Detecting Exceptions in Commitment Protocols:
Discovering Hidden States

Ozgur Kafall Pinar Yolum
Department of Computer Engineering Department of Computer Engineering
Bogazici University Bogazici University
TR-34342, Bebekistanbul, Turkey TR-34342, Bebekistanbul, Turkey
e-mail: ozgurkafali@gmail.com e-mail: pinar.yolum@boun.edu.tr

Abstract—Open multiagent systems consist of autonomous correctly, then it is a forward step in the recovery process,
agents that are built by different vendors. In principle, open pecause the agent facing the exception has a means of proof
multiagent systems cannot provide any guarantees about the {4, the cause of it. This proof can then be used to consult

behaviors of their agents. This means that when agents are th thoriti hich ve i istencies betw
working together, such as carrying out a business protocol, other authoriues, which can resolve inconsistencies

one agent’s misbehavior may potentially create an exceptiofor ~ parties.
another agent and obstruct its proper working. Faced with seh Reglistic business affairs consist of multiple partiest tha
an exception, an agent should be able to identify the problerby oo\ ot different tasks. Multiparty interactions haveotw

verifying the compliance of other agents.) L
Previous work on verification of protocols unrealistically inherent properties; (1) interactions between differeatips

assume that participants have full knowledge of a protocol. are regulated by different contracts (i.e., a seller mayese
However, when multiple agents enact a protocol, each agent different rules when dealing with an individual versus a-cor

has .a.CCGSS to its part of the _prot_OCOI and not_mol'e. This will poration), (2) rules of interaction between different mare
require agents to check verification by querying others and .\ ate and not revealed to the outside world (i.e., a cattra

more importantly by discovering the contracts between them b I d . b led to b
Here, we propose a commitment-based framework for detectp PEtWEeEN a seller and a carrier may never be revealed to buyers

exceptions in which an agent augments its part of the protodo Publicly). While these properties are essential for maltip

with its knowledge to construct states that are previously fdden protocols, they pose important challenges for verification
to the agent by generating possible commitments between @h \hich brings the question of how an agent can verify others’
agents. The agent then queries others to confirm those states compliance when it has only partial information about their
Our framework is formalized using C+ and is tested using a Lo e
realistic business scenario. activities. We use the scenario in Example 1 throughout the

paper as our running example.

. INTRODUCTION . . .
Example 1. Consider the simple purchase-and-delivery proto-

In open multiagent systems, it is possible for agents twl that includes three business roles. The roles in theopobt
interact with others that they have no previous knowledge afre customeybookstore anddeliverer In a normal execution,
Carrying out interactions, such as business dealings,suith the customer buys a book from the bookstore and the deliverer
others is difficult since there is no guarantee about how tdelivers the book to the customer. However, certain exoapti
other agents will act. If others do not follow their parts ofnay occur during the enactment of this protocol. For example
the interactions, the entire business may be jeopardizZieid. Tconsider the case where the customer pays for the book and
requires an agent participating in such a situation to be algxpects delivery in three days. In addition, suppose that th
to verify that others are acting by the rules. bookstore sends books to be delivered to the deliverer gelar

Verification is especially important in the face®fceptions groups. If at the time the customer buys the book, the number
Here, we deal with high-level exceptions that pertain tof books pending for delivery at the bookstore is not enough,
the workings of the underlying protocol. For example, if éhe book will not be delivered causing an exception for the
buyer does not receive a merchandise that was scheduedtomer. However, since the customer does not know the
for delivery, it can conclude that there must have been details of the contract between the bookstore and the defive
exception in the workings of the entire protocol. When sudhe source of the exception is not immediately clear to the
an exception occurs, the agent facing the exception needststomer. One option for the customer is to simply ask the
identify the problem behind it. This is a two-phase proceglurbookstore about the cause of exception. However, this may no
first detecting the exception, and then taking proper actitr@ possible in some situations (i.e., the bookstore is nibihgyi
recover from the exceptional situation. In this paper, waufo to share information regarding its contracts with othetipay
on the first phase. That is, we propose an algorithm for findirg the exception is caused by a party beyond the knowledge of
the source of exceptions (i.e., caused by which parties atte bookstore). Then, the customer has to use its knowledge
why). In addition, if the source of the exception is identfiefirst to predict possible causes, and query correspondieigtag

to determine which one is the actual cause of the exceptio2) A’ C A,) C C C, 4 R C R, (5

