
M. Baldoni, C. Baroglio, J. Bentahar, G. Boella, M. Cossentino, M.
Dastani, B. Dunin-Kȩplicz, G. Fortino, M.-P. Gleizes, J. Leite, V.
Mascardi, J. Padget, J. Pavón, A. Polleres, A. El Fallah Seghrouchni,
P. Torroni, R. Verbrugge (eds.)

Multi-Agent Logics, Languages,
and Organisations

Second International Federated Workshops,
MALLOW’009, Workshops proceedings

Turin, Italy, September 7-10, 2009

MALLOW’009 Home Page:
http://agents009.di.unito.it/MALLOW.html

Preface

The Multi-Agent Logics, Languages, and Organisations Federated Workshops
(MALLOW for short), in its second edition this year after the success of MAL-
LOW’007 held in Durham (UK), is a forum for researchers interested in sharing
their experiences in agents and multi-agent systems. MALLOW’009 was held
at the Educatorio della Provvidenza, in Torino (Italy), from September 7th, 2009
through September 10th, 2009.

In particular, this edition includes the workshops:

– Agents, Web Services and Ontologies, Integrated Methodologies (MALLOW-
AWESOME’009);

– Coordination, Organization, Institutions and Norms in Agent Systems &
On-line Communities (COIN@MALLOW’009);

– Formal Approaches to Multi-Agent Systems (FAMAS’09);
– LAnguages, methodologies and Development tools for multi-agent systemS

(LADS’009);
– Multi-Agent Systems and Simulation (MAS&S’09).

MALLOW-AWESOME’009 wants to stimulate discussion among researchers
working on Agents, Web Services, and Ontologies, in order to help the identifi-
cation and the definition of Methodologies for integrating them. The realisation
of distributed, open, dynamic, and heterogeneous software systems is, in fact,
a challenge that involves many facets, from formal theories to software engi-
neering and practical applications. Scientists in various research areas, such as
Semantic Web, Web Services, Agents, Ontologies, are attacking this problem
from different perspectives. MALLOW-AWESOME’009 attempts to provide a
discussion forum for collecting and comparing such diverse experiences with
the aim of fostering cross fertilization.

COIN@MALLOW’009 belongs to the COIN workshop series, which brings
together the topics of coordination, organization, institutions and norms in the
context of multi-agent systems. This edition of COIN focusses on these issues
in the context of on-line communities, where we seek contributions that explore
the dimensions of social, legal, economic and technological norms as they affect
agent-agent, agent-human, human-human interactions.

FAMAS’09, the fourth edition of the FAMAS workshop series, after FAMA-
S’03 affiliated to ETAPS’03 in Warsaw, FAMAS’06 affiliated with ECAI’06 in
Riva del Garda, and FAMAS’007 affiliated with MALLOW’007 in Durham, aims
at bringing together researchers from the fields of logic, theoretical computer
science and multiagent systems in order to discuss formal techniques for spec-
ifying and verifying multi-agent systems.

LADS’009 aims to offer a rich forum for leading researchers, from both
academia and industry, interested in sharing their experiences about the theory

VI

and practice of formal approaches, programming languages, tools and tech-
niques that support the development and deployment of multi-agent systems.
These are gaining increasing attention in important application areas such as
electronic institutions, semantic web, web services, security, grid computing,
ambient intelligence, pervasive computing, electronic contracting, among oth-
ers.

MAS&S’09 aims at providing a forum for discussing recent advances on the
integration of Simulation and Agent Oriented Software Engineering (AOSE)
methodologies and techniques for the analysis, design, validation and imple-
mentation of Multi-Agent Systems.

MALLOW’009 has hosted also a special event, the COST AT Argumenta-
tion Day, organized by Guido Boella and Leendert van der Torre. The event
discussed new directions in argumentation, such as temporal dynamics, fibring
of argumentation frameworks, modal logics of argumentation, modal provabil-
ity foundations for argumentation, etc. The day was opened by one of the four
MALLOW’009 invited speakers, Dov Gabbay.

Besides Dov Gabbay, the organizers were very honored to have also Fabio
Bellifemine, Alexis Tsoukias, and Franco Zambonelli as invited speakers.

Following the tradition of the previous edition, MALLOW’009 was part of
Agents’009 that includes also EASSS’09, the eleventh edition of the European
Agent Systems Summer School.

This volume contains the proceedings of the five workshops, for a total of
forty-seven high quality papers, which were selected by the programme com-
mittees of the workshops for presentation. The volume is organized as follows.
Besides this overall presentation, each workshop has an introductory essay, au-
thored by the organizers, which presents the workshop, lists the programme
committee members and additional reviewers, the accepted papers with their
authors, and the workshop sponsors. It is followed by the workshop papers.
The table of contents of this volume reports, for each workshop, the page num-
ber of its introductory essay and the first page of the workshop papers.

We would like to thank all authors for their contributions, the members
of the Steering Committee for the precious suggestions and support, and the
members of the Programme Committees and the additional reviewers for the
excellent work during the reviewing phase, the sponsors, the head of the Edu-
catorio della Provvidenza, and all the persons who helped the organization of
this event.

August 22th, 2009

Matteo Baldoni
Cristina Baroglio

Jamal Bentahar
Guido Boella

VII

Massimo Cossentino
Mehdi Dastani

Barbara Dunin-Kȩplicz
Giancarlo Fortino

Marie-Pierre Gleizes
João Leite

Viviana Mascardi
Julian Padget

Juan Pavón
Axel Polleres

Amal El Fallah Seghrouchni
Paolo Torroni

Rineke Verbrugge

VIII

Local Organizers

Matteo Baldoni Università degli Studi di Torino, Italy
Cristina Baroglio Università degli Studi di Torino, Italy
Guido Boella Università degli Studi di Torino, Italy

Workshops Organizers

MALLOW-AWESOME’009 Workshop Organizers

Matteo Baldoni Università degli Studi di Torino, Italy
Cristina Baroglio Università degli Studi di Torino, Italy
Jamal Bentahar Concordia University, Canada
Viviana Mascardi Università degli Studi di Genova, Italy

COIN@MALLOW’009 Workshop Organizers

Julian Padget University of Bath, UK
Axel Polleres National University of Ireland, Galway

FAMAS’09 Workshop Organizers

Barbara Dunin-Kȩplicz Warsaw University, Poland
Rineke Verbrugge University of Groningen, The Netherlands

LADS’009 Workshop Organizers

Mehdi Dastani Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris VI, France
João Leite Universidade Nova de Lisboa, Portugal
Paolo Torroni University of Bologna, Italy

MAS&S’09 Workshop Organizers

Giancarlo Fortino Universit della Calabria, Italy
Massimo Cossentino ICAR/CNR, Italy
Juan Pavón Universidad Complutense Madrid, Spain
Marie-Pierre Gleizes IRIT - Université Paul Sabatier, France

Additional local collaborators

Patrizio Barbini
Roberto Grenna
Elisa Marengo

Marco Martin
Claudio Mattutino

Claudio Schifanella
Serena Villata

IX

Steering Committee

Thomas Agotnes University of Bergen, Italy
Cristina Baroglio Università degli Studi di Torino, Italy
Rafael H. Bordini Federal University of Rio Grande do Sul, Brasil
Virginia Dignum Utrecht University, The Netherlands
João Leite Universidade Nova de Lisboa, Portugal
John Lloyd Australian National University
Pablo Noriega Consejo Superior de Investigaciones Cientı́ficas,

Spain
Amal El Fallah Seghrouchni University of Paris VI, France
Munindar P. Singh North Carolina State University, USA
Rineke Verbrugge University of Groningen, The Netherlands

Sponsoring Institutions

Table of Contents

Agents, Web Services and Ontologies, Integrated Methodologies,
MALLOW-AWESOME’009 (Introductory Essay of the Workshop) 1
Matteo Baldoni, Cristina Baroglio, Jamal Bentahar, Viviana Mascardi

MALLOW-AWESOME’009 Papers . 5

MALLOW Workshop on Coordination, Organization, Institutions and
Norms in Agent Systems & On-line Communities (COIN@MALLOW’009) 73
Julian Padget, Axel Polleres

COIN@MALLOW’009 Papers . 77

Introduction to the Proceedings of FAMAS’09 Formal Approaches to
Multiagent Systems . 117
Barbara Dunin-Kȩplicz, Rineke Verbrugge

FAMAS’09 Papers . 121

LAnguages, methodologies and Development tools for multi-agent
systemS, LADS’009 . 203
Mehdi Dastani, Amal El Fallah Seghrouchni, João Leite, Paolo Torroni

LADS’009 Papers . 207

The 3rd International Workshop on Multi-Agent Systems and
Simulation (MAS&S): Towards an Integration of Agent-Oriented
Software Engineering and Simulation, MALLOW-MAS&S’09 293
Giancarlo Fortino, Massimo Cossentino, Juan Pavón, Marie-Pierre Gleizes

MAS&S’09 Papers . 297

Agents, Web Services and Ontologies, Integrated
Methodologies, MALLOW-AWESOME’009

(Introductory Essay of the Workshop)

Matteo Baldoni∗, Cristina Baroglio∗, Jamal Bentahar†, and Viviana Mascardi‡
∗Dipartimento di Informatica, Università degli Studi di Torino

c.so Svizzera, 185 — I-10149 Torino (Italy)
Email: {baldoni,baroglio}@di.unito.it

†Concordia Institute for Information Systems Engineering, Concordia University
1515 Ste-Catherine Street West, EV7.630

Montreal, Quebec, H3G 2W1, Canada
Email: bentahar@ciise.concordia.ca

‡Dipartimento di Informatica e Scienze dell’Informazione, Università degli Studi di Genova
Via Dodecaneso, 35, 16146 Genova (Italy)

Email: mascardi@disi.unige.it

Abstract

Following the success of the previous edition held in Durham in 2007, MALLOW-AWESOME’009 wants
to stimulate discussion among researchers working on Agents, Web Services, and Ontologies, in order to help
the identification and the definition of Methodologies for integrating them. The realisation of distributed, open,
dynamic, and heterogeneous software systems is, in fact, a challenge that involves many facets, from formal theories
to software engineering and practical applications. Scientists in various research areas, such as Semantic Web, Web
Services, Agents, Ontologies, are attacking this problem from different perspectives. MALLOW-AWESOME’009
attempts to provide a discussion forum for collecting and comparing such diverse experiences with the aim of
fostering cross fertilization.

I. INTRODUCTION

MALLOW-AWESOME’009 is at its second edition this year, the first edition has been held in Durham,
UK [1]. It was born for stimulating discussion among researchers and practitioners working on Agents,
Web Services, and Ontologies, in order to help the identification and the definition of Methodologies for
integrating them.

The realisation of distributed, open, dynamic, and heterogeneous software systems is, in fact, a challenge
that involves many facets, from formal theories to software engineering and practical applications. Sci-
entists in various research areas, such as Semantic Web, Web Services, Agents, Ontologies, are attacking
this problem from different perspectives. MALLOW-AWESOME’009 provides a discussion forum for
collecting and comparing such diverse experiences with the aim of fostering cross fertilization.

MALLOW-AWESOME’009 was in Torino, Italy, held as part of MALLOW’009, the second edition of
Multi-Agent Logics, Languages, and Organisations (Federated Workshops), in Torino, Italy.

This volume contains the six papers and the three extended abstracts that have been selected by the
Programme Committee for presentation at the workshop. Each paper received at least three reviews in order
to supply the authors with a rich feedback. The contributions submitted to MALLOW-AWESOME’009
cover hot topics in the fields of rule-based declarative representation of services, web service a-priori
composition and synchronisation, methodological issues, extensions to SOA/WS systems with agents’
features, extensions of agent platforms with workflow management, applications.

Selected and expanded papers will be published as a special issue in a high-quality international journal:
negotiations with the editors are still on their way.

MALLOW’009: Turin, Italy, September 7-10, 2009

1

We would like to thank all authors for their contributions and the members of the Programme Committee
for the excellent work during the reviewing phase.

Matteo Baldoni
Cristina Baroglio

Jamal Bentahar
Viviana Mascardi
August 13, 2009

II. WORKSHOP COMMITTEES

A. Workshop Organizers
Matteo Baldoni Università degli Studi di Torino, Italy
Cristina Baroglio Università degli Studi di Torino, Italy
Jamal Bentahar Concordia University, Canada
Viviana Mascardi Università degli Studi di Genova, Italy

B. Programme Commitee
Federico Bergenti Università di Parma, Italy
Mario Bravetti Università di Bologna, Italy
Antonio Brogi Università di Pisa, Italy
Federico Chesani Università di Bologna, Italy
Marco Comuzzi City University London, United Kingdom
Virginia Dignum Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris 6, France
Pilar Herrero Universidad Politécnica de Madrid, Spain
Benjamin Hirsch Technische Universitaet Berlin, Germany
Fuyuki Ishikawa National Insitute of Informatics, Japan
Zakaria Maamar Zayed University, United Arab Emirates
Peter Massuthe Humboldt University Berlin, Germany
Julian Padget University of Bath, United Kingdom
Viviana Patti Università di Torino, Italy
Adam Pease Articulate Software, California, USA
Axel Polleres National University of Ireland, Ireland
Alessandro Ricci Università di Bologna, Italy
Birna van Riemsdijk Delft University, The Netherlands
Giovanni Rimassa Whitestein Technologies AG, Zurich, Swiss
Munindar Singh North Carolina State University, USA
Christopher Walton Metaforic, United Kingdom
Hamdi Yahyaoui KFUPM, Saudi Arabia
Nobuko Yoshida Imperial College London, United Kingdom
Muhammad Younas Oxford Brookes University, United Kingdom

III. LIST OF PAPERS

• Joint Achievement of Services’ Personal Goals
by Matteo Baldoni, Cristina Baroglio, Elisa Marengo, Viviana Patti, and Claudio Schifanella

• Verifying A-Priori the Composition of Declarative Specified Services
by Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni

• Web Services Synchronization in Composition Scenarios
by Hamdi Yahyaoui, Zakaria Maamar, Jamal Bentahar, and Khouloud Boukadi

MALLOW’009: Turin, Italy, September 7-10, 2009

2

• Enhancing Engineering Methodology for Communities of Web Services
by Mohamed Elmenshawy Mohamed, Jamal Bentahar, and Rachida Dssouli

• Programming SOA/WS Systems with Cognitive Agents and Artifact-Based Environments
by Michele Piunti, Andrea Santi, and Alessandro Ricci

• Exploiting Agents and Ontologies for Type- and Meaning-Safe Adaptation of Java Programs
by Viviana Mascardi and Davide Ancona

• The CAWE Framework - Enhancing Service Oriented Architecture with Context Awareness (Extended
Abstract)
by Liliana Ardissono, Anna Goy, Roberto Furnari, Giovanna Petrone, and Marino Segnan

• AgentSeeker: an Ontology-based Enterprise Search Engine (Extended Abstract)
by Andrea Passadore, Alberto Grosso, and Antonio Boccalatte

• WADE: An Open Source Platform for Workflows and Agents (Extended Abstractt)
by Giovanni Caire, Elena Quarantotto, and Giovanna Sacchi

IV. SPONSORING INSTITUTIONS

Matteo Baldoni has partially been funded by Regione Piemonte through the project ICT4LAW.

Cristina Baroglio has partially been funded by Regione Piemonte through the project ICT4LAW.

Jamal Bentahar is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC
341422-07: Multi-agent systems for advanced semantic grid computing), by Le Fonds québécois de la
recherche sur la nature et les technologies (FQRNT 2008-NC-119348: An advanced model based on
argumentation and computational logic for secure agent negotiation), and partially by Fonds de recherche
sur la société et la culture (FQRSC 111881: A theory for communication and coordination in artificial
intelligence).

Viviana Mascardi has partially been funded by the Iniziativa Software CINI-Finmeccanica project,
http://www.iniziativasoftware.it/.

REFERENCES

[1] M. Baldoni, C. Baroglio, and V. Mascardi, editors. Proceedings of the Multi-Agent Logics, Languages, and Organisations, Federated
Workshops, MALLOW’007, Agent, Web Services and Ontologies, Integrated Methodologies (MALLOW-AWESOME’007) workshop,
Durham, GB, September 2007.

MALLOW’009: Turin, Italy, September 7-10, 2009

3

MALLOW’009: Turin, Italy, September 7-10, 2009

4

Joint achievement of services’ personal goals
Matteo Baldoni, Cristina Baroglio, Elisa Marengo, Viviana Patti, Claudio Schifanella

Dipartimento di Informatica — Università degli Studi di Torino
c.so Svizzera, 185, I-10149 Torino, Italy

Email: {baldoni, baroglio, emarengo, patti, schi}@di.unito.it

Abstract—Web service specifications can be quite complex,
including various operations and message exchange patterns. In
this work, we give a rule-based declarative representation of
services, and in particular of WSDL operations, that enables the
application of techniques for reasoning about actions and change,
that are typical of agent systems. This makes it possible to reason
on a rule-based specification of choreography roles and about the
selection of possible role players on a goal-driven basis, and allows
us to attack the problem of the joint achievement of individual
goals for a set of services which animate a choreography.

I. I NTRODUCTION

Declarative languages are becoming very important in the
Semantic Web, since the focus started to shift from the
ontology layer to thelogic layer, with a consequent need of
expressing rules and of applying various forms of reasoning1,
an interest also witnessed by the creation of a W3C working
group to define a Rule Interchange Format2. Particularly
challenging applications concernweb services.

One of the key ideas behind web services is that services
should be amenable to automatic retrieval, thus facilitating
their re-use. Nevertheless, retrieval cannot yet be accomplished
automatically as well and as precisely as desired because
the current web service representations (mainly WSDL [1]
and BPEL [2]) and the discovery mechanisms are seman-
tically poor and lack of sufficient flexibility. As shown by
the framework presented in this paper,rule-based declarative
languages, and thereasoning techniquesthat they support,
supply both an expressive formal semantics and flexibility in
the accomplishment of the service selection task.

The need of adding asemantic layerto service descriptions
is not new. Some approaches, e.g. OWL-S [3] and WSMO
[4], propose a richer annotation, aimed at representinginputs,
outputs, preconditionsand effectsof the service. Inputs and
outputs are usually expressed by ontological terms, while
preconditions and effects are often expressed by means of
logic representations. Preconditions and effects are also used
in design by contract, originally introduced by Meyer for the
EiffelTM language [5]. Here preconditions are the part of
the contract which is to be guaranteed by the client; if this
condition is guaranteed in the execution context of a method,
then the server commits to guaranteeing that the postcondition
holds in the state reached by the execution.

On the other hand, there is often the need of using services
not in an individual way but jointly, for executing tasks that

1REWERSE NoE,http://rewerse.net
2http://www.w3.org/2005/rules/wiki/RIF_Working_Group

none of them alone can accomplish. Semantic annotations
alone are not sufficient in this case; it becomes useful to
introduce a notion ofgoal [6], [7], [8], which can be used
to guide both the selection and the composition of services.
The introduction of goals opens the way to the introduction
of another abstraction, that ofagent. Agents include not only
the ability of dealing with goals and of performing goal-
driven forms of reasoning, but they also show autonomy and
proactivity, which are characteristics that help when dealing
with open environments, allowing for instance a greater fault
tolerance (see [9], [10], [11]).

In this work, we take the perspective of a candidate role
player, willing to take part to an interaction, that is ruled
by a choreography. We see such an entity as anenhanced
(proactive) service, made of a declarative description of its
behavior, of the operations that it can execute, of its goals[7],
and with the capability of reasoning (on its own behavior) so
to build orchestationsthat allow the achievement of its goals
(proactiveness). So, for instance, a service that wishes toplay
the role of the “Seller” of a ticket-purchase choreography may
have the aim of “selling tickets”, guaranteed by playing the
choreography role, and have the additional,private goal of
“loyalizing clients”. Notice that personal goals may vary along
time, hence, different participations (to the same choreography
of a same agent as player of the same role) may be character-
ized by different personal goals. For example, the flight ticket
selling service may change at some point its personal goal,
which becomes the “promotion of additional services” offered
by the same company. The presence of additional goals, which
may not be disclosed to the interacting parties, biases the
behavior and the choices of a service. A service will take
on a role only after checking the possible achievement of this
final condition.

Orchestrations compose the interactions ofsets ofservices.
However, reasoning on the goals of the orchestrator alone is
not sufficient. Indeed, in the context of choreographies that
provide a pattern of interaction among services, each service
involved has its own goals, that it tries to pursue. The research
question is: even though each service has proved that there
is a possible way of playing its role, which leads to the
achievement of its personal goal, is it possible to guarantee
the compatibility of these individual solutions? In other words,
will the joint working plan, made of the identified individual
solutions, allow thejoint achievement of all the goalsof the
interacting parties? A ticket selling service that wants todo
some advertisement by sending a newsletter to its clients will

MALLOW’009: Turin, Italy, September 7-10, 2009

5

not match the aims of a client which considers this kind of
information as spam.

In this paper we describe the first steps of a study about
the joint achievementof goals of a set of services, whose
interaction is ruled by a choreography. The approach relies
on a rule-based declarative representation of the choreography
roles and of the interacting services, which extends and
refines the work in [8], [12], [13], exploiting the results about
conservative matching defined in there. The framework enables
the application of techniques for reasoning on the effects of
playing a role in a choreography, thus checking whether the
desired personal goal can be accomplished. The representation
is based on the logic programming language described in
[14], [15]. Behaviors, as roles and service policies, buildupon
WSDL-like basic operations, represented as atomic actions
with preconditions and effects.

The paper is organized as follows. Section II sets the
representation of services and of choreographies that we adopt.
Moreover, it explains how it is possible to reason on such
a representation in order to allow each service to check
the reachability of its goals locally, i.e. by using only the
specification of the desired choreography role. Section III
tackles the joint achievement of personal goals. A running
example is distributed along the pages to better explain the
proposed notions and mechanisms. Conclusions end the paper.

II. A THEORETICAL FRAMEWORK FOR REPRESENTING

AND REASONING ABOUT SERVICES

In this section, we introduce the notation that we use to
represent services and we discuss the problem of verifying
a personal goal. The notation, which is a refinement of the
proposal in [13], is based on a logical theory for reasoning
about actions and change in amodal logic programming
setting and on the languageDYnamics in LOGic, described
in details in [14]. This language is designed for specifying
agents behaviour and for modeling dynamic systems. It is
fully set inside the logic programming paradigm by defining
programs by sets of Horn-like rules and giving a SLD-style
proof procedure. The capability of reasoning about interaction
protocols, supported by the language, has already been ex-
ploited for customizing web service selection and composition
w.r.t. to the user’s constraints, based on a semantic description
of the services [14]. The language is based on a modal theory
of actions and mental attitudes where modalities are used for
representing primitive and complex actions as well as the agent
beliefs. Complex actions are defined by inclusion axioms [16]
and by making use of action operators from dynamic logic,
like sequence “;” and test “?”.

In this framework, the problem of reasoning amounts either
to build or to traverse a sequence of transitions betweenstates.
A state is a set offluents, i.e., properties whose truth value can
change over time, due to the application of actions. In general,
we cannot assume that the value of each fluent in a state is
known: we want to have both the possibility of representing
unknown fluents and the ability of reasoning about the exe-
cution of actions on incomplete states. To explicitly represent

unknown fluents, we use an epistemic operatorB, to represent
the beliefs an entity has about the world:Bf means that the
fluent f is known to be true,B¬f means that the fluentf is
known to be false. A fluentf is undefined when both¬Bf
and¬B¬f hold (¬Bf ∧ ¬B¬f). Thus each fluent in a state
can have one of the three values:true, falseor unknown. For
the sake of readability, we will add as a superscript ofB the
name of the service that has the belief.

Services exhibit interfaces, called port-types, which make a
set of operations available to possible clients. In our proposal,
a service descriptionis defined as a pair〈O,P〉, whereO
is a set of basic operations, andP (policy) is a description
of the complex behavior of the service. Analogously to what
happens for OWL-S composite processes,P is built upon basic
operations and tests, that control the flow of execution.

A. Basic operations

Let us start withbasic operations. According to the main
languages for representing web services, like WSDL and
OWL-S, there are four basic kinds of operations [17] (or
atomic processes, when using OWL-S terminology [3]):

• one-way involves a single message exchange, a client
invokes an operation by sending a message to the service;

• notify involves a single message exchange, the client
receives a message from the service;

• request-responseinvolves the exchange of two messages,
are initiated by the invoker of the operation, which sends
a message to the service and, after that, waits for a
response;

• solicit-responseinvolves the exchange of two messages,
the order of the messages is inverted w.r.t. a request-
response, first the invoker waits for a message from the
service and then it sends an answer.

A basic operation is described in terms of itsexecutability
preconditionsand effects, the former being a set of fluents
(introduced by the keywordpossible if) which must be con-
tained in the service state in order for the operation to be
applicable, the latter being a set of fluents (introduced by the
keywordcauses) which will be added to the service state after
the operation execution. Syntax for basic operations is:

operation(content) causes Es (1)

operation(content) possible if Ps (2)

whereEs and Ps, denote respectively the fluents, which are
expected as effect of the execution of an operation and the
precondition to its execution, whilecontent denotes possible
additional data that is required by the operation. Notice that
such operations can also be implemented as invocations to
other services.

Operations, when executed, trigger a revision process on
the actor’s beliefs. Since we describe web services from a
subjectivepoint of view, we distinguish between the case when
the service is either the initiator (the operationinvoker) or
the servant of an operation (the operationsupplier) by further
decorating the operation name with a notation inspired by [18].

MALLOW’009: Turin, Italy, September 7-10, 2009

6

The two views arecomplementary, so if one view includes the
act of sending a message, the other correspondingly includes
a message reception. With reference to a specific service,
operation≫ denotes the operation from the point of view of
the invoker, whileoperation≪ denotes the operation from
the point of view of the supplier. The view of operations
that is used byinvoker is given in terms of the operation
inputs, outputs, preconditions, and effects as usual for semantic
web services [3]. In the next part of this section, inputs and
outputs are represented as single messages for simplicity but
the representation can easily be extended to sets of exchanged
data, as in Example (II-C). In this case, preconditionsPs in (2)
and effectsEs in (1) are respectively the conditions required
by the operation in order to be invoked, and the expected
effects that result from the execution of the operation. For
what concerns the view of thesupplier, also in this case
the operation is described in terms of its inputs and outputs.
Moreover, we also represent a set of conditions that enable
the executability of the operation. In order to distinguishthem
from the above, in this case we useRs instead ofPs in
(2), calling themrequirements. Finally, we represent a set of
conditions that constitute theside effectsof the operation. In
this case we useSs instead ofEs in (1). For example, abuy
operation of a selling service has as a precondition the fact
that the invoker has a valid credit card, as inputs the credit
card number of the buyer and its expiration date, as output it
generates a receipt, and as effect the credit card is charged.
From the point of view of the supplier, the requirement to the
execution is to have an active connection to the bank, and the
side effect is that the store availability is decreased while the
service bank account is increased of the perceived amount.

Let us now introduce the formal representation of the four
kinds of basic operations (for each operation we report both
views) and of complex operations.

1) One-way: In one-way operations, theinvoker requests
an execution which involves sending an informationmin to
the supplier; the invoker must obviously know the information
to send before the invocation (a) (see Table I). The invoker can
execute the operation only if the preconditions are satisfied in
its current state (a). The execution of the invocation brings
about the effectsEs (c), and the invoker will know that it
has sent an information to the supplier (b). Using OWL-
S terminology,min represents theinput of the operation,
while Ps and Es are its preconditions and effects. One-way
operations have no output. On the other hand, thesupplier,
which exhibits the one-way operation as one of the services
that it can execute, has the requirementsRs (e). The execution
of the operation causes the supplier to know the information
sent by the invoker (f). We also allow the possibility of having
some side effects on the supplier’s state. These effects arenot
to be confused with the operation effects described by IOPE,
and have been added for the sake of completeness.

2) Notify: With ref. to Table I, in notify operations, the
invoker requests an execution which involves receiving an
informationmout from the supplier. The invoker can execute
the operation only if the preconditions are satisfied in its

Fig. 1. The request-response basic operation.

current state (a). The execution of the invocation brings about
the effectsEs (c), and the invoker will know the received in-
formation (b). Using OWL-S terminology,mout represents the
outputof the operation, whilePs andEs are its preconditions
and effects. Notify operations have no input. Thesuppliermust
meet the requirementsRs (e). The execution of the operation
simply causes the fact that the supplier will know the message
to send (f) and that it has sent some information to the invoker
(g). As above, we allow the possibility of having some side
effects on the supplier’s state (h).

3) Request-response:In request-response operations (see
Figure 1), theinvoker requests an execution which involves
sending an informationmin (the input, according to OWL-
S terminology) and then receiving an answermout from the
supplier (the output in OWL-S). The invoker can execute
the operation only if the preconditionsPs are satisfied in
its current state and if it owns the information to send (a)
(see Table I). The execution of the invocation brings about
the effectsEs (d), and the fact that the invoker knows that
it has sent the inputmin to the supplier (b). One further
effect of the execution is that the invoker knows the answer
returned by the operation (c). This representation abstracts
away from the actual message exchange mechanism, which
is implemented. Our aim is to reason on the effects of the
execution on the mental state of the parties [15]. As for one-
way operations, thesupplier has the requirementsRs to the
operation execution (e). It receives an inputmin from the
invoker (f). The execution produces an answermout (g), which
is sent to the invoker (h). As usual, it is possible to have
some side effects on the supplier’s state. On the supplier’s
side, we can notice more evidently the abstraction of the
representation from the actual execution process. In fact,we
do not model how the answer is produced but only the fact
that it is produced.

4) Solicit-response:With ref. to Table I, in solicit-response
operations, theinvoker requests an execution which involves
receiving an informationmout (the output, according to OWL-
S terminology) and then sending a messagemin to the supplier
(the input in OWL-S). The invoker can execute the invocation
only if the preconditionsPs are satisfied in its current state
(a). The execution of the invocation brings about the effects
Es (e). The invoker receives a messagemout from the supplier
(b) then, it produces the input informationmin which is sent
to the supplier, see (c) and (d). As for notify operations, the

MALLOW’009: Turin, Italy, September 7-10, 2009

7

Operation Invoker’s view Supplier’s view

One-Way (a) operation≫ow(min) possible if BInvokermin ∧ Ps (e) operation≪ow(min) possible if Rs

(b) operation≫ow(min) causes BInvokersent(min) (f) operation≪ow(min) causes BSuppliermin

(c) operation≫ow(min) causes Es (g) operation≪ow(min) causes Ss

Notify (a) operation≫n (mout) possible if Ps (e) operation≪n (mout) possible if Rs

(b) operation≫n (mout) causes BInvokermout (f) operation≪n (mout) causes BSuppliermout

(c) operation≫n (mout) causes Es (g) operation≪n (mout) causes BSuppliersent(mout)
(h) operation≪n (mout) causes Ss

Request- (a) operation≫rr(min, mout) possible if BInvokermin ∧ Ps (e) operation≪rr(min, mout) possible if Rs

response (b) operation≫rr(min, mout) causes BInvokersent(min) (f) operation≪rr(min, mout) causes BSuppliermin

(c) operation≫rr(min, mout) causes BInvokermout (g) operation≪rr(min, mout) causes BSuppliermout

(d) operation≫rr(min, mout) causes Es (h) operation≪rr(min, mout) causes BSuppliersent(mout)
(i) operation≪rr(min, mout) causes Ss

Solicit- (a) operation≫sr(min, mout) possible if Ps (f) operation≪sr(min, mout) possible if Rs

response (b) operation≫sr(min, mout) causes BInvokermout (g) operation≪sr(min, mout) causes BSuppliermout

(c) operation≫sr(min, mout) causes BInvokermin (h) operation≪sr(min, mout) causes BSuppliersent(mout)
(d) operation≫sr(min, mout) causes BInvokersent(min) (i) operation≪sr(min, mout) causes BSuppliermin

(e) operation≫sr(min, mout) causes Es (l) operation≪sr(min, mout) causes Ss

TABLE I
THE REPRESENTATION OF THE FOUR KINDS OF BASIC OPERATIONS IN THE PROPOSED FRAMEWORK: EACH OPERATION IS GIVEN IN TERMS OF ITS

PRECONDITIONS AND EFFECTS, FOR EACH OF THEM WE REPORT BOTH THE INVOKER’ S VIEW AND THE SUPPLIER’ S VIEW.

supplier must fulfill the requirementsRs (f). The execution
causes the supplier to know the information to send (g) and
that it has sent such information to the invoker (h). Moreover, it
produces also the knowledge of the informationmin received
from the invoker (i). Side effects on the supplier’s state are
allowed (l).

B. Service policies and choreography roles

The framework accounts also forcomplex behaviorsthat
require the execution of many operations. A service policyP
is a collection of clauses of the kind:

p0 is p1, . . . , pn (3)

wherep0 is the name of the procedure andpi, i = 1, . . . , n, is
either an atomic action (operation), a test action (denotedby
the symbol?), or a procedure call. Procedures can be recursive
and are executed in a goal-directed way, similarly to standard
logic programs, and their definitions can be non-deterministic
as in Prolog. Complex behaviors are used also for represent-
ing choreography roles. Generally speaking, we represent a
choreographyC as a tuple(R1, . . . , Rn) of interacting and
complementaryroles, each roleRi being a subjective view of
the interaction that is encoded.

Also a role R is represented by a pair〈O,P〉. The dif-
ference with services is that it composesspecificationsof
operations and not implemented operations. The player of
each role has to supply appropriate implementations. We call
such specificationsunbound operations. Formally, unbound

Fig. 2. A simple choreography for reserving a flight, expressed as a UML
sequence diagram.

operations are represented as normal basic operations, in
terms of their preconditions and effects. This is one of the
advantages of adopting a logic language: it allows handling
implementations and specifications in the same way. In our
case, both operations and operation specifications are given in
terms of their preconditions and effects.

MALLOW’009: Turin, Italy, September 7-10, 2009

8

C. Flight-purchase

As an example, let’s considersearchFlight, an operation of
a flight reservation service, which is offered by aseller and
can be invoked by abuyer to search information about flights
with given departure (dep) and arrival locations (arr) plus the
date of departure (date). From the point of view of the buyer,
the operation, which is of kind request-response, is:

(a) searchFlight≫rr((dep, arr, date), f lightList) possible if
Bbuyerdep ∧Bbuyerarr ∧Bbuyerdate∧
Bbuyer¬sellingStarted

(b) searchFlight≫rr((dep, arr, date), f lightList) causes
Bbuyersent(dep) ∧Bbuyersent(arr)∧
Bbuyersent(date)

(c) searchFlight≫rr((dep, arr, date), f lightList) causes
BbuyerflightList

(d) searchFlight≫rr((dep, arr, date), f lightList) causes
BbuyersellingStarted

The inputs of the operation aredep, arr, anddate, while the
output isflightList. In this case the setPs contains only the
belief Bbuyer¬sellingStarted (in bold text above) while the
setEs of effects contains the beliefBbuyersellingStarted (in
bold text as well).

From the point of view of the supplier, instead, the operation
is represented as:

(a) searchFlight≪rr((dep, arr, date), f lightList) possible if
true

(b) searchFlight≪rr((dep, arr, date), f lightList) causes
Bsellerdep ∧Bsellerarr ∧Bsellerdate

(c) searchFlight≪rr((dep, arr, date), f lightList) causes
BsellerflightList

(d) searchFlight≪rr((dep, arr, date), f lightList) causes
Bsellersent(flightList)

In this case the setsRs andSs of requirements and side effects
are empty. The operation expects as input the departure and
arrival locations and the date of the flight, and it produces
a flightList, which it sends to its customer, so after the
operation the beliefBsellersent(flightList) will be in its
belief state.

buyTicket is, instead, an example of procedure implemented
by a possible buyer service:

(a) buyTicket is
searchFlight≫rr((dep, arr, date), f lightList);
askChosenFlight≪n (flight);
evaluateAndBuy.

(b) evaluateAndBuy is
noBusiness≫ow(reason).

(c) evaluateAndBuy is
choosePayment≪rr(payMethods, chosenMethod);
doPayment≫rr((credential, payInfo), resNum);
askForMiles≫n (miles).

First, it invokes an operation for searching flights that cor-
respond to a given specification (searchFlight≫rr). After that,

it waits for being asked about the preferred flight, chosen
among the flights list obtained by the previous operation
(askChosenFlight≪n). This evaluation can give either a negative
outcome, hence the interaction is interrupted (noBusiness≫ow)
or the interaction continues with the selection of the payment
method (choosePayment≪rr). Then, the buyer performs the
payment (doPayment≫rr) and, at the end, it is notified about
the obtained miles (askForMiles≫n).

D. Reasoning on goals

In the outlined framework, it is possible to reason about
personal goals by means of queries of the formFs after p,
whereFs is thegoal (represented as a conjunction of fluents),
that we wish to hold after the execution of a policyp.
Checking if a formula of this kind holds corresponds to
answering the query: “Is it possible to executep in such a
way that the conditionFs is true in the final state?”. When
the answer is positive, the reasoning process returns a sequence
of atomic actions that allows the achievement of the desired
condition. This sequence corresponds to an execution traceof
the procedure and can be seen as aplan to bring about the goal
Fs. This form of reasoning is known astemporal projection.
Temporal projection fits our needs because, as mentioned in
the introduction, in order to perform the selection we need
a mechanism that verifies if a goal condition holds after the
interaction with the service has taken place.Fs is the set of
facts that we would like to hold “after”p.

Reasoning is done by exploiting a goal-directed proof
procedure (denoted by “⊢” in the following) designed for
the languageDYnamics in LOGic[15], [14], which supports
both temporal projection and planning and allows the proof of
existential queries of the kind reported above. The procedure
definition constrains the search space. In particular, for what
concerns planning, the proof procedure allows the automatic
extraction of linear or conditional plans for achieving thegoal
of interest from an incompletely specified initial state.

Let 〈O,P〉 be a service description. The application of
temporal projection toP returns, if any, an execution trace
(a linear plan), that makes a goal of interest become true. Let
us, then, consider a procedurep belonging toP and denoting
its top level, and denote byQ the queryFs after p. Given
a states0, containing all the fluents that we know as being
true in the beginning, we denote the fact that the queryQ
is successful in the service description by(〈O,P〉, s0) ⊢ Q.
The execution of the above query returns as a side-effect an
execution traceσ of p; the execution traceσ is a sequence
a1, . . . , an of atomic actions. We denote this by:

(〈O,P〉, s0) ⊢ Q w.a. σ (4)

where “w.a.” stands forwith answer.
For example, suppose that the initial state of the

service b1 is s0 = {Bbuyerdep,Bbuyerarr,Bbuyerdate,
BbuyerdeferredPaymentPos, Bbuyer¬sellingStarted,
Bbuyercredentials}, (all the other fluents truth value
is “unknown”). This means thatb1 assumes a date, a
departure location, an arrival location, the fact that it is

MALLOW’009: Turin, Italy, September 7-10, 2009

9

possible to defer the payment to the departure (at a desk
at the airport), and that no selling process has started yet.
The goal ofb1 is to achieve the following condition:Q =
{BbuyersellingComplete,BbuyerresNum} after buyTicket
Intuitively, the buyer expects that, after the interaction, it will
have a reservation number as a result.

