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tential applications of temporal-epistemic logics, to biest
of our knowledge, no efficient decision procedures for log-

We develop a sound and complete tableau-based deciics studied in [7] had been developed until quite recently,

sion procedure for the full coalitional multiagent tempbra
epistemic logic of branching timéMATEL (CD+BT) that
extends logicCTL with epistemic operators for common

even for the systems with a relatively low known lower
bounds. The only exception is [11], where a top-down
tableau-style decision procedure for the Io8itEL , which

and distributed knowledge for all coalitions of agents re- subsumes the basic branching-time logic considered in [7]
ferred to in the language. The procedure runs in exponen-and this paper, was presented. In our view (to be explained
tial time, which matches the lower bound established by further), however, [11] should be seen as a contribution to
Halpern and Vardi for a fragment of our logic, thus pro- the complexity-theoretic analysis of the temporal-episte

viding a complexity-optimal decision procedure and a com- logics rather than to the development of efficient decision

plete deductive system for our logic.

1 Introduction

Reasoning about knowledge and time is crucial for de-
signing, and verifying properties of, distributed and mul-
tiagent systems. A number eémporal-epistemic logics

procedures for them.

In the recent precursor [5] to the present paper, we
set out to fill in the above-mentioned gap by develop-
ing a practically efficient (within the theoretical complex
ity bounds) tableau-based decision procedure for the-coali
tional multiagent temporal-epistemic logic of linear time
CMATEL(CD+LT) (for both the synchronous and asyn-
chronous cases), building both on Wolper's incremental

were proposed as logical frameworks for modeling of, and tableaux forLTL [13] and on our earlier work on tableaux

reasoning about, these aspects of distributed systems i
This research was summarized in the com-

the 1980’s.
prehensive study by Halpern and Vardi [7]. In that study,
the authors considered several essential characteridtics
temporal-epistemic logics, namelgne vs. several agents
synchrony vs. asynchronyno) learning (no) forgetting
linear vs. branching timeand the (non)existence of a
unique initial state Based on these, they identify and ana-

for the full coalitional multiagent (purely) epistemic log

CMAEL(CD) [6].

In the present paper, we report on the second, and fi-
nal, part of the project undertaken with the publication
of [5]; namely, we present a sound, complete, and termi-
nating incremental tableau for ti@alitional Multi-Agent
Temporal Epistemic Logic with operators forCommon
and Distributed knowledge an@ranching Time, CMA-

lyze 96 temporal-epistemic logics and obtain lower bounds TEL(CD+BT) . The tableau procedure presented herein fol-

for the complexity of the satisfiability problem in all of

lows the tableau-building philosophy developed for the log

them. It turns out that most of the systems with more than ics PDL by Pratt in [9],UB by Ben-Ari, Manna and Pnueli

one agents who do not learn or do not forget are unde-

cidable, oftenll}-hard (with common knowledge), or de-

cidable but with non-elementary time lower bound (with-
out common knowledge). For most of the remaining log-
ics, the lower bounds established in [7] for the multiagent

in [1], andCTL by Emerson and Halpern in [3]. Our pro-
cedure essentially combines incremental tableauxCiol
from the latter (see also [10] for a recent detailed exposi-
tion) and tableaux for the full coalitional multiagent epis
temic logicCMAEL(CD) developed in [6]. In the present

case range from PSPACE (synchronous systems withouipaper, as in [6], we work with a more expressive epistemic

common knowledge), through EXPTIME (with common

language than the one considered in [7], as it contains op-

knowledge), to EXPSPACE (synchronous systems with no erators for common and distributed knowledgedthmon-

learning and unique initial state).

Despite the conceptual importance and wide range of po-

empty coalitiondi.e., subsets) of the set of agents. The re-
sulting decision procedure for testing satisfiabilitydMA-



TEL(CD+BT) runs in exponential time, which is the opti- wherep ranges oveAP and A ranges over the s@* (%)

mal lower-bound, as established in [11]. of non-empty subsets af. We writep € £ to mean that

We should mention that, even though the procedure pre-is a formula of£ andA C £ to mean that\ is a set of such
sented in [11] can be used to teSMATEL(CD+BT) - formulae.
formulae for satisfiability, this would not give us the opiim Thus, £ combines the language of Computational Tree

procedure, since such a procedure walldaysrequire ex-  Logic CTL [2] with the language of the full coalitional
ponential time predicted by the worst-case estimate. The in multi-agent epistemic logi€MAEL(CD) [6]. Although
cremental tableau presented in this paper, on the other hand7O ¢ is definable as-30 —¢, it is convenient to treat it as
on average requires much less time than the theoretical upa primitive connective. The operator for individual knowl-
per bound (this claim cannot be made mathematically pre-edgeK,  (“agenta knows thaty”), wherea € 3, can then
cise without an a priori probability distribution on formu-  be defined a®,; ¢, henceforth writterD,¢. The other
lae; however, it is substantiated by example in [4], where Boolean and temporal connectives can be defined as usual.
we compare the incremental tableaux presented in that pawWe omit parentheses when this does not result in ambiguity.
per with the top-down tableux-style procedure from [12]). Formulae of the form-C 4 ¢ areepistemic eventualities
Besides presenting the tableau-based procedure foivhile those of the formi(y U+)) andv(y Us)) aretemporal
CMATEL(CD+BT) , the other major objective of this pa- eventualities
per is to demonstrate how two tableau procedures for Iog-  The semantics of temporal-epistemic logics considered
ics with non-interacting fixed-point operators (the episte  jn [7]is based orsystem of runwith m processors (agents).
and the temporal ones, in our case) can be combined into & run is a function from (the set of natural numbeks}o
tableau procedure for the fusion of these logics, thus-offer the productZ™ regarded as the set gfobal stateswhere
ing a contribution to the area of combination of logics (see [, is the set oflocal states each agent can be in one of

e.g., [8]). _ local states at any moment in time. Thus, a global state
~ The present paper is structured as follows. In Sec-js a tuple(ly,...,1,); thei-th component; of this global
tion 2, we introduce the logiCMATEL(CD+BT) . In  state representing tHecal view of the agent. The pair
Section 3, we introduce Hintikka structures fGMA- (r,n), wherer is a run anch € N, is called in [7] apoint
TEL(CD+BT) and show that satisfiability ofCMA- With every agent, the authors of [7] associate the binary
TEL(CD+BT) -formulae in Hintikka structures is equiva-  epjstemic indistinguishability relatior; on L™, defined as
lent to satisfiability in models introduced in Section 2. In follows: (I,...,1,) ~; (I4,...,1.)if l; = I/; i.e., if the
Section 4, we present the tableau procedure GMA- agenti has the same local views in these states.

