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Abstract—Open multiagent systems consist of autonomous
agents that are built by different vendors. In principle, open
multiagent systems cannot provide any guarantees about the
behaviors of their agents. This means that when agents are
working together, such as carrying out a business protocol,
one agent’s misbehavior may potentially create an exception for
another agent and obstruct its proper working. Faced with such
an exception, an agent should be able to identify the problemby
verifying the compliance of other agents.

Previous work on verification of protocols unrealistically
assume that participants have full knowledge of a protocol.
However, when multiple agents enact a protocol, each agent
has access to its part of the protocol and not more. This will
require agents to check verification by querying others and
more importantly by discovering the contracts between them.
Here, we propose a commitment-based framework for detecting
exceptions in which an agent augments its part of the protocol
with its knowledge to construct states that are previously hidden
to the agent by generating possible commitments between other
agents. The agent then queries others to confirm those states.
Our framework is formalized using C+ and is tested using a
realistic business scenario.

I. I NTRODUCTION

In open multiagent systems, it is possible for agents to
interact with others that they have no previous knowledge of.
Carrying out interactions, such as business dealings, withsuch
others is difficult since there is no guarantee about how the
other agents will act. If others do not follow their parts of
the interactions, the entire business may be jeopardized. This
requires an agent participating in such a situation to be able
to verify that others are acting by the rules.

Verification is especially important in the face ofexceptions.
Here, we deal with high-level exceptions that pertain to
the workings of the underlying protocol. For example, if a
buyer does not receive a merchandise that was scheduled
for delivery, it can conclude that there must have been an
exception in the workings of the entire protocol. When such
an exception occurs, the agent facing the exception needs to
identify the problem behind it. This is a two-phase procedure;
first detecting the exception, and then taking proper action
recover from the exceptional situation. In this paper, we focus
on the first phase. That is, we propose an algorithm for finding
the source of exceptions (i.e., caused by which parties and
why). In addition, if the source of the exception is identified

correctly, then it is a forward step in the recovery process,
because the agent facing the exception has a means of proof
for the cause of it. This proof can then be used to consult
other authorities, which can resolve inconsistencies between
parties.

Realistic business affairs consist of multiple parties that
carry out different tasks. Multiparty interactions have two
inherent properties; (1) interactions between different parties
are regulated by different contracts (i.e., a seller may exercise
different rules when dealing with an individual versus a cor-
poration), (2) rules of interaction between different parties are
private and not revealed to the outside world (i.e., a contract
between a seller and a carrier may never be revealed to buyers
publicly). While these properties are essential for multiparty
protocols, they pose important challenges for verification,
which brings the question of how an agent can verify others’
compliance when it has only partial information about their
activities. We use the scenario in Example 1 throughout the
paper as our running example.

Example 1. Consider the simple purchase-and-delivery proto-
col that includes three business roles. The roles in the protocol
arecustomer, bookstore, anddeliverer. In a normal execution,
the customer buys a book from the bookstore and the deliverer
delivers the book to the customer. However, certain exceptions
may occur during the enactment of this protocol. For example,
consider the case where the customer pays for the book and
expects delivery in three days. In addition, suppose that the
bookstore sends books to be delivered to the deliverer in large
groups. If at the time the customer buys the book, the number
of books pending for delivery at the bookstore is not enough,
the book will not be delivered causing an exception for the
customer. However, since the customer does not know the
details of the contract between the bookstore and the deliverer,
the source of the exception is not immediately clear to the
customer. One option for the customer is to simply ask the
bookstore about the cause of exception. However, this may not
be possible in some situations (i.e., the bookstore is not willing
to share information regarding its contracts with other parties,
or the exception is caused by a party beyond the knowledge of
the bookstore). Then, the customer has to use its knowledge
first to predict possible causes, and query corresponding agents



to determine which one is the actual cause of the exception.

In order to study verification rigorously, we capture agents’
interactions through commitments [1], and adopt C+ as a
language to formalize those interactions [2], [3]. In contrast to
previous work on verification, we propose a realistic exception
discovery framework in which; (1) multiple roles exist in
the business, (2) business scenarios are distributed (eachrole
has its own view of the protocol), and (3) each agent deals
with an exception by discovering contracts of other agents.
With this proposed approach, an agent only finds out the
necessary details to continue its operation in tracing downthe
incompliant agents.