By reasoning on its policy and by using the definitions of
the unbound operations that are given by the choreography,b1
can identify an execution trace, that leads to a state whereQ
holds:

σ = searchFlight≫rr((dep, arr, date), f lightList);
askChosenFlight≪n (flight);
choosePayment≪rr(payMethods, chosenMethod);
doPayment≫rr((credential, payInfo), resNum);
askForMiles≫n (miles)

This is possible because in a declarative representation spec-
ifications are executable. Moreover notice that this execution
does not influence the belief about the deferred payment,
which persists from the initial through the final state and is
not contradicted.

III. JOINT ACHIEVEMENT OF PERSONAL GOALS

So far, we have talked about goals, whose achievement
motivates the participation of a service to a choreography.It
is, in fact, reasonable that a service may decide of taking ona
role only if by doing so it will have the possibility of satisfying
its purposes. In our proposal a service takes this decision
based on knowledge that includes a public role representation
and a representation, given in terms of preconditions and
effects, of its own operations, part of which will substitute
some specifications contained in the role description. More
generally, a choreography is made of many roles, that are
played by different services, each of which has its own goal.
The question we try to answer here is whether it is possible for
this team of enhanced proactive services to reach an agreement
about their possible executions so that in the team all of them
will achieve their personal goals. As observed in [19], [20]the
team can achieve a goal if there is ajoint working plan that
can achieve the goal.

For example, consider a choreographyC = (R1, R2) and
two services, interested to play respectivelyR1 and R2 for
achieving the goalsG1 and G2. By applying the described
reasoning technique, the two services might both find that
they can achieve their personal goals, one by following the
execution traceσ1, the otherσ2. The problem is thatσ1 and
σ2 might not be compatible, e.g. one invokes aoperation≫,
when the other side does not include the corresponding exe-
cution of operation≪.

In some cases, such compatible execution traces might not
exist. In others, each party may have a set of alternativeσi

available, part of which are indeed compatible with executions
traces identified by the partner. The problem, then, becomesto
converge to a common solution that allows for the achievement
of both goals. Let us discuss these issues, focusing on two-

role choreographies. To this aim, let us introduce a few useful
notions.

Definition 1 (Compatible execution traces):Let
σ = a0; . . . ; an and σ′ = a′0; . . . ; a

′
n be two execution

traces, we say thatσ is compatibleto σ′ iff for each operation
ai in σ the correspondinga′i in σ′ is its complementary view.

Given an operationa, we denote bya its complementary
operation. For instance, in Example II-CsearchFlight≫rr is
complementary tosearchFlight≪rr and vice versa. We extend
the notion of complementarity to execution traces, so the
complementaryσ on an execution traceσ is the sequence
made of the operations that are respectively complementary
to those ofσ.

When a service plays a choreography role, it must supply
a set of operations that will substitute the corresponding
specifications, thus producing a service policy. Let〈O,P〉 be
a service description, and letOi

u be a subset ofO, containing
unbound operations that are to be supplied by a same role
playerSi. LetOSi

be the set of such operations, that are bound
to the operations inOi

u. In caseSi is the player of〈O,P〉,
they will be operations decorated by≪, otherwise they will
be≫ operations. We represent the binding by the substitution
θ = [OSi

/Oi
u] applied to〈O,P〉. Notice that by[OSi

/Oi
u]

we identify a set of substitutions[o/ou] of single service
operations to single unbound operations. The application of
the substitution is denoted by〈Oθ,Pθ〉, where every element
of Oi

u is substituted by/bound to an element ofOSi
.

When the matching process is applied for selecting a service
that should play a role in a choreography, the desire is that
the substitution(of the service operations to the specifications
contained in the choreography)preserves the properties of in-
terest, i.e. the goals that could be entailed before by reasoning
on each role description separately should be still achievable.
Thus, we rely on the notion ofConservative substitutionby
Baldoni et al. in [13].

Let us, now, consider two-role choreography and see how
the servicesS1 andS2 can identify a set of compatible traces,
whose execution allows the achievement of both their personal
goals. The mechanism we are going to describe can be
extended to more complicated choreographies. However, we
do not discuss the case, due to the lack of space, concerning a
number of roles more than two. Suppose thatS1 has identified
an execution traceσ that allows the achievement of its goal
Fs1, and it has verified that the substitutionsθR1 and θR2

are conservative (the two substitutions involve disjoint sets of
unbound operations by construction). Therefore, it now has
an execution traceσθR1θR2 that does not contain unbound
operations. Before executing it, its candidate partnerS2 must
agree on executing the complementary traceσθR1θR2 . Of
course,S2 might have its own goalFs2 which should be
achieved with the execution of the top level procedure of
the role R2, that we here callp2. Therefore, the following
conditions must be verified:

1) σθR1θR2 must be an execution trace ofp2;
2) after executingσθR1θR2 the goalFs2 must hold.

MALLOW’009: Turin, Italy, September 7-10, 2009

10

Fig. 3. RoleR1 takes a decision about invoking operationa1 or a2 on R2.
In the former case,R2 will subsequently invokeb1 over R1; in the latter, it
will take a decision and choose between the invocation ofb2 or the invocation
of b3 on R1.

The first condition is guaranteed by the assumption that
the choreography is well-defined, i.e. roles are interoperable,
and that the services that will animate it are conform to
the corresponding roles. The expectation that the roles of
a choreography are by construction interoperable and that
services are conform to them implies that, for any execution
trace that a party can execute, its partner has a complementary
execution trace. Interoperability is a hot research issue.A
discussion about it is out of the scope of this work but the
interested reader can take a look at [21], [22], [23], [24].

The second condition is to be verified byS2 by rea-
soning on its goal, i.e. by verifying that〈R2θR1θR2 , s0〉 ⊢
Fs2 after σθR1θR2 , wheres0 in this case is the initial state
of S2 and θR1θR2 represents the substitution obtained from
θR1θR2 by using the complementary views of the involved
operations. Notice that the above reasoning is much simpler
than the one executed onp1 becauseS2 only has to check if
the goal is satisfied afterσ has been executed. The reasoning
applied top1, instead, was aimed at identifying such a trace.

To increase the probability of reaching an agreement, we
can imagine thatS1 produces a set of alternative execution
tracesΣ, each of which allows the achievement ofFs1, and
then propose them toS2, that will restrict them to a set
of alternativesΣ′ ⊆ Σ, satisfying both goals. It is worth
noting that, in general, the set of alternative execution traces
might not be finite. Moreover, the derivation (⊢) is semi-
decidable unless the choreographies are properly restricted,
for instance by focussing onto regular sets [15]. Indeed, many
choreographies are of this kind [25]. This interaction between
the services, proposed so to allow the joint achievement of
their goals, can be seen as a kind ofnegotiation[26], [27]. In
case no other preference criterion is introduced, it isindifferent
which of the execution traces inΣ′ will be followed, and
it is not necessary to perform any further negotiation step
because the choreography is respected by both partners [24],
and Σ′ is known to both of them. Whatever the initiator of
the interaction will be, they know how to behave to allow the
mutual achievement of their personal goals, although none of
them can make a commitment on a specific execution trace
because both take choices that contribute to its definition.

An interesting issue is whether there is anyguaranteethat
both partners will stick to execution traces that are inΣ′.
In game theory words [26] and considering a choreography
as a set of game rules, isΣ′ an equilibrium? Generally, the
answer is no. It might, in fact, be the case thatS2 has some
execution trace, that is not contained inΣ′ but allows anyway
the achievement of its goal: at some point of the execution of
an agreed trace,S2 might decide to continue with an unagreed
action, because such action is particularly convenient forit. A
related issue is whether a service has adominantstrategy, i.e.
an execution trace such that all of the alternative courses of
action, that its partner has, belong toΣ′. For instance, with
reference to Figure 3, let us suppose thatΣ′ contains the exe-
cution tracesa1; b1 anda2; b2. In this case, the execution trace
a1; b1 is dominant forS1 because the only possible answer
of S2 is b1 and the overall trace allows the achievement of
both goals. Instead, the execution tracea2; b2 is not dominant
becauseS2 has the possibility of deciding to executeb3 in
alternative tob2 and the tracea2; b3 does not belong toΣ′.
The existence of a dominant strategy depends on the goal
that one wants to satisfy, on the choreography, and on the
identified substitutions. The derivation that we have proposed
is not focussed on the identification of dominant strategies. In
general, and differently than what happens for equilibria,the
decision whether an execution trace is a dominant strategy can
be taken without knowing the goal of the interlocutor. Indeed,
a strategy is dominant if any action that the interlocutor can
perform, lead to an execution trace which still belong toΣ′.
Thus a service which has a dominant strategy has the guarantee
to have a way to reach his goal. Therefore, it can be taken by
a service individually.

Another interesting problem concerns preference criteria
that services may apply in order to rank a set of strategies.
Supposing that the two services decide to behave well and
to execute a trace which is in the agreement, how can they
converge to a best-compromise agreement? One criterion could
be to select the trace which entails the minimum number
of effects. For example, one can imagine that a buyer of a
flight ticket prefers a trace at the end of which it has simply
bought the desired ticket w.r.t. one in which it has additionally
been registered in the advertisement mailing list of the flight
company. This issue will be part of our future works.

As a final remark, negotiation,does not substitutethe
execution of the choreography but it rather concerns checking
the possibility of, in this case, achieving all of the goals.The
fact that the two services converged to a set of promising
execution traces does not imply that, after starting the real
execution, they will be able to stick to them. The reason is
that those traces were identified by making assumptions on
the values returned by tests and conditions, which cannot be
known in advance. The actual results of such tests, obtained
at execution time, could be different than the assumed ones.
The additional valueof performing the negotiation is double:
on the one hand, it is possible to avoid the interaction with
partners with which the agreement cannot be reached at all, on
the other hand, each partner has the means to understand when

MALLOW’009: Turin, Italy, September 7-10, 2009

11

the interaction takes an unagreed path and decide accordingly,
for instance concluding that it is better to stop the interaction.

IV. CONCLUSIONS

The coordination of a set of autonomous, cooperating agents
is well-known and crucial in multi-agent systems research
[27]. Solutions proposed in the literature are, for example,
coordination as apost-planning process[28], where constraints
are checked after the plan has been found, and the use ofcon-
versation moderators[29], which guarantee that achievement
of shared objectives.

Along this line, this work tackles the problem of allowing
a set of independent services, which must cooperate in the
context of a given choreography, to reason about the joint
achievement of their goals. The approach that we propose
implements a simple form ofnegotiation, inspired by [20],
[19]. There are, however, some important differences w.r.tthe
work by Ghaderi et al. The first is that the behavior of our
services is ruled by a choreography, which specifies all the
possible interactions that can occur. The assumption is that
when services play choreography roles, they commit to keep
their behavior adherent to the role specification. Ghaderi et
al., instead, do not use or represent choreographies or other
kinds of interaction protocols: the reasoning process considers
all the possible execution traces that can be composed out ofa
set of atomic actions. Moreover, even when an execution trace,
that allows the joint achievement of goals, is identified there
is still the need of adding coordination mechanisms that allow
its actual execution. In our case, the necessary coordination
that makes the cooperation of the services possible is supplied
by the choreography. The other assumption that we make is
that the roles that compose a choreography are interoperable.
Interoperability is a hot research topic that is orthogonalto the
problems faced in this work.

Moreover, in the work by Ghaderi et al. each agent reasons
also for the partner, because the two agents share a common
goal and a common state. The method, when successful, iden-
tifies a set of joint plans, that correspond to preferred strategies
for the agents. These are obtained by the iterative elimination
of dominated strategies. In our framework each partner does
not have knowledge about the goals of its interlocutor, as
it is reasonable to suppose for web services; therefore, the
execution traces that we identify are not necessarily dominant.
For example, a greedy partner may take an action (if the
protocol includes it) that is not in the agreement but that allows
the immediate achievement of its own goal. This behavior is,
however, not convenient over the long run because the former
partner knows the choreography and knows the agreed traces,
therefore, it has a way ofmonitoring the on-going course of
interaction. As soon as it realizes that the partners has deviated
from the agreed traces, it can take appropriate action, e.g.
interrupt the interaction, enact compensation actions, publish
a low reputation rate for the partner. In other words, there is
a correspondence to what is known in game theory as a game
iterated forever [27].

Some correspondences with the technique “Planning as
Model Checking” proposed in [30] can be investigate. In
this approach, the planning domain is a semantic model, the
planning problem is represented through a set of global state
and plan generation is done by checking whether suitable
formulas are true in a semantic model. However, deal with
web services that have to cooperate in order to reach their
own goals seems to be more complicated. Indeed, planning
has to be performed by each service on its own, ignoring
which are the goals and which will be the substitutions used
by the interlocutors. At the end, the chosen plan must be
convenient for every service involved. Instead, by means of
the mechanism proposed in this paper planning is made only
by one service and the resulting set of compatible plans, at
the end of the negotiation, allows everyone to achieve its own
goal.

Some similarities can be found also with the proposal by
Son and Sakama [31], that concerns the process of creating
a joint plan in a MAS. They define a joint plan as one in
which there are somecooperative actions, i.e. actions that
are mutually requested/offered by agents. Indeed, also the
actions involved in a protocol can be seen as cooperative
actions, in the sense that a service is not able to achieve
its goal on its own, and needs the “cooperation” of other
services. The main difference between the two proposals is
that a protocol defines not only which actions can be invoked
on other services, but also when this can occur. One of the
advantages of choreographies is that they limit the number
of possible plans, restricting the search space of a joint plan.
Moreover, condition 1) in Section III is guaranteed by the fact
that whatever execution trace one of the partners focuses on,
the other surely has a compatible one, if all of the interacting
partners are conformant to the choreography and this is made
of a set of interoperable roles.

Some analogies can be found also with the case in which
protocols are defined bysocial commitments[32]. Indeed,
a commitment is a “promise” of an agent to another on
performing some actions. A protocols defined by commitments
does not specify when actions are to be taken. However, in this
case there is a common knowledge (i.e. the commitments) that
constrain somehow the behaviour of the involved parties. This
mechanism can guide the reasoning process in a better way.
Indeed the reasoning is not on the belief that one agent has on
the others –e.g. I believe that if he has provide this actionshe
will do it–, but is on the obligation one agent has taken: I know
that he has taken the obligation of performing this action when
I will ask him. Of course, this does not mean that the action
will be executed when required. Indeed, actions are defined in
terms of preconditions. Thus, its is possible that a condition
is not satisfied when the action should be executed.

REFERENCES

[1] W3C, “Web services description language (WSDL) version 2.0 part 1:
Core language.” [Online]. Available: http://www.w3.org/TR/wsdl20/

[2] OASIS, “Web services business process execution language version
2.0, working draft.” [Online]. Available: http://www.oasis-

MALLOW’009: Turin, Italy, September 7-10, 2009

12

open.org/committees/download.php/17355/wsbpel-specification-
draft.doc

[3] OWL-S Coalition. [Online]. Available:
http://www.daml.org/services/owl-s/

[4] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman,and
A. Polleres,Enabling Semantic Web Services : The Web Service Mod-
eling Ontology. Springer.

[5] B. Meyer, “Applying ”design by contract”,”Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[6] M. Pistore, L. Spalazzi, and P. Traverso, “A minimalist approach to
semantic annotations for web processes compositions.” inESWC, ser.
LNCS, Y. Sure and J. Domingue, Eds., vol. 4011. Springer, 2006, pp.
620–634.

[7] M. B. van Riemsdijk and M. Wirsing, “Goal-Oriented and Procedu-
ral Service Orchestration. A Formal Comparison,” inAWESOME007,
Durham, UK, September 2007.

[8] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Rea-
soning on choreographies and capability requirements,”International
Journal of Business Process Integration and Management, vol. 2, no. 4,
pp. 247–261, 2007.

[9] G. Caire, D. Gotta, and M. Banzi, “WADE: A software platform to
develop mission critical applications exploting agents andworkflows,”
in Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Estoril, Portugal, 12-16 May 2008, pp. 29–36.

[10] M. Piunti, A. Ricci, and A. Santi, “SOA/WS Applications using Cogni-
tive Agents working in CArtAgO Environments,” inDecimo Workshop
Nazionale “Dagli Oggetti agli Agenti” (WOA 2009), Parma, 2009.

[11] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta, “CooWS:Adaptive
BDI agents meet service-oriented computing,” inProceedings of the Int.
Conference on WWW/Internet, 2005, pp. 205–209.

[12] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella,
“Service selection by choreography-driven matching,” inEmerging Web
Services Technology, ser. Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, T. Gschwind and C. Pautasso, Eds.
Birkhäuser, September 2008, vol. II, ch. 1, pp. 5–22.

[13] M. Baldoni, C. Baroglio, V. Patti, and C. Schifanella, “Conservative re-
use ensuring matches for service selection,” inProc. of the 6th European
Workshop on Multi-Agent Systems (EUMAS), 2008.

[14] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “Reasoning about
interaction protocols for customizing web service selection and com-
position,” JLAP, special issue on Web Services and Formal Methods,
vol. 70, no. 1, pp. 53–73, 2007.

[15] M. Baldoni, L. Giordano, A. Martelli, and V. Patti, “Programming
Rational Agents in a Modal Action Logic,”Annals of Mathematics
and Artificial Intelligence, Special issue on Logic-Based Agent
Implementation, vol. 41, no. 2-4, pp. 207–257, 2004. [Online].
Available: http://www.kluweronline.com/issn/1012-2443

[16] M. Baldoni, “Normal Multimodal Logics: Automatic Deduction and
Logic Programming Extension,” Ph.D. dissertation, Dipartimento di
Informatica, Universit̀a degli Studi di Torino, Italy, 1998.

[17] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services.
Springer, 2004.

[18] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Me-
cella, “Synthesis of Underspecified Composite e-Service bases on Ato-
mated Reasoning,” inProc. of ICSOC04. ACM, 2004, pp. 105–114.

[19] H. Ghaderi, H. Levesque, and Y. Lespérance, “Towards a logical theory
of coordination and joint ability,” inProc. of the 6th International
Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS07), 2007, pp. 532–534.

[20] ——, “A logical theory of coordination and joint ability,” in Proc. of
AAAI’07, 2007, pp. 421–426.

[21] S. K. Rajamani and J. Rehof, “Conformance checking for models of
asynchronous message passing software,” inCAV, ser. LNCS, vol. 2404.
Springer, 2002, pp. 166–179.

[22] L. Bordeaux, G. Saläun, D. Berardi, and M. Mecella, “When are two
web services compatible?” inTES 2004, ser. LNCS, vol. 3324. Springer,
2005, pp. 15–28.

[23] M. Bravetti and G. Zavattaro, “Contract based multi-party service
composition,” in FSEN, ser. LNCS, vol. 4767. Springer, 2007, pp.
207–222.

[24] M. Baldoni, C. Baroglio, A. Chopra, N. Desai, V. Patti, and M. Singh,
“Choice, interoperability, and conformance in interactionprotocols and
service choreographies,” inProc. of the 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS), 2009.

[25] Foundation for Intelligent Physical Agents, “http://www.fipa.org.”
[26] M. J. Osborne and A. Rubinstein,A Course in Game Theory. MIT

Press, July 1994.
[27] M. Wooldridge,An Introduction to Multiagent Systems. John Wiley &

Sons, March 2002.
[28] J. R. Steenhuisen, C. Witteveen, A. ter Mors, and J. Valk, “Framework

and Complexity Results for Coordinating Non-cooperative Planning
Agents,” inMATES, ser. Lecture Notes in Computer Science, vol. 4196.
Springer, 2006, pp. 98–109.

[29] C. Sibertin-Blanc and N. Hameurlain, “Participation Components for
Holding Roles in Multiagent Systems Protocols,” inEngineering Soci-
eties in the Agents World, ser. Lecture Notes in Computer Science, vol.
3451, August 2005, pp. 60–73.

[30] F. Giunchiglia and P. Traverso, “Planning as Model Checking,” in Recent
Advances in AI Planning, ser. LNCS. Springer, 2000, pp. 1–20.

[31] T. C. Son and C. Sakama, “Reasoning and Planning with Cooperative
Actions for Multiagents Using Answer Set Programming,” inDALT:
Declarative Agent Languages and Technologies, ser. LNAI. Budapest,
Hungary: Springer, May 2009.

[32] M. P. Singh, “Agent communication languages: Rethinkingthe princi-
ples,” in Communication in Multiagent Systems, ser. Lecture Notes in
Computer Science, M.-P. Huget, Ed., vol. 2650. Springer, 2003, pp.
37–50.

MALLOW’009: Turin, Italy, September 7-10, 2009

13

1

Verifying A-Priori the Composition of Declarative
Specified Services.

Federico Chesani, Paola Mello, Marco Montali, Paolo Torroni

Abstract—Service Oriented Architectures are knowing a wide
success, thanks to the maturity of standards and implementa-
tions. Moreover, the possibility of composing complex systems
starting from simpler services is becoming supported by in-
dustrial tools, although still immature at the standard level.
However, the a-priori verification aspect, i.e. the capability of
determining before executing the system if it exhibits some
particular behaviour, is still matter of an intense research effort.

In this paper we investigate the a-priori verification of bottom-
up build systems from the behavioural viewpoint, where a
choreography is not known at the beginning of the developing
process, but rather it is verified only later. We focus on the
problem of deciding if, given a set of services, there can be
some fruitful interaction among them; if yes, we focus also
on the problem of determining such interaction. Our approach
is based on specifying the services by means of the ConDec
declarative language, and by exploiting its translation to the
SCIFF Framework to automatically perform the verification task.

Index Terms—ConDec Service Modeling, Declarative Lan-
guages, A-priori Verification, Logic Programming.

I. INTRODUCTION

SERVICE ORIENTED COMPUTING emerged recently as
an architectural paradigm for modeling and implement-

ing business collaboration within and across organizational
boundaries. The Web Service technology, currently the most
advanced implementation of Service Oriented Architecture
(SOA) principles, is almost established as the standard tech-
nology for current business implementations, thanks to the
support it has received from the academics as well as from
the industrial partners.

A key aspect in the success of Service Oriented Computing
(SOC) is the possibility of composing different, heteroge-
neous services, yet achieving a complex system starting from
more simple components. Interoperability at the level of data
exchange, as well as at the level of service location and
invocation, has been guaranteed by standards like WSDL [6].

Industrial tools are becoming available to support also the
composition process, too. Although languages for defining
composition rules and models have been proposed, but none
of them has enjoyed the maturity level of the other standards.
Initial proposals like BPMN [15], WS-CDL [7] and BPEL [3]
have been criticized for their intrinsic procedural nature, while
the need for open, declarative approaches has been recognized
only later [4], [14].

Automatic verification of properties regarding the be-
havioural aspects of the composed systems is deemed as a cru-
cial step, but a comprehensive solution is lacking. Currently,

DEIS - Department of Electronics, Informatics and Systems, University of
Bologna. name.surname@unibo.it

the task of ensuring that two services can successfully coop-
erate is demanded to the software architect that is designing
the system. Analogously, ensuring that the composed system
will exhibit certain properties is a task that directly burden the
developer. Although such guarantees can be verified by human
users with small systems, there are serious doubts of achieving
such results when the composed systems grow in dimension
and interaction complexity. Hence, the task of automatically
verifying a service composition a-priori (during the designing
phase), is of the fundamental importance to foster the service
composition and the “off-the-shelf” composition model .

Several approaches have been adopted to address the verifi-
cation of service composition. A very common way consist
of checking one service against a global description of a
system, like in [1], [8]. In order to succeed, the following
assumptions are usually made: 1) there is a description of
the whole system, from a global point of view; 2) there is
a description of the service under testing, such description
not necessarily matching with the service internals; and 3) all
services except the one under testing will behave as prescribed
by the global specification (hence the global description can be
used to reason upon the other services behaviour). Given this
setting, the verification task determines if the behaviour of the
service under testing is compatible with the global description
(also named choreography). The choreography is intended as
a sort of “legal, tight contract”, and plays a double role: it
specifies the “boundaries” for the service under testing, and
provides the expected behaviour of the other (unknown) peers.
The obvious advantage of such approach is that the verification
task involves only a service description and a choreography:
the component “certified” as compliant can be then adopted
to play a certain role within the global system, independently
of the other peers.

In this paper we investigate the verification of service com-
position from another viewpoint. We start from the assumption
that, at least in the beginning steps, a global choreography
is not defined (or is not yet available). Beside a “top-down”
developing method, where the developer starts designing the
choreography and proceeds to refine the components in several
steps, there is also a common “bottom-up” projecting style,
where the developer simply starts to build up her application
by putting together the already available components. If this
is the case, the models of all parties (called local models
thereafter) are directly composed, in order to make them
interact and mutually benefit from each other, as in Figure
1a.

The first problem we try to address is: given a composition
of services, does exist a successful interaction? If yes, how
is made such interaction? In case of a positive answer to the

MALLOW’009: Turin, Italy, September 7-10, 2009

14

2

(a) Bottom-Up (b) Top-Down

Fig. 1. Developing complex systems using simpler services.

first question, we say that the models are compatible. Beside
the yes/no answer, we deem as fundamental also knowing
as much as possible about such interactions. E.g., knowing
in advance the supported interaction traces would help in
the analysis of the global system features and properties.
Of course, “compatible” does not mean that a successful
interaction will be effectively achieved at run-time.

A second problem we discuss in this work is about chore-
ographies, intended no more as a tight contract to be respected,
but rather as a set of constraints representing the desired
properties of the system. In this view, choreographies are not
intended as the set of requirements each service should fulfill
to interact, but rather a set of desired features that the global
system will exhibit. Roughly, this problem can be formulated
as follow: given a compatible set of services, does exists
some successful interaction that honors the choreography
constraints? If yes, how is made such interaction? Also in
this case we aim to know not only a yes/no answer, but also
some sort of fully/partially specified interaction trace.

In our approach, services and choreographies are repre-
sented by means of a declarative language, and in particular
using the ConDec language [13]. We agree with the critics
moved to procedural approaches in [4], [14]. In particular,
choreographies (intended as a set of properties or constraints
of the final resulting system) are more naturally represented in
terms of declarative rules/constraints, rather than by sentences
of a procedural language. In this work, we extend the original
ConDec model to the concepts of roles, and provide definition
of service composition compatibility on the resulting ConDec
models.

The ConDec semantics originally proposed by the authors
is given as Linear Temporal Logic (LTL) formulas. Recently,
a further semantics in terms of the SCIFF Framework [2]
has been provided to ConDec [11]. Another contribution of
this work is the definition of a method for automatically
perform the verification tasks, by exploiting the SCIFF-based
semantics, and its proof procedure.

In Section II we briefly introduce the ConDec language,
aimed to declarative describe open processes/services. Then in

Section III and in Section IV we try to better capture the notion
of compatible services (compatible models of services) and of
compliance to a choreography. In Section V we show how such
properties are automatically verified exploiting the ConDec
Language and its translation into the SCIFF Framework [2].
Finally we conclude and discuss future works.

II. MODELING A SERVICE BY MEANS OF THE CONDEC
LANGUAGE

ConDec is a declarative, graphical language proposed by
van der Aalst and Pesic [13] within the research field of
Business Process Management (BPM). It aims to support
specification, enactment and monitoring of Business Process,
by means of constraints among activity executions. Constraints
are declaratively expressed, as the authors claim that the
adoption of a declarative approach fits better with complex, un-
predictable processes, where a good balance between support
and flexibility must be found. Although it has been originally
proposed in the BPM context, it has been applied also in
the far broader field of SOA. Former applications of ConDec
regarded choreographies specification; in this paper, we adopt
it to represent also service local models.

A. The ConDec Language

A ConDec model mainly consists of two parts: a set of
activities, representing atomic units of work, and a set of rela-
tionships which constrain the way activities can be executed,
and are therefore referred to as constraints. Constraints can be
interpreted as policies/business rules, and may reflect different
kinds of knowledge: external regulations and norms, internal
policies and best practices, service/choreography goals, and so
on.

Differently from procedural specifications, in which activi-
ties can be inter-connected only by means of control-flow rela-
tionships (sequence patterns, mixed with constructs supporting
the splitting/merging of control flows), the ConDec language
provides a number of control-independent abstractions to
constrain activities, alongside the more traditional ones. In
ConDec it is possible to insert past-oriented constraints, as

MALLOW’009: Turin, Italy, September 7-10, 2009

15

3

well as constraints that do not impose any ordering among
activities.

Furthermore, while procedural specifications are closed, i.e.,
all what is not explicitly modeled is forbidden, ConDec models
are open: activities can be freely executed, unless they are
subject to constraints. This choice has two implications. First,
a ConDec model accommodates many different possible exe-
cutions, improving flexibility. Second, the language provides
abstractions to explicitly capture not only what is mandatory,
but also what is forbidden. In this way, the set of possible
executions does not need to be expressed extensionally and
models remain compact.

ConDec models do not impose a rigid scheduling of activ-
ities; instead, they leave the services free to execute activities
in a flexible way, but respecting at the same time the imposed
constraints. An execution trace, i.e. the set of the executed
activities,we say that it is supported by a ConDec model
if and only if it complies with all its constraints. Finally,
it is important to note that well-defined ConDec models
support only finite execution traces, because it must always
be guaranteed that a BP will eventually terminate.

ConDec has been mapped to two different underlying logic
frameworks, providing two different semantics for the ConDec
constraints. Beside the originally proposed LTL mapping, in
[11] a mapping to the SCIFF Framework has been proposed.
SCIFF allows to define constraints in terms of the happening
of events and expectations about the happening or the non-
happening of other events. Events can be partially specified,
by means of unbound variables. Possibly, such variables can
be further constrained, a la CLP. E.g., it possible to say that if a
certain event happens at time T , then another event is expected
to happen at a time T ′ with the CLP constraint T ′ > T .

A simple ConDec model where activities a and b can be
executed many times, but the execution of one automatically
exclude the execution of the other, can be expressed in
SCIFF by means of two rules (Integrity Constraints, using the
SCIFF terminology): H(a, T) ⇒ EN(b, T ′) and H(b, T) ⇒
EN(a, T ′)1. Note that such a simple model, if expressed using
some procedural flow language such as for example Petri Nets,
would lead to additional assumptions and choice points, thus
making the final model pointlessly complicated.

Formally, a ConDec model CM is composed by a set of
activities, which represent atomic units of work (i.e., units of
work associated to single time points, and relations among ac-
tivities, used to specify constraints on their execution. Optional
constraints are also supported, to express preferable ways to
interact, but allowing the possibility to violate them.

Definition 1 (ConDec model CM). A ConDec model is a
triple 〈A, Cm, Co〉, where:
• A is a set of activities, represented as boxes containing

their name;
• Cm is a set of mandatory constraints;
• Co is a set of optional constraints.

Given a ConDec model CM, notations ACM, CCMm and
CCMo respectively denote the set of activities, mandatory and

1The two rules state that if a Happens, then b is Expected Not to happen,
and viceversa.

payment
failure

choose
item

standard
payment

1-click
payment

payment
done

send
receipt

accept
advert

close
order

register

0..1

0..1

Fig. 2. A ConDec model.

optional constraints of CM.

B. A ConDec Example

Figure 2 shows the ConDec specification of a payment
services. Boxes represent instances of activities. Numbers
(e.g., 0; N..M) above the boxes are cardinality constraints
that tell how many instances of the activity have to be done
(e.g., never; between N and M). Edges and arrows represent
relations(constraints) between activities. Double line arrows
indicate alternate execution (after A, B must be done before
A can be done again), while barred arrows and lines indicate
negative relations (doing A disallows doing B). Finally, a
solid circle on one end of an edge indicates which activity
activates the relation associated with the edge. For instance,
the execution of accept advert in Figure 2 does not activate
any relation, because there is no circle on its end (a valid
model could contain an instance of accept advert and nothing
else); activity register instead activates a relation with accept
advert (a model is not valid if it contains only register).
If there is more than one circle, the relation is activated
by each one of the activities that have a circle. Arrows
with multiple sources and/or destinations indicate temporal
relations activated/satisfied by either of the source/destination
activities. The parties involved—a merchant, a customer, and
a banking service to handle the payment—are left implicit.

In our example, the six left-most boxes are customer actions,
payment done/ payment failure model a banking service
notification about the termination status of the payment
action, and send receipt is a merchant action. If register
is done (once or more than once), then also accept advert
must be done (before or after register) at least once. No
temporal ordering is implied by such a relation. Conversely,
the arrow from choose item to close order indicates that,
if close order is done, choose item must be done at least
once before close order. However, due to the barred arrow,
close order cannot be followed by (any instance of) choose
item. The 0..1 cardinality constraints say that close order
and send receipt can be done at most once. 1-click payment
must be preceded by register and by close order, whereas
standard payment needs to be preceded only by close
order (registration is not required). After 1-click or standard
payment, either payment done or payment failure must
follow, and no other payment can be done, before either of
payment done/failure is done. After payment done there
must be at most one instance of send receipt and before send
receipt there must be at least a payment done. Sample valid
models are: the empty model (no activity executed), a model
containing one instance of accept advert and nothing else,
and a model containing 5 instances of choose item followed

MALLOW’009: Turin, Italy, September 7-10, 2009

16

4

by a close order. A model containing only one instance of
1-click payment instead is not valid.

III. COMPATIBILITY AND LEGAL COMPOSITION

In this section we address the problem of establishing if
some local models are compatible [12], i.e. if there exists an
interaction trace allowed by the composed system. We first
try to establish if a single model does indeed support at least
one interaction trace (i.e., it is conflict-free, and then we extend
the notion to the composed system. Note that all the following
definitions are based on the idea of execution traces, i.e. on a
set of events (ground facts), happened at certain time point.

First of all, we introduce the notion of ∃-entailment: the aim
is to define somehow when a model guarantees a property.
To do so, we look at the traces allowed by the local ConDec
model, and verify such property directly on the allowed traces.
Once we move to verify a property on a trace, the semantic of
the entailment symbol could be referred to the SCIFF semantic
(as we do), as well as to the LTL semantics.

Definition 2 (∃-entailment). A property Ψ is ∃-entailed by a
ConDec model CM (CM |=∃ Ψ) if at least one execution
trace supported by CM entails the property as well. If that is
the case, then one of the supported execution traces can be
interpreted as an example which proves the entailment.

Definition 3 (Conflict-free model [12]). A ConDec model
CM is conflict-free iff it supports at least one possible ex-
ecution trace, i.e., iff

CM |=∃ true
A conflicting model is an over-constrained model: it is

impossible to satisfy all its mandatory constraints at the same
time.

Then we generalize the idea of conflict-freedom to the
composed model:

Definition 4 (Composite model [12]). Given n ConDec mod-
els CMi = 〈Ai, Cim, Cio〉 , the composite model obtained by
combining CM1, . . . , CMn is defined as :

COMP
(CM1, . . . , CMn

)
, 〈

n⋃
i=1

Ai,
n⋃
i=1

Cim,
n⋃
i=1

Cio〉

Definition 5 (Compatibility). Two ConDec models CM1 and
CM2 are compatible if their composition is conflict-free, i.e.,
iff:

COMP
(CM1, CM2

) |=∃ true
Obviously, the notion of compatibility can be generalized to

the case of n local models. The detection of incompatibility
means that a sub-set of the n local models leads to a conflict.
note that checking compatibility could not be enough, as
pointed out by the following example:

Example 1 (Trivial compatibility). Two local models

CM1 = a •−−I• b

CM2 = a •−−−•‖ b

have been composed. The two models are compatible, because
they both support the empty execution trace; therefore, by
carrying out solely a compatibility check would seem that a
composition can be actually built. However, as soon as an
activity is executed, CM1 and CM2 are contradictory: both
activity a and activity b can not be executed in the composite
model. In the general case, if none of the local models contains
constraints which impose the execution of a certain activity
(i.e., existenceN, exactlyN and choice constraints),
compatibility always returns a positive answer, because the
empty execution trace is supported.

A. From Openness to Semi-Openness

Since a ConDec model is open, it implicitly allows the exe-
cution of activities not explicitly contained in the model itself.
The following example clarifies the point. This characteristic
could cause undesired compositions to be evaluated as correct,
as in the following example.

Example 2 (Composition and openness issues). A customer
wants to find a seller to interact with. The customer comes
with a ConDec model representing its own desired constraints
and requirements. In particular, they express that:
• the customer wants to receive a good from a seller;
• if the customer pays for a good, then she expects that the

seller will deliver it;
• before paying, the customer wants the seller to provide a

guarantee that the payment method is secure.
Figure 3 shows the ConDec graphical models (CMC) of the
customer and of three candidate sellers. The three sellers differ
for what concerns the possibility of emitting a guarantee upon
request:

1) the seller depicted in Figure 3(b) (CM1
S) explicitly states

that it does not provide any guarantee upon request;
2) the seller depicted in Figure 3(c) (CM2

S) explicitly
supports the possibility of providing a guarantee;

3) the seller depicted in Figure 3(d) (CM3
S) does not

mention provide guarantee among its activities.
Following Definition 5 checking compatibility between CMC

and the three candidate sellers would state that CMC is not
compatible with CM1

S , but it is compatible with CM2
S and

CM3
S . In particular, the two compositions CMC ∪ CM2

S

and CMC ∪ CM3
S produce exactly the same global model.

However, while the answer given for the first two compositions
is in accordance with the intuitive notion of compatibility,
the third one is not. In fact, when CMC is composed with
CM2

S , the behaviour of the seller is modified in that also the
constraints of the customer must be respected. Contrariwise,
when the composition between CMC and CM3

S is established,
the local model of the customer has the effect of changing the
local model of the seller, augmenting it with a new provide
guarantee activity. During the execution, the customer would
expect to receive a guarantee before paying, but this capability
has not been mentioned by the seller in its local model, and
therefore there could be the case that it is not supported.

The example clearly shows that the openness assumption
must be properly revised when dealing with the composition

MALLOW’009: Turin, Italy, September 7-10, 2009

17

5

pay send
good

c Seller

provide
guarantee

1..*

(a) Constraints of the customer.

pay send
good

Customer s1

provide
guarantee

0

(b) Constraints of a seller
which does not provide guar-
antees.

pay send
good

Customer s2

provide
guarantee

(c) Constraints of a seller
which is able to provide a guar-
antee.

pay send
good

Customer s3

(d) Constraints of a seller
which does not explicitly deal
with the emission of a guaran-
tee.

Fig. 3. Local models of a customer and of three candidate sellers.

problem. To ensure that a composition can be established,
the obtained global model must obey to the following semi-
openness requirement: for each involved party, the activities
under the responsibility of that party must also explicitly
appear in its local model.

B. Augmenting ConDec Models with Roles and Participants

In order to ensure the semi-openness assumption, each
activity must be associated to its corresponding originator or
role. The following definition extends the basic definition of
a ConDec model with such a relationship.

Definition 6 (Augmented ConDec model). An augmented
ConDec model is a 4-tuple 〈AO,AR, Cm, Co〉, where:
• AO is a set of (A,O) pairs where A is an activity and
O is its originator;

• AR is a set of (A,R) pairs where A is an activity and
R represents the role of its originator;

• Cm is a set of mandatory constraints over AO and AR;
• Co is a set of optional constraints over AO and AR.

If AR = ∅, the model is completely grounded. Contrariwise,
if AO = ∅ the model is abstract.

In this respect, a ConDec local model is defined as an aug-
mented model containing also an indication about the identifier
of the local model, and where an activity is associated either
to such an identifier, or to an abstract role.

