp is associated not to a
“the guardian knows that the beetlerisar the old man.” but proposition but more generally to a formula. For instance,
we can say “The guardian knows that the beetle knows the \when you know that the alarm system located on p&int
old man’s hat is red.” K yuardian Kpeeticold_man_red) Here is on, you in fact know that either there is an oil problem
we have preferred to keep the language of classical epistemic or overheating. Hence, here the point is associated to the
logic for two reasons: formula oil_problem V overheating.

+ a pedagogical tool for understanding epistemic logigere we stay with the simple definition for two reasons:

should be simple and should have a simple syntax; it 5 easier for a pedagogical tool to have a simple and
» to focus on complexity results with the simple expressiv-  jaar semantics:

n b2 p3

Example of a world

Our logic is based on the same languagesas's one. Let
us recall the language of the epistemic logig,, [5].
Definition 1 (language):
Let ATM be a countable set of atomic propositions. AG&T
be a countable set of agents. The languéger is defined by
the following BNF:

ity as S5,. « it is easier for us to begin study a simple case.
- Definition 3 (cone):
B. Definitions Let us consider a worldv = (pagT, dagT, paTM, 7). We note

The semantics is not defined with a class of models betine(a) the set{pact(a) + X.dact(a) | A € RT}.
directly from what a concrete situation is. From this, we cone(a) denotes all the set of points the agensees.
will obtain a spatially grounded epistemic logic. world
is situation where all agents havelacation (position and Example 1: The Figure 1 gives us an example of a world
direction where they look), alllamps (atomic propositions) w. We have:

have alocation and astate(on or off). Formally: o pact(l) = 0;pacT(2) = 2;pact(3) = 4;
Definition 2 (world): o dact(1) = +1;dpct(2) = —1;dact(3) = —1;
A world w is a tuple(pacr, dacT, paTar, ™) Where: o parm(p1) = Liparm (p2) = 3ipaTm (p3) = 5;
e pacT: AGT — R; o m(p1) =T;m(p2) = Lyw(ps) =T;

o dacT: AGT— {—1,+1}; e cone(l) = [0, +oo];

(
o parym : ATM — R; e cone(2) =] — 00,2];



o cone(3) =] — 00, 4].

From now on, ifpagt(b) € cone(a), thenpagt(b) = prgr(b)
and dagt(b) = dag7(b). But, we have effectivellypagr(b) =

Now we are going to define the epistemic relation over worldgagt(b) and cone(a) = cone’(a). S0 ppgr(b) € cone’(a). So

wR,u means that agent can not distinguishy from w. In
other wordswR,u iff agenta sees the same things in and
u. Formally:

Definition 4 (epistemic relation):

Let a € AGT. We define the relationR, over worlds:

(pAGT, dacT, PATM » ) Ra (DT dagm Paras, ') iff for all b €

AGT, for all p € ATM,
o if pagT(b) € cone(a) then
PacT(b) = Pacr(b) anddact(b) = dpgr(b);
o if pagT(b) & cone(a) thenphgr(b) & cone(a);
o if para(p) € cone(a) then
pary (p) = Pyry (p) @andm(p) = 7'(p)
o if parn(p) & cone(a) thenp’yr,(p) & cone(a).
Briefly, suppose thaw R, u. If agenta see the ageritin the
world w, then he will also see agehtin world v and agenb

will have the same location (position and direction). If agent
a does not see agehtin the worldw, then he also does not

see agend in u. If agenta see the lamp in the world w,
then he will also see the lampin world ». The lamp will
have the same position and state bothvirand u. If agenta

does not see the lamp in w, then he will also not see the

lamp p in u.

Until now, we have finally defined a modeM =
(W, (Ra)achacT, v) Wherev maps each worldy € W to m,,.
From now, the truth conditions is standard:

Definition 5 (truth conditions):

Let w € W. We definew = ¢ by induction:

cwkpiff m(p)=T

e wEPAYIff wEpandw E ¢

o wE —p iff wlE ¢;

o wE K, iff for all w', wR,w' impliesw’ = .

C. Comparison with epistemic logic
Now we are going to compare the epistemic lo§is, and

the set of validities we obtain with the truth conditions of

Definition 12. First we give the definition of validities.
Definition 6 (set of validities):

We denote the set of all validities bg™ P, that is to say,

L#p = {(p € LacT ‘ Yw e W, w |= (p}.

In“L*p” “1D” stands for “one dimension” (a line). Now,

we can see that our sét'1> contains all validities 0fS5,,.
Proposition 1: S5,, C L™P,

Proof: We prove that for alla € AGT, the relation

Pact(b) = Pagr(b) anddgr(b) = dig(b). Finally, pact(b) =
PRgr(b) anddact(b) = dig1(b). The other cases are treated in
the same manner ]
The semantics ofK,p in L™ corresponds to the fact
that the agent. sees the lighp and the lightp is on. More
generally, K% means that the agenat has the proof thatp.