The rest of this paper is organized as follows. Section II
gives necessary background on protocols, commitments and
C+. Section III describes the running example and defines
the problem formally. Section IV introduces our solution to
deal with exceptions in distributed scenarios, and SectionV
explains its details. Section VI presents a discussion of our
work with comparisons to the literature and provides directions
for further research.

II. T ECHNICAL BACKGROUND

In this section, we first describe formally what we mean
by a business protocol, then we review the necessary concepts
related to specifying commitments, and realizing them in a
formal description language.

A. Protocols & Runs

Definition II.1. A protocol P is a 6-tuple
〈S, A, C, R,SI ,SF〉, such thatS is a finite set of states,A is
a finite set of actions,C is a finite set of conditions,R is a
finite set of roles,SI is the set of initial states (SI ⊂ S), and
SF is the set of final states (SF ⊂ S). Intermediate (middle)
statesSM are states that are not inSI or in SF .

Definition II.2. A state is a set of conditions and commitments
that hold in it.

Definition II.3. A runR of a protocolP is simply a sequence
of states〈S0, ..., Sn〉 starting from an initial state (S0 ∈ SI ).
For now, we consider only finite runs.

Definition II.4. A desirable run is the one that ends in a final
state (Sn ∈ SF ).

Definition II.5. An exceptional run is the one that ends in an
intermediate state (Sn ∈ SM), and thus does not reach a final
state.

Desirable runs are preferred by agents since they lead them
to reach their goals, whereas exceptional runs are unexpected
by agents and proper action (i.e., exception handling routines)
has to be taken in order for the protocol to evolve from those
states.

Definition II.6. An agent-centric sub-protocol
P ′〈S′, A′, C′, R′,S′

I
,S′

F
〉 is a subset of the main protocol

P〈S, A, C, R,SI ,SF 〉 in which; (1)∀s′ ∈ S′, ∃s ∈ S : s′ ⊆ s,

(2) A
′ ⊆ A, (3) C

′ ⊆ C, (4) R
′ ⊆ R, (5)

∀s′ ∈ S′
I
, ∃s ∈ SI : s′ ⊆ s, (6) ∀s′ ∈ S′

F
, ∃s ∈ SF : s′ ⊆ s.

B. Commitments

Commitments are formed between two agents and roughly
correspond to obligations [1]. The debtor of a commitment
is the agent that is committed to bring about a condition.
The creditor benefits from the commitment. Commitments are
created and discharged by the interactions of the agents. There
are two types of commitments:

c(x, y, p): This is a base-level commitment between debtor
x and creditory with propositionp. When this commitment
is in charge, debtorx becomes committed to creditory for
satisfyingp.

cc(x, y, p, q): This is a conditional commitment between
debtorx and creditory with condition p and propositionq.
When this commitment is in charge, ifp is satisfied (byy), x
will become committed toy for satisfyingq.

The following four operations describe how commitments
are manipulated throughout a protocol. We assume that each
protocol action initiates a commitment operation (i.e., altering
a contract between agents). Thus, commitment operations
describe the semantics of protocol actions.

create(x, c(x, y, p)): This operation initiates the creation
of the base-level commitmentc. It is performed byx, the
debtor of the commitment. Since this operation creates a new
commitment which does not hold previously, it causes a state

transition (Si

create(x,c(x,y,p))
−−−−−−−−−−−→ Si ∪ {c(x, y, p)}).

ccreate(x, cc(x, y, p, q)): This operation initiates the creation
of the conditional commitmentcc. It is performed byx, the
debtor of the commitment. This operation also causes a state

transition (Si

ccreate(x,cc(x,y,p,q))
−−−−−−−−−−−−−−→ Si ∪ {cc(x, y, p, q)}).

discharge(x, c(x, y, p): This operation resolves the base-
level commitmentc. It is performed byx, the debtor of the
commitment, and the commitmentc is terminated afterward.
A base-level commitment is resolved when the propositionp
of the commitment becomes true. This operation causes a state
transition since a previously holding commitment disappears

(Si

discharge(x,c(x,y,p))
−−−−−−−−−−−−−−→ Si − {c(x, y, p)} ∪ {p}).

cdischarge(x, cc(x, y, p, q)): This operation resolves the
conditional commitmentcc. It is performed byx, the debtor
of the commitment, and the conditional commitmentcc is
terminated afterward. If the propositionq of a conditional
commitmentcc becomes true, thencc is discharged imme-

diately causing a state transition (Si

cdischarge(x,cc(x,y,p,q))
−−−−−−−−−−−−−−−−→

Si−{cc(x, y, p, q)}∪{q}). If the conditionp of cc is brought
about, thencc is discharged, and a new base-level commitment
is created with the propositionq of cc causing another state

transition (Si

cdischarge(x,cc(x,y,p,q))
−−−−−−−−−−−−−−−−→ Si − {cc(x, y, p, q)} ∪

{c(x, y, q)} ∪ {p}).

