
Executing Agent Plans by Reducing to Workflows
Tayfun Gokmen Halac, Övünç Çetin, Erdem Eser Ekinci

Rıza Cenk Erdur, Oguz Dikenelli
Ege University, Department Of Computer Engineering

35100 Bornova, Izmir, Turkey
Email: {tayfunhalac,ovunccetin,erdemeserekinci}@gmail.com

{cenk.erdur,oguz.dikenelli}@ege.edu.tr

Abstract—In this paper, we introduce an agent planner ar-
chitecture that can reduce the basic artifacts of agent planning
paradigms, semantic services and business process languages into
a common workflow model. These artifacts are then executed by
means of a workflow component that the architecture includes.
By having a workflow component in an agent infrastructure, var-
ious agent programming paradigms including different planning
approaches as well as different workflow definition languages
can be executed on the same agent platform. To illustrate our
ideas, we focus on the reduction of plans to the workflow model.
To explicate the reduction mechanism, we have preferred to use
HTN which is a widely known planning approach in multi-agent
domain. Based on the semantics that we have defined for our
workflow and HTN models, we have given an algorithm for
transformation from HTN to workflow model.

I. INTRODUCTION

Agents can execute various task structures in order to
achieve their goals. These task structures may be components
of a plan (e.g. actions), services including semantically defined
web services, or workflows which are represented using an
appropriate formalism such as BPEL[1], XPDL[2]. An agent
may execute each of these task structures in a way that is
independent of others as it is the case for an agent that can
execute only plans, only OWL-S service definitions or only
workflows.

On the other hand, it is usually a desired property for an
agent to execute several task structures in a combined manner.
For example, one or more actions of a hierarchical task
network (HTN)[3], [4] plan may need to call a web service
or execute a pre-defined workflow. In addition, in open and
collaborative multi-agent organizations where task structures
can be distributed within the environment, it is required to
discover, access, compose (if needed), and execute them at
run-time. To support various task execution semantics both at
design time and run-time, what is needed is a special agent
planner architecture that should ideally provide a unique and
common basis for the execution of different task structures in
a both independent and combined manner.

There are three basic requirements to support various task
execution semantics in an agent architecture. First, meta-
models for the representation of various task semantics are
needed. OWL-S, which is a standard for defining web services
semantically, and workflow definition formalisms such as
BPEL are examples for such meta-models. As another exam-
ple, agent plans can be represented using OWL ontologies at

the meta-level. Second, a common model that will form a com-
mon execution basis for the tasks that have different semantics
is needed. Based on the fact that a plan can be represented as a
directed graph which can be executed as a workflow, defining a
generic workflow graph model will satisfy the requirement for
a common model. Finally, algorithms for the transformations
from the meta-models into the common representation model
should be developed.

In this paper, we introduce a planner architecture that fulfills
the requirements given above. The introduced architecture
includes a generic workflow graph model into which various
task semantics can be transformed. This generic workflow
graph model has been defined based on the abstract definition
given in [5]. Within the planner architecture, we have also
implemented an executor component which is used to execute
the instances of the generic workflow graph model.

In literature, there are studies that aim to execute web ser-
vices or workflows within a planner or an agent architecture.
[6] describes how SHOP2 HTN planning system can be used
to execute OWL-S descriptions. The SHOP2 planner takes the
composite process defined using OWL-S as input and executes
this composite process. WADE[7] is a software platform which
is built on top of the well-known agent framework JADE[8].
WADE uses a directly executable simple workflow structure
based on java class instead semantically described planning
paradigms. Our study differs from these works, since our
proposed planner architecture can support combinations of
various task semantics both at design-time and run-time by
providing a common execution layer for all of them. Neither
[6] nor [7] aims to support more than one task execution
semantics at the same time. Another point that needs attention
is that the workflow graph model which constitutes the core of
our common execution model is not related with the concept
of executing a workflow within an agent. The workflow graph
model is a directed graph structure into which various task
semantics are transformed before execution.

We have implemented the planner architecture within
SEAGENT[9], which is a semantic web enabled multi-agent
system framework developed by our research group[10]. The
planner can reduce the plans defined using OWL ontologies
and OWL-S service definitions into the common workflow
graph model, and then execute them. To illustrate the reduction
process, we just focus on the transformation of HTN semantics
into the common workflow graph model in this paper. We have
chosen HTN because HTN planning is a well-known approach

that has affected the agent domain most, and has been di-
rectly used in several agent development frameworks[11], [12].
SEAGENT also incorporates HTN as its planning paradigm.

Remaining parts are organized as follows: Before giving
the details of the reduction mechanism, we introduce current
architecture of SEAGENT planner in Section II. In section
III, details of our planner’s internal workflow structure, to
which HTN plans and other process definition languages are
reduced, are given. Soon after, we define our enhanced HTN
semantics in section IV. In section V, the algorithm that
achieves the reduction from HTN to Workflow model is given,
and correctness of the reduction mechanism is discussed.
Section VI includes a working example and Section VII the
conclusion.

II. THE ARCHITECTURE OF THE PLANNER

The implementation of the proposed planner architecture is
presented in Figure-1. As indicated in the figure, two vertical
layers compose the overall architecture. The front layer, called
Semantic Web Layer, uses ontological descriptions to represent
the artifacts of the planning process. These ontology descrip-
tions are: Goal, Role, HTN1 and OWL-S. The goal ontology
defines the objectives which the agent intends to reach within
the organization. It specifies abstract definitions for agent
behaviors. The role ontology, on the other hand, puts the
related goal definitions together within a role description. In
addition, it also defines some constraints about the considered
role. Roles and goals take in charge during planning process,
and then the output plan is reduced to the workflow model. Our
main interest is on reduction of plans, not on this plan decision
process. The HTN ontology is used to describe the agent
plans using HTN planning technique. Finally, OWL-S (Web
Ontology Language for Services) is a part of our proposed
architecture to support semantic services. As is seen in the
figure, the planner, which composes the Execution Layer,
consists of four modules: WorkflowElements, WorkflowEngine,
Matchers, Reducers.

