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Abstract—This paper discusses the security issues in data
driven coordination languages. These languages rely on a data
space shared by the agents and used to coordinate their activities.
We extend these languages with a main distinguishing feature,
which is the possibility to define fine-grained security conditions,
associated with every datum in the shared space. Two main ideas
makes it possible: the consideration of an abstraction of agents’
states in the form of data at language level and the introduction of
a richer interaction mechanism than state-of-the-art templates.
This novel security mechanism allows both agents and system
designers to prohibit undesirable interactions.

I. INTRODUCTION

When designing logically distributed applications and open
Multi-Agent Systems (MAS), developing applications without
knowing either the overall structure of the system or the
agents that will be functioning in it is a challenge. Data driven
coordination languages, with the pioneer language Linda [1]
and its extensions, provide a great deal of flexibility and are
a promising approach to meet this challenge. These languages
are based on the notion of a shared data repository composed
of data used by the agents to interact and to synchronize
their activities. Agents communicate by exchanging tuples via
an abstraction of an associative shared memory called the
tuplespace. A tuplespace is a multiset of tuples (tuples dupli-
cation is allowed) and is accessed associatively (by content)
rather than by address, by specifying a template. Every tuple is
a sequence of one or more typed values and every template is a
sequence of one or more typed values or formal fields. Every
tuple field matches with the corresponding template field if
they have the same value or are of the same type.

Relying on a shared space for agent interaction naturally
handles open systems design [2]. The advantage is that they
provide the possibility for new agents to join the system and,
since all the agents have a common interlocutor (the shared
space), they don’t have to manage an up-to-date address book
of the other agents of the system. Nevertheless, the openness
management implies a secure relationship between the agents
and the shared memory. The data driven coordination model
has to deal with the following security threats [3]: 1) threat
on authenticity; 2) threat on confidentiality; 3) threat on
availability. A threat on authenticity occurs when an agent acts
instead of another agent. The data driven coordination model
is designed to promote anonymous interaction, but if the tuples
contain values related to the agents that insert, read or consume

it then the authenticity of these data has to be validated.
For example, in [4] the authors present a messaging service
where the interaction between the agents is mediated by a
broker that is grounded on a tuplespace. In this application,
the authenticity of the agents related to a message exchange
has to be guaranteed. The confidentiality threats are related
to the interception by an agent of another agent’s confidential
information or message. Following the data driven approach,
any agent can read/remove any tuple stored in the tuplespace
simply by exploiting formal fields (variables) [1], which act as
wildcards [5]. Therefore, a template having two wildcard fields
can be used to read or remove any tuple containing two data
fields [4]. The threats on availability concern the consequence
of the deletion and insertion operations on the behavior of the
tuplespace. The deletion of information is a consequence of
the lack of confidentiality and implies that it is not possible to
guarantee the correct behavior of the system. The threat related
to the addition of information concerns malicious agents that
can insert an unbounded number of tuples; in such a way, since
the manager of the space has to handle any tuple’s insertion
operation, a process can generate a denial of service attack
[4].

In data driven coordination languages, security is generally
enforced by using multiple (logical) spaces or by stating
“Interaction Laws”. With multiple spaces (e.g. Klaim [6],
RBAC and TucSon [7], SecSpaces [8] and SecOS [9]), two
agents that wish to exchange confidential data use a space
that is known only by the two of them. However, security
with multiple spaces is defined in a coarse-grained way, since
accessing one space gives the possibility to access all of its
data, and being excluded from one space means not having
access to any of its data. The laws in LGI [10] allow data
to be secured by specifying conditions on the states of the
agents and the content of the data. Tuple-space reactions are
associated with agents’ actions so as to always result in a
coherent configuration. However, agents cannot manage the
security of the data they add, and only the designer can specify
security conditions.

We would like to equip data driven coordination languages
with a security mechanism that allows for the protection of
the exchanged data in a fine-grained way. We want to let
agents specify, when they add a datum to the data space,
the conditions under which it can be read or taken by others.