Definition 7 (Local augmented model). A ConDec local
augmented model is a 5-tuple 〈ID,AO,AR, Cm, Co〉, where:
• ID is the identifier of the participant executing the local

model;
• the other elements retain the meaning of Definition 6;
• AO is a set containing only elements of the type (A, ID).

A role identifies a class of originators; in the composition
process, abstract roles employed in each local model are
mutually grounded to concrete local models which participate
to the composition.

Definition 8 (Grounding of a model). Given an augmented
model CMaug = 〈AO,AR, Cm, Co〉 and a function plays
mapping roles to concrete identifiers (i.e., stating that a certain
identifier “plays” a given role), the grounding of CMaug
on plays is obtained by substituting each role Ri with the
corresponding concrete participant identifier plays(Ri):

• AO ↓plays, AO ∪ {(A,plays(Ri)) | Ri ∈
dom(plays) ∧ (A,Ri) ∈ AR};

• AR ↓plays, AR/{(A,Ri) |Ri ∈ dom(plays)};
• Cm ↓plays and Co ↓plays are updated accordingly.

If AR ↓plays= ∅, each role has been substituted by a
concrete identifier and the model becomes ground. A legal
composite ConDec can be now characterized as an augmented
model obtained by composing a set of local models, each
one grounded by taking into account the other ones, s.t. the
composition is ground.

Definition 9 (Augmented composite model). Given a set of
augmented local models Li = 〈IDi,AOi,ARi, Cim, Cio〉 (i =
1, . . . , n) and a function plays mapping roles to identifiers,
the composition of the local models w.r.t. plays is defined
as

COMP(L1, . . . ,Ln)plays =
n⋃
i=1

Li ↓plays

where the union of two augmented models is a shortcut
representing the union of each corresponding element . A
composition is legal iff COMP(L1, . . . ,Ln)plays is ground (see
Definition 6).

It is now possible to revise the notion of compatibility
reflecting also the semi-openness assumption.

Definition 10 (Strong compatibility). n local models
Li = 〈IDi,AOi,ARi, Cim, Cio〉 (i = 1, . . . , n) are strong
compatible under plays iff their augmented composition
COMP(L1, . . . ,Ln)plays = 〈AO∪,AR∪, C∪m, C∪o 〉 satisfies the
following properties:
• COMP(L1, . . . ,Ln)plays is legal;
• COMP(L1, . . . ,Ln)plays is conflict-free;
• for each (a, IDi) which belongs to AO∪ but does not

belong to AOi, it must hold that:

COMP(L1, . . . ,Ln)plays |=∀ absence((a, IDi))

The third point states that if a certain activity a has been
associated to a participant IDi, but IDi has not explicitly
mentioned a in its specification, then the composition must
always ensure that a cannot be executed.

Example 3. Let us re-examine the compatibility between the
local models of the customer and the second seller shown in
Figure 3, supposing that their identifiers are respectively alice

MALLOW’009: Turin, Italy, September 7-10, 2009

18

6

and hutter, and customer and seller represent their roles. In
the composition, alice plays the role of customer, and hutter
plays the role of seller. Hence, plays(alice) = customer
and plays(hutter) = seller.

By adopting the definition of augmented models, the Con-
Dec diagram of alice is:

Lalice = 〈{(pay, alice)},
{(send good, seller), (provide guarantee, seller)},
{existenceN(1, (send good, seller)), . . .},
∅〉

The grounding of alice w.r.t. the plays function is
Lalice ↓plays=

〈{(pay, alice), (send good, hutter), (provide guarantee, hutter)},
∅,
{existenceN(1, (send good, hutter)), . . .},
∅〉

The grounding of hutter is obtained in a similar way.
When the two local models are composed, the grounding of

alice causes (provide guarantee, hutter) to belong to the set
AO∪ of the composition. Since the execution trace provide
guarantee → pay → send good is compliant with the
composition but (provide guarantee, hutter) 6∈ AOhutter,
the two local models are not strong compatible.

IV. CONFORMANCE TO A CHOREOGRAPHY

Once a global model has been obtained through the compo-
sition step, and after a strong compatibility property has been
verified, the application developer can move to further analise
the resulting system, trying to understand if it entails some
desired properties.

We represent a choreography as an augmented abstract
ConDec model (i.e., an augmented model associating all
the activities to roles and not to concrete participants – see
Definition 6). When realizing a choreography with a set of
concrete local models, different possible errors may arise:
• Conflicting composition: independently from the chore-

ography, the chosen local models are not compatible.
• Local non-conformance: a concrete local model is not

able to correctly play, within the choreography, the role
it has been assigned to.

• Global non-conformance: even if each single local model
is able to correctly play the role it has been assigned to,
it could be the case that the global obtained model does
not conforms the choreography anymore.

It could be also the case that a participant would not be able to
play the role it has been assigned to, but it would anyway be
able to take part to a conforming composition. Such a situation
may arise because when the constraints of each local model
are joint with the ones of the others, the constraints of the
participant could be correctly “completed”.

As a consequence it is necessary to first check that the
composition is conflict-free, and then verify the whole compo-
sition against the choreography. To verify that a composition
conforms to a desired choreography, two approaches can be
followed. The weak approach states that the composition must
be consistent with the choreography constraints in at least one

supported execution, while the strong approach requires to
guarantee that any execution supported by the composition
respects the choreography.

Definition 11 (Weak conformance). A composition of local
models COMP(L1, . . . ,Ln)plays is weak conformant with a
choreography Chor iff:
• L1, . . . ,Ln are strong compatible w.r.t. plays (see Def-

inition 10);
• COMP(L1, . . . ,Ln)plays |=∃ Chor ↓plays.

Definition 12 (Strong conformance). A composition of local
models COMP(L1, . . . ,Ln)plays is strong conformant with a
choreography Chor iff:
• L1, . . . ,Ln are strong compatible w.r.t. plays (see Def-

inition 10);
• COMP(L1, . . . ,Ln)plays |=∀ Chor ↓plays.

Example 4 (Weak and strong conformance). Let us consider
a simple (fragment of a) choreography involving two roles –
a customer and a seller. The choreography states that:

1) two possible payment methods are available to the
customer (payment by credit card and payment by cash);

2) the customer can pay only after having closed the order;
3) if the customer pays, then the seller is entitled to send

the ordered good and, conversely, a good is sent to the
customer only if a payment has been previously done.

Figure 4 shows the ConDec model of the resulting choreog-
raphy, and three possible local models which can be composed
to realize such a choreography. In particular, alice can play
the role of Customer, while hutter and lewis can play the
role of Seller.

Let us first consider the composition obtained by combining
the model of alice with the one of lewis. The composition is
strong conformant with the choreography:
• The choreography allows an open choice on the payment

modality, and both local models only deal with payment
by credit card.

• The combination of the constraints which relate the
payment with the delivery of the good in the two
local models leads to obtain the following constraint

cc payment •−−I• send good , which is a
“specialization” of the choreography one (no choice is
present).

• alice states that before paying, she wants to close the
order, and that between two payments at least one close
order must be executed; such a constraint is a special-
ization of the simple precedence constraint contained
in the choreography.

The composition obtained by combining the model of alice
with the one of hutter is instead not strong conformant. In
fact, hutter does not impose any temporal ordering between
the payment and the delivery of the good. Therefore, it could
be possible that the good is sent twice: one time before the
payment of alice, and another time afterwards. I.e., the follow-
ing execution trace is supported by the composition: close
order → send good → cc payment → send good. The
first execution of the send good activity is not preceded by
a payment, thus violating a prescription of the choreography.

MALLOW’009: Turin, Italy, September 7-10, 2009

19

7

cc
payment

send
good

Customer Seller

cash
payment

close
order

(a) A simple payment choreog-
raphy

cc
payment

send
good

alice Seller
1..*

close
order

(b) Local model of alice.

cc
payment

send
good

Customer lewis

(c) Local model of lewis.

cc
payment

send
good

Customer hutter

(d) Local model of hutter.

Fig. 4. A simple choreography and three candidate local models (one customer and two sellers).

However, the composition is weak conformant, because it
supports different possible executions which comply with the
choreography.

V. VERIFICATION THROUGH SCIFF

The SCIFF framework has been originally developed for
the declarative specification and run-time verification of inter-
action protocols in the context of open Multi-Agent Systems
[2]. It features:
• A rule-based language for modeling all the constraints

that must be respected by the events characterizing the
executions of the system under study. These rules relate
the concepts of event occurrence with the one of ex-
pected/forbidden event, to model the (un)desired courses
of interaction when a given situation is reached during
the interaction. Events are modeled as logic programming
terms (possibly containing variables), and are associated
to an explicit execution/expected time; times and vari-
ables can be constrained by means of CLP constraints
and Prolog predicates.

• A clear declarative semantics characterizing the execution
traces compliant with the modeled rules.

• A corresponding proof procedure, sound and complete
w.r.t. the declarative semantics, which is able to dynami-
cally acquire the events occurring during a specific execu-
tion of the system, and check on-the-fly their compliance
with the modeled rules.

In the last years, the framework has been applied in other
contexts, such as clinical guidelines, business contracts and
processes, service choreographies [9]. In particular, a complete
mapping of all the ConDec constraints in terms of SCIFF rules
has been provided, proving its soundness w.r.t. the original
ConDec semantics (specified by means of LTL formulae) and
discussing its impact on the verification techniques.

The SCIFF proof procedure has been then extended to deal
also with the static verification of interaction protocols. g-
SCIFF is the generative variant of SCIFF devoted to this
task: instead of checking if a given (partial or complete)
execution trace is compliant with the modeled rules, it is
able to generate compliant execution traces or to return a
negative answer if none exists [10]. In this way, g-SCIFF can
be suitably exploited to effectively prove whether a ConDec
model (translated to SCIFF) |=∃ or |=∀ a given property [9].
In particular, a ConDec model |=∃ a given property if and
only if the g-SCIFF proof procedure is able to generate at

least one execution trace compliant with the model and the
property; such an execution trace can be considered as an
example proving the existential entailment of the property.
The case of |=∀ is reduced, similarly to model checking, to
the |=∃ of the complemented property; the generation of an
execution trace compliant with the model and the completed
property can be considered as a counter-example showing that
the original property is not entailed by the model in all its
supported executions.

A. Compatibility Verification with g-SCIFF

Let us briefly describe how g-SCIFF carries out the com-
patibility verification between the customer’s model shown
in Figure 3(a) and each one of the three sellers modeled
in Figures 3(b)-(d). As we have seen, the constraints of a
composite model are obtained by joining all the constraints
of the local models. Let us denote the composition of the
customer’s model with each seller’s model with respectively
CMs1

c , CMs2
c and CMs3

c . The first step, according to Defi-
nition 10, is to verify whether the composite model is legal;
this is a syntactic test which can be trivially proven for all the
three composite models: the role of Customer is grounded on
c, and the role of Seller is respectively grounded on s1, s2 and
s3. The second and third step require instead the presence of a
verifier able to prove conflict-freedom (|=∃) and to check if the
composite model meet the semi-openness requirement (|=∀).
When verifying the conflict-freedom of CMs2

c and CMs3
c , g-

SCIFF operates as follows:
• it starts from the 1..∗ constraint on send good, generat-

ing an occurrence of the event;
• this generated occurrence triggers the precedence (−−−I•)

constraint involving send good and pay, leading to
generate a previous payment;

• the generated payment, in turn, triggers the precedence
(−−−I•) constraint involving pay and provide guar-
antee, leading to generate a previous emission of a
guarantee.

At the end of the verification process, the following sample
execution trace is therefore produced by g-SCIFF: provide
guarantee → pay → send good 2. When verifying the
compatibility of CMs1

c , instead, after the third step g-SCIFF
realizes that the execution of provide guarantee clashes with

2The temporal relationships imposing the orderings between the three
generated events are represented with CLP constraints

MALLOW’009: Turin, Italy, September 7-10, 2009

20

8

the 0 cardinality constraint (absence constraint) imposed by
s1, and returns a negative answer attesting the incompatibility
of the local models.

The last requirement to be verified is that for each (a, IDi)
which belongs to CMs2

c /CMs3
c but does not belong to the

corresponding local model, it must hold that the absence of
a is |=∀ by the composite model. In the case of CMs2

c , no
such activity actually exists, and therefore the requirement
is directly met, attesting that the two local models are in-
deed compatible. Contrariwise, CMs3

c contains the activity
(provide guarantee, s3) which is however not contained in
the local model of s3. Therefore, g-SCIFF must prove whether
all execution traces compliant with the composite model do not
contain the execution of the provide guarantee activity. As
already pointed out, |=∀ is reduced to |=∃ by complementing
the property; in this specific case, the verification reduces to
check whether at least one execution trace compliant with the
composite model exists s.t. at least one execution of provide
guarantee is contained in the trace. The execution trace pro-
vide guarantee→ pay→ send good, produced by g-SCIFF
when checking the conflict-freedom of CMs3

c , does satisfy the
complemented property, and can be therefore considered as a
counter-example showing that the semi-openness requirement
is not met by the composite model, i.e., that c and s3 are not
compatible.

Finally, note that the conformance verification of a com-
posite model with a choreography is carried out by g-SCIFF
similarly to the case of compatibility. In the case of strong
conformance, each constraint involved in the choreography is
complemented and then separately checked w.r.t. |=∃. If at
least one complemented property is |=∃, then the composition
is not strong conforming with the choreography.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have address some issues related to the pro-
cess of composing complex system by using existing compo-
nents, in the context of the Service Oriented Architectures. Our
approach hypothesizes a bottom-up process in composing the
global system, where the components are put together in order
to achieve some interaction, and choreography constraints are
taken into account only at a second stage. Peculiarities of our
solution are 1) the use of a open, declarative, logic based
language to represent models of the services and also the
choreographies; 2) the exploit of the SCIFF Proof Procedure,
and in particular of the g-SCIFF proof, to automatically
perform all the verification tasks; and 3) beside a yes/no
answer, our approach provides as output also some interaction
trace that can be used to reason upon and analyse the global
system.

This work is still in its preliminary stage, although some
successful experimental results have been already obtained.
Future works will be devoted to better assess the theory behind
the solution, and to provide a better comparison with other
approaches available in the literature, like [5], [8]. In particular,
on the theme of the a-priori verification there is a huge research
literature, as well as on the topic of reasoning on choreogra-
phies and roles. A further issue we intend to investigate is

related to the possibility of introducing “soft” ConDec con-
straints: currently, constraints are considered as hard, and not
respecting one constraint leads to an incompatibility response.
We are hypothesizing situations where behavioural interface
specifications can also comprehend compensations actions and
explicit management of violations.

ACKNOWLEDGMENT

This work has been partially supported by the FIRB project
TOCAI.it (RBNE05BFRK) and by the Italian MIUR PRIN
2007 project No. 20077WWCR8.

REFERENCES

[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
M. Montali. An Abductive Framework for A-Priori Verification of Web
Services. In A. Bossi and M. J. Maher, editors, Proceedings of the 8th
International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 39–50. ACM Press, 2006.

[2] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-
roni. Verifiable Agent Interaction in Abductive Logic Programming: the
SCIFF framework. ACM Transactions on Computational Logic, 9(4),
2008.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services, Version 1.1.
Standards proposal by BEA Systems, International Business Machines
Corporation, and Microsoft Corporation, 2003.

[4] A. Barros, M. Dumas, and P. Oaks. A Critical Overview of the Web
Services Choreography Description Language (WS-CDL). BPTrends,
2005.

[5] A. K. Chopra and C. P. Singh. Producing Compliant Interactions:
Conformance, Coverage, and Interoperability. In 4th International
Workshop on Declarative Agent Languages and Technologies IV (DALT
2006), Selected, Revised and Invited Papers, volume 4327 of Lecture
Notes in Computer Science, pages 1–15. Springer Verlag, 2006.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
2001.

[7] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon.
Web Services Choreography Description Language Version 1.0, 2004.
http://www.w3.org/TR/ws-cdl-10/.

[8] M. Baldoni and C. Baroglio and A. Martelli and V. Patti. A Priori
Conformance Verification for Guaranteeing Interoperability in Open
Environments. In A. Dan and W. Lamersdorf, editors, Proocedings of the
4th International Conference on Service-Oriented Computing (ICSOC
2006), volume 4294 of Lecture Notes in Computer Science. Springer
Verlag, 2006.

[9] M. Montali. Specification and Verification of Declarative Open Inter-
action Models: a Logic-Based Framework. PhD thesis, University of
Bologna, 2009.

[10] M. Montali, M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,
and P. Torroni. Verification from Declarative Specifications Using Logic
Programming. In M. G. D. L. Banda and E. Pontelli, editors, ICLP,
number 5366 in LNCS, pages 440–454. Springer Verlag, 2008.

[11] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari. Declarative Specification and Verification of Service
Choreographies. ACM Transactions on the Web - Accepted, 2009.

[12] M. Pesic. Constraint-Based Workflow Management Systems: Shifting
Controls to Users. PhD thesis, Beta Research School for Operations
Management and Logistics, Eindhoven, 2008.

[13] M. Pesic and W. M. P. van der Aalst. A Declarative Approach for
Flexible Business Processes Management. In Proceedings of the BPM
2006 Workshops, volume 4103 of Lecture Notes in Computer Science,
pages 169–180. Springer Verlag, 2006.

[14] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell,
H. M. W. Verbeek, and P. Wohed. Life After BPEL? In M. Bravetti,
L. Kloul, and G. Zavattaro, editors, Proceedings of the 2nd International
Workshop on Web Services and Formal Methods (WS-FM 2005), volume
3670 of Lecture Notes in Computer Science, pages 35–50. Springer
Verlag, 2005.

[15] S. A. White. Business Process Modeling Notation Specification 1.0.
Technical report, OMG, 2006.

MALLOW’009: Turin, Italy, September 7-10, 2009

21

Web Services Synchronization in Composition Scenarios

Hamdi Yahyaoui1, Zakaria Maamar2, Jamal Bentahar3, and Khouloud Boukadi4

1KFUPM, Dhahran, KSA —-2Zayed University, Dubai, U.A.E —–3Concordia University, Montreal, Canada—–
4École des Mines, Saint-Etienne, France

Abstract

This paper discusses Web services synchronization at the
composition level. Synchronization aims at assisting in-
dependent parties coordinate their actions and thus, avoid
conflicts. Our previous work on synchronization primar-
ily focused on the component level and shed the light on
two types of behaviors related to specifying Web services.
The control behavior defines the business logic that under-
pins the functioning of a Web service, and the operational
behavior regulates the execution progress of this control be-
havior by stating the actions to carry out and the constraints
to put on this progress. Control and operational behav-
iors continue to be used to specify composite Web services
with respect to the orchestration schemas that these com-
posite Web services have to comply with whether central-
ized or peer-to-peer. As a result, various types of messages
to achieve synchronization are developed per type of orches-
tration schema. Experiments showing the use of these mes-
sages are reported in this paper as well.
Keywords.Composition, Synchronization, Web service.

1 Introduction

In [8] and [9], we investigated the synchronization issue
of (“isolated”) Web services independently of the composi-
tion scenarios in which these Web services could take part.
This investigation shed the light on two types of behaviors
namelycontrolandoperationalthat were both used to spec-
ify and exhibit the functioning of Web services. The control
behavior illustrates the business logic of the functionality,
e.g.,CarRental , of a Web service, while the operational
behavior frames the progress of executing the business logic
of this Web service at run time.

As the literature review points out [3], it is known that
the “beauty” of Web services resides in their capacity to
be composed into high-level business processes known as
composite Web services. Composition is suitable for users’
requests that cannot be satisfied by any single, available
Web service, whereas a composite Web service obtained
by combining available Web services might be used. Com-

position design and development are bound to a specifica-
tion that describes, at design time, multiple elements such
as execution order of component Web services, data de-
pendencies between component Web services, and correc-
tive strategies in case component Web services raise excep-
tions. At run time, the composition specification is trig-
gered, which means identifying and invoking component
Web services, overseeing their execution, coordinating their
actions, and initiating corrective strategies if needed. Dif-
ferent specifications related to Web services composition
currently exist such as BPEL (de factostandard) and WSCI.

In term of execution, Web services composition can be
structured along two types of orchestration [1]:centralized
or peer-to-peer(P2P) (i.e., decentralized). On the one hand,
centralized orchestration like its name hints relies on a cen-
tralized module (e.g., BPWS4J) that coordinates and tracks
all the execution activities related to component Web ser-
vices in terms of when to invoke them, what to expect out
of their invocation, what data they exchange, how to pass
on these data, just to cite a few. On the other hand, P2P or-
chestration excludes the centralized module and promotes
direct interactions between component Web services. This
makes Web services aware of some of their direct acquain-
tances during composition, which means the necessity of
empowering these Web services with appropriate knowl-
edge and mechanisms in order to support direct interactions.
eFlow [2] is an example of Web services-based systems that
adopts a centralized orchestration, whereas PCAP [10] is an
example of Web services-based systems that adopts a P2P
orchestration.

This paper extends the synchronization initiative we re-
port in [9] by leveraging this time our research findings
and thoughts from the component to the composition lev-
els. In [5], we applied the separation between control and
operational behaviors to model check orchestration-based
composite Web services. The control behavior is used to
extract the desired properties to be checked in the model of
composite Web services captured by the operational behav-
ior. In this paper, our primary objective is to address the fol-
lowing issues per type of orchestration: what synchroniza-
tion mechanisms are required to set up, what messages im-

MALLOW’009: Turin, Italy, September 7-10, 2009

22

plement these mechanisms, how these messages are tracked
during synchronization, how synchronization and execution
are interleaved, and how the correctness of these messages
is proved. In this extended work, Web services are no longer
treated as isolated components but as integral components
of composition scenarios. Analyzing the synchronization
of Web services at the composition level offers some di-
rect benefits. First of all, it would be possible to dissociate
the behaviors of Web services at the composite level from
the behaviors of these Web services at the component level.
Second, it would be possible to track the interactions that
occur between the Web services from the component to the
composite levels andvice-versa. Finally, it would be possi-
ble to work out the necessary synchronization mechanisms
per type of composition orchestration whether centralized
or P2P.

Section 2 discusses the commonalities and differences
between the component and composite levels and provides
a running scenario. Section 3 reports on the synchroniza-
tion work that was done at the component level. Section 4
discusses synchronization at the composite level with focus
on the P2P schema. Prior to concluding in Section 6, some
experimental details are given in Section 5.

2 Background

2.1 Component vs. composition levels

In a composition scenario, we classify interactions that
involve composite and component Web services into ver-
tical (from composite Web service to component Web ser-
vice) and horizontal (from component Web service to an-
other component Web service). By establishing an interac-
tion session, the initiator of a message aims at making the
recipient of this message behave and take actions according
to the content of this message. In the following, we identify
the acceptable actions that a message initiator can execute
over a potential recipient during vertical and horizontal in-
teractions. The objective of identifying these actions is to
facilitate the definition of the relevant synchronization mes-
sages that would be suitable per type of interaction.

In vertical interactions, a centralized orchestration of
Web services composition is implemented. Here, a com-
posite Web service through the centralized module has the
authority to carry out the following actions over a compo-
nent Web service:

“ Invite” action makes the composite Web service request
the participation of the component Web service in its com-
position scenario1;

“Ping” action makes the composite Web service check
the liveness of the component Web service that accepted

1Component Web services invitation is discussed in [6].

its invitation of participation; there is no guarantee that the
component Web service is still part of a composition sce-
nario at time of invocation;

“Trigger” action makes the composite Web service initi-
ate the execution of the component Web service;

“Audit” action makes the composite Web service monitor
the performance of the component Web service for assess-
ment purposes; service level agreements motivate the audit
exercise;

And, “retract&invite” action makes the composite Web
service withdraw the component Web service from its com-
position due to poor performance for example. This yields
into searching for another replacement Web service that will
be added to this composition.

In horizontal interactions, a P2P orchestration of Web
services is implemented. Here, a component Web service
has the authority to carry out the following actions over a
peer:

“ Invite” action makes the component Web service re-
quest the participation of the peer in the current composition
scenario;

“Ping” action makes the component Web service check
the liveness of the peer that accepted its invitation of partic-
ipation; there is no guarantee that the peer is still part of a
composition scenario at time of invocation;

And, “trigger” action makes the component Web service
initiate the execution of the peer.

Compared to the vertical interactions in the centralized
orchestration, “audit” and “retract” actions are excluded
from the horizontal interactions in the P2P orchestration.
Essentially, this is due to the challenges that are posed when
tracking the performance of Web services and replacing
them if needed. Not all providers would like to have their
Web services audited by the Web services of other providers
for reasons that could be related to security, privacy, com-
petitiveness, etc. In a centralized orchestration, providers
do not mutually interact with each other and might not even
know that they are parts of the same composition scenario.
The absence of “audit” and “retract” actions in a P2P or-
chestration sheds the light on the necessity of developing
appropriate mechanisms that should take into account con-
cerns like privacy and competitiveness. However, these
mechanisms do not fall into the scope of this paper.

2.2 Running scenario

Our running scenario concerns a university student who
is in the process of organizing a cookout party to celebrate
his recent graduation. We identify hereafter the Web ser-
vices along with their activities that will implement this
party’s logistics.

CateringWS: searches for and contacts catering compa-
nies according to some criteria like allocated budget, num-

2

MALLOW’009: Turin, Italy, September 7-10, 2009

23

ber of expected guests, type of cuisine, etc.
GuestWS: sends invitees invitations, keeps track of

confirmed invitations, reminds late invitees for confirma-
tion, etc.

PlaceBookingWS: looks for a place to host the cookout
party, books the place, completes the necessary paperwork
like payment, etc.

WeatherWS: checks weather forecast for the day of the
cookout party. In case of bad weather, the party takes place
at the student’s place.

In our initial synchronization project [9],state charts
were selected to specify component Web services indepen-
dently of any composition scenario (Fig. 2 (a)). For the
sake of compliance, we continue doing so when modeling
the specification of composition scenarios. However states
correspond this time to Web services taking part in these
scenarios (Fig. 1).

Guest
confirmationPlaceBookingWS Confirmation

booking GuestWSWeatherWS Nice
weather CateringWS

Bad weather

Figure 1. Specification of the cookout party

3 Specification of Web services

3.1 Control and operational behaviors

The control behaviorshows the business logic that un-
derpins the functioning of a Web service with respect to
its functionality. A business logic is domain-application
dependent (e.g., healthcare) and changes from one case
study to another according to various requirements such as
user (e.g., minimum age to submit an application), security
(e.g., type of encryption algorithm), etc.

Theoperational behaviorguides the execution progress
of the business logic of a Web service. To this end,
this behavior relies on a specific number of states, which
are activated , not-activated , done , aborted ,
suspended , and compensated . These states are re-
ported in the field of transactional Web services [11] and
common to a certain extent to all Web services (and to any
software application) regardless of their functionalities, ori-
gins, and locations.

As mentioned in Section 1, the control and operational
behaviors of a Web service are modeled using state charts.
This exercise of modeling is hereafter interleaved with some
formal definitions and illustrative examples.
Definition 1 (Web Service Behavior). The behavior of a
Web service is a 5-tupleB = 〈S,L, T , s0,F〉 where: S
is a finite set of state names;s0 ∈ S is the initial state;
F ⊆ S is a set of final states;L is a set of labels; and
T ⊆ S × L × S is the transition relation. Each transition
t = (ssrc, l, stgt) consists of a source statessrc ∈ S, a tar-
get statestgt ∈ S, and a transition labell ∈ L. From now

on, we qualify transitions in the behavior of a Web service
asintra-behavior. ¤

The control and operational behaviors of a Web ser-
vice are defined as instances of the behavior of this
Web service (Definition 1). These two behaviors are
denoted byBco = 〈Sco,Lco, Tco, s0co,Fco〉 and Bop =
〈Sop,Lop, Top, s0op,Fop〉, respectively.

Example 1: Fig. 2 (a) is a state chart of the
control behavior of WeatherWS. Several states like
city-located (initial state), report-delivered
(final state), and search-canceled , and several
transitions like (city-located , unavailable ,
search-canceled) are included in this state chart.
In this transition example, city-located and
search-canceled are the source and target states,
respectively, andunavailable is the transition’s label.

Example 2: Fig. 2 (b) is another state chart that
illustrates this time the operational behavior of Weath-
erWS. Similar to the control behavior, several states like
not-activated and suspended , and transitions like
(compensated , rolling-back , not-activated)
and (activated , failure , aborted) are identified
in this state chart.

In Fig. 2, the control and operational behaviors of a
Web service include different finite sequences that connect
states and transitions together. We refer to these sequences
aspathsand define them as follows:

Definition 2 (Path in Web Service Behavior). A pathpi→j

in the behaviorB of a Web service is a finite sequence
of states and transitions starting from statesi and ending

at statesj and is denoted as follows:pi→j = si
li−→

si+1 li+1

−→ si+2 . . . sj−1 lj−1

−→ sj such that∀k ∈ {i, j − 1} :
(sk, lk, sk+1) ∈ T (exponents in state names are here given
for notational purposes only). ¤

Example 3: Let l1 (resp. l2) = start (resp.

commitment) in Fig. 2 (b). not-activated
l1−→

activated
l2−→ done is a path in the operational be-

havior of WeatherWS.

3.2 Both behaviors in interaction

We pointed out that the operational behavior guides
the performance of the control behavior of a Web ser-
vice. This guidance requires bringing both behaviors to-
gether. For instance,done state that a Web service takes
on in the operational behavior will in return make this

3

MALLOW’009: Turin, Italy, September 7-10, 2009

24

Refinement

Submission

City located
Unavailable

Avail
ab

le

Access

Weather
collected

Access
failed

Search
canceled

Report
delivered

Connection
closed

Completion

Abortion after
failed retrials

Compensation after failed retrials

Commitment
Done

StartNot
activated

Activated

Rolling back
Compensated

E
xception

R
et

ri
al

Suspended Aborted

Failure

Compensation
after commitment

(a) Control behavior (b) Operational behavior

Figure 2. WeatherWS’s control and operational behaviors

Commitment

SubmissionCity located
Available Weather

collected
Report

delivered

StartNot
activated

Activated Done

Connection
closed

Legend Conversation session

O
pe

ra
tio

na
l

be
ha

vi
or

C

on
tr

ol

be
ha

vi
or

C
om

po
ne

nt
 le

ve
l

Figure 3. Example of operational and control behaviors mapping in WeatherWS

Web service take on other appropriate counterpart states
like weather-collected and report-delivered
in the control behavior.

The process of connecting operational and control
behaviors together results in establishingconversation
sessionsbetween the respective states of these two be-
haviors (Fig. 3). To complete this connection process, a
mapping function is defined as follows:

Definition 3 (Mapping Function). Let Pco be the set of
all paths in the control behavior of a Web service starting
from any state in this behavior. Connecting the operational
behavior to the control behavior andvice-versaoccurs us-
ing the following mapping function:Map : Sop → 2Pco ,
where2Pco is the power set ofPco. ¤

What the he mapping functionMap does is to associate
each state in the operational behavior with a set (possibly
empty) of possible paths in the control behavior.

Example 4: Fig. 3 is an example of the use of the
mapping function in WeatherWS whereactivated state
in the operational behavior is associated with multi-
ple paths in the control behavior. One of these paths

is: city-located
l1−→ weather-collected

l2−→
report-delivered wherel1 = available andl2 =
submission . A second path foractivated state is
given in Fig. 4 (b) as well.

On top of the mapping function Map, interactions

between control and operational behaviors require a
specification operation that indicates which state in the
operational behavior is associated with which set of
possible paths in the control behavior along with the “new”
transitions that will implement these interactions. The next
state to take on in the operational behavior is determined
by the executed path in the control behavior and whether
this execution was a success or failure. In other words, the
specification operation lets the control behavior indicate to
the operational behavior what needs to be done next. We
define the specification operation as follows:

Definition 4 (Specification Operation). LetLS be the set of
labels associated with the “new” transitions between oper-
ational and control behaviors. The specification operation
uses the following two functions:
Spec : Sop → 2LS×Pco×LS andNext : Sop × Pco →
Lop × Sop. ¤

The specification functionSpec associates each statesop
in the operational behavior with a (possibly empty) set of
triples. A triple contains (i) the label of the transition
fromsop to the first state in the control behavior of a mapped
path, (ii) the mapped path itselfpi→j , and (iii) the label
of the transition from the last state in the control behavior
of the mapped path back tosop in the operational behav-
ior. We qualify the “new” transitions that connect states in
independent state charts asinter-behavior(note that intra-
behavior transition was used in Definition 1). The partial
functionNext associates both a given state in the opera-

4

MALLOW’009: Turin, Italy, September 7-10, 2009

25

tional behavior and the mapped path in the control behavior
with both the next state to take on in the operational behav-
ior and the associated transition label.

Example 5: Fig. 4 shows the synchronization of Weath-
erWS’s operational and control behaviors where two types
of transitions exist: intra-behavior fromTco ∪ Top (plain
lines) and inter-behavior (dashed lines,Labels1,2,3).
Fig. 4 contains Spec(activated)={(label1,
path1, label2),(label1, path2, label3)},
Next(activated ,path1)=(commitment ,done),

where path1 = city-located
l1−→

weather-collected
l2−→ report-delivered

and Next(activated ,path2)=(failure ,aborted)

wherepath2= city-located
l3−→ access-failed

l4−→ connection-closed .
In Fig. 4, the initiation ofWeatherWSis shown in the

operational behavior withactivated state. WeatherWS
takes on this state following receipt of a user’s request. Be-
cause of (activated , label 1, city-located) inter-
behavior transitions, the execution ofWeatherWSbegins by
using a dedicated database to search for the requested city.
This makesWeatherWStake oncity-located state in
the control behavior. Afterwards, two cases are identified.

Case a. Everything goes fine and a 5-day weather-
forecast report is delivered back to the user. Because
of (report-delivered , label 2, activated) inter-
behavior transition, this makesWeatherWScomplete its op-
eration with success by transiting fromactivated to
done states in the operational behavior, i.e., (activated ,
commitment , done) intra-behavior transition.

Case b. The access to the database fails (not like in
case a) as the control behavior ofWeatherWSindicates
with access-failed and connection-closed
states. Because of (connection-closed , label 3,
activated) inter-behavior transition, this makesWeath-
erWSterminate its operation with failure by transiting from
activated to aborted states in the operational be-
havior, i.e., (activated , failure , aborted) intra-
behavior transition.

To wrap-up this section, the formal definitions of inter-
behavior and conversation session are provided. Needless
to propose a formal definition for intra-behavior transition,
which is a regular transition in a state chart (Definition 1).

Definition 5 (Inter-Behavior Transition). The set of all
inter-behavior transitions that connect the operational and
control behaviors of a Web service is denoted byIT
whereIT = IT op→co ∪ IT co→op such that:IT op→co ⊆
SIT (op)×Lop→co×SIT (co) is the inter-behavior transition
relation starting from the operational behavior and ending
at the control behavior;IT co→op ⊆ SIT (co) × Lco→op ×

SIT (op) is the inter-behavior transition relation starting from
the control behavior and ending at the operational behav-
ior; SIT (op) ⊆ Sop is a finite set of state names in the
operational behavior that take part in inter-behavior tran-
sitions;SIT (co) ⊆ Sco is a finite set of state names in the
control behavior that take part in inter-behavior transitions;
andLop→co is a set of inter-transitions’ labels from the op-
erational to the control behaviors, andLco→op is a set of
inter-transitions’ labels from the control to the operational
behaviors(Lco→op ∪ Lop→co = LS (Definition 4)). ¤

Before we define Web service conversation session,
we introduce another function known asLab. This
function returns the label of an inter-behavior transition:
Lab : IT → LS .

Definition 6 (Web Service Conversation Session).
A conversation session between the operational
and control behaviors of a Web service is a 4-
tuple 〈sop, itop→co, pco, itco→op〉 such that: sop ∈
Sop, itop→co ∈ IT op→co, itco→op ∈ IT co→op, pco ∈
Pco; and (Lab(itop→co), pco, Lab(itco→op)) ∈
Spec(sop). ¤

4 Synchronization woven into composition

Synchronization is a mechanism by which independent
entities coordinate their next actions by agreeing on how,
where, and when to carry out these actions. In the rest of
this paper, entities correspond to Web services that could be
either component or composite. We look into synchroniza-
tion from two perspectives:Intra, which means how the op-
erational and control behaviors in a component/composite
Web service are coordinated (Section 4.1), andInter, which
means how the operational and control behaviors in separate
component Web services are coordinated within the context
of the same composite Web service (Section 4.2). Because
composition could have either a centralized or a P2P or-
chestration schema, inter Web-services synchronization is
examined from these two types.

4.1 Intra Web-services synchronization

Case of component Web services.The synchronization
of component Web services was the main object of our re-
search project in [9], so further details are provided in this
reference. Table 1 contains some synchronization messages
we developed in order to allow the operational and control
behaviors interact with each other.

Case of composite Web services.The synchronization
of composite Web services is differently handled from
the synchronization of component Web services. This is
due to the characteristics of composite Web services that
need now to be highlighted through their operational and

5

MALLOW’009: Turin, Italy, September 7-10, 2009

26

Operational behavior Control behavior

label 1

label 2

com
m

itm
ent

Activated

Done

City located DB

Weather
collected

Report
delivered

WeatherWSUsers

Operational behavior Control behavior

label 1

label 3

failure

Activated

Aborted

City located DB

Access failed

Connection
closed

WeatherWS Users

(a) Success case (b) Failure case
Legend

Intra-behavior transitionInter-behavior transition

Figure 4. Synchronization of WeatherWS’s control and operational behaviors

Table 1. Messages during intra (component) Web-service synchronization

Message name Description
1. sync Originates from an operational state and targets a control state. The purpose is to trigger the execution of the control states (including the targeted control

state) in a conversation session.syncis a blocking message, which makes the operational state wait for a notification back from the last control state to
execute in this conversation session.

2. success Originates from a control state and targets the operational state that submittedsync. The purpose is to inform this operational state of the successful
execution of the control states in a conversation session and to return the execution thread back to this operational state as well.successis coupled with
sync.

control behaviors. These characteristics are as follows.
Firstly, the control behavior represents the business logic
of a composition scenario and no longer the business logic
of a certain component Web service. Secondly, the current
definition of the operational behavior (Definition 1) does
not tell much about the execution outcome of a composition
scenario and if this execution either succeeded or failed.
This current definition through states likeactivated and
suspended is geared towards the needs of the component
level, only (Fig. 2 (b)).

Definition 7 (Composite Web Service Control Behavior).
The control behavior of a composite Web service is a 5-
tupleBcwsco = 〈WSco,Lco, Tco,WS0

co,Fco〉 whereWSco is
a finite set of states that correspond to Web services’ names;
WS0

co ⊂ WSco is the set of initial states that correspond to
initial Web services;Fco ⊆ WSco is the set of final states
that correspond to final Web services;Lco is a set of la-
bels; andTco ⊆ WSco × Lco × WSco is the transition
relation. Each transitiont = (wssrc, l, wstgt) consists of a
source Web servicewssrc ∈ WSco, a target Web service
wstgt ∈ WSco, and a transition labell ∈ Lco. ¤

Example 6: Fig. 1 is a state chart of the control
behavior of the CookoutParty composite Web service.
Several states likeWeatherWS (initial state) and
CateringWS (final state) and several transitions like

(WeatherWS, NiceWeather , PlaceBookingWS)
are included. In this transition example,WeatherWS
and PlaceBookingWS are the source and target states,
respectively, andNiceWeather is the transition’s label.