TEL(CD+BT) and, in Section 5, sketch out the proofs of According to [7], a system isynchronousvhen it has

soundness and completeness and briefly discuss the comy ‘global clock’ observable by all agents and thus synchro-

plexity of the procedure. The Appendix contains an exam- pizing their local times; formally, a system is synchronous

ple of a run of the procedure. if (r,n) ~; (r',n) impliesn = n/, for everyi = 1,...,m,
runsr, v/, and time moments, »’. It turns out that the pres-

2 Syntax and semantics of the logic CMA- ence or absence of synchrony, under no other assumptions,

TEL(CD+BT) does not affect the outcome of our tableau procedure, and
therefore, the satisfiability of formulae.
The languageS of CMATEL(CD+BT) contains a (pos- The systems with (global) states represented as tuples of

sibly infinite) setAP of atomic propositions; the Boolean local states are generalized in [7] to systems where global
connectives- (“not”) and A (“and”); the unary temporal  States are abstract primitive entities and the epistentae re
operatorsdO and VO (existential and universal “next”, tions are abstract equivalence relations on the set of such

respectively); the binary temporal operatéi(s- Z/—) and states. _ In the present paper, we work with this abstra_ct
V(—U—) (existential and universal “until”, respectively), semantics from [7]. We note that, as we show later, this

as well as the unary epistemic operatidg ¢ (“it is dis- semantics isnore generathan the above mentioned ‘con-
tributed knowledge among agentsnthat "), and C 4 crete’ semantics from [7], despite the apparent assumption
(“it is common knowledge among agentsdofhat ") for made in [7] that the two semantics are equivalent. We now

every non-emptyd C ¥, whereX is the finite, non-empty ~ turn to the presentation of the abstract semantics from [7].
set of names of agents belonging4o Subsets of are

called coalitions Thus, the formulae of are defined as  Definition 2.1 A temporal-epistemic syste(iES) is a tu-
follows: ple® = (3,5, R {RE} acp+(x), {RG} aep+(x)), Where:

p:=p|-p|(p1Ap2) | 30¢ |VOe | 1. X is a finite, non-empty set afgents
| 31 Upa) | V(p1 Up2) | Dag | Cap 2. S # () is a set ofstates



3. R # D is a set ofruns eachr € R is a function M, (r,n) Ik =g iff M, (r,n) ¥ ¢;
r: N+ S. A state visited by a computation can, then, M, (r,n) IF oAV iff M, (r,n) Ik pand M, (r,n) I ¥;

be represented agn), wherer € R andn € N. Also, M, (r,n) IF A0 iff M, (r',n+1) I ¢ holds for some
with a stater(n) we associate a paifr, n), referred r’ extendingr, n);

to as apoint, the set of all points ir® is denoted by M, (r,n) IF YO iff M, (r',n+1) IF ¢ holds for every
P(&). Notice that different points may be associated r’ extending(r, n);

with the same state. M, (r,n) Ik I(eU) iff, for somer’ extending(r,n),

4. for everyA € P(%), R and RS are binary rela-  there existsi > n such that M, (r',i) I + and
tions on P@), such thatR is the reflexive and tran- M., (1", j) I ¢ holds for everyr < j < i;
sitive closure of J arc 4RY.. M, (r,n) I Y(eU) iff, for everyr’ extending(r, n),
there existsi > n such that M, (r';i) I+ < and
A TES® is synchronouqSTES) if((r,n), (r',n’)) € M, (r', ) IF ¢ holds for everyr < j < i;
R7 impliesn = n' for everyA € P*(%). M, (r,n) I+ Dy iff M,(",n') I ¢ for every
((ryn), (")) € RE;

Hereafter we write ‘(S)TES' to refer to general or syn- M, (r,n) IF Cap iff M,(,7') I o for every

chronous temporal-epistemic system. ((r,n), (', 1)) € RG.

Definition 2.2 Let(r,n) € P(®) for some (S)TE® with Satisfiability and validity of formulae are defined as

asetofrunsk and letr’ € R. We say that’ extendsr, n) usual.

if #(m) = /(m) holds for allm < n. Note that in the semantics abotie labeling function
acts on points, not statese., the semantics {gint-based

Definition 2.3 A (synchronous) temporal-  To make the semanticstate-basedone needs to impose

epistemic frame ((S)TEF) is a (S)TES& = the additional conditioh 7(n) = +/(n’) implies L(r,n) =

(2,8, RARY Y acp+(w), {RG Y aep+(s)), Where each  [(; /). The two semantics differ: e.g., the formyla—
RZ is an equivalence relation satisfying the following V(T i/p) is valid in the state-based semantics, but not in the
condition: point-based one.
) RY =N RD The satisfaction condition for the operat@ry, can be
A 7 1T aed™a} paraphrased in terms of reachability. Igbe a (pseudo)-
If condition () is replaced by the following, weaker one: ~ (S)TEF over the set of run& and let(r,n) € R x N.
We say that poin{r’, n’) is A-reachable from(r,n) if ei-
(ft) RE € RZ wheneveB C A, ther (r,n) = (/,n’) or there exists a sequen¢e n) =
H _ H H _ (7"0777,()),(T17n1),...7(7"m71,nm71),(7’m,nm) = (r/7n/)
Ehigﬁ(;(s)ja((ss))_/rnlzc;l)ronous) temporal-epistemic pseudo-frame of points inR x N such that, for every) < i < m, there
P ’ EXiStSCLi € A such thal(r,», ni), (T’H_l, Tli+1)) S R(?l Itis
Notice that in (pseudo-)(S)TERR is the transitive clo- then easy to see that the following satisfaction conditarn f

sure of J 4caR{),,, for everyA € P+(%); furthermore, in C. is equivalent to the one given above:

. . . M, (r,n) IF Capiff M, (', n') Ik ¢ for every(r’,n'),
C 9 9 9 9 9
such structures, eadR is an equivalence relation. A-reachable fronr, n).

