
A Methodology for Developing Self-Explaining
Agents for Virtual Training

Maaike Harbers1,2, Karel van den Bosch1 and John-Jules Meyer2

1TNO Human Factors, P.O.Box 23, 3769 ZG Soesterberg, The Netherlands
2Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{maaike,jj}@cs.uu.nl, karel.vandenbosch@tno.nl

Abstract—Intelligent agents are used to generate the behavior
of characters in virtual training systems. To increase trainees’
insight in played training sessions, agents can be equipped with
capabilities to explain the reasons for their actions. By using
an agent programming language in which declarative aspects of
an agent’s reasoning process are explicitly represented, expla-
nations revealing the underlying motivations for agents’ actions
can be obtained. In this paper, a methodology for developing
self-explaining agents in virtual training systems is proposed,
resulting in agents that can explain their actions in terms of
beliefs and goals.

I. INTRODUCTION

Virtual training systems are often used to train people for
complex, dynamic tasks in which fast decision making is
required, e.g. the persons in command in crisis management,
military missions or fire-fighting. During a training session,
trainees interact with other virtual players, such as team-
members, opponents, or colleagues from other domains. Using
intelligent agents to generate the behavior of these virtual
players lets trainees train at any place and time, reducing costs.

Typical mistakes of trainees include giving incomplete or
unclear instructions, forgetting to monitor task execution, and
failing to pick up new information and quickly adapt to it.
Many of these errors involve situations in which a trainee
makes false assumptions about other agents’ knowledge or
intentions. For example, a commanding fire-fighter who is in
a fire truck to contact the dispatch center will not hear that
one of his team members yelled that he saw a victim. His
team members, however, might not have seen the commander
in the truck and unjustly assume that he heard the message,
leading to suboptimal behavior. Evidence for the origin of
such mistakes can be found in literature; attributing incorrect
knowledge and intentions to others is a well described phe-
nomenon in cognitive sciences. For example, Nickerson gives
an overview on literature about the tendency to ascribe one’s
own knowledge to others [11], and Keysar reports on limits in
theory of mind use in practice, i.e. attributing incorrect mental
states to others [6].

To improve trainees’ performances, they should be made
aware of their (possibly) false assumptions about others. Better
understanding of past sessions should make trainees more alert
and decrease the probability that they will make similar errors
in a next incident. Therefore, we propose the use of self-
explaining agents in virtual training, i.e. agents able to explain

the reasons for their actions. Humans usually explain and
understand their own and others’ behavior in terms of beliefs,
desires and other mental contents [5]. Therefore, to provide
useful explanations for humans, agents should explain their
behavior in a similar terminology, e.g. by revealing the goals
they held during a training session. Such explanations serve to
increase the trainees’ awareness of other agents’ perspectives.

Current approaches of explanation in artificial intelligence
do not provide explanations from an intentional perspective,
that is, in terms of goals. Expert system explanations usually
provide traces of the steps behind an diagnose or advice, and
the justifications of those steps [17]. However, behavior of
expert system is usually not understood in terms of intentions,
in contrast to behavior of virtual characters. There are a
few accounts of self-explaining agents in virtual training
systems [8], [16], [3], but these do not provide information
about the actual goals behind an agent’s actions.

In order to explain agent behavior in terms of intentions,
agents must be implemented in such a way that they act
on the basis of intentions, and that their intentions are ex-
plicitly represented and thus available for the generation of
explanations. In other words, behavior generation and ex-
planation are connected; the reasoning steps that generate
an action, are also used to explain that action. Making a
connection between generation and explanation of behavior
can be achieved by implementing self-explaining agents in
a BDI-based agent programming language, because in those
languages the declarative concepts needed for explanation are
explicitly represented.

In this paper we introduce a methodology for developing
self-explaining agents for virtual training systems. The differ-
ent steps in the method are: determining the required scope of
an agent’s behavior (section II), constructing a task hierarchy
of the agent (section III), implementing the agent in a BDI-
based agent programming language (section IV), and then
adding explanation facilities to the implementation (section
V). Although explanation facilities are added to the agent only
in the end, the programming language and methods in the
previous steps were chosen in such a way that this would be
possible. In the paper we discuss all four steps, but we most
explicitly explain how a task hierarchy can be translated to a
BDI-based agent program. Section VI discusses related work,
and in section VII, we draw conclusions and give suggestions

for future research.