e e . ! ’ 18’ C ! 4 15" C s,
In order to study verification rigorously, we capture agéntsvs €S, €815 C 5 (B)Vs' €55, 35 €Sp i Cs

interactions through commitments [1], and adopt C+ asBx Commitments

language to formalize those interactions [2], [3]. In castrto Commitments are formed between two agents and roughly
previous work on verification, we propose a realistic exicept correspond to obligations [1]. The debtor of a commitment
discovery framework in which; (1) multiple roles exist inis the agent that is committed to bring about a condition.
the business, (2) business scenarios are distributed (e#h The creditor benefits from the commitment. Commitments are
has its own view of the protocol), and (3) each agent deageated and discharged by the interactions of the agenéseTh
with an exception by discovering contracts of other agentsre two types of commitments:

With this proposed approach, an agent only finds out the, y). This is a base-level commitment between debtor
necessary details to continue its operation in tracing dthen x and creditory with propositionp. When this commitment

incompliant agen_ts.)) . Is in charge, debtox becomes committed to creditgr for
The rest of this paper is organized as follows. Section é'atisfyingp.

gives necessary background on protocols, commitments an(z _ . .)
C+. Section Il describes the running example and defin X, Y, P, 9): T_h|s IS a condltlp_nal commitment .b_etween
the problem formally. Section IV introduces our solution t ebtorx _and crec_htory V‘."th condmon_p_ and _pr_oposmorq.
deal with exceptions in distributed scenarios, and Secdon hen this commitment is in charge, ffis satisfied (by), X

explains its details. Section VI presents a discussion of OW'I_:_SG(?OTG F:omfm|tted oy f?r sat(;sfylngbq. h it i
work with comparisons to the literature and provides dioeg € foflowing four operations describe how commitments

for further research are manipulated throughout a protocol. We assume that each
' protocol action initiates a commitment operation (i.eteré@hg
Il. TECHNICAL BACKGROUND a contract between agents). Thus, commitment operations

. .) . describe the semantics of protocol actions.
In this section, we first describe formally what we mean

by a business protocol, then we review the necessary ccmc&ﬁ?ate(x’ c(x, y, p)): This operation initiates the creation

related to specifying commitments, and realizing them in the base-level CPmm'tme,“t It IS performed byx, the
formal description language. debtor of the commitment. Since this operation creates a new

commitment which does not hold previously, it causes a state
A. Protocols & Runs transition (S; cereate(z,clzyp)), S; U{c(z,y,p)})-

Definition 1.1. A protocol P is a 6-tuple ccreate(x, cc(x,y, p, q)): This operation initiates the creation
(S,A,C,R,Sz,S#), such thatS is a finite set of states) is of the conditional commitmentc. It is performed byx, the

a finite set of actions(C is a finite set of conditionsR is a debtor of the commitment. This operation also causes a state
finite set of rolesSz is the set of initial states; C S), and ransition (; cereate(@.ce(ey), g | {eelz,y,p,).

Sr is the set of final statesS¢ C S). Intermediate (middle)
statesSy are states that are not or in Sr.

discharge(x, c(x, y, p): This operation resolves the base-
level commitmentc. It is performed byx, the debtor of the
Definition I.2. A state is a set of conditions and commitmentsommitment, and the commitmeantis terminated afterward.
that hold in it. A base-level commitment is resolved when the proposition
of the commitment becomes true. This operation causese stat

. I transition since a previously holding commitment disappea
of states(Sy, ..., S,) starting from an initial stateS, € Sz). P y 9 e

discharge(z,c(z,y,p))
For now, we consider only finite runs. (Si Si = {e(@,y,p)} U {p}).

" cdischarge(x, cc(x, vy, p, . This operation resolves the
Definition 11.4. A desirable run is the one that ends in a f'naionditior?al(comrgitmyenr::cql)t) is perforr?]ed byx, the debtor
state §n, € Sr). of the commitment, and the conditional commitmett is

Definition I1.5. An exceptional run is the one that ends in aterminated afterward. If the propositiom of a conditional
intermediate stateS{, € Sx(), and thus does not reach a finacommitmentcc becomes true, thenc is discharged imme-

)) .. disch s sYsP,
state. diately causing a state transitios;(—— arge(z,ce(x,y,p,0))

Desirable runs are preferred by agents since they lead thém 1¢¢(2,,p,¢)} U{q}). If the conditionp of cciis brought
to reach their goals, whereas exceptional runs are unesgpe@20Ut therecis discharged, and a new base-level commitment
by agents and proper action (i.e., exception handling mes)i 'S created W'thdth‘z propositiog of cc causing another state
has to be taken in order for the protocol to evolve from thogeansition G; ——— aroezeee D), g, {ec(z,y,p, @)} U
states. {e(z,y,9)} U {p}).