Definition 8 (Composite Web Service Operational Be-
havior). The operational behavior of a composite Web
service is defined as an instance of the behavior of a
Web service (Definition 1) and is denoted byBcwsop =
〈Sop,Lop, Top, s0op,Fop〉. ¤

The purpose of the operational behavior of a composite
Web service is (i) to initiate the execution of its specifica-
tion, which is in fact the control behavior of this composite
Web service and (ii) to report on the success or failure of
the execution of this specification. As a result, the opera-
tional behavior of a composite Web service is a subset of
the operational behavior of a component Web service.

Example 7: Fig. 5 is another state chart that illustrates
this time the operational behavior of the CookoutParty
composite Web service. In this state chart, the number
of states is limited to four, namelynot-activated ,
activated , done , and aborted , and the num-
ber of transitions is limited to three, namelystart ,
commitment , andfailure .

Compared to the six states in the operational behavior of
a component Web service (Fig. 2 (b)), the four states in the

6

MALLOW’009: Turin, Italy, September 7-10, 2009

27

Commitment Done
StartNot

activated
Activated

Aborted
Failure

Figure 5. Operational behavior of a compos-
ite Web service

operational behavior of a composite Web service (Fig. 5)
puts some restrictions on the authorized synchronization
messages (like those suggested in Table 1) that can be con-
sidered between this operational behavior and its counter-
part control behavior. These restrictions are hereafter listed:

1. There is one conversation session between the opera-
tional and control behaviors. This session includes the
activated state in the operational behavior and all
the states (i.e.,WSco) in the control behavior.

2. Interaction message of typesync to come out of the
activated state in the operational behavior has one
recipient, which is the initial state(s) (i.e., Web service)
in the control behavior (i.e.,WS0

co).

3. Any state (i.e., component Web service) in the con-
trol behavior can only submit an interaction message
of type fail back to theactivated state in the oper-
ational behavior. This restriction is waived for the final
state(s) in the control behavior (i.e.,Fco) that can sub-
mit on top offail message another message of typesuc-
cessback to theactivated state in the operational
behavior.

4. Interaction message of typesyncreq is not allowed
from the control to the operational behaviors.

4.2 Inter Web-services synchronization

Centralized orchestration is well “embraced” in Web ser-
vices composition projects. But, a few projects look into
the changes that need to be made in Web services stan-
dards/specifications like BPEL to smooth the design and de-
velopment of P2P orchestration. Gowri Nanda et al. note
that because performance and throughput are major con-
cerns in enterprise applications, removing the inefficien-
cies that a centralized control introduces, is required [4]. A
BPEL program could be partitioned into independent sub-
programs that interact with each other without any cen-
tralized control. Gowri Nanda et al. propose a technique
to partition a composite Web service written as a single
BPEL program into an equivalent set of decentralized pro-
cesses. This technique minimizes communication costs and
maximizes the throughput of multiple instances of the input
program.

In this paper, we look at inter Web-services synchroniza-
tion from two perspectives: centralized andP2P (focus of
this paper). This synchronization aims at initiating the de-
velopment of composition scenarios and overseeing the exe-
cution progress of this development at run-time. As a result,
this raises the necessity of enhancing Web services with ad-
ditional mechanisms based on the needs and requirements
of these composition scenarios. For instance, a Web ser-
vice has now to decide if it would or not take part in a
composition scenario subject to carrying out some sort of
self-assessment [6]. That was not the case in the intra Web-
services synchronization (Section 4.1) where the focus was
on how to specify the execution of “isolated” Web services.

We identify the additional mechanisms that should em-
body Web services along four cases, which we denote by
invitation, execution, verification, andreplacement. These
four cases abstract the different types of actions that com-
ponent and composite Web services carry out during verti-
cal and horizontal interactions. For example, a Web service
should submit its performance details to a composite Web
service as part of the verification exercise that this com-
posite Web service carries out. In addition, a Web service
should not leave its ongoing operations pending in case a
composite Web service decides to substitute it as part of the
replacement exercise. These additional mechanisms need
to be woven into the business logic that underpins the func-
tionality of a Web service. In [7], we elaborate on how this
weaving should place in compliance with some design prin-
ciples like separation of concern and aspect-oriented pro-
gramming. To keep the paper self-contained on synchro-
nization, enriching Web services with additional mecha-
nisms is excluded.

Case of P2P orchestration.The synchronization of in-
ter Web-services in a P2P orchestration reinforces the exis-
tence of the component level, only. Each component Web
service that takes part in a composition scenario is associ-
ated with an operational and a control behaviors (Fig. 6).
The previously proposed definitions for these two behav-
iors continue to be used (Definition 1). However, new def-
initions are deemed appropriate for first, the inter-behavior
transitions between component Web services and second,
the conversation sessions that result out of setting-up these
inter-behavior transitions. These new definitions have to
be inline with the authorized actions to carry out in a P2P
orchestration. These actions are “invite”, “trigger”, and
“ping”.

In Fig. 6, the double-arrowed lines (plain and dashed)
illustrate where the synchronization of inter Web-services
should take place in a P2P orchestration. Numbers asso-
ciated with these lines represent message chronology. In
the P2P orchestration we hereafter adopt, sequential execu-
tion of the component Web services is assumed even though
concurrent execution could be handled without any substan-

7

MALLOW’009: Turin, Italy, September 7-10, 2009

28

Operational
behavior

Control
behavior

1
2

Component Web service i

Legend

Inter-behavior transition within component Web service

Inter-behavior transition between component Web services

i): Chronology of synchornization messages

Operational
behavior

Control
behavior

Component Web service j

4
5

7
3 68

Figure 6. Synchronization of behaviors at the composition level – P2P orchestration

tial changes in the new or existing definitions. Plain lines in
Fig. 6 represent inter-behavior transitions within the same
component Web service (Section 4.1). What is now needed,
which is the focus of this part of the paper, is to define
the inter-behavior transitions between component Web ser-
vices. These inter-behavior transitions are represented with
dashed lines (3, 6, 7, 8) in Fig. 6.

In a P2P orchestration, the absence of a centralized coor-
dination that would “spread the word” to other component
Web services about the execution outcomes of their peers
requires some changes in the way these component Web ser-
vices should behave. For instance, component Web services
cannot announce their immediate successful execution un-
til they receive positive feedbacks from their peers in a re-
verse order. In case of negative feedbacks, these component
Web services have to cancel or compensate their execution
outcomes and notify their predecessors about the cancela-
tion or compensation actions they have taken, as well. An-
nouncement delay and backward notification have to be re-
flected on the operational levels of the different component
Web services. Like in a centralized orchestration we split
done state into two states (Fig. 7):partial done and
final done .

• Partial done in a component Web service allows
to pass on the execution thread to the next peer(s)
(Fig. 6, dashed lines 3 and 6).

• Final done in a component Web service permits to
confirm its successful execution (final completion) fol-
lowing receipt of a positive notification from a succes-
sor peer (Fig. 6, dashed lines 7 and 8).

Definition 9 (Completion Status of Component Web Service
in Peer-to-Peer Orchestration). Let assume a composition
scenario ofn component Web services. The completion
status of a component Web service WSi in term of either
success or failure is dependent on the notification message
that WSi receives from its direct successor component Web
service WSi+1.

Status(WSi) =
{

Notify(WSi+1) i = 1, · · · , n− 1

success | failure i = n

It is worth to mention thatsuccessandfailure are conver-
sational messages between component Web services. These
messages are specified in Table 2.

Fig. 7 illustrates the different conversation sessions that
need to be set-up in a P2P orchestration. The focus is
on conversation session #2; conversation session #1 is al-
ready discussed in Section 4.1. The identification of the
inter-behavior transitions that should be included in con-
versation scenario #2 takes advantage of the set of accept-
able actions (e.g., “invite” and “ping”) that can be car-
ried out between component Web services. These ac-
tions are now woven into the synchronization messages
to occur between the respective operational behaviors of
the component Web services. The following comments
are made on the new operational behavior of a compo-
nent Web service: (i)partial done andfinal done
states are added and connected, (ii)partial done and
aborted states are connected, and (iii)partial done
andcompensated states are connected as well.

Table 2 summarizes some messages that can be ex-
changed in a P2P orchestration during inter Web-services
synchronization. This table is built upon the messages of
Table 1. The description of each message type shows (i) the
direction of the bidirectional flow between the operational
behaviors of the component Web services, and (ii) the case
that corresponds to the actions to perform during horizon-
tal interactions. Interesting to discuss messages #9 and #10,
i.e.,confirmandcancel, respectively in Table 2. Both mes-
sages are used by component Web services to notify other
component Web services that they could either confirm or
cancel their execution.
Definition 10 (Inter-Behavior Transition in Peer-to-Peer
Orchestration). The set of all inter-behavior transitions
that connect the operational behaviors of component Web
services together in a P2P-orchestration mode (conver-
sation session #2 in Fig. 7) is denoted byIT (wsi,wsj)

whereIT (wsi,wsj) = IT (wsi,wsj)
op→op ∪IT (wsj ,wsi)

op→op such that:

8

MALLOW’009: Turin, Italy, September 7-10, 2009

29

2

1

1

O
pe

ra
tio

na
l

be
ha

vi
or

C

on
tr

ol

be
ha

vi
or

C
om

po
ne

nt
 le

ve
l

(W
ea

th
er

W
S)

 StartNot
activated

Activated

O
pe

ra
tio

na
l

be
ha

vi
or

C

on
tr

ol

be
ha

vi
or

C
om

po
ne

nt
 le

ve
l

(C
at

er
in

gW
S)

City located
Report

delivered

Not
activated

Activated CommitmentStart

Menu items
Catering
delivered

Legend Conversation session

Partial
done

Commitment Partial
done

Final done

Aborted

Compensated

Commitment

Failure

Compensation ...

Cancellation

Figure 7. Operational and control behaviors mapping in CookoutParty- P2P orchestration

IT (wsi,wsj)
op→op ⊆ SIT (op)×L(wsi,wsj)

op→op ×SIT (op) is the inter-
behavior transition relation starting from the operational be-
havior of a component Web service (WSi) and ending at
the operational behavior of another component Web ser-
vice (WSj). Same definition applies toIT (wsj ,wsi)

op→op ⊆
SIT (op) × L(wsj ,wsi)

op→op × SIT (op); SIT (op) ⊆ Sop is a finite
set of state names in the operational behavior of a com-
ponent Web service that take part in inter-behavior tran-
sitions; andL(wsi,wsj)

op→op is a set of inter-transitions’ labels
from the operational behavior of a component Web ser-
vice (WSi) to the operational behavior of another compo-
nent Web service (WSj), andL(wsj ,wsi)

op→op is the opposite

(L(wsi,wsj)
op→op ∪ L(wsj ,wsi)

op→op = LS). ¤

5 Implementation

To test the viability of the proposed approach, a proto-
type system was implemented in Java and integrated under
Eclipse 3.3 by extending the Web service development
platform we developed previously [9]. The prototype
consists of four modules:
ControlBehaviorModeler ,
OperationalBehaviorModeler ,
ConversationModeler and
SimulationController .
The ControlBehaviorModeler and the
OperationalBehaviorModeler assist engi-
neers specify the control and operational behaviors of
a component or a composite Web service, respectively.
In particular, we developed a visual interface for edit-
ing Web services’ behaviors using state charts. The
ConversationModeler takes the behavior specifica-
tions of a Web service as an input to produce conversation
specifications (i.e., inter-transitions and message se-

quences). It implements functions to support conversations
between operational and control behaviors. Specifically, it
provides methods for managing conversation instances and
triggering transitions. When dealing with a peer to peer
synchronization, theConversationModeler manages
first, the inter-behavior transitions between component
Web services and second, the conversation sessions that
result out of setting-up these inter-behavior transitions.
Finally, the SimulationController tracks and
analyzes (if necessary) the execution of a composite or
a component Web service according to its conversation
definition (e.g., whether the messages are received and sent
in an appropriate order).

Fig. 8 shows the execution of a component Web ser-
vice in the case of a peer to peer orchestration. Upon
the reception of a user’s request, the operational level of
the first component Web service (WeatherWSin this case)
moves from not-activated state to activated state (red color
is used to show the execution path). This latter state, sub-
mits aSync message toCitylocated state in the con-
trol behavior to trigger its execution. In a success case,
Reportdelivered state returns aSuccess message
back to the activated state in the operational behavior. Based
on this information, the operational behavior moves from
activated state to partial done state. This latter state sends a
trigger message to invoke the next component Web service
(CateringWS).

6 Conclusion

We presented in this paper a framework for establishing
synchronization between Web services engaged in compo-
sition scenarios. Synchronization assists independent par-
ties coordinate their actions and thus, avoid conflicts. This
framework extends the research work we carried out on iso-

9

MALLOW’009: Turin, Italy, September 7-10, 2009

30

Table 2. Messages during inter Web-services synchronization - P2P orchestration
Message Description

name From To In reply to Case
1. invite Component WSi (Bop) Component WSj (Bop) null Invitation
2. trigger Component WSi (Bop) Component WSj (Bop) null Execution
3. ping Component WSi (Bop) Component WSj (Bop) null Verification
4.
9. confirm Component WSi (Bws

op) 1[Component WSj (Bop)](i-1) success Execution
10. cancel Component WSi (Bws

op) 1[Component WSj (Bop)](i-1) failure Execution

Figure 8. An execution of a component Web service in a P2P orchestration

lated Web services (not engaged in any composition) and
leverages two types of behaviors related to specifying such
Web services. The control behavior defines the business
logic that underpins the functioning of a Web service, and
the operational behavior regulates the execution progress of
this control behavior by stating the actions to carry out and
the constraints to put on this progress. Synchronizing Web
services through their respective behaviors has revealed that
the orchestration schemas, whether centralized or P2P, af-
fect the mechanisms to develop in response to the needs
and requirements of the composition scenario that is under
consideration. The use of some of these mechanisms per or-
chestration schema was demonstrated through a prototype.
In term of future work, we plan to study the value-add of
model checking to the early-detection of design inconsis-
tencies and errors.

References

[1] Benatallah. B., Q. Z. Sheng, Ngu A. H. H., and M. Dumas.
Declarative Composition and Peer-to-Peer Provisioning of
Dynamic Web Services. InProceedings of the 18th Interna-
tional Conference on Data Engineering (ICDE’2002), San
Jose, CA, US, 2002.

[2] F. Casati and M. C. Shan. Dynamic and Adaptive Composi-
tion of E-Services.Information Systems, 26(3), 2001.

[3] F. Daniel and B. Pernici. Insights into Web Service Or-
chestration and Choreography.International Journal of E-
Business Research, The Idea Group Inc., 1(2), 2005.

[4] M. Gowri Nanda, S. Chandra, and V. Sarkar. Decentral-
izing Execution of Composite Web Services. InProceed-
ings of 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’2004), Vancouver, British Columbia, Canada, 2004.

[5] M. Kovas, J. Bentahar, Z. Maamar, and H. Yahyaoui. For-
mal Verification of Conversations in Composite Web Ser-
vices using NuSMV. InProceedings of the 8th Interna-
tional Conference on Software Methodologies, Tools and
Techniques (SoMeT09), IOS Press, Prague, Czech Republic,
2009.

[6] Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. To-
wards an Agent-based and Context-oriented Approach for
Web Services Composition.IEEE Transactions on Knowl-
edge and Data Engineering, 17(5), May 2005.

[7] Z. Maamar, M. Sheng, D. Benslimane, and H. Yahyaoui.
Web Services Interactions: Analysis, Modeling, and Man-
agement. International Journal on Software Engineering
and Knowledge Engineering, World Scientific Publishing
Co., 18(2), March 2008.

10

MALLOW’009: Turin, Italy, September 7-10, 2009

31

[8] Z. Maamar, M. Sheng, H. Yahyaoui, J. Bentahar, and
K. Boukadi. A New Approach to Model Web Services’ Be-
haviors based on Synchronization. InProceedings of the
23rd IEEE International Conference on Advanced Informa-
tion Networking and Applications, Symposium on Frontiers
of Information Systems and Network Applications, Bradford,
UK, 2009.

[9] Z. Maamar, M. Sheng, H. Yahyaoui, J. Bentahar, and
K. Boukadi. Conversation-Oriented Engineering of Web Ser-
vices. Technical report, College of Information Technology,
Zayed University, September 2007.

[10] Q. Z. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and
A. H. H. Ngu. Enabling Personalized Composition and
Adaptive Provisioning of Web Services. InProceedings of
the 16th International Conference on Advanced Information
Systems (CAiSE’2004), Riga, Latvia, 2004.

[11] W. Yang and S. Tang. A Solution for Web Services Transac-
tion. In Proceedings of The 2006 International Conference
on Hybrid Information Technology (ICHIT’2006), Cheju Is-
land, Korea, 2006.

11

MALLOW’009: Turin, Italy, September 7-10, 2009

32

Enhancing Engineering Methodology for
Communities of Web Services

M. El-Menshawy
Depart. of Electrical and Computer Engineering

Concordia University, Montreal, Canada
m elme@encs.concordia.ca

J. Bentahar, R. Dssouli
Concordia Institute for Inf. Sys. Engineering

Concordia University, Montreal, Canada
{bentahar, dssouli}@ciise.concordia.ca

Abstract—Communities of web services have been proposed
to gather web services having the same functionalities but
possibly different nonfunctional properties. Current approaches
into communities of web services focus on developing, managing
and designing communities of web services through a suitable
architecture, but can benefit from a stronger treatment of
flexible interactions. These approaches ignore the collaboration
and business-level contracts between various web services and
the ability to formally delegate service to another web service
within the same community. This paper presents a significant
step towards enhancing communities of web services using an
agent-based approach that synthesizes mentalistic states (e.g.
goals, tasks), social commitments and argumentative dialogues
for modeling and establishing communities of web services. This
paper has three contributions: first, we extend the community
structure with alliances structure to allow collaboration between
various web services; second, we propose a new engineering
methodology based on concepts of Tropos methodology for
managing communities of web services with alliances structure;
and third, we specify internal-organizational business interactions
within web services in terms of commitments augmented with
argumentative dialogues to reason about the validity of these
commitments. We evaluate our methodology using a large existing
case study of auto insurance claim processing.

I. INTRODUCTION

The notion of community has been proposed to gather web
services having the same functionalities independently of their
origins and the way they carry out these functionalities [3],
[4], [11]. In recent years, the capability of argumentation and
dialogue games has been used in managing and reconciling
conflicts of interests that may arise within a community of
web services. In this context, the argumentation theory allows
agent-based web services to interact rationally, argue about the
reasons that support or disavow their conclusions, persuade a
new web service to join a community, negotiate with other
peers to reach a deal and assail each other through an attack-
binary relation as well as specify the interaction mechanisms
within communities [3], [4].

In fact, web services of business scenarios begin with
a user’s need and end with a user’s need fulfillment. The
structure of community facilitates and speeds up the process of
web services discovery in open settings and helps in selecting
the best ones for composite business scenarios [12], [14] when
users’ requests cannot be satisfied by a single available web
service but need collaboration among available web services
to handle them [11].

Recently, a certain number of significant proposals have
been introduced [1], [3], [4], [10]–[13] to address the mod-
eling and management issues of communities of web services
(CWSs) in order to allow them to interact more flexibly for the
growing needs of business processes. However, the main ob-
jective of modeling and managing CWSs and the collaboration
between web services in an efficient way along with business
relationships has not been reached yet. In particular, we have
three broad elements which should be addressed: designing,
engineering, and managing communities.

− The architecture based on traditional software engi-
neering methodologies proposed in [3], [4], [11] lacks
business-level contracts that represent underlying inter-
actions between web services. This architecture depends
on message occurrence and ordering irrespective of the
message meanings, thereby a message-based approach
hides many details of the internal organization of the
architecture that affect designing business processes.

− Existing methodology [4], [11] for modeling, opera-
tionalizing, and evolving CWSs ignores formalizing the
delegation process that is used to delegate incomplete
services within community, in the case of replacing mis-
behaving web services and keeping the system reliable.
Furthermore, this methodology does not consider the
collaboration among members of the community and
the mentalistic states of agent-based web services. In
general, the approaches discussed in the literature con-
sider only two-party operations, while real-life scenarios
are typically multiparty operations that need a mediator
agent-based web service to complete users’ requests.

− The process of handling failures and exceptions is very
hard to implement within the current structure of the
community. Moreover, the number of interactions be-
tween members of the community needs to be reduced to
enhance the response time of participating web services.

This paper aims to enhance the community structure by setting
up alliances structure among web services to overcome the
aforementioned shortcomings in [3], [4], [11]. Thereby the
resulting community structure becomes more realistic with
the real-life business scenarios in distributed systems. By so
doing, we propose a new engineering methodology based on
Tropos methodology [17], which we enhance with concepts

MALLOW’009: Turin, Italy, September 7-10, 2009

33

of communities, commitments and argumentative dialogues
for modeling CWSs extended with alliances structure. In fact,
this work is an extension of our previous research in which
we have modeled and specified CWSs based on argumentation
capabilities. This model enables web services through associ-
ated agents to argue, persuade and negotiate with their peers
using a dialectical process to satisfy their goals in an efficient
way [3], [4]. Specifically, here we reconfigure the design
of community with alliances structure from the perspective
of the collaboration between agent-based web services that
participate in composition business scenarios and benefit from
agent reasoning capabilities about nonfunctional properties.

The contributions of this paper are manifold: (i) alliances
structure within CWSs enhances response time of web ser-
vices that handle users’ requests and reduces the number of
interconnections between members of community; (ii) a new
agent-based engineering methodology synthesizing mentalistic
states, social commitments and argumentative dialogues; and
(iii) a composition mechanism allowing agent-based web ser-
vices to collaborate with each other in the form of delegation
operations. Additionally, we present a case study of auto
insurance industry scenario to evaluate our methodology.

The remainder of this paper is organized as follows. Section
II introduces the notion of alliance structure and key concepts
for our methodology. Section III presents our engineering
methodology for developing communities of web services. Our
case study is presented in Section IV to evaluate different steps
of our methodology. The paper ends in Section V with the
relevant literature discussions and future work directions.

II. ALLIANCE STRUCTURE AND CONCEPTS

This section defines alliances structure within communities
of web services and key concepts to be used clearly in our
methodology.

A. Alliance Structure

In [3], [4], [11] the notion of communities of agent-based
web services has been introduced. Here we would prescribe
how to extend it via introducing alliances structure. In essence,
the service providers over forced to improve their strategies
and redistribute business functionalities to be able to compete
with others should think about building alliances. An alliance
structure based on Quality of Service (QoS) is the concept
that reconfigures community structure to achieve competitive
pressures between service providers and collaboration between
agent-based web services. In [3], [11] an alliance structure as
a subset of community or a micro-community based on mutual
agreements between providers of web services as part of their
partnership strategies has been superficially introduced.

We develop this view by considering nonfunctional propri-
eties (e.g., QoS, reputation, response time) associated with
each agent-based web service as a vital principle to cluster
two or more web services into different alliances as the second
level of community, since the first level is occupied by master
web service (see Fig.1). Whereas the third level of community
contains web services within alliances that underpin the same

or part of the community’s functionality. These web services
need to collaborate with other peers to achieve the whole or
global community’s functionality.

UDDI

registers

(WS1, ...WSn)

Discover Discover

Business Meaning

Service

Providers

Business Meaning

Service

Consumers

Business Meaning

Service

Providers

Business Meaning

Service

Consumers

Master

-WS1

Alliance

-WS11

Business Meaning

Community1 of

Web services

Slave

-WS111

Slave

-WS11k

Alliance

-WS1i

Slave

-WS1i1

Slave

-WS1ik

Master

-WS2

Alliance

-WS21

Community2 of

Web services

Slave

-WS211

Slave

-WS11n

Alliance

-WS2j

Slave

-WS2j1

Slave

-WS2jn

Business Meaning

Business

Meaning

Business

Meaning

Business

Meaning

Business

Meaning

Fig. 1. An architecture of communities extended with alliances structure.

For example, in the purchase scenario of goods, the func-
tionality of a community is purchasing goods. This community
combines web services having complementary functionality
within an alliance, such as placing an order, paying, and
shipping with a high reputation and response time. Notice
that, these agent-based web services have logically distinctive
functionalities and involve distinctive roles from the commu-
nity’s functionality but they can collaborate with each other
to achieve a goal by combining or composing their function-
alities (i.e., purchasing goods) and to satisfy the community’s
functionality.

As a result the new internal organization of the community
with alliances structure make it easier to detect failures and
errors as we search in micro-communities and reduce the
number of interactions between members of the community
since the master web service has one connection with each
alliance structure instead of a direct connection with each
web service (i.e., this minimize the overhead). Moreover, an
alliance inherits a dynamic property from its community where
new members can admit to or exclude from the alliance, and
alliances themselves can either discard or merge at any-time.

B. Key Concepts
The key concepts of our methodology are inspired by Tro-

pos methodology [17] with the extra flexibility resulting from
considering new concepts such as community, commitment
and argumentative dialogue. The purpose is to enhance Tropos
capabilities in order to deal with the intrinsic complexity of
business processes.

1) Community: a collection of web services with similar
or part of total functionality organized into three broad levels
without explicitly referring to concrete web services that will
implement this functionality within alliances structure at run-
time (see Fig.1).

MALLOW’009: Turin, Italy, September 7-10, 2009

34

2) Agent: a computational representation of web service
within community structure with metaphors that make it
appropriate for developing, designing and implementing dis-
tributed business systems. Each agent has strategic goals and
capabilities to execute tasks. It engages with others in business
relationships to get other agents performing the delegated tasks
on its behalf and to reason about the validity of their tasks.

3) Role: an abstract entity over agent-based web services
and can be specified by their related sets of commitments
augmented with argumentation systems within a community.
Multiple agents could play one role and different roles could
be played by a single agent in a community.

4) Goal: a state of the world that an agent would like to
reach or bring about. In other words, a goal is a final or
an acceptance state. Tropos methodology defines two types
of goals: hard goals are functional requirements and often
have a measurable satisfaction condition that can be satisfied.
The latter one, called soft goals, no precise criteria for its
satisfaction can be found, these goals model nonfunctional
requirements of the community. The AND/OR decomposition
is used to decompose a root goal into subgoals.

5) Task: an abstract method by which a goal can be
achieved. Parallel with the concept of goal, there are two
types of tasks to achieve the companion goals. Here we also
use AND/OR decomposition to decompose a root task into
subtasks compatible with subgoals. The AND requires all
subtasks; OR requires one subtask.

6) Dependency: used to identify the dependent relationship
between two roles where one role (the depender) depends upon
the other (the dependee) in order to achieve a goal or execute
a task. This relation is written as the depender depends upon
the dependee.

7) Commitment: a commitment C(id, dbtr, cdtr, Cx, ψ, φ)
means that the debtor dbtr is responsible to the creditor
cdtr within community context Cx for satisfying the content
φ if the condition ψ holds. The commitment has the form
of contractual style where id is the unique identifier for
commitment, dbtr is the debtor role, cdtr is the creditor role,
the context Cx may be an institution, a company, organization,
marketplace (e.g., eBay) in which ongoing interactions occur,
and φ and ψ are formulas in a given formal language.

Commitments capture state of the dependencies relation
between roles and allowing a variety of possible manipulation
based on a set of operations. For instance, the debtor is
able to create, fulfill, violate commitments, withdraw from
commitments and delegate commitments to another agent.
Whilst the creditor has the right to release the debtor from
commitments and assign commitments to another agent [20].

8) Argumentative dialogue: a dialectical process for the
exchange of various arguments for and against some conclu-
sions [3], [4]. Indeed, argumentation provides agent-based web
services with an effective means to reconcile conflicts, seek
information, persuade and negotiate with other peers within the
same alliance structure. It relies on actions on commitments
to generate a suitable set of arguments during dialogues to
achieve mutually acceptable agreements between agent-based

web services.

III. ENGINEERING METHODOLOGY FOR WEB SERVICES
COMMUNITIES

Having captured the core concepts of our methodology,
here we introduce the proposed methodology that intended
to support all phases of developing CWSs based on the notion
of Tropos methodology. The latter one has been developed in
[17] as an agent-oriented software methodology in terms of
goal, task and dependency. Tropos has been enhanced with
commitments to capture business interactions among partners
with high-level business meaning [15]. In the same direction,
this paper improves the last version of Tropos introduced in
[15] with arguments and argumentative dialogues to increase
its capabilities via enabling agent-based web services to argue,
seek information and negotiate with other peers about the
compliance of their commitments, thereby increasing its prac-
ticality in distributed business systems. Table (I) summarizes
the steps in our proposed methodology. The subsections below
describe a step-by-step way the progress of our methodology.

A. Requirements Analysis
This phase enhances the early and late requirements in the

phases of Tropos methodology with a community concept.
1) Step 1: Identify Community: the engineer initially

concerns with understanding the organizational context of
community that gathers agent-based web services. This step
includes substeps to be completed.

1.1) Define the functionality (e.g., hotels booking, weather
forecasting, etc.) of community by binding to a specific ontol-
ogy [13] (e.g., Web Ontology Language (WOL)). This binding
is important since providers of web services use different
terminologies to describe the functional and nonfunctional
requirements of their respective web services.

1.2) Identify agents and roles in a community using terms
like master, alliance and slave web service. The master web
service plays the main role in a community and refers to a
special web service that leads the community as well as it takes
over multiple responsibilities (e.g., checking the credentials
of alliance web services before they are established in the
community). The other of web services in the community are
slave web services.

1.3) Identify alliance web services by clustering two or more
slave web services having the same nonfunctional properties
satisfy the users’ requests and having different functional-
ity. For example, the master web service gathers slave web
services that have a high QoS in the first group under the
management of alliance web service1 and the other slave web
services that have a medium QoS in the second group under
the management of alliance web service2, etc. (see Fig.1).

1.4) Specifying dismantle community: the master web ser-
vice is only responsible for dismantling community when all
alliance structures present low precision to users’ requests
(i.e., irrelevant results) and low recall (i.e., missing relevant
information). This happens when the number of slave web
services within alliances structure is not enough to satisfy
users’ requests as well.

MALLOW’009: Turin, Italy, September 7-10, 2009

35

2) Step 2: Determine Goals and Dependencies: this step
iteratively determines the goal dependencies between the roles.
First, it searches UDDI registries to find posted services based
on the similarity that exists between users’ requests and these
registered services. Thus, the composite goal of users’ requests
is identified at the master web service as a hard goal. Second,
the master web service uses nonfunctional properties to refine
its populated alliance web services into one that satisfies
this composite goal (say G). Third, using means-end analysis
to decompose this composite goal into subgoals (say G =
{g1, g2, . . .}), thereafter, alliance web service introduces roles
that adopt these subgoals. This iterative analysis continues
decomposing these subgoals until no new goal dependencies
arise.

Description Input Output
1.1) Identify community A specific ontology All agent-based
function and composition web services having

scenario. the same or part
of community’s
functionality.

1.2) Identify agents Agent-based web Master web
and roles in community services and service and slave

composition scenario. web services.
1.3) Identify alliance Slave web services, Alliance web
web services composition scenario services and

and nonfunctional their slave web
properties. services.

1.4) Specify dismantling Request from alliance Terminating
community web service to its community.

master web service.
2) Identify goals and Alliance web services, Goals and goal
goal dependencies slave web services, dependencies of

composition scenario each dependee
and goals are role (in step 1.2).
introduced in
architecture.

3) Identify tasks Alliance web services, Tasks and task
and task dependencies slave web services, dependencies.

goal dependencies and
composition scenario.

4) Identify commitments Tasks dependencies, Commitments
scenario commitments describing
description. business relation.

5) Identify argumentative Nonfunctional Accessitable
dialogues properties and commitments.

commitments.

TABLE I
OUTLINE THE STEPS IN OUR METHODOLOGY.

3) Step 3: Identify Tasks and Dependencies: each role
from step (2) has goal dependencies, then the ultimate ob-
jective of this step is to find task dependencies that will be
responsible to achieve goals dependencies. Meanwhile, one
goal (say g1) may need a set of tasks (say t1 = {t1.1, t1.2, . . .})
to accomplish it. Subsequently, means-end analysis needs to
identify this set of the tasks. Similarly, the task may be
decomposed into subtasks and this decomposition analysis will
iterate until no new task dependencies arise.

B. Architecture Design

The architectural design phase plays a crucial role in the
design process. Initially, it defines the organization of the

system in terms of the components and their interdependencies
that are identified in previous phase. This step focuses on
how system components work together to constitute a mul-
tiagent system and introduces resources, goals and roles as
needed. This paper presents an architecture to tackle pitfalls
of standard approaches that do not underpin business meaning
and dynamic composition of existing services in which the
components are agent-based web services and their interdepen-
dencies are specified in terms of commitments augmented with
argumentation capabilities to reason about the validity of these
commitments (we will explain commitment and argumentation
later on). In fact, this architecture is a call and return style in
the form of layered phases and an extension to the architecture
we developed in [3], [4].

From Fig. 1 the main components of the proposed architec-
ture are service providers, service consumers of web services,
UDDI registers and communities with alliances structure. A
community with alliances structure is organized dynamically
according to the specifications discussed in previous phase
(III-A). Hereafter we focus on operationalizing the steps
through which the goal dependencies are to be fulfilled.
The service providers publish and register the name of their
services in UDDI registries with different nonfunctional pro-
prieties (e.g., QoS) so that service consumers or users can
search for appropriate QoS. More precisely, there are three
kinds of agent-based web services (master-ws, allaince-
ws and slave-ws) constitute the structure of community and
collaborate with each other to achieve users’ requests.

A master-ws can be implemented as a web service for
compatibility purposes with the slave web services and al-
liances web services that populate the community as well.
It delegates goal dependencies to allaince-ws that will re-
sponsible for accomplishing them. The alliance web services
manage micro-communities and decompose goal dependencies
to slave web services that populate their alliance structure
as well. Each slave-ws signs up contract with its alliances
to commit to satisfy the delegated subgoal. The slave web
services collaborate with each other to achieve these goals. Of
course each slave web service has the ability to delegate or
assign incomplete tasks to other slave web services to complete
its goal. Moreover, allaince-ws can request from master-ws
to search for a new slave-ws to join in its structure instead
of the existing slave-ws that it does not work well. When
all slave web services satisfy their contracts, their alliance
web services consequently achieve their composite contracts.
Hence these alliance web services need to inform the master-
ws with results to finalize users’ requests.

C. Detailed Design

This phase is intended to introduce additional details for
each architectural component of a community structure. To
support this phase, we adopt social commitment, argumenta-
tive dialogues and dialogue games protocol from the agent
programming community.

1) Step 4: Identify Social Commitments: our methodology
captures high-level business meaning via identifying commit-

MALLOW’009: Turin, Italy, September 7-10, 2009

36

ments between roles in terms of tasks. More precisely, this
step analyzes each task dependency resulted from step (3)
and that discovered in the architecture phase to identify the
corresponding commitment. The notion here depends on the
task dependency such that when the dependee (or the debtor)
commits towards the depender (or the creditor) to execute the
dependum task (e.g., t1) or the commitment content, then
a commitment exists. The condition of the commitment is
defined by identifying a task that dependee needs to satisfy
to perform commitment content. Meanwhile, the creditors
need to verify some constraints that are conjuncted with this
commitment to guide them to determine the corresponding
tasks resulting from executing this commitment. Whereas, if
the dependee is not committed towards the depender to execute
a task, then no commitment exists, in this case the dependee
executes the intrinsic task to achieve its internal goal.

2) Step 5: Identify Argumentative Dialogues: this step
identifies arguments that can be used either in negotiation,
persuasion or information seeking dialogue based on commit-
ments identified in step (4).

Argumentative Locutions Descriptions
Open-dialogue A special argumentative act used

to open the dialogue.
Accept(Ag-ws2, C(idx, φx)) When Ag-ws2 has an argument

in favor of φx.
Refuse(Ag-ws2, C(idx, φx)) When Ag-ws2 has an argument

against φx.
Attack(Ag-ws2, C(idx, φx), When Ag-ws2 attacks the content

C(idy , φy)) of C(idy, φy) by the content of
its commitment C(idx, φx).

Challenge(Ag-ws2, C(idx, φx)) When Ag-ws2 has neither
an argument for φx nor for ¬φx,
then it challenges φx.

Justify(Ag-ws2, C(idx, φx), When Ag-ws1 has a commitment
C(idy , φy)) C(idx, φx) to justify another

commitment C(idy, φy).
Make-Offer(Ag-ws1, C(idx, φx)) An Ag-ws1 makes an offer φx

to Ag-ws2 when Ag-ws1 has
an argument in favor of φx.

Close-dialogue A special argumentative act used
to close the dialogue.

TABLE II
THE NATURAL DESCRIPTION OF THE ARGUMENTATIVE LOCUTIONS.

This methodology terms these arguments by social
arguments, not only to emphasise their ability to resolve con-
flicts within a social community, but also to highlight the fact
that two agent-based web services having task dependency can
negotiate or persuade and, upon agreement, commit to each
other for the specified value transfers. However, identifying
such arguments is not merely the last step. Since agent-based
web services need a language to express these arguments. In
[4] we proposed Horn logic language to allow agent-based
web services to express their arguments and to develop their
reasoning capabilities within an argumentation system.

The formal specification of these arguments is defined
in a dialogue game protocol, namely Persuasive-Negotiation
Protocol for CWSs (PNP -CWS) [4]. We have eight ar-
gumentative locutions: {Open, Accept, Refuse, Make-Offer,

Attack, Challenge, Justify, Close} forming the basic building
blocks of this protocol. Here we present the description of
these locutions in natural language (see Table (II)). To simplify
the notation, a commitment will be denoted by C(idx, φx)
when the participating agents and the other elements are clear
from the context. These locutions specify our communication
language that can be used to communicate about satisfying
goals or tasks.

Definition 1: (Dialogue game) Let Open(Ag-ws1, C(idk,
Ag-ws1, Ag-ws2, Cx, ψ, φ) be the opening action performed
by Ag-ws1 and sent to another agent Ag-ws2 about content
φ subject to ψ within alliance context Cx. A dialogue game
Dg is a conjunction of rules, where the first rule defines the
condition to enter Dg if the argumentation systems of Ag-
ws1 and Ag-ws2 support the satisfaction of the commitment
condition ψ. The other rules identify possible actions that an
agent-based web service can use as a reply when receiving
an action from another agent-based web service if a given
condition Condij is satisfied. This conjunction is specified as
follows:

Entry rule : Open(Ag-ws1, C(idk, Ag-ws1, Ag-ws2, Cx, ψ, φ))

∧ Condk

Body rules :
∧

0<j≤N

(
Actioni(Ag-wsp, Ag-wsm, C(idx, φx),
C(idy, φy)) ∧ Condij

⇒ Actionij(Ag-wsn, Ag-wsO, C(idz, φz), C(idw, φw))
)

In the entry rule, the Open action represents the opening
of the dialogue game and is executed just one time at the
beginning of the dialogue. The Condk has two possibilities
either the commitment condition ψ is true (i.e., can be
generated from argumentation systems of Ag-ws1 and Ag-
ws2) or false. The body rules are executed many times during
the dialogue game. In these rules, the Actioni(Ag-wsp, Ag-
wsm,C(idx, φx), C(idy, φy)) is an action of type i on the
propositional commitment,since the commitment condition
holds, where Actioni ∈ {Create, Fulfill, V iolate, Release,

Withdraw, Delegate, Assign, Accept, Refuse, Attack, Justify,

Challenge, Make-Offer}. Moreover, the bold elements
meaning that they could be removed. For example,
if Actioni /∈ {Delegate, Assign}, then the element
Ag-wsm could be removed. The Actionij(Ag-wsn,Ag-
wsO,C(idz, φz), C(idw, φw)) is an action on the commitment
of type j with content φw that depends on the action of
type i, where Actionij ∈ {Create, Fulfill, V iolate, Release,

Withdraw, Delegate, Assign, Accept, Refuse, Attack, Justify,

Challenge, Make-Offer}. We notice that n = w when
C(idx, φx) does exists (e.g., Attack and Justify), otherwise,
w = y. We also have n = m if Ag-wsm does exist (e.g.,
Delegate and Assign), ⇒ is the implication symbol for
dialogue game rules, and N is the number of allowed actions
that Ag-wsn can perform after receiving an action from
Ag-wsp where n, p ∈ {1, 2}.