II. REQUIRED BEHAVIOR

To develop self-explaining agents for a virtual training
system, knowledge about the required behavior and capacities
of the agents is needed. Domain experts have knowledge
about the tasks that belong to the jobs and roles of the
agents, e.g. the tasks and responsibilities of a fire-fighter or
an operator. Additionally, the training scenario(s) in which the
agents will have to act give a lot of information about their
required capacities. Training scenarios determine the scope of
the situations in which the agents might arrive. For example, a
firefighter might be responsible for the maintenance of tools,
but tasks connected to this goal are not relevant in training
scenarios about incidents, and thus do not have to be modeled.

One of the difficulties of writing a training scenario is to
find a balance between freedom of the players (both agents
and trainee) and continuation of a storyline, also called the
narrative paradox [9]. On the one hand, trainees should be
able to act as if it were a real situation and experience the
consequences of their actions, e.g. believable reactions of the
agents. On the other hand, because of inadequate acting of the
trainee, the course of the scenario could change in such a way
that situations in which specific learning goals can be trained
do not occur. A possible solution of the narrative paradox
in virtual training is to correct the trainee in a natural way
if he deviates too much from the intended storyline, namely
by directing the trainee with behavior of other players in
the scenario. For instance, if a leading fire-fighter forgets to
initiate smoke evacuation, initially nothing might happen, but
eventually, a team member can ask for the smoke evacuation
plan so that the trainee can practice to lead a smoke evacuation
process. Thus, when determining the required capacities of an
agent, tasks and actions involving the redirection of the trainee
should be included.

A second aspect of importance for the scope of an agent’s
capacities concerns variation among different training scenar-
ios. Most virtual training systems offer several training scenar-
ios, to let trainees practice on different aspects of a mission.
For instance, a fire-fighter might encounter incidents with or
without victims, chemical substances or failing communication
tools. Scenarios can be adjusted to the trainee’s level of
competence, e.g. scenarios are offered to the trainee with
increasing difficulty. In conclusion, all possible scenario lines
should be taken into account when determining the required
capacities of an agent.

The required capacities of an agent in a scenario, including
redirection actions and actions in different variations on the
scenario, are input for the construction of a task hierarchy. A
discussion on task hierarchies is given in the next section.

III. THE AGENT’S TASKS

Writing a training scenario lays down the possible observ-
able actions of an agent, but actions are the result of unob-
servable processes leading to select those particular actions.
Many processes could underlie the generation of an action,

but we believe the generation of behavior should be connected
to behavior explanation. The deliberation steps that are taken
to generate an action can also be best used to explain that
action, and when these deliberation steps are understandable,
the explanations should be as well. So while designing an
agent with explanation capabilities, the unobservable internal
processes should be meaningful.

In cognitive psychology, simple task analysis techniques
restrict analyses to observable behavior, but cognitive task
analysis also involves the knowledge, thought processes, and
goal structures that underlie observable task performance.
Hierarchical task analysis (HTA) is a well established tech-
nique [15], which smoothly connects observable behavior to
internal cognitive processes by the systematical decomposition
of goals or tasks. This feature makes it appropriate for devel-
oping self-explaining agents, who are supposed to explain the
observable by the internal.

Many accounts of planning in artificial intelligence are
based on hierarchical task representations, called hierarchical
task networks (HTNs) [13]. In the strict sense, a HTN is the
decomposition of an abstract task into more detailed subtasks;
however, many accounts of HTN involve other features, e.g.
information about which subtasks to select under given cir-
cumstances.

HTA and HTN planning both refer to a wide range of
approaches, methods and techniques. In this paper, we leave it
open how the task analysis should be made, but we do specify
what should be the result. Namely, a task hierarchy represented
in the task hierarchy representation language as introduced in
the next section.

A. Task hierarchy representation language

A task hierarchy H in state S consists of a number of tasks
which are related to each other by task-subtask relations. A
task is defined as T(Type,[(T1,C1),...,(Tn,Cn)]), where Type
denotes the type of task T, [T1,..,Tn] are possible subtasks
of task T, and C1,..,Cn denote the conditions under which a
subtask is adopted. Subtasks can in turn be decomposed into
subtasks, etc. There are four types of tasks, namely all, one,
seq and prim. Tasks of the type all, one or seq have subtasks,
and a task’s type denotes the relation to its subtasks. Tasks of
the type prim are not decomposed, and can be achieved by
executing a single action in the environment. In that case, the
list with subtasks is empty: T(prim,[]).