The WorkflowElements module contains building blocks of
our graph structure which is used to represent the agent acts
as a workflow at execution time. The graph structure is based
on tasks, coordinators and flows, all of which are discussed in
detail in Section III.

The WorkflowEngine module is responsible for perform-
ing a workflow instance and coordinating its execution. It
consists of three submodules: ExecutionToken, LazyBinder,
and GraphVerifier. The ExecutionToken is the major com-
ponent for the execution which traverses the nodes of the
workflow instance and executes tasks of workflow instance.
The LazyBinder module was developed to support dynamic
graph binding. It has a special abstract graph node called
LazyTask which loads the concrete graph at runtime. This
dynamic binding capability makes our workflow dynamically
extendable. Thus, at run-time new goals and tasks can be
appended based on the state of the environment and/or agent’s
knowledge. Finally, the GraphVerifier module is responsible
for verification of a workflow instance before it is given to the

1http://etmen.ege.edu.tr/etmen/ontologies/HTNOntology-2.1.4.owl

execution. It verifies the syntactical structure of the workflow
and data flow over this workflow instance.

Reducers, Matchers, and JENA2 form a bridge connecting
the execution layer to the Semantic Web layer. The ontological
definitions of the agent’s actions from the Semantic Web layer
are read here, and converted to the corresponding workflows.
The Reducers sub-package contains the graph reducer compo-
nents (GoalReducer, HTNReducer, OWLSReducer) that parse
Goal, HTN and OWL-S definitions and reduce them into the
workflow. The other module, called Matchers, contains three
submodules: RoleMatcher, GoalMatcher and ActMatcher. Role
and goal matchers collaborate to find an appropriate goal
description for an objective which the agent must fulfill. If a
goal is matched with an objective, the description of the goal
is given to the GoalReducer to reduce it into a goal workflow.
During the execution of the goal workflow, an ActMatcher is
invoked for each sub-goal to find an appropriate act (HTN
plan or OWLS service) that accomplishes the sub-goal. After
the ActMatcher returns the corresponding act description, a
reducer (HTNReducer, or OWLSReducer) is selected to reduce
the act description to the workflow.

In this paper, we only focus on the reduction of HTN plans
to workflows. To specify our reducing process, workflow and
HTN semantics are formally defined in the following sections.
Next, reducer algorithm is illustrated in the section V.

III. SEMANTICS OF SEAGENT WORKFLOW GRAPH

As mentioned in the introduction, workflow technology has
been extensively researched in the academy and as a result of
these efforts this technology has reached to a high degree of
maturity. Widely acceptance of workflows in industrial settings
and standardization of workflow definition languages such as
BPEL, XPDL are the signs of this maturity degree. On the
other hand, from the execution perspective, several approaches
have raised up such as executing the workflows on Petri-
Nets[13] and on conceptual directed graphs[5].

Sadiq and Orlowska abstractly introduced the basic building
blocks of a workflow process using the graphical terms such as
nodes and flows in [5]. They also defined the basic workflow
constructs such as sequence, choice, concurrency and iteration.
Besides the modeling workflows, they touch on reliability of
the workflow model in [14], [15]. For this purpose, some struc-
tural conflicts as deadlock, lack of synchronization, live-lock
are determined. Our workflow model is built by deriving the
abstract definitions of Sadiq et al. and extended by constraints
to avoid structural conflicts articulated in [14].

In this section, we semantically declare the concepts and
their constraints of our workflow implemetation. Before giving
semantics of our workflow model, we evoke to the reader that a
workflow is also a kind of directed graph[16], [17]. So, we start
to explain semantics of our model by giving the formalism of
the directed graph with the following definition.

Definition 1: Given directed graph is a tuple of g = 〈V,E〉,
V = {v0, v1, . . . , vn} and E = {〈vs, vt〉 : vs, vt ∈ V }.

2We use JENA (http://jena.sourceforge.net/) to read and manipulate the
ontology documents in the knowledge-base and over the Internet.

Figure 1. SEAGENT Planner Architecture

The directed graph represented with g consists of vertices
V and directed edges E. A vertex, v ∈ V , specifies a
node in the graph. The words, node and vertex, will be used
interchangeably. A directed edge, e ∈ E, shows a directed link
between two vertices of the graph. In the definition, vertex
”vs” represents the source vertex of the edge and vertex ”vt”
is for the target. We define a function, path, that helps to gather
the directed ways between two given vertices:
• path (vi, vk) = (e0, . . . , en) where vi ∈ V and vk ∈ V

represents the first and the last vertex of the path. path
defines one of the directed ways between vertices vi
and vk. The first term of the finite sequence of edges
is e0 where source (e0) = vi and the last term is
en where target (en) = vk. For all terms of the se-
quence, target node of an edge equals to source node
of the next term, (target (e0) = source (e1)) ∧ . . . ∧
(target (en−1) = source (en)).

• paths (vi, vk) = {path1 (vi, vk) , path2 (vi, vk) , . . .}
represents all different ways between the given two nodes.

This definition uses two functions for each edge e ∈ E:
source (e) = vm where vm ∈ V represents the source vertex
of e and target (e) = vn where vn ∈ V represents the target
vertex of e.

Semantics of the workflow graph model, which extends the
directed graph represented formally above, is defined below
by giving details of the model’s building blocks.

Definition 2: wfg, which is a tuple 〈T,C,CF, DF,ICwfg,
OCwfg,TN〉, expresses a workflow graph that consists of
set of tasks T, set of flows CF and DF which represent
control flow and data flow sets respectively, input and output
containers ICwfg and OCwfg , set of coordinators C, and set
of terminal nodes TN .
The workflow graph as mentioned previously is derived from
the directed graph. So, when looked through the directed graph
perspective, some entities of workflow graph, such as tasks,
coordinators and terminal nodes, are sub-sets of the vertex set:
T,C, TN ⊂ V . Also, CF and DF are specialized entities of
workflow that are sub-sets of directed edge set: CF,DF ⊂ E.