Definition 2.4 A (synchronous) temporal-epistemic model ~ NOt€ that if¥ = {a}, thenD,p — C,p is valid in

((S)TEM, for short) is a tupleM = (3, L), where every (_S)TEI\_/I,_fo_r allp € L. Thus, the single-agent case is
essentially trivialized, so we assume throughout the rest o
(7) §is a (S)TEF with a set of rung; the paper thak contains at least 2 (names of) agents.
N ) ) . Also note that in models where states are tuples of local
(@) L : R xN +— P(AP) is alabeling function such  giateg ifs ~; s’ holds for everyi = 1, ..., m, thens = s’
that L(r,n) is the set of atomic propositions ‘true’ at 4,y therefore, the formuja— Dsp is valid in every such
a point(r, n). model, but it is not valid in every (S)TEM. Thus, the ab-

If condition (i) is changed so th&tis a pseudo-(S)TEF, then stract sgmantics presgnted abovg differs from the ‘coefcret.
M is a (synchronous) temporal-epistemic pseudo-model semantics presented n [7], despite the apparent assumptio
(pseudo-(S)TEM). to the contrary made in [7]. ' '
Hereafter, we consider general temporal-epistemic sys-
Definition 2.5 The satisfaction relation |- between tems; all definitions and results also apply to the syn-
(pseudo-)(S)TEMSs, points, and formulaelak recursively ~ chronous variety, unless stated otherwise.

defined as fOIIOV\_’S: 1This condition is not imposed in [7], but this is an apparentssioin
M, (r,n) - piff p € L(r,n); because it is essentially assumed there.




3 Hintikka structures for CMA-

TEL(CD+BT)

14.

Even though we are ultimately interested in testing for-
mulae of £ for satisfiability in a TEM, the tableau proce-

of semantic structure—Hintikka structure We will show
thatd € L is satisfiable in a TEM iff it is satisfiable in a
Hintikka structure, hence the latter test is equivalenht t
former. The advantage of working with Hintikka structures
lies in the fact that they contain just as much semantic in-
formation about) as is necessary for computing its truth H1
value at a distinguished state. More precisely, while model H2
provide the truth value of every formula gfat every state, H3
Hintikka structures only determine the truth values of for-
mulae directly involved in the evaluation of a fixed formula Hg4
6, in the satisfiability of which we are interested. Another
important difference between models and Hintikka struc- yg
tures is that, in Hintikka structures, the epistemic relagi
RE andRg only have to satisfy the properties laid down in
Definition 2.1. All the other information about the desimabl
properties of epistemic relations is contained in the lalel

of states in Hintikka structures. This labeling ensures tha
every Hintikka structure generates a pseudo-model (by the,;;
construction of Lemma 3.5), which can then be turned into

a model.

H6

Definition 3.1 A setA C L is patently inconsistenif it H8

contains a complementary pair of formulae (i.e., formulae
1 and—y for some formulap).

A setA C L is fully expandedif it is not patently
inconsistert and satisfies the following conditions, where
Sub(v) stands for the set of subformulae of a formtla

13.

PO . Definition 3.2 A
dure we present tests for satisfiability in a more general kin ;.o

if 1C4p € A, then—-D,(p A C4p) € A for some
a€ A

ifvy € AandD 49 € Sub(v), then eitheD 40 € A
or =Dy € A.

Hin-
tuple

temporal-epistemic

structure (TEHS) is a

(3,5, R, {RQ}AEer(g), {Rg}AeP+(Z)7 H) such that
(E, S, R, {RQ}AGP‘F(E% {Ri}AeP‘F(Z)) isa TES, andd
is a labeling of pointgr,n) € R x N with sets of formulae
of £ satisfying the following constraints, for glt, n):

H(r,n) is fully expanded;

if ~p € H(r,n), theny ¢ H(r,n);

if 3I0¢ € H(r,n), thenpy € H(r',n + 1) holds for
somer’ extending(r, n);

if VOp € H(r,n), theny € H(r',n + 1) holds for
everyr’ extending(r, n);

if (pUy) € H(r,n), then, for some’ extending
(r,n), there exists > n such thaty € H(r',i) and

» € H(r', j) holds for everyn < j < ;

if V(eUv) € H(r,n), then, for everyr’ extending
(r,n), there exists > n such thaty € H(r',i) and

p € H(r',j) holds for everyn < j < i;

if —-Dap € H(r,n), then there ex-
ists ¥ € R and n’ € N such that
((r,n), (r',n')) € RE and—p € H(r',n');

if ((r,n),(r',n')) € RE, thenDa ¢ € H(r,n) iff

D@ € H(r',n') holds for everyd’ C A;

if —Cup € H(r,n), then there ex-
ists ¥ € R and n’ € N such that
((r,n), (r',n’)) € RG and—p € H(r',n’).

Synchronous temporal-epistemic Hintikka structures are

defined accordingly.

1. if =—p € A, theny € A;
if o Ay € A, thenp € Aandy € A;

Definition 3.3 A formulad is satisfiablan a TEHSH with

if =(p AY) € A, then—p € Aor—p € A;

if =30 ¢p € A, thenVO—p € A;

if -VOp € A, thendO—¢ € A;

if A(pU) € A, thenyp € A or p, AOI(pU) € A;
if =3(pUy) € A, then -¢p,~¢ € A or
—, 2303 (pUy) € A;

if V(o U) € A, theny € A or o, VOV (pUY) € A;
9. if V(pUy) € A, then =p,-p € A or
-, VOV(pUY) € A;

Noogp~wdh

®

a labeling functionH if § € H(r,n) for some poin{r, n)
of H. A set of formula® is satisfiabldn H if © C H(r, n)
for some pointr, n) of H.

Now, we show that € L is satisfiable in a TEM iff
it is satisfiable in a TEHS. One direction is almost imme-
diate, as every TEM naturally induces a TEHS. More pre-
cisely, given a TEMM, we define theextended labeling
L7}, on the set of points of\ as follows: L, (r,n) =
{o| M, (r,n) Ik ¢} forevery(r,n). The following claim

is then straightforward.

10. if Dy € A, thenD 4 ¢ € A for every A’ such that

ACA CY;

Lemma 3.4 Let M =

11. ifDAtp € A, thenp € A, (2,8, RARY Y acp+(s), {RG Y acp+ (s, L) be
12. ifCap € A, thenD,(pA\Cap) € Aforeverya € A; a TEM satisfying ¢ € £, and let L}, be
the extended labeling onM. Then, H =

2Even though in general, not being patently inconsistentiigeaker
condition than a propositional consistency, in the casailly £xpanded
sets, they coincide.