Definition .. An agent-centric sub-protocol C- Commitment Protocols
PI(S',A',C', R, S}, S%) is a subset of the main protocol In this section, we integrate commitments into protocols.
P(S,A,C,R,Sz,Sx) in which; (1)Vs' € §/,3s € S: s’ Cs, Definitions I.7, 11.8, and 1.9 provide useful properties-r

Definition 11.3. A run R of a protocolP is simply a sequence

garding states with respect to commitments. are four statesyy, S1, S2, andSs), three actions that enable
Definition 1.7. A state is inconsistent if it is one of thethe trapsmons between the stanger(dPaymentse_llBook
and deliverBool, and three conditions corresponding to the

following; (1) stateS; = {cc(x,y,p,q),p} is inconsistent . .
since the conditional commitment cannot coexist with itoutcomes of the actions in the protoc@ay/G bookg and

condition, (2) stateS; — {p,-p} is inconsistent since aaellvero. There is a smgle_mltlal stateS(), a single final
. 7. el . state §3), and two intermediate states;(and.Ss).
condition cannot coexist with its negation.

Definition 11.8. Two states are equivalent with respect to an rif’er;ts %
agent if they share the same conditions and commitmentscondition. 3
regarding that agent. . variables 5
Example 2. Let S; = {cc(z,y,p,q),r} and S, = S)é :?c.o.nrc(i)ilteio’n ' g
{ee(x,y,p,q), ccy, z,v,w),r,u} be two states, and assume
r is a condition that agent can bring about (but does ngt% Declaration of commitments 9
affect ageny’'s working) andu is a condition that agent can :_Cgr?q%sittrigﬁ(role . role . condition) ﬂ
bring about (but does not affect ageris working). Then,S; “inertialFluent: 12
andsS; are equivalent states for agen{since the commitmen{ ccommitment(role ,role, condition, condition) 13
cely, z,v,w) is irrelevant to agent), but not equivalent stateg ~ ** 'nertialFluent; 14
for agenty (since the commitmente(y, z, v, w) that is related| 9% commitment operations 16
to agenty does not hold in staté;, but holds in state;). create(role ,role , condition) ::action; 17
discharge (role ,role ,condition) ::action; 18
Definition 11.9. The distance between two statfs and S; ccreate(role ,role, condition, condition) 19
is the number of commitment operations that are requireq toca:isgﬁ':r%g (role . role , condition . condition) 22
bring the protocol from staté; to states;. s action : 22
Example 3. Let S; = {cc(z,y,p,q)} and S; = |% Commitment rules 24
{e(z,y,q),ccly, z,q,7),p} be two states. Then, the distangce create(x,y,p) causes commitment(x,y,p) 25
between states; and S; is 2 since it takes two commitment d‘?’shcer:gr;?{);'y‘p) causescommitment(x.y.p) g?
operations to go from statg; to S;; a ccreateoperation to where x>y . 28
createcc(y, z, g, r) and acdischargeoperation to resolvec(x, CCLeate (X,yé‘p,q) causes ccommitment(x,y,p,q) gg
y: P q)mto C(X’ Ys q) cgisegﬁaﬁy(x,sﬁ?d) causesccommitment(x,y,p,q) 31
D. The Action Description Language C+ & commitment(x,y,q) where sy & p<q. 32
We realize the business scenarios to be described using com- Listing 1. Commitment Operations in C+
mitment protocols specified in the action description latgy
C+ [2], [3]. A protocol in C+ is composed of a set of states
and transitions between states (i.e., a transition SystAm) o e e e
state may contain several fluents that hold in that state (tru tpaye, ©(bookstore, custoner, delivere)
propositions). A fluent's value is changed as the conseaqienc cc(deliverer, bookstore, booke,delivere))
of an action that is performed by an agent. An inertial fluent
is the one whose value is not changed until an action makes
it change. Our use of C+ for formalizing commitments and
their operations are based on that of Chopra and Singh [3].
Listing 1 shows how commitment operations are realized e ook @ eriverers

in C+. This is a basis for other protocol specifications that c(detiverer bookstore, detivere)
utilize commitments. Through lines 10-14, commitments and _
conditional commitments are modeled as inertial fluentsnCo e P e
mitment operations shown through lines 17-22 are modeled as
auxiliary (i.e., simple) actions. An auxiliary action has lie
initiated by a protocol action and cannot be performed inde-
pendently. The causation rules associated with those tipesa
are shown through lines 25-32. Fig. 1. Purchase & Delivery Protocol