The commitment condition and content in this definition
are Horn formulas, Condk defines the possibility of entering

MALLOW’009: Turin, Italy, September 7-10, 2009

37

Dg when the condition of the commitment is satisfied. While
Condij is expressed in terms of the possibility of generating
an argument from the argumentation system.

To clarify the relationship between commitment and ar-
gumentation system, let us first define some notions used
in our approach. The knowledge base of agent-based web
service (Ag-ws) is denoted by KB(Ag-ws), it contains all
information related to functional and nonfunctional require-
ments of Ag-ws. The argumentation system of Ag-ws is
denoted by Argsys(Ag-ws) using Horn logic language where
φ /Argsys(Ag-ws) denotes the fact that a Horn propositional
formula φ can be generated from argumentation system of Ag-
ws. While the formula ¬φ / Argsys(Ag-ws) indicates that φ
cannot be generated from argumentation system of Ag-ws.

The following is an example of dialogue game within
alliance context Cx, in which after opening the dialogue, an
alliance web service1 (alliance-ws1) invites a slave web
service1 (slave-ws1) to join a current composition scenario
where alliance-ws1 knows that slave-ws1 has a reasonable
role to complete this scenario. The invitation is modeled
using Make-Offer locution. Then slave-ws1 searches its
Argsys(slave-ws1) to decide either to accept or refuse the
invitation. slave-ws1 accepts the invitation by verifying some
constraints related to the performance of alliance-ws1. That
is, if the invited web service (slave-ws1) has an argument
favoring the received invitation (e.g., alliance-ws1 has a
good reputation) and does not have any argument against
this invitation (e.g., slave-ws1 does not commit to join any
other alliance). Thereby slave-ws1 has two choices either to
accept this invitation, then slave-ws1 creates a commitment
towards alliance-ws1 to join this composition scenario or to
refuse, then slave-ws1 releases from this commitment. The
formal representation of the acceptance case of entering and
accepting the invitation is as follows:

Example 1:

1) Open(alliance-ws1, C(id1, alliance-ws1, slave-ws1, ψ,
φ))∧(ψ/Argsys(slave-ws1))∧(ψ/Argsys(alliance-ws1))

2) Make-Offer(alliance-ws1, C(id1, φ))

∧ (Reputation-of -alliance = Good / Argsys(slave-ws1))

∧ (¬ Commit-to-Join-an-alliance / Argsys(slave-ws1))

⇒ Accept(slave-ws1, C(id1, φ))

where ψ = functionality-matches-composite-scenario

φ = Invitation-for-joining

The commitment manipulation underpins our approach with
a simple mechanism of composite services between slave
web services to handle users’ requests through three-party
actions (e.g., delegation, assignment). In simple case of
delegation action (i.e., without metacommitment), we have
two commitments among three agent-based web services
where if an agent cannot able to complete its service, then
it delegates the service to another agent (this delegation is
made randomly). To clarify our notion about composing
services, suppose slave-ws1 is committed to alliance-ws1

to bring about some facts within alliance context (Cx), if the
condition ψ holds. Meanwhile, the argumentation systems
of slave-ws1 and alliance-ws1 support this condition and
the argumentation system of slave-ws1 favors the content
of this commitment. However, if any reason after creating
the commitment, slave-ws1 cannot complete it, then it will
delegate the commitment to another agent-based web service
in the same alliance (say, slave-ws2). When slave-ws2
observes the delegated commitment, it uses its argumentation
system to search if it has an argument supporting the
condition of this commitment. Also, if the argumentation
system of alliance-ws1 is still supporting the condition of this
commitment, the slave-ws2 will create a new commitment
towards alliance-ws1 (see Fig.2), formally:

Example 2:

1) Open(alliance-ws1, C(id1, alliance-ws1, slave-ws1, Cx,
ψ, φ)) ∧ (ψ / Argsys(alliance-ws1)) ∧ (ψ / Argsys(slave-
ws1))

2) Make-Offer(alliance-ws1, C(id1, alliance-ws1, slave-
ws1, φ)) ∧(φ / Argsys(slave-ws1))
⇒ Accept(slave-ws1, C(id1, slave-ws1, alliance-ws1, φ))

3) Accept(slave-ws1, C(id1, slave-ws1, alliance-ws1, φ))
∧ (α / Argsys(slave-ws1))
⇒ Delegate(slave-ws1, slave-ws2, C(id1, slave-ws1,
alliance-ws1, Cx, φ)) ∧ (ψ / Argsys(alliance-ws1))
∧ (ψ / Argsys(slave-ws2))

4) Delegate(slave-ws1, slave-ws2, C(id1, slave-ws1,

alliance-ws1, Cx, φ)) ∧ (φ / Argsys(slave-ws2))

⇒ Create(slave-ws2, C(id2, slave-ws2, alliance-ws1, Cx,

φ))

where ψ = the condition of the commitment

φ = bring about some facts

α = φ cannot be completed by slave-ws1 and

φ can be performed by slave-ws2

���������	��
���������������� ���� � ���
��������� ��
��� �������������������� �����������
��� ������������ ���
��������� ��
��� �	����� � ���������� ��
��� �
Fig. 2. The sequence diagram of the delegation action.

IV. CASE STUDY

To illustrate the application of our methodology, we con-
sider a real-life insurance claim processing that has been
studied under the CrossFlow project [19] and presented in
many works to manage business process (see [6], [15], [16]).
Fig.3 shows the use case of this case study, which is about an

MALLOW’009: Turin, Italy, September 7-10, 2009

38

insurance company in Ireland (AGFIL) including the parties
involved with their individual processes. AGFIL underwrites
automobile insurance policies and covers losses incurred by
customers. Europ Assist (EA) provides a 24-hour help-line
service for receiving customer claims and assigns name of an
approved repairer to customer. Lee CS is a consulting service
that coordinates with AGFIL in receiving invoices and deals
with repairers, adjustors and assessors to execute these claims.
Moreover, AGFIL has the capability to decide if both a given
claim is valid against fraud and payment will be sent to the
repairer. Below the main steps of our methodology.

��������� �	
������������� �������������� ������������ ����������� �����������������
����������� �������� ���������������� �������!��� ������"����#�������$%&&
'����"���� #���������!������� (�!������ '�!������� ("����

�������)�(������������*����������)��������+,-- +./0.1 2.3,41.1
�.. +56789:;<<=<>

?�/@A1,/B. +CD3,/EF?+-,4DG,/H-.1F
Fig. 3. Cross flow insurance claim processing [19].

A. Step 1

According to the ontology associated with the community,
the functionality of the community is InsuranceClaimProcess-
ing and this community includes all agent-based web services
supporting the similar or part of this functionality. Thereafter,
the engineering designer selects one of them as master-ws1
(as the manager of the company) that starts to cluster the
slave web services into alliances structure based on the policy
classes (a form of nonfunctional properties related to QoS),
such as class1, class2 and class3 cover 100%, 90%, 80%
respectively from each claim request. We here only consider
alliance structure that covers QoS = {100%} of the automo-
bile damage and from now we refer to AGFIL by the Insurer
(i.e., the role of this alliance is identified by the Insurer).
The unique role names of slave web services that populate
this alliance are defined as call center for Europ Assist and
assessor for Lee CS, as well as repairer and adjustor. We
modify this use case [16] by establishing a direct dependency
between the Insurer on one side and repairer and adjustor
on the other side. Also, we introduce the direct dependency
between the customer and Insurer. At the end of this step,
the Insure context is denoted by Insx and the manager (or
master-ws1) delegates the customer’s request to the Insurer.

B. Step 2

The customer has one relevant goal: vehicle repair,
while the Insurer has the goals: handle claim and maximize

profits. The last goal is represented in terms of soft goal.
Thus the customer depends upon the Insurer to handle
claim with Qos = {100%} and in exchange the Insurer
depends upon the customer for paying the insurance
premium [15]. Let us focus on such a goal, namely handle
claim. The Insurer uses AND decomposition to decompose
the goal (G = {handle claim}) into five subgoals, G =
{claim reception, claim assessment, vehicle repair, claim
finalization, vehicleinspection}. The Insurer delegates
these subgoals to the respective roles within its alliance
structure where the call center is responsible for the claim
reception, the assessor for the claim assessment, the repairer
for the vehicle repair and the adjustor for the vehicle
inspection. The claim finalization will be performed by the
assessor himself. By so doing, the Insurer pays service charge
to each one of them after completing their goals.

C. Step 3

For the space limit reasons, we concentrate only on the call
center, assessor and repairer task dependencies. The means-
end analysis is used to identify tasks and task dependencies to
each goal dependency from step (2). The claim reception goal,
g1, of the call center depends on four tasks to achieve it, t1 =
{gathering info, validating claim, assigning garage,
sending claim}. The call center gathers information
and assigns a garage when the customer reports an ac-
cident and validates claim information. Thus, the re-
pairer depends on the call center to assign a garage
and the customer depends on call center for gathering
claim information. Meanwhile, the validate claim infor-
mation task is decomposed into two subtasks, t1.2 =
{request policy information, validate information}. Ac-
cording to the architecture design the call center can define
a new goal to receive payment of claim reception charge
from the Insurer via executing a task of receiving payment
or delegate the task to another (e.g., the reporter to prepare its
report). Finally, it sends a valid claim to the Insurer to finalize
claim processing.

The assessor has claim assessment goal, g2, delegated
from the Insurer. The tasks needed to satisfy this goal are: t2 =
{receive claim, check invoice, agree to repair, obtain repair
estimate, inspect vehicle}. The receive claim task depends
upon send claim task of the Insurer to the assessor. Meanwhile,
the Insurer and repairer depend on the assessors’ tasks for
checking the invoice and agreeing to repair. Moreover, the
assessor depends upon the repairer to obtain the repair
estimate by performing estimation repair cost task. The
assessor depends upon the adjustor to inspect a vehicle and
requires to define a new goal to receive assessment fees from
the Insurer by executing a task of receiving assessment fees.

The repairer has a vehicle repair goal, g3, and the
tasks needed to satisfy this goal are denoted by t3 =
{repair vehicle, estimate repair cost, send invoice}. The
customer depends upon the repairer for repairing vehicle
when received valid claim from the customer. The assessor
depends upon the repairer for estimating repair cost to decide

MALLOW’009: Turin, Italy, September 7-10, 2009

39

agreeing to repair or negotiating with the repairer. Meanwhile,
the repairer depends on the assessor for checking the invoice
and forwarding it to the Insurer, if the repairer sends the
invoice. Likewise, the call center and the assessor, the repairer
requires to define a new goal to receive repair charge from the
Insurer by depending on executing a task of receiving repair
charge [6], [16].

D. Step 4

This step transfers each task dependency into an appropriate
commitment to represent business meaning of interacting
parties of AGFIL. In [16] the authors have ignored the
formulation of actions on commitments and focused only
on commitment itself (although actions on commitments re-
flect dynamic behaviors of agents). For example, commit-
ment C(id1, call center, customer, Insx, report accident ∧
valid claim, assign garage) means that when the customer
reports an accident and if the claim is valid, then the call center
commits to assign a garage to him within the Insurer. But, how
the Insurer delegates claim reception to the call center, how
the Insurer formally assigns the assessor to get the inspection
fees from the adjustor, how the call center withdraws from his
commitment, etc. Here we complement [16] with commitment
operations. From step (2) the Insurer has five subgoals (claim
reception, claim assessment,vehicle repair, claim finalization
and vehicle inspection) that are delegated to the call center,
assessor, repairer and adjustor respectively. Formally we define
this delegation operation, but in the case of the Insurer that
delegates claim reception to the call center only as follows:
Delegate(Insurer, call center, C(id1, Insurer, Insx,
customer, pay insurrance premium, claim reception))
This operation intuitively means that the Insurer withdraws
from the commitment and the call center creates a new
commitment such that it becomes the debtor towards the
customer to receive claim reception. Formally we need two
steps to perform this:
Withdraw(Insurer, C(id1, Insurer, policy holder, Insx, pay
insurrance premium, claim reception)) ∧
Create(call center, C(id1.1, call center, customer, Insx,
claim reception))
According to step (3) the claim reception needs four tasks to
be achieved, one of them is gathering information from the
customer. We define it formally as:
Create(call center, customer,C(id1.1, call center,
customer, Insx, report accident, gather info))
Moreover, the Insurer assigns the assessor to obtain inspection
fees from the adjustor when the estimate repair cost returned
from repairer is more than 500 (a threshold amount).
Assign(Insurer, assessor, C(id2, adjustor, Insurer, Insx,
pay inspection fees, estimate inspection cost))
This action is similar to the delegation action. Formally we
need two steps to perform this:
Release(Insurer, C(id2, adjustor, Insurer, Insx, pay
inspection fees, estimate inspection cost)) ∧

Create(adjustor, C(id2.1, assessor, Insx, pay inspection
fees, estimate inspection cost))

E. Step 5

We define two subscenarios from AGFIL scenario to
explain why we need argumentative dialogues to reason
about the validity of commitment operations. The first sub-
scenario is established between the Insurer and assessor
where the assessor commits to the Insurer to reach agree-
ment with the repairer for the vehicle repair, formally:
C(id3, assessor, Insurer, Insx, pay assess fees, agree to
repair) [16]. However, the assessor cannot estimate his as-
sessment fees without engaging in a dialogue with the repairer
to reach a deal about “estimate the repair cost”. The solution
proposed in [16], which is based only on commitments, is not
enough to specify this dialogue especially when the assessor
needs to negotiate the repair charge with the repairer. The
proposed argumentative dialogues are natural solutions to this
problem. The following dialogue game explains only the steps
after the commitment being delegated to the repairer. This
means that request to estimate repair cost (i.e., ψ) is supported
by argumentative systems of the assessor and repairer (i.e.,
ψ / Argsys(assessor) ∧ ψ / Argsys(repairer)). Then the
dialogue is opened and this dialogue can be considered as
a continuation to example (2). The repairer creates a com-
mitment towards the assessor to estimate the repair cost. The
assessor has a conflict with the Insurer because the estimated
cost does not respect the delegated constrains from the Insurer
(estimate cost should be < 500 to maximize the Insurer
profits). Then assessor challenges the repairer to justify the
estimated repair cost. When the argumentation system of the
assessor supports the justification of the estimate repair cost,
then it reaches a deal with the repairer and informs the Insurer
to pay the assessed fees.

1) Create(repairer, C(id3.1, repairer, assessor, Insx, φ))
∧ Cond1

⇒ Challenge(assessor, C(id3.1, repairer, assessor,
Insx, , φ))

2) Challenge(assessor, C(id3.1, repairer, assessor,
Insx, φ)) ∧ Cond2

⇒ Justify(repairer, C(id3.2, repairer, assessor, Insx,
φ′), C(id3.1, repairer, assessor, Insx, φ))

3) Justify(repairer, C(id3.2, repairer, assessor, Insx,
φ′), C(id3.1, repairer, assessor, Insx, φ)) ∧ Cond3

⇒ Accept(assessor, C(id3.2, repairer, assessor,
Insx, φ

′))
Where :
φ = Estimate-Repair-Cost = V,with V is a given value
Cond1 = ¬(φ / Argsys(assessor)) ∧
¬(¬φ / Argsys(assessor)),
φ′ = φ′1 ∧ φ′2, Cond2 = φ′ / Argsys(repairer),
Cond3 = φ′ / Argsys(assessor)

Notice that the value of φ′ = φ′1 ∧ φ′2 means that the cost
of repair includes the value of the part1 (φ′1) and part2 (φ′2).

MALLOW’009: Turin, Italy, September 7-10, 2009

40

Similarly, the adjustor and assessor can entre in negotiation
dialogue about the estimated inspection cost. Moreover, ar-
gumentative dialogue in our case study can be used to spread
agent-based web service knowledge in the form of information
seeking dialogue. For example, when the call center requests
policy information from the Insurer, the available information
may be not enough to validate the received claim. Thus, the
call center may need to spread his knowledge by requesting
more information from the customer that enable the call center
to send a valid information to the Insurer.

The second subscenario is established between the cus-
tomer, Insurer and call center. When the customer reports an
accident and his claim is valid, then the call center assigns
a garage for vehicle repair. Otherwise, the call center does
not assign a garage as it gathers invalid information from
the customer compared to the information received from
the Insurer. Thereby the intuitive semantic of the interaction
between the call center and customer lacks clarity of business
meaning related to the content of interaction (i.e, it is not
meaningful). But, argumentative dialogue makes interaction
more meaningful by guiding the call center to undertake a
subtle decisions when the conflicts arise, then it challenges
the customer to justify the validity of its commitment and to
reach a mutual agrement that helps the customer to repair the
vehicle. Moreover, the Insurer should persuade the call center,
repairer, assessor and adjustor to join alliance structure by
offering rewards that alliance grants to them.

V. RELATED WORK AND CONCLUSIONS

In this paper, we first exposed some obstacles that restrict
the use of agent-based web services in complex business
applications and then, offered some solutions to tackle these
obstacles through extending community structure with al-
liances structure and proposing a new methodology based
on Tropos methodology. This methodology synthesizes three
approaches: mentalistic states, social commitments and argu-
mentative dialogues. The mentalistic artifacts such as goals,
tasks and dependencies modeling techniques are compatible
with concepts of Tropos (e.g., plan in Tropos is the task
here). The social commitments define dependencies between
agent-based web services in the early stages as business-
meaning of interactions and guide Tropos for accommodat-
ing and tracing the changes in the various phases of the
methodology. While Tropos provides commitment with cues
that identify different parties of dependencies (e.g., agents,
goals, plans). Moreover, commitments enable the community
to support dynamic reconfiguration of business interactions
via delegation and assignment operations without altering the
overarching structure of web services interactions. Argumen-
tative dialogues support web services with richer capabilities
to negotiate or seek information with other peers via reasoning
about the correctness of commitments

The social-arguments proposed here are different from the
approach proposed in [8] for argumentation-based negotiation
based on social commitments. The agents are influenced by
social relationships and negotiate with other peers based on

their organizational roles. The approach lists the possible rules
that can be applied when conflicts of interest occur. These
rules, for example, are used to reject or accept proposals as
well as to enforce the social relations within a multiagent
system. However, the rules in [8] are not used for justifying the
content of commitments within negotiation dialogue and they
do not consider agents’ goals that can affect agents decisions
as we have done here.

Let us now focus on comparing the proposed methodology
with the related ones. Many of Agent-Oriented Software
Engineering (AOSE) methodologies have been proposed over
the last years based on the concepts of actors, roles, goals
and plans include Gaia, Prometheus, MaSE, and Tropos.
These methodologies support various phases of the software
development life cycle, but Tropos differs from them in
including an early requirements phase. Moreover, some of
these methodologies like Gaia differs from Tropos in in-
volving safety and liveness conditions for the processes and
agents should be coarse-grained computational systems (like
UNIX process). Meanwhile, Gaia lacks reasoning scheme
based on early requirements engineering which limits the
flexibility of Gaia, as well as implementation phase is not
covered in this methodology. Our methodology complements
these methodologies by concentrating on social arguments
and argumentative dialogues, which they are ignored in these
methodologies. A key difference between our methodology
and Tropos [17] is the considerations of concepts of commu-
nity, commitment and argumentative dialogue. In Tropos the
depender depends upon the dependee for achieving a goal or
executing a plan without any condition from the depender’s
side, but in commitment the debtor is obliged towards the
creditor to bring about its commitment when a condition is
hold. Thus, Tropos lacks capability to model real-life business
scenarios between economic partners [15].

Pankaj et al. [15] enhanced Tropos methodology with con-
cept of commitments to capture business meaning of interac-
tions among independent parties in early requirement phases
and successively refined using means-end and AND/OR anal-
ysis during the progress of the system being engineered. This
methodology [15] is close to our methodology but it lacks the
argumentative capabilities to enable agent-based web services
to negotiate or seek information with other peers based on
their commitments. Moreover, the authors translate goals into
concrete tasks for their fulfillment before considering the
overall organization of the system, which makes software
systems fragile and less reusable although commitments can
be modified. The reason is that they ignore architecture design
phase. We present the architecture design phase with alliances
structure to satisfy a number of quality requirements related
to performance, usability, modifiability and reusability. For
example, the Insurer can delegate the responsibility to the
assessor to finalize users’ claims or to pay inspection fees
to the adjustor on his behalf.

Desai et al. [7] proposed Amoeba as a process modeling
methodology based on commitment protocols. This method-
ology guides software designers to evolve requirements based

MALLOW’009: Turin, Italy, September 7-10, 2009

41

on separating service interactions into two layers: commit-
ment protocols and polices. They represent business process
in terms of fine-grained messages with commitments where
commitments capture business interactions. Our methodology
includes in addition of that mentalistic states and argumenta-
tive dialogues.

Riemsdijk et al. [18] used a goal-oriented approach inspired
by the field of cognitive agent programming for service-
oriented computing to help handling failures and specify the
semantics of the services. An orchestration approach has been
used to coordinate the invocations of services from a workflow.
Burmeister et al. [5] presented an approach to business process
management using BDI-agent features to capture the ability of
the process to adapt and pro-actively adapt itself to a changing
environment (or what they call an “agile process”) to avoid
problems before they arise. The goal-oriented approach is
the core of our methodology, but it differs from [5], [18]
in considering goals as commitments, which provide more
flexibility in terms of manipulation (e.g., assign, release or
withdraw) and agents use argumentative dialogues to enable
each participant to satisfy its hard goals and soft goals in an
efficient manner. Moreover, an orchestration reflects only one
participant’s view of the overall business process and lacks
business meaning of service engagements. The conceptual
framework proposed in [5] has been successfully applied to a
business process for engineering change management domain,
but it lacks the cooperation between agents.

Li et al. [9] proposed an agent-based framework to model
and develop dynamic service-oriented operations. In our ap-
proach, web services are also viewed as software agents,
but what is new in our approach is that web services can
communicate with other peers within a community by dialogue
game protocols.

Regarding to CWSs, Maamar et al. [11] recently presented
an engineering methodology for modeling CWSs based on
the concepts that assist in using community, selecting web
services, identifying allowable operations to each web service
and deploying community. However, they ignore the collab-
oration between web services, high-level business meaning
of interactions, alliance structure, user interactions (although
these interactions are crucial and ought to be recognized within
community). Last but not least, Medjahed et al. [14] proposed
the WebBIS system as a generic framework for compos-
ing and managing web services in terms of pull-and push-
communities within dynamic environments. Our methodology
underpins a simple mechanism for empowering composition
of web services based on means-end and AND/OR analysis
within the notion of delegation operation that captures flexible
interactions.

As future work, we aim to formalize the strategic polices
of service providers that help organizing web services in
alliances structure and investigating the organization laws and
norms ruling the roles within the community. The trustwor-
thiness level of a master web service towards alliance web
services and how a social-argumentative dialogue model is
automatically mapped into a BDI-agent specification that can,

at execution time, give useful feedback to refine the original
design are fundamental issues we plan to investigate.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
valuable comments and suggestions. They also would like
to thank NSERC (Canada), NATEQ FQRSC (Québec) and
ERESSON for their financial support.

REFERENCES

[1] B. Benatallah, M. Dumas and Q.Z. Sheng. Facilitating the Rapid Devel-
opment and Scalable Orchestration of Composite Web Services. J Distrib
Parallel Databases vol.17(1), pp.5-37, 2005.

[2] B. Benatallah, Q.Z. Sheng and M. Dumas. The Self-Serv Environment for
Web Services Composition. IEEE Internet Computing, vol.7(1), pp.40-48,
2003.

[3] J. Bentahar, Z. Maamar, D. Benslimane and P. Thiran. An Argumentation
Framework for Communities of Web Services. IEEE Intel. Sys. vol.22(6),
pp.75-83, 2007.

[4] J. Bentahar, Z. Maamar, W. Wan, D. Benslimane, P. Thiran and S. Subra-
manian. Agent-Based Communities of Web Services: An Argumentation-
Driven Approach. In Service Oriented Computing and Applications,
Vol.2(4), pp.219-238, 2008, Springer.

[5] B. Burmeister, M. Arnold, F. Copaciu, G. Rimassa. BDI-Agents for Agile
Goal-Oriented Business Processes. In Proc. of 7th Int. Conf. on Aut.
Agents and Multiagent Sys. (AAMAS 2008), pp.37-44, 2008.

[6] N. Desai, A.K. Chopra and M.P. Singh. Business Process Adaptations via
Protocols. In Proc. of the IEEE Int. Conf. on Services Computing (SCC),
pp.103-110, 2006.

[7] N. Desai, A.K. Chopra and M.P. Singh. Amoeba: A Methodology for
Modeling and Evolution of Cross-Organizational Business Processes.
ACM Transactions on Software Eng. and Methodology (TOSEM), 2009.

[8] N.C. Karunatillake, N.R. Jennings, I. Rahwan and T.J. Norman.
Argument-Based Negotiation in a Social Context. In Proc. AAMAS
Workshop on Argumentation, pp.74-88, May 2005.

[9] Y. Li, W. Shen and H. Chenniwa. Agent-Based Web Services Framework
and Development Environment. Comput Intell, vol.20(4), 2004.

[10] Z. Maamar, M. Lahkim, D. Benslimane, P. Thiran and S. Sattanathan.
Web Services Communities-Concepts and Operations. In Proc. of the 3rd
int. conf. on web information sys. and technologies (WEBIST’2007),
Barcelona.

[11] Z. Maamar, S. Subramanian, J. Bentahar, P. Thiran P and D. Benslimane.
An Approach to Engineer Communities of Web Services Concepts,
Architecture, Operation, and Deployment. In the Int. Journal of E-
Business Research, vol.5(4), 2009, IGI Global.

[12] B. Medjahed and Y. Atif. Context-Based Matching for Web Service
Composition. Distrib Parallel Databases. Springer, Heidelberg, vol.21(1),
pp.5-37, 2007.

[13] B. Medjahed and B. Bouguettaya. A Dynamic Foundational Architecture
for Semantic Web Services. Distributed and Parallel Databases. Kluwer,
Dordrecht, vol.17(2), pp.179-206, 2005.

[14] B. Medjahed, B. Bouguettaya and A. Elmagarmid. WebBIS: An Infras-
tucture for Agile Integration of Web Services. Int. J. Cooperative Inf.
Syst. (IJCIS) , vol.13(2), pp.121-158, 2004.

[15] P.R. Telang and M.P. Singh. Enhancing Tropos with Commitments: A
business Metamodel and Methodology. Alex Borgida, Vinay Chaudhri,
Paolo Giorgini and Eric Yu (eds), Conceptual Modeling: Foundations
and Applications, June 2009.

[16] P.R. Telang and M.P. Singh. Business Modeling via Commitments. In
Proc. of the 7th AAMAS Workshop on Service-Oriented Computing:
Agents, Semantics and Eng. (SOCASE), May 2009.

[17] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos.
Tropos: An Agent-Oriented Software Development Methodology. Au-
tonomous Agents and Multi-Agent Systems, vol.8(3), pp.203-236, 2004.

[18] M.B. van Riemsdijk, M. Wirsing. Using Goals for Flexible Service
Orchestration: A First Step. In Service-Oriented Computing: Agents,
Semantics, and Eng. vol.(4504) of LNCS, pp. 31-48. 2007, Springer.

[19] S. Browne and M. Kellett. Insurance (Motor Damage Claims) Scenario.
Document Identifier D1.a, CrossFlow Consortium, 1999.

[20] M.P. Singh. An Ontology for Commitments in Multiagent Systems:
Toward A unification of Normative Concepts. AI and Law, vol.7, pp.97-
113, 1999.

MALLOW’009: Turin, Italy, September 7-10, 2009

42

Programming SOA/WS Systems with BDI Agents
and Artifact-Based Environments

Michele Piunti
DEIS, University of Bologna

Cesena, Italy
Email: michele.piunti@unibo.it

Andrea Santi
DEIS, University of Bologna

Cesena, Italy
Email: andrea.santi6@studio.unibo.it

Alessandro Ricci
DEIS, University of Bologna

Cesena, Italy
Email: a.ricci@unibo.it

Abstract—Agents and Multi-Agent Systems are recognized in
the literature as a suitable paradigm for engineering SOA and
Web Service systems: however few works explore how to exploit
agent programming languages – in particular those based on
a strong notion of agency, such as BDI ones – for concretely
developing such a kind of systems. In this paper we discuss
a general-purpose programming model and a related platform
for developing SOA/WS applications exploiting BDI agent tech-
nologies. In particular, in order to enable agents to exploit
and manage web service technologies in a suitable functional
fashion, we investigate the use of Jason agents – based on
AgentSpeak(L) programming language – integrated with artifact-
based environments – based on CArtAgO-WS framework.

I. INTRODUCTION

Agents and Multi-Agent Systems are more and more recog-
nized in the literature as a suitable paradigm for engineering
SOA and Web Service systems, since they provide a con-
ceptual and engineering background that naturally fits many
complexities concerning SOA/WS at a high abstraction level
[13], [14], [10]. Actually this view is also promoted both by
the official service-oriented model described by W3C (http:
//www.w3.org/TR/ws-arch/) and by the OMG initiative about
the definition of an agent meta-model and profile in the SOA
perspective (http://www.omg.org/cgi-bin/doc?ad/2008-09-05).

In this perspective, besides being an effective meta-model
to design SOA, we argue that the agent-oriented program-
ming languages and technologies can be effective tools for
concretely programming SOA and Web Services applications,
in particular for those kinds of service-oriented systems that
need to integrate advanced features such as autonomy, flexi-
bility, reactiveness, asynchronous interaction management [6],
[14]. Accordingly, in this paper we develop this issue by
presenting and discussing an approach which exploits and
integrates existing agent technologies – Jason agent pro-
gramming language [3] and CArtAgO-WS framework [20]
– into a general-purpose platform to program and execute
SOA/WS applications. In particular, the approach allows for
programming and running SOA/WS applications as multi-
agent systems composed by agents based on Belief Desire
Intention (BDI) working together in shared environments.
Besides, agent working environments are instrumented with
specific kinds of tools (namely, artifacts) that agent can use
to interact with existing Web Services (as consumers), to
implement Web Services (as providers) and to exploit higher-

level service-oriented capabilities, such as WS-Coordination.
In the proposed model artifacts are special computational
entities providing the access point to Web Services, they can
be created and configured on the need and are exploitable
in a functional / goal-oriented fashion in order to build and
consume complex SOA applications.

Several frameworks have been presented in the agent area
for the design of SOA. Actually they mainly focus on the
integration of agent platforms – in particular, FIPA-based
platforms, such as JADE – with Web Services technologies
[11], [15], [25]: their design objective is mainly to find a
common specification to describe how to seamlessly inter-
connect FIPA-compliant agent systems with W3C-compliant
Web Services. The proposed solutions usually adopt some
kind of centralized gateway, working as a mediator for agents
who aim to interact with Web Services on the one side
(agents as service consumers) and for Web Service requests
to be served by agents on the other side (agents as service
provider) [11]. Conversely, the approach presented in this work
is based on a dynamic creation and control of customized
artifact-based facilities aimed at supporting agent activities
at an infrastructural level. We argue that this would improve
the modularity, scalability and (dynamic) extensibility of the
systems.

Besides enabling interoperability between agents platforms
and web services, a main objective of this work is to in-
vestigate the use of a strong notion of agency – and in
particular agent programming languages supporting it – ex-
ploiting artifact-based environments to concretely design and
build service-oriented systems. In this view we promote the
integration of both task-oriented/process-oriented behavior –
such in the case of agent based workflows [1] or goal-oriented
business processes [24] – and a reactive (even-driven) behav-
ior, such in the case of Event-Driven Architectures (EDA),
which are meant to be a main aspect of forthcoming SOA.
In this perspective, our work is related to existing approaches
investigating the use of goal-oriented/BDI agent technologies
in the context of Web Services (see, among others [5], [4],
[9], [26]). The specific focus on strong agency is also the main
novelty of this paper with respect our previous work [20], [19],
where a SOA/WS programming model based on A&A and the
related platform have been introduced.

The remainder of the paper is organized as follows: in

MALLOW’009: Turin, Italy, September 7-10, 2009

43

ProxyUK

Jason Intepreter

JVM

C4Jason
bridge

Other
Agent

Platforms
...

AXIS2+Tomcat CArtAgO

Java Platform

CArtAgO-WS WS-* Layer

web-services
workspace

SOAP

SOAP

proxyUS

Jason
Agent

myServicePanel

SOAP

myService
WSDL

AWSECommerceService
WSDL

AWSECommerceService
WSDL

WSPanel WSInterface

WSInterface

Users

Amazon UK
Web Service

Amazon US
Web Service

Fig. 1. CArtAgO-WS platform overview. The figure shows a CArtAgO-WS
node running a Web Service built with a single agent and some artifacts
deployed in the web-services workspace: on the right, two instances of
WSInterface artifact are used by an agent to interact (concurrently) with
two external Web Services; on the left, the agent uses a WSPanel artifact to
provide itself a service, serving the requests coming from external WS users.
In the bottom, the layers and technologies on top of which the application is
built are shown.

Section II we briefly describe the basic concepts and tech-
nology on which the programming model and platform is
based; in Section III a case study is discussed, where pivotal
features of BDI agents as autonomy, flexibility, proactiveness
and reactiveness are emphasized in a web service application
involving the use of WS transactions and protocols.

II. PROGRAMMING MODEL AND CArtAgO-WS PLATFORM

This section provides a global picture of programming
model based on BDI agents and artifacts for implementing
Web Services and SOA. In the next sections CArtAgO-WS
platform is described, along with a simple example showing
the approach in practice.

A. Agent and Artifact Programming Model for Web Services

The proposed programming model for implementing Web
Services relies on A&A (Agents and Artifacts) meta-model,
recently introduced in the context of agent-oriented software
engineering [16]. In A&A perspective, a service – or an appli-
cation using services, that can a be service itself – is organized
in terms of a set of agents – as autonomous, pro-active
entities – that work together inside a shared computational
environment, properly designed to support their activities.

Such computational environment – possibly distributed
across several nodes – is organized in terms of workspaces
containing sets of first-class entities, called artifacts, repre-
senting tools and, more generally, resources that agents share
and use to cooperate and fulfill their tasks. So artifacts are
the basic abstraction that MAS designers and programmers
can exploit to conceive and program agent environments,
encapsulating functionalities that – at runtime – agents can
exploit to externalize tasks and thus achieve their (individual
and collective) objectives.

A detailed description of agents and artifacts programming
model is outside the scope of this work (the interested readers
can find more details in previous papers [21], [22]). Here we

exploit agents and artifacts as means to design and program a
SOA/WS application as a multi-agent system, in particular as
workspaces where goal-oriented agents work together sharing
and exploiting environment-based facilities:

• Agents are meant to encapsulate the logic and control of
tasks, activities and business processes – both in the case
of client applications and service applications;

• Artifacts are used to represent specialized resources and
tools inside the workspaces that agents can exploit, useful
in particular – in this case – to encapsulate and hide low-
level aspects related to WS management.

In what follows, an integrated programming model based on
BDI agents and artifacts is discussed, firstly with respect of en-
vironment setting and then with regard of agent development.
In particular, Jason is adopted as reference programming
platform for BDI agents1. Besides, CArtAgO-WS2 (Common
ARtifact infrastructure for AGent Open environment and Web
Services) is adopted as environment programming platform.

B. Environment Side

CArtAgO-WS has been recently introduced as the refer-
ence technology for implementing SOA working environments
based on the A&A model [20]. The platform integrates dif-
ferent modules supporting, from the one side, agent based
frameworks and, on the other side, a seamless integration with
Web Service technologies. As depicted in Fig. 1 (bottom),
CArtAgO-WS is currently implemented on top of existing
open-source WS technologies as Axis2 (see http://ws.apache.
org/axis2/), in order to conform to the Basic Profile specifica-
tion of Web Service Interoperability Organization (WS-I). The
core technology of CArtAgO-WS is CArtAgO [22], which
provides both a concrete computational/programming model
for developing and running artifact-based environments, and
API to integrate existing agent technologies (and languages,
architectures) with it. This enables the implementation of MAS
populated by agents possibly developed using different agent
languages working together inside the same artifact-based
environment.

In CArtAgO, artifacts are characterised by a usage interface
listing a set of controls that agents can use to trigger and
execute artifact operations, structuring artifact functionalities.
Operation execution can lead to the generation of observable
events that the agent using the artifact and other agents
possibly observing it can perceive.

Basically CArtAgO-WS extends CArtAgO by providing a
predefined workspace called web-services: this workspace is
dynamically instrumented with different kind of specialized
artifacts aimed at working with Web Services:

• Basic artifacts, aimed at enabling basic interactions be-
tween agents and Web Services;

1Jason is an open source platform for programming BDI agents based
on AgentSpeak(L). For brevity, we omit the description of the syntax and
semantic of the language: the interested reader can find more in [2] and http:
//jason.sourceforge.net.

2CArtAgO-WS is an open source platform available at: http://cartago.
sourceforge.net.

MALLOW’009: Turin, Italy, September 7-10, 2009

44

• WS-* artifacts, aimed at supporting an enriched set of
interactions, as the ones envisaged by the Web Services
stack protocol;

• Business artifacts, aimed at providing functions for sup-
porting agents in their business activities, as storing
information which is relevant for the ongoing task in
a database, wrap an external resource, control a user
interface etc.

In what follows a description of the artifacts holding on the
first two groups is provided, while an example of artifacts
holding to the third group is given in the application of
Section III.

Artifacts of the basic group allow, on the one side, agents to
work with existing Web Services and, on the other side, allow
the construction and the deployment of new Web Services
controlled by agents. In particular, two configurable artifacts
introduced are WSInterface and WSPanel artifacts (Fig. 1
shows an example of their use). To interact with an existing
Web service, an agent instantiates a WSInterface artifact
specifying its WSDL document which describes the service
to interact with. Optionally it takes in other parameters such
as the specific service name/port type to be used (if the WSDL
includes multiple port types and services), and a local name
representing the endpoint to which the artifact is bound to
receive messages (e.g. replies). Once created, WSInterface
provides basic functionalities to interact with the specified Web
Service, such as sending a message to the service in the context
of an operation (sendWSMsg usage interface control) or getting
the reply to messages previously sent during an operation
(getWSReply). Besides, it includes higher-level operations to
directly support basic MEPs, such as the request-response (in-
out) MEP (requestOp) which sends a request message and
generates an event when the response message arrives.