C. Commitment Protocols

In this section, we integrate commitments into protocols.
Definitions II.7, II.8, and II.9 provide useful properties re-



garding states with respect to commitments.

Definition II.7. A state is inconsistent if it is one of the
following; (1) stateSi = {cc(x, y, p, q), p} is inconsistent
since the conditional commitment cannot coexist with its
condition, (2) stateSj = {p,¬p} is inconsistent since a
condition cannot coexist with its negation.

Definition II.8. Two states are equivalent with respect to an
agent if they share the same conditions and commitments
regarding that agent.

Example 2. Let Si = {cc(x, y, p, q), r} and Sj =
{cc(x, y, p, q), cc(y, z, v, w), r, u} be two states, and assume
r is a condition that agentx can bring about (but does not
affect agenty’s working) andu is a condition that agenty can
bring about (but does not affect agentx’s working). Then,Si

andSj are equivalent states for agentx (since the commitment
cc(y, z, v, w) is irrelevant to agentx), but not equivalent states
for agenty (since the commitmentcc(y, z, v, w) that is related
to agenty does not hold in stateSi, but holds in stateSj).

Definition II.9. The distance between two statesSi and Sj

is the number of commitment operations that are required to
bring the protocol from stateSi to stateSj .

Example 3. Let Si = {cc(x, y, p, q)} and Sj =
{c(x, y, q), cc(y, z, q, r), p} be two states. Then, the distance
between statesSi andSj is 2 since it takes two commitment
operations to go from stateSi to Sj ; a ccreateoperation to
createcc(y, z, q, r), and acdischargeoperation to resolvecc(x,
y, p , q) into c(x, y, q).

D. The Action Description Language C+

We realize the business scenarios to be described using com-
mitment protocols specified in the action description language,
C+ [2], [3]. A protocol in C+ is composed of a set of states
and transitions between states (i.e., a transition system). A
state may contain several fluents that hold in that state (true
propositions). A fluent’s value is changed as the consequence
of an action that is performed by an agent. An inertial fluent
is the one whose value is not changed until an action makes
it change. Our use of C+ for formalizing commitments and
their operations are based on that of Chopra and Singh [3].

Listing 1 shows how commitment operations are realized
in C+. This is a basis for other protocol specifications that
utilize commitments. Through lines 10-14, commitments and
conditional commitments are modeled as inertial fluents. Com-
mitment operations shown through lines 17-22 are modeled as
auxiliary (i.e., simple) actions. An auxiliary action has to be
initiated by a protocol action and cannot be performed inde-
pendently. The causation rules associated with those operations
are shown through lines 25-32.

III. B USINESSSCENARIO

In order to show how commitments are utilized in real
business environments, we describe in detail our running ex-
ample that represents concrete business interactions. Figure 1
describes the purchase protocol introduced in Section I. There

are four states (S0, S1, S2, andS3), three actions that enable
the transitions between the states (sendPayment, sellBook,
and deliverBook), and three conditions corresponding to the
outcomes of the actions in the protocol (payc, bookc, and
deliverc). There is a single initial state (S0), a single final
state (S3), and two intermediate states (S1 andS2).

� �
1:− s o r t s
2r o l e ;
3c o n d i t i o n .

5:− v a r i a b l e s
6x , y , z : : r o l e ;
7p , q : : c o n d i t i o n .