Tasks can be adopted, which means that they are tried
to achieve, and dropped, which means that they are either
achieved or no longer tried to achieve. For all tasks but the
top task it holds that a task can only be adopted when its main
task is adopted, and the task is applicable, i.e. the conditions
Ci connected to that task are consistent with state S. If there
are no conditions connected to a task then Ci = true and
the task is always applicable. The three possible task-subtask
relations all, one and seq each imply their own conditions to
task adoption. A task-subtask relation of the type all means
that all applicable subtasks are adopted. A task-subtask relation
of the type one means that only one of the applicable subtasks

is adopted. The term seq refers to sequential and in such a
task-subtask relation all subtasks are adopted, but only one by
one in a specific order.

When a task is achieved it can be dropped. Task achieve-
ment depends either on state S, i.e. the conditions in the envi-
ronment, or on achievement of a task’s subtasks. An example
of the first possibility is that the task to extinguish a fire is
achieved when the fire is out. The second possibility occurs
when the environment does not immediately give feedback on
whether a task has been performed successfully. For instance,
the task to report something can be achieved by sending an
email, but one does not directly know if the email is read and
understood. In such a cases task performance depends on task
execution, that is, if a task is executed it is assumed to be
achieved.

In our task hierarchy language, task achievement of prim-
itive tasks always depends on task execution, and primitive
tasks are thus always dropped after execution. Task achieve-
ment of non-primitive tasks either depends on conditions
in state S, or on achievement of a task’s subtasks. If the
achievement of a task depends on the achievement of its
subtasks, the relation with its subtasks defines the dependence
relation. A task with a task-subtask relation of the type all
is achieved when all applicable subtasks are achieved. A task
with a task-subtask relation of the type one is achieved when
exactly one of its subtasks is achieved. A task with a task-
subtask relation of the type seq is achieved when all of its
subtasks are achieved one by one, in the right order.

For each task holds that it either is achieved or not. There
are several reasons for not allowing partially successful task
executions. First, it is often hard to determine the measure
of success of a task execution. Second, the task domains we
aim at are of a procedural nature; if a task is not executed
satisfactorily, alternative actions have to be taken, otherwise
not. Third, the easiest way to represent partially succeeded
tasks would be with a numerical approach, which makes it
more difficult to provide explanations. The last two reasons
together show that the domains we consider are appropriate
for developing self-explaining agents.

B. An example: a firefighting agent

In this section we introduce an agent that could be one of
the virtual characters in a scenario to train the head of a crisis
management team. In such training, the trainee, who is playing
the head, is confronted with a crisis he has to solve. A part
of his tasks is to instruct and monitor the leaders of several
teams, which are played by intelligent agents. The agent in
this example is a firefighter, leading a firefighting team. The
firefighting agent’s tasks consist of receiving an attack plan
from its head (the trainee) and pass corresponding instructions
to its team, monitor the execution of the plan, and finally,
report to the head that the incident has been solved.

Figure 1 shows the task hierarchy of the firefighting agent
during the plan execution phase. Its two main occupations
in this phase are checking the plan execution by its team,
which involves dealing with a fire, victims and explosives,

Fig. 1. Part of the firefighter’s task hierarchy

and reporting its observations to the head. Usually, the
firefighter reports several times to the head, and it can report
on one or more aspects of the incident at the same time. A
representation of the task hierarchy in figure 1 in the task
hierarchy representation language just introduced looks as
follows.

Monitor(all,[(Check(X),true),(Report,true)])
Check(X)(all,[(Check(Fire),true),(Check(Victims),true),

(Check(Explosives),true)])
Check(Fire)(prim,[])
Check(Victims)(prim,[])
Check(Explosives)(prim,[])
Report(seq,[(ContactHead(Y),torep(X)),(Inform(X),incontact)])
ContactHead(Y)(one,[(ContactHead(Member),available(member)),

(ContactHead(Self),not available(member)])
ContactHead(Member)(prim,[])
ContactHead(Self)(prim,[])
Inform(X)(all,[(Inform(Fire),torep(Fire))),(Inform(Victims),

torep(Victims)),(Inform(Explosives),torep(Explosives))])
Inform(Fire)(prim,[])
Inform(Victims)(prim,[])
Inform(Explosives)(prim,[])

In this representation the conditions C for task adoption and
the task’s relations Type, which are not shown in figure 1, are
given. For example, available(member) means that there is a
team member available, and torep(X) means that there is some
information X that has not been reported to the head yet.