Current implementation makes use of SOAP messages for
executing operations and to get the replies sent back by the
service, according to the message exchange patterns defined
in the WSDL and to the quality of service specified by
the service policies (in particular, security and reliability). In
future implementation of this artifact we plan to support also
resource-oriented interaction with services, as promoted by the
REST architectural style [8].

To use multiple Web Services, multiple WSInterface

artifacts must be created, one for each service: agents can then
use such artifacts to interact with the services concurrently.
Different agents can also use the same WSInterface artifact
to interact with the same service.

For creating, configuring and controlling a new Web Ser-
vice, a WSPanel artifact is provided. Analogously to the
previous case, WSPanel can be instantiated specifying a
WSDL document. Once created, WSPanel provides basic
functionalities to manage SOAP requests, including receiving
and sending messages according to the specific MEP as de-
scribed in the WSDL, and basic controls to configure security
and reliability policies. Also in the case of WSPanel, the
usage interface includes a set of general purpose operations
enabling the interaction according to the wide spectrum of

possible WS messaging patterns. Operations are available to
retrieve or be notified about requests/messages arrived to the
Web Service possibly specifying filters to select messages on
the basis of their content/meta-data (getWSMsg, getWSMsgs

and subscribeWSMsgs) and to send replies accordingly
(sendWSReply).

It is worth remarking that agents can dynamically create,
quit and re-create both WSPanel and WSInterface once
they have joined a web-services workspace hosted in a
CArtAgO-WS node: this allows to dynamically deploy and
re-configure Web Services not by human intervention but by
agents activities, thus promoting an automated management of
services. Accordingly, it is possible to instantiate or interact
with multiple Web Services at the same time, i.e. by creat-
ing multiple WSPanel/WSInterface artifacts, one for each
service.

Besides the basic interactions promoted by the above men-
tioned artifacts CArtAgO-WS introduces an additional group
of artifacts. This group is included in the WS-* layer of the
platform (see Fig. 1) and is aimed at supporting an extensible
set of WS specifications, in particular those appearing in
the WSIT (Web Services Interoperability Technologies) set
(see http://wsit.dev.java.net). For doing this, the WS-* layer
is instrumented with two kinds of specialized artifacts: the
WSRequestMediator and the Wallet.

The WSRequestMediator (RM) artifact is meant to be
used by agents to retrieve (or create) those dynamic in-
formation required by complex specification such as WS-
Coordination (WS-C). RM’s provides a general purpose usage
interface so that multiple RM can be instantiated to conform to
multiple protocols. For instance, suppose that an agent aims
at creating a new WS-AtomicTransaction (WS-AT): to this
end, an agent can use a RM to (create and) retrieve a specific
coordination context, which has been previously configured
following WS-Coordination and WS-AT standards.

Besides RM, a Wallet artifact is introduced as “personal
artifact” that agents interacting with Web Services can exploit
to support the management of profile/context information
eventually needed by WS specification. The Wallet works in
synergy with RM artifacts and its function is to dynamically
store a portfolio of various policies which are required to
conform messages to WS-* protocols. This information can
range from security tokens (as required by WS-Security) to
dynamic coordination contexts (as used in WS-C). In so doing
a user agent can completely externalize on the wallet the
management of the required policies. In a typical scenario, a
agent using a Web Service first gets profile information from
the Wallet and then uses it to configure the WSInterface.

So in the overall the WS-* layer allows MAS programmers
to build articulated WS applications abstracting as much as
possible from low-level details that concern WS-* specific
protocols management (e.g. the management of the coordi-
nation contexts in WS-C), and to focus on the high-level
functionalities (e.g. transactions) that agents may need to
setup/exploit.

MALLOW’009: Turin, Italy, September 7-10, 2009

45

C. Agent Side

As mentioned in Subsection II-A, in our approach agents
are the computational entities to specify and program the
business logic of services (or applications using services).
In particular, in this paper we argue that the use of a BDI
agent based specification improves the abstraction by which
a programmer can specify a complex task (i.e. a business
process) in terms of structured agents’ behavior. As agents
programmable according to a BDI style can be specified by
goal-oriented languages – in this paper we will use Jason,
in particular, but analogous considerations hold by consid-
ering other agent programming languages/platforms such as
2APL [7], Jadex [18], etc. – the programming style for
specifying business processes conceived as a complex chain of
interleaved tasks can be natively conceived in a goal-oriented
format, and thus expressed in terms of agent’s plans. Then,
as agents execution model is typically based on practical
reasoning, BDI agents are highly adaptive in suitably finding
a proper course of actions to achieve a given goal in the
situated context conditions. In so doing, a main concern for
programmers is to simply specify a set of behaviors realizing
agent’s tasks in terms of goals and plans.

Besides practical reasoning, an additional remarkable as-
pects is the interaction model defining interaction between
agents and artifacts. From an agent point of view, artifact
computational model allows two kind of interaction, as they
are based on the notions of use and perception. Given this,
as agents exploit artifacts to provide or use services, their
programs can be expressed in native terms, i.e. by the mean of
primitives for actions and perceptions. An additional remark-
able aspect is related to the perceptive abilities carried out by
agents with respect to artifact observable events. Indeed, due to
the computational model provided by CArtAgO-WS, agents
can be highly sensitive towards a rich series of events occur-
ring upon a focused artifacts. Due to the fact that BDI model
of agency typically provides constructs to explicitly handle
noticeable events and react accordingly, a clear definition of
events in terms of agent percepts allows a situated reactiveness
of agents, mainly addressed towards the perception of relevant
changes affecting the work environment, (where for relevant
we refer to those information which is assumed to support the
ongoing plans, as goal supporting beliefs).

To provide a concrete taste of the programming approach,
the structure of a simple application is showed in Fig. 1,
accounting for a service finding the best price of items – books
in the specific case – by interacting with two existing web
services (two Amazon Web Services, one for UK and one for
US)3. The service is implemented by a single Jason agent,
using a WSPanel artifact to retrieve service requests (and send
responses) and two WSInterface artifacts to interact with the
two existing Web Services.

A cutout of the agent source code is shown in TABLE I,

3The complete source code of the examples as well as the WSDL of the
implemented services are available at CArtAgO-WS web site: http://cartago.
sourceforge.net.

01 !find_best_price_service.
02
03 +!find_best_price_service
04 <- cartago.joinWorkspace("web-services","localhost");
05 !setupTools;
06 !cartago.use(wsPanel,subscribeWSMsgs("GetBestPrice")).
07
08 +ws_msg(Msg)
09 <- !extractMsgId(Msg,ReqId);
10 !extractItem(Msg,Item);
11 +pending_request(ReqId,Item,Msg).
12
13 +pending_request(ReqId,Item,Msg)
14 <- !prepareItemReqWs(Item, MsgReq);
15 cartago.use(awsUS,requestOp("ItemSearch", MsgReq));
16 cartago.use(awsUK,requestOp("ItemSearch", MsgReq)).
17
18 +ws_reply(ReplyMsg,ReqId)[source(From)] :
19 pending_request(ReqId,Item,Msg)
20 <- !extractPrice(ReplyMsg,Price);
21 +price(ReqId,Item,From,Price).
22
23 +price(ReqId,Item,_,_) : price(ReqId,Item,"awsUK",_) &
24 price(ReqId,Item,"awsUS",_)
25 <- !prepareAndSendResponse(ReqId).
26
27 +!prepareAndSendResponse(ReqId)
28 <- !computeBestPrice(ReqId,Price,From);
29 !prepareAmazonWSReply(Price,From,ReplyMsg);
30 cartago.use(wsPanel,sendWSReply(Msg, ReplyMsg));
31 -pending_request(ReqId,_,_);
32 -price(ReqId,_,"awsUK",_);
33 -price(ReqId,_,"awsUS",_).
34
35 +!setupTools
36 <- cartago.makeArtifact(wsPanel,"alice.cartagows.WSPanel",
37 ["./data/BestPriceService.wsdl"]);
38 cartago.makeArtifact(awsUS,"alice.cartagows.WSInterface",
39 [".../AWSECommerceService.wsdl"]);
40 cartago.makeArtifact(awsUK,"alice.cartagows.WSInterface",
41 [".../UK/AWSECommerceService.wsdl"]).

TABLE I
CUTOUT OF THE JASON AGENT SHOWED IN FIG. 1

which is briefly described in the following. The agent has
a single initial goal (find_best_price_service, specified
at line 01) and a set of plans that describe how to achieve
this goal and related sub-goals. The first plan (line 03–06)
is triggered as soon as the goal is instantiated, and accounts
for setting up the tools needed to do the job (sub-goal
setupTools, which triggers the execution of a plan (lines
35–41) creating the service panel, referenced by the atom
wsPanel, and of the two WS interface artifacts, referenced
as awsUK and awsUS) and subscribing the panel (operation
subscribeWSMsgs) to receive all the message requests arriv-
ing to the service concerning the GetBestPrice operation.

As soon as a new WS request arrives to the panel, it
generates an observable event ws_msg(Msg). The agent reacts
to the perception of that event (plan at lines 08–11) by
extracting information about the message identifier and item
to search (sub-goals extractMsgId and extractItem at
line 09-10, not reported here for simplicity) and creating
a pending_request belief containing information about
the new request to process (line 11). The addition of new
pending_request beliefs triggers the execution of a specific
plan to process the requests (line 13–16). The plan accounts
for using the awsUK and awsUS artifacts (lines 15 and 16)
to request information about the item. The two services will
answer asynchronously, with messages that are translated by
the WSInterface in +ws_reply(Resp,MsgId) percepts. As

MALLOW’009: Turin, Italy, September 7-10, 2009

46

soon as replies arrive, the agent creates new price beliefs
carrying information about the price of the item sold by the
specific sources (plan at line 18–21).

As soon as both the price information from the UK ser-
vice and US service are available for a specific request,
the agent can prepare and send the response (sub-goal
prepareAndSendResponse, line 25). This is done by the
plan listed at lines 27–33, in which the best price is computed
by the sub-goal computeBestPrice (not showed) exploiting
the information stored in price beliefs and a reply message
(related to the original message request) with the answer is sent
back through the service panel (line 30). Finally, information
about the specific request identifier and related prices are
removed from the belief base (line 31–33).

Despite its simplicity, the example is meant to show how
the approach allows for structuring quite naturally the business
logic of the service in terms of agent plans, both to react
to events occurring in artifacts populating the workspace (a
WSPanel and the two WSInterface in the example) and to
pro-actively execute sub-tasks on which the service business
process is decomposed. By properly externalizing functionali-
ties in artifacts, the approach makes it possible on the one side
to keep agent behaviour relatively clean, purely focussed on
the specification of the service logic, and, on the other side, to
fruitfully exploit concurrency – artifacts execute operations in
separated threads of controls – without dealing (for the agent
programmer) with low-level synchronization issues. Finally,
the approach promotes modularity and scalability. In the
example a single agent is used to process and serve all requests
arriving to the service: alternatively, a pool of agents can be
used for this purpose, sharing the panel to get the requests.

III. PROGRAMMING COMPLEX WEB SERVICES USING BDI
AGENTS AND ARTIFACT-BASED ENVIRONMENTS

The benefits of adopting a BDI model of agency along
with artifact-based environments are evident in particular when
the design and development of complex service applications
are of concerns. In what follows, Subsection III-A introduces
an example application involving some of the motivating
elements at the basis of the proposed approach, while Subsec-
tion III-B discuss an implementation based on CArtAgO-WS
and Jason.

A. A Case Study: Book an Holiday Scenario

The described scenario is inspired by a typical example
used in SOA/WS contexts: a client agent wants to book an
holiday for a given date by exploiting a series of web services
providing the required resources as hotel reservation, transport
facilities, payment and so on. As an additional element of
the scenario, we imagine for the client the possibility to be
further notified whether a selected range of date has become
available for additional reservations. This allows clients to
express an interest for a given date, and thus to re-try the
booking activity whether the provider signals a last minute
availability (i.e. due to some reservation cancelation performed

00 +!start_booking
01 <- !setupTools;
02 !retrieveDate;
03 !book_an_holiday.
04
05 +!setupTools : true
06 <- !locate_artifacts;
07 // Use the RM to request a new WS-AT and
08 // add the related ATContext into the Wallet
09 cartago.use(Wallet, addInfo(ATContext));
10 !makeInterface(proxyHM,
11 "http://webservices.hotel.com/.../BookingManager.wsdl");
12 ?artifact_id(proxyHM, ProxyID);
13 cartago.use(ProxyID, configure(ATContext)).
14
15 /* Top Level Goal */
16 +!book_an_holiday
17 : date(Dates)
18 <- !book_hotel(Dates, Res_H);
19 !book_accessories(Dates, Res_A);
20 !finalize(Res_H, Res_A).
21
22 +!book_hotel(Dates, Res_A)
23 : artifact_id(proxyHM, ProxyID)
24 <- !createBookingMessage(hotelBooking, Dates, MsgBookHotel);
25 cartago.doRequestResponse(ProxyID,
26 bookingOperation(MsgBookHotel), HotelResponse);
27 !inspect_h_response(HotelResponse, Res_H);
28 Res_H == "available". // fail if not available
29
30 +!book_accessories(Dates, Res_H)
31 : artifact_id(proxyTransport, TranID) & artifact_id(proxyPayment, PayID)
32 & hPrice(HotelPrice) & tPrice(TransportPrice) & bank_account_id(BankID)
33 <- !createBookingMessage(transportBooking, Dates, MsgTransport);
34 cartago.doRequestResponse(TranID,
35 bookingOperation(MsgTransport), ResponseTransport);
36 !createPayMessage(BankID, (HotelPrice+TransportPrice), MsgPay);
37 cartago.doRequestResponse(PayID,
38 payOperation(MsgPay), ResponsePayment);
39 !inspect_acc_responses(TransportResponse, PaymentResponse, Res_A);
40 Res_A == "available". // fail if not available
41
42 /* Fail Event Handling */
43 -!book_an_holiday
44 : artifact_id(proxyHM, ProxyID) & dates(Dates)
45 <- !createSubscribeMessage(Dates, MsgSubscription);
46 cartago.focus(ProxyID);
47 cartago.use(ProxyID, subscribeOperation(MsgSubscription));
48 !finalize("not_available", "").
49
50 /* Notification from HM */
51 +dateNotMoreFull(Dates) [source(proxyHM)]
52 : artifact_id(proxyHM, ProxyID) & dates(Dates)
53 <- cartago.stopFocusing(ProxyID);
54 !book_an_holiday;
55
56 /* Finalize */
57 +!finalize(Res_H, Res_A)
58 : Res_H == "available" & Res_H == "available"
59 & wallet_entry(wsatcontext, ATContext) & artifact_id(wsProxyCoord, CoordID)
60 <- !createCommitMessage(WS-AT-Context, MsgCommit);
61 cartago.doOneWay(CoordID, commitOperation(MsgCommit));
62
63 +!finalize(Res_H, Res_A)
64 : (Res_H =/= "available" | Res_A =/= "available")
65 & wallet_entry(wsatcontext, ATContext) & artifact_id(wsProxyCoord, CoordID)
66 <- createRollbackMessage(ATContext, MsgRollback);
67 cartago.doOneWay(CoordID, rollbackOperation(MsgRollback)).

TABLE II
Jason CUTOUT OF THE BOOKING REQUESTOR AGENT SHOWED IN FIG. 2

by other clients). On these basis, the involved services need
to shape their activities based on situated conditions:

• A given transaction can have success, or not, given the
resources which are actually available.

• The same transaction can be retried, based on changed
contexts for which, at the moment of the first attempt,
the provider could not finalize the task.

To achieve such a flexibility, service behavior can be straight-
forwardly expressed in terms of goal-oriented agents, where
goals are expressed in terms of specific task to achieve (i.e. to
book an holiday, to provide reservations, etc.). To achieve their
goals agents can organize their workflow in terms of situated
plans, involving the interaction with heterogeneous resources
(such as internal resources as databases, coordination and
transaction facilities, other web services, etc.). Accordingly,
we will design and program the involved services based on
BDI (goal-oriented) agents programmed in Jason exploiting
a CArtAgO-WS web-services workspace.

MALLOW’009: Turin, Italy, September 7-10, 2009

47

proxyPayment

Hotel Basic
Agent

HOTEL MANAGER SERVICE
(HM)

WS/SOAP
messages

Hotel Notifier
Agent

BookingManager
WSDL

subscribeWSMsgs
sendWSReply

getWSMsgWithFilter

WSPanel

Subscribers
Map

addSubscriber
removeSubscriber
getSubscribers

Booking Requestor
Agent (BRA)

proxyHM

WSInterface

BookingManager
WSDL

bookingOperation
subscribeOperation
unscribeOperation

proxyTransport

bookingOperation

WSInterface

TransportManager
WSDL

WS-* LAYER

USE
PERCEPTION

SENSE

WS/SOAP
MESSAGES

payOperation

WSInterface

PaymentManager
WSDL

wsProxyCoord

WSInterface

WSAtomicTransaction
WSDL

commitOperation
rollbackOperation

addNewRequest

getRequestResult

WSRequestMediator

getNextRequest
addInfo
resumeInfo

Wallet

HotelBooking
Registry

bookingCheck

finalizeBooking
unlockDates

bookingCancellation

WS-* LAYER

addInfo
resumeInfo

Wallet

addNewRequest

getRequestResult

WSRequestMediator

getNextRequest

BOOKING SERVICE
(BS)

Fig. 2. Structural architecture showing the services involved in the Book an Holiday scenario. On the left side, the Booking Service is controlled by a Booking
Requestor Agent managing WSInterface artifacts wrapping services as Transport Manager, Payment Manager, Hotel Manager and WSAtomicTransaction. On
the right side, the Hotel Manager Service uses two agents (Hotel Notifier and Hotel Basic) and two artifacts (Subscribers Map and HotelBooking Registry)
in order to provide the booking service and the notification events exploitable by the users. The two services make use of an additional layer (on the bottom
in figure) in which specialized agents and artifacts coordinate the transactions according to WS-* protocols.

As showed in Fig. 2, the application is centered on two
main services: Booking Service and Hotel Manager. The Hotel
Manager (HM) service manages the booking tasks and also
provides notification functionalities to subscribers. HM has
been designed using two specialized agents, the Hotel Basic
Agent and Hotel Notifier Agent, sharing and exploiting an
instance of WSPanel to expose the service (see Fig. 2 right).

To support their tasks, the agents providing the HM
service use additional artifacts. In particular, in order to
manage the requests related to bookings and cancelations
Hotel Basic Agent exploits the functionalities provided
by an HotelBookingRegistry artifact. Besides, in or-
der to manage the HM’s notification services Hotel No-
tifier Agent uses a SubscribersMap artifact. It is as-
sumed to keep track of the subscriptions requested and
monitor the HotelBookingRegistry so as to notify inter-
ested subscribers as soon as changes regarding date avail-
abilities are observed. Notice that SubscribersMap and
HotelBookingRegistry represent the external resources
needed by agents to achieve their goals in the context of this
specific application (i.e. business artifacts)

On the user side, the Booking Service (BS) realizes the task
related to a client agent who wants to organize an holiday. The
service is built around the role played by a Booking Requestor
Agent (BRA), whose final goal is to plan the required reserva-
tion related to an holiday for a given date. To achieve this goal,
BRA is assumed to compose several resources, in this case
related to the use of artifacts embedding external web services
(see Fig. 2 left): In this case, the Hotel Manager service (HM)
is used to (i) check the availability of hotel rooms for the
specified period, (ii) subscribe for possible notifications (in
case of missed availability) and (iii) finalize the reservation.

Besides HM, the Booking Service uses additional services to
accomplish its goal. In particular, a TransportManager service
(TM) is needed to manage the booking for the transports used
for arriving to (and leaving from) the specified destination.
A PaymentManager service (PM) is used to manage bank
accounts and to finalize the payment. As showed in Fig. 2, in
order to externalize the computational load required to manage
complex messaging, the Booking Requestor Agent in this case
exploits the support provided by the WS-* layer (i.e., Wallet
and WSRequestMediator artifacts). In addition, BRA main
task is further managed through an atomic transaction (WS-
AT) involving the overall set of services realizing the booking
application. A dedicated proxy is then used to involve an
external coordination service.

B. Agents and Web Services Implementation

Part of the implementation of the Book an Holiday Scenario
is her described through the specification, in Jason, of the
BRA agent (TABLE II shows a relevant code fragment).
Agent’s specification is provided in a goal-oriented format,
assuming different plans addressed to a precise step in the
business task to achieve.

The initial goal for BRA is to initiate a a booking ac-
tivity (+!start_booking, line 00 in TABLE II). In so
doing, BRA launch a series of sub-level goals. An initial
+!setupTools (line 05) is executed to retrieve or create
the needed artifacts (which identifiers are stored as beliefs
in the form artifact_id(a_name, a_id)). The WS-AT
context for managing the booking is then retrieved from
RequestMediator artifact residing in the WS-* layer, and
then stored into the Wallet as an ATContext info (line
09). A WSInterface artifact is also created (line 10) for

MALLOW’009: Turin, Italy, September 7-10, 2009

48

interacting with the HM. Its artifact identifier is then stored
as a belief (artifact_id(proxyHM, ProxyID)) and the
context related to the ongoing WS-AT is used to configure
it (line 13). For simplicity, a series of agent’s sub-goals are
here not fully specified and concerns low level computation
performed for instance to manage data and to interact with
additional resources. Among others, for instance, the plan
retrieveDate (line 02) is executed to retrieve the informa-
tion provided – for instance – by a human user, and to store
it in form of agent’s belief date(Date).

As showed in Fig. 3, BRA’s terminal goal is managed by
a workflow of purposive activities, realized by specific plans,
as they are specified by the +!book_an_holiday goal (line
16). The first activity consists in booking the hotel for the
given dates (line 16): after having specified the context, thus
retrieving the belief related to the proxyHM, a message for
the WS request is prepared (line 24) and the HM is used by
the mean of a request-response protocol (lines 25-26). We
may assume that the hotel has already reached the maximum
amount of reservations for (some of) the dates in the requested
period (the information about date availability is stored in
the HM service by the HotelBookingRegistry, that is an
artifact implemented at the application level). In that case, the
HM service replies to BS with a message notifying the inabil-
ity to finalize the reservation: this message is then analyzed
by a special inspect_h_response plan that can provide an
available or not available result. The returned literal is then
matched to verify the success of the booking operation (lines
27). In so doing, a fail event will occur whether the booking
operation has failed and the Res_H is not_available (line
28). Thanks to the Jason execution model, this fail event
causes the root plan to fail too. Hence, the failure can be
suddenly handled by a -!book_an_holiday plan (line 43
and Fig. 3), by which the agent can subscribe to the HM
with the aim to be notified whether some new availability is
signalled. So far, in the hope that some client will cancel a
reservation for the desired date, the agent focuses the HM
proxy (WSInterface) and uses it for subscribing itself for
the notification of possibly further availability (lines 43-47),
then waits for a possible HM’s notification. In this case (line
61-65) a +!finalize plan is assumed to manage a rollback
of the service transaction. The WS-AT is coordinated through a
Coordinator Service which is installed in a programmable
infrastructure (WS-* layer) together with the set of the services
required by WS-Coordination specification.

Each BRA’s subscription is handled within the HM service
by the Hotel Notifier Agent, which stores the request in the
SubscribersMap business artifact (the structural description
of the HM service is in Fig. 2, right). If, in the meanwhile,
some other agent interacting with the HM cancels its reserva-
tion for the subscribed date, such a change is signalled – within
the HM side – to the HotelBookingRegistry artifact, which
stores the data related to the various reservations. In this case,
the Hotel Notifier Agent is supposed to receive a percept
from the registry: as soon as a +data status changed signal
is perceived, the Hotel Notifier Agent creates a new sub-

book_an_holiday

book_hotel book_accessories finalize

+dateNotMoreFull-!book_hotel

Booking Requestor Agent
(BRA)terminal goal

perceptfailure
event

HOTEL MANAGER SERVICE (HM)

subgoal(s)

subscribeOperation dateNotMoreFull

proxyHMWSInterface

WS/SOAP

Fig. 3. Goal Decomposition Tree for Booking Requestor Agent (BRA)
shows the structure of the various plans related to each sub-activity needed to
achieve the terminal goal. Notice the interaction with proxyHM artifacts,
in particular for the subscribe operation, performed after a failure in the
book_hotel plan, and the execution of a new book_an_holiday
plan, once a new availability is signalled by the HM.

goal to process such information, by retrieving the subscribers
matching the given date, and by sending back a notification
message to the BS who subscribed. Once a new availabil-
ity occurs, the message coming from the HM arrives to
the BS, and it is automatically translated by WSInterface

and then it is signalled to the BRA agent. Also in this
case, the event is received in form of percept and it suc-
ceeds to awaken the focusing BRA: the arriving percept
+dateNotMoreFull(Dates)[source(proxyHM)] contains
a date identifier (Dates) by which the agent can match the
event and thus recognize it as a meaningful one, with respect
to its goals (lines 36-37). In so doing, the BRA can now
adopt a new instance of the book an holiday goal (line 39
and Fig. 3), by which the activities needed to achieve the goal
are replanned from scratch. Differently from what happened in
the first attempt, the BRA now finds the resources to succeed
to book the hotel for the requested dates (HM response is, in
this case, available).

Given this, BRA can now proceed with the following activ-
ity (+!book_accessories, line 30). It contacts the transport
service and the payment manager, and, after having received
the responses (line 33-38), it can control the results and, in
so doing, achieve the terminal goal. Finally, the last activities
+!finalize(Res_H, Res_A), line 63) now commits the
transaction upon the WS Coordination.

Some additional aspects are worth to emphasize in the
described example. First, all mechanisms holding BRA to its
idle state, during which it simply waits for a notification,
as well as the mechanisms needed for its awaken, are here
simply managed at a system level, both by CArtAgO-WS
and Jason platforms. Once a message coming from the
HM services arrives indicating an availability, the agent is
suddenly and asynchronously awaken by the percept produced
by the WSInterface. In so doing, the developer only needs
to specify under which context the events coming from a
given WSPanel/WSInterface artifact should be exploited to
reactivate the agent practical reasoning. At the same time the
programming model allows to automatically handle noticeable

MALLOW’009: Turin, Italy, September 7-10, 2009

49

events as failures (as in the case of missing availability in
the booking task). In this case the programmer can suitably
specify a purposive activity to recover the ongoing plans. The
presented scenario also enlightens the support provided by the
artifact based infrastructure for agent business activities. In this
case the BRA only need to locate a WSRequestMediator and
update a personal Wallet in order to automatically face the
computational load related to the managing of the additional
services needed by the protocol.

IV. CONCLUSION AND FUTURE WORKS

More and more agent technologies are recognized as a
main actor in the engineering of service-oriented systems.
Despite of this fact, few works have explored in literature
the use of agent-oriented programming languages – and in
particular those based on a strong notion of agency, such
as BDI ones – to this end. In that perspective, we de-
scribed a general-purpose programming model and platform
for developing Web Services and SOA applications The ap-
proach promotes the adoption of BDI agents programmed with
proper agent languages/platforms (Jason is used in the paper)
working together in artifact-based environments (constructed
with CArtAgO technology). Agents work environments are
instrumented, in particular, with artifacts specialized to provide
functionalities useful for exploiting (and hiding) WS protocols
and related technologies (CArtAgO-WS extension).

In conclusion, a couple of aspects are worth to emphasize.
First, the programming model promotes a uniform approach
to design complex service/application business logic in terms
of structured goal-oriented activities. Indeed, agents’ practical
reasoning allows, for instance, to handle complex course of
events and manage failures in a situated way, promoting
coordination, adaptiveness, cooperation and so forth. Second,
the use of an extensible artifact-based layer makes it possible
to transparently manage the computational load required for
agents to conform to WS-* protocols.

Besides improving the support to WS-* technologies, a
major objective of future works will be the use of the platform
to investigate the synergy between goal-oriented and artifact-
based technologies for the construction of complex SOA/WS
systems, with aspects concerning, for instance, goal-oriented
orchestration [9], [26], goal-oriented business process manage-
ment [5] and autonomic SOA/WS [12].

REFERENCES

[1] M. Banzi, G. Caire, and D. Gotta. Wade: A software platform to
develop mission critical. applications exploiting agents and workflows.
In AAMAS Industry Track, 2008.

[2] R. Bordini and J. Hübner. BDI agent programming in AgentSpeak using
Jason. In F. Toni and P. Torroni, editors, CLIMA VI, volume 3900 of
LNAI, pages 143–164. Springer, Mar. 2006.

[3] R. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[4] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta. COOWS: Adaptive
BDI agents meet service-oriented computing (extended version). In
European Workshop on Multi-Agent Systems (EUMAS 2005), 2005.

[5] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. BDI-Agents for
Agile Goal-Oriented Business Processes. In Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Industry
and Application Track., 2008.

[6] F. Curbera, D. F. Ferguson, M. Nally, and M. L. Stockton. Toward a
programming model for service-oriented computing. In Third Interna-
tional Conference on Service-Oriented Computing (ICSOC-05), volume
3826 of Lecture Notes in Computer Science. Springer, 2005.

[7] M. Dastani. 2APL: a Practical Agent Programming Language. Au-
tonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[8] R. T. Fielding and R. N. Taylor. Principled Design of the ModernWeb
Architecture. ACM Transactions on Internet Technology, 2:115–150,
2002.

[9] M. Georgeff. Service Orchestration: The Next Big Thing. DM Review,
2006.

[10] D. Greenwood and M. Calisti. Engineering web service-agent integra-
tion. In Proc. of IEEE Conf. on Systems, Man and Cybernetics, 2004.

[11] D. Greenwood, M. Lyell, A. Mallya, and H. Suguri. The IEEE FIPA
approach to integrating software agents and web services. In Proc. of
Autonomous agents and multiagent systems (AAMAS-07), 2007.

[12] S. A. Gurguis and A. Zeid. Towards autonomic web services: achieving
self-healing using web services. SIGSOFT Softw. Eng. Notes, 30(4):1–5,
2005.

[13] M. N. Hunhs. A research agenda for agent-based Service-Oriented
Architectures. In M. Klusch, M. Rovatsos, and T. Payne, editors,
CIA 2006, volume 4149 of LNA, pages 8–22. Springer-Verlag Berlin
Heidelberg, 2006.

[14] M. N. Huhns, M. P. Singh, and M. e. a. Burstein. Research directions for
service-oriented multiagent systems. IEEE Internet Computing, 9(6):69–
70, Nov. 2005.

[15] X. T. Nguyen and R. Kowalczyk. WS2JADE: Integrating web service
with jade agents. In Service-Oriented Computing: Agents, Semantics,
and Engineering, vol. 4507 LNCS. Springer, 2007.

[16] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[17] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-Directed
Interactions in Artifact-Based MAS: Jadex Agents Playing in CArtAgO
Environments. In Proc. of Web Intelligence and Intelligent Agent
Technology (WI-IAT ’08), Sydney, 2008. IEEE/WIC/ACM.

[18] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning
engine. In R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni,
editors, Multi-Agent Programming. Kluwer, 2005.

[19] A. Ricci and E. Denti. simpA-WS: A Simple Agent-Oriented Program-
ming Model & Technology for Developing SOA & Web Services. In
Proceedings of AI*IA/TABOO Joint Workshop From objects to Agents
(WOA 2007), 2007.

[20] A. Ricci, E. Denti, and M. Piunti. A Platform for Developing SOA/WS
Applications as Open and Heterogeneous Multi-Agent Systems. Milti
Agent and Gris Systems, (to appear).

[21] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Dastani.
Integrating Artifact-Based Environments with Heterogeneous Agent-
Programming Platforms. In Proc. of the Seventh International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’08),
pages 225–232, 2008.

[22] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Multi-Agent Program-
ming: Languages, Tools and Applications. (Eds.) 2009, Springer. ISBN:
978-0-387-89298-6, chapter Environment Programming in CArtAgO,
pages 259–288. Springer, 2009.

[23] A. Ricci and M. Viroli. simpA: An agent-oriented approach for
prototyping concurrent applications on top of Java. In Proc of Principles
and Practice of Programming in Java (PPPJ-07), 2007.

[24] G. Rimassa, M. E. Kernland, and R. Ghizzioli. Ls/abpm - an agent-
powered suite for goal-oriented autonomic bpm. In Demo Session in
AAMAS 2008, 2008.

[25] A. A. Shafiq, H. F. Ahmad, and H. Suguri. AgentWeb Gateway - a
middleware for dynamic integration of multi agent system and web
services framework. In IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise, 2005.

[26] M. B. van Riemsdijk and M. Wirsing. Using goals for flexible service
orchestration - a first step. In Service-Oriented Computing: Agents,
Semantics, and Engineering (SOCASE’07), vol. 4504 LNCS. Springer,
2007.

MALLOW’009: Turin, Italy, September 7-10, 2009

50

Exploiting Agents and Ontologies for Type- and
Meaning-Safe Adaptation of Java Programs

Davide Ancona and Viviana Mascardi
DISI, University of Genova,

Via Dodecaneso 35, 16146, Genova, Italy
{davide,mascardi}@disi.unige.it

Abstract—This paper discusses an application of intelligent
software agents and ontologies to solve the problem of semi-
automatic porting of Java programs.

We have designed a system for aiding users to adapt Java
code in a type- and meaning-safe way, when an application has
to migrate to new libraries which are not fully compatible with
the legacy ones.

To achieve this, we propose an approach based on an inte-
gration of the two type-theoretic notions of subtyping and type
isomorphism with ontology matching. While the former notions
are needed to ensure flexible adaptation in the presence of type-
safety, the latter supports the user to preserve the meaning of
names that appear in the program to be adapted.

Intelligent agents control the different components of the
system and interact with other agents in order to provide the final
user with the semi-automatic porting service he/she required.

I. INTRODUCTION

Migrating a Java program p that uses library l into a
corresponding program p′ that uses library l′ in a semi-
automatic way is an open problem for which no satisfying
solution has been found yet.

One aspect that must be considered while facing this prob-
lem, and that makes it hard to solve, is that migration must
be type-safe. Replacing method m defined by l and used in
program p by m′ defined in l′, thus leading to a new program
p′, is a legitimate operation only if no type inconsistencies are
raised by this replacement. If the functionality of m and m′

is the same no type problems will arise. But what should it
happen in case of a difference in the type returned by m and
m′, or in the type of some of their parameters, or in their
number and order? The most conservative approach would
be to give up, and to consider the migration possible only
if elements of l used by p have corresponding elements in l′

whose type is identical or isomorphic.
However, this is a very restrictive choice with little motiva-

tion: type identity or isomorphism between elements of l and
the corresponding elements of l′ may be relaxed by requiring
that the type τ ′ of e′ in l′ is a subtype of the type τ of e in l, for
a suitable definition of the subtype relation. This requirement
allows a type-safe replacement of e in p with e′ in p′.

For example, R. Di Cosmo, F. Pottier and D. Rémy propose
an efficient decision algorithm for subtyping recursive types
modulo associative commutative products that demonstrates
the feasibility of using subtyping instead of type isomorphism,
when translating a program into another [1].

The limitation of their work, that we want to overcome
by exploiting intelligent agents and ontologies in our system,
is that they abstract from the names of classes, methods
and attributes and just consider safe matching between types.
Since there may be a large number of type correspondences
< τ , τ ′ > that preserve type-safety, re-introducing names
of classes, methods and attributes into the algorithm that
matches libraries’ elements may help in removing those cor-
respondences that, even if type safe, are not “meaning-safe”.
Correspondences between names of methods and attributes
are also needed during the translation process where type
correspondences are not enough.

Assume that we would like to port p from l to l′. For
simplicity, the problem can be reduced to the following
example scenario: p is the program

AttributeList atts;
String name = atts.getName(0);

and l is defined as follows:

c l a s s AttributeList ex tends Object {
String getName(i n t i){...}

}

where Object and String are the usual predefined classes
defined in the standard package java.lang.

The library l′ to which p has to be ported contains the
following class declarations:

c l a s s Attributes ex tends Object {
i n t getLength(){...}
String getLocalName(i n t index){...}
String getAttributeType(i n t index){...}

}

The approach discussed in [1] would tell us that the
structural types of AttributeList and Attributes are
compliant because of a combination of isomorphism and
subtyping. Or, in other words, would tell us that the cor-
respondence <AttributeList, Attributes> is type
safe. This is a useful information, but it does not help us in
automatically translating p into p′ in order to use l′.

What we would like to have, instead, is the set of correspon-
dences {<AttributeList, Attributes>, <getName,
getLocalName>}. This set cannot be obtained by just
checking the type compliance of String getName(int)

MALLOW’009: Turin, Italy, September 7-10, 2009

51

with int getLength(), String getLocalName(int),
and String getAttributeType(int).

In fact, while getLength is not type compliant
with getName, both getLocalName and
getAttributeType are. However, we expect that
the right correspondence is that between getName and
getLocalName, due to the intended meaning of their
names.

It is here that ontologies come into play: assuming that
an “ontology matching algorithm” can devise the corre-
spondences between ontology elements (classes, properties,
relationships, individuals) that better respect their intended
meaning, and assuming that from a Java library, an ontology
carrying the intended meaning of the library elements can be
extracted, we propose to extract ontologies o and o′ from l
and l′, and to run a matching algorithm on them.

And it is here that agents come into play: the system that
we have designed consists of complex components that must
provide different kinds of services (type and ontology extrac-
tion, type and ontology matching, filtering of the matching
results, assisted extraction of the translation function, actual
translation) either to the final user or to other system’s com-
ponents. In order to make our system as flexible as possible,
we associate an intelligent agent with each component. The
agent controls the component and interacts both with other
agents and with the user.

The output of the type and ontology matching algorithms,
controlled by a Type Matching Agent and by an Ontology
Matching Agent respectively, will be combined by a Filtering
Agent in order to produce a type- and meaning- safe matching
relation. A human user assisted by a Function Extraction
Assistant Agent will disambiguate multiple possible matchings
in order to identify a match function which will finally be
used by a Translation Agent to translate p into p′.

Continuing the example above, p′ would be

Attributes atts;
String name = atts.getLocalName(0);

where Attributes = match(AttributeList) and
getLocalName = match(getName). Thanks to the
match function, the translation from p to p′ can be fully
automatized.

The aim of this paper is to discuss a multiagent system
that exploits type and ontology matching techniques to make
automatic migration of Java programs possible. The paper
is organized in the following way: Section II describes the
architecture of our multiagent system and Sections III and
IV describe the Ontology Extraction and Ontology Matching
agents in detail. Section V concludes and highlights future
directions of work.

II. ARCHITECTURE

The purpose of our multiagent system, depicted in Figure
1, is to provide the service of computing a match function
between the elements of two Java libraries l, l′ given in input
either by a human user or by any other software application, by
exploiting interactions among the different agents belonging

to it1. If the user (agent, software application) wants the
additional service of performing the translation of a Java
program p that uses library l into a Java program p′ that uses
l′, the match function can in turn be given in input to the
Translation Agent which computes a translation p′ of p driven
by match.

