
Externalisation and Internalization:
A New Perspective on Agent Modularisation in

Multi-Agent System Programming
Alessandro Ricci

DEIS, University of Bologna
Cesena, Italy

Email: a.ricci@unibo.it

Michele Piunti
DEIS, University of Bologna

Cesena, Italy
Email: michele.piunti@unibo.it

Mirko Viroli
DEIS, University of Bologna

Cesena, Italy
Email: mirko.viroli@unibo.it

Abstract—Agent modularisation is a main issue in agent and
multi-agent system programming. Existing solutions typically
propose some kinds of constructs – such as capabilities – to
group and encapsulate in well-defined modules inside the agent
different kinds of agent features, that depend on the architecture
or model adopted—examples are goals, beliefs, intentions, skills.
In this paper we introduce a further perspective, which can
be considered complimentary to existing approaches, which
accounts for externalizing some of such functionalities into the
computational environment where agents are (logically) situated.
In this perspective, agent modules are realised as suitably
designed artifacts that agents can dynamically exploit as external
tools to enhance their action repertoire and – more generally
– their capability to execute tasks. Then, to let agent (and
agent programmers) exploit such capabilities abstracting from
the low-level mechanics of artifact management and use, we
exploit the dual notion of internalization, which consists in
dynamically consulting and automatically embedding high-level
usage protocols described in artifact manuals as agent plans. The
idea is discussed providing some practical examples of use, based
on CArtAgO as technology for programming artifacts and Jason
agent platform to program the agents.

I. INTRODUCTION

Agent modularisation is a main issue in agent-oriented
software engineering and multi-agent system (MAS) program-
ming, accounting for devising proper structures and mecha-
nisms to modularise agent behaviour, enhancing maintainabil-
ity, extensibility and reuse of agent-based software. Existing
solutions – which are briefly surveyed in Section IV – typically
propose constructs that make it possible to group, encapsulate
and reuse in well-defined modules agent features, that can vary
according to the architecture or model adopted: for instance,
modularisation in BDI agents have been proposed in terms
of capabilities [3], [2], goals [17], intentions [8], to mention
some.

In all existing approaches modules are components inside
agents. In this paper we introduce a further complimen-
tary perspective, which accounts for improving modularity
by externalizing some functionalities into the computational
environment where agents are (logically) situated, as external
facilities that agents exploit as tools extending their capabili-
ties.

The background of this idea is given by the research work
on environment design and programming in MAS [19], [15],
in which the computational environment where agents are
situated is considered a first-class abstraction that can be
suitably designed and programmed so as to improve MAS
engineering, encapsulating functionalities that concern, for
instance, agent interactions, coordination and organisation.

In this context, CArtAgO [15], [16] – which will be
exploited in this paper – has been proposed as a general-
purpose framework and infrastructure for building shared
computational worlds that agents, possibly belonging to het-
erogeneous agent platforms and written using different agent
programming languages [14], can exploit to work together.
Being based on the A&A (Agents and Artifacts) meta-model
[15], [12], [16], CArtAgO’s computational environments are
modelled as set of distributed workspaces, containing dynamic
sets of artifacts.

The artifact abstraction is a key concept on which is the
contribution of this paper is based. From the agent viewpoint,
artifacts are first-class entities of agents’ world, representing
resources and tools that agents can dynamically instantiate,
share and use to support individual and collective activities.
From the MAS designer viewpoint, artifacts are useful to
uniformly design and program those abstractions inside a
MAS that are not suitably modelled as agents, and that
encapsulate functions to be exploited by individual agents
or the overall MAS—for instance mediating and empower-
ing agent interaction and coordination, or wrapping external
resources. CArtAgO provides a concrete computational and
programming model for artifacts [15], composed by a set of
Java-based API to program artifacts on the one side, and agent
API to work inside artifact-based environment on the other
side.

The availability of artifact-based computational environ-
ments in multi-agent system programming makes it possible
to enrich the strategies for modularising agents by exploit-
ing artifacts as modules that can be dynamically instanti-
ated/used/composed, extending the basic repertoire of agent
actions and capabilities. So, instead of being wrapped into
modules inside agents – either structuring the agent program



or extending the agent architecture – such capabilities are
externalised into artifacts that agents can use and exploit as
personal – and in some cases shared – tools.