We also would like the designer of the system to specify the
conditions under which an agent can or cannot add a certain
datum to the space, following the application logic. To do so,
we perform several modifications of the shared space model,
and propose a new language, called LACIOS (Language for
Agent Contextual Interaction in Open Systems), which is the
linguistic embodiment of the modified model.

In [5], the authors classify secure data driven languages into
entity driven and knowledge driven languages. The idea behind
the knowledge oriented approach is that tuple spaces, tuples
or single data fields are decorated with additional information
and an agent can access the resources only in the case they
prove their knowledge of these information. In the case of
the entity oriented approach, additional information associated
to resources list the entities which are allowed to access the
resources. Our proposal can be classified as an entity oriented
approach. However, instead of listing the agents that can access
a datum, in LACIOS these agents are described symbolically,
i.e. their properties are defined without pointing them namely.

The remainder of this paper is structured as follows. We give
an overview of LACIOS in section II. Section III gives the
basic syntax of our language; Section IV addresses the security
issue, and section V provides the complete specification of
agents’ behaviors. Section VI presents the programming lan-
guage JAVA-LACIOS. The proposal is discussed with respect
to the state of the art in section VII before concluding with
further lines of research.

II. OVERVIEW OF Lacios

A MAS written in LACIOS is defined by a dynamic set of
agents interacting with an environment, which is composed of
a dynamic set of objects. To illustrate the syntax of LACIOS,
an example application is used throughout the paper. In this
example, human travelers are in a train station in which
schedules, booking, payment services and information sources
coexist. Two agent types are considered in here: Traveler
agents represent travelers wishing to make a journey and Train
agents represent trains, and generate information concerning
future departures, arrivals, delays, etc. All these agents interact
by exchanging data via a shared space in the same way as for
all data driven coordination models.

A MAS written in LACIOS is an open system in two ways.
As for every data driven language, agents in LACIOS can
join and leave the system freely. In addition, external - non
modeled - systems and users can interact with the MAS. As
we will define it later, users (e.g. travelers) interact with the
MAS by instantiating the values of certain variables in the
code of the agents that represent them. External systems (e.g.
trains) can interact with the MAS by instantiating variables
with values as well. They can also execute agents that interact
with the MAS Environment directly. The figure 1 illustrates
the MAS architecture. The modeled MAS executes on a host,
where (local) agents add, read and take objects to/from the
MAS environment. Every agent is either independent (like
agent 1), or representing a non-modeled system/user in the
MAS.

The agents that are defined in a LACIOS program are usually
the local agents. The users, external agents and external
systems that are represented by an agent in the MAS are not
modeled, only their actions are observed in the MAS, through
the nondeterministic behavior of the local agent. An agent in
LACIOS is then an entity, that has a state, a local memory
and a nondeterministic behavior. As we will define it later,
the whole behavior of the agent is not defined in LACIOS.
An agent can have a complex behavior, by using additional
operators, besides the standard operations defined in LACIOS.

Fig. 1. LACIOS Architecture

Since agents in LACIOS don’t interact directly, but via the
environment, our definition of an agent is close to the general
definition given by [11]:

Definition 1 (Agent): An agent is a computer system capa-
ble of autonomous action in some environment in order to
meet its design objectives.

From the security point of view, LACIOS has two objectives:
1) to support a global control by the environment of the
insertion by the agents of objects in order to ensure that the
new objects are not fraudulent (authenticity, availability), 2)
to support a local control by the agents that can specify who
can access the object that they add to the environment in
order to ensure their privacy (authenticity, confidentiality and
availability). To do so, agents have to have a state defining
who they are. This is the first modification we perform to
the original model: the consideration of an abstraction of
agents’ states in the form of data at language level. These
states are defined as a set of property←value pairs (e.g.
{identifier ← 10, position ← node1}). Agents’ states in
LACIOS are data representing the state of the agents that are
accessed by the environment only for matching and security
purposes (they are not directly accessible by the other agents).