The match function is obtained in the following way:
ontologies o and o′ are extracted from libraries l and l′

respectively. In a similar way, collections of types t and t′

are extracted from l and l′.
The Ontology Matching Agent interacts with a set of Simple

Ontology Matching agents (SOMi in Figure 1), each in charge
of running one specific ontology matching algorithm chosen
from a pool of existing ones (see Section IV, last paragraphs).
The Ontology Matching Agent may decide to demand the
ontology matching service to the SOM agent that has the
lowest workload, to the one that seems more suitable to
correctly match ontologies o and o′ according to quality of
service criteria or efficiency needs, or to any other SOM
agent according to some policy including running all the
available ontology matching algorithms and either merging
the obtained results or selecting one of them based on ex-post
analysis2. At the end, the Ontology Matching Agent obtains
from one or more SOMs the alignments (namely, the sets of
correspondences) a1, a2, ..., an between o and o′ and merges
them or selects the most preferred alignment among them if
it is the case. The Type Matching Agents behaves in the same
way, controlling a set of Simple Type Matching agents (STMj

in Figure 1) each in charge of running a specific type matching
algorithm on t and t′ to get tm. The type match tm is used for
selecting only those correspondences in a that are type safe.
We name this activity “filtering”.

Filtering, whose responsibility is given to the Filtering
Agent, still does not ensure that we obtain a set of correspon-
dences that is a function: it might still be a relation, because
more than one correspondence involving e ∈ l is both type-
and meaning-safe.

The user is involved in the loop for making the relation
output by the Filtering Agent turn out into a match func-
tion: if many correspondences are possible for an element
e ∈ l, the user will be asked to make his/her choice among
them. Another information must be integrated into the match
function, namely, for any method m ∈ l, which injection
must be applied on its parameters p1, ..., pn in order to obtain

1Currently, some agents belonging to the MAS such as type matching
and filtering agents have little decisional power and autonomy, so they could
be collected into a single sequential process, simplifying the system design.
However, we expect that these agents may be equipped with a higher degree
of intelligence in a future version of the system. Hence, we model them as
agents even if, in the current version, they are just service providers.

2Alignments can be compared according to their precision and recall.
Unfortunately, computing precision and recall of an alignment between o
and o′ is only possible if a reference alignment for o and o′ has already
been developed by hand. In fact, precision is defined as the number of
correctly found correspondences with respect to a reference alignment divided
by the total number of found correspondences and recall is defined as the
number of correctly found correspondences divided by the total number of
expected correspondences. The higher the precision and recall, the better. If
no reference alignment exists, only quantitative features of the alignment such
as dimension, number of correspondences with the same first element, etc, can
be considered to decide whether one alignment is “better” than another one.

MALLOW’009: Turin, Italy, September 7-10, 2009

52

Fig. 1. The architecture of our multiagent system.

the tuple p1, ..., pk, k ≤ n whose ordered elements can be
used as parameters for m′ ∈ l′, where m′ = match(m).
Also in this case, the user may be required to make a
choice if more injections are possible. For example method
m1(c1, int, String) in l might be type- and meaning-
safely replaced by m2(int, String, c1) in l, but a per-
mutation of its parameters is required when actually translating
p that uses m into p′ that uses m′.

The match function (which is indeed a family of functions
working either on elements of l, or on tuples of elements of
l) is needed by the Translation Agent.

Of course, it might also happen that the Filtering Agent
cannot achieve its goal because there are some elements in l
for which no corresponding element in l′ has been found and
thus no match function from l to l′ can be computed. The
user will be involved in this case too: the Filtering Agent will
inform him/her that no type and meaning-safe matching was
possible for some elements, and the result of the filtering stage
will be shown to him/her. Even if no automatic translation of p
will be possible due to the impossibility to generate a match
function, the user might find the result of the Filtering Agent
useful for driving his/her hand-made translation.

If, thanks to the human intervention, a match function has
been defined, the automatic translation of p into p′ can be
performed by the Translation Agent, leading to the desired
output, namely program p′.

In the sequel of this section, each agent is shortly presented.
Agents that deal with ontologies are discussed in more detail
in the next sections.

Ontology Extraction Agent
The Ontology Extraction Agent takes one Java library as

input and returns an ontology that models the structure of the
library in term of its classes, their subclass relationships, their
methods and attributes. This agent, described in Section III,
must operate on both l and l′ in order to obtain o and o′

respectively.

Type Extraction Agent

The Type Extraction Agent takes one Java library as input
and returns a collection of types following S. Jha, J. Palsberg
and T. Zhao’s proposal [2], [3]. Since Java classes belonging
to a library may mutually refer to one another, types in the
collection may be mutually recursive. In our system, the Type
Extraction Agent must operate on both l and l′ in order
to extract the corresponding collections of types, t and t′

respectively.

Ontology Matching Agent

The service offered by the Ontology Matching Agents is
returning an alignment of the two ontologies taken in input.
This agent is responsible for the “meaning-safety” of the
matching between elements of l and elements of l′; it will take
the ontologies o and o′ extracted from l and l′ respectively
as input and will return an ontology alignment a between
them. As we will discuss in Section IV, many ontology
matching algorithms and tools exists: we will integrate the
most relevant ones into our system by implementing, for each
of them, a SOM agent that provides an interface towards the
algorithm/tool. The Ontology Matching Agent will coordinate
the activity of SOM agents

Type Matching Agent

Once the collections of types induced by l and l′ have
been extracted, a type-safe matching between them must be
computed. The algorithm we will use for this activity is
inspired by that proposed by R. Di Cosmo, F. Pottier and
D. Rémy in [1] and is briefly described in [4]. It ensures the
type-safety of the matching.

Filtering Agent

In order to find a matching between the elements of l and
those of l′ that is both type-safe and that takes the meaning

MALLOW’009: Turin, Italy, September 7-10, 2009

53

of names of methods, attributes and classes into account, as
well as their structural relationships, we need to filter elements
of a by taking the type-safe correspondences contained in tm
into account. A Filtering Agent that implements the algorithms
described in [4] has been designed to this aim.

Function Extraction Assistant Agent
In the general case the output of the Filtering Agent, tsa

(for type safe alignment), will not be deterministic enough
to be used for translating a program p that uses l into
the corresponding program p′ that uses l′. There might be
elements of l that can be matched to more than one element
in l′ taking both types and meaning into account, and no
algorithm could automatically determine the right choice.
Once most of the work has been done and the subset tsa of
elements(l)×elements(l′) has been generated, the Function
Extraction Assistant Agent comes into play and interacts with
the user in order to complete the definition of the match
function that will drive the translation from p to p′. The
task of the user mainly consists in making choices among
a set of possibilities provided by the Filtering Agent, in order
to constrain a relation to become a function. The user is
also asked to define the right operations to be performed
on parameters of m ∈ elements(l) in order to obtain a
tuple of parameters suitable for the corresponding method
m′ ∈ elements(l′).

Of course there might be elements of l for which no type
safe matching into a corresponding element of l′ exist, and
this would mean that tsa could never become a function, and
that the system has nothing left to do. The user can benefit
from knowing tsa, but he/she has to perform the translation
from p to p′ by hand.

Translation Agent
In case a the match function has successfully been ex-

tracted, the Translator Agent can provide its translation service
by taking a function match and a program p and returning a
program p′ following the rules defined in Section 7 of [4]. The
program p to migrate is given in input only to the Translation
Agent. The matching function match only depends on l and l′:
it can be reused for any p developed for using l which must be
updated for using l′. The alternative of considering p from the
earliest phases of the process has been taken into consideration
because of some advantages it would give. In fact, knowing p
since the beginning would allow the multiagent system to limit
the extraction and matching activities only to those elements
of the library that are actually used by p, as well as those that
have some dependency relation with them. This would restrict
the search space, but would also cause a loss of generality of
the function match, which should become a matchp function
depending on p and might be used only for translating p and
programs that use less elements of l than p. A program p2
that uses only one more element from l w.r.t p would require
the generation of a new matchp2 function.

III. ONTOLOGY EXTRACTION AGENT

This section describes the algorithm for automatically ex-
tracting an OWL ontology from a Java library exploited by the

Ontology Extraction Agent. In case more ontology extraction
algorithms should be implemented, the Ontology Extraction
Agent might coordinate interface agents towards all or some
of them, in the same way as the Ontology Matching and Type
Matching agents do.

In order to explain how the extraction algorithm works,
we need to provide some details on the subset of OWL that
we will use for representing ontologies corresponding to Java
libraries. We have designed the extraction in order to make
this subset as small as possible. In particular, it is a proper
subset of OWL Lite.

a) Data Types: Data Types used in OWL ontologies are
those defined by the XML Schema specification, http://www.
w3.org/TR/xmlschema-2/:
• decimal represents the subset of the real numbers, which

can be represented by decimal numerals; integer is de-
rived from decimal by fixing the number of decimal
digits to 0, and disallowing the trailing decimal point.
This results in the standard mathematical concept of the
integer numbers. Neither decimal nor integer have a direct
counterpart in Java primitive data types.

• long is derived from integer by setting the maximum
value to be 9,223,372,036, 854,775,807 and the minimum
one to be -9,223,372,036,854,775,808 (both included); it
corresponds to the long Java primitive data type.

• int is derived from long by setting the maximum value
to be 2,147,483,647 and the minimum value to be -
2,147,483,648 (both included); it corresponds to the int
Java primitive data type.

• short is derived from int by setting the minimum admis-
sible value to -32,768 and the maximum admissible value
to 32,767 (both included); it corresponds to the short Java
primitive data type.

• byte is a short ranging between -128 and 127 (both
included); it corresponds to the byte Java primitive data
type.

• float is patterned after the IEEE single-precision 32-
bit floating point type; it corresponds to the float Java
primitive data type.

• double is patterned after the IEEE double-precision 64-
bit floating point type ; it corresponds to the double Java
primitive data type.

• boolean has the value space required to support the math-
ematical concept of binary-valued logic: {true, false}; it
corresponds to the boolean Java primitive data type.

OWL primitive data types do not include char, which is the
only Java primitive data type with no direct correspondence.
However, since char is a finite-valued type type, it may be
easily represented as an OWL class with a finite number of
instances, as a set of integers with a maximum cardinality
(the owl:maxCardinality built-in OWL property may be used
to this aim), or in other straightforward ways. Instead, OWL
primitive data types include for example string, date, time
that correspond to some extent to the String, Date, Time
classes provided by java.lang and java.sql packages,
respectively.

Since OWL provides no data type corresponding to void, we
assume that an OWL class named Void is defined in a names-

MALLOW’009: Turin, Italy, September 7-10, 2009

54

pace that we abbreviate with myns, and that it corresponds to
the void type specifier in Java.

b) Namespace: Namespaces are inherited by OWL from
XML. XML namespaces provide a simple method for qual-
ifying element and attribute names used in XML documents
by associating them with namespaces identified by URI refer-
ences. A standard initial component of an ontology includes
a set of XML namespace declarations that provide a means to
unambiguously interpret identifiers and make the rest of the
ontology presentation much more readable.

c) Class: A class defines a group of individuals that
belong together because they share some common properties.
The OWL class element, identified by owl:Class, is a
subclass of the RDFS class element, rdfs:Class. The
rationale for having a separate OWL class construct lies in
the restrictions on OWL DL (and thus also on OWL Lite),
which imply that not all RDFS classes are legal OWL DL
classes.

d) Subclass: Class hierarchies may be created by making
one or more statements that a class is a subclass of another
class. This can be achieved by using the rdfs:subClassOf
element defined by RDFS.

e) Property: Properties have originally being defined
in RDF and can be used to state relationships between
individuals (object properties, owl:ObjectProperty)
or from individuals to data values (data type proper-
ties, owl:DatatypeProperty). Both object and data
type OWL properties are subclasses of the RDF class
rdf:Property.

A. From a Java library to an OWL ontology

The algorithm that we describe in this section has been
designed for working under the assumption that names of
methods and attributes of the classes in a class library are
all different. The absence of name clashes between classes
is given for granted, since a class library cannot include two
classes with the same name. Even under the assumption that
different classes with no inheritance relation among them
define different methods, a preprocessing stage must be per-
formed on the library in order to deal with method overriding.
In fact, we cannot prevent subclasses from overriding methods
defined in superclasses, but this leads to a violation of our
assumption on disjoint names of methods. We deal with this
situation by just removing the overridden method from all the
subclasses that override it. This gives us two advantages:

1) the assumption under which the algorithm works is
respected;

2) we avoid that a method m defined by class c may be
matched to m′, and the same method m overridden by
a subclass of c is matched to m′′ 6= m′.

The basic ideas underlying the extraction algorithm are:
• The Java library l corresponds to a single OWL ontol-

ogy lo named after the library name and defined in a
namespace lns.

• Java classes belonging to l correspond to OWL classes
belonging to lo; the identifier of the OWL class coincides
with the name of the Java class it corresponds to.

• If the Java class sc extends c, then the OWL class corre-
sponding to c (that we name owl(c) for our convenience)
is defined as a subclass of the OWL class corresponding
to sc.

• Since properties of an OWL class are inherited by its
subclasses, the Java methods and attributes of class c are
translated into OWL properties with identifier identical
to their name and domain owl(c). This allows them to
be inherited by owl(c)’ subclasses for free. The range of
a property corresponding to a Java attribute is defined
as the attribute’s type; that of a property correspond-
ing to a method is a pre-defined OWL class named
myns:MethodF.

Our assumption of absence of clash names is very strong,
but it allows us to describe the basic ideas underlying the
algorithm in a clear and understandable way, discarding the
technical details raised by name clashes. The reason for this
assumption is that we translate all the elements (classes,
attributes, methods) of the class library into corresponding
elements of a unique OWL ontology. Unfortunately, an OWL
ontology cannot include properties with the same name, even
if their domain and range are different as it should happen
with methods, parameters and attributes with the same name
but different functionality.

In the real case, where name clashes between methods,
parameters, and attributes may occur, two solutions have been
devised.

1) Instead of translating the entire Java library into an
OWL ontology, each Java class c should be translated
into an OWL ontology o defined within a namespace
ns created starting from c in a way that ensures its
uniqueness. Methods and attributes of class c, as well
as the methods’ parameters, should be translated into
properties of the ontology o within the namespace ns.
The usage of different ontologies defined in different
namespaces should allow us to identify each element
of a Java class in a unique way, and thus to overcome
the problem of name clashes (using the same identifier
in different namespaces is, of course, admitted). The
ontology corresponding to the Java class c should import
all the ontologies corresponding to translations of Java
classes referenced in c, and thus a pre-processing phase
should be added to the extraction algorithm. The Java
library l should be translated into an ontology that just
imports all the ontologies corresponding to the Java
classes belonging to l.
The main drawback of this approach, besides a much
more complex extraction algorithm, is that few imple-
mented matching algorithms that the Simple Ontology
Matching Agents, SOMs, should interface take names-
paces correctly into account.

2) The Java library should still be translated into a single
OWL ontology, but clashing names should be modified
during their translation in order to obtain an ontology
“clash-free”.
Here, the drawback is that the modification of names
would result into poorer performances of the ontology

MALLOW’009: Turin, Italy, September 7-10, 2009

55

matching algorithms. If, for example, method m in the
library l has been translated into m14 in ontology o
because of a name clash, and method m in library l′ has
been translated into m37 in ontology o′, again because
of a name clash, the confidence in the correspondence
< m ∈ o,m ∈ o′ > would turn out to be lower
than the confidence in the correspondence < m14 ∈
o,m37 ∈ o′ > for most matching algorithms, because
of the syntactic difference between the two names.

The following paragraphs describe the extraction of the
OWL elements starting from the Java library elements and
provide examples.

OWL elements corresponding to Java classes

A Java class c that extends no class corresponds to an OWL
class c (Table I).

A Java class sc that extends a class c different from Object
corresponds to an OWL class sc defined as a subclass of c
(Table II).

OWL elements corresponding to attributes of Java classes

An attribute a of class c whose type is a basic type t with
a corresponding data type in XML corresponds to an OWL
datatype property whose ID is a, whose domain is c, and
whose range is the XML data type that corresponds to t (Table
III).

An attribute a of class c whose type is the class c′ defined in
the Java library corresponds to an OWL object property whose
ID is a, whose domain is c, and whose range is c′ (Table IV).

OWL elements corresponding to methods of Java classes

Since we are not interested in representing the functionality
of a method m in the ontology, we treat methods in the same
way as attributes with the only difference that their range is
always an OWL class defined in our namespace, and named
"myns:MethodF". The domain of a method is the OWL
class representing the Java class it belongs to (Table V).

IV. ONTOLOGY MATCHING AGENT

The Ontology Matching Agent will coordinate Simple
Ontology Matching Agents, each interfacing towards some
existing algorithm and/or tool (for example those mentioned
at the end of this section, but others might be considered).

In the recent past, the second author of this paper together
with other colleagues from the University of Genova designed,
implemented and tested a FIPA compliant Ontology Agent for
JADE [5] that provides Ontology Matching services to a MAS
[6]. We plan to extend such an agent by adding intelligence
to it in the choice of the right matching algorithm (among
existing ones) to use, based either on work-balance issues or
on quality of service provided, or on both. The experiments
described in [7] demonstrate that better results are achieved
by more time-consuming algorithms. According to the user’s
needs, a faster algorithm might be preferred to a slower one,
even if this might cause a degradation of the results’ quality.

The Ontology Matching Agent will take the user’s preferences
into account for delivering the best service to each user.

In this section, we shortly review the state of the art of
ontology matching systems and algorithms towards which
Simple Ontology Matching Agent will interface. We draw
inspiration from [8]. Following the terminology proposed
there, a correspondence between an entity e belonging to
ontology o and an entity e′ belonging to ontology o′ is a 5-
tuple < id, e, e′, R, conf > where:

• id is a unique identifier of the correspondence;
• e and e′ are the entities (e.g. properties, classes, individ-

uals) of o and o′ respectively;
• R is a relation such as “equivalence”, “more general”,

“disjointness”, “overlapping”, holding between the enti-
ties e and e′.

• conf is a confidence measure (typically in the [0, 1]
range) holding for the correspondence between the en-
tities e and e′;

An alignment of ontologies o and o′ is a set of correspon-
dences between entities of o and o′, and a matching process
is a function f which takes two ontologies o and o′, a set of
parameters p and a set of oracles and resources r, and returns
an alignment A between o and o′.

Two of the dimensions according to which matching tech-
niques can be classified are the level (element vs structure) and
the way input information is interpreted (syntactic vs external
vs semantic).

Level: element vs structure

Element-level matching techniques compute alignments by
analyzing entities in isolation, ignoring their relations with
other entities. Structure-level techniques compute alignments
by analyzing how entities appear together in a structure.

Element-level techniques include, among others:

• String-based techniques, that measure the similarity of
two entities just looking at the strings (seen as mere
sequences of characters) that label them. They include
substring distance, Jaro measure [9], n-gram distance
[10], Levenshtein distance [11], SMOA measure [12].

• Language-based techniques, that consider entity names
as words in some natural language and exploit Natural
Language Processing techniques to measure their simi-
larity.

• Constraint-based techniques, that deal with the internal
constraints being applied to the definitions of entities,
such as types, cardinality of attributes, and keys.

Structure-level techniques include:

• Graph-based techniques that the input ontology as a
labeled graph.

• Taxonomy-based techniques, that are also graph algo-
rithms which consider only the specialization relation.

• Model-based techniques that handle the input based on
its semantic interpretation (e.g., model-theoretic seman-
tics). Examples are propositional satisfiability (SAT) and
description logics (DL) reasoning techniques.

MALLOW’009: Turin, Italy, September 7-10, 2009

56

public class Bike <owl:Class rdf:ID="Bike"/>

TABLE I
JAVA CLASS c THAT EXTENDS NO CLASS.

public class MountainBike
extends Bike

<owl:Class rdf:ID="MountainBike">
<rdfs:subClassOf rdf:resource="Bike"/>

</owl:Class>

TABLE II
JAVA CLASS sc THAT EXTENDS CLASS c.

Attribute cadence of the class Bike:

public int cadence;

<owl:DatatypeProperty rdf:ID="cadence">
<rdfs:domain rdf:resource="Bike"/>
<rdfs:range rdf:resource="xsd:int"/>

</owl:DatatypeProperty>

TABLE III
ATTRIBUTE WITH A BASIC TYPE.

Attribute ft of the class Bike:

public BikeFeatr ft;

<owl:ObjectProperty rdf:ID="ft">
<rdfs:domain rdf:resource="Bike"/>
<rdfs:range rdf:resource="BikeFeatr"/>

</owl:ObjectProperty>

TABLE IV
ATTRIBUTE WITH TYPE c.

Interpretation of input information: syntactic vs external vs
semantic

Syntactic techniques interpret the input in function of its
sole structure following some clearly stated algorithm.

External techniques exploit auxiliary (external) resources of
a domain and common knowledge in order to interpret the
input.

Semantic techniques use some formal semantics (e.g.,
model-theoretic semantics) to interpret the input and justify
their results. In case of a semantic based matching system, a
further distinction between exact algorithms (that guarantee a
discovery of all the possible correspondences) and approxi-
mate algorithms (that tend to be incomplete) may be done.

Implemented matching systems and infrastructures
Many implemented matching systems and algorithms exist.

If we just consider those listed in the “Project” section of the
Ontology Matching portal, http://www.ontologymatching.org/
projects.html, we may count about thirty of them. These sys-
tems and infrastructures are very different one from another.
Many of them have been carefully analyzed and compared in
[8], as well as in previous works by the same authors [13],
[14] and by other researchers [15].

Just to cite some very recent systems, HMatch [16], [17]
is an automated ontology matching system able to handle

ontologies specified in OWL. Given two concepts, HMatch
calculates a semantic affinity value as the linear combination
of a linguistic affinity value and a contextual affinity value.
For the linguistic affinity evaluation, HMatch relies on a the-
saurus of terms and terminological relationships automatically
extracted from the WordNet lexical system. The contextual
affinity function of HMatch provides a measure of similarity
by taking into account the contextual features of the ontology
concepts.

CtxMatch [18], [19] is a sequential system that translates the
ontology matching problem into the logical validity problem
and computes logical relations, such as equivalence, subsump-
tion between concepts and properties.

The Alignment API [20] is an API and implementation
for expressing and sharing ontology alignments. It operates
on ontologies implemented in OWL and uses an RDF-based
format for expressing alignments in a uniform way. The
Alignment API offers services for storing, finding, and shar-
ing alignments; piping alignment algorithms; manipulating
(thresholding and hardening); generating processing output
(transformations, axioms, rules); comparing alignments. The
last release, Version 3.5, dates back to October, 21th, 2008.

AUTOMS-F [21] is a framework implemented as a Java
API which aims to facilitate the rapid development of tools
for automatic mapping of ontologies by synthesizing several

MALLOW’009: Turin, Italy, September 7-10, 2009

57

Methods setFeatr and getFeatr of the
class Bike:

public void setFeatr
(BikeFeatr newFeatr,
String newOwnerName,
int newOwnersNum)

{
...

}

public BikeFeatr getFeatr()
{

...
}

<owl:ObjectProperty rdf:ID="setFeatr">
<rdfs:domain rdf:resource="Bike"/>
<rdfs:range rdf:resource="myns:MethodF"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="getFeatr">
<rdfs:domain rdf:resource="Bike" />
<rdfs:range rdf:resource="myns:MethodF"/>

</owl:ObjectProperty>

TABLE V
METHODS.

individual ontology mapping methods. Towards this goal,
AUTOMS-F provides a highly extensible and customizable
application programming interface. AUTOMS [22] is a case
study ontology mapping tool that has been implemented using
the AUTOMS-F framework.

Finally, automatic matching techniques that exploit “Upper
Ontologies”, namely general ontologies that deal with con-
cepts that are the same across different domains, have been
implemented and analyzed in [7].

V. CONCLUSION AND FUTURE WORK

In this paper we have described a multiagent system that,
once implemented, should allow a user to semi-automatically
porting a Java program p that uses library l to a program p′ that
uses l′ in a type-safe and “meaning-safe” way. To the best of
our knowledge, no previous attempts of exploiting agents and
ontologies for facing porting and migration problems exist.
We devise some similarity between our proposal and the Nat-
ural Programming Project, http://www.cs.cmu.edu/∼NatProg/,
working on making programming languages and environments
easier to learn, more effective, and less error prone. The
report [23] suggests that AI tools such as agents, advice, and
reversible debuggers may help users convert their intentions
into precise programs. In this paper we do not face the
general problem of supporting the user in his/her programming
activities: we face the more specific problem of helping the
user in a migration problem with respect to the Java language.
Nevertheless, our exploitation of intelligent agents for sup-
porting the user in activities related to smart programming is
coherent with the purpose of the Natural Programming Project.

The contribution of this paper is twofold. On the one hand,
we have designed the multiagent system’s architecture; on the
other hand, we have either identified existing algorithms to in-
tegrate in the agents when possible, or designed new ones (the
ontology extraction algorithm described in this paper and the
algorithms implemented by the Filtering and the Translation
agents described in [4] are all original contributions).

The first activity we will carry out in the very near future
is the implementation of the algorithms that, at this stage,
are only designed. In parallel to the implementation of these

algorithms, the choice of the most suitable algorithms and
tools to be accessed by Simple Ontology Matching Agents
will be made.

Once all these components will be available and tests will be
performed over them, a prototype demonstrating the feasibility
of our approach will be created in JADE.

ACKNOWLEDGEMENTS

The authors acknowledge the anonymous reviewers for their
thoughtful and constructive suggestions.

This work has been partially supported by MIUR EOS DUE
- Extensible Object Systems for Dynamic and Unpredictable
Environments, and by the CINI-FINMECCANICA Iniziativa
Software project.

REFERENCES

[1] R. D. Cosmo, F. Pottier, and D. Rémy, “Subtyping recursive types
modulo associative commutative products,” in TLCA 2005, Proceedings,
ser. LNCS, P. Urzyczyn, Ed., vol. 3461. Springer, 2005, pp. 179–193.

[2] J. Palsberg and T. Zhao, “Efficient and flexible matching of recursive
types,” in LICS 2000, Proceedings. IEEE Computer Society, 2000, pp.
388–398.

[3] S. Jha, J. Palsberg, and T. Zhao, “Efficient type matching,” in FOSSACS
2002, co-located with ETAPS 2002, Proceedings, ser. LNCS, M. Nielsen
and U. Engberg, Eds., vol. 2303. Springer, 2002, pp. 187–204.

[4] D. Ancona and V. Mascardi, “Ontology matching for semi-automatic and
type-safe adaptation of Java programs,” DISI - University of Genova,
Tech. Rep., 2008, ftp://ftp.disi.unige.it/person/AnconaD/AM1208.pdf.

[5] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[6] D. Briola, A. Locoro, and V. Mascardi, “Ontology agents in FIPA-
compliant platforms: a survey and a new proposal,” in WOA’08, Pro-
ceedings, M. Baldoni, M. Cossentino, F. D. Paoli, and V. Seidita, Eds.
Seneca Edizioni, 2008.

[7] V. Mascardi, A. Locoro, and P. Rosso, “Automatic ontology matching via
upper ontologies: A systematic evaluation,” 2009, IEEE Trans. Knowl.
Data Eng., to appear.

[8] J. Euzenat and P. Shvaiko, Ontology Matching. Springer, 2007.
[9] M. Jaro, “UNIMATCH: A record linkage system: User’s manual,” U.S.

Bureau of the Census, Washington (DC US), Tech. Rep., 1976.
[10] E. Brill, S. Dumais, and M. Banko, “An analysis of the askmsr question-

answering system,” in EMNLP 2002, Proceedings, 2002.
[11] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-

sertions, and reversals,” Doklady akademii nauk SSSR, vol. 163, no. 4,
pp. 845–848, 1965, in Russian. English Translation in Soviet Physics
Doklady 10(8), 707-710, 1966.

MALLOW’009: Turin, Italy, September 7-10, 2009

58

[12] G. Stoilos, G. B. Stamou, and S. D. Kollias, “A string metric for ontology
alignment,” in ISWC 2005, Proceedings, ser. LNCS, Y. Gil, E. Motta,
V. R. Benjamins, and M. A. Musen, Eds., vol. 3729. Springer, 2005,
pp. 624–637.

[13] P. Shvaiko and J. Euzenat, “A survey of schema-based matching ap-
proaches,” J. Data Semantics IV, vol. 3730, pp. 146–171, 2005.

[14] P. Shvaiko, “Iterative schema-based semantic matching,” DIT - Univer-
sity of Trento, Tech. Rep. DIT-06-102, 2006, ph.D. Thesis.

[15] N. Choi, I.-Y. Song, and H. Han, “A survey on ontology mapping,”
SIGMOD Record, vol. 35, no. 3, pp. 34–41, 2006.

[16] S. Castano, A. Ferrara, and S. Montanelli, “Matching ontologies in open
networked systems: Techniques and applications,” J. Data Semantics V,
pp. 25–63, 2006.

[17] S. Castano, A. Ferrara, and G. Messa, “ISLab HMatch Results for OAEI
2006,” in OM-2006, co-located with ISWC-2006, Proceedings, 2006.

[18] P. Bouquet, B. Magnini, L. Serafini, and S. Zanobini, “A SAT-based
algorithm for context matching,” in CONTEXT 2003, Proceedings, ser.
LNCS, P. Blackburn, C. Ghidini, R. M. Turner, and F. Giunchiglia, Eds.,
vol. 2680. Springer, 2003, pp. 66–79.

[19] P. Bouquet, L. Serafini, S. Zanobini, and S. Sceffer, “Bootstrapping
semantics on the web: meaning elicitation from schemas,” in WWW
2006, Proceedings, L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, and
M. Dahlin, Eds. ACM, 2006, pp. 505–512.

[20] J. Euzenat and et al., “Alignment API and Alignment Server,” 2008.
[Online]. Available: http://alignapi.gforge.inria.fr/

[21] A. Valarakos, V. Spiliopoulos, K. Kotis, and G. Vouros, “AUTOMS-F: A
java framework for synthesizing ontology mapping methods,” in KOST
’07, Proceedings, 2007.

[22] K. Kotis, A. G. Valarakos, and G. A. Vouros, “AUTOMS: Automated
ontology mapping through synthesis of methods,” in OM-2006, co-
located with ISWC-2006, Proceedings, ser. CEUR Workshop Proceed-
ings, P. Shvaiko, J. Euzenat, N. F. Noy, H. Stuckenschmidt, V. R.
Benjamins, and M. Uschold, Eds., vol. 225. CEUR-WS.org, 2006.

[23] H. Goodell, S. Kuhn, D. Maulsby, and C. Traynor, “End user
programming/informal programming,” SIGCHI Bull., vol. 31, no. 4, pp.
17–21, 1999. [Online]. Available: http://www.cs.uml.edu/∼hgoodell/
EndUser/blend/report.html

MALLOW’009: Turin, Italy, September 7-10, 2009

59

The CAWE Framework - Enhancing Service
Oriented Architecture with Context Awareness

Extended Abstract
L. Ardissono, R. Furnari, A. Goy, G. Petrone, M. Segnan

Dipartimento di Informatica
Università di Torino

Torino, Italy
Email: �liliana,furnari,goy,giovanna,marino�@di.unito.it

Abstract—The development of Web applications based on
Service Oriented Architectures (SOA) is challenged by the lack of
support to the specification of explicit context adaptation policies.

As an answer to this issue, we present the Context Aware
Workflow Execution framework (CAWE), which enriches SOA
with (a) context-aware workflow management; (b) dialog man-
agement capabilities supporting the adaptation of the interaction
with the individual user, and (c) context-dependent User Interface
generation.

I. INTRODUCTION

Context-awareness is particularly important in Web ap-
plications, which are accessed by large numbers of users,
having diverse preferences, needs and capabilities, and using
heterogeneous devices to interact with the business services.
In order to suitably handle such variability, a self-managing
system should be able to adapt both the service and the
User Interface to the individual user and to the dynamic
environment surrounding her/him.

However, Service Oriented Architecture (SOA, [1]), the
reference model for the development of composite applica-
tions, does not explicitly deal with personalization and context-
awareness. In fact, it embeds all the adaptation decisions in
the process specifying the business logic of the applications.

In order to address this limitation, we designed a vertical
SOA architecture which extends Service Oriented Comput-
ing with context-awareness and personalization capabilities.
This extended abstract shortly presents the CAWE (Context
Aware Workflow Execution) framework for the development
of composite Web applications. The framework supports the
adaptation of the business logic, interaction logic and User
Interface to the users and to their context. Specifically, the
framework supports:

� The context-dependent selection of the courses of action
to be enacted, and of the service providers to be invoked,
during the execution of the application.

� The generation of a context-dependent User Interface,
tailored to the user’s device (e.g., to its screen size) and to
the user’s preferences (e.g., background colors and font
size).

� The management of tasks as dialogs with the user,
the provision of extra-helpful information for non-expert
users, and the management of a User Interface fitting the
size of her/his device.

We exploited the CAWE framework to develop an e-Health
prototype application supporting the management of a clinical
guideline which coordinates the activities to be performed
in order to monitor the health state of patients affected by
heart diseases. The analysis of the e-Health domain, and the
development of the application, proved the suitability of the
adaptive features offered by our framework, as well as its
applicability to real-world use cases.

II. THE CAWE FRAMEWORK

Service Oriented Architecture provides limited support to
and context-awareness because it fails to recognize the central
role of the adaptation logic and thus it embeds all the adap-
tation decisions in the workflow specifying the business logic
of the applications. Specifically:

� As far as the business logic is concerned, the workflow
underlying the applications embeds the variables to be
taken into account and describes the alternative courses of
action in a flat graph. Although this approach works well
in simple cases, it does not scale to complex contexts.

� The User Interface (UI) and the interaction with the user
lack flexibility because they are based on minimalistic
techniques for the generation of device-dependent UI
pages which fail to support the management of flexible
dialogs with the user.

The CAWE framework supports the development of com-
posite applications which tailor the business logic, the inter-
action with the user and the User Interface to the user and to
her/his context. The key concept is the fact that the adaptation
logic has to be explicitly represented. By extracting such
logic from the application workflow, flexible techniques can be
applied to steer the system behavior. The CAWE architecture
includes two core components:

� The Context Manager service (CtxMgr WS) handles the
context information during the execution of the applica-
tion. Specifically, it handles a Role Model for each role

MALLOW’009: Turin, Italy, September 7-10, 2009

60

defined in the application workflow, as well as a User
Model and a Context Model for each involved actor.

� The Context-Aware Workflow Manager (CA-WF-Mgr)
enacts a context-sensitive workflow which defines the
business logic of the application. For this purpose, it
exploits two modules: the Workflow Adaptation Module
shapes the workflow depending on the context; the work-
flow engine enacts the resulting workflow.
Within the CA-WF-Mgr, the Dialog Manager module
acts as a bridge between the user and the workflow
engine. When the user logs in the application, the Di-
alog Manager is invoked and takes the control of the
interaction. The module adapts the User Interface to a
context including both the user’s device and her/his layout
preferences.

A. business logic

In the CAWE framework, the business logic of an applica-
tion is represented as a context-sensitive workflow organized
in an abstraction hierarchy which specifies the system behavior
at different levels of detail. Specifically:

� Besides the standard workflow activities (prescribing
the invocation of service providers, the management of
tasks, or some internal computation), a context-sensitive
workflow can include abstract activities which describe
a generic type of behavior, to be decided at runtime.

� Each abstract activity is associated with a set of imple-
mentations which describe different courses of action that
the workflow engine should enact to complete the activity,
depending on the context. Each implementation is a
workflow which can specify rather different behaviors;
e.g., starting a task to be performed by a human actor,
invoking a Web Service, starting a complex subprocess,
or carrying out some internal computation. Notice that
an implementation may include itself some abstract ac-
tivities; therefore, the context-sensitive workflow can be
organized as a multi-level hierarchy.

� The business logic adaptation policies steer the selection
of the implementations to be enacted during the execution
of the abstract activities. These policies are described
as (chains of) condition-action rules: the precondition of
a rule is a boolean condition on context variables. The
action can be the reference to another rule (rule chaining),
or the name of the implementation to be enacted.

During the execution of the application, the workflow under-
lying the application is composed by recursively selecting the
implementations of the abstract activities to be enacted, until
the system’s behavior is completely specified. This selection
is steered by the business logic adaptation policies.

Specifically, the Context-Aware Workflow Manager wraps
a workflow engine which executes the context-sensitive work-
flow as if it were a standard one. However, when the en-
gine encounters an abstract activity, it invokes the Workflow
Adaptation Module on the abstract activity. When the module
returns the implementation to be enacted, the engine performs
it as a subprocess of the main process instance. At subprocess

completion, the engine resumes the execution of the main
workflow.

B. user interface

The Dialog Manager handles each task to be completed
as a communicative goal to be achieved by carrying out a
dialog with the user. Each dialog step is aimed at achieving
a part of the task and is managed by generating a UI page.
A Finite state Automaton specifies the interaction logic of the
Dialog Manager: each state of the automaton corresponds to
a UI page type and each state transition is performed as a
consequence of a user action. The automaton describes the
whole interaction with the user as far as task management is
concerned. Specifically, a task is handled as follows:

1) The Dialog Manager sends the user’s browser a per-
sonalized UI page representing an interaction turn. The
page includes a set of input/output parameters to be
acquired/presented and the navigation links enabling the
user to continue the interaction. Moreover, the page in-
cludes a set of help links to get more specific information
about the task and its parameters.

2) The user may perform different actions on the UI page:
e.g., each help link, and each information link associated
to the parameters, activate a nested dialog. Moreover,
suitable transitions lead to the next, or to the previous
step of the dialog, respectively.

3) At task completion time, the Dialog Manager notifies
the workflow engine and feeds it with the acquired data.

The generation of the personalised pages is based on the
evaluation of a set of UI adaptation policies, which steer the
selection of the layout to be applied (given the user’s prefer-
ences and device) and, consequently, determine the maximum
number of parameters which can be put in each UI page.

Figure 1 shows a sample UI page, targeted to a desktop
device, generated by our e-Health application during the
management of a task (storeTherapy()).

� The top bar of the page includes the name of the
application (eHealth) and reports the username (house)
and the logout button.

� The middle bar of the page is organized as follows:
– The higher portion shows the task name, the task ID

(744) and the user’s role (doctor).
– The lower portion includes: a help link for the

visualization of the task description; the position of
the current interaction turn within the overall dialog
(Page 1 of 2); the continue link (��) taking to the
next dialog turn, and the Cancel link.

� The lower part of the page is devoted to the visualization
of the input and output parameters of the task. Specif-
ically, the Form area shows the input ones, while the
Information area displays the output ones. Each parameter
name has a link to its more specific information (h).

Figure 2 shows the sequence of pages devoted to the same
task, if the user uses a PDA to connect to the application.
In order to cope with the smaller screen size, the dialog is
performed in more steps than in the desktop case.

MALLOW’009: Turin, Italy, September 7-10, 2009

61

Fig. 1. First dialog turn in the management of task storeTheraphy, tailored to a desktop device.

Fig. 2. First two dialog turns in the management of task storeTheraphy, tailored to a PDA.

III. RELATED WORK

In Service Oriented Computing, some contributions extend
standard Web Service composition languages with context-
awareness features (e.g., C-BPEL; see [2]), in order to comply
with Quality of Service (QoS) requirements. These approaches
are affected by the limitations of standard Web Service com-
position languages, such as WS-BPEL ([3]) and its context-
aware extensions (e.g., Context4BPEL, see [4]), which embed
the adaptation logic in the workflow specification.

Our work overcomes the limitations of these works by
introducing the abstract activities and by exploiting declarative

adaptation rules for the runtime, context-dependent selection
of the courses of action to be enacted. In this way, the business
logic of the application is shaped during its execution.

