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Abstract

We develop a sound and complete tableau-based deci-
sion procedure for the full coalitional multiagent temporal-
epistemic logic of branching timeCMATEL(CD+BT) that
extends logicCTL with epistemic operators for common
and distributed knowledge for all coalitions of agents re-
ferred to in the language. The procedure runs in exponen-
tial time, which matches the lower bound established by
Halpern and Vardi for a fragment of our logic, thus pro-
viding a complexity-optimal decision procedure and a com-
plete deductive system for our logic.

1 Introduction

Reasoning about knowledge and time is crucial for de-
signing, and verifying properties of, distributed and mul-
tiagent systems. A number oftemporal-epistemic logics
were proposed as logical frameworks for modeling of, and
reasoning about, these aspects of distributed systems in
the 1980’s. This research was summarized in the com-
prehensive study by Halpern and Vardi [7]. In that study,
the authors considered several essential characteristicsof
temporal-epistemic logics, namely:one vs. several agents,
synchrony vs. asynchrony, (no) learning, (no) forgetting,
linear vs. branching time, and the (non)existence of a
unique initial state. Based on these, they identify and ana-
lyze 96 temporal-epistemic logics and obtain lower bounds
for the complexity of the satisfiability problem in all of
them. It turns out that most of the systems with more than
one agents who do not learn or do not forget are unde-
cidable, oftenΠ1

1-hard (with common knowledge), or de-
cidable but with non-elementary time lower bound (with-
out common knowledge). For most of the remaining log-
ics, the lower bounds established in [7] for the multiagent
case range from PSPACE (synchronous systems without
common knowledge), through EXPTIME (with common
knowledge), to EXPSPACE (synchronous systems with no
learning and unique initial state).

Despite the conceptual importance and wide range of po-

tential applications of temporal-epistemic logics, to thebest
of our knowledge, no efficient decision procedures for log-
ics studied in [7] had been developed until quite recently,
even for the systems with a relatively low known lower
bounds. The only exception is [11], where a top-down
tableau-style decision procedure for the logicATEL , which
subsumes the basic branching-time logic considered in [7]
and this paper, was presented. In our view (to be explained
further), however, [11] should be seen as a contribution to
the complexity-theoretic analysis of the temporal-epistemic
logics rather than to the development of efficient decision
procedures for them.

In the recent precursor [5] to the present paper, we
set out to fill in the above-mentioned gap by develop-
ing a practically efficient (within the theoretical complex-
ity bounds) tableau-based decision procedure for the coali-
tional multiagent temporal-epistemic logic of linear time
CMATEL(CD+LT) (for both the synchronous and asyn-
chronous cases), building both on Wolper’s incremental
tableaux forLTL [13] and on our earlier work on tableaux
for the full coalitional multiagent (purely) epistemic logic
CMAEL(CD) [6].

In the present paper, we report on the second, and fi-
nal, part of the project undertaken with the publication
of [5]; namely, we present a sound, complete, and termi-
nating incremental tableau for theCoalitional Multi-Agent
Temporal Epistemic Logic with operators forCommon
and Distributed knowledge andBranching Time, CMA-
TEL(CD+BT) . The tableau procedure presented herein fol-
lows the tableau-building philosophy developed for the log-
ics PDL by Pratt in [9],UB by Ben-Ari, Manna and Pnueli
in [1], andCTL by Emerson and Halpern in [3]. Our pro-
cedure essentially combines incremental tableaux forCTL
from the latter (see also [10] for a recent detailed exposi-
tion) and tableaux for the full coalitional multiagent epis-
temic logicCMAEL(CD) developed in [6]. In the present
paper, as in [6], we work with a more expressive epistemic
language than the one considered in [7], as it contains op-
erators for common and distributed knowledge forall non-
empty coalitions(i.e., subsets) of the set of agents. The re-
sulting decision procedure for testing satisfiability inCMA-

1



TEL(CD+BT) runs in exponential time, which is the opti-
mal lower-bound, as established in [11].

We should mention that, even though the procedure pre-
sented in [11] can be used to testCMATEL(CD+BT) -
formulae for satisfiability, this would not give us the optimal
procedure, since such a procedure wouldalwaysrequire ex-
ponential time predicted by the worst-case estimate. The in-
cremental tableau presented in this paper, on the other hand,
on average requires much less time than the theoretical up-
per bound (this claim cannot be made mathematically pre-
cise without an a priori probability distribution on formu-
lae; however, it is substantiated by example in [4], where
we compare the incremental tableaux presented in that pa-
per with the top-down tableux-style procedure from [12]).

Besides presenting the tableau-based procedure for
CMATEL(CD+BT) , the other major objective of this pa-
per is to demonstrate how two tableau procedures for log-
ics with non-interacting fixed-point operators (the epistemic
and the temporal ones, in our case) can be combined into a
tableau procedure for the fusion of these logics, thus offer-
ing a contribution to the area of combination of logics (see
e.g., [8]).

The present paper is structured as follows. In Sec-
tion 2, we introduce the logicCMATEL(CD+BT) . In
Section 3, we introduce Hintikka structures forCMA-
TEL(CD+BT) and show that satisfiability ofCMA-
TEL(CD+BT) -formulae in Hintikka structures is equiva-
lent to satisfiability in models introduced in Section 2. In
Section 4, we present the tableau procedure forCMA-
TEL(CD+BT) and, in Section 5, sketch out the proofs of
soundness and completeness and briefly discuss the com-
plexity of the procedure. The Appendix contains an exam-
ple of a run of the procedure.

2 Syntax and semantics of the logic CMA-
TEL(CD+BT)

The languageL of CMATEL(CD+BT) contains a (pos-
sibly infinite) setAP of atomic propositions; the Boolean
connectives¬ (“not”) and ∧ (“and”); the unary temporal
operators∃ g and ∀ g (existential and universal “next”,
respectively); the binary temporal operators∃(−U−) and
∀(−U−) (existential and universal “until”, respectively),
as well as the unary epistemic operatorsDAϕ (“ it is dis-
tributed knowledge among agents inA thatϕ”), andCAϕ
(“ it is common knowledge among agents ofA thatϕ”) for
every non-emptyA ⊆ Σ, whereΣ is the finite, non-empty
set of names of agents belonging toL. Subsets ofΣ are
calledcoalitions. Thus, the formulae ofL are defined as
follows:

ϕ := p | ¬ϕ | (ϕ1 ∧ ϕ2) | ∃ gϕ | ∀ gϕ |

| ∃(ϕ1 Uϕ2) | ∀(ϕ1 Uϕ2) | DAϕ | CAϕ

wherep ranges overAP andA ranges over the setP+(Σ)
of non-empty subsets ofΣ. We writeϕ ∈ L to mean thatϕ
is a formula ofL and∆ ⊆ L to mean that∆ is a set of such
formulae.