In this paper we develop this idea, providing some practical
examples using CArtAgO and Jason agent programming
language. It is important to remark that this approach is not
meant to replace existing proposals, but to be integrated with
them. On the one side, some agent features are clearly not
externalisable, or – at least – it is not useful to externalise
them. For instance, for cognitive agents, capabilities concern-
ing deliberation or the manipulation of the internal mental
state. On the other side, the approach allows for properties
which are not typically provided by existing proposals. For
instance, the reuse of the same kind of module (artifacts)
across different agent programming languages and platforms.

The remainder of the paper is organised as follows: in
Section II we describe in detail the idea, providing some
examples to clarify the approach. Then, in Section III we
introduce internalization as a key mechanism layered on top
of externalisation that allows agents and agent programmers
to exploit functionalities externalized in artifacts abstracting
as much as possible from the low-level mechanics of artifact
management and use. In Section IV we provide an overview
of existing works on agent modularisation and how the con-
tribution of this paper is related to them. Finally, in Section V
we provide concluding remarks, sketching current limitations
and the next steps planned to further develop of the idea.

II. EXTERNALISATION: AGENT MODULES IMPLEMENTED
AS ARTIFACTS

A. The Basic Idea

The basic idea is to exploit artifacts as modules to en-
capsulate new capabilities for agents, in particular extending
the repertoire of agent actions with the set of operations
provided by artifacts1. We call this externalisation since the
capabilities of an agent are not extended by acting agent
internal architecture or program, but by extending the set of
external resources and tools (artifacts) that the agent can use
to do its work.

By applying externalisation, a module is conceived as a
tool that the agent may eventually create and use by need. In
particular: artifact operations encapsulate the functionalities
that would be provided by module actions; artifact usage
interface and observable properties (and events) represent the
module interface; the non-observable state of the artifact is
used to implement the hidden inner state of the module; and
finally the manual of an artifact can be used to store the
description of high-level usage protocols accompanying the
module—this point will be discussed in detail in Section III.

1the main features of the artifact abstraction are extensively described in
[12], [16], [15]. Briefly, each artifact has a usage interface listing a set of
usage interface controls that can be used to trigger and control the execution of
operations inside the artifact. By executing operations, an artifact can generate
observable events (signals) that can be perceived both by the agent using the
artifact and by all those that are focussing (observing) it. Besides observable
events, an artifact can have observable properties, whose value (and changes)
are automatically perceived by all the observing agents

At runtime (execution time) the burden of the execution
of modules is no more on the agent side, like in the case of
modules implemented as components inside agents, but on the
artifact side: artifact operations are executed asynchronously
by independent control flows, managed by the CArtAgO
machinery. The agent can control operations execution by
means of the usage interface of the artifact, perceiving its state
and results in terms of observable properties and events. This
has a strong impact on efficiency at runtime: (a) agents do not
waste time and computational resources for the execution of
the processes related to the module functionalities; (b) the ap-
proach transparently exploits the concurrency and parallelism
support provided by the underlying execution environment.

Then, module management is mapped on to artifact cre-
ation/disposal/discovery, in particular module activation is
given by instantiating the artifact or by locating an exist-
ing one; module composition is realised by using multiple
artifacts. Actually, the approach supports also a kind of
module sharing by exploiting artifacts shared and co-used
simultaneously by multiple agents: this can be very useful for
supporting effective and efficient forms of agent coordination
(Subsection II-E).

In the following, we clarify and discuss the idea by de-
scribing some concrete examples of increasing complexity,
exploiting CArtAgO to implement artifacts and Jason [1]
to program agents exploiting artifacts as modules. It’s worth
noting that here we use Jason, but an analogous discussion
would be for other agent programming languages, such as
2APL, or platforms like Jadex. The examples are classified
along two basic dimensions: the state dimension – differenti-
ating between state-less and state-full modules (tools) – and
the sharing dimension – differentiating between personal and
shared modules (tools).

B. Modules as State-less Tools

The simplest kind of module is given by a library of internal
actions which are meant to be exploited by agents as functions,
extending the basic computing capabilities provided by default
by the agent language.