Definition 3: An element of task set is formally defined as

τi = 〈nτi , ICτi , OCτi〉 ∈ T . In detail, nτi is the identifier of
the task, while ICτi and OCτi correspond to input and output
containers respectively.
• A data container, κ, is the set of data items which are

needed to execute a task or generated by the task, κ
= {d1, d2, . . . , di}. IC and OC are sub types of data
container, IC,OC ⊂ κ.

• A data item, di = 〈ndi , typedi〉, stands for data which is
held by input and output containers. di is identified by
its name (ndi) within the container and typedi property
specifies the data-type of di.

The required coordination of tasks of workflow and data
sharing between tasks are provided by special components
called flows. There are two types of flows in our model: control
flows and data flows. The details of the flows are determined
with the following definitions.

Definition 4: A data flow, dfi = 〈τsrc, dsrc, τtrg, dtrg〉 ∈
DF where τsrc, τtrg ∈ T , dsrc ∈ OCτsrc , dtrg ∈ ICτtrg , is
a type of flow that is used for data migration between two
tasks. It transmits the value of the source task(τsrc)’s output
item (dsrc) to the target task(τtrg)’s input item (dtrg) after
the source task performed.
Data flows are important to supply inputs to the tasks. So,
to supply the inputs safely, we define some constraints on
data flows. Before declaring these constraints, we define two
supportive functions, inData and outData, as below:
outData (dsrc) = {df : df ∈ DF ∧ sourceItem (df) =

dsrc} where dsrc is a data item, returns the set of data flows
whose source data item is dsrc.
inData (dtrg) = {df : df ∈ DF ∧ targetItem (df) = dtrg}

where dtrg is a data item. It returns the set of data flows
whose target is dtrg .
sourceItem and targetItem functions are similar to

source and target functions, but they are used to retrieve
the data items bound by the specified data flow.

Now, we can describe the constraints on data flows using
these functions:
• (C) There should not be more than one

data flow between any two data items:
∀dsrc, dtrg (|outData (dsrc) ∩ inData (dtrg)| ≤ 1)

• (C) Data type of the target task’s input item must be
equal or subsume the type of the source task’s output
item: ∀df ∈ DF

(
typedsrc ⊆ typedtrg

)
As we mentioned above, a data flow expresses the direction
of the data item migration. Differently from the data flow, on
the other hand, a control flow is used to specify the execution
sequence of task nodes in a workflow graph.

Definition 5: A control flow is a tuple, cfi = 〈vsrc, vtrg〉 ∈
CF , consisting of source vertex (vsrc) and target vertex (vtrg).
Control flows are more decisive than data flows on process
of workflows. To avoid inconsistencies, control flows must
be constructed according to some defined constraints. Before
declaring these constraints on our workflow model, we de-
scribe two supportive functions, inControl and outControl,
to make the constraints more understandable:
inControl(n) = {cf : cf ∈ CF ∧ target (cf) = n} where n
∈ V , acquires the set of control flows whose target node is n.
outConrol(n) = {cf : cf ∈ CF ∧ source (cf) = n} where
n ∈ V , returns the set of control flows whose source is n.

Now, we can specify the constraints using these functions:
• (C) All flows must have two different nodes connected

to their two sides. ∀f ∈ E (source (f) 6= target (f))
• (C) A task have to be source or target of only one control

flow. ∀τ ∈ T (|inControl(τ)| = 1 ∧ |outControl(τ)| =
1∧inControl (τ) 6=outControl (τ))

• (C) There should not be more than one direct con-
trol flow between any two nodes. ∀vm ∈ V,∀vn ∈
V (|outControl (vn) ∩ inControl (vm)| ≯ 1)

• (C) The source node of a control flow must be
ahead of the target node in the order of execution.
∀vm,∀vn ((path(vm, vn) 6= ∅) → (outControl (vn)∩
inControl(vm) = ∅)). As an exception, in an iteration
structure, one of the outgoing flows of a choice node
goes to the preceding merge node.

Although the constraints on control and data flows help to
build consistent work flows, they are not enough. Control and
data flows also must be compatible with each other in terms
of workflow direction.
• (C) Since a data flow transmits the data from the source

node to the target node, the source node must be finished
before the target node starts. Therefore, the source node
must always precede the target node within the workflow
in terms of execution sequence.
∀τm,∀τn ((path (τm, τn) 6= ∅) → outData (τn) ∩ (in−
Data (τm) = ∅))
∀τm,∀τn ((outData (τm) ∩ inData (τn) 6= ∅) → (path
(τm, τn) 6= ∅))
inData(τ) = {df : df ∈ DF ∧ target(df) = τ} where
τ ∈ T , returns the set of data flows whose target is τ .
outData(τ) = {df : df ∈ DF ∧ source(df) = τ}
where τ ∈ T , returns the set of data flows whose source
is the given task.

Data migration on the workflow and execution ordering of
the tasks can be provided easily via flows. But they are not
sufficient when some complex structures, which come from
the nature of the workflow, such as concurrency, alternation
and iteration, are considered. We need some special nodes for

the purpose of implementing these structures. These special
nodes named as coordinator nodes, will be defined next.

Definition 6: Here, we define all sub-sets of coordinators,
C, together. There are four types of coordinator nodes; choice,
merge, fork, synchronizer; CH,MR,FR, SY ⊂ C ⊂ V .
• A choice node, chi = 〈nch, dcond〉 ∈ CH , has more than

one outgoing flows and contains a condition input dcond
to select a branch.

• A merge node, mri ∈MR, has more than one incoming
branches and it is used to join the mutually exclusive
paths which are split by a choice node.

• A fork node, fri ∈ FR, has more than one outgoing
flows and enables all of them at the same time.

• A synchronizer node, syi ∈ SY , has more than one
incoming flows, which are activated concurrently by a
fork node, and waits all to be finished. In other words,
it synchronizes the concurrent execution paths within a
workflow.