The all relation of the task Monitor denotes that the
Check(X) and Report tasks are both adopted. To report,
the firefighter has to contact the head and report about the
different aspects of the incident. These two tasks have to be
performed one by one and in this order, which is denoted
by a seq relation. The fire-fighter agent can either contact
the head itself, ContactHead(Self), or let a team member do
it, ContactHead(Member). The one relation represents that
executing one of these options should be sufficient to achieve
contact with the head ContactHead(Y). Finally, the different
aspects of the incident all have to be checked and reported,
but the order in which they are checked and reported depends
on how each of the aspects develops. This is denoted by an
all relation.

IV. IMPLEMENTATION OF THE AGENT

The implementation of a self-explaining agent should fulfill
four requirements. First, it should be possible to explicitly
represent the agent’s beliefs and goals. As stated in the
introduction, the self-explaining agents should adopt the in-
tentional stance to explain their behavior, i.e. explaining their
actions in terms of goals. In section 3, we argued to connect
the generation and explanation of behavior, e.g. if goal G
makes an agent execute action A, G also explains why the
agent executed A. Therefore, to let agents generate intentional
explanations, they need to reason with beliefs and goals. The
second requirement is that the operationalization of the agent’s
reasoning elements should be present in the implementation
as well. Explanations should give insight into which elements
relate to each other, how they relate to each other and how
they interact. For instance, to achieve goal G it is necessary to
achieve subgoal Gi. Third, a self-explaining agent should be
able to introspect. An agent needs to have knowledge about its
own states and processes in order to explain them. The fourth
and last requirement is that a self-explaining agent needs to
have memory. To explain its actions, an agent not only needs
to have access to its states and processes at the time they occur,
but also has to memorize them for possible future use.

Concerning the first requirement, a declarative agent pro-
gramming language is needed. There are a number of agent
programming languages based on the BDI (belief desire inten-
tion) model [12], which do allow for explicit representations
of beliefs and goals. We have chosen to use 2APL [2] for our
implementation as it connects declarative aspects like beliefs
and goals to plans and actions, following from the interaction
between beliefs and goals. Introspection is also possible in
2APL, the agent can perform checks on its belief and goal
bases. A 2APL agent typically has no memory of its past
states, processes and actions; these are only implicitly present
in the interpreter. However, the agent’s belief base can be
considered as a memory, and a log about those aspects can
be created in its belief base. For a more detailed overview of
2APL see [2].

A. Task hierarchies vs. BDI models

Our aim is to translate task hierarchy representations as
discussed in section 3 to BDI-based agent programs. The
most important similarity between task hierarchies and BDI
models is that both reduce high-level entities into lower-
level ones. A difference is that the first only contains tasks
whereas the second makes a distinction between goals (desired
world states) and plans (sequence of actions or sub-plans
describing how a goal can be achieved). Table 1 shows the
correspondence between the elements in a task hierarchy and
a BDI-agent. An agent’s main task must be implemented as a
goal in order to generate plans and make the agent act, and
primitive tasks can only be implemented as plans. However,
the other tasks in the task hierarchy can be implemented as
either plans or goals. In this section we discuss the advantages
and disadvantages of representing tasks as goals or as plans.

Task hierarchy BDI agent
State Beliefs
Main task Goal
Subtask Goal or plan
Primitive task Action (atomic plan)

TABLE I
TASK HIERARCHIES VS. BDI AGENTS

Beliefs and goals of an agent are related to each other in
the sense that if an agent believes a certain fact, then the
agent should not pursue that fact as a goal. In general, a
goal remains in the agent’s goal base until it is achieved,
which is caused by sense actions leading to changes in
the agent’s belief base. In exceptional cases a goal can be
explicitly dropped by the agent (as part of a plan). Plans, in
contrast, are removed from an agent’s plan base once they
are executed. As a consequence, goals are more appropriate
for the implementation of tasks which are achieved by an
unknown number of actions (depending on the environment),
e.g. monitoring plan execution.