That is why we have those validities 12

Proposition 2: Let p,q € ATM.
Frap Ki(pVq) — KipV Kig.
Frap Ki(-pV —q) = Ki-pV Ki—g.
If p# ¢, FEpen Ki(pV —q) = KipV Ki~q
Proof: Let us prove=; =, Ki(pV q) = KipV Kiq.

Let w = (pacT, dacT, PATM, ™) be a world such thatv |

Ki(p V q). We are going to prove that either = K;p or
w | Kiq. We havepary (p) € cone(l) or para(q) €
ne(1). Indeed, if we suppose the contrary, that is to say
v (p) & cone(l) andpara(q) € cone(1), there exists a

orld u = <PAGT, dAGTapATMa /> such thatﬂ'/(p) = 1 and

7'(¢) = L andwR;u. Hencew [~ K (pV q). Contradiction.

Soparm(p) € cone(l) or parar(q) € cone(1). For instance,

parm (p) € cone(1). And for all u € Ry (w), my(p) = T. S0

w = Kip. The other cases are treated in the same marmer
Informally, K1 (p V ¢) means that agent has a proof that

p V q. In other words, either he seeson, or he seeg on.

Hence, eithef{;p or K;q. Neverthelessi(; (pVY) — K1pV

Ky is not valid in L™,

Notice that there are crucial differences betweth, and

L*p:

« S5, is defined as the logic of elassof frames and has
the property of uniform substitution. g5, ¢[p], we
havel=g5., [ /p] for every formulay € Lagr;

o On the contrary (see Definition 12),*1» is defined
as the set of formulas valid oane model: the model
M. As the definition of R, (Definition 4) depends on
worlds, and especially on valuations, it is not surprising
that L*> does not have the property of uniform sub-
stitution. A justone model semantics may seem a poor
pedagogical application. But, the model is big (if AGT
and ATM are finite, the size ofM is exponential in
card(ATM U AGT). In fact, you can imagine the model
M to be a kind of canonical model. The mod#ét is
made up with many connected components. For instance,
Figure 2 and 8 show two connected components of the
model M.

Now, here is a Proposition showing that we can have

and satisfies validities common knowledge only wheR; Kop A Ko K1p.

R, is an equivalence relation. Hence, the mod&l
is a model of the logic S5,
of S5,. We have to prove reflexivity, symmetry and Proposition 3: We have:

transitivity. Let us just begin to prove transitivity. Suppose i p Ki1Kop A KoKip — KKK ...

we have:

<PAGT7 daGT, DATM s 7T>Ra <p,/AGTa d,/AGTa p:c]TMa 7T/>

and (pjgr, dact: Parars ™ ) Ra(PRem dagT Parass ™). Let us

prove that(pact, dacT, PATM , T) Ra (DA dacT PaTass T )-
First we havepagt(a) € cone(a). Sopact(a) = pagr(a) =

Pagr(a) anddagr(a) = digr(a) = digr(a). In other words,

cone(a) = cone’(a) = cone’ (a).

K> ...p where
“Ki1KoKi ... " denotes any finite sequence &f; and
K.

Proof: Let w = (pacT, dacT, PATM, ) be world such
that w = K1 Kop A KoK p. We want to prove thatv =

KKKy ...Ky...p. We are going to prove that:
e pacT(2) € cone(1);

K. ..



e pacT(l) € cone(2);

. pé}i“:\/l(p) € cone(1); [O O E>\

o parm(p) € cone(2).
)

Let us provep a7y (p) € cone(1) by contradiction. Suppose o \ O @ \O
that para (p) & cone(l). Thus there exists a world’ = . j ’ ?
(DacT dagT P'arars ™) Such thatwR,w’ and#’(p) = L. \ O 9 ' ®90Q O

We hgv_ew’ E p sow [ Kyp. Sow W KiKop. QO§> >od \.QQ
Contradiction.

Same proof fop a1 (p) € cone(2). §> . § §> S \Q <§
Let us prove thatpact(2) € cone(l) by contradiction. e S
Suppose thapast(2) & cone(1). Thus there exists a world 9§ oy odo <§ <§ o/‘

w' = (Pact dacT Parar, ™) such thatw Riw’ and djgr(2) . 7
is such thatp s (p) € cone’(2). Thus, there exists a world QQ §><§ : \Q ) )

w" = (PAet dagt Paras, ™) such thatw’ Ryw” andn” (p) =

L. Sow' £ Kap. Hencew £ Ky Kyp. Contradiction. _
Same proof fopagr(1) € cone(2). Fig. 2. Some worlds of the modei
Now we can prove by induction on that forn € N, for

all w € (R; o Ry)™(w), we have:
. pAGT( )E cone( ) . .
e pacT(1l) € cone(2); they are ordered on the line. For instance
e parm(p) € cone(1);
e parm(p) € cone(2).
e m(p)=T.