Thus,L combines the language of Computational Tree
Logic CTL [2] with the language of the full coalitional
multi-agent epistemic logicCMAEL(CD) [6]. Although
∀ gϕ is definable as¬∃ g¬ϕ, it is convenient to treat it as
a primitive connective. The operator for individual knowl-
edgeKaϕ (“agenta knows thatϕ”), wherea ∈ Σ, can then
be defined asD{a}ϕ, henceforth writtenDaϕ. The other
Boolean and temporal connectives can be defined as usual.
We omit parentheses when this does not result in ambiguity.

Formulae of the form¬CAϕ areepistemic eventualities,
while those of the form∃(ϕ Uψ) and∀(ϕ Uψ) aretemporal
eventualities.

The semantics of temporal-epistemic logics considered
in [7] is based onsystem of runswithm processors (agents).
A run is a function from (the set of natural numbers)N to
the productLm regarded as the set ofglobal states, where
L is the set oflocal states; each agent can be in one of
local states at any moment in time. Thus, a global state
is a tuple〈l1, . . . , lm〉; the i-th componentli of this global
state representing thelocal view of the agenti. The pair
(r, n), wherer is a run andn ∈ N, is called in [7] apoint.
With every agenti, the authors of [7] associate the binary
epistemic indistinguishability relation∼i onLm, defined as
follows: 〈l1, . . . , lm〉 ∼i 〈l

′
1, . . . , l

′
m〉 if li = l′i; i.e., if the

agenti has the same local views in these states.
According to [7], a system issynchronouswhen it has

a ‘global clock’ observable by all agents and thus synchro-
nizing their local times; formally, a system is synchronous
if (r, n) ∼i (r′, n′) impliesn = n′, for everyi = 1, . . . ,m,
runsr, r′, and time momentsn, n′. It turns out that the pres-
ence or absence of synchrony, under no other assumptions,
does not affect the outcome of our tableau procedure, and
therefore, the satisfiability of formulae.

The systems with (global) states represented as tuples of
local states are generalized in [7] to systems where global
states are abstract primitive entities and the epistemic rela-
tions are abstract equivalence relations on the set of such
states. In the present paper, we work with this abstract
semantics from [7]. We note that, as we show later, this
semantics ismore generalthan the above mentioned ‘con-
crete’ semantics from [7], despite the apparent assumption
made in [7] that the two semantics are equivalent. We now
turn to the presentation of the abstract semantics from [7].

Definition 2.1 A temporal-epistemic system(TES) is a tu-
pleG = (Σ, S,R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ)), where:

1. Σ is a finite, non-empty set ofagents;

2. S 6= ∅ is a set ofstates;



3. R 6= ∅ is a set of runs: each r ∈ R is a function
r : N 7→ S. A state visited by a computation can, then,
be represented asr(n), wherer ∈ R andn ∈ N. Also,
with a stater(n) we associate a pair(r, n), referred
to as apoint; the set of all points inG is denoted by
P (G). Notice that different points may be associated
with the same state.

4. for everyA ∈ P+(Σ), RD
A andRC

A are binary rela-
tions on P(G), such thatRC

A is the reflexive and tran-
sitive closure of

⋃
A′⊆AR

D
A′ .

A TESG is synchronous(STES) if((r, n), (r′, n′)) ∈
RD
A impliesn = n′ for everyA ∈ P+(Σ).

Hereafter we write ‘(S)TES’ to refer to general or syn-
chronous temporal-epistemic system.

Definition 2.2 Let (r, n) ∈ P (G) for some (S)TESG with
a set of runsR and letr′ ∈ R. We say thatr′ extends(r, n)
if r(m) = r′(m) holds for allm ≤ n.

Definition 2.3 A (synchronous) temporal-
epistemic frame ((S)TEF) is a (S)TES G =
(Σ, S,R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ)), where each

RD
A is an equivalence relation satisfying the following

condition:

(†) RD
A =

⋂
a∈AR

D
{a}

If condition (†) is replaced by the following, weaker one:

(††) RD
A ⊆ RD

B wheneverB ⊆ A,

thenF is a (synchronous) temporal-epistemic pseudo-frame
(pseudo-(S)TEF).

Notice that in (pseudo-)(S)TEFsRC
A is the transitive clo-

sure of
⋃

a∈AR
D
{a}, for everyA ∈ P+(Σ); furthermore, in

such structures, eachRC
A is an equivalence relation.

Definition 2.4 A (synchronous) temporal-epistemic model
((S)TEM, for short) is a tupleM = (F, L), where

(i) F is a (S)TEF with a set of runsR;

(ii) L : R × N 7→ P(AP) is a labeling function, such
thatL(r, n) is the set of atomic propositions ‘true’ at
a point(r, n).

If condition (i) is changed so thatF is a pseudo-(S)TEF, then
M is a (synchronous) temporal-epistemic pseudo-model
(pseudo-(S)TEM).

Definition 2.5 The satisfaction relation 
 between
(pseudo-)(S)TEMs, points, and formulae ofL is recursively
defined as follows:

M, (r, n) 
 p iff p ∈ L(r, n);

M, (r, n) 
 ¬ϕ iff M, (r, n) 1 ϕ;
M, (r, n) 
 ϕ∧ψ iff M, (r, n) 
 ϕ andM, (r, n) 
 ψ;
M, (r, n) 
 ∃ gϕ iff M, (r′, n+1) 
 ϕ holds for some

r′ extending(r, n);
M, (r, n) 
 ∀ gϕ iff M, (r′, n+1) 
 ϕ holds for every

r′ extending(r, n);
M, (r, n) 
 ∃(ϕ Uψ) iff, for somer′ extending(r, n),

there existsi ≥ n such that M, (r′, i) 
 ψ and
M, (r′, j) 
 ϕ holds for everyn ≤ j < i;

M, (r, n) 
 ∀(ϕ Uψ) iff, for everyr′ extending(r, n),
there existsi ≥ n such that M, (r′, i) 
 ψ and
M, (r′, j) 
 ϕ holds for everyn ≤ j < i;

M, (r, n) 
 DAϕ iff M, (r′, n′) 
 ϕ for every
((r, n), (r′, n′)) ∈ RD

A ;
M, (r, n) 
 CAϕ iff M, (r′, n′) 
 ϕ for every

((r, n), (r′, n′)) ∈ RC
A.

Satisfiability and validity of formulae are defined as
usual.

Note that in the semantics abovethe labeling functionL
acts on points, not states, i.e., the semantics ispoint-based.
To make the semanticsstate-based, one needs to impose
the additional condition1: r(n) = r′(n′) impliesL(r, n) =
L(r′, n′). The two semantics differ: e.g., the formulap →
∀(⊤Up) is valid in the state-based semantics, but not in the
point-based one.