III. BASIC SYNTAX AND INFORMAL SEMANTICS FOR
Lacios

LACIOS is a data driven language for the design and
implementation of open and secure MAS. For the specification
of agent behavior, four primitives inspired by Linda and a
set of operators borrowed from Milner’s CCS [12] have been
used. An MAS written in LACIOS is defined by a dynamic set
of agents interacting with an environment - denoted ΩENV ,



which is composed of a dynamic set of objects. Figure 2
illustrates the general principle of LACIOS. Agents are defined
by a behavior (a process), a state (data) and a local memory in
which they store the objects they perceive or retrieve from the
environment. Agents can perceive (read only) and/or retrieve
(read and take) objects from the environment. First the four
primitives of LACIOS will be presented; their parameters will
be defined along with the details of the language.

µ ::= spawn | add | update | look

The primitive spawn launches a new agent and provides
it with an initial state and a behavior. An add action adds
an object to the environment. The update primitive changes
locally the old values of the agent’s state to the new ones.

Unlike traditional retrieval primitives, the look primitive
enables agents for both the perception and retrieval of objects
as will be described below. The primitive looks for objects in
the environment that satisfy the agents’ conditions expressed
as parameters. Agents can use their own states in the parameter
expression of a look, which are accessible by the environment
only, when the parameter expression is evaluated. Note that,
the state of an agent cannot be accessed directly by the other
agents (through a look expression). In order to be observable
to the others, an agent has to add an object representing itself
to the environment autonomously (as in Fig. 2, where the
agent decides not to publish a part of its state). Having data
representing agents in the environment allows the agents of
the system to discover each other by simply interrogating the
environment à la Linda.

Fig. 2. General Schema

A. Data structure

For LACIOS, we define a standard information system data
structure: every item of data in the system has a description,
i.e. a set of property←value pairs, and all the properties of
the language are typed. The notions of type, property and
description are defined as follows.

Definition 2 (Types): The types of the language are defined
as type1, . . . , typenbt. Every typei is a set such that ∀(i, j) ∈
{1, . . . , nbt}2, i 6= j, typei ∩ typej = {nil}

Remark 1: We assume the existence of the boolean type in
the language, i.e. ∃i ∈ {1, . . . , nbt}, typei = {true, false,nil}

Notation 1: We denote the set of values supported by the

language as T =
nbt⋃
i=1

typei.

Definition 3 (Property): N is the property space, and is a
countable set of properties. A property π ∈ N is defined by
a type type(π) ∈ {type1, . . . , typenbt}.

The value nil has a twofold use in the syntax of LACIOS.
First, it represents every semantic error in a program. When
a semantic error is encountered, the corresponding expression
is set at nil. Second, a property whose value is equal to nil is
considered as undefined (as if it is nonexistent), and is usually
omitted.

Notation 2: We note unknownπ a value of the type
type(π) that is defined but doesn’t have a value. For instance,
unknowndestination is a value of the same type as the property
destination, whose value is (temporarily) unknown.

A description is composed of properties and their corre-
sponding values.

Definition 4 (Descriptions): DS is the set of descriptions.
A description is a function that maps properties to values, i.e.
d ≡ {π ← vπ | vπ ∈ type(π)}π∈N . The mapping is omitted
when vπ = nil. We use d(π) in order to access the value vπ .
For each description, the set of properties {π | d(π) 6= nil} is
finite.

In LACIOS, each description is associated with an entity,
which can be an object or an agent. Objects are defined by
their descriptions (O is the set of objects), while each agent
is defined by a description (their state), a behavior and a local
memory (A is the set of agents).

For instance, let o1 be an object representing a trav-
eler, do1 could be defined as follows: {id ← “o1”,
destination ← “London”, origin ← “Paris”}. In this
example, do1(origin) is equal to “Paris”.

Definition 5 (Entities): Ω = A ∪ O is the set of entities
of the MAS. Each entity ω ∈ Ω has a description as defined
above denoted by dω . The value of the property π of the entity
ω is denoted by dω(π).

Remark 2: We assume the existence of the type reference
in LACIOS, a value of the type reference designates an entity
in Ω, i.e. ∃i ∈ {1, . . . , nbt}, typei = Ω ∪ {nil}.

B. Expressions

Expressions are built with values, properties and operators,
and are used by agents to describe the data they handle, either
locally or to interact with the environment.