9% D e c l a r a t i o n of commitments
10:− c o n s t a n t s
11commitment ( ro le , ro le , c o n d i t i o n )
12: : i n e r t i a l F l u e n t ;
13ccommitment ( ro le , ro le , c o n d i t i o n , c o n d i t i o n )
14: : i n e r t i a l F l u e n t ;

16% Commitment o p e r a t i o n s
17c r e a t e ( ro le , ro le , c o n d i t i o n ) : : a c t i o n ;
18d i s c h a r g e ( ro le , ro le , c o n d i t i o n ) : : a c t i o n ;
19c c r e a t e ( ro le , ro le , c o n d i t i o n , c o n d i t i o n )
20: : a c t i o n ;
21c d i s c h a r g e ( ro le , ro le , c o n d i t i o n , c o n d i t i o n )
22: : a c t i o n ;

24% Commitment r u l e s
25c r e a t e ( x , y , p ) causes commitment ( x , y , p )
26where x<>y .
27d i s c h a r g e ( x , y , p ) causes−commitment ( x , y , p )
28where x<>y .
29c c r e a t e ( x , y , p , q ) causes ccommitment ( x , y , p , q )
30where x<>y & p<>q .
31c d i s c h a r g e ( x , y , p , q ) causes−ccommitment ( x , y , p , q )
32& commitment ( x , y , q ) where x<>y & p<>q .

� �
Listing 1. Commitment Operations in C+

{cc(bookstore,customer,payc,deliverc),    

 cc(deliverer,bookstore,bookc,deliverc)}

sendPayment(customer)

se
ll
Bo
ok
(b
oo
ks
to
re
)

deliverBook(deliverer)

 

{payc, c(bookstore,customer,deliverc),

 cc(deliverer,bookstore,bookc,deliverc)}

{payc, bookc,                      

 c(bookstore,customer,deliverc),   

 c(deliverer,bookstore,deliverc)}

s
0

s
1

s
2

s
3

{payc, bookc, deliverc}

Fig. 1. Purchase & Delivery Protocol

No conditions initially hold in S0, but two conditional
commitments are present. The first commitmentcc(bookstore,
customer, payc, deliverc)means that the bookstore is commit-
ted to make sure that the book is delivered if the customer
pays for it. The second commitmentcc(deliverer, bookstore,



bookc, deliverc)means that the deliverer is committed to
deliver the book to the customer if the bookstore sends it.
Since the customer’s goal is to get the book delivered, it
performs thesendPaymentaction. This brings the protocol
to stateS1 where conditionpayc holds as the outcome of
the sendPaymentaction. Also, the conditional commitment
cc(bookstore, customer, payc, deliverc)is discharged to the
base-level commitmentc(bookstore, customer, deliverc). Next,
the bookstore performs thesellBookaction which brings the
protocol to stateS2. Accordingly, conditionbookcholds and
the conditional commitmentc(deliverer, bookstore, bookc, de-
liverc) is discharged to the base-level commitmentc(deliverer,
bookstore, deliverc). Finally, the deliverer performs thede-
liverBook action which brings the protocol to stateS3. Both
commitments inS2 are discharged and conditiondeliverc
holds in S3. StateS3 is the final state for the protocol since
all three conditions hold at the same time. Thus, a desirable
run for the protocol is〈S0, S1, S2, S3〉.

sendPayment(customer)

de
li
ve
rB
oo
k(
bo
ok
st
or
e)

{cc(bookstore,customer,payc,deliverc)} 

{payc, 

 c(bookstore,customer,deliverc)}

s
0

s
1

s
3

{payc, deliverc}

Fig. 2. PCustomer Sub-Protocol

Note that statesS1 andS2 are equivalent states for the cus-
tomer, because conditionpayc and commitmentc(bookstore,
customer, deliverc)hold in both states. In addition, condition
bookcand the discharged commitmentcc(deliverer, bookstore,
bookc, deliverc)are irrelevant to the customer. Thus, the
customer’s sub-protocolPCustomer includes statesS0, S1,
and S3 as shown in Figure 2.S0 is the initial state,S3

is the final state, andS1 is the only intermediate state for
this sub-protocol. There are two actions (sendPaymentand
deliverBook) and two conditions (paycanddeliverc).

Listing 2 describes part of the customer’s protocol in C+.
Line 2 includes the commitment operations as introduced in
Listing 1. Lines 4-6 define the roles and conditions that are
involved in the protocol. Lines 9-11 define the fluents repre-
senting the messages that hold in certain states of the protocol.
For example, the messagepay(customer,bookstore)has the
meaning that the customer has paid the bookstore for the book.
The fluents in line 12 define the initial and final conditions
for the protocol. The protocol actions are defined through

lines 15-17. Theinitiate action is performed by the rolesuper
to initialize the conditional commitments between the parties
(i.e., supercan be considered as a protocol designer). Certain
actions cannot be performed by some agents. As line 20
suggests, thesendPaymentaction cannot be performed by the
bookstore.

� �
1% I n c l u d e t h e commitment o p e r a t i o n s
2:− i n c l u d e ’com−spec ’ .