The satisfaction condition for the operatorCA can be
paraphrased in terms of reachability. LetF be a (pseudo)-
(S)TEF over the set of runsR and let (r, n) ∈ R × N.
We say that point(r′, n′) is A-reachable from(r, n) if ei-
ther (r, n) = (r′, n′) or there exists a sequence(r, n) =
(r0, n0), (r1, n1), . . . , (rm−1, nm−1), (rm, nm) = (r′, n′)
of points inR × N such that, for every0 ≤ i < m, there
existsai ∈ A such that(ri, ni), (ri+1, ni+1)) ∈ RDai

. It is
then easy to see that the following satisfaction condition for
CA is equivalent to the one given above:

M, (r, n) 
 CAϕ iff M, (r′, n′) 
 ϕ for every(r′, n′),
A-reachable from(r, n).

Note that ifΣ = {a}, thenDaϕ ↔ Caϕ is valid in
every (S)TEM, for allϕ ∈ L. Thus, the single-agent case is
essentially trivialized, so we assume throughout the rest of
the paper thatΣ contains at least 2 (names of) agents.

Also note that in models where states are tuples of local
states, ifs ∼i s′ holds for everyi = 1, . . . ,m, thens = s′

and, therefore, the formulap→ DΣp is valid in every such
model, but it is not valid in every (S)TEM. Thus, the ab-
stract semantics presented above differs from the ‘concrete’
semantics presented in [7], despite the apparent assumption
to the contrary made in [7].

Hereafter, we consider general temporal-epistemic sys-
tems; all definitions and results also apply to the syn-
chronous variety, unless stated otherwise.

1This condition is not imposed in [7], but this is an apparent omission
because it is essentially assumed there.



3 Hintikka structures for CMA-
TEL(CD+BT)

Even though we are ultimately interested in testing for-
mulae ofL for satisfiability in a TEM, the tableau proce-
dure we present tests for satisfiability in a more general kind
of semantic structure—aHintikka structure. We will show
that θ ∈ L is satisfiable in a TEM iff it is satisfiable in a
Hintikka structure, hence the latter test is equivalent to the
former. The advantage of working with Hintikka structures
lies in the fact that they contain just as much semantic in-
formation aboutθ as is necessary for computing its truth
value at a distinguished state. More precisely, while models
provide the truth value of every formula ofL at every state,
Hintikka structures only determine the truth values of for-
mulae directly involved in the evaluation of a fixed formula
θ, in the satisfiability of which we are interested. Another
important difference between models and Hintikka struc-
tures is that, in Hintikka structures, the epistemic relations
RD
A andRC

A only have to satisfy the properties laid down in
Definition 2.1. All the other information about the desirable
properties of epistemic relations is contained in the labeling
of states in Hintikka structures. This labeling ensures that
every Hintikka structure generates a pseudo-model (by the
construction of Lemma 3.5), which can then be turned into
a model.

Definition 3.1 A set∆ ⊆ L is patently inconsistentif it
contains a complementary pair of formulae (i.e., formulae
ψ and¬ψ for some formulaψ).

A set ∆ ⊆ L is fully expandedif it is not patently
inconsistent2 and satisfies the following conditions, where
Sub(ψ) stands for the set of subformulae of a formulaψ:

1. if ¬¬ϕ ∈ ∆, thenϕ ∈ ∆;
2. if ϕ ∧ ψ ∈ ∆, thenϕ ∈ ∆ andψ ∈ ∆;
3. if ¬(ϕ ∧ ψ) ∈ ∆, then¬ϕ ∈ ∆ or ¬ϕ ∈ ∆;
4. if ¬∃ gϕ ∈ ∆, then∀ g¬ϕ ∈ ∆;
5. if ¬∀ gϕ ∈ ∆, then∃ g¬ϕ ∈ ∆;
6. if ∃(ϕ Uψ) ∈ ∆, thenψ ∈ ∆ or ϕ,∃ g∃(ϕ Uψ) ∈ ∆;
7. if ¬∃(ϕ Uψ) ∈ ∆, then ¬ψ,¬ϕ ∈ ∆ or

¬ψ,¬∃ g∃(ϕ Uψ) ∈ ∆;
8. if ∀(ϕ Uψ) ∈ ∆, thenψ ∈ ∆ or ϕ,∀ g∀(ϕ Uψ) ∈ ∆;
9. if ¬∀(ϕ Uψ) ∈ ∆, then ¬ψ,¬ϕ ∈ ∆ or

¬ψ,¬∀ g∀(ϕ Uψ) ∈ ∆;
10. if DAϕ ∈ ∆, thenDA′ϕ ∈ ∆ for everyA′ such that

A ⊆ A′ ⊆ Σ;
11. if DAϕ ∈ ∆, thenϕ ∈ ∆;
12. ifCAϕ ∈ ∆, thenDa(ϕ∧CAϕ) ∈ ∆ for everya ∈ A;

2Even though in general, not being patently inconsistent is aweaker
condition than a propositional consistency, in the case of fully expanded
sets, they coincide.

13. if ¬CAϕ ∈ ∆, then¬Da(ϕ ∧ CAϕ) ∈ ∆ for some
a ∈ A;

14. ifψ ∈ ∆ andDAϕ ∈ Sub(ψ), then eitherDAϕ ∈ ∆
or ¬DAϕ ∈ ∆.

Definition 3.2 A temporal-epistemic Hin-
tikka structure (TEHS) is a tuple
(Σ, S,R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ),H) such that

(Σ, S,R, {RD
A}A∈P+(Σ), {R

C
A}A∈P+(Σ)) is a TES, andH

is a labeling of points(r, n) ∈ R× N with sets of formulae
of L satisfying the following constraints, for all(r, n):

H1 H(r, n) is fully expanded;
H2 if ¬ϕ ∈ H(r, n), thenϕ /∈ H(r, n);
H3 if ∃ gϕ ∈ H(r, n), thenϕ ∈ H(r′, n + 1) holds for

somer′ extending(r, n);
H4 if ∀ gϕ ∈ H(r, n), thenϕ ∈ H(r′, n + 1) holds for

everyr′ extending(r, n);
H5 if ∃(ϕ Uψ) ∈ H(r, n), then, for somer′ extending

(r, n), there existsi ≥ n such thatψ ∈ H(r′, i) and
ϕ ∈ H(r′, j) holds for everyn ≤ j < i;

H6 if ∀(ϕ Uψ) ∈ H(r, n), then, for everyr′ extending
(r, n), there existsi ≥ n such thatψ ∈ H(r′, i) and
ϕ ∈ H(r′, j) holds for everyn ≤ j < i;

H7 if ¬DAϕ ∈ H(r, n), then there ex-
ists r′ ∈ R and n′ ∈ N such that
((r, n), (r′, n′)) ∈ RD

A and¬ϕ ∈ H(r′, n′);
H8 if ((r, n), (r′, n′)) ∈ RD

A , thenDA′ϕ ∈ H(r, n) iff
DA′ϕ ∈ H(r′, n′) holds for everyA′ ⊆ A;

H9 if ¬CAϕ ∈ H(r, n), then there ex-
ists r′ ∈ R and n′ ∈ N such that
((r, n), (r′, n′)) ∈ RC

A and¬ϕ ∈ H(r′, n′).