Ill. BUSINESSSCENARIO No conditions initially hold in Sy, but two conditional

In order to show how commitments are utilized in reatommitments are present. The first commitmes{bookstore,
business environments, we describe in detail our running exustomer, payc, delivereheans that the bookstore is commit-
ample that represents concrete business interactionste-ilg ted to make sure that the book is delivered if the customer
describes the purchase protocol introduced in Sectiondrdh pays for it. The second commitmeat(deliverer, bookstore,

bookc, deliverc)means that the deliverer is committed tdines 15-17. Thenitiate action is performed by the rokuper
deliver the book to the customer if the bookstore sends ft initialize the conditional commitments between the igart
Since the customer’s goal is to get the book delivered, (ite., supercan be considered as a protocol designer). Certain
performs thesendPaymentction. This brings the protocol actions cannot be performed by some agents. As line 20
to stateS; where conditionpayc holds as the outcome of suggests, theendPaymenrdction cannot be performed by the
the sendPaymenaction. Also, the conditional commitmentbookstore.
cc(bookstore, customer, payc, deliveis)discharged to the
base-level commitmermt(bookstore, customer, deliverdyext,
the bookstore performs theellBookaction which brings the
protocol to stateS,. Accordingly, conditionbookcholds and | :— ©objects _ 4
. . . super, customer, bookstore, deliverer ::role;| 5
the conditional commitmert(deliverer, bookstore, bookc, d&- .vc "booke, deliverc ::condition. 6
liverc) is discharged to the base-level commitmefdeliverer,
bookstore, deliverc)Finally, the deliverer performs thde- |% Fluents that define the states of the protocql8

% Include the commitment operations 1
:—include ’'com-spec’. 2

. . . . :— constants 9
liverBook action which brings the protocol to staty. Both init(role), pay(role ,role), book(role ,role), | 10
commitments inS; are discharged and conditiogeliverc deliver(role ,role) ::inertialFluent; 11
holds in Ss. StateSs is the final state for the protocol sincg initial ,final ::sdFluent. 12
all three conditions hold at the same time. Thus, a desirablep otocol actions 14
run for the protocol igSy, 51, S2, S3). initiate (role), sendPayment(role), 15
sellBook (role), deliverBook (role) 16
;. exogenousAction ; 17

% Certain actions are done by specific roles onlyl9
nonexecutable sendPayment(bookstore). 20

{cc(bookstore, customer, payc,deliverc)}

% Protocol action sendPayment is visible to the| 23

% customer agent 24

sendPayment(customer) causes 25

pay (customer , bookstore) if 26

ccommitment (bookstore ,customer , payc, deliverc|)27

sendPayment(customer) causes 28

discharge (customer ,bookstore , payc) 29

{payc, deliverc) if commitment(customer , bookstore , payc). 30
sendPayment (customer) causes 31

cdischarge (bookstore ,customer ,payc, deliverc) 32
ccommitment (bookstore ,customer , payc, deliverc|)33
nonexecutable sendPayment(customer) 34
if pay(customer,bookstore) ++init(super). 35

% Other protocol actions are not visible to the| 37

% customer agent 38

Flg 2. Pcustomer Sub-Protocol e 39

Note that states; and.S, are equivalent states for the cug?® SAusation relations for initial and final stated]
tomer, because conditigmayc and commitment(bookstore,| caused—initial if pay(x,y). 43
customer, deliverchold in both states. In addition, condition - -- o]) 44
bookcand the discharged commitmerd(deliverer, bookstore, g:ﬂi:g:;innl ;'lalif 'f_f?ﬁ(:r.m'tmem (x.y.p.q). ig

bookc, deliverc)are irrelevant to the customer. Thus, the
customer’s sub-protocoPcsiomer iNCludes statesSy, Sy, |% In findalf_stalte‘]2 if pay, book, tiindkdeliver&holdsf;g
and S; as shown in Figure 2S, is the initial state,S; caused final if pay(customer,bookstore)

))) . - book (bookstore ,deliverer) & 50
is the final state, and; is the only intermediate state fof deliver(deliverer ,customer). 51
this sub-protocol. There are two actionsefdPaymenand 52

deliverBook and two conditionspgaycanddeliverg.