As a concrete example, suppose to extend agents with some
math capabilities not directly supported by the language—let’s
take the sine function as a simple example. Languages like
Jason allow for solving the problem by extending the agent
architecture, with the implementation of new internal actions
exploiting the Java-based API provided by the Jason platform.
Externalisation makes it possible to solve the problem without
the need of extending directly agents, by programming a new
kind of artifact – functioning as a calculator tool in this
case – that the agent can instantiate and (re-)use by need.
Fig. 1 shows a sketch of its implementation in CArtAgO
API and of a Jason agent exploiting the functionality2. The
action module sin(+Value,?Result) is implemented by
the computeSin(+Value) operation of the artifact, and

2Details about the artifact abstraction and CArtAgO API, as well as Jason
and their integration, are outside the scope of this paper: the interested reader
can found them in literature [15], [12], [16], [14], [1]



package tools;

public class Calculator extends Artifact {

@OPERATION void computeSin(double x){
signal("sin",x,Math.sin(x));

}
@OPERATION void computeCos(double x){
signal("cos",x,Math.cos(x));

}
@OPERATION void computeSqrt(double x){
if (x >= 0){
signal("sqrt",x,Math.sqrt(x));

} else {
signal("math_error");

}
}
...

}

// Jason agent using its calculator

!doComputations.

+!doComputations
<- ?mytool("tools.Calculator",Id);

cartago.use(Id,computeSin(1.57),s0);
cartago.sense(s0,sin(1.57,Y));
cartago.use(console,
println("The sin value of 1.57 is ",Y)).

+?mytool(ToolType,Id)
<- .my_name(AgName);

.concat(AgName,"-",ToolType,ToolName);
cartago.makeArtifact(ToolName,ToolType,Id);
+mytool(ToolType,Id).

Fig. 1. (Left) A Calculator artifact encapsulating math functionalities. computeSin operation, once triggered, generates an observable event of the
type sin(X,Y) which is then perceived by the agent using the calculator. (Right) A Jason agent exploiting the calculator: the first time the calculator is
used it is created, using a conventional name given by concatenation of the agent name and the artifact type.

action execution is realised in terms of a sequence of basic
CArtAgO actions to interact with it. In particular, the agent
first retrieves the tool identifier – eventually creating the
artifact if it is the first time it is used and keeping track of such
identifier by a mytool belief; then, it triggers the execution
of the operation on the tool (by means of the use CArtAgO
primitive) and then exploits a sensor to perceive the result
(by means of the sense CArtAgO primitive). The result
is represented by an observable event sin(X,Y) generated
by the signal primitive executed in the computeSin
operation. It’s worth remarking that the computation of the
sine value is done asynchronously w.r.t. the agent activities:
synchronisation occurs when the agent inspects the sensor to
perceive the result.

This first example – in spite of its simplicity – is useful
to give a taste of the approach: instead of extending the
agent architecture by means of new (internal) sin action, in
this case the extension is achieved by means of en external
calculator tool that an agent can instantiate and use. Being ex-
ternalised into an artifact, the functionalities can be exploited
by any kind of agent whose platform has been integrated with
CArtAgO—besides Jason, other examples include Jadex,
2APL, AgentFactory: so the approach promotes extensibility
and reusability across heterogeneous agent languages and
platforms.

C. Modules as State-ful Tools

Then, besides state-less modules, artifacts can be useful
to encapsulate functionalities involving a state and providing
actions working with such state, functioning as personal state-
ful tools. The state can be either an observable part, i.e that
can be considered part of the agent knowledge, or a hidden
part of the module. The observable part is mapped onto artifact
observable properties, which are then perceived by the agent
observing the artifact as percepts (mapped into beliefs in
cognitive architectures).

As an example, consider the Calculator2 artifact de-
picted in Fig. 2, providing a support for executing a sequence
of operations, keeping track and making it observable the

updated result by means of the result observable property
and providing functionalities to undo the operations. Fig. 2
shows an example of an agent using the calculator, adding
repeatedly a value (3.0) by “pressing the button” add until it
perceives that the result is greater than 10. After that, it restores
the previous result (which is 9, in this case) and prints it on
the console.