(2,8, R ARG Y acp+ (), {RG Y aer+(m), LT) is @ TEHS
satisfyingd.



To establish the converse, we first prove that the exis-

tence of a Hintikka structure satisfyirtgimplies the exis-
tence of a pseudo-model satisfyiigthen, we prove that
this in turn implies the existence of a model satisfythg

Lemma3.51If § € L is satisfiable in a TEHS, then it is
satisfiable in a pseudo-TEM.

Proof. LetH = (E, S, R, {Rg}Aeprr(z), {Rg}Aeprr(g), H)
be a TEHS satisfying. We build a pseudo-TEM satis-
fying 6 as follows. First, for everyd € P (%), let
R'P be the reflexive, symmetric, and transitive closure
of U acsRE and letR’{ be the transitive closure of
U acaR.P. Notice thatRy C R'P andR§ C R'{ for
everyA € P(X). Next, letL(r,n) = H(r,n) N AP, for
every point(r,n) € R x N. Itis then easy to check that
M = (3,8, R AR Yacp+ (x), AR Yaep+(x), L) is @
pseudo-TEM.

To complete the proof of the lemma, we show, by induc-
tion on the formulay € £ that, for every poin{r,n) and
everyy € L, the following hold:

() x € H(r,n) impliesM’, (r,n) I+ x;

(i) =x € H(r,n) impliesM’, (r,n) I —x.

Let x be somep € AP. Then,p € H(r,n) implies
p € L(r,n) and thusM’, (r,n) I p; if, on the other hand,
—-p € H(r,n), then due to (H2)p ¢ H(r,n) and thus
p ¢ L(r,n); hence M’, (r,n) IF —p.

Assume that the claim holds for all subformulae)gf
then, we have to prove that it holds fgras well.

Suppose thay = —p. If ~¢ € H(r,n), then the induc-
tive hypothesis immediately gives ugt’, (r,n) I+ —y; if
—-— € H(r,n), then by virtue of (H1),» € H(r,n) and
hence, by inductive hypothesid/’, (r,n) I+ ¢ and thus
M (r,n) Ik ==

The cases of = ¢ Ay, x = IOy, andy = VO are
straightforward, using (H1) — (H4).

Let x be3(oU). If A(pUy) € H(r,n), then the de-
sired conclusion immediately follows from (H5) and the in-
ductive hypothesis. 1f-3(¢Uy) € H(r,n), then due to
(H1), either—¢p, ~¢ € H(r,n) or ~p, ~3O I (e U) €
H(r,n). In the former case, the conclusion immediately
follows from the inductive hypothesis. Otherwise, due to
(H1) and (H4),-3(¢Uy) € H(r',n + 1) holds for ev-
ery runr’ extending(r,n). By repeating the argument,
we obtain that, for every rum’ extending(r,n), either
- € H(r',i) for somei > 0 and—p € H(r',j) for
every0 < j <ior—w € H(r',i) for everyi > 0. In ei-
ther case, the inductive hypothesis implies thét(r, n) I+
-3(pUrp), as desired.

The case ofy = V(¢ U) is similar to the previous one
and is left to the reader.

Suppose thagy = Dap. Assume, first, thaD 4o €
H(r,n). In view of the inductive hypothesis, it suffices to
show that((r,n), (r',n’)) € R'P impliesp € H(r',n').

So, assume that(r,n), (+',n’)) € R'P. There are two
cases to consider. [, n) = (v, n’), then the conclusion
immediately follows from (H1). Otherwise, there exists an
undirected path fron{r,n) to (+/,n’) along the relations
RE,, where each!’ is a superset ofl. Then, due to (H8),
Dayp € H(r',n'); hence, by (H1)p € H(r',n’), as de-
sired.

Now, let =D 4 € H(r,n). In view of the inductive
hypothesis, it suffices to show that there existe R
andn’ € N such that((r,n), (',n")) € R'’P and—¢p €
H(r',n’"). By (H7), there exists’ € R andn’ € N
such that((r,n), (r',n’)) € R and—p € H(r',n). As
RE C R'P, the desired conclusion follows.

Suppose that = C 4. Assume thaC,p € H(r,n).

In view of the inductive hypothesis, it suffices to show that
if (r',n’) is A-reachable from(r,n) in M’, thenyp €
H(r',n'). If (r,n) = (r',n’) the claim follows from (H1).
So, suppose that, for some > 1, there exists a sequence of
points (r,n) = (r0,70)s -y (Tm—1,Mm—1)s (Tm, Mm) =
(r',n") such that, for everg < i < m, there exists,; € A
such that((r;,n;), (rit1,ni+1)) € RP. Then, for every
0 < i < m, there exists a path froifr;, n;) to (7,41, nit1)
along relationsR %, such thata; € A’ for every A’. Then,
we can show by induction ofy using (H1) and (H8), that
Cap € H(r;,n;) holds for every0 < ¢ < m. Indeed,
this holds fori = 0; assuming that it holds for somieby
(H1)(12) we have thab,, (¢ A Cap) € H(r;,n;), hence,
by (H1)(10) and (H8)y € H(ri+1,ni+1). Now, by taking

i =m — 1 we obtainy € H(r',n’), as required.

Finally, assume that:-C4¢p € H(r,n). Then, the
desired conclusion follows from (H9), the fact that
RS C RS, and the inductive hypothesis. O

Lemma 3.6 If 8 € L is satisfiable in a pseudo-TEM, then
it is satisfiable in a TEM.

Proof. The proof is exactly the same as in [5, Section 3],
as the pseudo-models are only ‘defective’ with respect to
epistemic, but not temporal, relations; therefore, the-con
struction for branching time is the same as for linear time.

Lemmas 3.4, 3.5, and 3.6 immediately give us the fol-
lowing theorem.

Theorem 3.7 A8 € L is satisfiable in a TEM iff it is satis-
fiable in a TEHS.