Definition 6 (Operators): Each operator op of the language
is defined by:
• (i) arity(op) The number of parameters of the operator,
• (ii) par(op) : {1, . . . ,arity(op)} → {1, . . . , nbt},
par(op)(i) gives the index of the type of the ith param-
eter of the operator op,

• (iii) ret(op) ∈ {1, . . . , nbt}, the index of the type of the
value resulting from the evaluation of op.



For instance, let type1 ≡ boolean. The operator and is
defined as follows:
arity(and) = 2, par(and)(1) = par(and)(2) = 1 and
ret(and) = 1.

Besides basic operators, additional operators can be defined
by the programmer, specifying complex agents’ processes.
LACIOS is then used mainly for coordination purposes, while
the computational model remains non modeled.

An expression may simply be a value, an operator, or a prop-
erty. For instance, destination 6= “Paris” is a (boolean) ex-
pression. If an expression is a property, it refers to a property of
the agent that is evaluating it. For instance, when destination
appears in the behavior of agent a as in the example above,
it designates the destination of a. If a property companion
of agent a is of the type reference, companion.destination
designates the destination of the companion of a.

Definition 7 (Expressions): Exp is the set of expressions.
An expression e ∈ Exp is generated via the grammar found
in Table I.

e ::= nil
| v , with v ∈ T \nil
| π , with π ∈ N
| op(e, . . . , e) , with op an operator of the language,

and nil doesn’t appear in any e
| π.e , with π ∈ N and type(π) = Ω

TABLE I
SYNTAX OF AN EXPRESSION

In a description, an agent can associate an expression
with a property, instead of a value. The result is a symbolic
description which is transformed into a description when its
associated expressions are evaluated.

Definition 8 (Symbolic descriptions): SDS is the set of
symbolic descriptions. A symbolic description sds ∈ SDS
is a description that maps properties π to expressions eπ , i.e.
sds ≡ {π ← eπ | type(eπ) = type(π)}π∈N .

Below is the definition of the add and update primitives,
together with their symbolic descriptions parameters.

µ ::= . . . | add(sds) | update(sds)

In order to add an object, an agent executes add(sds), and
an object whose description is the evaluation of sds is added
to ΩENV . For instance, add({ticketid ← ticket.id, price ←
ticket.price + 20, owner ← id}) adds an object to the
environment whose owner is equal to the id of the calling
agent, ticketid is equal to the property id of an object in
the memory of the calling agent, referred to by the property
ticket, and whose price is 20 more than the price paid
by the agent. The primitive update(sds) updates a set of
properties of the agent with the evaluation of the expressions
in sds. When update(sds) is executed, the value of every
property π in sds becomes equal to the evaluation of the
corresponding expression eπ . For instance, if an agent a
executes update({budget ← budget − 20, destination ←

“Budapest”}), its budget is decreased by 20 and its desti-
nation becomes “Budapest”.

C. Matching

Since we consider a data structure richer than tuples, we
also use a matching mechanism richer than templates. To do
so, the expressions’ syntax is enhanced with variables, which
designate objects not known by the agent, but which will be
discovered during the matching process and will be replaced
by objects from the environment before their evaluation. Below
is the definition of a variable.

Definition 9 (Variables): X is the set of variables. A
variable x ∈ X is defined by its type type(x) ∈
{type1, . . . , typenbt}.

The syntax of an expression becomes:

e ::= . . . | x.e with x ∈ X ∧ type(x) = Ω

For instance, consider the following boolean expression
e: t.destination = “London” ∧ t.price ≤ budget. In
this boolean expression, t designates an object, unknown for
the moment, where the property destination of t has to be
“London” and the price has to be less than the budget of the
agent for the expression to be evaluated to true. In this case,
the agent executing look with e as a parameter will perceive
or retrieve the object.

We can now provide the complete definition of the primitive
look.