This second example shows how the approach supports
the management of observable information of the module on
the one side and information hiding on the one side: inner
structures needed to realise the module functionalities – such
as the list of the partial results, to enable undo and redo in the
example – are implemented by artifact inner data structures,
which are accessed and changed by artifact operations.

D. Modules Wrapping External Actions
In previous examples we considered modules encapsulating

sets of internal actions: besides these ones, modules can
be also devised so as to extend agents with capabilities to
access/interact with external resources (such as data-base),
including resources to communicate with external systems
(such as network channels, GUIs). In that case, the externali-
sation perspective accounts for implementing such modules as
tools wrapping the access and interaction with those external
resources, hiding as much as possible the low-level details
related to the use of the resources and providing the agent a
high-level interface for exploiting the functionalities. Actually
CArtAgO provides – as an auxiliary library – a basic set of
artifact types that can be exploited to this end, including tools
for working with ODBC data-bases, for using socket-based
network channels, and for creating and managing graphical
user interfaces. Examples of this kind of tools can be found
in CArtAgO distribution—not reported here for lack of space.

E. Modules Wrapping Mechanisms for Interaction, Coordina-
tion, Organisation

Agent coordination is a main issue in multi-agent system
programming; direct communication models – including ap-
proaches based on speech-act based conversations – are not al-
ways the most effective solution to achieve agent coordination



public class Calculator2 extends Artifact {
Stack<Double> results;

@OPERATION void init(){
defineObsProperty("result",0);
results = new Stack<Double>();

}
@OPERATION void add(double x){
double res = getObsProperty("result").doubleValue();
results.push(res);
updateObsProperty("result",res + x);

}
@OPERATION void sub(double x){
double res = getObsProperty("result").doubleValue();
results.push(res);
updateObsProperty("result",res - x);

}
@OPERATION void undo(){
if (!results.isEmpty()){
updateObsProperty("result",results.pop());

} else {
signal("result_stack_empty");

}
}

}

!doComputations.

+!doComputations \
<- ?mytool("tools.Calculator2",Calc);

cartago.focus(Calc);
!doSums(Calc).

+!doSums(Calc): result(X) & X<=10
<- cartago.use(Calc,add(3.0),s0);

cartago.sense(s0,op_exec_completed("add"));
!doSums(Calc).

+!doSums(Calc): result(X) & X>10
<- cartago.use(Calc,undo,s0);

cartago.sense(s0,op_exec_completed("undo"));
cartago.observeProperty(Calc,result(Y));
cartago.use(console,print("Final value: ",Y)).

Fig. 2. (Left) State-full extension of the Calculator, exploiting observable properties. (Right) Jason agent exploiting the calculator.

public class Semaphore extends Artifact {
int count;

@OPERATION void init(int startCount){
count = startCount;

}

@OPERATION(guard="isFree") void acquire(){
count--;

}

@GUARD boolean isFree(){
return count > 0;

}

@OPERATION void release(){
count++;

}
}

!doJob.

+!doJob
<- !locateTool("tools.Semaphore","cs",[1],Tool);

!work(Tool).

+!work(Tool)
<- cartago.use(Tool,acquire);

!doMyCriticalTask(0);
cartago.use(Tool,release);
!work(Tool).

+!doMyCriticalTask(C) : C < 10
<- .println(C); .wait(10); !doMyCriticalTask(C+1).

+!doMyCriticalTask(10).

+!locateTool(Type,Name,Args,Id) : not tool_avail(Name)
<- cartago.lookupArtifact(Name,Id).

-!locateTool(Type,Name,Args,Id) : not tool_avail(Name)
<- +˜tool_avail(ToolName); !locateTool(Type,Name,Args,Id).

+!locateTool(Type,Name,Args,Id) : ˜tool_avail(Name)
<- cartago.makeArtifact(Name,Type,Args,Id).

-!locateTool(Type,Name,Args,Id) : ˜tool_avail(Name)
<- -˜tool_avail(Name); !locateTool(Type,Name,Args,Id).