Synchronous temporal-epistemic Hintikka structures are
defined accordingly.

Definition 3.3 A formulaθ is satisfiablein a TEHSH with
a labeling functionH if θ ∈ H(r, n) for some point(r, n)
ofH. A set of formulaeΘ is satisfiablein H if Θ ⊆ H(r, n)
for some point(r, n) of H.

Now, we show thatθ ∈ L is satisfiable in a TEM iff
it is satisfiable in a TEHS. One direction is almost imme-
diate, as every TEM naturally induces a TEHS. More pre-
cisely, given a TEMM, we define theextended labeling
L+
M on the set of points ofM as follows: L+

M(r, n) =
{ϕ | M, (r, n) 
 ϕ } for every(r, n). The following claim
is then straightforward.

Lemma 3.4 Let M =
(Σ, S,R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ), L) be

a TEM satisfying θ ∈ L, and let L+
M be

the extended labeling onM. Then, H =
(Σ, S,R, {RD

A}A∈P+(Σ), {R
C
A}A∈P+(Σ), L

+) is a TEHS
satisfyingθ.



To establish the converse, we first prove that the exis-
tence of a Hintikka structure satisfyingθ implies the exis-
tence of a pseudo-model satisfyingθ; then, we prove that
this in turn implies the existence of a model satisfyingθ.

Lemma 3.5 If θ ∈ L is satisfiable in a TEHS, then it is
satisfiable in a pseudo-TEM.

Proof. LetH = (Σ, S,R, {RD
A}A∈P+(Σ), {R

C
A}A∈P+(Σ),H)

be a TEHS satisfyingθ. We build a pseudo-TEM satis-
fying θ as follows. First, for everyA ∈ P+(Σ), let
R′D
A be the reflexive, symmetric, and transitive closure

of
⋃

A⊆BR
D
B and let R′C

A be the transitive closure of⋃
a∈AR

′D
a . Notice thatRD

A ⊆ R′D
A andRC

A ⊆ R′C
A for

everyA ∈ P+(Σ). Next, letL(r, n) = H(r, n) ∩ AP, for
every point(r, n) ∈ R × N. It is then easy to check that
M′ = (Σ, S,R, {R′D

A }A∈P+(Σ), {R
′C
A }A∈P+(Σ), L) is a

pseudo-TEM.
To complete the proof of the lemma, we show, by induc-

tion on the formulaχ ∈ L that, for every point(r, n) and
everyχ ∈ L, the following hold:

(i) χ ∈ H(r, n) impliesM′, (r, n) 
 χ;
(ii) ¬χ ∈ H(r, n) impliesM′, (r, n) 
 ¬χ.
Let χ be somep ∈ AP. Then,p ∈ H(r, n) implies

p ∈ L(r, n) and thus,M′, (r, n) 
 p; if, on the other hand,
¬p ∈ H(r, n), then due to (H2),p /∈ H(r, n) and thus
p /∈ L(r, n); hence,M′, (r, n) 
 ¬p.

Assume that the claim holds for all subformulae ofχ;
then, we have to prove that it holds forχ, as well.

Suppose thatχ = ¬ϕ. If ¬ϕ ∈ H(r, n), then the induc-
tive hypothesis immediately gives usM′, (r, n) 
 ¬ϕ; if
¬¬ϕ ∈ H(r, n), then by virtue of (H1),ϕ ∈ H(r, n) and
hence, by inductive hypothesis,M′, (r, n) 
 ϕ and thus
M′, (r, n) 
 ¬¬ϕ.

The cases ofχ = ϕ ∧ ψ, χ = ∃ gϕ, andχ = ∀ gϕ are
straightforward, using (H1) – (H4).

Let χ be∃(ϕ Uψ). If ∃(ϕ Uψ) ∈ H(r, n), then the de-
sired conclusion immediately follows from (H5) and the in-
ductive hypothesis. If¬∃(ϕ Uψ) ∈ H(r, n), then due to
(H1), either¬ψ,¬ϕ ∈ H(r, n) or ¬ψ,¬∃ g∃(ϕ Uψ) ∈
H(r, n). In the former case, the conclusion immediately
follows from the inductive hypothesis. Otherwise, due to
(H1) and (H4),¬∃(ϕ Uψ) ∈ H(r′, n + 1) holds for ev-
ery run r′ extending(r, n). By repeating the argument,
we obtain that, for every runr′ extending(r, n), either
¬ϕ ∈ H(r′, i) for somei ≥ 0 and¬ψ ∈ H(r′, j) for
every0 ≤ j ≤ i or ¬ψ ∈ H(r′, i) for everyi ≥ 0. In ei-
ther case, the inductive hypothesis implies thatM, (r, n) 


¬∃(ϕ Uψ), as desired.
The case ofχ = ∀(ϕ Uψ) is similar to the previous one

and is left to the reader.
Suppose thatχ = DAϕ. Assume, first, thatDAϕ ∈

H(r, n). In view of the inductive hypothesis, it suffices to
show that((r, n), (r′, n′)) ∈ R′D

A impliesϕ ∈ H(r′, n′).

So, assume that((r, n), (r′, n′)) ∈ R′D
A . There are two

cases to consider. If(r, n) = (r′, n′), then the conclusion
immediately follows from (H1). Otherwise, there exists an
undirected path from(r, n) to (r′, n′) along the relations
RD
A′ , where eachA′ is a superset ofA. Then, due to (H8),

DAϕ ∈ H(r′, n′); hence, by (H1),ϕ ∈ H(r′, n′), as de-
sired.

Now, let ¬DAϕ ∈ H(r, n). In view of the inductive
hypothesis, it suffices to show that there existr′ ∈ R
andn′ ∈ N such that((r, n), (r′, n′)) ∈ R′D

A and¬ϕ ∈
H(r′, n′). By (H7), there existsr′ ∈ R and n′ ∈ N

such that((r, n), (r′, n′)) ∈ RD
A and¬ϕ ∈ H(r′, n′). As

RD
A ⊆ R′D

A , the desired conclusion follows.
Suppose thatχ = CAϕ. Assume thatCAϕ ∈ H(r, n).

In view of the inductive hypothesis, it suffices to show that
if (r′, n′) is A-reachable from(r, n) in M′, then ϕ ∈
H(r′, n′). If (r, n) = (r′, n′) the claim follows from (H1).
So, suppose that, for somem ≥ 1, there exists a sequence of
points (r, n) = (r0, n0), . . . , (rm−1, nm−1), (rm, nm) =
(r′, n′) such that, for every0 ≤ i < m, there existsai ∈ A
such that((ri, ni), (ri+1, ni+1)) ∈ R′D

ai
. Then, for every

0 ≤ i < m, there exists a path from(ri, ni) to (ri+1, ni+1)
along relationsRD

A′ such thatai ∈ A′ for everyA′. Then,
we can show by induction oni, using (H1) and (H8), that
CAϕ ∈ H(ri, ni) holds for every0 ≤ i < m. Indeed,
this holds fori = 0; assuming that it holds for somei, by
(H1)(12) we have thatDai

(ϕ ∧ CAϕ) ∈ H(ri, ni), hence,
by (H1)(10) and (H8),ϕ ∈ H(ri+1, ni+1). Now, by taking
i = m− 1 we obtainϕ ∈ H(r′, n′), as required.