µ ::= . . . | look(sdsp, sdsr, e)

We choose to use a single primitive to access the envi-
ronment. The primitive look(sdsp, sdsr, e), with sdsp and
sdsr symbolic descriptions, allows both object perception and
retrieval (perception and removal from ΩENV ). It blocks until
a set of objects C becomes present in ΩENV such that the
expression e is evaluated to true. When an agent executes
look(sdsp, sdsr, e), the set of objects of the environment C is
selected for matching with e (each variable is unified with an
object from C). The expression e has to be evaluated to true
with this unification for look to be executed. The objects as-
sociated with the variables in sdsp are perceived and those as-
sociated with the variables in sdsr are retrieved. For instance,
the following instruction: look({train ← tr}, {ticket ←
tk}, tr.destination = “London” ∧ tk.price ≤ budget
∧ tk.train = tr.id) looks for two objects that will be unified
with tk and tr. The object associated with tr will be perceived
while the object associated with tk will be retrieved. After this
instruction has been executed, the two objects will be present
in the local memory of the caller agent, which will have two
additional properties of the type reference: ticket, which refers
to the object associated with the variable tk and train, which
refers to the object associated with tr. The object unified with
tk won’t be present in ΩENV anymore.



D. Interaction with External Systems/Users

Consider an agent having two properties destination and
budget that are unknown before the execution. The values of
these properties come from an external system (e.g. a Web
server, a GUI, etc). Here is the description of this agent
which properties will be defined during execution resulting
from their instantiation by an external system: {budget ←
b, destination ← d}, where b and d are variables. Only
the action of the external system will be observed, i.e. the
assignment of values to the variables, while the system itself
is not modeled. We enhance the syntax of an expression with
free variables as follows:

e ::= . . . | x with x ∈ X

The introduction of the variables for the interaction with an
external system is interesting insofar as it clearly separates the
coordination aspect - what the MAS does - from the interaction
with an external system aspect - the context in which the
MAS is running. Thus, in the description {budget ← b,
destination ← d}, regardless of which system is instanti-
ating the variables b and d, the definition of the description
and the behavior of the agent remain unchanged.

IV. SECURITY MANAGEMENT

We have decided to maintain global sharing of the data
between all the agents, and not to isolate them in private
environments, thus following the original Linda model. How-
ever, this choice leads to the same security problems. More
precisely, fraudulent data insertion and retrieval could occur
and the agents and the system designer cannot prevent them. In
LACIOS, the agents are responsible of the objects that they put
in the environment. In order to avoid fraudulent use of these
objects, the language supports two control levels, a global level
for the designer of the system to control the insertion of objects
and a local level for the owner of the objects to control how
their object will be used.

A. Global Control

The designer of the system knows the conditions under
which certain insertions of objects are fraudulent and we
provide him/her with a global control of agents insertions
of objects. A threat to authenticity (when an agent tries
to forge a message for example) is an example of such
fraudulent insertions. More generally, objects added to the
environment might corrupt the coherence of the data according
to the application logic (resulting in two agents with the same
position, or with a new bid that is lower than the current one,
etc.).

Let us consider for instance, the following action:
add({from ← companion2.id, to ←

companion1.id, subject← “coalition”})
This action is fraudulent, since the agent tries to send a mes-

sage with a different id than its own. Therefore, this first class
of threats concerns the security rules that have to be checked
when an add is executed. To overcome threats resulting from
the fraudulent adding of objects to the environment, the system

designer identifies the critical situations and specifies each
one using a security rule s (s ∈ S,S ⊆ Exp is the set of
security rules of the system). An expression s in S is a boolean
expression in which the designer specifies the conditions on
the state of the agent executing add and the conditions on
the description of the object that it adds. To do so, we add
a specific key word that in the syntax of an expression to
designate, in a security rule, the object added by the agent.

e ::= . . . | that.e

For instance, here is the expression preventing an agent
from adding an object that has a property from that is
different from its own: s ≡ that.from = id, where id
designates the identifier of the agent executing the add and
that designates the object added by the agent. When an
agent a executes add({from ← companion2.id, to ←
companion1.id, subject ← “coalition”}), the security rule
specified by the designer is evaluated to false, because
d(from) 6= da(id), and the operation is canceled.