Another difference between plans and goals concerns the
way in which they are executed or achieved. The deliberation
cycle of an agent states which step the agent should perform
next, e.g. execute an action or apply a reasoning rule. In this
cycle, the rules that are applicable to goals (PG-rules) are
tried to be applied. But for plans, in contrast, plan by plan
is considered which rules (PC-rules) apply to that plan. Thus,
the order of goal execution depends on the order of the rules,
whereas the order of plan execution depends on the order of
the plans in the agent’s plan base. As a programmer it is easier
to exert control over the order of rules than over the order of
plans in a plan base because an agent’s rules remain the same,
but its plans change during program execution.

For domains in which the number and order of tasks to
be executed is fixed, it is easier to implement tasks as plans
because the agent program ensures that plans are executed in
the given order and dropped after execution automatically. In
general, however, implementing tasks as goals allows for more
flexibility because the number and order of actions to achieve
a goal may vary. Therefore, we argue to implement all tasks
in a hierarchy as goals, except for primitive tasks.

B. From task hierarchy to 2APL agent

In this section we discuss the translation of a task hierarchy
representation as introduced in section III to 2APL code. In
2APL, an agent’s beliefs are Prolog facts and rules, and the
belief base of a 2APL agents is a Prolog program. Thus,
from the beliefs x and y :- x, the belief y can be derived. To
reason with goals, so called PG-rules are used, which are of
the form Goal <- Belief | Plan. Informally this means that if
the agent believes Belief, then to achieve the Goal it should
execute Plan. To adopt a new goal (subtask), a Plan consists
of the action adopt(Subgoal), which means that the Subgoal
is added to the agent’s goal base. Dropping a goal is settled
by beliefs in the agent’s belief base. For each of the task
types (all, one, seq, prim) we show the transition from task
hierarchy representation to implementation. To ensure that
the program ’walks through’ the task hierarchy as desired,

we use the fact that the interpreter considers PG-rules from
top to bottom. More specific rules are implemented above
(and thus tried before) more general rules, so that the most
specific rule as possible is applied.

a) All tasks: For tasks of the type all, all applicable
subtasks are adopted. In the implementation, a PG-rule is
added for each subtask, thus an all-task with n subtasks is
implemented by n PG-rules. The task Monitor in our example
has an all relation with its subtasks: Monitor(all, [(Check(X),
true), (Report, true)]). The implementation looks as follows.

Monitor <- true | adopt(Check(X))
Monitor <- true | adopt(Report)

The first part of a rule is a check on the agent’s goal base.
Both PG-rules are only applied if Monitor is one of the agents
goals. The second part of the PG-rule is a check on the agent’s
belief base. In this case, the guards of both rules are always
true, i.e. the applicability of the subtasks is independent of
the agent’s beliefs. The body of the two rules states that the
goals Check(X) and Report have to be adopted, respectively.
If a subtask would only have to be adopted under certain
circumstances, these conditions can be specified in the guard
of the rule.

In 2APL, if a goal (a desired world state) is believed to be
true, that goal is dropped. For some goals it holds that they are
achieved if a certain situation in the environment is true. For
example, the goal to extinguish a fire can be dropped when
the agent believes that there is no fire.

ExtinguishFire :- not fire.

Other goals are achieved when its subtasks have been achieved.
For those goals, to ensure that they are dropped when neces-
sary, beliefs according to the following example should be in
the agent’s belief base.

Monitor :- Check(X), Report.

The code states that when both Check(X) and Report are
finished successfully, the Monitor task can be dropped. If the
goal Report would only be applicable under conditions C, the
following rule would have to be added.

Report :- not C.

The rule ensures that if a subtask is not applicable (in the
example when not C), that subtask does not have to be
actively achieved in order to achieve its main task. Note that
in some situations a task is achieved without executing any
action, e.g. when there is no incident.

b) One tasks: For tasks of type one holds that only one
of their subtasks is adopted. A one-task with n subtasks is im-
plemented by n PG-rules. The task G(one,[(G1,C1),(G2,C2)]),
for example, is implemented as follows.

G <- C1 | adopt(G1)
G <- C2 | adopt(G2)

C1 and C2 denote exclusive situations to ensure that only one
sub-goal is adopted.

The goal G can be dropped either if a certain situation in
the environment is true, or if one of the sub-goals is achieved.
The last is implemented in the agent’s belief base as follows.

G :- G1.
G :- G2.