The coordinator nodes are used in pairs to construct exclusive
choice and parallel split workflow patterns[18]. The exclusive
choice pattern creates a divergence point into two or more
branches such that only one of which is selected for the exe-
cution. The parallel split pattern, on the other hand, provides
concurrent execution paths which are activated simultaneously.
An exclusive choice is constructed with a 〈chi,mri〉 pair,
while a 〈fri, syi〉 pair composes a parallel split.

As is clearly stated, the coordinator nodes are required to
build workflows including complex patterns. But misusage of
the coordinators may result in defected workflows. Therefore,
the following constraints should be defined on the coordinator
nodes to provide a consistent workflow.
• (C) Since the aforementioned workflow patterns are con-

structed using coordinator pairs, there must exist a merge
node for each choice node, and a synchronizer node for
each fork node. These two constraints could be expressed
by f : CH →MR and g : FR→ SY functions, which
are one-to-one and onto, respectively.

• (C) All choice and fork nodes have one incoming
and more than one outgoing flows. ∀n ∈ FR ∪
CH ((|inControl(n)| = 1) ∧ (|outControl(n)| > 1))

• (C) All synchronizer and merge nodes have at least two
incoming flows and only one outgoing flow. ∀n ∈ SY ∪
MR ((|inControl(n)| > 1)∧(|outControl(n)| = 1))

The node definitions made so far specify the intermediate
nodes. In other words, we did not give any definition of
nodes which represents the end points of the workflow up
to now. The following definition, on the other hand, explains
the terminal nodes, TN = {vi, vf}, used for this purpose.

Definition 7: Initial node, vi ∈ V , represents the beginning
of the workflow, while the final node, vf ∈ V , represents the
end, wfgn = (vi, {τ1, τ2, . . . , τn} , {c1, c2, . . . , cn} , vf).
• (C) vi is the first node of the wfgn, it has

no incoming but only one outgoing control flow:
∀vi ((inControl (vi) = ∅) ∧ (|outControl (vi)| = 1))

• (C) vf is the last node of the wfgn, it has
only one incoming but no outgoing control flow:
∀vf ((inControl (vf) = 1) ∧ (outControl (vf) = ∅))

• (C) Each workflow graph contains exactly one initial and
one final node.
∀wfg (wfg ∈WFG→ wfg 3 vi ∧ wfg 3 vf)

IV. SEMANTICS OF SEAGENT HTN

Previously, we gave semantics of our workflow model. Our
approach, as mentioned in the introduction, is to design and
implement a planner architecture that enables to execute dif-
ferent planning paradigms and workflow definition languages
in the same agent architecture. Due to this purpose, we choose
HTN paradigm, mostly used planning paradigm in the agent
literature.

Semantics of HTN is firstly articulated by Kutluhan et al.
in [3]. In his model, HTN is closer to AI problem solving.
For the purpose of using HTN in web agent programming,
Sycara et al. reformed it in [4]. They contributed the link
concept to provide a unified information and control flow
within plans. Although that contribution makes HTN plans
more tractable, it allows designing error-prone plans. Our HTN
model is a detailed revision of Sycara et al.’s that is extended
by exhaustive link definitions and constraints that permit to
avoid designing erroneous plans. Base concept of our HTN
model is task;

Definition 8: An HTN task, θi = 〈nθi , Pθi , Oθi〉 ∈ Θ, is
generalization of the primitive task (action) and the compound
task (behavior), A ⊂ Θ, B ⊂ Θ.
A task encapsulates the common properties of behaviors and
actions, such as provisions, outcomes, and name. But they are
distinguished by other properties explained below.

Definition 9: A behavior, βi = 〈nβi , Pβi , Oβi , STβi ,Γβi〉
∈ B, represents a compound task which encloses other tasks.
A behavior (βi) corresponds to a workflow graph (wfg)
that has sub nodes which may be primitive actions or other
behaviors. In the definition, a behavior consists of name,
provisions, outcomes, subtasks, and subtask links respectively.
nβi is a label that distinguishes the behavior from the others.
Since a behavior is a compound task, it cannot be performed
directly. It must be decomposed to its primitive actions whose
executions contribute toward accomplishment of the behavior.

Definition 10: An action, αi = 〈nαi , Pαi , Oαi , λαi〉 ∈ A,
is a primitive task that is executed directly. It corresponds an
indecomposable workflow task node.
An action consists of name, provisions, outcomes, and a
function. nαi is a label that distinguishes the action from the
others. Because actions are executable entities within a plan,
they must implement a function, λαi , which fulfills the actual
work of the action.

Definition 11: A parameter, πi = 〈nπi , typeπi〉 ∈ Π,
stands for data which is needed or produced by tasks. A
parameter πi consists of name (nπi) and type (typeπi).
The parameter is an abstract concept that cannot be seen in
an HTN plan. Parameter is generalization of provision and
outcome, P ⊂ Π , O ⊂ Π. The definitions of these concepts
are given below.

Definition 12: A provision, pi = 〈npi , typepi , valuepi〉 ∈
P , represents the data which is needed for execution of task.

Within a workflow, P corresponds an input container and each
data item in it represents a provision. Therefore, it provides
the data which is required for starting the task’s execution and
whose value can be obtained from an outcome of the preceding
task or from an external resource.

Definition 13: An outcome, oi = 〈noi , typeoi , valueoi〉 ∈
O, represents the data which is produced during execution.
Some tasks gather information, which is represented by out-
comes, during execution. They can be passed to needer tasks.
O corresponds the output container, which consists of data
items that represents outcomes, of a task within a workflow.

Definition 14: A state (or outcome state), si ∈ S, is a label
on a link specifying that the branch will be executed in which
condition.
State instances are used to construct branching or concurrency
structures within plans. In detail, outgoing links with distinct
outcome state results in an exclusive choice pattern, while the
same outcome states form a parallel split.