B. Local Control

The agents of the system know best the conditions under
which the perception or retrieval of an object they add is
fraudulent, and we provide them with local control to manage
the observability of their own objects. A confidentiality threat
(e.g. the interception by an agent of another’s confidential
information or message), or a threat to availability (e.g. the
deletion of the agent’s information or message by another
agent) are examples of such fraudulent access. We propose to
allow agents to define the observability rules - on perception
and on retrieval - and to let the environment check that these
conditions are respected.

This is done by enabling an agent, when it adds an object,
to manage its observability, i.e. to identify the situations where
the perception or retrieval of the added object is prohibited. To
do so, the syntax of the primitive add is replaced as follows.

µ ::= . . . | add(sds, ep, er)

where ep and er are boolean expressions. The expression ep
specifies the conditions that an agent has to satisfy to have the
right to perceive the object described by sds, and er defines the
conditions that an agent has to satisfy to have the right to re-
trieve it. When an agent executes look(sdsp, sdsr, e), for each
object o ∈ C (the set of objects selected for matching from the
environment) that is unified with a context variable in sdsp,
the expression ep associated to o has to be evaluated to true,
and for each object o unified with a context variable in sdsr,
the expression er associated with o has to be evaluated to true.
Otherwise, the action look cannot be executed with this set of
objects. When the agent doesn’t want to restrain the perception
or the retrieval of the object described by sds, it assigns true
to ep or er respectively. For instance, let agent a (let’s say
that a’s companion.id = 5) wants to prevent the message
it has addressed to its companion to be retrieved by others,
and to be perceived by any agent but itself (the key word
that has the same semantics here, i.e. it designates the added



object): add({from ← id, to ← companion.id, subject ←
“coalition”}, id = that.from, id = that.to)

Consider an agent b with db(id) = 10 that executes
look({receiver ← r}, {message ← m}, m.to = r.id ∧
r.destination = destination). The agent b is trying to
retrieve a message (object unified with m) and to perceive the
object representing the agent to which m is addressed (object
unified with r), if its destination is equal to its own. Thanks
to the conditions associated with the added object, b won’t be
able to perceive a’s message. Concretely, any matching that
is trying to unify m with a’s message is prohibited by the
environment and is not considered.

Note that, in the development of the security management
defined above, we only take into account the security between
local agents and the environment. By doing so, we make
two assumptions. On the one side, the spawn of an agent
representing an external system, user or agent, has to be
fulfilled following a security protocol to ensure that this is
indeed the agent with the claimed identifier. On the other side,
we assume that local agents don’t try to change their identifiers
with an update throughout the execution of the system, which
is easy to check before the execution of the system. Otherwise,
they could dupe the global control mechanism.

V. SPECIFICATION OF AGENT BEHAVIOR

This section provides the complete definition of an open
MAS written in LACIOS, starting with the complete definition
of the primitives for LACIOS.
µ ::= add(sds) | look(sdsp, sdsr, e) | update(sds) |

spawn(P, sds)
We are now ready to define processes, which define agent

behavior. The primitive spawn(P, sds) launches a new agent
that behaves like the process P and whose description is
the result of the evaluation of sds (its transformation to a
description ds). Below is the definition of a process, which
defines agents’ behaviors.

Definition 10 (Process): Given a set of process identifiers
{Ki}i∈I , a process definition is of the form: ∀i ∈ I,Ki

def
= Pi,

where every Pi is generated via the grammar in Table II.

P ::= 0 (null process)
| µ.P (action prefixing)
| bbP c+ bbP c , where b is a boolean expression (choice)
| P‖P (parallel)
| Kj , for a certain j ∈ I (invocation)
| νX(P ) (variables linking)
µ ::= spawn(P, sds) | add(sds) | look(sdsp, sdsr, e) | update(sds)
with e an expression, sds, sdsp and sdsr symbolic
descriptions