Two separate beliefs are needed to express the dropping
condition of goal G because G might be achieved by G1 or
by G2.

c) Seq tasks: For tasks of the type seq, all of their
subtasks are adopted, but one by one and in a specific
order. For example, the task Report(seq, [(ContactHead(Y),
torep(X)), (Inform(X), incontact)]) is implemented as follows.

Report <- torep(X) | adopt(ContactHead(Y))
Report <- incontact | adopt(Inform(X))

The head of the rule contains the task for which subtasks
need to be achieved. The guard of the rule contains conditions
under which a rule can be adopted. As with tasks of the type
one, the conditions specify unique circumstances here, so that
only one subtask is executed at a time. Because the subtasks
must be achieved in a specific order, the guards of the rules
are beliefs related to goals, where the goal is the previous
task in the sequence. For instance, the firefighter agent only
starts to inform the head when it believes it is in contact. The
belief torep(X) can be derived from the belief base if there is
a priority that has been checked, but not yet been reported to
the head, which is implemented as follows.

torep(X) :- Check(X), not Inform(X).

In general, a task with relation seq can be dropped if its last
subtask is achieved.

Report :- Inform(X).

There is one exception. Namely, if the subtasks of a task
of the type seq are primitive tasks, only one PG-rule is
needed. For instance, a task with three subtasks who have
to be executed one by one in a fixed order is implemented as
follows.

Head <- Guard |
{ PrimTask1; PrimTask2; PrimTask3 }

As the order of the primitive subtasks is fixed and they can
be executed immediately, it is not necessary to use different
PG-rules. The different subtasks are added to the agent’s
plans base, and automatically executed in the right order.

d) Prim tasks: Primitive tasks are not divided into further
subtasks and therefore implemented as plans. The following
code shows an example of a task with the relation one to
its primitive subtasks, namely ContactHead(Y)(one, [(Contact-
Head(Member), available(member)), (ContactHead(Self), not
available(member)]).

ContactHead(Y) <- available(member) |
ContactHead(Member)

ContactHead(Y) <- not available(member) |
ContactHead(Self)

In this example the task ContactHead(Y) has two primitive
subtasks. Instead of adopting a new goal, they can immediately
be executed as actions in the environment. The implementation
of primitive tasks with a parent task of the type all is similar
to the example above.

As primitive tasks are implemented as plans, they are auto-
matically removed from the agent’s plan base once executed.
If the goal for which they were executed is only dropped when
certain conditions in the environment become true, they might
be executed again. The other possibility is that their parent
goal is dropped when (one of) its subtasks are (is) executed.
In that case, the primitive task should involve an action in
the environment, and add a belief to the agent’s belief base
which indicates that the action has been executed. In section
V it will be explained how actual actions and belief update
actions can be represented connected to each other, such that
they are seen as one atomic action and their execution cannot
be interrupted.

V. EXPLAINING ACTIONS

As stated before, self-explaining agents should be able to
introspect and memorize; they need to have knowledge about
their own past states and processes in order to explain them. In
2APL, the information required for explanations is present in
the program and the interpreter, but not available to the agent
for explanation at a later moment in time. One possibility is
to investigate how the information present in the interpreter
could be made accessible for explanation purposes, but in this
paper we chose to focus on a solution that does not require
adaptations to the programming language.

In order to reproduce past actions and motivations, an agent
needs to store them at the time it has access to them, which is
during task execution. The agent can store its present beliefs,
goals and actions in a so-called explanation log in its belief
base. Such a log can be created by connecting belief update
actions to actual actions of the agent. For instance, when the
agent adopts goal G at time t, it also logs that it adopted goal
G at t.

Monitor <- true |
[adopt(Check(X));

UpdateLog(Check(X),t)]

The [] brackets in the code ensure that the execution of the two
plans adopt() and UpdateLog() can not be interrupted by any
other process; they are considered as one atomic plan. Actions
that update an agent’s explanation log can be connected any
’normal’ action of the agent. Such update actions can of course
be connected to all actions of the agent, but some updates may
not be needed in an explanation. Therefore, the decision what
to log and what not should depend on the information that is
desired in an explanation.

In order to explain its behavior, an agent needs a log of
past actions, but it also needs to have knowledge about its own
task hierarchy. This knowledge is represented by beliefs of the
type Task(T,[T1,..,Tn]), where T1 to Tn are T’s subtasks. The
agent has such a belief for each task it could possibly adopt.
For example, our firefighting agent has the following beliefs
about its task hierarchy in its belief base.