Definition 15: ST = {θ1, θ2, . . . , θi} indicates the set of
subtasks of a behavior.
A constraint on subtasks is revealed below.
• (C) A task can be child of exactly one behavior (except

the root behavior which represents the HTN plan). In
other words, a task can be included by only one ST .
∀θ ∈ Θ (θ ∈ STβm → θ /∈ STβn)

Up till now, we have mentioned about the HTN actions,
behaviors and relation between a behavior and its subtasks.
For the rest of this section, link definitions, which forms
control and information flows between tasks, will be given.
For that purpose, we define the link set, Γ, that is the super
set of provision, order, inheritance and disinheritance links,
PL,OL, IL,DL ⊂ Γ.
• (C) An important constraint on links: The source and

the target task of a link must be different: ∀l ∈
Γ (source (l) 6= target (l))

Here we define two functions that are used in determining the
details of links: For ∀θ ∈ Θ
inLink (θ) = {link : (link ∈ Γ) ∧ (target(link) = θ)}
outLink (θ) = {link : (link ∈ Γ) ∧ (source(link) = θ)}
As mentioned, there are four types of link: provision link,

order link, inheritance link and disinheritance link. While
provision links coincide with both data and control flows,
order links correspond to control flows only. Inheritance and
disinheritance links are data flows between a behavior and
its subtasks. Here, the formal definitions of links and their
constraints are given with necessary logical functions.

Definition 16: An order link, oLinki = 〈θsrc, θtrg, s〉 ∈
OL, represents a control flow between two tasks and it
designates the execution order.
Order links consist of source task, target task, and state. By
using order links and states together, we can create plans
including conditional branching and parallel execution paths.
• (C) Source and target tasks of an order link must be

included in the same subtask list. In other words, an order
link can connect two tasks if both are the subtask of the
same behavior. ∀link ∈ OL(source(link) ∈ STβn ↔
target(link) ∈ STβn)

• (C) At most one order link can be con-
structed between two tasks. ∀θsrc,∀θtrg
(|(outLink (θsrc) ∈ OL) ∩ (inLink (θtrg) ∈ OL)| ≤ 1)

We define a generalized concept, parameter link (πL),where
PL,DL, IL ⊂ ΠL, for the rest of link types: inheri-
tance, disinheritance and provision links. All these links
constructs data flows between the tasks by mapping the
source and the target parameter of these tasks. A significant
point about the parameter mapping is compatibility of the
parameter types: ∀πL ∈ ΠL (type (sourceParam (πL)) ⊆
type (targetParam (πL))) where sourceParam and target-
Param functions are used to retrieve the source and the target
parameter of the parameter link respectively.

Two definitions below specify two supportive functions that
are used to get incoming and outgoing parameter links which
are used to bind the given parameter. These functions will help
to describe the later definitions.
inLink (π) = {πL : (πL ∈ ΠL) ∧ (targetParam(πL) =

π)} where ∀π ∈ Π.
outLink (π) = {πL : (πL ∈ ΠL)∧(sourceParam(πL) =

π)} where ∀π ∈ Π.
Definition 17: A provision link, pLinki = 〈θsrc,θtrg,os,

pt,s〉 ∈ PL, represents a data and a control flow between
two tasks.
A provision link binds an outcome of the source task and a
provision of the target task. If a conditional branching occurs
after the source task, the outcome state of the link (s) maps
a particular branching condition to the target task.
• (C) Source and target tasks of a provision link must

be the child of the same behavior. ∀pLink ∈ PL
(source (pLink) ∈ STβn ↔ target (pLink) ∈ STβn)

• (C) Source parameter of a provision link must be an out-
come and target parameter must be a provision. ∀pl ∈ PL
((sourceParam(pl) ∈ O) ∧ (targetParam(pl) ∈ P))

• (C) At most one provision link can be constructed
between the same outcome-provision pair. ∀osrc,∀ptrg
(| (outLink (osrc) ∩ PL) ∩ (inLink (ptrg) ∩ PL) | ≤ 1)

• (C) Either an order link or a provision link can be
constructed between two tasks.

∀θsrc,∀θtrg ((outLink (θsrc) ∩ inLink (θtrg) ∩OL 6= ∅)→
(outLink (θsrc) ∩ inLink (θtrg) ∩ PL = ∅))

∀θsrc,∀θtrg ((outLink (θsrc) ∩ inLink (θtrg) ∩ PL 6= ∅)→
(outLink (θsrc) ∩ inLink (θtrg) ∩OL = ∅))

Definition 18: An inheritance link, iLinki = 〈βsrc, θtrg,
ps, pt〉 ∈ IL, represents a parameter link between a behavior
and one of its subtasks. It corresponds to a data flow from the
initial node of a workflow to a subtask.
Inheritance link consists of source behavior, target task, a
provision of source behavior, and a provision of target sub
task. βsrc ∈ B and θtrg ∈ STbsrc .
• (C) Source and target parameter of an

inheritance link must be a provision. ∀il ∈ IL
((sourceParam (il) ∈ P) ∧ (targetParam (il) ∈ P))

• (C) At most one inheritance link can be con-
structed between the same provision pairs. ∀psrc,∀ptrg
(|outLink (psrc) ∩ inLink (ptrg) ∩ IL| ≤ 1)

• (C) Each provision of the root behavior must be
bound with at least one inheritance link. ∀p ∈ Pβroot
(|(outLink (p) ∩ IL)| > 0) where βroot ∈ B.

Definition 19: A disinheritance link, dLinki = 〈θsrc, βtrg,
os, ot〉 ∈ DL, represents a parameter transfer from a task to
parent behavior. It corresponds to a data flow from a subtask
to the final node of a workflow.
Disinheritance link consists of source task, target behavior,
an outcome of source sub task, and an outcome of target
behavior. Source task of a disinheritance is child of the target
task, βtrg ∈ B and θsrc ∈ STβtrg .
• (C) Source and target parameter of a disinheri-

tance link must be an outcome. ∀dl ∈ DL
((sourceParam(dl) ∈ O) ∧ (targetParam(dl) ∈ O))

• (C) At most one disinheritance link can be con-
structed between the same outcome pairs. ∀osrc,∀otrg
(|outLink (osrc) ∩ inLink (otrg) ∩DL| ≤ 1)

• (C) A disinheritance link must be provided for each
outcome of a behavior to collect all outcomes from the
sub-tasks. If there is an exclusive choice structure, a
disinheritance link must be constructed for all exclusive
paths to fulfill all outcomes of the behavior. ∀βi ∈ B (∀on
∈ Oβi (|inLink (on) ∩DL| > 1))

V. TRANSFORMATION OF HTN INTO WORKFLOW

To implement our approach about executing different plan-
ning paradigms and workflow definition languages in the same
agent architecture, HTNReducer, which is a component of the
Reducers submodule as mentioned in Section II, is used to
transform an HTN definition into a workflow before execution.
In this section, this transformation process is introduced within
the scope of our workflow-based HTN planner.