TABLE II
PROCESS SYNTAX

Processes, ranged over by P,Q, . . . represent the programs
of the MAS, and the behavior of its agents. A program can be a
terminated process 0 (usually omitted). It can also be a choice
expression between programs bbP c+ bbP c, where each P is
guarded by the evaluation of a boolean expression: when b is

evaluated to true, the program P is executed. A program can
also be a parallel composition of programs P‖Q, i.e. P and
Q are executed in parallel. A program can be an invocation of
another process whose identifier is the constant Kj , and which
behaves like the process defined by Kj . A program may be a
process prefixed by an action µ.P . Actions are the language
primitives, as defined earlier. The operator ν is introduced
to link free variables in P . The process νX(P ) introduces
nondeterminism in the agents’ behaviors. Indeed, behaves like
P where every free variable (in X) is nondeterministically
linked with a value in its type.

A coordinated MAS is then defined as follows.
Definition 11 (Coordinated MAS): CS = 〈Ω, d,ΩENV ,S〉
• Ω = A]O is the set of entities, composed of A the set

of agents and O the set of objects,
– A ⊆ Ω is the set of agents.
∗ Ωa is the private memory of agent a, Ωa ⊆
O ∪ {a}, i.e. the agent has access to its own
description,

∗ proc(a) is the process defining the behavior of a.
– O ⊆ Ω is the set of objects.
∗ ep(o) returns the predicate specifying the percep-

tion conditions of o, i.e. which agents can perceive
o.

∗ er(o) returns the predicate specifying the retrieval
conditions of o,

• d : Ω → (N → T ) is the description function of the
MAS, each d(ω) is an entity description as described
before (denoted by dω as well),

• ΩENV ⊆ O is the set of objects that are in the environ-
ment,

• S ⊂ Exp is the set of predicates specifying the conditions
that have to be verified, in order for an add to be executed.

VI. THE PROGRAMMING LANGUAGE Java-Lacios

We have defined a language that, following its operational
semantics (cf. [13]), could be implemented in any host lan-
guage. The usual procedure in order to implement a coordi-
nation language is to provide libraries in a host programming
language that can be used by any system wishing to follow
the coordination model (e.g. Klava, which is associated to
Klaim [6]). However, to take full advantage of the language
semantics, it is more useful not to require the programmer
himself/herself to respect the semantics in each system that
he/she implements. This is possible by providing him/her with
a tool allowing to write a program in LACIOS’s syntax, and
to generate a system ready to be executed, with the guarantee
that it respects the language semantics. In particular, we want
to use the operators prefixing, choice and parallel composition
when defining the agents’ behaviors. Java has been chosen as
a target programming language in which a compiled LACIOS
program is translated, because of the relative simplicity of
Thread management, as well as the easy creation of parsers
thanks to the parser generator JavaCC 1.

1http://javacc.dev.java.net/



A JAVA-LACIOS program is a file where both the behaviors
and the initial state of the coordinated MAS are described.
A coordinated MAS is defined by the set of initial agents,
spawned when the program starts, together with the security
rules S. Programmers write their scripts which are parsed and
compiled, generating a Java program. We have proposed a GUI
for JAVA-LACIOS, which displays the ongoing execution, the
current objects in the environment, the current agents’ behav-
iors that are executed, etc. The Fig. 3 illustrates the execution
with a Dial A Ride system that we have implemented [14]. It
is also possible, before the execution, to visualize the graphs
(labeled transition systems) related to the agents’ behaviors.

Fig. 3. Visualization of agents behaviors

The concurrent access to the environment objects with a
look necessitates a synchronization of the add and look calls.
However, an agent calling add has not to be blocked until
the environment releases the lock. To this end, we define a
buffer to which agents can add objects without blocking, while
emptying the buffer is synchronized with the look calls.

when a look is called, the environment is locked while it is
still looking for a matching, to guarantee that an agent does not
access the environment in an incoherent state, and to be sure
that a same object is not retrieved by more than one agent.
If no matching is found, the calling process of the agent is
blocked. The blocked processes are notified when an object
is added to the environment. In this case, the notified process
looks for a matching with the only newly added objects.

An update modifies the agent’s properties locally, but
it however influences its interaction with the environment.
Indeed, if a look is currently executing, the matching have to
be attempted with the current properties of the agent. When
the properties of an agent change, and when they concern
properties for which an ongoing look has attempted to match,
the execution of the look is executed again, and the pending
look requests are notified since they might be concerned by
the newly changed properties as well.