4 Tableau procedure for CMATEL(CD+BT)

In this section, we present a tableau procedur€fdA-
TEL(CD+BT) . We describe a procedure for testing for sat-
isfiability in synchronous models, as it requires extra care
We then briefly mention how the general case is different



and argue that the outcome of the procedure is the sameventuality is fulfilled. Since truth in TEMs is simulated by
in both cases, implying that, satisfiability-wise, genenad membership in state labels of Hintikka structures, evdntua

synchronous semantics are equivalent. ities impose respective conditions on the labels. Thus, the
presence of an eventualityC 4 in the label of a state
4.1 Overview of the procedure of a TEHSH requires the existence # of an A-path (i.e.

a path along relations of the forRZ, whereR2 C RY)
from s to a statet whose label containsy, due to con-
dition (H9) of Definition 3.2. Similar requirements apply
to eventualities of the forral(¢ Uvy) andV(p U) due to
conditions (H5) and (H6) of Definition 3.2. The tableau
analogs of these conditions are calledlization of even-
tualities If a tableau contains a node with an unrealized
eventuality in its label, then it cannot produce a TEHS, and
thus is ‘bad’ and needs repairing by removing such nodes.
The third possible reason for a tableau to be ‘bad’ has to do

tion of tableaux forCTL in [10]), as well as recently de- . p
. i . T with successor nodes: it may so happen that some of the re-
veloped tableaux for multiagent epistemic logics in [6]. To . o i
. guired successors of a nodare missing from the tableau;

make the present paper self-contained, we outline the basmihen sis ‘bad’. and hence needs to be removed. Notice that

ideas behind our tab'e"’.‘“ algorlthm_ in line with _those refer- in TEHSSs, and thus in tableaux, states have two kinds of
ences, and then describe the particulars specifiCM#\-

successors: temporal and epistemic. The absence of either
TEL(CD+BT). ) .
. . kind of successor can ruin the chances of a tableau node to
Usually, tableaux work by decomposing the input for-

) . . _ correspond to a state of a TEHS.
mula into simpler formulae, in accordance with the seman- . . )
. ! . : o The tableau procedure consists of three major phases:
tics of the logical connectives. In the classical proposiil

case, “simpler” implies shorter, thus ensuring the termina pretableau constructignpre-state elimination and state

. o . elimination During the first, we produce thgretableau
tion of the procedure. The decomposition into simpler for- . 9 . g
. . - . for 6—a directed grapf®”, from which the tablead™ will
mulae in the tableau for classical propositional logic pro-
. . > be extracted. The nodes &F are sets of formulae com-
duces a tree representing an exhaustive search for a Hintikk .

) - - ing in two varieties:statesand pre-states States are fully
set, the classical propositional analogue of Hintikkacstru .

: expanded sets, meant to represent (labels of) states of a Hin
tures, for the input formuld. If at least one leaf of that tree

) - ) tikka structure, while pre-states only play a temporarg rol
'S a H|nt|kl'<a.set f.ore, the.sea.rc.h has succeedeq @”d in the construction of . During the second phase, all pre-
proved satisfiable; otherwise, it is declared unsatisfiable states fromP? are removed and their incoming edges are
When applied to logics containing fixpoint-defina_bl_e op- redirected, creating a smaller grapli, theinitial tableau
erators, such as,, _au, and VY, these two defining for 6. Finally, we remove frontZ{ all states, if any, that
fgatures of the clasglg:al tableau .met.hod no longer a.pply'cannot be satisfied in a TEHS, for any of the reasons men-
Fwst, the decomposﬂmp qf thg f|xpc.)|r'1t. formulae, which tioned above. The elimination procedure results in a (possi
is done by unfolding their flxpomt def|n|t|or_ls, usually pro- bly empty) subgrapi® of 7, called thefinal tableau for
duces larger formuladC 4 is decomposed into the formu- 6. If some state\ of 7¢ containg), we declard satisfiable;
lae D, (¢ A Cayp); analogously for formulae of the form . :

N otherwise, we declare it unsatisfiable. An example illustra
I(pUy) and V(pU). Hence, we need a termination- P

. . .__ing the tableau construction is provided in Appendix A.
ensuring mechanism. In our tableaux, such a mechanism 9 P PP

is provided by the use (and reuse) of so called “pre-states”, .

whose role is to ensure the finiteness of the construction4-2 ~Pretableau construction phase

and, hence, termination of the procedure. Second, the only

reason why a tableau may fail to produce a Hintikka set for ~ All states and pre-states of the pretabl@ficonstructed

the input formula in the classical case is that every attemptduring this phase are ‘time-stamped’. Whenever necessary
to build such a set results in a collection of formulae con- to make it explicit, we will use the notatian’*! indicating
taining apatent inconsistengy.e., a complementary pair of that pre-staté' was created as theh component of a run;
formulaey, —. In the case oCEMATEL(CD+BT) , there  likewise for states.

are other such reasons, specific to TEHS, which are more The pretableau contains three types of edge, described
involved structures than classical Hintikka sets. One suchbelow. As already mentioned, a procedure attempts to
reason has to do with eventualities: the truth of an eventu-produce a compact representation of a sufficiently many
ality at a states in a TEM M requires existence of a path TEHSSs for the input formuld by organizing an exhaustive
going froms to a state ofM at which the ‘promise’ of that ~ search for such structures. One type of edge, depicted by

The tableau procedure for testing a formdla £ for
satisfiability attempts to construct a non-empty graph
(calledtableay, whose nodes are finite sets@&fformulae,
encoding ‘sufficiently many’ TEHSSs fdt, in the sense that
if 6 is satisfiable, then it is satisfiable in a TEHS represented
by 7¢. The main ideas underlying our tableau algorithm
come from the tableau procedures for the logrB3L in
[9], UB in [1] and CTL in [3] (see also a detailed exposi-



unmarked double arrows=, represents the search tran-  Rule (DR): Given a stateA*] such that-D 4 € Al¥l
sitions in the tableau. The exhaustive search considers allind (DR) has not been applied tal*! earlier, do the fol-
possible alternatives that arise when expanding presstate lowing:

into states through branching when dealing with disjunc-

tive formulae. Thus, when we draw a double arrow froma 1. Create a new pre-statd’®) = {-p} U

pre-statel’ to statesA and A’ (depicted a® — A and U aca{Dad | Dape Ay UU arca{-Dat|

I' = A/, respectively), this intuitively means that, in any “Day € A}

TEHS, a state whose label extends thelsbgs to contain 2. If pre-state*! is patently inconsistent, remove it.