Algorithm 1 Reduction of an HTN behavior to a workflow
Input: an HTN behavior β.
Output: a workflow wfg.

1) Initiate a workflow graph wfg corresponding to β.
2) Create the nodes corresponding to the subtasks of β.

a) If subtask is an HTN behavior, then apply the
same process from step 1 and create a complete
subworkflow for the subbehavior.

b) For an HTN action, otherwise, create a primitive
workflow task node.

3) Construct flows between workflow tasks in wfg.
4) Put required coordinator nodes to junction points.

A. Reduction Algorithm

Based on the formal definitions in Section III and Section
IV, we have developed an algorithm shown in Algorithm-1 for
reducing a behavior description to the corresponding workflow.
For this purpose, the HTN reduction algorithm constructs a
part of the graph in a few steps. It begins the process with
creating an empty graph, which consists of initial and final
nodes, and the data containers only, for the behavior. Then, it
creates workflow task nodes for the subtasks of the behavior

and adds them into the empty graph. After the subtask nodes
are added to the graph model, the next step is constructing
the flows between these nodes. Finally, the last step of the
reduction process, which follows the flow construction, is
placing the coordinator nodes to the required locations within
the graph. The steps of the algorithm are elaborated below.

In step 2, a node is created for each subtask of the given
behavior according to its type. If the subtask is an HTN
action, a primitive task node is constructed together its data
containers. Otherwise, for an HTN behavior, the reduction
process is achieved for this behavior and a graph model is
created. The point to take into consideration is recursion while
creating subnodes of workflow. By means of this recursion a
sub-behavior is reduced prior to its parent.

As previously mentioned, the next step following the sub-
task creation is connecting the flows between these nodes. To
do this, appropriate flow(s) for each link that is defined by the
behavior description is constructed. The link type specifies the
flow type and end nodes of the flow. For an inheritance link,
a data flow from the initial node of the graph (iwfg) to the
target task of the link is constructed. A disinheritance link
corresponds to a data flow between the source task of the link
and the final node of the graph (fwfg). For order links and
provision links, on the other hand, a control flow is constructed
for each. In addition to the control flow, a data flow is also
constructed for a provision link.

After the flow construction phase, we obtain a raw graph
model that consists of only task nodes and flows between them.
There is no coordination component in this model. The last
step of the algorithm, in line 4, overcomes this lack by placing
the coordinators to the appropriate locations within the graph.
To do this, the divergence and convergence points are marked
with special nodes and then these special nodes are replaced
with suitable coordinator nodes.

As a result, at the end of the reduction process, we obtain
a complete workflow graph corresponding to the given HTN
behavior. The graph contains task nodes that are connected
with the flow objects, and the coordinator nodes that determine
the flow of execution.

The outputs of our algorithm for primitive HTN patterns
are represented in Figure-2. These patterns are composed of
behaviors which have only primitive subtasks and other build-
ing blocks of HTN. Since plans, which have only primitive
subtasks, can be defined by assembling these patterns, adding
new actions to them and constructing new links between
actions, they can be transformed into workflows.

To understand the reduction process better, we explain it by
demonstrating one of primitive patterns. (see Figure-2(F)) The
input behavior can be represented as β1 = 〈′BH1′, {pβ1} ,
{oβ1} , {α1, α2, α3} , {pLink1, pLink2}〉 where α1 =
〈′AC1′,{pα1} ,{oα1} ,λα1〉, α2 = 〈′AC2′,{pα2} ,{oα2} ,λα2〉,
α3 =〈′AC3′,{pα3} ,{oα3} ,λα3〉 and pLink1 =〈α1,α2,oα1 ,
pα2 ,

′S′1〉, pLink2 = 〈α1, α3, oα1 , pα3 ,
′ S′1〉.

• At the start, an empty workflow wf1 = 〈∅, ∅, {〈iwf1 ,
fwf1〉}, ∅, ∅, ∅, {iwf1 , fwf1}〉 is created, in line 1.

• In the next step, in line 2, the actions are con-
verted to primitive workflow tasks and these tasks are
inserted to task set: Twf1 = {〈′T1′, {pτ1} , {oτ1}〉,

Figure 2. Reduction of Primitive HTN Patterns

〈′T2′, {pτ2} , {oτ2}〉 , 〈′T3′, {pτ3} , {oτ3}〉}
• The control flow, CFwf1 = {〈iwf1 , τ1〉 , 〈τ1, τ2〉 ,
〈τ1, τ3〉 , 〈τ2, fwf1〉 , 〈τ3, fwf1〉}, and data flow DFwf1 =
{
〈
iwf1 , dinwf1

, τ1, dinτ1

〉
, 〈τ1, doutτ1 , τ2, dinτ2 〉, 〈τ1,

doutτ1 , τ3, dinτ3 〉, 〈τ2, doutτ2 , fwf1 , doutwf1 〉, 〈τ3, doutτ3 ,
fwf1 , doutwf1 〉} sets are filled in line 3.

• Finally, a fork-synchronizer node pair is inserted
to required points, in line 4. This operation fills
the coordinator node set Cwf2 = {fr1, sy1} and
updates the control flow set CFwf1 = {〈iwf1 ,
τ1〉, 〈τ1, fr1〉 , 〈fr1, τ2〉 , 〈fr1, τ3〉 , 〈τ2,mr1〉 , 〈τ3,mr1〉 ,
〈mr1, fwf1〉}.