4:− o b j e c t s
5super , cus tomer , books to re , d e l i v e r e r : : r o l e ;
6payc , bookc , d e l i v e r c : : c o n d i t i o n .

8% F l u e n t s t h a t d e f i n e t h e s t a t e s of t h e p r o t o c o l
9:− c o n s t a n t s
10i n i t ( r o l e ) , pay ( ro le , r o l e ) , book ( ro le , r o l e ) ,
11d e l i v e r ( ro le , r o l e ) : : i n e r t i a l F l u e n t ;
12i n i t i a l , f i n a l : : s d F l u e n t .

14% P r o t o c o l a c t i o n s
15i n i t i a t e ( r o l e ) , sendPayment ( r o l e ) ,
16se l lBook ( r o l e ) , de l i ve rBook ( r o l e )
17: : exogenousAct ion ;

19% C e r t a i n a c t i o n s a r e done by s p e c i f i c r o l e s on ly
20n o n e x e c u t a b l e sendPayment ( b o o k s t o r e ) .
21. . .

23% P r o t o c o l a c t i o n sendPayment i s v i s i b l e to t h e
24% cus tomer agen t
25sendPayment ( cus tomer ) causes
26pay ( cus tomer , b o o k s t o r e ) i f
27ccommitment ( books to re , cus tomer , payc , d e l i v e r c ) .
28sendPayment ( cus tomer ) causes
29d i s c h a r g e ( cus tomer , books to re , payc )
30i f commitment ( cus tomer , books to re , payc ) .
31sendPayment ( cus tomer ) causes
32c d i s c h a r g e ( books to re , cus tomer , payc , d e l i v e r c ) i f
33ccommitment ( books to re , cus tomer , payc , d e l i v e r c ) .
34n o n e x e c u t a b l e sendPayment ( cus tomer )
35i f pay ( cus tomer , b o o k s t o r e ) ++− i n i t ( super ) .

37% Other p r o t o c o l a c t i o n s a r e no t v i s i b l e to t h e
38% cus tomer agen t
39. . .

41% Causa t ion r e l a t i o n s f o r i n i t i a l and f i n a l s t a t e s
42caused i n i t i a l i f i n i t i a l .
43caused− i n i t i a l i f pay ( x , y ) .
44. . .
45caused− i n i t i a l i f ccommitment ( x , y , p , q ) .
46caused− f i n a l i f − f i n a l .

48% In f i n a l s t a t e , i f pay , book , and d e l i v e r ho lds
49caused f i n a l i f pay ( cus tomer , b o o k s t o r e ) &
50book ( books to re , d e l i v e r e r ) &
51d e l i v e r ( d e l i v e r e r , cus tomer ) .
52. . .

� �

Listing 2. Customer’s Protocol Described in C+

The rules for the protocol actionsendPaymentare given
through lines 25-35. The first rule tells that the fluent
pay(customer, bookstore)will start to hold as a result of
the protocol actionsendPayment(customer)if the conditional
commitment cc(bookstore, customer, payc, deliverc)exists
prior to it (lines 25-27). The next two rules through lines 28-
33 describe how existing commitments are resolved and new
commitments are created as a result of the same action. The



last rule ensures that the actionsendPayment(customer)is not
performed if the payment is already made by the customer
or the protocol is not initialized yet bysuper (lines 34-35).
Since the scenario is distributed, other protocol actions,such
assellBookor deliverBook, are not accessible (i.e., hidden) by
the customer agent. The protocol starts with the stateinitial
and is expected to terminate in statefinal (lines 42-46), if the
required fluents hold (lines 49-51).

Now, let us study what can go wrong in a given protocol run
and what exceptions can take place. If an expected action is not
performed by an agent that is responsible for performing it,an
exception occurs. Two such exceptional runs for this protocol
are 〈S0, S1〉 and 〈S0, S1, S2〉. The former run gets stuck at
stateS1, because the bookstore does not send the book to
the deliverer. The latter run gets stuck at stateS2, because
the deliverer does not deliver the book to the customer. When
one of these exceptions occur, the customer agent cannot find
its cause immediately (i.e., in which of the main protocol
states the run gets stuck) since statesS1 andS2 are equivalent
for it. However, in order for the customer to deal with the
exception, it is crucial that it learns about which agent is
causing the exception. Next, we look at the general idea behind
our proposed solution, and then explain the details of our
approach.