at least one ofA andA’. Our first construction rulgSR), 3. Otherwise, connea* to I'*] with "Dap

prescribes how to create tableau states from pre-states. 4. If, however, the tableau already contains a pre-state
Given a sefl’ C £, we say thatA is aminimal, fully 'l = 7%, do not add another copy &f*), but sim-

expanded extension ofif A is fully expanded’ C A, (] 1K) ity "DA®

and there is n@\’ such thal' C A’ ¢ A andA’ is fully ply connectA™ to I with ="

expanded. The third type of edge, depicted by single arrows marked
Rule (SR)Given a pre-stat&!* such thaSR)has not  with formulae of the formBO ¢, represent temporal transi-

been applied ta'*! earlier, do the following: tions in TEHSs that the tableau is trying to build. The ra-

tionale for this rule is similar to that f(iDR), the only dif-
ference being that we are now considering temporal, rather
than epistemic, formulae forcing creation of new pre-state

1. Add to the pretableau all minimal fully expanded ex-
tensionsA¥ of T'l¥! asstates
2. if Al¥l contains no formulae of the forQO ¢, add

JOTtoit; Rule (Next): Given a stateA*] such tha{Next) has not
3. for each so obtained staté¥!, putT* — Al¥: been applied ta\*! earlier, do the following:
4. if, however, the pretableau already contains a state

m o ) . ForeacRO ¢ € Al¥, create a new pre-stafé*+1] =
A1 that coincides withAl*], do not create another (0} U (1] YOu € Al 1.4

copy of A'l™l but only putl'*l = A’lm], : i . L
Py yp 2. If pre-statel'l¥] is patently inconsistent, remove it im-

We denote bystates(I') the (finite) set of state§ A | mediately.
= A}

Notice that in all construction rules, as(8R), we allow
reuse of (pre)states, which were originally stamped with a
possibly different time-stamp. This does not correspond to
one (pre)state being part of two different runs at different simply connectAl! to T[] with 0¢
moments of time; rather, the ‘futures’ of these runs, stgrti ) o
from the reused (pre)state, can be assumed to be identical, e now describe the order of application of the above
modulo the time difference. rules. We start off by creating a single pre-stéfé, con-

The second type of edge in a pretableau represents epist@ining the input formula.  Then, we alternatingly apply
temic relations in the TEHS that the procedure attempts (PR) and(Next) to the states created at the previous stage
to build. This type of edge is represented by single ar- @nd then applyingSR)to the newly created pre-states. The
rows marked with epistemic formulae whose presence in Construction stage is over when the applicationg[aR)
the source state requires the presence in the tableau ef a tafNd(Next) do not produce any new pre-states.
get state, reachable by a particular epistemic relatior. Al
such formulae have the formD 4, as can be seen from 4.3 Pre-State elimination phase
Definition 3.2. Intuitively if, say-D 4o € Al¥l, then we

3. Otherwise, conneci[*! to TIF+11 with HQ".

4. If, however, the tableau already contains a pre-state
'l = i1l do not add another copy &f!", but

need some pre-stafel*! containing—y to be accessible At this phase we remove frof’ all pre-states and dou-
from A*] by RE 2 The reason we mark these single ar- ble arrows, which results in a smaller grapfl called the
rows by a formula-D 4 (rather than by just coalitiod), initial tableau Formally, we apply the following rule:

is that we have to remember why we had to create this par- Rule (PR) For every pre-stat€ in ¢, do the following:
ticularT", and not just what relation conneaisto I'. This

information will be needed during the elimination phases. 1. Remove from PO

We now formulate the rule producing this second type of

edge 2. Ifthereis a staté in P? with A 25 T, then for every

stateA’ € states(I'), putA = A/,

3We require the newly created pre-states to bear the same tmg st
as the source state for the sake of synchrony, as this retitectact that all “Note that, due to step 2 in t{€R) rule, every state contains at least
epistemic alternatives belong to the same temporal level oT&hyS. one formula of the formiO .




4.4 State elimination phase

During this phase we remove frofif’ states that are not
satisfiable in a TEHS. As we do not create patently incon-
sistent states, there are two reasons why a staté 7,
can turn out to be unsatisfiable: either satisfiabilityofe-
quires satisfiability of some other (epistemic or temporal)
successor states which turn out unsatisfiable) @ontains
an eventuality that is not realized in the tableau. Accord-
ingly, we have two elimination rulegE1) and(E2).

Formally, the state elimination phase is divided into
stages; we start at stage 0 wiIB?; at stagen + 1, we re-
move exactly one state from the tableBfi obtained at the
previous stage, by applying one of the elimination rules, ob
taining the tablead,’, ;. In the rules belowS?, denotes the
set of states of tableaf}’.

(E1) If A contains a formulg¢ of the form—-D 4¢ or
JO ¢, andA 2> A’ does not hold for anp\’ € S?, obtain
7%, , by eliminatingA from Z,".

For the other elimination rule, we need the concept of
eventuality realizatiorin a tableau.

Definition 4.1 (Eventuality realization)

e The eventuality-C 4 ¢ is realized atA in 7,¢ if there
exists a pathA = Ag, Ay, ..., A, Wherem > 0,
such that-p € A, and, for every0 < i < m, there
existy; = Dp1; such thatB C A andA; X5 Ay ,.

The eventualityd(¢ U7)) is realized at\ in 7,7 if there
exists a pathA = Ag,Aq,...,A,,, Wwherem > 0,
such thaty € A,,, and for every0 < i < m, there
30

exist a formulay; such thatA; —=

A,

Ai-&-l and (S

For eventualities of the form(p U), we define the
notion “is realized at\ in 7,%” recursively as follows:

() If ¥ € AthenV(pU) is realized at\;
(i) If ¢ € A and, for every3dOx € A, there is a

stateA’ € 7,7 such thatA 30x A andV(pU) is
realized atA’, thenV(p Uv) is realized atA.

Now, we can state our second state elimination rule.

(E2) If A € S? contains an eventuality that is not re-
alized atA in 7., then obtainZ,?, ; by removingA from
;.

We check for realization of eventualities by running
the following iterative procedures that eventually marks a
states realizing a given eventualgyn 7,7

o If ¢ = —Cap, then we initially mark allA € S?
such that-p € A. Then, we repeat the following sub-

still unmarkedA € S, markA if there is at least one

n?

markedA’ such thatA 22¢ A, for someB C A.