Task(Inform(X),[Inform(Fire),
Inform(Victims),Inform(Explosives)]).

Task(Report,[ContactHead(Y),Inform(X)]).
Task(Monitor,[Check(X),Report]).

With a combination of the beliefs containing the agent’s
complete task structure and beliefs that were logged dur-
ing task execution, explanations of any action can be cre-
ated. An extensive explanation is for example I executed
Inform(Victims) to achieve the goal Inform(X), which was
executed to achieve the goal Report, which was executed
to achieve the goal Monitor. However, the complete trace
of tasks responsible for one action might provide too much
information; especially in bigger agent models it is crucial
to make a selection of explaining elements. Such a selection
consists of tasks either with a higher or a lower position in
the hierarchy, yielding more abstract or specific explanations,
respectively. An abstract explanation in this case would be:
I executed Inform(Victims) because I had the goal Monitor.
A specific explanation would be: I executed Inform(Victims)
because I had the goal Inform(X). More advanced explanation
facilities could be interactive. For instance, the self-explaining
agent starts with providing an abstract explanation, but if the
trainee asks for extra information, more specific goals are
provided.

VI. RELATED WORK

Already at an early stage in expert systems research it was
recognized that advices or diagnoses from decision support
systems should be accompanied by explanations [17], [4].
An often made distinction is that between rule trace and
justification explanations [17]. Rule trace or how explanations
show which rules or data a system uses to reach a conclu-
sion. Justification or why explanations, in addition, provide
the domain knowledge underlying these rules and decisions.
Research shows that users of expert system often prefer why
to how explanations. An important difference between expert
systems and self-explaining agents is that the self-explaining
agents are proactive, i.e. they have goals. Therefore, the goals
because of which an agent executed an action also form the
explanation of that action.

Explanations in virtual training systems are often pro-
vided by intelligent tutoring systems (ITSs), for an overview
see [10]. However, ITSs mostly provide hints and eventually
recipes of what is to be done. There are a few approaches of
self-explaining agents in virtual training systems that provide
explanations from the agents’ perspectives. The Debrief sys-
tem [8] explains actions by what must have been an agent’s
underlying beliefs. However, the explanations do not provide

the agent’s actual beliefs or goals. The XAI system [16] pro-
vides explanations about agents’ physical states, e.g. position
and health, but not about their motivations. An improved
version of the XAI system [3] aims to provide explanations
of agents’ motivations by making use of information made
available by the simulation. However, simulations often do
not provide information about agents’ motivations, and if so,
the explanations are not based on the actual motivations of the
agents.

Our approach of planning has similarities with HTN-
planning approaches. Currently, one of the most extensive ac-
counts of general (HTN) planning is the GPGP approach [7]).
GPGP (generalized partial global planning) is a framework
for the coordination of small teams of agents. Our approach
differs on the following aspects with the GPGP approach. First,
whereas the GPGP approach is designed for coordination of
a group of agents, our approach is designed for planning of a
single agent. Second, GPGP explicitly defines non-local task
structures: relations between two goals at any place in the
goal tree. In our model these relations are not specified, but
implicitly present in the adoption conditions of the goals. For
instance, the condition to adopt a goal is the achievement of
another goal. Finally, the GPGP approach involves partially
successful tasks, whereas we only allow tasks to be successful
or not. The reasons for this choice are explained in the last
paragraph of section III-A.

Sardina et al also used the similarities between BDI sys-
tems and HTN planners, for an approach on planning [14].
They present formal semantics for a BDI agent programming
language which incorporates HTN-style planning as a built-in
feature. In contrast to their approach, we do not incorporate
HTN-planning in a BDI-based agent program; instead, we give
a mapping of the former to the latter.

Self-explaining agents need to have knowledge about their
past mental states and actions. Such knowledge is called an
episodic or autobiographic memory. Most research on agents
with an episodic memory focuses on how the memory can
improve an agent’s performance. In our approach, agents do
not use their episodic memory during task execution, but
only afterwards, to explain their behavior. Nevertheless, our
approach has similarities with the work of Brom et al [1] as
they also use a hierarchical structure to model their agents,
both in the agent program and the episodic memory.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a methodology for de-
veloping self-explaining agents in virtual training systems.
The methodology involves: i) a determination of the agent’s
required behavior, ii) the construction of a task hierarchy,
iii) an implementation of the self-explaining agent in a BDI-
based agent programming language, and iv) the addition of
explanation capabilities.