Listing 2 describes part of the customer’s protocol in C+.
Line 2 includes the commitment operations as introduced inThe rules for the protocol actioeendPaymenére given
Listing 1. Lines 4-6 define the roles and conditions that atbrough lines 25-35. The first rule tells that the fluent
involved in the protocol. Lines 9-11 define the fluents repr@ay(customer, bookstore)ill start to hold as a result of
senting the messages that hold in certain states of theqmiotothe protocol actiorsendPayment(customef)the conditional
For example, the messagmy(customer,bookstord)as the commitment cc(bookstore, customer, payc, delivereyists
meaning that the customer has paid the bookstore for the.bopkior to it (lines 25-27). The next two rules through lines 28
The fluents in line 12 define the initial and final condition83 describe how existing commitments are resolved and new
for the protocol. The protocol actions are defined througlommitments are created as a result of the same action. The

Listing 2. Customer’s Protocol Described in C+

last rule ensures that the actisandPayment(customas) not
performed if the payment is already made by the customer
or the protocol is not initialized yet bguper (lines 34-35).
Since the scenario is distributed, other protocol actisnsh
assellBookor deliverBook are not accessible (i.e., hidden) by
the customer agent. The protocol starts with the siaiteal

and is expected to terminate in stéiteal (lines 42-46), if the
required fluents hold (lines 49-51).

Now, let us study what can go wrong in a given protocol run
and what exceptions can take place. If an expected actiast is n
performed by an agent that is responsible for performingnit,
exception occurs. Two such exceptional runs for this pmatoc
are (So, S1) and (Sp, S1, S2). The former run gets stuck at
state S;, because the bookstore does not send the book to
the deliverer. The latter run gets stuck at state because
the deliverer does not deliver the book to the customer. When
one of these exceptions occur, the customer agent cannot find
its cause immediately (i.e., in which of the main protocol

states the run gets stuck) since stafesand.S; are equivalent agent has enough knowledge to generate other possible state
for it. However, in order for the customer to deal with thef the protocol. Once the states are generated, they neeal to b
exception, it is crucial that it learns about which agent igerified to find out whether they have caused the exception.
causing the exception. Next, we look at the general ideanbehinccordingly, the agent directs the query about each geerat
our proposed solution, and then explain the details of oOgfate to one of the agents related to that state (i.e., indilv
approach. a commitment within that state).

Fig. 3. General Approach

IV. PROPOSEDSOLUTION V. IDENTIFYING EXCEPTION SOURCES

When faced with an exception, an agent tries to figure When an exception takes place, it is necessary for the agent
out what might have gone wrong. Figure 3 summarizes the identify who caused the exception so that it can deal with
approach that agents utilize when detecting exceptiomst, Fithe exception accordingly. As seen in the previous section,
the agent reasons using its own knowledge-base. In mahis is not easy since an agent may view a number of states
cases, this would not be enough to identify the exceptioidentical when indeed they are different for other agente T
However, in many settings, as time evolves, new informati@uestion then is how can an agent construct possible reatsta
about the environment becomes available (step 1). Basedddrthe world? If the agent can generate such possibilithes t
the new information, the agent again tries to predict pdssilit can query the involved agents and ask them to confirm one
contracts between other agents so that it can figure out wbathese states. Next, we present such an algorithm. Without
has been violated to cause an exception (step 2). Once lis of generality, we assume that the algorithm is used &y th
agent has possible ideas about what might have gone wroagstomeragent.
it queries c_)ther agents that are relatgd to the pos&bleqa‘g_sA State Prediction Algorithm
the exception and asks them to confirm one of the possibilitie)))
(step 3). In this section, Wwe propose an algorlth_m for the agents to

For the above example, this would work as follows: At théS€ for constructing the hidden states (i.e., unknown state
beginning, note that the customer is not aware of the existerPror to exception) that might be the cause of exceptions. In
of a deliverer since its sub-protocol does not include suchP4der to construct a state, the agent has to generate thielposs
role. Thus, its knowledge base includes only the bookstdf@nditions and commitments that hold in that state. Reball t
other than itself. In addition, the conditions initially dwn by ~€ach agentis only aware of the commitments it is involved in.
the agent are limited tpaycand its goal conditiomeliverc SO, the agent has to predict the possible commitments among
With this information only, it is not possible to construtate Other participants to fill the definition of a hidden state.