Fig. 3. (Left) A Semaphore artifact, that can be exploited as a tool for extending agents with basic synchronization capabilities. (Right) Jason agent
exploiting the Semaphore for realising critical sections

and various kinds of interaction-oriented and coordination-
oriented mechanisms can be devised to this end. From an
agent programming language perspective, the implementation
of these mechanisms typically accounts for extending the basic
agent language with a specific set of primitives tailored to
provide some kind of coordination/organisation functionalities.
This strongly reminds coordination languages [7], which are
orthogonal to classical computational languages (such as C,
Java, Prolog) and extend them with basic coordination prim-
itives to enable communication and synchronisation. Linda is
a well-known example of coordination language [6]. Actually,
in the context of multi-agent systems this occurs also for
organisation: languages such as J-MOISE [9], for instance,
extends the basic Jason language with MOISE organisational
primitives.

This case is similar to the previous one, since such primi-
tives can be considered external actions involving some kind
of inter-actions with other agents. By adopting externalisation,

such capabilities can be encapsulated in proper artifacts,
extending agents with coordination capabilities without the
need of extending the agent language. Differently from the
previous cases, these artifacts are meant to be shared by the
agents – as a kind of shared modules – providing operations
enabling and ruling the interaction among the agents exploiting
them.

As a simple example, consider here the problem of extend-
ing an agent with the capability of executing critical sections,
which require the coordination of all the agents running in
the same environment. To this end, we can simply use a
semaphore artifact functioning as a shared lock by the agents,
providing two basic operations: to acquire it – to be used in
the prologue of the critical section – and to release it – to be
used in the epilogue of the section. Fig. 3 shows on the left
the semaphore artifact and on the right an agent using it to
realise a critical section. In this case all agents interact with the
same artifact—called cs in the example. From an agent (and



usageprot compute_sin {
:function sin(X,Y)
:body {

locateMyTool(ToolId);
freshSensor(S);
use(ToolId,computeSin(X),S);
sense(S,sin(X,Y)).

}
}

!doComputations
<- !setup;

!doTheJob.

+!doTheJob
<- cartago.consultManual("tools.Calculator");

cartago.consultManual("tools.Console").

+!doTheJob
<- !sin(1.57,Y);

!print("The sin value of 1.57 is ",Y).

Fig. 4. (Left) A usage protocol defined in the Calculator manual (Right) Jason agent exploiting the manual to use the Calculator

agent programmer) perspective, this can be seen as a facility
extending the basic agent coordination capabilities, alternative
to the use of communication protocols. The interested reader
can find more complex examples of coordination tools in
CArtAgO distribution: among the other the TupleSpace
artifact, which in the perspective of this paper can be framed
as a module extending agents with the Linda coordination
language.

III. INTERNALIZATION: USING ARTIFACTS AS AGENT
MODULES

Actually, a main problem of externalisation is the level of
abstraction adopted for allowing an agent to access and exploit
the new capabilities provided by the modules: when program-
ming agents exploiting modules externalised into artifacts,
the programmer must specify the details related to artifacts
use and management. We tackle this problem by means of
internalization.

Internalization accounts for introducing a proper abstraction
layer which makes it possible to exploit artifacts functionalities
in terms of agent actions, abstracting as far as possible –
from an agent programmer point of view – from the low-
level mechanics of artifact management and use. This can be
achieved by exploiting artifacts manual. Being a feature of
the basic artifact abstraction, the manual is that document
providing a machine-readable description – written by the
artifact developer – of artifact functionalities and operating
instructions [12], [18]. Such information are meant to be
dynamically read, interpreted and internalized by the agent,
embedding such a knowledge in terms of proper plans about
how to use the artifacts of that type and when.

Here we focus on the operating instructions, as that part
of the manual describing usage protocols, i.e. high-level plans
encapsulating sequences of low-level operations to be executed
in order to exploit artifact functionalities. In current model, a
usage protocol is characterised by a function3, which defines
the functionality to be exploited, a precondition, defining the
condition under which the functionality can be exploited, and
a body, as a sequence of actions. Fig. 4 shows an example
of usage protocol defined in the manual for the calculator,
to exploit the sine function. A simple first-order logic-based
language is used to define the protocols: the complete syntax
and semantics of the language is not reported here for lack

3The term “function” here must be interpreted as “functionality”, so not
related to functional programming languages or mathematical functions

of space, we describe the language informally by means of
concrete examples.