Finally, assume that¬CAϕ ∈ H(r, n). Then, the
desired conclusion follows from (H9), the fact that
RC
A ⊆ R′C

A , and the inductive hypothesis. 2

Lemma 3.6 If θ ∈ L is satisfiable in a pseudo-TEM, then
it is satisfiable in a TEM.

Proof. The proof is exactly the same as in [5, Section 3],
as the pseudo-models are only ‘defective’ with respect to
epistemic, but not temporal, relations; therefore, the con-
struction for branching time is the same as for linear time.2

Lemmas 3.4, 3.5, and 3.6 immediately give us the fol-
lowing theorem.

Theorem 3.7 A θ ∈ L is satisfiable in a TEM iff it is satis-
fiable in a TEHS.

4 Tableau procedure for CMATEL(CD+BT)

In this section, we present a tableau procedure forCMA-
TEL(CD+BT) . We describe a procedure for testing for sat-
isfiability in synchronous models, as it requires extra care.
We then briefly mention how the general case is different



and argue that the outcome of the procedure is the same
in both cases, implying that, satisfiability-wise, generaland
synchronous semantics are equivalent.

4.1 Overview of the procedure

The tableau procedure for testing a formulaθ ∈ L for
satisfiability attempts to construct a non-empty graphT θ

(calledtableau), whose nodes are finite sets ofL-formulae,
encoding ‘sufficiently many’ TEHSs forθ, in the sense that
if θ is satisfiable, then it is satisfiable in a TEHS represented
by T θ. The main ideas underlying our tableau algorithm
come from the tableau procedures for the logicsPDL in
[9], UB in [1] and CTL in [3] (see also a detailed exposi-
tion of tableaux forCTL in [10]), as well as recently de-
veloped tableaux for multiagent epistemic logics in [6]. To
make the present paper self-contained, we outline the basic
ideas behind our tableau algorithm in line with those refer-
ences, and then describe the particulars specific toCMA-
TEL(CD+BT) .

Usually, tableaux work by decomposing the input for-
mula into simpler formulae, in accordance with the seman-
tics of the logical connectives. In the classical propositional
case, “simpler” implies shorter, thus ensuring the termina-
tion of the procedure. The decomposition into simpler for-
mulae in the tableau for classical propositional logic pro-
duces a tree representing an exhaustive search for a Hintikka
set, the classical propositional analogue of Hintikka struc-
tures, for the input formulaθ. If at least one leaf of that tree
is a Hintikka set forθ, the search has succeeded andθ is
proved satisfiable; otherwise, it is declared unsatisfiable.

When applied to logics containing fixpoint-definable op-
erators, such asCA, ∃ U , and ∀ U , these two defining
features of the classical tableau method no longer apply.
First, the decomposition of the fixpoint formulae, which
is done by unfolding their fixpoint definitions, usually pro-
duces larger formulae:CAϕ is decomposed into the formu-
lae Da(ϕ ∧ CAϕ); analogously for formulae of the form
∃(ϕ Uψ) and ∀(ϕ Uψ). Hence, we need a termination-
ensuring mechanism. In our tableaux, such a mechanism
is provided by the use (and reuse) of so called “pre-states”,
whose role is to ensure the finiteness of the construction
and, hence, termination of the procedure. Second, the only
reason why a tableau may fail to produce a Hintikka set for
the input formula in the classical case is that every attempt
to build such a set results in a collection of formulae con-
taining apatent inconsistency, i.e., a complementary pair of
formulaeϕ,¬ϕ. In the case ofCMATEL(CD+BT) , there
are other such reasons, specific to TEHS, which are more
involved structures than classical Hintikka sets. One such
reason has to do with eventualities: the truth of an eventu-
ality at a states in a TEM M requires existence of a path
going froms to a state ofM at which the ‘promise’ of that

eventuality is fulfilled. Since truth in TEMs is simulated by
membership in state labels of Hintikka structures, eventual-
ities impose respective conditions on the labels. Thus, the
presence of an eventuality¬CAϕ in the label of a states
of a TEHSH requires the existence inH of anA-path (i.e.
a path along relations of the formRD

B , whereRD
B ⊆ RD

A )
from s to a statet whose label contains¬ϕ, due to con-
dition (H9) of Definition 3.2. Similar requirements apply
to eventualities of the form∃(ϕ Uψ) and∀(ϕ Uψ) due to
conditions (H5) and (H6) of Definition 3.2. The tableau
analogs of these conditions are calledrealization of even-
tualities. If a tableau contains a node with an unrealized
eventuality in its label, then it cannot produce a TEHS, and
thus is ‘bad’ and needs repairing by removing such nodes.
The third possible reason for a tableau to be ‘bad’ has to do
with successor nodes: it may so happen that some of the re-
quired successors of a nodes are missing from the tableau;
then,s is ‘bad’, and hence needs to be removed. Notice that
in TEHSs, and thus in tableaux, states have two kinds of
successors: temporal and epistemic. The absence of either
kind of successor can ruin the chances of a tableau node to
correspond to a state of a TEHS.

The tableau procedure consists of three major phases:
pretableau construction, pre-state elimination, and state
elimination. During the first, we produce thepretableau
for θ—a directed graphPθ, from which the tableauT θ will
be extracted. The nodes ofPθ are sets of formulae com-
ing in two varieties:statesandpre-states. States are fully
expanded sets, meant to represent (labels of) states of a Hin-
tikka structure, while pre-states only play a temporary role
in the construction ofT θ. During the second phase, all pre-
states fromPθ are removed and their incoming edges are
redirected, creating a smaller graphT θ

0 , the initial tableau
for θ. Finally, we remove fromT θ

0 all states, if any, that
cannot be satisfied in a TEHS, for any of the reasons men-
tioned above. The elimination procedure results in a (possi-
bly empty) subgraphT θ of T θ

0 , called thefinal tableau for
θ. If some state∆ of T θ containsθ, we declareθ satisfiable;
otherwise, we declare it unsatisfiable. An example illustrat-
ing the tableau construction is provided in Appendix A.

4.2 Pretableau construction phase

All states and pre-states of the pretableauPθ constructed
during this phase are ‘time-stamped’. Whenever necessary
to make it explicit, we will use the notationΓ[k] indicating
that pre-stateΓ was created as thekth component of a run;
likewise for states.