S, since it involves a commitment between the bookstoreAlgorithm 1 describes how the agent predicts the hidden
and the deliverer. However, even if its knowledge base dogétes for detecting exceptions. The requirements for the
not contain that information, the customer agent may becor@g0rithm to execute properly are; current state of the &igen
aware of other roles, and extend its sub-protocol with nelf# Sub-protocol, its goal condition, commitments it isotued

information revealed by other agents. For example, if ti@, conditions and roles it is aware of, and a maximum allowed
bookstore announces that the book is sent to the delivaar, tdistance parameter for selecting states to query. Theitigor

the customer will be aware of the existence of a deliverer rgfONSists of two stages; state generation and state seletttat
and the conditiomookc Information exposure is a simple taskVe describe next.
that is often performed in real-life delivery scenariosw\the State Generation Stage: This stage starts with creating a set

Algorithm 1 Predicting Hidden States process. Note that no inconsistent states are generatbibat t

Require: S. {current statg stage of the algorithm, because this process resolvessages
Require: Cg40q {goal conditior} commitments with conditions whenever is possible. Theestat
Require: commitments {initial commitment$ is then ready to be extended with the generated commitments
Require: C {conditions whose existence are kngwn and conditions (lines 10-11). Finally, the state is addethéo
Require: R {roles whose existence are knopn set of generated states (line 12). This stage continueknmti
Require: dist {maximum allowed distange new states are generated.

{I. State Generation Stage
1: S« {S.} {add current state to the generated states
2: for all commitment; in commitments do
S «— S. {create a new state from current sfate
cc — cc(Goal Role, CondRole, Cond, Goal)
Goal — C40q, {replace goal condition
GoalRole — select(R) {pick a role:
generateCond and CondRole using commitment;
cond — select(C) {pick a set of conditions
apply commitment operations ot assuming condi-
tions in cond holds
10: S« SUcc {add the commitments to the sthte Example 4. Let us now depict the algorithm using our sce-
11: S« SUcond {add the set of conditions to the sthte nario. Recall that we've considered two exceptional situnes;
122 S« SU{S} {add the generated state to the result one gets stuck at stats, and the other gets stuck at stste

State Selection Stage: This stage eliminates states generated

by the first stage of the algorithm which are at a distance

from the current state of the agent’s sub-protocol. We apply
the state distance property to compute the distance value.
The maximum allowed distance for selection is a configurable
parameter of the algorithm controlled by ttist value in line

15. The number of states selected out of this stage is expecte
to decrease if we select this parameter to be low. However, it
increases the chance that the actual exceptional statsds al

eliminated by this process.

© e NOO AW

13: end for However, sinceS; is a hidden state for the customer agent,
{Il. State Selection Stage both S; and S, converge to staté; of the customer agent’s
14: for all S; in S do sub-protocol. At this point, the customer agent thinks that
15 if distanceg;,S.) > dist then the exception is caused by the bookstore since the delivery
16: S« S — {S;} {remove the state from the result will be done by the bookstore according to its sub-protocol.
17: end if But, suppose that the bookstore agent informs the customer
18: end for agent on the delivery process. That is, it tells that the beok
19: return S given to the deliverer agent. Now, the customer agent haa ext

knowledge with which it can extend its sub-protocol. Nove th
customer agent can initiate the state generation procéss. T
goal of the agent is to successfully generate statend query

for storing generated states and the current state of th& &ge agents related to that state (i.e., deliverer) to see whdfiee
added to this set (line 1). A generated state is not consuctmain protocol is actually in that state. If so, the excepii®n
from scratch, but rather extended from the current statbef tcaused by the deliverer agent, otherwise the bookstoret agen
agent (line 3). In order to fill the state definition, the aggen- is the cause of the exception. Now, suppose the agent has
erates the hidden commitments between other partiesrgfarijenerated several different states among which one of them
with a conditional commitment template with two roles ané the stateS,. To learn whether the main protocol is in state
two conditions (line 4). The goal condition for the commitme S2, the customer agent queries the deliverer agent to confirm
(Goal) is the agent's goal (line 5), and the business party thidie existence of statés.