VII. DISCUSSION AND RELATED WORK

Security is generally enforced by using multiple (logical)
spaces, by stating “Interaction Laws” or by defining roles and
access rights associated to them. With multiple spaces (e.g.
Klaim [6], SecSpaces [8], [4] and SecOS [9]), two agents,

which wish to exchange confidential data use a space that is
known only by the two of them. However, when security is
guaranteed by isolating the data in private spaces, accessing
one space gives the possibility to access all of its data, and
being excluded from one space means not having access to any
of its data. In LACIOS, agents have a state, and an agent can
protect its data in a fine-grained way (at object level) without
knowing the other agents, which allows secure interaction with
complete data sharing. Roles and role access rights (like in
the RBAC model associated to TuCSon [7]) are an additional
layer on top of multiple spaces, and therefore security is also
defined in a coarse-grained way.

In [8], specific cryptographic fields are added to the tuples
to authenticate the producer of an item of data, for instance,
as well as to identify the readers/takers of that item. This
authentication is carried out in LACIOS thanks to agents’ states
and security rules, but it is nevertheless still possible to define
a specific property for cryptographic fields.

The laws in LGI [10] allow data to be secured by specifying
conditions on the states of the agents and the content of the
data. Tuple-space reactions are associated with agents’ actions
so as to always result in a coherent configuration. Nevertheless,
two points differentiate LACIOS from LGI. First laws in LGI
are defined by the system designer only, whereas agents cannot
do this. Second, laws are active rules, which poses the problem
of non-termination of the matching process (action and a chain
of endless reactions). In LACIOS, the rules cancel perceptions
or retrievals but don’t launch any reaction, so the problem of
non-termination does not occur.

Tagged Sets [15] allow fine-grained protection of data added
to the data space. However, neither agents’ states nor powerful
comparison operators are defined for it as in LACIOS.

In [5], the authors point out that “the secure version of
Lime [ [16] ] is the only one which permits to control output
operations, and SecSpaces [ [8] ] is the only one which permits
to distinguish between the processes that can consume and the
processes that can read a certain tuple”. LACIOS allows for
both insertions control and the distinction between reading a
datum and taking it.

VIII. CONCLUSION AND PERSPECTIVES

The investigation of security issues in data driven coordi-
nation languages has lead us to propose a modified language
allowing for fine-grained protection of exchanged data via the
shared space. This paper has defined LACIOS, which can be
used to model a large number of applications in which agents
join and leave the system freely, where agents interact with
external systems, and where security is crucial. Using LACIOS
makes it easier for open MAS designers to translate the
concepts manipulated by the agents and their interaction needs
to LACIOS syntactic constructs, ensuring information security
and expressing complex constraints. We have demonstrated
this usefulness for a complex transportation application in our
recent paper [14].

Our proposal is an entity oriented approach, and allows for
the control of objects’ insertion, perception and retrieval. It



distinguishes between objects’ perception control and objects’
retrieval control. The addition of agents’ states, of property-
value pairs data model, together with operators and variables
lead us to propose a new language instead of building on top of
an existing one. The formal operational semantics of LACIOS
can be found in [13].

Our future works include the consideration of specific cryp-
tographic properties to ensure authenticity. We are also inves-
tigating the addition of time constructs to LACIOS, inspired by
the works of Busi et al. (e.g. [17]) and Linden et al. (e.g. [18]),
to express temporary objects insertion and to define a deadline
for look before termination with no effect. Interaction over
multiple hosts is very challenging, yet with simple spaces,
and with contextual interaction and the security mechanism,
this becomes even more difficult to fulfill. Since we don’t
program mobile agents (as in Klaim [6] or Claim [19]), and
since as a consequence the agents’ locations are transparent at
the language level, the concern of the environment distribution
is to be tackled at the implementation level. Our ongoing re-
search investigates the definition of architectures and strategies
providing guidelines for environment distribution for LACIOS
implementation.
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