The pretableau contains three types of edge, described
below. As already mentioned, a procedure attempts to
produce a compact representation of a sufficiently many
TEHSs for the input formulaθ by organizing an exhaustive
search for such structures. One type of edge, depicted by



unmarked double arrows=⇒, represents the search tran-
sitions in the tableau. The exhaustive search considers all
possible alternatives that arise when expanding pre-states
into states through branching when dealing with disjunc-
tive formulae. Thus, when we draw a double arrow from a
pre-stateΓ to states∆ and∆′ (depicted asΓ =⇒ ∆ and
Γ =⇒ ∆′, respectively), this intuitively means that, in any
TEHS, a state whose label extends the setΓ has to contain
at least one of∆ and∆′. Our first construction rule,(SR),
prescribes how to create tableau states from pre-states.

Given a setΓ ⊆ L, we say that∆ is a minimal, fully
expanded extension ofΓ if ∆ is fully expanded,Γ ⊆ ∆,
and there is no∆′ such thatΓ ⊆ ∆′ ⊂ ∆ and∆′ is fully
expanded.

Rule (SR)Given a pre-stateΓ[k] such that(SR) has not
been applied toΓ[k] earlier, do the following:

1. Add to the pretableau all minimal fully expanded ex-
tensions∆[k] of Γ[k] asstates;

2. if ∆[k] contains no formulae of the form∃ gϕ, add
∃ g⊤ to it;

3. for each so obtained state∆[k], putΓ[k] =⇒ ∆[k];
4. if, however, the pretableau already contains a state

∆′[m] that coincides with∆[k], do not create another
copy of∆′[m], but only putΓ[k] =⇒ ∆′[m].

We denote bystates(Γ) the (finite) set of states{∆ |
Γ =⇒ ∆ }.

Notice that in all construction rules, as in(SR), we allow
reuse of (pre)states, which were originally stamped with a
possibly different time-stamp. This does not correspond to
one (pre)state being part of two different runs at different
moments of time; rather, the ‘futures’ of these runs, starting
from the reused (pre)state, can be assumed to be identical,
modulo the time difference.

The second type of edge in a pretableau represents epis-
temic relations in the TEHS that the procedure attempts
to build. This type of edge is represented by single ar-
rows marked with epistemic formulae whose presence in
the source state requires the presence in the tableau of a tar-
get state, reachable by a particular epistemic relation. All
such formulae have the form¬DAϕ, as can be seen from
Definition 3.2. Intuitively if, say¬DAϕ ∈ ∆[k], then we
need some pre-stateΓ[k] containing¬ϕ to be accessible
from ∆[k] by RD

A .3 The reason we mark these single ar-
rows by a formula¬DAϕ (rather than by just coalitionA),
is that we have to remember why we had to create this par-
ticular Γ, and not just what relation connects∆ to Γ. This
information will be needed during the elimination phases.
We now formulate the rule producing this second type of
edge.

3We require the newly created pre-states to bear the same time stamp
as the source state for the sake of synchrony, as this reflectsthe fact that all
epistemic alternatives belong to the same temporal level of anyTEHS.

Rule (DR): Given a state∆[k] such that¬DAϕ ∈ ∆[k]

and (DR) has not been applied to∆[k] earlier, do the fol-
lowing:

1. Create a new pre-stateΓ[k] = {¬ϕ} ∪⋃
A′⊆A{DA′ψ | DA′ψ ∈ ∆ } ∪

⋃
A′⊆A{¬DA′ψ |

¬DA′ψ ∈ ∆ }.
2. If pre-stateΓ[k] is patently inconsistent, remove it.

3. Otherwise, connect∆[k] to Γ[k] with
¬DAϕ
−→ .

4. If, however, the tableau already contains a pre-state
Γ′[k] = Γ[k], do not add another copy ofΓ′[k], but sim-

ply connect∆[k] to Γ′[k] with
¬DAϕ
−→ .

The third type of edge, depicted by single arrows marked
with formulae of the form∃ gϕ, represent temporal transi-
tions in TEHSs that the tableau is trying to build. The ra-
tionale for this rule is similar to that for(DR), the only dif-
ference being that we are now considering temporal, rather
than epistemic, formulae forcing creation of new pre-states.

Rule (Next): Given a state∆[k] such that(Next) has not
been applied to∆[k] earlier, do the following:

1. For each∃ gϕ ∈ ∆[k], create a new pre-stateΓ[k+1] =
{ϕ} ∪ {ψ | ∀ gψ ∈ ∆[k] }.4

2. If pre-stateΓ[k] is patently inconsistent, remove it im-
mediately.

3. Otherwise, connect∆[k] to Γ[k+1] with
∃ gϕ
−→ .

4. If, however, the tableau already contains a pre-state
Γ′[m] = Γ[k+1], do not add another copy ofΓ′[m], but

simply connect∆[k] to Γ′[m] with
∃ gϕ
−→ .

We now describe the order of application of the above
rules. We start off by creating a single pre-state{θ}, con-
taining the input formula. Then, we alternatingly apply
(DR) and(Next) to the states created at the previous stage
and then applying(SR) to the newly created pre-states. The
construction stage is over when the applications of(DR)
and(Next) do not produce any new pre-states.

4.3 Pre-State elimination phase

At this phase we remove fromPθ all pre-states and dou-
ble arrows, which results in a smaller graphT θ

0 called the
initial tableau. Formally, we apply the following rule:

Rule (PR)For every pre-stateΓ in Pθ, do the following:

1. RemoveΓ fromPθ.

2. If there is a state∆ in Pθ with ∆
χ

−→ Γ, then for every
state∆′ ∈ states(Γ), put∆

χ
−→ ∆′.

4Note that, due to step 2 in the(SR) rule, every state contains at least
one formula of the form∃ eϕ.



4.4 State elimination phase

During this phase we remove fromT θ
0 states that are not

satisfiable in a TEHS. As we do not create patently incon-
sistent states, there are two reasons why a state∆ of T θ

0

can turn out to be unsatisfiable: either satisfiability of∆ re-
quires satisfiability of some other (epistemic or temporal)
successor states which turn out unsatisfiable, or∆ contains
an eventuality that is not realized in the tableau. Accord-
ingly, we have two elimination rules:(E1) and(E2).

Formally, the state elimination phase is divided into
stages; we start at stage 0 withT θ

0 ; at stagen + 1, we re-
move exactly one state from the tableauT θ

n obtained at the
previous stage, by applying one of the elimination rules, ob-
taining the tableauT θ

n+1. In the rules below,Sθm denotes the
set of states of tableauT θ

m.

(E1) If ∆ contains a formulaχ of the form¬DAϕ or
∃ gϕ, and∆

χ
−→ ∆′ does not hold for any∆′ ∈ Sθn, obtain

T θ
n+1 by eliminating∆ from T θ

n .

For the other elimination rule, we need the concept of
eventuality realizationin a tableau.

Definition 4.1 (Eventuality realization)

• The eventuality¬CAϕ is realized at∆ in T θ
n if there

exists a path∆ = ∆0,∆1, . . . ,∆m, wherem ≥ 0,
such that¬ϕ ∈ ∆m and, for every0 ≤ i < m, there
existχi = DBψi such thatB ⊆ A and∆i

χi
−→ ∆i+1.