can bring about that conditiorzpal Role) is picked from the
set of roles the agent is aware of (line 6). In order to fill th@
middle parts of the commitmenCpnd and CondRole), the
agent traces through its own commitments and finds whichIn order to implement our approach, we used C+ to describe
parties it has a commitment with. For each commitmettie scenario formally as shown partly in Listings 1 and 2,
cc(zx, Role, Cond, p) or cc(Role, z,p, Cond), where Role is then implemented the state prediction algorithm in Java. In
the agent’s role and’ond is one of the conditions that thethe trivial cases where the initial commitments between the
agent can bring about, it replacé®ndRole and Cond of parties are in force, the protocols terminate as desired for
the template commitment using all possible pairsxoind the customer agent. However, since our aim is to observe
p as line 7 suggests. The agent then searches for conditierseptional situations, we disrupt the C+ descriptionshef t

to put into the state definition (line 8). Those conditions arscenarios (i.e., remove certain commitments) to enable the
also used in applying commitment operations on the gergratecurrence of such exceptions. Once certain parts of the
commitments. Since the generated commitments are thaliniscenario descriptions are extracted, the prediction ahgor
versions of contracts between other parties, they mighé has run to generate the possible missing states. Finally,asne
been changed during the execution of the protocol. Limaore generations complete the scenario descriptions gs the
9 of the algorithm provides this commitment manipulatioshould be, leading to a desirable run for the customer agent.

Implementation & Evaluation

The algorithm can be extended to support sequential pmemmitment protocols in C+ form the basis of our work.
tocols that involve more than one agent between the initiatdowever, Chopra and Singh do not provide mechanisms for
(i.e., customer) and the terminator of the protocol (i.e; ddistributed verification as we have done here.
liverer). For example, consider an extension to our scenari Mallya and Singh divide exceptions into two categories
where books are packaged before they are sent for delivdB]; (1) expected exceptions which are handled at design-
This packaging process needs another rolepttkagerto be time using preferences over protocol runs, and (2) unerplect
present in the protocol. Thus, the algorithm has to genénate exceptions which occur at run-time and are handled via
conditional commitments instead of one for each state it wiplicing exception handlers with base protocols. Theirlkwor
generate, involving the contracts between; (1) the boo&stdelps protocol designers for handling exceptions. However
and the packager, and (2) the packager and the deliverer. @andling unexpected exceptions with such generic haniflers
current system supports these extensions. costly. The work of Venkatraman and Singh resembles our
Correctness of the Algorithm: Here, we discuss the two WOTK since each agent checks compliance on its own [7]. The
stages of the algorithm (state generation and state sERctiProcess is distributed in a sense that ea_lch agent hgs aocess t
in order to argue on the correctness of our algorithm. That [0Wn set of messages during execution, but their business
the state causing the exception has to be generated in the stgenario does not fully simulate a distributed environm@ar
generation stage, and it has to be selected as a candidatéM@i differs from theirs since an agent in our scenario needs

querying in the state selection stage. Next, we considen egX{ra information when resolving an exception.
stage separately: Our work can also be considered in the multiagent plan

execution context for identifying failures. Jongg al. [8]

ft?te dGenErann Slta;ge: -I;hf] humber Obf Statre]S generatleq II%Iassify the diagnosis of plan failures into two categqr{é$
Imited to the knowledge of the agent about the protoco ’("eprimary plan diagnosis simply points out the failed action,

the roles and conditions). (2) secondary plan diagnosis identifies the actual causkeof t

Lemma V.1. Let S, be a state in protocolP, and letc be failure as we also focus in our work. Although the agents
a customer agent executing iR. Assumec is currently in in their plan execution system have partial observatiore ov
stateS, of its sub-protocolP, (P, C P), and assume staig, the system, they still have a major knowledge about their
differs from stateS.. in terms of the set of conditiorfs.,,; and environment. Thus, our work differs form theirs in terms of
the set of commitments,.,,,,,,. Let the commitments if..,,,,, the distributed protocol execution.

include the set of conditionB.,,, and the set of role€, .., Expectations have also been used to formalize business
and let E.png = Fena U E.on. Now, if ¢ faces an exception protocols as described in the SCIFF framework [9]. SCIFF
caused at stateS., and if ¢ knows about the conditions inis based on abductive logic, and it does not only specify a

E..nq and the roles inE,..., then stateS, will be generated business protocol, but also helps verify agent interastion
by agentc. open systems. Compliance verification has been considered i

_ ... other domains; in composite Web services [10], or in agent
_Proof: Recall that agent generates a state by filling its o nication languages (ACLs) [11]. An ACL is part of an
definition with conditions and commitments. Agentries all 5000t communication framework. The proposed verification

possible combinations of conditions and commitments it C?ﬂocess in Guerin and Pitts work [11] may require access
generate using its knowledge abddt Note thatS. = 5. U agent’s internal process, whereas our idea of verifinatio
Ecnd U Ecmm, thus agent needs to generate the Cond't'onﬁlepends only on interaction

in E.,q and the commitments i#.,,,,. Using its knowledge
aboutF.,, 4, agentc can generate the conditionsify,,4, since
Ecng € Eeong- Using its knowledge about,,,,, and E,...,

agentc can generate the commitments ify,,,,,, since those

. & the main protocol). Intuitively, it is reasonable for theeag
commltments are composed of the conditiong?in,, and the to query other agents which are committed to it (i.e., the
roles in E,.,;. which are known by agent (E..,, € Econd)-