) e o

Hencew = K1 KoKy ... Ka...p. u » stands for the same world. We can

and

koS
o XY

QD

The Va'ldlty KiKop N KboK1p — K1 KoKy ...Ks ..
expresses that if{; Kop A Ko K1p then the state of the Iamp
p is the topic of amutual social perceptignstudied in [8].

define the nofion oflescription of a worldw: it is simply a
total preorder over all propositions and agents appearing in a
formula, plusdagt andx. Notice that we can do this because
Corollary 1: If n > 2 or card(ATM) > 2, S5, C L*10. the space is a line. If our space weké (n > 2),_the notion
Proof: The formulak; (pvq) — K1pVK1q andKlKQp/\ of total preorder would unfortunately not be suited anymore.
KyKip — K1 Ky K p are inL**2but are not valid inS5,,.
More surprising is the fact that common knowledge is not D€finition 7 (description of a world):
guaranteed by, Ko A KoK for all o. More precisely, A description of a worldw is a tuple(<, dagt, 7) Where:
K1 Koo A KyKyp — K K> Ky ¢ is not L*12-valid for all . « < is a total preorder oveAGTU ATM,;
Look at the model of the Figure 2: agent 1 = agent in blue. » dacT: AGT — {—1,+1};
agent 2 = agent in red. Consider the world on the bottome 7: ATM — {1, T}
on the right. Let us call itv. We havew | K; Ko—Kop A We can also define the epistemic relation between two
Ky K- Ksp. But, we havew £~ K7 K3 K1—Ksp. Indeed there description of a worldw:
existsw’ such thatwR; o Ry o Ryw’ such thatw’ | Ksp.
Nevertheless, there are other formulas where it remains trueDefinition 8 (epistemic relation):
For instance, we havé=;=,, KiKyKsp A KoK 1K3sp — Leta € AGT. We define theepistemic relationz, on the set

K\ KyK;...K,...Ksp. of descriptions of worlds by R, v iff:
Question 1:What aboutK; Kop A Ko K1 — K1 KoKy o if dagt(a) = +1,
if ¢ do not contain agent 1 or 2? Do we have a characterisation  _ for all 2 ¢ AGTU ATM, (x <y a iff <, a);
or exhibit an interesting set of formulgssuch thatk; Koo A — for all z,y € AGTU ATM such thata <,, = and
KQK]_(p — KlKQKl(p holds? a Sw Yy, we have t Sw y iff Sv y),
— for all z € AGT, a <, = implies dagT,(z) =
D. A compact representation dacTy (Y);

Last but not the least, you can remark that if we want  — forallz € ATM, a <, z implies () = 7, (y).

to deal with model-checking, satisfiability problem and other o if dagt(a) = —1,

algorithmic problems, we need a compact representation that for all z € AGTU ATM, (x >, a iff x >, a);

an algorithm can manipulate. Worlds are difficult to manip- for all z,y € AGTU ATM such thata >,, z and
ulate: in particular, it is unadapted thd&,(w) is infinite a >, y, we have ¢ >, y iff © >, y);

given a agent and a worldw. According to the Definition for all x € AGT, a >, z implies dagr,(z) =
8, the setlWW is infinite. Nevertheless, the semantics do not dacTy (Y);

depend on positions of lamps and agents but only on how forall z € ATM, a >,  implies 7, () = 7, (y).



In the same way, we can define an epistemic model. \Weinction Checkgw,so)
can define truth conditions of a formulain Lact over the matCh_l_(fP
set of descriptions of worlds, using the epistemic relation. We '

) L T,
can prove that we obtain the same validities. | retu'rn '
o : s p € ATM:
Definition 9 (extracting description of world from a world): ‘ return T if p is true inw;
return L if p is false inw;
Given a world w, we define the description of world Y1 Aot
d(w) by: | return check(w, 1) A check(w,s);
o forall 2,y € AGTU ATM, x <4 y iff p(x) <g p(y) e -
wherep(z) stands forpagr(z) if € AGT Or parar(x) I‘( " return —check(w, ¥);
if 2 € ATM,; “for ue R,(w) do

o dacTw = dAGTd(w); if check(u,1) = L then

o My = My. \ return 1;
Proposition 4: For allw € W, for all ¢ € LagT, w E ¢ endFo?ndlf
iff d(w) = ¢. return T;
Proof: By induction one. ] endMatch
. . . . . | endFunction
In the case of one dimension, we simply rewrite mapping

from ATM or AGT to real numbers into a tptal pr_eordgr_over:ig_ 3. A PSPACE-algorithm for model-checking 610 aat
ATM UAGT. In the case of two or more dimensions, it is an
open problem how to represent a world in a compact way.