IV. PROPOSEDSOLUTION

When faced with an exception, an agent tries to figure
out what might have gone wrong. Figure 3 summarizes the
approach that agents utilize when detecting exceptions. First,
the agent reasons using its own knowledge-base. In many
cases, this would not be enough to identify the exception.
However, in many settings, as time evolves, new information
about the environment becomes available (step 1). Based on
the new information, the agent again tries to predict possible
contracts between other agents so that it can figure out what
has been violated to cause an exception (step 2). Once the
agent has possible ideas about what might have gone wrong,
it queries other agents that are related to the possible cause of
the exception and asks them to confirm one of the possibilities
(step 3).

For the above example, this would work as follows: At the
beginning, note that the customer is not aware of the existence
of a deliverer since its sub-protocol does not include such a
role. Thus, its knowledge base includes only the bookstore
other than itself. In addition, the conditions initially known by
the agent are limited topaycand its goal conditiondeliverc.
With this information only, it is not possible to construct state
S2 since it involves a commitment between the bookstore
and the deliverer. However, even if its knowledge base does
not contain that information, the customer agent may become
aware of other roles, and extend its sub-protocol with new
information revealed by other agents. For example, if the
bookstore announces that the book is sent to the deliverer, then
the customer will be aware of the existence of a deliverer role
and the conditionbookc. Information exposure is a simple task
that is often performed in real-life delivery scenarios. Now, the

Knowledge Base

Environment

S
i

S
k

S
j

Agent

(1) information 
reveal

(2) state 

generation

A
l

A
m

A
n

(3) query & confirmation

Fig. 3. General Approach

agent has enough knowledge to generate other possible states
of the protocol. Once the states are generated, they need to be
verified to find out whether they have caused the exception.
Accordingly, the agent directs the query about each generated
state to one of the agents related to that state (i.e., involved in
a commitment within that state).

V. I DENTIFYING EXCEPTION SOURCES

When an exception takes place, it is necessary for the agent
to identify who caused the exception so that it can deal with
the exception accordingly. As seen in the previous section,
this is not easy since an agent may view a number of states
identical when indeed they are different for other agents. The
question then is how can an agent construct possible real states
of the world? If the agent can generate such possibilities, then
it can query the involved agents and ask them to confirm one
of these states. Next, we present such an algorithm. Without
loss of generality, we assume that the algorithm is used by the
customeragent.

A. State Prediction Algorithm

In this section, we propose an algorithm for the agents to
use for constructing the hidden states (i.e., unknown states
prior to exception) that might be the cause of exceptions. In
order to construct a state, the agent has to generate the possible
conditions and commitments that hold in that state. Recall that
each agent is only aware of the commitments it is involved in.
So, the agent has to predict the possible commitments among
other participants to fill the definition of a hidden state.

Algorithm 1 describes how the agent predicts the hidden
states for detecting exceptions. The requirements for the
algorithm to execute properly are; current state of the agent in
its sub-protocol, its goal condition, commitments it is involved
in, conditions and roles it is aware of, and a maximum allowed
distance parameter for selecting states to query. The algorithm
consists of two stages; state generation and state selection, that
we describe next.

State Generation Stage: This stage starts with creating a set



Algorithm 1 Predicting Hidden States

Require: Sc {current state}
Require: Cgoal {goal condition}
Require: commitments {initial commitments}
Require: C {conditions whose existence are known}
Require: R {roles whose existence are known}
Require: dist {maximum allowed distance}
{I. State Generation Stage}

1: S← {Sc} {add current state to the generated states}
2: for all commitmenti in commitments do
3: S ← Sc {create a new state from current state}
4: cc← cc(GoalRole, CondRole, Cond, Goal)
5: Goal ← Cgoal {replace goal condition}
6: GoalRole← select(R) {pick a role}
7: generateCond andCondRole usingcommitmenti
8: cond← select(C) {pick a set of conditions}
9: apply commitment operations oncc assuming condi-

tions in cond holds
10: S ← S ∪ cc {add the commitments to the state}
11: S ← S ∪ cond {add the set of conditions to the state}
12: S← S ∪ {S} {add the generated state to the result}
13: end for
{II. State Selection Stage}