B. Correctness of Reduction

Theorem 1: Let β is a behavior defined with HTN seman-
tics. REDUCE (β) terminates and returns a workflow wf .

Proof: A behavior represents a tree, and is reduced
completely after all subtasks are reduced. So, from the line
2a of algorithm, the algorithm is executed over again for
subbehaviors until reaching to the leaf actions. Finally, after

the leaves are transformed in line 2b, algorithm proceeds and
bottom-up construction of root behavior is achieved.

Theorem 2: Let B = {β1, β2, . . . , βn} be a collection of
HTN behaviors that conforms our constraints and β be one of
these. Let wfg = REDUCE (β), then wfg is the workflow
which corresponds to behavior β.

Proof: The proof of the theorem is by induction:
Hypothesis For an HTN behavior β, there exists a workflow

graph wf = 〈Twf , Cwf , CFwf , DFwf , ICwf , OCwf , TNwf 〉
where Twf contanins the workflow tasks corresponds to sub
tasks of β, CFwf and DFwf contains the flows corresponds
to links of HTN, and ICwf and OCwf contains inputs and
outputs which corresponds to provisions and outcomes of β.

Base Case Suppose β is a behavior with only one action
α1 as sub task. The reduction of β ends up with a workflow
wf = 〈Twf , ∅, CFwf , ∅, ∅, ∅, TNwf 〉 where Twf = {τ1} and
CFwf = {〈iwf , τ1〉 , 〈τ1, fwf 〉}. As is seen in line 2b, after
workflow is created in line 1, τ1 is constructed for α1 and
then it is connected with iwf and fwf in line 3. (see Figure-
2(A))

Inductive Step Besides the sequence structure in HTN,
there exists a few structures such as nesting, conditional
branching and parallelism. We will analyze each of the struc-
tures case by case to show that results of our translation are
correct.

Case 1: While HTN plans can only be extended breadth-
wise with primitive subtasks, expansion in depth is provided
with subbehaviors. (see Figure-3)

Figure 3. Reduction of nested behavior

Suppose β is a behavior with a subbehavior βsub. From our
hypothesis we know that there exists a workflow wfsub for
subbehavior βsub. The reduction of β leads to a workflow
wf = 〈Twf , ∅, CFwf , ∅, ∅, ∅, TNwf 〉 where Twf = {wfsub}
and CFwf = {〈iwf , wfsub〉 , 〈τ1, wfsub〉}.

Case 2: Suppose β = 〈′BH1′, ∅, ∅, {θ1, θ2, θ3} ,Γβ1〉,
where Γβ1 = {〈θ1, θ2,′ S′1〉 , 〈θ1, θ3,′ S′2〉}, is a behavior with
a conditional branching structure. (similar to Figure-2(E))
From our hypothesis we assume that we have valid
workflow tasks τ1, τ2, τ3 which correspond to the
HTN tasks θ1, θ2, θ3. The behavior β is reduced to a
workflow wf = 〈Twf , Cwf , CFwf , ∅, ∅, ∅, TNwf 〉 where
Twf = {τ1, τ2, τ3}, Cwf = {ch1,mr1} and CFwf =
{〈iwf , τ1〉 , 〈τ1, ch1〉 , 〈ch1, τ2〉 , 〈ch1, τ3〉 , 〈τ2,mr1〉 , 〈τ3,mr1〉 ,
〈mr1, fwf 〉}. After raw graph is obtained, choice and merge
nodes are inserted to the beginning and the end of the
exclusive choice structure in line 4.

Case 3: Suppose β = 〈′BH1′, ∅, ∅, {θ1, θ2, θ3} ,Γβ1〉,
where Γβ1 = {〈θ1, θ2,′ S′1〉 , 〈θ1, θ3,′ S′1〉}, is a behavior with
a parallelism structure. (similar to Figure-2(F))

From our hypothesis we know that we have
corresponding workflow tasks τ1, τ2, τ3 of the HTN
tasks θ1, θ2, θ3. The behavior β is reduced to a
workflow wf = 〈Twf , Cwf , CFwf , ∅, ∅, ∅, TNwf 〉 where
Twf = {τ1, τ2, τ3}, Cwf = {fr1, sy1} and CFwf =
{〈iwf , τ1〉 , 〈τ1, fr1〉 , 〈fr1, τ2〉 , 〈fr1, τ3〉 , 〈τ2, sy1〉 , 〈τ3, sy1〉 ,
〈sy1, fwf 〉}. In line 4, fork and synchronizer nodes are inserted
to the beginning and the end of the parallel split structure in
the raw workflow.
We proved that our reduction mechanism transforms the HTN
plan into the workflow model correclty. In our proof, we
showed the correspondence of the result workflow to the input
plan.

VI. CASE STUDY

To illustrate the reduction of plans to workflows, a tourism
application is implemented as a case study with SEAGENT
Framework. In this application an agent which plays tourism
agency role is responsible for making a vacation plan. A plan
ontology (BHPlanVacation) which is the implementation of
planning a vacation goal (PlanVacation) is provided in the
knowledgebase of this agent.

Ontology3 individual of BHPlanVacation is depicted in
Figure-5(B). BHPlanVacation behavior has three subtasks, and
it needs location information (location provision) and vacation
budget (budget provision) to make plan. After the execution of
the behavior is completed, it gathers the remainder of budget
(remainder outcome). Firstly, a hotel room is booked in spec-
ified holiday resort (ACBookHotelRoom), and remainder from
budget is passed to the next task. After reservation operation,
a travel ticket is bought according to the customer request
(BHBuyTravelTicket). Finally, a car is rented to go to the hotel
from the airport or terminal (ACRentCar), and the remainder
value is passed to the parent behavior. Representation of the
plan which is designed according to our HTN definitions in
SEAGENT HTN Editor4 is shown in Figure-5(A).