B. PSPACE-ness upper-bound of the two problems

I1l. M ODEL-CHECKING AND SATISFIABILITY PROBLEM In this subsection, we are going to give PSPACE-ness
upper-bound of the model checking problem and also of the

For definitions for complexity class and for more detailsatisfiability problem. As you will see, the proof are directly
about the problem QSAT (quantified boolean formulas satis§jiven with algorithms using a polynomial amount of memory
ability problem), the reader may refer to [9]. (Figures 3 and 4).

Proposition 5: Let AGT be any set of agents. The model-

checking of L*1P pgt problem is in PSPACE.
A. Definitions Proof:

Now we are going to recall the classical problem of model- You can take a look at th? recursivg a_Igorithm of Figure 3.
checking and satisfiability. The problem of model-checking'c have to prove three points: terminaison, correctness and

consists on testing if a given formula is true in a given SPAC_E-ness. o _ _
world w. Satisfiability problem consists to test if there exists 1) First let us prove terminaison by induction gn Let

a world w in which a given formulap is true. T(¢) be the property “for every worldw, the call
check(w, ) terminates”.
Definition 10 (model-checking di*'2 agt a7ar): e check(w, T) andcheck(w,p) terminates. SG (T)
Let AGT be a set of agents andTM a set of atoms. We and 7 (p);
call model-checking ofL*1? gt a7 problem the following o Let us prove thatcheck(w, K 1) terminates. By
problem: induction, 7 (v) so every callcheck(u,) termi-

o Input: a formulay € LacT, a description of a worldy nates. So the caltheck(w, Kq¢) terminates and

where only atoms and agents occurringdrare given; T(Kat); )
. Output: Yes iff we havas =+, ¢. No, otherwise. « Other cases are treated in the same manner.
2) Secondly, we have to prove correctness. Correctness
corresponds to the property(y) defined by “for all
world w, w | ¢ iff check(w,¢) = T". We also prove

In the previous Definition, we give a description of a world
w that is to say a total preorder over all agents and propositions
occurring inp where we say for each agent if he is look on C(,p) for all formula e by induction.

the left or on the right and for each proposition if it is true ; .
. : 3) Finally, we prove thatheck only requires a polyno-
or not. We do not care about propositions or agents not in the . .
mial amount of memory. Just be careful at the line

formula ¢. The description ofw is thenfinite. “for u € Ru(w) do ™ although R,(w) may be of

size exponential we do not compute it. Here we only
enumerate here elements &f,(w) one by one. This

can be done using only a linear amount of memory.
This part is technical but | will nevertheless give some

« Input: a formulay € Lagr; details how to implement a enumeration of elements of
« Output: Yes iff there exists a world such thatw ==, Ra(w).

. No, otherwise. The block:

Definition 11 [.*'? pgr-satisfiability problem):
Let AGT be a set of agents. We call*1> pgr-satisfiability
problem the following problem:



for u € R,(w) do
if check(u,v) = L then
\ return L;

endFo‘?ndlf

can be rewritten in a unreadable block using a line

amount of memory in (*):

u:= first_permutation(w)
while —is_last_permutation(u) do
if ue Rg(w)
if check(u,) = L then
\ return 1;
endlIf

endIf

u := next_permutation(u);
endWhile

where:

« assuming we have an orderover permutations of
elements appearing iw, first_permutation(w)

gives, using a linear amount of memory, the first

permutation we can make with elementswaf For

o

instance, ifw = 7

, first_permutation(w)

o

can be

|
p

amount of memory, giving the<-successor ofu;
For instance, we may have:

— next_permutation( u )= % = ;
p p
. SEEe
— next_permutation( )= ;
0 »p
. |
— next_permutation( )= » % etc.
e is_last_permutation(u) = T iff « has no<-

successor.
Now, we can prove by induction op the following
property for allg, P(p) defined as “for all worldw,
the callcheck(w, ¢) needsO(Jp| x |w|) memory cells”.
o P(T) andP(p) are true;
o Let us proveP (1 Avg). The first callcheck (w, 1)
needsO(|p1| X |w|) by hypothesis of induction.

function sat(y)
w = choose_world_with_symbols_in(p)
return checkl(w, ¢)

endFunction

Fig. 4. A PSPACE-algorithm for satisfiability problem éf*1D pgt
ar

card(AG'D L*1D pg1— md L*1D g1 — sat

1 Y1-hard, in As-hard | Xo-complete
neN,n>2 | X,-hard, in?? Yn41-hard, in??
00 PSPACE-complete PSRBE-complete
card(AG'D S5card(AGT) — sat

1 NP-complete

n>2 PSPACE-complete

00 PSPACE-complete

Fig. 5. Table of complexities

« Now, we prove P(K,y). By induction, every
sub-call check(w, 1) needs at mosO(|y| x |w]|)
memory cells. Furthermore, we neéd(|w|) for
first_permutation(w), is_last_permutation(u)
and next_permutation(u) and also to keep the
local variableu in memory. So we need)(|¢| x
[w]) + O(jw]) = O(|¢| x |w]).