If ¢ = 3(pUy), then we initially mark allA € SY
such that) € A. Then, we repeat the following sub-
procedure until no more states get marked: for every
still unmarkedA € S¢, markA if ¢ € A and there is

at least one marked’ such thatA 3Q>§ A

If ¢ = V(pUy), then we initially mark allA € S¢
suchthat) € A, and then we repeat the following sub-
procedure until no more states get marked: for every
still unmarkedA € S?, mark A if ¢ € A and, for

n?

every formuladQOx € A, there is a marked stats’ €
S such thatA 30X Ar

We now describe the order of application of the above
rules. We have to be careful, since having applied) to
a tableau, we could have removed all the states accessible
from someA along the arrows marked with somehence,
we need to reapplyEl) to the resultant tableau to remove
suchA'’s. Conversely, having applied1), we could have
thrown away states needed for realizing certain eventuali-
ties; hence, we need to reapfis2). Thus, we need to apply
(E1l) and(E2) in an alternating sequence that cycles through
all eventualities. More precisely, we arrange all everitual
ties occurring in the states Gf¢ in alist¢,, ..., &,. Then,
we proceed in cycles. Each cycle consists of alternatingly
applying (E2) to the pending eventuality, starting wigh,
and then applyindE1) to the resulting tableau, until all
the eventualities have been dealt with, i.e., we have rehche
&n- These cycles are repeated until no state is removed in a
whole cycle. Then, the state elimination phase is over.

The graph produced at the end of the state elimination
phase is called thiénal tableau for, denoted by7 ?, whose
set of states is denoted 15y .

Definition 4.2 The final tableau ? is openif § € A for
someA € S%; otherwise,7? is closed

If the final tableau is closed, the tableau procedure re-
turns “no”; otherwise, it returns “yes”.

We briefly mention that, to test for satisfiability in gen-
eral models, we relax the ru{®R), allowing states to have
epistemic successors from different temporal levels. As
such a modification does not result in the outcome of the
procedure, we conclude that, satisfiability-wise, the sema
tics based on general models is equivalent to the one based
on synchronous models.

5 Soundness, completeness, and complexity

Thesoundnessf a tableau procedure amounts to claim-

procedure until no more states get marked: for every ing that if the input formuld is satisfiable, then the tableau



for 6 is open. To establish soundness of the overall pro- Lemma 5.8 If 79 is open, therd is satisfiable in a (syn-
cedure, we use a series of lemmas showing that every rulechronous) TEHS.

by itself is sound; the soundness of the overall procedure is ¢ sketch id th f . .
then an easy consequence. We give the proofs for the synProo sketch. We build the TEHSH for & by induction on

chronous case, the modification for the general case beingthe temporal levels. The main concern is to ensure that all

straightforward. The proofs of the following three lemmas eventualities in the resultant structure are realized,the
are straightforWard properties (H5), (H6) and (H9) from the definition of Hin-

tikka structures hold; all the other properties of Hintikka
Lemmab5.1Let I' be a pre-state of P’ such that  structures transfer, more or less immediately, from an open
M, (r,n) Ik T for some TEMM and point(r,n). Then, tableau. We alternate between realizing epistemic eventu-
M, (r,n) IF A holds for at least oné\ € states(T"). alities (formulae of the formC 4¢) and temporal eventu-
Lemma5.2 Let A € S? be such thatM, (r,n) IF A allt|$s|ffo;rr?ulae of[ thi.fomﬂ(‘péﬁlw) atrrl]dV(@u:b)).t_Ersa—
for some TEMM and point (r,n), and let-D sy € sentially, the co?s; ruction fcomlt_mes te C.O?S rgc:.) t'iie
A. Then, there exists a poirit’,n) € M such that |r: pr?vmg (f:ompgenedsstho mu '_agzn. epistemic Hin II ta
((r,n), (", n')) € RE and M,(.n') IF A’ where structures from [6] an 'e one used in proving complete-

P ness ofCTL (see [10], which essentially uses the construc-

A" = {9} UUaca{Dat | Davp € A} U : : N :

tion that is a simplification of the construction féTL
U A/gA{ﬁDA/’(/) ‘ ‘!DA/w (= A} from [4])
Lemma5.3 Let A € SY be such thatM, (r,n) I A for We start by building théth level of our prospective Hin-
some TEMM and point(r,n), and 30y € A. Then, tikka structure from the level of an open tableau. For each
M, ("' ,n+1)IF{e} U {v| VOy € A} holds for some  stateAl”) on this level, if Al’) does not contain any epis-
r’ extendingr, n). temic eventualities, we defin&[?l-epistemic component to

(0] wi
Lemma5.4 Let A € §° be such thatM, (r,n) IF A for be Al°! with exactly one successor reachablely 4, for

. (0] | [0)
some TEMM and a point(r, n), and let-C 4 € A. Then, each DA%] € A 1f, on the other handnCap € AT,

. . A then theA®!-epistemic component is a tree obtained from
—=Cpisrealized atA in 77,

a path in the tableau leading from[! along the arrows

Proof idea. Since—C 4 is true ats, there is a path in  marked with formulae of the formD Y to a stateA’[]

M from s leading to a state satisfyingy. As the tableau  containingy; the tree is obtained from the path by giv-

organizes an exhaustive search, a chain of tableau statemg each component of the path enough successors, as de-

corresponding to those states in the model will be produced.scribed above. As all the unrealized epistemic eventaaliti

O are propagated down the components (hence, appear in the

leaves of the tree), we can stitch them up together to obtain

The next two lemmas are proved likewise. a graph where each epistemic eventuality is realized.