14: for all Si in S do
15: if distance(Si,Sc) > dist then
16: S← S− {Si} {remove the state from the result}
17: end if
18: end for
19: return S

for storing generated states and the current state of the agent is
added to this set (line 1). A generated state is not constructed
from scratch, but rather extended from the current state of the
agent (line 3). In order to fill the state definition, the agentgen-
erates the hidden commitments between other parties starting
with a conditional commitment template with two roles and
two conditions (line 4). The goal condition for the commitment
(Goal) is the agent’s goal (line 5), and the business party that
can bring about that condition (GoalRole) is picked from the
set of roles the agent is aware of (line 6). In order to fill the
middle parts of the commitment (Cond andCondRole), the
agent traces through its own commitments and finds which
parties it has a commitment with. For each commitment
cc(x, Role, Cond, p) or cc(Role, x, p, Cond), whereRole is
the agent’s role andCond is one of the conditions that the
agent can bring about, it replacesCondRole and Cond of
the template commitment using all possible pairs ofx and
p as line 7 suggests. The agent then searches for conditions
to put into the state definition (line 8). Those conditions are
also used in applying commitment operations on the generated
commitments. Since the generated commitments are the initial
versions of contracts between other parties, they might have
been changed during the execution of the protocol. Line
9 of the algorithm provides this commitment manipulation

process. Note that no inconsistent states are generated at this
stage of the algorithm, because this process resolves necessary
commitments with conditions whenever is possible. The state
is then ready to be extended with the generated commitments
and conditions (lines 10-11). Finally, the state is added tothe
set of generated states (line 12). This stage continues until no
new states are generated.

State Selection Stage:This stage eliminates states generated
by the first stage of the algorithm which are at a distance
from the current state of the agent’s sub-protocol. We apply
the state distance property to compute the distance value.
The maximum allowed distance for selection is a configurable
parameter of the algorithm controlled by thedist value in line
15. The number of states selected out of this stage is expected
to decrease if we select this parameter to be low. However, it
increases the chance that the actual exceptional state is also
eliminated by this process.

Example 4. Let us now depict the algorithm using our sce-
nario. Recall that we’ve considered two exceptional situations;
one gets stuck at stateS1, and the other gets stuck at stateS2.
However, sinceS2 is a hidden state for the customer agent,
both S1 andS2 converge to stateS1 of the customer agent’s
sub-protocol. At this point, the customer agent thinks that
the exception is caused by the bookstore since the delivery
will be done by the bookstore according to its sub-protocol.
But, suppose that the bookstore agent informs the customer
agent on the delivery process. That is, it tells that the bookis
given to the deliverer agent. Now, the customer agent has extra
knowledge with which it can extend its sub-protocol. Now, the
customer agent can initiate the state generation process. The
goal of the agent is to successfully generate stateS2 and query
agents related to that state (i.e., deliverer) to see whether the
main protocol is actually in that state. If so, the exceptionis
caused by the deliverer agent, otherwise the bookstore agent
is the cause of the exception. Now, suppose the agent has
generated several different states among which one of them
is the stateS2. To learn whether the main protocol is in state
S2, the customer agent queries the deliverer agent to confirm
the existence of stateS2.

B. Implementation & Evaluation

In order to implement our approach, we used C+ to describe
the scenario formally as shown partly in Listings 1 and 2,
then implemented the state prediction algorithm in Java. In
the trivial cases where the initial commitments between the
parties are in force, the protocols terminate as desired for
the customer agent. However, since our aim is to observe
exceptional situations, we disrupt the C+ descriptions of the
scenarios (i.e., remove certain commitments) to enable the
occurrence of such exceptions. Once certain parts of the
scenario descriptions are extracted, the prediction algorithm
is run to generate the possible missing states. Finally, oneor
more generations complete the scenario descriptions as they
should be, leading to a desirable run for the customer agent.



The algorithm can be extended to support sequential pro-
tocols that involve more than one agent between the initiator
(i.e., customer) and the terminator of the protocol (i.e., de-
liverer). For example, consider an extension to our scenario
where books are packaged before they are sent for delivery.
This packaging process needs another role, thepackager, to be
present in the protocol. Thus, the algorithm has to generatetwo
conditional commitments instead of one for each state it will
generate, involving the contracts between; (1) the bookstore
and the packager, and (2) the packager and the deliverer. Our
current system supports these extensions.

Correctness of the Algorithm: Here, we discuss the two
stages of the algorithm (state generation and state selection)
in order to argue on the correctness of our algorithm. That is,
the state causing the exception has to be generated in the state
generation stage, and it has to be selected as a candidate for
querying in the state selection stage. Next, we consider each
stage separately:

State Generation Stage: The number of states generated is
limited to the knowledge of the agent about the protocol (i.e.,
the roles and conditions).