Finally, P(y) is true for all ¢. In other words, the
algorithm of Figure 3 only use a polynomial number
of memory cells (we take in account (})

[ ]
Proposition 6: Let AGTbe any set of agents. THE 12 pg

ne:ct_permutation(u) is a function, using a linear satisfiability problem is in PSPACE.

Proof: You can read the algorithm of Figure 4. The
algorithm consists in guessing non-deterministically a world
w and then call the routineheck of Figure 3 to check ifp is
true inw. So, the problem is NPSPACE, hence from Savitch’s
theorem [12], it is PSPBE. [ |

Now we are going to investigate more in details com-
plexities of the model checking and satisfiability problem
depending on the size AAGT. The table of Figure 5 sums
up all results we have. There is also the recall of complexity
results aboutSs,, satisfiability problem as comparison.

C. When AGT is infinite: PSPACE-complete
We recall the complexity result about QBF formulas satis-
fiability problem:
Theorem 1:The QSAT-problem defined as following:
o Input: a formulap = 3p1Vpa3psVpy . . . QP Where:
— n is any integer;
— @ is a boolean formula;
—andQ; =V if i is even and); = 3 if 7 is odd;
— p; is a finite set of variables for eacgh
« Output: Yes iffi=gpr ¢. No, otherwise.

Then we can release all the memory cells used fig PSPACE-complete.

the sub-callcheck(w, ¢1) and we can treat the call
check(w, p2). It needsO(|p2| x |w|). Hence, the
sub-call check(w, g1 A p2) needsmax(O(|p1| x

[wl), Olp2| x |w])) = O(lg] x wl). SOP (1 Ath2).

Now the following Proposition gives a translation of a
QBF-instance into &*:2-model-checking instance orid:? -
satisfiability problem instance.



Proposition 7:Let ¢ = 3p1VpoIpsVpy ... Qnppt be a As f(3p;...Qndnt)) = f(i_l(puti A f(YDig1 .. Qubnt)),

formula of the logic QBF. We defing(,) by induction: we have:
. F(¥) =¥ Wit (B, Bi-1) Fren f(3hi-.. Quint)). We ensure
o FOVPiQubnth) = Ki_1(put; = f(3Pis1..Qnint); that it is equivalent.
o F(3PiQubntd) = Ki_1(put; A f(VPis1..-Qubntl); The case where is even is similar ]
where: o _ Immediately from this translation, we deduce the lower
o Puta = Niegarr,.ony Kabi N Nier..ay Kabis bound for model-checking id*1>.,
. Kgﬁ: /\qe;ﬁKgq; Corollary 2: Let AGT an infinite enumerable set of agents.
o K'g=K.qV K,q. The model-checking problem di*1> pg7 is PSPACE-hard.
We have equivalence between: Proof: Reduction via Proposition 7 and Theorem 1 in
e oBF ¥; order to the PSPACE-hardness and Proposifion ]
o puty A f(V5a3psVps - .. Quint)) is L*17 pr-satisfiable; 1N the same way we have:

andw =, f(p) wherew € W, where Wy, is the Corollary 3: Let AGT an infinite enumerable set of agents.
set of all worlds where agefitis completely on the left The satisfiability problem of.™*” gt is PSPACE-hard.

). D. When AGT is finite

We recall the complexity result about QBF formulas satis-
i _ fiability problem but when the nesting ofand3 is bounded
Proof: We are going to note for all C W, U = o iff by a fixed integemn.

for all w € U, u [= ¢. We are going to prove by induction “theqrem 2:Let n be a integer. The QSAFproblem de-
Eopr ¢ iff Wy =r=1p f(v). We are going to note for all fined as following:
i € N, for all valuationv[pi, ... pi,

looking to the left. (we notéVy = %

o Input: a formulay = 3p1Vp>IP3Vpy - . - Qnprntp Wherey
Wi(v[py, ... 5i]) is a boolean formula, an@; = V if i is even and); = 3
if 7 is odd;
o Output: Yes iff=opr ¢. NO, otherwise.
is X,,-complete.

”def

BT o RNV o S Co S The Theorem 2 only differ from Theorem 1 by the fact that
O Fp) Y ow(@) 2 ow(p) n iS no more a input of the problem but is now fixed inside

the problem. For each integer we have defined the QSAT

) ] o problem. There is a enumerable number of problems.
The induction hypothesis is:

In the same way, this precise complexity result of QBF
vipy, ... Pi-1] FoBr Qibi - . Qubnt combined with the translation of QBF td*'"allows us
i to have complexity lower bounds of model-checking and
satisfiability problem when the cardinality of the $8GT is
(5 5. 5 = finite and fixed.
Wict(f,- - -fi1) Frowo f(Qifi- . Qubnd) Corollary 4: Let AGT a finite set of agents. The model-
checking problem ofL*12 agt IS Ycargac P-hard.