• The eventuality∃(ϕ Uψ) is realized at∆ in T θ
n if there

exists a path∆ = ∆0,∆1, . . . ,∆m, wherem ≥ 0,
such thatψ ∈ ∆m, and for every0 ≤ i < m, there

exist a formulaχi such that∆i
∃ gχi
−→ ∆i+1 andϕ ∈

∆i.

• For eventualities of the form∀(ϕ Uψ), we define the
notion “is realized at∆ in T θ

n ” recursively as follows:

(i) If ψ ∈ ∆ then∀(ϕ Uψ) is realized at∆;

(ii) If ϕ ∈ ∆ and, for every∃ gχ ∈ ∆, there is a

state∆′ ∈ T θ
n such that∆

∃ gχ
−→ ∆′ and∀(ϕ Uψ) is

realized at∆′, then∀(ϕ Uψ) is realized at∆.

Now, we can state our second state elimination rule.

(E2) If ∆ ∈ Sθn contains an eventualityξ that is not re-
alized at∆ in T θ

n , then obtainT θ
n+1 by removing∆ from

T θ
n .

We check for realization of eventualities by running
the following iterative procedures that eventually marks all
states realizing a given eventualityξ in T θ

n :

• If ξ = ¬CAϕ, then we initially mark all∆ ∈ Sθn
such that¬ϕ ∈ ∆. Then, we repeat the following sub-
procedure until no more states get marked: for every

still unmarked∆ ∈ Sθn, mark∆ if there is at least one

marked∆′ such that∆
DBψ
−→ ∆′, for someB ⊆ A.

• If ξ = ∃(ϕ Uψ), then we initially mark all∆ ∈ Sθn
such thatψ ∈ ∆. Then, we repeat the following sub-
procedure until no more states get marked: for every
still unmarked∆ ∈ Sθn, mark∆ if ϕ ∈ ∆ and there is

at least one marked∆′ such that∆
∃ gξ
−→ ∆′.

• If ξ = ∀(ϕ Uψ), then we initially mark all∆ ∈ Sθn
such thatψ ∈ ∆, and then we repeat the following sub-
procedure until no more states get marked: for every
still unmarked∆ ∈ Sθn, mark ∆ if ϕ ∈ ∆ and, for
every formula∃ gχ ∈ ∆, there is a marked state∆′ ∈

Sθn such that∆
∃ gχ
−→ ∆′.

We now describe the order of application of the above
rules. We have to be careful, since having applied(E2) to
a tableau, we could have removed all the states accessible
from some∆ along the arrows marked with someχ; hence,
we need to reapply(E1) to the resultant tableau to remove
such∆’s. Conversely, having applied(E1), we could have
thrown away states needed for realizing certain eventuali-
ties; hence, we need to reapply(E2). Thus, we need to apply
(E1) and(E2) in an alternating sequence that cycles through
all eventualities. More precisely, we arrange all eventuali-
ties occurring in the states ofT θ

0 in a list ξ1, . . . , ξm. Then,
we proceed in cycles. Each cycle consists of alternatingly
applying (E2) to the pending eventuality, starting withξ1,
and then applying(E1) to the resulting tableau, until all
the eventualities have been dealt with, i.e., we have reached
ξm. These cycles are repeated until no state is removed in a
whole cycle. Then, the state elimination phase is over.

The graph produced at the end of the state elimination
phase is called thefinal tableau forθ, denoted byT θ, whose
set of states is denoted bySθ.

Definition 4.2 The final tableauT θ is openif θ ∈ ∆ for
some∆ ∈ Sθ; otherwise,T θ is closed.

If the final tableau is closed, the tableau procedure re-
turns “no”; otherwise, it returns “yes”.

We briefly mention that, to test for satisfiability in gen-
eral models, we relax the rule(DR), allowing states to have
epistemic successors from different temporal levels. As
such a modification does not result in the outcome of the
procedure, we conclude that, satisfiability-wise, the seman-
tics based on general models is equivalent to the one based
on synchronous models.

5 Soundness, completeness, and complexity

Thesoundnessof a tableau procedure amounts to claim-
ing that if the input formulaθ is satisfiable, then the tableau



for θ is open. To establish soundness of the overall pro-
cedure, we use a series of lemmas showing that every rule
by itself is sound; the soundness of the overall procedure is
then an easy consequence. We give the proofs for the syn-
chronous case, the modification for the general case being
straightforward. The proofs of the following three lemmas
are straightforward.

Lemma 5.1 Let Γ be a pre-state ofPθ such that
M, (r, n) 
 Γ for some TEMM and point(r, n). Then,
M, (r, n) 
 ∆ holds for at least one∆ ∈ states(Γ).

Lemma 5.2 Let ∆ ∈ Sθ be such thatM, (r, n) 
 ∆
for some TEMM and point (r, n), and let ¬DAϕ ∈
∆. Then, there exists a point(r′, n) ∈ M such that
((r, n), (r′, n′)) ∈ RD

A and M, (r′, n′) 
 ∆′ where
∆′ = {¬ϕ} ∪

⋃
A′⊆A{DA′ψ | DA′ψ ∈ ∆ } ∪⋃

A′⊆A{¬DA′ψ | ¬DA′ψ ∈ ∆ }.

Lemma 5.3 Let ∆ ∈ Sθ be such thatM, (r, n) 
 ∆ for
some TEMM and point(r, n), and ∃ gϕ ∈ ∆. Then,
M, (r′, n+ 1) 
 {ϕ} ∪ {ψ | ∀ gψ ∈ ∆ } holds for some
r′ extending(r, n).

Lemma 5.4 Let ∆ ∈ Sθ be such thatM, (r, n) 
 ∆ for
some TEMM and a point(r, n), and let¬CAϕ ∈ ∆. Then,
¬CAϕ is realized at∆ in T θ.

Proof idea. Since¬CAϕ is true ats, there is a path in
M from s leading to a state satisfying¬ϕ. As the tableau
organizes an exhaustive search, a chain of tableau states
corresponding to those states in the model will be produced.
2

The next two lemmas are proved likewise.

Lemma 5.5 Let ∆ ∈ Sθ be such thatM, (r, n) 
 ∆ for
some TEMM and a point(r, n), and let∃(ϕ Uψ) ∈ ∆.
Then,∃(ϕ Uψ) is realized at∆ in T θ.

Lemma 5.6 Let ∆ ∈ Sθ be such thatM, (r, n) 
 ∆ for
some TEMM and a point(r, n), and let∀(ϕ Uψ) ∈ ∆.
Then,∀(ϕ Uψ) is realized at∆ in T θ.

Theorem 5.7 If θ ∈ L is satisfiable in a TEM, thenT θ is
open.