The function is specified by means of :function tag and
is represented by a logic term, possibly containing parameters
detailing input and output (in terms of unbounded variables)
information characterising the function. In the calculator ex-
ample, sin(X,Y) is the function of the usage protocol to
compute the sine function. The function of a usage protocol is
directly linked to agent goals: a usage protocol with a function
func is mapped into agent plan(s) that are triggered to achieve
goals matching func, according to some kind of matching
function that depends on the agent architecture adopted. In
the case of Jason agents, for instance, the usage protocol
is triggered to achieve goals of the type sin(X,Y): in the
example (Fig. 4, on the right) this happens by means of the
!sin(1.57,Y) action.

The precondition can be specified by the :precond tag
and is represented by a logic expression specifying the condi-
tions that must hold concerning either the function parameters
or agent beliefs4 (which typically can include the state of the
observable properties of the artifact). If missing, the default
value of the expression is true. Preconditions are used in the
second example (Fig. 5), showing the manual of the semaphore
artifact described in Subsection II-E, providing high-level
usage protocols to execute critical sections. In particular,
two alternative protocols are specified for entering a critical
section, one to be used when the agent is not already inside
the critical section and the other one in the opposite case. The
belief inside_cs(ToolId) – added by one protocol when
the entering succeeds – is used to distinguish this case.

The body – specified by means of the :body tag – contains
a sequence of actions, including basic CArtAgO actions (use,
sense, focus, etc.), auxiliary actions to locate artifacts and
internal actions for inspecting and updating the belief and goal
base of the agent. From a syntactical point of view, ; is used
as sequence operator, +Bel and -Bel is used to add and
remove beliefs and . to indicate the end of the plan.

On the agent side, two further actions are provided
respectively for consulting and forgetting the content of
a manual, consultManual(ArtifactTypeName) and
forgetManual(ArtifactTypeName)5. By consulting

4The notion of “belief” can be replaced here with “knowledge” for agent
programming languages not having that concept

5the parameter does not refer to the name of a specific existing artifact, but
to the name of an artifact type, which must be available by current workspace



usageprot enter_critical_section1 {
:function enterCS
:precond not inside_cs(_)
:body {
locateTool("Semaphore","cs",ToolId);
use(ToolId,acquire); +inside_cs(ToolId).

}}

usageprot enter_critical_section2 {
:function enterCS
:precond inside_cs(_)
:body {}}

usageprot exit_critical_section {
:function exitCS
:precond inside_cs(ToolId)
:body {
use(ToolId,release); -inside_cs(ToolId).

}}

!doJob
<- !setup;

!work.

+!setup
<- cartago.consultManual("tools.Semaphore");

cartago.consultManual("tools.Console").

+!work
<- !enterCS;

!doMyCriticalTask(0);
!exitCS;
!work(Tool).

+!doMyCriticalTask(C) : C < 10
<- !println(C);

.wait(10);
!doMyCriticalTask(C+1).

+!doMyCriticalTask(10).

Fig. 5. (Left) Usage protocols defined in the Semaphore manual for doing critical sections (Right) Jason agent executing critical sections exploiting the
usage protocols

the manual, the practical knowledge contained inside is fetched
and translated into agent local plans, which are triggered
by achievement goals which have the same signature of the
function.

The key point here is that the agent programmer has not
to be aware and explicitly code the usage protocol, which is
specified – instead – by artifact developers: s/he must simply
know the interface of the usage protocol, in terms of the
function and beliefs involved. So the approach promotes a
strong separation of concerns and finally more compact agent
programs. This is exemplified by the source code of the Jason
agent in Fig. 5, whose behaviour is analogous to the one in
Subsection II-E but where !enterCS and !exitCS are the
only lines of code that the agent programmer has to write to
let the agent enter and exit a critical section.

IV. RELATED WORKS

Agent modularisation is a main open issue in agent pro-
gramming languages and various solutions have been proposed
in literature.