= bookstore agent in our example). At this point, we assume

Thus, agent generates stat8.. B that the agent receives honest responses from others. In a
State Selection Stage: The chance of the exceptionalreal-life scenario, this querying process will continue as
state being selected is related to how distant it is from thielegation among the agents regarding their commitments
current state of the agent’s sub-protocol, and the choice (@k., the bookstore agent redirects the query of the custom
the maximum allowed distance parameter used for decidiagent to the deliverer agent for inspecting the exception
whether two states are distant. further). This delegation is also important in more comgid
scenarios since the exception facing agent may not be in
contact with all other agents in the protocol. In additionst

Commitment protocols have been used before to formalieanother important issue when considering multiple agent
business scenarios [4], [5]. Chopra and Singh explain hdtat enact a distributed protocol. It is more probable that a
transformation specifications are used in order to exteadent will respond to the agents it is committed to rathen tha
protocols to cover new situations [3]. Their formalizatioh other agents that it has no previous contact with. We aim to

Our approach is based on constructing possible hidden
states and querying other agents for confirming those states
(i.e., identifying which one of them caused the exception in

VI. DISCUSSION

investigate the application of trust strategies when aw@raig
such complicated scenarios.

ACKNOWLEDGEMENT

This research has been supported by Bogazici University
Research Fund under grant BAPO9A106P, The Scientific and
Technological Research Council of Turkey by a CAREER
Award under grant 105E073, and the Turkish State Plan-
ning Organization (DPT) under the TAM Project, number
2007K120610. We thank the anonymous referees for their

comments on this paper.

REFERENCES

[1] M. P. Singh, “An ontology for commitments in multiagenyssems:
Toward a unification of normative conceptgitificial Intelligence and
Law, vol. 7, pp. 97-113, 1999.

[2] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. fher, “Non-
monotonic causal theoriesArtificial Intelligence vol. 153, no. 1-2, pp.
49-104, 2004.

[3] A. K. Chopra and M. P. Singh, “Contextualizing commitrb@notocols,”
in AAMAS '06: Proceedings of the fifth international joint cemnce
on Autonomous Agents and Multiagent Systeriew York, NY, USA:
ACM, 2006, pp. 1345-1352.

[4] P.Yolum and M. P. Singh, “Flexible protocol specificatiand execution:
applying event calculus planning using commitments, AKMAS '02:
Proceedings of the first international joint conference amohomous
Agents and Multiagent SystemsNew York, NY, USA: ACM, 2002,
pp. 527-534.

[5] N. Desai, A. K. Chopra, M. Arrott, B. Specht, and M. P. Sing
“Engineering foreign exchange processes via commitmeotopols,”
in International Conference on Services Computing (IEEE SQQ)7,
pp. 514-521.

[6] A. U. Mallya and M. P. Singh, “Modeling exceptions via cotiiment
protocols,” inAAMAS '05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systedesv York,
NY, USA: ACM, 2005, pp. 122-129.

[7] M. Venkatraman and M. P. Singh, “Verifying compliancetvcommit-
ment protocols,”Autonomous Agents and Multiagent Systents. 2,
no. 3, pp. 217-236, 1999.

[8] F. D. Jonge, N. Roos, and C. Witteveen, “Diagnosis of ragdent plan

execution,” inln Multiagent System Technologies: MATES 2006, LNCS

4196 Springer, 2006, pp. 86-97.

[9] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Melland P. Tor-
roni, “Verifiable agent interaction in abductive logic pragiming: The
sciff framework,” ACM Transactions on Computational Logieol. 9,
no. 4, pp. 1-43, 2008.

[10] A. Lomuscio, H. Qu, and M. Solanki, “Towards verifyingmpliance
in agent-based web service compositions,”Aroceedings of 7th In-
ternational Conference on Autonomous Agents and Multia@gstems
(AAMAS) 2008, pp. 265-272.

[11] F. Guerin and J. Pitt, “Agent communication framewosdd verifica-

tion,” in AAMAS 2002 Workshop on Agent Communication Langyages

2002.