Lemma5.5 Let A € 57 be such that\, (r,n) I A for Now, having built thedth level of our prospective Hin-

some TEMM and a point(r,n), and let3(p Uy) € A. tlkkatstrllgtgture, V\t’e. tal:jg cz}re cﬁ: :eahzf'Te?w a#ht.he tgmporal
Then,3(,o L) is realized atA in 7°. eventualities contained in the states of le¥eThis is done

exactly as in the completeness proof of the tableau proce-
Lemma 5.6 Let A € S? be such thatM, (r,n) I- A for dure forCTL ([10]): we define theA[%!-temporal compo-
some TEMM and a point(r,n), and letV(p Uy) € A. nent for eachA"! as follows: if it does not contain any
Then,¥(p Ur)) is realized atA in 77, temporal eventualities, then we také”! with one temporal
Theorem 5.7 If § € L is satisfiable in a TEM, the@ is successor for eachO < A If (plty) € A, thgn we
open. take a temporal path realizing(¢ Uy) € A and give to
every node enough temporal successors, as describe above.
Proof sketch. Using the preceding lemmas, we show by Lastly, if V(e Uy) € A, then we take a temporal tree wit-
induction on the number of stages in the state elimina- nessing the the realizion ofp € A in the tableau (for de-
tion phase that no satisfiable state can be eliminated dudails, see [10]). As eventualities are again passed down, we
to (E1) or (E2). The claim then follows from Lemma 5.0 can stitch up an infinite tree realizing all the eventuditie
contained in the states making up the tree.
The completenessf a tableau procedure means that if Next, we repeat the procedure inductively. For thth
the tableau for a formulél is open, therd is satisfiable in epistemic level, we independently apply to each state @n thi
a TEM. In view of Theorem 3.7, it suffices to show that level the procedure described above for le¥ebo that the
an open tableau fof can produce a TEHS satisfyirng epistemic structures unfolding from any two points on level
Moreover, we show that this TEHS can be constructed syn-m are disjoint, and also give to each newly created point a
chronous. ‘history’ consisting of a path of.— 1 states of the forr T }



(so that we do not create any new epistemic eventualities). [2] E. Allen Emerson. Temporal and modal logics. In

Having fixed all the epistemic eventualities at théh level,

we repeat the procedure described in the previous paragraph
to fix all the temporal eventualities contained in states of

levelm.

Thus, we produce a chain of structures ordered by [3]
inclusion. Eventually, we take the (infinite) union of aleth
structures defined at the finite states of that construction,
and then putd (Al*l) = Al¥l for every Al¥l, to obtain a

TEHS satisfying). O

The completeness is now immediate from Lemma 5.8

and Theorem 3.7.

Theorem 5.9 (Completeness)f 77 is open, ther is sat-
isfiable, in a (synchronous) TEM.

As for the complexity, for lack of space, we only mention
that the above procedure runs in exponential time (the cal-
culations are fairly routine), thus matching the lower bdbun

known from [7].

6 Concluding remarks

We have presented an incremental tableau-based deci-
sion procedure for the full coalitional temporal-epistemi
logic of branching timeCMATEL(CD+BT) . The proce-
dure is complexity-optimal, intuitive, and practicallyare
sonably efficient (as the number of (pre)states it creates is
usually significantly smaller that the powerset of all subse
of the close of the formula that is tested for satisfiabifity)
is, therefore, suitable for both manual and automated exe-
cution. Moreover, it is fairly flexible and easily amenalie t
modifications for variations of the semantics, such as those

J. van Leeuwen, editorHandbook of Theoretical
Computer Sciengesolume B, pages 995-1072. MIT
Press, 1990.

E. Allen Emerson and Joseph Halpern. Decision pro-
cedures and expressiveness in the temporal logic of
branching timeJournal of Computer and System Sci-
ences30(1):1-24, 1985.

Valentin Goranko and Dmitry Shkatov. Tableau-
based decision procedures for logics of strategic abil-
ity in multi-agent systems. To appear BCM
Transactions on Computational Logiéwvailable at
http://tocl.acm org/accepted. htm.

Valentin Goranko and Dmitry Shkatov. Tableau-
based decision procedure for full coalitional multi-
agent temporal-epistemic logic of linear time. In
Decker, Sichman, Sierra, and Castelfranchi, editors,
Proc. of the 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), May 2009, Bu-
dapest, Hungary2009.

[6] Valentin Goranko and Dmitry Shkatov. Tableau-based

procedure for deciding satisfiability in the full coali-
tional multiagent epistemic logic. In Sergei Artemov
and Anil Nerode, editorsProc. of the Symposium
on Logical Foundations of Computer Science (LFCS
2009) volume 5407 ofLecture Notes in Computer
Sciencepages 197-213. Springer-Verlag, 2009.

7] Joseph Y. Halpern and Moshe Y. Vardi. The complex-

ity of reasoning about knowledge and time |: Lower
bounds. Journal of Computer and System Sciences
38(1):195-237, 1989.

mentioned in section 2. Since in the semantics considered [g] Agi Kurucz, Frank Wolter, Michael Zakharyaschev,

in this paper there is essentially no interaction between th
temporal and epistemic fragments, our procedure combines
in a modular way tableaux for the full coalitional multia-

gent epistemic logi€MAEL(CD) and forCTL . Such in-

teraction, however, can be triggered by imposing various
natural semantic conditions, such as “no learning” or “no
forgetting”. As shown in [7], such conditions may increase
dramatically the complexity of the logic, up to highly un-
decidable. However, even for the relatively ‘easy’ cases of [10]
EXPSPACE-hard logics, the construction of a tableau pro-
cedures is still an open challenge, which we intend to ad-

dress in the future.
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A Example

In the present appendix, we provide an exam-
ple of how our procedure works on the formula
V(=Cap3pU ~Dyq 3p). To simplify the exam-
ple, we test for satisfiability of the equivalent set
{V(=CyapypU =Dyg.yp, T} Displayed below is

the complete pretableau for this set.
rlol

@ m
%i;ii .
i”> ”

Al

X1l A[O]

X0

xo =30T,;

x1 = "Da(p A Cap3p);

x2 = =Dy (p A Crap3p);

Lo = {v(_'c{a,b}puD{a,c}p) =0, T}'

Ay = {9» “C{a,b}p,VOQ,X1,3OT}3

A2 ={Dyq,3p,p, 30T}

AS = {9» ﬁC{a,b}P,VOH,X% HOT},

't ={x1,7(P A Cya,c}P)};

2 ={x2,7(P A Cya,c}P)}i

Ay = {x1,~p,30T}

As = {X17 “C{a,b}pv EIOT}'

Ag = {Xl’ _‘C{a,b}p» X2 EIOT}'

A7 = {X27 _‘C{a,c}pv HOT},

Ag = {x2,7p,30 T}

F3 = {T};

Ag ={T,30T}.

The initial tableau is obtained by removing all pre-states
(the T's) and redirecting the arrows (i.&y; will be con-
nected by unmarked single arrows to itsélf;, andAsj). It
is easy to check that no states get removed during the state
elimination stage; hence, the tableau is openisdsatis-
fiable.