In [3], the notion of capability has been introduced and
implemented in the JACK commercial Java-based multi-agent
framework. Capabilities represent a cluster of components of
a BDI agent, both encapsulating beliefs, events and plans
and promoting global meta-level reasoning over them. From a
software engineering perspective – which is the main perspec-
tive of this paper – capabilities enable software reuse, being
building blocks that can be reused in different agents. This
notion of capability is further refined and improved in Jadex,
a Java and XML based BDI agent platform [2]. Capabilities
are here generalised and extended so as to support an higher
degree of reusability, devising a mechanism that allows for
designing and implementing BDI agents as a composition of
configurable agent modules (capabilities) which are treated as
black-boxes exporting interfaces in line with object-oriented
engineering principles.

A somewhat different but related idea of modularisation is
discussed in [11], in which a modular BDI agent programming
architecture is proposed, mainly targeted at supporting the de-
sign of specialised programming languages for single agent de-

velopment, and at providing transparent interfaces to existing
mainstream programming languages for easy integration with
external code and legacy software. The proposed architecture
is independent to the internal structure of its components and
agent reasoning model, and uses interaction rules to define
the connections between the design components. This draws a
clear distinction between knowledge representation issues and
their dynamics, and promotes the design and development of
specialized programming languages.

A goal-oriented approach to modularisation for cognitive
agent programming languages is proposed in [17], suggesting
agent goals as the basis of modularisation. The approach is
then discussed providing a formal semantics in the context
of the 3APL agent programming language. A similar notion
has been proposed in the agent language GOAL [8] where a
module is a component within an agent encapsulating policy-
based intentions to be triggered in a particular situation. This
approach combines the knowledge and skills to adequately
pursue the goals of the agent in that situation and is used
to realize a mechanism to control nondeterminism in agent
execution.

A role-based approach to modularisation and reuse has been
proposed in the context of AgentFactory agent platform and
ALPHA programming language. To engender code reuse the
framework makes use of the notion of commitments and role
template [4].

Finally, to authors’ knowledge the most recent approaches
to modularity have been introduced in the 2APL and Jason
agent platforms. In the former, similarly to the other related
works, a module is considered as an encapsulation of cognitive
components. The added value of authors’ approach is the
introduction of set of generic programming constructs that
can be used by an agent programmer to perform a variety of
operations on modules, giving agent programmers full control
in determining how and when modules are used. In that way
modules can be used to implement a variety of agent concepts
such as agent role and agent profile [5]. The latter proposes a
mechanism for modular construction of Jason agents from
functionally encapsulated components – containing beliefs,
goals and plans – so as to improve the support of the language



for the development of complex multi-agent systems, in an
agent-oriented software engineering perspective [10].

In all these approaches modules are components inside
agents. In this paper we explored a dual perspective, which
allows for implementing modules as components outside the
agents, externalised in proper tools and artifacts that agents
can exploit (and possibly share) for their tasks. This allows
for fruitfully integrated the approach described in this paper
with existing ones, promoting a strong separation of concerns
in programming agents, using – on the one side – agent
language/architecture and related module mechanisms to de-
fine and modularise only those aspects that strictly concern
agent internal aspects (state update and action selection in
general, deliberation and means/ends reasoning in cognitive
architectures); on the other side, artifact-based computational
environments to engineer and modularise all those resources
and tools that agents may exploit to achieve their tasks.

V. CONCLUSION AND FUTURE WORKS

In this paper we discussed a novel perspective to deal
with agent modularisation in multi-agent system programming,
based on the availability of artifact-based computational en-
vironments. The approach is not meant to be alternative to
existing approaches, but rather a complimentary strategy which
aims at improving the level of reusability, maintainability,
extensibility – including dynamic extensibility – of multi-
agent-based software systems.