Lemma V.1. Let Se be a state in protocolP , and let c be
a customer agent executing inP . Assumec is currently in
stateSc of its sub-protocolPc (Pc ⊆ P ), and assume stateSe

differs from stateSc in terms of the set of conditionsEcnd and
the set of commitmentsEcmm. Let the commitments inEcmm

include the set of conditionsEcon and the set of rolesErole,
and let Econd = Ecnd ∪ Econ. Now, if c faces an exception
caused at stateSe, and if c knows about the conditions in
Econd and the roles inErole, then stateSe will be generated
by agentc.

Proof: Recall that agentc generates a state by filling its
definition with conditions and commitments. Agentc tries all
possible combinations of conditions and commitments it can
generate using its knowledge aboutPc. Note thatSe = Sc ∪
Ecnd ∪ Ecmm, thus agentc needs to generate the conditions
in Ecnd and the commitments inEcmm. Using its knowledge
aboutEcond, agentc can generate the conditions inEcnd, since
Ecnd ⊆ Econd. Using its knowledge aboutEcond and Erole,
agentc can generate the commitments inEcmm, since those
commitments are composed of the conditions inEcon and the
roles in Erole which are known by agentc (Econ ⊆ Econd).
Thus, agentc generates stateSe.

State Selection Stage: The chance of the exceptional
state being selected is related to how distant it is from the
current state of the agent’s sub-protocol, and the choice of
the maximum allowed distance parameter used for deciding
whether two states are distant.

VI. D ISCUSSION

Commitment protocols have been used before to formalize
business scenarios [4], [5]. Chopra and Singh explain how
transformation specifications are used in order to extend
protocols to cover new situations [3]. Their formalizationof

commitment protocols in C+ form the basis of our work.
However, Chopra and Singh do not provide mechanisms for
distributed verification as we have done here.

Mallya and Singh divide exceptions into two categories
[6]; (1) expected exceptions which are handled at design-
time using preferences over protocol runs, and (2) unexpected
exceptions which occur at run-time and are handled via
splicing exception handlers with base protocols. Their work
helps protocol designers for handling exceptions. However,
handling unexpected exceptions with such generic handlersis
costly. The work of Venkatraman and Singh resembles our
work since each agent checks compliance on its own [7]. The
process is distributed in a sense that each agent has access to
its own set of messages during execution, but their business
scenario does not fully simulate a distributed environment. Our
work differs from theirs since an agent in our scenario needs
extra information when resolving an exception.

Our work can also be considered in the multiagent plan
execution context for identifying failures. Jongeet al. [8]
classify the diagnosis of plan failures into two categories; (1)
primary plan diagnosis simply points out the failed action,
(2) secondary plan diagnosis identifies the actual cause of the
failure as we also focus in our work. Although the agents
in their plan execution system have partial observations over
the system, they still have a major knowledge about their
environment. Thus, our work differs form theirs in terms of
the distributed protocol execution.

Expectations have also been used to formalize business
protocols as described in the SCIFF framework [9]. SCIFF
is based on abductive logic, and it does not only specify a
business protocol, but also helps verify agent interactions in
open systems. Compliance verification has been considered in
other domains; in composite Web services [10], or in agent
communication languages (ACLs) [11]. An ACL is part of an
agent communication framework. The proposed verification
process in Guerin and Pitt’s work [11] may require access
to agent’s internal process, whereas our idea of verification
depends only on interaction.

Our approach is based on constructing possible hidden
states and querying other agents for confirming those states
(i.e., identifying which one of them caused the exception in
the main protocol). Intuitively, it is reasonable for the agent
to query other agents which are committed to it (i.e., the
bookstore agent in our example). At this point, we assume
that the agent receives honest responses from others. In a
real-life scenario, this querying process will continue asa
delegation among the agents regarding their commitments
(i.e., the bookstore agent redirects the query of the customer
agent to the deliverer agent for inspecting the exception
further). This delegation is also important in more complicated
scenarios since the exception facing agent may not be in
contact with all other agents in the protocol. In addition, trust
is another important issue when considering multiple agents
that enact a distributed protocol. It is more probable that an
agent will respond to the agents it is committed to rather than
other agents that it has no previous contact with. We aim to



investigate the application of trust strategies when considering
such complicated scenarios.
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