The basis case correspondite n+1. It is the propositional Proof: Reduction via Proposition 7 and Theoré&n =
case. We have: Corollary 5: Let AGT a finite set of agents. The satisfiabil-
- . . . R ity problem of L2 pgT is Xcarqact)+1P-hard.
vIp1, .- Pn) Foar ¥ Iff Wiu(pt,...0h) Erap ¥ Proof: Reduction via Proposition 7 and Theorém m

Now we can attack the induction case. Let us prove
for ¢ odd. v[pi,...pi—1] Fopr  Qipi...QnpnY E. Whencard AGT) = 1
means that there exists a valuation(p;) such that  ynfortunately we do not have a precise complexity upper-
v[py,...0i] FEqpr  Qixalit1-..Quppyp. By induction, pound for those problems in the general case wdeed(AGT)

it means thatV;(py, ... pi) Frsp f(Qibi - . Qnbn?). is finite. Nevertheless, we have the exact complexity when
But for all w;_y € Wi_1(p1,...pi-1) and for allw; €  card(AGT) = 1.

Wi(p1, ... pi), we have: Proposition 8: The model-checking problem df*> (, is
o w;_1R;_qw;; in AsP.
o w; = put;. Indeed, for allj > i, we havew | ﬁK;fﬁj Proof: The figure 6 gives us am\,P-algorithm (a P-

because agent does not see lampg; in w;. On the algorithm with NP-oracles) for the model-checking problem
contrary, for allj < i, we havew = K!'p; because of L*1p 4. Given a worldw, first we compute thel” of
agenti do see lampg; in w; (the valuation of lamps propositions occurring iny that the agent 1 sees and

p; is the same in all worlds € R;(w;)). The technical the set of propositions the agent 1 does not see. Then we
proof of w; = put; is left to the reader. can replace each occurrengeof a propositionp from V



function checkl(w, ¢ )
V := set of variables that agemtsees inw; o N

I := set of variables that agemtdoes not see imw; o460, @40
v := 1 in which we replace each € V' by 7, (p); ‘ #‘*/’//w
= 1 in which we replace each € T not in the scope - Q §>. LERA D
of a Ky by my(p); ,
while there existsK;x subformula ofy, wherey is a| Fig- 8. World for Muddy children

boolean formulado
if oracle — sat(—x) then

\ 1 := 1 in which we replacekK;yx by 1; IV. PUBLIC ANNOUNCEMENTS
else , : As done in [11] we can extend our framework with public
| ¥ := ¢ in which we replacei,x by T; announcements. This is essentially motivated by modelling
endwﬁﬂglf examples like Muddy children. With public announcements,
return PCL({L, T}) — sat(¢); an agent will be able to learn something about the part of the
endFunction actual world which he can not see. The technique is classical:

we add an operatdrp!] and we define semantics as $5,,.
Fig. 6. A A, P-algorithm for model checking of*1D 4,

: A. Definitions

function sat(y) . _ .
w := choose_world_with_symbols_in(y) Our new language&, 7 is defined by the following BNF:
return checkl(w, ¢)

endFunction pu=ploAo| o | K| [ple

Fig. 7. OptimalX;P-algorithm for satisfiability problem of 1D ¢4y wherep € ATM anda € AGT.

From now, we do not only parametes with a world but

in ¢ by the corresponding valuation, (p). Concerning a galso with the set of worlds.
propositionp € I, we only replace occurrences which are Definition 12 (truth conditions):
not in the scope of d&;. For instance, ip € I, g € V, and Let U a set of worlds f C W). Let w € U. We define
Tw(p) = T,mw(q) = L pAqV Ki(pV q) is replaced by {7, w = ¢ by induction:
TALVEKi(pV 1) Then we test satisfiability of boolean | ;= =piff m(p) =T
formulas—x such thatKy is a subformula of) and replace U:w =AY iff Uw =@ andU,w = ;
Kix by L if —x is satisfiable and by” otherwise. At the end, Uyw = —p iff Uyw b @;
we obtain a boolean formulg containing no variables. We U,w = K, iff for all w' € U, wR,w' implies U, w' =
test its satisfiability withPCL({ L, T}) — sat(¢). Notice the i B ’
while -loop is done in linear time because there are a linear U,w = ey iff Uyw = ¢ implies U N
number of subformulas irp. [ {1’0, cU|Uw E ¢} w ):71/)-

Proposition 9: The satisfiability problem ofL*12 ¢y is

5, P-complete. The set of validites we obtain is noted™”" =

Proof: {¢ | W,w = ¢} where W is the set of all worlds defined

The hardness comes from Corollary 5. The Figure 7 givgsef'n't'on 8.
us anX;P-algorithm (a NP-algorithm with NP-oracles) for the
satisfiability problem ofL*12 ;. B. Example

u Now we are going to study the Muddy children example.