Starting from this basic idea, now several points need to
be further developed. The basic externalisation model must
be improved so as to manage aspects related to protection:
for instance, devising a strategy to prevent agents to access
personal tools (modules) of other agents. Then, the language
adopted to define the usage protocols, described in Section III,
currently does not tackle some main problems that are im-
portant in the practice: two main ones are the management
of name clashes (between the function and beliefs defined
by the protocol and existing plans/goals/beliefs of the agents
or other usage protocols) and the management of failures
(currently mapped tout-court onto agent plan failure). Also
no formal semantics has been devised yet. These points are
part of future works. Also, the model currently adopted to
describe usage protocols – in terms of function, preconditions,
and a body – can be considered just a first step: some other
further features will be explored, such as the possibility to
define – besides preconditions – also invariant conditions,
stating the conditions that must hold for all the duration of the
usage protocol, and post-conditions, i.e. conditions that must
hold when the protocol has completed. Besides conditions
expressing the correctness of the protocol, tags could be used
to support the reasoning about the tools (modules), such as
an effect tag to specify the expected state of the artifact(s)
and of agent beliefs by successfully executing the protocol,
towards a truly cognitive use of artifacts/modules [13], [18].

Finally, in order to validate the approach, we plan to identify
specific domains/applications to make it clear the advantages

of externalisation/internalization, eventually integrating differ-
ent cognitive agent programming languages/platforms besides
Jason, such as 2APL and Jadex.

REFERENCES

[1] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[2] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the capability
concept for flexible BDI agent modularization. In Programming Multi-
Agent Systems, volume 3862 of LNAI, pages 139–155. Springer, 2005.

[3] P. Busetta, N. Howden, R. R onnquist, and A. Hodgson. Structuring BDI
agents in functional clusters. In N. Jennings and Y. Lespèrance, editors,
Intelligent Agents VI, volume 1757 of LNAI, pages 277–289. Springer,
2000.

[4] R. Collier, R. R. Ross, and G. M. O’Hare. Realising reusable agent
behaviours with ALPHA. In Multiagent System Technologies, volume
3550 of LNCS, pages 210–215. Springer, 2005.

[5] M. Dastani, C. Mol, and B. Steunebrink. Modularity in agent program-
ming languages: An illustration in extended 2APL. In Proceedings of
the 11th Pacific Rim International Conference on Multi-Agent Systems
(PRIMA 2008), volume 5357 of LNCS, pages 139–152. Springer, 2008.

[6] D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, January 1985.

[7] D. Gelernter and N. Carriero. Coordination languages and their signifi-
cance. Commun. ACM, 35(2):96, 1992.

[8] K. Hindriks. Modules as policy-based intentions: Modular agent
programming in GOAL. In Programming Multi-Agent Systems, volume
5357 of LNCS, pages 156–171. Springer, 2008.

[9] R. H ubner, JomiFred Bordini and G. Picard. Jason and MOISE+:
Organisational programming in the agent contest 2008. In Dagstuhl
Seminar on Programming Multi-Agent Systems, volume 08361, 2008.

[10] N. Madden and B. Logan. Modularity and compositionality in Jason.
In Proceedings of International Workshop Programming Multi-Agent
Systems (ProMAS 2009). 2009.

[11] P. Novák and J. Dix. Modular BDI architecture. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1009–1015, New York, NY, USA,
2006. ACM.

[12] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[13] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-directed
interactions in artifact-based MAS: Jadex Agents playing in CArtAgO
environments. In Proceedings of Intelligent Agent Technology 2008 (IAT
’08). IEEE/ACM, 2008.

[14] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hubner, and M. Das-
tani. Integrating artifact-based environments with heterogeneous agent-
programming platforms. In Proceedings of 7th International Conference
on Agents and Multi Agents Systems (AAMAS08), 2008.

[15] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment pro-
gramming in CArtAgO. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Lan-
guages, Platforms and Applications, Vol. 2, pages 259–288. Springer,
2009.

[16] A. Ricci, M. Viroli, and A. Omicini. The A&A programming model &
technology for developing agent environments in MAS. In M. Das-
tani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–
109. Springer, 2007.

[17] M. B. van Riemsdijk, M. Dastani, J.-J. C. Meyer, and F. S. de Boer.
Goal-oriented modularity in agent programming. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1271–1278, New York, NY, USA,
2006. ACM.

[18] M. Viroli, A. Ricci, and A. Omicini. Operating instructions for
intelligent agent coordination. The Knowledge Engineering Review,
21(1):49–69, Mar. 2006.

[19] D. Weyns, A. Omicini, and J. J. Odell. Environment as a first-class
abstraction in multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 14(1):5–30, Feb. 2007. Special Issue on Environments for
Multi-agent Systems.