Proof sketch. Using the preceding lemmas, we show by
induction on the number of stages in the state elimina-
tion phase that no satisfiable state can be eliminated due
to (E1) or (E2). The claim then follows from Lemma 5.1.2

The completenessof a tableau procedure means that if
the tableau for a formulaθ is open, thenθ is satisfiable in
a TEM. In view of Theorem 3.7, it suffices to show that
an open tableau forθ can produce a TEHS satisfyingθ.
Moreover, we show that this TEHS can be constructed syn-
chronous.

Lemma 5.8 If T θ is open, thenθ is satisfiable in a (syn-
chronous) TEHS.

Proof sketch. We build the TEHSH for θ by induction on
the temporal levels. The main concern is to ensure that all
eventualities in the resultant structure are realized, i.e. the
properties (H5), (H6) and (H9) from the definition of Hin-
tikka structures hold; all the other properties of Hintikka
structures transfer, more or less immediately, from an open
tableau. We alternate between realizing epistemic eventu-
alities (formulae of the form¬CAϕ) and temporal eventu-
alities (formulae of the form∃(ϕ Uψ) and∀(ϕ Uψ)). Es-
sentially, the construction combines the construction used
in proving completeness of multi-agent epistemic Hintikka
structures from [6] and the one used in proving complete-
ness ofCTL (see [10], which essentially uses the construc-
tion that is a simplification of the construction forATL
from [4]).

We start by building the0th level of our prospective Hin-
tikka structure from the level0 of an open tableau. For each
state∆[0] on this level, if∆[0] does not contain any epis-
temic eventualities, we define∆[0]-epistemic component to
be∆[0] with exactly one successor reachable by¬DAψ, for
each¬DAψ ∈ ∆[0]; if, on the other hand,¬CAϕ ∈ ∆[0],
then the∆[0]-epistemic component is a tree obtained from
a path in the tableau leading from∆[0] along the arrows
marked with formulae of the form¬DBχ to a state∆′[0]

containingϕ; the tree is obtained from the path by giv-
ing each component of the path enough successors, as de-
scribed above. As all the unrealized epistemic eventualities
are propagated down the components (hence, appear in the
leaves of the tree), we can stitch them up together to obtain
a graph where each epistemic eventuality is realized.

Now, having built the0th level of our prospective Hin-
tikka structure, we take care of realizing all the temporal
eventualities contained in the states of level0. This is done
exactly as in the completeness proof of the tableau proce-
dure forCTL ([10]): we define the∆[0]-temporal compo-
nent for each∆[0] as follows: if it does not contain any
temporal eventualities, then we take∆[0] with one temporal
successor for each∃ gϕ ∈ ∆. If ∃(ϕ Uψ) ∈ ∆, then we
take a temporal path realizing∃(ϕ Uψ) ∈ ∆ and give to
every node enough temporal successors, as describe above.
Lastly, if ∀(ϕ Uψ) ∈ ∆, then we take a temporal tree wit-
nessing the the realizion of∀ϕ ∈ ∆ in the tableau (for de-
tails, see [10]). As eventualities are again passed down, we
can stitch up an infinite tree realizing all the eventualities
contained in the states making up the tree.

Next, we repeat the procedure inductively. For themth
epistemic level, we independently apply to each state on this
level the procedure described above for level0, so that the
epistemic structures unfolding from any two points on level
m are disjoint, and also give to each newly created point a
‘history’ consisting of a path ofm−1 states of the form{⊤}



(so that we do not create any new epistemic eventualities).
Having fixed all the epistemic eventualities at themth level,
we repeat the procedure described in the previous paragraph
to fix all the temporal eventualities contained in states of
levelm.

Thus, we produce a chain of structures ordered by
inclusion. Eventually, we take the (infinite) union of all the
structures defined at the finite states of that construction,
and then putH(∆[k]) = ∆[k] for every∆[k], to obtain a
TEHS satisfyingθ. 2

The completeness is now immediate from Lemma 5.8
and Theorem 3.7.

Theorem 5.9 (Completeness)If T θ is open, thenθ is sat-
isfiable, in a (synchronous) TEM.

As for the complexity, for lack of space, we only mention
that the above procedure runs in exponential time (the cal-
culations are fairly routine), thus matching the lower bound
known from [7].

6 Concluding remarks

We have presented an incremental tableau-based deci-
sion procedure for the full coalitional temporal-epistemic
logic of branching timeCMATEL(CD+BT) . The proce-
dure is complexity-optimal, intuitive, and practically rea-
sonably efficient (as the number of (pre)states it creates is
usually significantly smaller that the powerset of all subsets
of the close of the formula that is tested for satisfiability); it
is, therefore, suitable for both manual and automated exe-
cution. Moreover, it is fairly flexible and easily amenable to
modifications for variations of the semantics, such as those
mentioned in section 2. Since in the semantics considered
in this paper there is essentially no interaction between the
temporal and epistemic fragments, our procedure combines
in a modular way tableaux for the full coalitional multia-
gent epistemic logicCMAEL(CD) and forCTL . Such in-
teraction, however, can be triggered by imposing various
natural semantic conditions, such as “no learning” or “no
forgetting”. As shown in [7], such conditions may increase
dramatically the complexity of the logic, up to highly un-
decidable. However, even for the relatively ‘easy’ cases of
EXPSPACE-hard logics, the construction of a tableau pro-
cedures is still an open challenge, which we intend to ad-
dress in the future.
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A Example

In the present appendix, we provide an exam-
ple of how our procedure works on the formula
∀(¬C{a,b}p U ¬D{a,c}p). To simplify the exam-
ple, we test for satisfiability of the equivalent set
{∀(¬C{a,b}p U ¬D{a,c}p,⊤}. Displayed below is
the complete pretableau for this set.
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χ0 = ∃ e⊤;
χ1 = ¬Da(p ∧ C{a,b}p);
χ2 = ¬Db(p ∧ C{a,b}p);
Γ0 = {∀(¬C{a,b}p U D{a,c}p) = θ,⊤};
∆1 = {θ,¬C{a,b}p,∀ eθ, χ1, ∃ e⊤};
∆2 = {D{a,c}p, p,∃ e⊤};
∆3 = {θ,¬C{a,b}p,∀ eθ, χ2, ∃ e⊤};
Γ1 = {χ1,¬(p ∧ C{a,c}p)};
Γ2 = {χ2,¬(p ∧ C{a,c}p)};
∆4 = {χ1,¬p,∃ e⊤};
∆5 = {χ1,¬C{a,b}p,∃ e⊤};
∆6 = {χ1,¬C{a,b}p, χ2, ∃ e⊤};
∆7 = {χ2,¬C{a,c}p,∃ e⊤};
∆8 = {χ2,¬p,∃ e⊤};
Γ3 = {⊤};

∆9 = {⊤, ∃ e⊤}.

The initial tableau is obtained by removing all pre-states
(the Γs) and redirecting the arrows (i.e,∆1 will be con-
nected by unmarked single arrows to itself,∆2, and∆3). It
is easy to check that no states get removed during the state
elimination stage; hence, the tableau is open andθ is satis-
fiable.