This example is also studied in [11]. You can also find this
F. When AGT anddTM are both finite example in [4] and [3] with more than two children. The
Proposition 10:Let ATM a finite set of agents and Situation is the following: there are two children named 1

AGT = {1}. The satisfiability problem and model-checking"d 2. Their foreheads are dirty. They see each others. The
of L 1 is in P. situation is represented by the world shown in Figure 8

Proof: We adapt algorithms of the figure 6 and 7 in ordef? the top left. One child do not know if he is dirty or not
to have an optimal polynomial algorithm. More precisely: but he knows the state of the forehead of the other one. We
introduce two propositiong: stands for “1’s forehead is dirty”
ea}ndq stands for “1’'s forehead is dirty”.

We have:

« You replacechoose_world_with_symbols_in in Figure
7 by a loop over all worlds. You can notice that the s
of all possible worlds is fixed, that is to say it does not
depend onp; o W,w E Kig A Kap;

« oracle — sat can now run in polynomial time because * W,w = ~Kip A =K1 (=p) A 7Ka(q).
there is a fixed number giropositions. Then:

] « the father says at least one of them are dirty;



function mc!%’w, C, )

e . match ()
(og oo ‘7‘75329\/ T\: return T;
© Q §>0 J p € ATM:

return L if p is false inw;

return T if p is true inw;
Fig. 9. World for Muddy children after having announced

1 Aot
pro—— | return mc!(w, C, 1) A mcl(w, C,1s);
‘/ \ _"(’ZJ
QO 6,90/\ | return —mcl(w, C,);
Ky
for u € Ro(w) do
if inupdated M (u, C') and
Fig. 10. World for Muddy children after having announced and 2 mc!(u, w) — | then
\ return L;
. endlIf
« the children answer that they do not know whether they endFor
are dirty of not. o return T;
. 1 PR
Formally, we also have: if mcl(w, C, 1) then
W, w = [p1l][p2!](K1p A K2q) | return mel(w, [ : C,42)
else
where: | return T
e p1=pVg, dMatch endlIf
o 3= (~K1pV ~Ki=p) A (=Kag V —K>-q). endFunction -

We verify that after having announced, we only consider
worlds in Figure 9. Then we only consider the initial world Fig. 11. Algorithm for model-checking i, *11"
drawn in 10.

C. Complexity e ||, || denotes the length (number of symbols)mny;
BecauseL*»' is a conservative extension df*:», we  * |Cl, |D| denotes also the number of symbolsdh D.

inherit from the lower bound results both for model-checking ~ More precisely:
and satisfiability. In fact, we keep the PSPACE-ness upper-  — |[]| = 0;
bound with public announcements. = |[¥1: C"]| = |¥1] + |C7].

Propos@og 111.'The model-checking - and S"’V['Sﬁab'“tyThe order < is well-founded and we can use it to prove
problem inL*1P" is PSPACE-complete. terminaison by induction

Proof: The Figure 11 gives an algorithm for model- ’

checking. As usuahy is a world, ¢ is a formula. The second + Basic case(f),p) etc.
argumentC is a list of formulas and stands for tltentext if « Induction case: you just have to see that!(w,C, )
C =[] (empty list), it corresponds to the whole set of worlds  will only call mc!(u, D,v) with (D,v) < (C,¢). For
otherwise it is a list of announced formulas used to update the instance, whenmc!(w, C, ) calls inupdatedM (u,C)

model. More precisely, let us define: which callsmc!(w, C’, ), we have|C’| + |¢| = |C| <
o Wi =w; 1C[ +[e].
N [¢1:C"] — c’ c’
W {lwe W= WS wi= . Correction and the fact that the algorithm runs using a
We want:

polynomial space can also be proved by induction using the
o mc(w, C, ) returns true iffive w = ¢; order <.

. i (&
» inupdatedM (w,C) retums true iffw € W _ The hardness comes from the fact tiat>' is a conser-
We have to prove terminaison, correctness and complexifative extension of.*:> and the model checking df*:® is

Let us begin to prove terminaison. First of all, we are goingSpACE-hard (Corollary 2).
to introduce an ordex over all possible input$C, ¢) of the
function mc! of Figure 11.

We define(C, ¢) < (D, ) by:

Concerning the satisfiability, we can make the same remark
than in the proof of Propositiof.