Single phenomena and processes can be explained in many
different ways, but providing complete explanations is neither
possible, nor desired [5]. By using a BDI-based approach,
the scope of possible explanations is restricted; actions are

only explained in terms of beliefs and goals. Still, one action
might have many underlying goals, and some selection on
the information provided in an explanation might increase
its effectiveness. For example, abstract explanations are given
by just providing goals higher in the task hierarchy, and
more specific explanations only consist of elements lower in
the hierarchy. We are currently developing and implementing
actual self-explaining agents for a specific virtual training
system. When finished, we will be able to test the usefulness
of the provided explanations, and investigate e.g. whether there
is a general desired abstraction level of explanations.

ACKNOWLEDGMENTS

This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific Re-
search (NWO) and the Netherlands ICT Research and Inno-
vation Authority (ICT Regie).

REFERENCES

[1] C. Brom, K. Peskova, and J. Lukavsky. What does your actor remember?
towards characters with a full episodic memory. In M. Cavazza and
S. Donikian, editors, Proc. of ICVS 2007, pages 89–101. Springer-Verlag
Berlin Heidelberg, 2007.

[2] M. Dastani. 2APL: a practical agent programming language. Au-
tonomous Agents and Multi-agent Systems, 16(3):214–248, 2008.

[3] D. Gomboc, S. Solomon, M. G. Core, H. C. Lane, and M. van Lent.
Design recommendations to support automated explanation and tutoring.
In Proc. of the 14th Conf. on Behavior Representation in Modeling and
Simulation, Universal City, CA., 2005.

[4] S. Gregor and I. Benbasat. Explanation from intelligent systems:
theoretical foundations and implications for practice. MIS Quarterly,
23(4):497–530, 1999.

[5] F. Keil. Explanation and understanding. Annual Reviews Psychology,
57:227–254, 2006.

[6] B. Keysar, S. Lin, and D. Barr. Limits on theory of mind use in adults.
Cognition, 89:25–41, 2003.

[7] V. Lesser, K. Decker, N. Carver, A. Garvey, D. Neiman, M. Nagen-
dra Prasad, and T. Wagner. Evolution of the GPGP/TAEMS domain-
independent coordination framework. Autonomous agents and muli-
agent systems, 9:87–143, 2004.

[8] W. Lewis Johnson. Agents that learn to explain themselves. In Proc. of
the 12th Nat. Conf. on Artificial Intelligence, pages 1257–1263, 1994.

[9] S. Louchart and R. Aylett. Managing a non-linear scenario - a narrative
evolution. In Virtual Storytelling, pages 148–157. Springer Berlin, 2005.

[10] T. Murray. Authoring intelligent tutoring systems: An analysis of
the state of the art. International Journal of Artificial Intelligence in
Education, 10:98–129, 1999.

[11] S. Nickerson. How we know -and sometimes misjudge- what others
know: Imputing one’s own knowledge to others. Psychological Bulletin,
125(6):737–759, 1999.

[12] A. Rao and M. Georgeff. Modeling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc.
of the 2nd Internat. Conf. on Principles of Knowledge Representation
and Reasoning, pages 473–484, San Mateo, CA, USA, 1991. Morgan
Kaufmann publishers Inc.

[13] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach.
Pearson Education, Inc., New Jersey, USA, second edition, 2003.

[14] S. Sardina, L. De Silva, and L. Padgham. Hierarchical planning in BDI
agent programming languages: A formal approach. In Proc. of AAMAS
2006. ACM Press, 2006.

[15] J. Schraagen, S. Chipman, and V. Shalin, editors. Cognitive Task
Analysis. Lawrence Erlbaum Associates, Mahway, New Jersey, 2000.

[16] M. Van Lent, W. Fisher, and M. Mancuso. An explainable artificial
intelligence system for small-unit tactical behavior. In Proc. of IAAA
2004, Menlo Park, CA, 2004. AAAI Press.

[17] R. Ye and P. Johnson. The impact of explanation facilities on user
acceptance of expert systems advice. Mis Quarterly, 19(2):157–172,
1995.