Figure 4. WFPlanVacation workflow

When agent determines to execute the PlanVacation goal,
it gives the goal description to the planner. After the plan-
ner ascertains that the goal is atomic, it searches for the
appropriate act in the knowledgebase via the ActMatcher. The
ActMatcher finds the BHPlanVacation HTN description and

3Full version: http://www.seagent.ege.edu.tr/etmen/LADS009CaseStudy.zip
4HTN Editor is a part of the SEAGENT Development Environment that is

used to build up HTN ontologies easily.

Figure 5. BHPlanVacation A) HTN Representation B) Ontology Individual

transmits it to the HTNReducer to reduce it to workflow. After
the HTNReducer completes reduction, the generated workflow
is the executable form of the plan description. The workflow
which is constructed by HTNReducer is shown in Figure-4.

As is seen in the Figure-4, the workflow tasks are created
for all actions of plan and the subbehavior is converted to
subworkflow. After the workflow that corresponds to BHPlan-
Vacation is constructed, the planner starts to proceed on the
workflow via the ExecutionToken. Tasks are performed when
the token visits them. Execution of a task means execution of
the java class that is attached to the corresponding HTN action.
Java reflection API is used to create and execute action class
instances.

VII. CONCLUSION

This paper briefly depicts the architecture of SEAGENT
agent development framework’s planner. The main character-
istic of the proposed architecture is its being based on the
workflow technology and its ability to process the artifacts of
agent programming paradigms such as plans, services, goals,
and roles by executing these artifacts after reducing them to
workflows.

To implement the ideas behind the proposed architecture, we
described an HTN ontology to define agent plans, developed a
workflow component using Java, and focused on the reduction
of agent plans to workflows. We used this planner architecture
in industrial and academical projects. The last version of the
SEAGENT can be downloaded5 as an open source project.

SEAGENT planner has been designed with the idea that
different plan definition languages other than HTN can also
be reduced to the generic workflow model. In addition, busi-
ness process definition languages such as BPEL, OWL-S can
also be reduced to the generic workflow model. Moreover,
these business process definition languages can be used in
connection with different plan definition languages providing
the interoperability of them. These features show the way
of incorporating different languages into agent programming
paradigms as well as offering a high degree of flexibility in
developing agent systems.

5SEAGENT Semantic Web Enabled Framework, http://seagent.ege.edu.tr/

REFERENCES

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovicand, and S. Weer-
awarana, “Business process execution language for web services v-1.1,”
W3C, Candidate Recommendation, 2003.

[2] WfMC, “Workflow management coalition workflow standard: Workflow
process definition interface - xml process definition language (xpdl)
(wfmc-tc-1025),” Workflow Management Coalition, Lighthouse Point
(FL), Tech. Rep., 2002.

[3] K. Erol, J. Hendler, and D. S. Nau, “Semantics for hierarchical task-
network planning,” College Park, MD, USA, Tech. Rep., 1994.

[4] K. Sycara, M. Williamson, and K. Decker, “Unified information and
control flow in hierarchical task networks,” in Working Notes of the
AAAI-96 workshop ’Theories of Action, Planning, and Control’, 1996.

[5] W. Sadiq and M. Orlowska, “Modeling and verification of workflow
graphs,” in Technical Report No. 386, Department of Computer Science.
The University of Queensland, Australia, 1996.

[6] E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau, “Htn planning
for web service composition using shop2,” J. Web Sem., vol. 1, no. 4,
pp. 377–396, 2004.

[7] G. Caire, D. Gotta, and M. Banzi, “Wade: a software platform to
develop mission critical applications exploiting agents and workflows,”
in AAMAS (Industry Track), 2008, pp. 29–36.

[8] A. P. F. Bellifemine and G. Rimassa, “JADE - a FIPA-compliant agent
framework,” in Proceedings of the Practical Applications of Intelligent
Agents, 1999.

[9] E. E. Ekinci, A. M. Tiryaki, Ö. Gürcan, and O. Dikenelli, “A planner
infrastructure for semantic web enabled agents,” in OTM Workshops,
2007, pp. 95–104.

[10] O. Dikenelli, “Seagent mas platform development environment,” in
AAMAS (Demos), 2008, pp. 1671–1672.

[11] J. R. Graham, K. Decker, and M. Mersic, “Decaf - a flexible multi agent
system architecture.” Autonomous Agents and Multi-Agent Systems,
vol. 7, no. 1-2, pp. 7–27, 2003.

[12] K. P. Sycara, M. Paolucci, M. V. Velsen, and J. A. Giampapa, “The
retsina mas infrastructure,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 7, no. 1-2, pp. 29–48, 2003.

[13] W. M. P. van der Aalst, “The application of petri nets to workflow
management,” Journal of Circuits, Systems, and Computers, vol. 8, no. 1,
pp. 21–66, 1998.

[14] S. W. Sadiq, M. E. Orlowska, W. Sadiq, and C. Foulger, “Data flow and
validation in workflow modelling,” in ADC, 2004, pp. 207–214.

[15] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph
reduction techniques,” Inf. Syst., vol. 25, no. 2, pp. 117–134, 2000.

[16] J. Davis, W. Du, and M.-C. Shan, “Openpm: An enterprise process
management system,” IEEE Data Eng. Bull., vol. 18, no. 1, pp. 27–
32, 1995.

[17] W. Du, J. Davis, and M. C. Shan, “Flexible specification of workflow
compensation scopes,” in GROUP ’97: Proceedings of the international
ACM SIGGROUP conference on Supporting group work. New York,
USA: ACM, 1997, pp. 309–316.

[18] B. K. W.M.P van der Aalst, A.H.M. ter Hofstede and A. Barros,
“Workflow patterns,” in Distributed and Parallel Databases, July 2003,
pp. 5–51.

	Introduction
	The Architecture Of The Planner
	Semantics of SEAGENT Workflow Graph
	Semantics of SEAGENT HTN
	Transformation of HTN into Workflow
	Reduction Algorithm
	Correctness of Reduction

	Case Study
	Conclusion
	References