] ]
o [Cl+ el < |D[+[4; : : -
The upper-bound in special cas&I(T finite etc.) has not
or IC| + |¢| = |D| + |4 been studied yet.
* and |p| < |¢] From now, we are to discuss about the implementation and

where develop the example of the Muddy children.
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function inpudated M (w, C) The function returns#f meaning that we do not have
matCh[](:c;)eturn T; W,w = Kip A Kag. _
[0 : C'): mel(w, C',p); . Wg ask the computer _the different worlds the agént
endMatch imagine. To do this we write
endFunction (world-getpossibleworlds ’( (p #t) (1 <)

] | . N (2 >) (@ #) 1
ig. 12. Algorithm for testing if a worldv is in the updated model formulas . .
inC The system gives:
(((p #) (1 <) (2 >) (g #1))
((p #) (1 <) (2 >) (q #)))
V. IMPLEMENTATION We can now test if the formul®, w = [¢1!][w2!](K1ip A

You can find an implementation on the Web site. You caﬁQq)' You simply write

put positions and directions of agents and positions and s;tategmC (i #) 1<) (2>) (q #)
of lamps on your own. Then you can write down a formulélarmounce (p or q) (announce ((not (1
and check if your formula is true in the world you have drawr"°WS P)) and (not (2 knows @))) ((1 knows

This program offers a concrete example to illustrate epig) and (2 knows @)))))
temic logic to students. The system answer .

A. Description VI. CONCLUSION

The program is written in Scheme for the easy use of dataThe epistemic logicS5,, is a general and theoretical frame-

structures and recursive programming. Haskell could also W@'K for the representation of knowledge. In this paper, we
a well-suited language especially for the lazy evaluation ef@ve Studied a spatially grounded epistemic logic. We have

abling us to write a program which seems to use a exponentffestigated two aspects of knowledge learning:
amount of memory whereas it uses only a polynomial amounte With L, we can reason about what agents know by

of memory. Here are the main Scheme functions: learning only with their eyes (when they are located on
« (mc world formula) computes if the formula a line space);
formula s true in the worldworld o With L*1»" we can reason about what agents know by
« (mc-with-context world context ’ looking at their environments and by listening to public
announcements.

formula) computes of the formulaformula is
true in the worldworld but we restrict our check Of course the case of the line is restrictive. The case of the
computations only on worlds satisfying the formul@lane or of the space may be more interesting. Nevertheless,

context ; this paper gives complexity results for model-checking and
« (worldset-delete-not-satisfying satisfiability problem for the case of the line. Even the line
worldset formula) removes from the set of looks like easy, problems are already PSPACE-complete if

world worldset  all worlds which does not satisfy thethe number of agents is not bounded. We conjecture that
formula formula . This function is used to deal with the complexity of this logic for dimension > 2 remains

updated models; PSPACE-complete.

« (world-getpossibleworlds world agent) From now, there are two main perspectives: to adapt this
computes the set of all possible worlds for agagent  logic to the case of two dimensions [1] and to study properly
in world world . complexity of model checking and satisfiability with/without

In order to be human readable, the implementation dokdblic announcements. Other perspectives are numerous:
not run in polynomial space but in exponential time. For « fill the Figure 5. The exact complexity classes of model
instance the functionworld-getpossibleworlds w checking and satisfiability.*1> oot Wwhen AGT is finite
a) computes realhall worlds in R, (w). are still open questions;

« Study and implement the logic with agents and lamps
in the plane [1] and compare it to the logic in the line.
Writing down the semantics is quite easy: you just have to
You can describe theurrent situation(world w on the top replaceR by R? in Definition 8 and tune the definition of

left in Figure 8 by( (p #t) (1 <) (2 >) (q #1)) . directions and Definition 3. The main difficulty is to find

Notice that we are not going to construct the Kripke structure a compact representation in order to deal with the model

by hand. When you draw a Kripke model, you can easily checking and satisfiability problem. In two dimensions

mistakes all the more so the model is theoretical. Here we it is no more possible to consider a total preorder on

B. Practising Muddy children

just enjoy specifyinggraphically the situation. The Kripke elements. Finding a good equivalent of Definition 7
structure is then generated on-the-fly by the algorithm. You satisfying Proposition 4 in the case of dimension 2 or
can test ifiW,w |= K1p A Kaq by calling more is still an open problem.

(mc '((p #) (1 <) (2 >) (g #1)) (1 « Study the logic in the 3D-space and compare it to the

knows p) and (2 knows Q))) . one in the plane (I guess we obtain the same validities);



Find an axiomatization of those logics in order to under-
stand better how they work;

Study if it is possible to have a normal form (like for S5,

where all formulas are equivalent to a formula of modal
degree 1 [6]);

Extend with a common knowledge operator. Will the
complexity of the satisfiability problem also increase and
become EXPTIME-complete?

Extend with private communications between agents.
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