In the Semantic Web research, planning technology is
applied to enhance the flexibility in Web Service composition.
Moreover, plan-based approaches are applied to invoke Web
Service providers in context-aware mode; e.g., see [5], [6],
[7]. However, planning technology is not suitable to handle
long-lasting services and processes because it does not support
persistence management. Therefore, up to now it has only
been used to handle short-lived composition plans. In fact,
several proposals for the adoption of planners in Web Service

MALLOW’009: Turin, Italy, September 7-10, 2009

62

composition turned out to exploit workflow engines for the
service execution; e.g., see [8] and [9].

Concerning the management of the interaction with the user,
context-aware workflow systems only provide the adaptation
of the User Interface (UI) to the user’s device, in terms of
stylesheet selection; e.g., see [7] and [10]. In comparison,
CAWE supports applications which adapt both the code of
the UI pages and the interaction logic to a complex context.
Moreover, it supports the adaptation to multiple users, by
tailoring the UI and the interaction logic on an individual basis.

In the research about dialog-based systems, some re-
searchers employed scripts describing domain-level activities
and linguistic behavior to model articulated task-oriented
dialogs; e.g., see [11]. Moreover, planning technology was
applied to manage short-lived interactions with the user; e.g.,
see [12]. We adopt Finite State Automata to handle the
interaction with the user; although these are less flexible than
plans, they are more robust and lightweight, and they support
a predictable behavior.

IV. CONCLUSION

This extended abstract has presented the Context Aware
Workflow Execution framework for the development of
context-aware composite Web applications. The framework
enriches Service Oriented Architecture with (a) adaptation
techniques supporting the execution of context-sensitive work-
flows; (b) dialog management capabilities supporting flexible
user interactions, and (c) context-dependent User Interface
generation techniques aimed at presenting personalized infor-
mation on different devices. As such, it supports the devel-
opment of Web applications which can self-adapt to meet
the requirements of heterogeneous users in dynamic usage
environments.

More information about the CAWE framework can be found
in [13], [14], [15].

REFERENCES

[1] M. Papazoglou and D. Georgakopoulos, Eds., Service-Oriented Com-
puting. Communications of the ACM, 2003, vol. 46, no. 10.

[2] C. Ghedira and H. Mezni, “Through personalized web service composi-
tion specification: from bpel to c-bpel,” Electronic Notes in Theoretical
Computer Science, no. 146, pp. 117–132, 2006.

[3] OASIS, “OASIS Web Services Business Pro-
cess Execution Language,” http://www.oasis-
open.org/committees/documents.php?wg abbrev=wsbpel, 2005.

[4] M. Wieland, O. Kopp, D. Nicklas, and F. Leymann, “Towards context-
aware workflows,” in Proc. Workshop on Ubiquitous Mobile Information
and Collaboration Systems (UMICS 2007) at CAiSE’07, Trondheim,
Norway, 2007.

[5] S. McIlraith, T. Son, and H. Zeng, “Semantic Web Services,” IEEE
Intelligent Systems, vol. 16, no. 2, pp. 46–53, 2001.

[6] W. Balke and M. Wagner, “Through different eyes - assessing multiple
conceptual views for querying Web Services,” in Proc. of 13th Int. World
Wide Web Conference (WWW’2004), New York, 2004.

[7] M. Keidl and A. Kemper, “Towards context-aware adaptable Web Ser-
vices,” in Proc. of 13th Int. World Wide Web Conference (WWW’2004),
New York, 2004, pp. 55–65.

[8] D. J. Mandell and S. A. McIlraith, “Adapting BPEL4WS for the
Semantic Web: The bottom-up approach to Web Service interoperation,”
in LNCS 2870, Proc. 2nd International Semantic Web Conf. (ISWC
2003). Sanibel Island, Florida: Springer-Verlag, 2003, pp. 227–241.

[9] G. Laures and K. Jank, “Adaptive Services Grid Deliverable D6.V-1.
Reference architecture: requirements, current efforts and design,”
http://asg-platform.org/cgi-bin/twiki/view/Public/ReferenceArchitecture,
Tech. Rep., 2005.

[10] S. Ceri, F. Daniel, and M. Matera, “Extending webml for modeling
multi-channel contextaware web applications,” in WISE - MMIS’03 IEEE
Computer Society Workshop, 2003.

[11] J. Chu-Carroll and S. Carberry, “Collaborative response generation in
planning dialogues,” Computational Linguistics, vol. 24, no. 3, pp. 355–
400, 1998.

[12] C. Rich, D. McDonald, N. Lesh, and C. Sidner, “COLLAGEN: Java
middleware for collaborative agents services with multiple suppliers,”
http://www.merl.com/projects/collagen, 2002.

[13] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan, “A
framework for the management of context-aware workflow systems,”
in Proc. of WEBIST 2007 - Third International Conference on Web
Information Systems and Technologies, Barcelona, Spain, 2007, pp. 80–
87.

[14] L. Ardissono, A. Goy, and G. Petrone, “A framework for the develop-
ment of distributed, context-aware Adaptive Hypermedia applications,”
in LNCS 5149, Adaptive Hypermedia and Adaptive Web-Based Systems,
5th Int. Conference, AH2008, W. Nejdl, J. Kay, P. Pu, and E. Herder,
Eds. Berlin Heildelberg New York: Springer-Verlag, 2008, pp. 259–262.

[15] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan, “A SOA-
based model supporting adaptive web-based applications,” in Proc. of
3rd Conference on Internet and Web Applications and Services (ICIW
2008). Athens, Greece: IEEE, 2008, pp. 708–713.

MALLOW’009: Turin, Italy, September 7-10, 2009

63

Abstract— The aim of this paper is to introduce AgentSeeker: a
distributed multi-agent platform for indexing local and online
textual files, with the semantic contribution of domain specific
ontologies. These ontologies describe the application domain and
the competences the user is referring to, during the interaction
with the platform, namely a query session. They are used by an
Ontology Agent which organizes the results of a user’s query,
according to the concepts which represent the relevant entities in
the company business.
AgentSeeker is addressed to enterprise applications, thanks to its
flexible and scalable structure managed by the Federation
Management Suite, which ensures a comfortable administration
of the distributed platform, balancing the computational load.

Index Terms— Document, multi-agent system, ontology, search
engine, MAS federation.

I. INTRODUCTION
earch engines represent a saving compass which enables
us to find an Internet page winnowing the whole network

or to find a personal document through a desktop application
which parses private files.

Usual search engines denote an intuitive behaviour: they
store the textual content of the parsed documents in a database
and they return an ordered list of files containing the
keywords suggested through a user’s query. Proper algorithms
calculate the rank for every hit and, according to this
evaluation, the search engines display first the most relevant
pages. In spite of this solution, it is a user’s experience that
sometimes the search engine gives a completely wrong page
link due to a misunderstanding of the meaning of the keyword
or neglects a page link which does not explicitly contain the
given term but it is anyway relevant.

The aim of AgentSeeker, the search engine presented in this
paper, is to make the document retrieval a more intelligent
process, finding texts which are semantically bound to the
user’s query. In order to achieve this goal, two aspects of
AgentSeeker are relevant: software agents and ontologies.
Based on a multi-agent platform, AgentSeeker is a scalable
and flexible solution which can be adapted to different
contexts, thanks to the AgentService Federation Management
Suite.

Even if AgentSeeker is not designed for competing with the
giant search engines as Google or Yahoo, it is aimed both to
index Internet pages and local files and it is especially focused
to enterprise contexts where the value of the digital
information is particularly high. A particular kind of agent is

able to manage ontologies, integrating the user’s queries with
semantically related words, discovered through the analysis of
concept relations, specializations, and synonyms.

AgentSeeker is able to manage different amounts of textual
documents: from a little corpus on a single file server, to a big
collection scattered on a network. The agent roles involved in
AgentSeeker are designed in order to operate in a variable
amount of instances and to interact with peers in a
circumscribed environment (a single PC) alike a distributed
platform federation. And exactly the management of this
distributed environment is a relevant topic of this extended
abstract and it represents an improvement in respect with the
first version of AgentSeeker presented in [1].

II. AGENTSEEKER
AgentSeeker has been developed by following few basic

principles: scalability, flexibility, and accurate management of
textual documents. In order to consider documents not only as
alphanumeric sequences but also as knowledge with a precise
meaning, several solutions use meta-tags in order to
semantically describe their content. Nevertheless, if we
consider as source of information Internet or large local
document corpora, the tagging of these resources become
very complicated due to the impossibility of modifying a file
or to the objective difficulty to manually catalogue thousands
of documents. For these practical reasons, AgentSeeker can
only manage the textual content. Ontologies are used to
describe the knowledge of the user, his competences, and his
expectations in order to apply them during the document
search.

Figure 1: The agent roles presently implemented in AgentSeeker.

AgentSeeker is essentially based on AgentService [2], a

framework for the development and execution of multi-agent
systems, implemented in the C# programming language and
by using the Microsoft .NET libraries. An overview of the
features and the programming paradigm provided with

AgentSeeker: an ontology-based
enterprise search engine

Extended abstract

A. Passadore, A. Grosso, and A. Boccalatte, University of Genova, Via Opera Pia 13, 16145 Genova

S

MALLOW’009: Turin, Italy, September 7-10, 2009

64

AgentService are detailed in [2] and [3].

A. Designing the AgentSeeker overall system
Following the agent oriented paradigm, AgentSeeker is

designed as a society of interoperating agents. All the
involved components are modeled as agents playing a specific
role within the community. Figure 1 shows the different roles
and their interactions. In addition to the usual AgentService
agents, equipped with behaviours and knowledge objects (here
referenced as internal agents), AgentSeeker includes also
external agents: namely external applications which act like
ordinary agents for easily interacting with the rest of the
platform. Finally, in order to make agents act in a coordinated
way, a set of interaction protocols are defined for modeling
their interoperations.

The Indexing Agent

The Indexing Agent (IA) is the core of the system. The main
goal of the IA is to index documents and inform the Merger
and the Manager Agent about the completion of its work. The
documents to be indexed are collected from web sites or from
local storages, both distributed on an intranet and stored in a
single PC. The IA is able to extract text from common html
files, simple text documents (txt), pdf files, and all the formats
of the Microsoft Office Suite. Parsing hypertexts, the agent
extracts also the hyperlinks and distinguishes from internal
links (namely pages which belong to the same site) and
external links (pages of other sites). In case of external page,
the IA collects the link in a list which will be sent to the
manager agent (its features are described below).

IA promotes its services by registering to the yellow pages
service included into the system. When IA receives a new job,
it first deregisters itself from the yellow pages till the job will
be completed, then it renews the registration becoming
available again for executing a new job. For each indexing
session, IA maintains its own database where stores
information extracted from the parsed files (path, content,
title, etc.). The local database is based on .NET Lucene: the C#
porting of a well-known Apache Foundation java project
named Apache Lucene [5]. Essentially developed to store
textual contents and to operate queries on them, Lucene is a
scalable solution that allows the implementation of large
architectures.

The session index is then accomplished in collaboration
with the Merger Agent, as shown in the next paragraph.

The Merger Agent

Once the IAs have created and stored their partial indexes,
there is the need to merge them in order to speed up the search
operation by avoiding fragmentations. The Merger Agent role
(MA) has been defined in order to collect the results of the
IAs once they have finished their indexing session. The MA
manages a central index (based on Lucene) where the user’s
queries are materially executed. For this reason the MA has
two main tasks: to maintain a central repository of the indexed
texts and to respond to the queries coming from the query

agent.
Considering the relation between the dimension of the

index and the search speed, AgentSeeker provides the
possibility to configure the system for involving more than
one MA.

The Query Agent

The Query Agent (QA) manages the search requests coming
from the users through the Web Interface Agent and the
Administration Console Agent or from different external
applications. Once a request is received, the QA checks if the
ontological support has been requested; in this case, it contacts
the Ontology Agent in order to have a semantic support for
improving the results. Then, it sends a request to all the MAs
and collects the consequent results. Finally, it furnishes the
results to the web-based interface agent.

Mastering the enterprise’s knowledge through the Ontology
Agent

The Ontology Agent (OA) is the keeper of the knowledge
of the system. Its functionalities will be fully described in the
section IV but, as an introduction, the OA is essentially able to
read ontologies in the OWL language, thanks to the libraries
SemWeb and Linq to RDF. The OA extracts the described
concepts and finds the relations among them. On the basis of
this information, the OA extends the query sent by the QA,
during a user’s session.

Another feature of the OA is the classification of the
document content. In particular, this service is used by the IA
during its indexing sessions, which then receives an estimate
of the arguments dealt in the examined text.

The Manager Agent

The Manager Agent plays the role of orchestrator,
coordinating the activities of the other agents. It is in charge of
distributing and balancing the workload among the agents and
it acts as supervisor monitoring the index and search
processes. In particular the manager has a knowledge object
containing the list of web sites (on shared folders) to parse.
This list can be increased by adding new sites received from
the external agent representing the administration console and
by receiving new links discovered by the IAs. In presence of
new links to visit, the manager searches for a free IA,
consulting the yellow pages. Due to the fact that the yellow
pages are distributed across the whole federation, the manager
is able to find free agents running also on remote computers.
The computational workload is then naturally balanced on
every machine and every agent.

The agent-based web interface

From the user’s point of view, AgentSeeker is a simple web
application with a look-and-feel similar to the usual search
engines. In the back-end of the web application, an agent is in
charge of interacting with a remote AgentSeeker installation
in order to submit the queries. The interoperation between
AgentSeeker and the web application is based on a web

MALLOW’009: Turin, Italy, September 7-10, 2009

65

service interface exposed by AgentService. The life-cycle of
this agent is tied with the user’s session; every user has his
own agent which helps him to interact with the platform. The
choice of implementing the web application as an agent
simplifies the development of the whole system and integrates
the user’s interface with the rest of the platform. From the
web page, the user can select or import an ontology which
represents the argument he has in mind during his query
session.

The Administration console

Similar to the previous one, another agent runs behind an
administration console which allows administrators to manage
AgentSeeker. For example, an Administrator can submit a
new web site to index, set the standby time for the platform, or
he can directly shut down the platform, stopping safely every
agent instance. He can also monitor the status of the platform,
namely the agent health, the progression of the indexing tasks,
etc.

III. THE FEDERATION MANAGEMENT SUITE
The simplest deployment of AgentSeeker consists in a

single platform (in execution on a single computer) with
single instances of each agent role. A manager sends jobs to
the unique IA, which parses each web site (or folder),
classifying every page with the help of the OA. The MA
collects the results of the IA, while the QA directly speaks
with the external agent behind the web application and with
the OA in order to extend the query. A console agent manages
the platform.

If the computer has enough resources, the platform
administrator could create different instances of the IA in
order to process in parallel several jobs. This is particularly
useful if the CPU is multi-core, considering also that every IA
alternates processing time and downloading of documents.

In case of large amount of textual documents to index, it
could be useful to add further computational resources. A new
computer is then connected to the first one, a new
AgentService platform is installed and new IAs are instanced.
The unique manager agent has now at its disposal new IAs
which can be contacted through the distributed yellow pages,
in a completely transparent way with no complications due to
the distributed environment.

Now, with different instances of IAs, only one MA could
be not enough. In this case, a new MA can be instanced and
the IAs can be instructed in order to refer to a particular MA.
With multiple MAs, the QA can submit the query in parallel
and then compose the incoming results.

If the catchment area is wide, the federation could be
integrated with several instances of query and ontology agents
in order to serve different users at the same time.

At this point the scenario can be configured in various
ways, with resources totally dedicated to a single type of
agent, and mixed platforms with various agent roles. The
single computer platform is now spread on a distributed

network, in a totally transparent way from the point of view of
the AgentSeeker developer and especially of the system
administrator. Furthermore, new computational resources and
agent instances can be added or removed dynamically during
the AgentSeeker execution.

A. Managing a distributed environment
As shown before, it is plausible a complex federation of

platforms with a common goal. In this case, AgentSeeker
becomes a distributed society of agents which must act and
react in unison. From the point of view of the administrator, it
is very important to manage the whole system in a centralized
way. Although the pseudo-agent playing the role of
Administration Console represents a useful tool for tuning
some parameters of AgentSeeker and monitoring the activity
of the running agents, it is however an entity of the platform
with no power on the life-cycle of peers or even of the entire
platform.

Web
Service

Peer
performance
monitoring

Administrator
console

Network
scan

The Service
Platform

Figure 2: The management infrastructure of a federation.

For this reason we developed an infrastructure which

allows a system administrator to easily manage distributed
AgentService applications, both at the level of platforms and
of agents. AgentSeeker represents a significant test-bed thanks
to its intrinsic distribution of resources and scalability.

This infrastructure is a sort of cloud for MASs which
enables the administrator to:
1) Install a platform on a PC
2) Join the platform to a particular federation of platforms
3) Discover new platform nodes
4) Deploy an application on one or more distributed

platforms
5) Manage the platform life-cycle
6) Create, execute, move, and stop single agent instances.

B. A platform as a service
Fig 2 shows the topology of a federation of AgentService

platforms. Each platform is, first of all, a service running on a
computer. Installed as a Windows Service, each platform is
instantiated at the computer wake up. The platform service

MALLOW’009: Turin, Italy, September 7-10, 2009

66

exposes a web service through which an administrator can set
the state of the platform: idle, when it is not yet launched;
ready, when every platform module is loaded; running, when
the platform is ready to execute agents; stopping; and
shuttingdown.

Every platform-service runs a thread which is in charge of
discovering new nodes on the same subnet. Every IP is
scanned in order to check if a possible peer platform is
listening. In this case, a handshake procedure starts in order to
determine if the candidate is available for joining the
federation (on the same subnet several federations can coexist
and every platform is set up to join one, more, or all the
federations). Periodically every node polls the federated
platforms to check their existence and to share the list of
discovered peers. In this way, the federation is updated,
thanks to the interactions of the federated nodes. From the
practical point of view, the list of federated platforms is used
by the AgentService messaging module to physically route the
messages to remote agents.

C. The management of a federation
Once the platforms are physically installed on a network,

the administrator can manage the federations connecting its
administration GUI to the web service exposed by whichever
remote platform. This platform represents the access point of
the federation and all the commands coming from the
administration GUI transit through it. From the GUI, the
administrator is able to see the node list and the status of the
related platforms. Further information, constantly updated,
regard the CPU occupancy, the available RAM, and, if the
platform is running, the number of hosted agents.

The administrator can upload to a single node, or
automatically to the whole federation, a set of files like
assemblies containing the templates of agents, configuration
files, etc. In this manner, a new multi-agent application can be
rapidly deployed and executed.

D. Add an agent to the federation
During the usual execution of a distributed multi-agent

application as AgentSeeker, it is possible to add new agent
instances in order to increase the available resources in the
federation. Moreover, it could happen that an agent crashes
for some reason and must be stopped and replaced. In these
cases, the administrator must be able to create new instances
of agents. A first possibility is to select a particular node and
then to launch a new instance. Another way is to select the
whole federation and create an agent instance suggesting no
physical destination. Every node of the federation knows the
status of each peer node and is able to find the platform with
more free resource. In order to do it, the node classifies the
peer performances (CPU time, free RAM, and number of
agents) evaluated on a time slot (typically 10 minutes). Once
the best platform is selected, the current node checks if the
destination has the necessary assemblies containing the agent
template and related classes and only if the platform candidate
satisfies all the requirements, the agent is materially

instantiated on that node.

E. Moving agents instances
A federation of platforms is an environment where agent

activities and interactions evolve in time. An agent could
suddenly increase its needs of resources or densely interact
with a remote agent. In these cases, the presence of the agent
in the current platform could deteriorate the node
performances or saturate the network link with a high
throughput of messages. As described in [6] the AgentService
team developed a facility for moving agents from a platform
to another one, saving their state and then resuming them on
the destination. The agent state is represented by its collection
of knowledge objects which are persisted and sent to the
destination along with the needed assemblies.

Considering the GUI we are describing, the administrator is
able to select an agent and, evaluating the performances of the
other nodes, he can stop it, select the destination, move the
agent and resume its activities on the new node, balancing the
computational load of the federation.

IV. REPRESENTING KNOWLEDGE IN AGENTSEEKER
Ontological models of the discourse domains which

AgentSeeker deals with, allow a sensible growth of the multi-
agent application performances.

The aim is to help the user during the submission of a
query, taking into account the argument he is considering in
order to automatically add more details to the interrogation
submitted into the system.

Based on OWL ontologies, AgentSeeker, in its first
functioning prototype, provides three policies which exploit
the explicit semantic representation of the enterprise’s
knowledge.

A. A priori classification
This strategy is applied during the indexing sessions and

requires a strict interaction between the IA which extracts the
text and the OA which classifies it with the help of its
knowledge represented by ontologies.

The idea is to estimate the affinity of each processed text
with the topics modeled in the ontologies directly supported
by AgentSeeker. The MAS maintains a repository where it
stores the core ontologies. Since AgentSeeker is able to
manage the OWL language, it can accept further ontologies
imported by the users. For this reason we can state that
AgentSeeker is not tuned on a particular set of ontologies, but
it is up to deal with every ontology.

From the practical point of view, every document stored in
the Lucene index has a particular field where the URIs of the
supported ontologies are related to an estimate of its relevance
in respect with the supported semantic models. The measure is
expressed in term of percentage of document words which are
also described in the ontology. We apply the Porter Stemmer
algorithm [7] in order to extract the root of each term
suppressing any suffix (plurals, gerundive forms, etc.) and we
remove the so-called stop words (adverbs, conjunctions, etc.)

MALLOW’009: Turin, Italy, September 7-10, 2009

67

from the document, because of their irrelevance.
Once the classification has been completed, the user can

order the results on the basis of their relevance according to
the arguments supported by AgentSeeker. Usual queries and
selection of documents by arguments can be integrated.

B. Conceptual classification
In AgentSeeker we can exploit ontologies in order to

classify documents on the basis of a natural hierarchy
suggested by the relations of specialization and generalization
among concepts. The user suggests the depth of the sub-
cluster hierarchy in order to avoid a too detailed classification.

Following this policy, the QA obtains from the OA a
hierarchical structure whose nodes represents both the
concepts and the single queries to submit to the MA and then
to Lucene.

Furthermore, it is possible to restrict the number of
processed documents, by clustering only the results of a usual
query.

C. Query expansion
The third strategy is aimed to expand the user’s query. The

OA parses the query in order to add alternatives or more
details. According to the argument the user is considering
(namely the ontology), the QA analyzes each query term in
order to check if it is also an ontological concept. In this case
the term can be expanded by following up to three types of
policies. The first policy integrates the query, adding, for each
word which occurs also in the ontology, all the specialized
concepts.

For example, if the user’s query is car retailer and car is an
automobile ontology concept which is specialized in station
wagon, coupe, and convertible, the query is rewritten in this
manner: (station wagon retailer) OR (compact retailer) OR
(coupe retailer) OR (convertible retailer), allowing the user to
access also these pages where the term car is not explicitly
cited. Another type of integration similarly extends the query
to those terms which are related to the query keywords
through properties (owl:ObjectProperty).

Furthermore, each keyword can be integrated by suggesting
possible synonyms specified in the given ontology. For this
reason we use the owl constructs owl:sameAs and
owl:equivalentClass. Incidentally, this third type allows,
potentially, the multi-language support, if the concepts are
translated in several languages.

V. CONCLUSIONS AND FUTURE WORKS
At now, AgentSeeker is a fully working prototype, subject

to several improvements in term of usability and
performances. Moreover, it represents a platform on which we
can build specific applications that require large textual
repositories to process. Integrating a new application in
AgentSeeker is a relatively simple process, because it is
necessary only to add a platform (or just agents to the
federation) and to interact with the usual AgentSeeker agent
roles. The Federation Management Suite ensures a

comfortable tool for managing large deployments of
platforms, relieving the administrator from any effort for
balancing the computational load. Besides the flexibility
ensured by agent-oriented architectures, we can exploit also
their intrinsic scalability and adaptability, making
AgentSeeker able to tune itself to different contexts: from a
little academic laboratory which wants to manage its
collection of papers, to the large enterprise which wants to
keep the lid on its document corpus.

We use ontologies in order to formally describe the
domains where AgentSeeker is called to operate. Presently,
the ontology utilization can be considered basic and subject to
further improvements. For example we could develop a
behaviour for our ontology agent able to reason about the
concepts and their relations, in order to find implicit
associations and properties. Moreover, explicit properties are
now considered as simple links between two concepts; a
future improvement will enable the ontology agent to
consider, in some way, the meaning of the property.

We plan to introduce also the possibility to explore the web,
indexing only those sites which are relevant considering the
ontologies included in the AgentSeeker repository. An
indexing agent will visit few pages and then ask the ontology
agent to determine if the web site is relevant.

In conclusion, we think that AgentSeeker contributes to the
improvement of search engine performances, combining a
multi-agent system with ontological representations. By using
Lucene.NET and homemade spiders, AgentSeeker covers the
whole process, from the document parsing to the storage of
extracted data. This feature assures full control of every
aspect, in respect to other solutions which implement meta-
search engines leaning on results of online search engines
operations. The solution we propose is then more pragmatic
and voted to limit the user’s and the administrator’s efforts in
order to deploy a system which could be used in the everyday
work (or life) activity.

REFERENCES

[1] A. Passaodore, A. Grosso, A. Boccalatte, “Indexing enterprise
knowledge bases with AgentSeeker”, WOA 2009, From Objects to
Agents, Parma, Italy, July 2009.

[2] C. Vecchiola, A. Grosso, A. Passadore, and A. Boccalatte,
“AgentService: A Framework for Distributed Multi-agent System
Development,” to be published in International Journal of Computers
and Applications, ACTA Press, 2009.

[3] C. Vecchiola, A. Grosso, and A. Boccalatte, “AgentService: a
framework to develop distributed multi-agent systems, “ International
Journal of Agent-Oriented Software Engineering, vol. 2, no.3 pp. 290 –
323, 2008.

[4] Foundation of Intelligent Physical Agents (FIPA), Available:
http://www.fipa.org.

[5] E. Hatcher, O. Gospodnetić, and M. McCandlessvan Lucene in action,
Manning Publications Co, Greenwich, 2009.

[6] A. Boccalatte, A. Grosso, and C. Vecchiola, “Implementing a Mobile
Agent Infrastructure on the .NET Framework,“ in Proc. 4th
International Conference in Central Europe on .NET Technologies,
Plzen, Czech Republic, May, 2006.

[7] C. J. Rijsbergen, S. E.Robertson, and M.F. Porter, New models in
probabilistic information retrieval, British Library, chap. 6, London,
1980.

MALLOW’009: Turin, Italy, September 7-10, 2009

68

WADE – An Open Source Platform for Workflows and
Agents

G. Caire, E. Quarantotto, G. Sacchi
Telecom Italia

Via Reiss Romoli 274
10148 Torino - Italy

Categories and Subject Descriptors
I.2.11 {Artificial Intelligence]: Distributed Artificial Intelligence
- Multiagent systems; C.2.4 {Computer Communication
Systems]: Distributed systems; D.2.11 [Software Engineering]:
Software architecture

General Terms
Management, Performance, Languages.

Keywords
Software Agent, workflow, JADE, Open Source, XPDL,
Scalability, Flexibility.

1. INTRODUCTION
WADE is the main evolution of JADE and adds to it the ability to
define system logics according to the workflow metaphor.
WADE is not just an add-on, but a complete platform (built on
top of JADE) providing advanced administration and fault
tolerance mechanisms and enabling a group of agents to
cooperatively execute complex tasks defined as workflow.
Nowadays workflows are mostly adopted in BPM (Business
Process Management) environments where they are used to
represent business processes and orchestrate existing systems
typically (but not necessarily) accessible by means of Web
Services-based interfaces.
The main challenge in WADE is to bring the workflow approach
from the business process level to the level of system internal
logics. That is, even if in principle it could be used for that
purpose too, WADE does not target high level orchestration of
services provided by different systems, but the implementation of
the internal behaviour of each single system. Each agent embeds a
micro-workflow engine and a complex process can be carried out
by a set of cooperating agents each one executing a piece of the
process.
The approach followed by WADE is to provide a workflow view
on top of a normal Java class. That is a workflow is implemented
as a Java class with a well defined structure. A key element in this
approach is WOLF (WOrkflow LiFe cycle management
environment), the graphical development environment for WADE
based applications.
The presentation will provide an overview of the WADE
platform, will highlight its most distinguishing features such as
workflow inheritance, support for web services and delegation.

2. WADE OVERVIEW
WADE (Workflow and Agent Development Environment) is a
domain independent platform, built on top of JADE 5, an open
source middleware for the development of distributed applications
based on the agent-oriented paradigm. The distribution of JADE
includes a runtime environment, a library of classes that
programmers can use to develop their application and some
graphical tools for administration and monitoring purposes.
Each running instance of the JADE runtime environment is called
Container and a set of containers is called Platform. In a JADE
Platform a single special Main Container must always be active
and the other containers register with it at startup.
One or more application agents can be started into a Container.
The actual job of an Agent is to perform some tasks assigned to it.
In JADE, a “Behavior” represents a task to be performed by an
Agent and it is implemented as an object of a class that extends
the class Behaviour of the JADE library.

An Agent to perform its tasks may need to communicate with
other Agents in the Platform. JADE provides the agents with the
ability to communicate. The communication model adopted is the
“Asynchronous Message Passing” and the format of the messages
is the ACL (Agent Communication Language) defined by FIPA 5.
WADE adds to JADE the support to the workflow execution and
a few mechanisms to manage the complexity of the distribution, in
terms of administration and fault tolerance. It should be noticed
that a WADE-based application may even not use Workflow
Engine agents at all and just exploit the administration and fault
tolerance features. In that case we end up with a WADE-based
application that does not use workflows. On the other side, it is
also possible to use the workflow metaphor inside of a Jade
platform.
Wade specific components are:

• BootDaemon processes: there is a bootDaemon process
for each host in the platform and it is in charge of the
Containers activation in its local host.

• Configuration Agent (CFA): the configuration agent
always runs in the Main Container and is responsible
for interacting with the boot daemons and controlling
the application life cycle.

• Controller Agents (CA): there is a controller agent for
each container in the platform and they are responsible
for supervising activities in the local container and for
all the fault tolerance mechanisms provided by WADE.

MALLOW’009: Turin, Italy, September 7-10, 2009

69

• Workflow Engine Agents (WEA): Workflow Engine
Agents embed an instance of the micro workflow engine
and therefore they are able to execute workflows.

Figure 1 – a WADE platform
Figure 1 shows the topology of a WADE-based application.
WADE specific components are highlighted in blue.
As mentioned, workflows are represented in Wade as Java classes,
so, in principle, Wade supports “notepad-programming” in the
sense that there is not hidden stuff that developers can’t control.
However, expecially considering that one of the main advantages
of the workflow approach is the possibility of representing
processes in a friendly graphical form, Wade comes with a
development environment called Wolf that facilitates the creation
of Wade-based applications. Wolf is an Eclipse plug-in and as a
consequence allows Wade developers to exploit the full power of
the Eclipse IDE plus additional Wade specific features.

3. Workflow approach
A workflow is a formal definition of a process in terms of
activities to be executed, relations between them, criteria that
specify the activation and termination and additional information
such as the participants, the software tools to be invoked, required
inputs and expected outputs and internal data manipulated during
the execution.
The key aspect of the workflow metaphor is the fact that the
execution steps as well as their sequencing are made explicit. This
makes it possible to give a graphical representation of a process
defined as a workflow. Such representation is clearly extremely
more intuitive with respect to a piece of software code and in
general is understandable by domain experts as well as by
programmers.
Domain experts can therefore validate system logics directly and
not only on documents that most of the time are not perfectly up
to date. In some cases they could even contribute to the actual
development of the system without the need for any programming
skill.
Another important characteristic is that, being the execution steps
explicitly identified, the workflow engine (i.e. a system able to
automatically execute a process defined as a workflow) can trace
them. This makes it possible to create automatic mechanisms to
facilitate system monitoring and problem investigation.

Additionally, when processes have to be executed within the
scope of a transaction, semi-automatic rollback procedures can be
activated in case of unexpected fault. Finally, since workflows are
fully self-documented, workflow-based development releases the
development team of the burden of keeping documentation
aligned each time design choices must be revisited to face
implementation details or evolving requirements.
Nowadays the workflow metaphor is mostly used in BPM
environments where a workflow represents a business process and
orchestrates a number of existing systems typically (but not
necessarily) accessible by means of Web Services based
interfaces.
The main challenge in WADE is to bring the workflow approach
from the business process level to the level of system internal
logics. That is, even if it could be used for that purpose too,
WADE does not target high level orchestration of services
provided by different systems, but the implementation of the
internal behaviour of each single system.
First of all it should be noticed that WADE does not include a
single powerful workflow engine as the majority of BPM oriented
tools. On the contrary WADE provides an extension of the basic
Agent class of the JADE library called
WorkflowEngineAgent that embeds a small and lightweight
workflow engine (we talk about "micro-workflow engine"). As a
consequence, besides normal JADE behaviours, all Workflow-
Engine agents active in a WADE-based multi-agent applications
are able to execute workflows represented according to a WADE
specific formalism.
The second important point to highlight is that, in order to allow
developers to exploit the workflow metaphor to define system
internal logics and, at the same time, to give them the same power
of a software programming language and a comparable execution
efficiency, the WADE workflow representation formalism is
based on the Java language. That is, a workflow that can be
executed by WADE Workflow-Engine agents is expressed as a
Java class with a well defined structure (as it will be explained in
the following). As such WADE workflows can be edited,
refactored, debugged and in general managed as all Java classes
and can include all pieces of code (methods, fields of whatever
types, inner classes, references to external classes and so on)
needed to implement the process details. In addition, of course,
the execution flow they specify can be presented and modified in
a friendly, graphical way. More in details WOLF (the
development environment for WADE based applications) is an
Eclipse plugin and allows developers to work with a graphical
view (suitable to manage the process flow) and a code view (the
usual Eclipse Java editor suitable to define execution details) that
are kept in synch.
Finally it must be noticed that WADE does not impose that all
system logics are defined as workflows. Developers are free to
exploit the workflow metaphor to describe those tasks for which
they think it is appropriate and use normal JADE behaviours (or
other purely Java patterns) elsewhere.
As mentioned the approach followed by WADE is to provide a
workflow view on top of a normal Java class.
As a consequence, a workflow is implemented as a Java class and
no standard workflow definition language is used. However, Wolf
adopts the workflow meta-model defined in the XPDL [2],

MALLOW’009: Turin, Italy, September 7-10, 2009

70

standard specified by the Workflow Management Consortium.
The XPDL meta-model has been chosen, because the XPDL
language has been conceived as interchange formalism between
different systems. WADE supports the import of XPDL files and
the adoption of this meta-model facilitates these operations.
Moreover, the XPDL meta-model is based on a Finite State
Machine computational model that is the same model supported
by the WADE agents.
In the XPDL meta-model a process is represented as a workflow,
consisting of one or more activities that can be thought as tasks to
be executed.
In a workflow, the execution entry point is defined, specifying the
first activity to be performed; this activity is called Start Activity.
On the other hand, a workflow must have one or more termination
points, named Final Activities.
The execution flow is defined by means of transitions. A
transition is an oriented connection between two activities and
may have a condition associated. Regular or exception transitions
can be defined. Exception Transitions allow specifying branches
that are taken only when an Exception is raised in the source
activity.
Excluding the final ones, each activity may have one or more
outgoing transitions. When the execution of an activity is
terminated, the conditions associated to its outgoing transitions
are evaluated. As soon as a condition is verified the corresponding
transition is activated and the execution flow proceeds towards the
destination activity.
Normally a process execution uses some internal data, for
instance, to pass intermediate results between activities and/or for
evaluation of conditional expressions. In the XPDL meta-model
internal data are modeled by Data Fields.
A process can have one or more inputs to be provided and one or
more outputs expected at the end of its execution. Inputs and
outputs of a process can be formalized in the XPDL meta-model
by means of the workflow Formal Parameters.
The XPDL meta-model defines some predefined types of activity.
The most important ones are:

• Tool Activity: a tool activity is an activity that is
implemented by means of the invocation of one or more
software tools, named Applications.

• Subflow Activity: a subflow activity is an activity that
requires the execution of another workflow. When a
workflow is called by a subflow activity, the workflow
formal parameters permit the exchange of necessary
data between calling and called process. A
distinguishing characteristic of the WADE workflow
engine is the Delegation mechanism that allows a set of
agents to cooperatively execute a complex process.
More in details the agent executing the calling workflow
can decide to delegate the subflow to another agent on
the basis of conditions evaluated at runtime. Such
conditions may be related for instance to the current
load (thus supporting the implementation of a GRID-
like system) or to specific abilities required to carry out
a portion of the whole process. The delegation
mechanism is implemented by means of a an extension
of the fipa-contract-net protocol (5) where the agent
executing the calling workflow acts as initiator while

the agent executing the subflow acts as responder. This
protocol allows managing, when required, a process
carried out by a set of cooperating agents as a single
transaction.

• Route Activity: a route activity is an activity which
performs no work processing, but simply supports
routing decisions among its incoming and out coming
transitions.

Finally, WADE introduces a few types of Activity, among
them the CodeActivity and the Web Services Activity.

In a Code Activity the operations are specified directly by a
piece of Java code embedded in the workflow process
definition.

A Web Service Activity, instead, provides an easy way to
invoke Web Services from a workflow. Two kinds of Web
Services invocations are allowed: static and dynamic.
In the first case, it is necessary to import the WSDL
describing the Web Service using WOLF. This operation
generates a set of classes that will be used at workflow
execution time to actually invoke the web service described
by the imported WSDL. These classes can be extended by
users with development skills, in order to satisfy some
specific requirements (e.g.: logging some information before
and after the invocation of the Web Service).
In the second case, the dynamic invocation is performed
without the need of generating new classes. This approach is
useful if the user doesn’t need to customise these classes.

As mentioned a workflow is implemented by a Java class and it
extends directly or indirectly the WADE class
WorkflowBehaviour.

The WorkflowBehaviour class provides a set of APIs,
consistent with the XPDL meta-model described in the previous
section, which can be used by developers to implement their own
workflows.
The mapping between the meta-model objects and the workflow
implementation is shown in the example depicted in Figure 2.

MALLOW’009: Turin, Italy, September 7-10, 2009

71

Figure 2 – Mapping between meta – model objects and
workflow implementation

The methods registerActivity() and
registerTransition() must be used respectively to add an
activity and a transition.
When the registerActivity() method is called, its first
parameter is an instance of the activity to be added.
The actual tasks to be performed by an activity (no matter of its
type) are specified in a void method of the workflow class; this
method must have the same name of the activity, preceeded by the
prefix “execute” (execute<ActivityName>). The
workflow engine is in charge of invoking that method when the
activity is visited.
In the same way, the registerTransition() method takes
a transition instance as parameter. For transitions with conditions,
the boolean expression to be evaluated by the workflow engine
is specified in a boolean method that has same name of the
condition, preceeded by the prefix “check”
(check<ConditionName>).

An important feature of the object-oriented programming
languages is the possibility to reuse the code by means of
inheritance mechanisms. In order to bring the programming
languages power also to the workflow representation, it has been
choosen to provide the workflow with the inerithance mechanism
too. Therefore it is possible to define a new workflow extending
an old one, and then adding/removing activities and transitions.
The overriding of methods associated to the activities and to the
conditions of transitions is also permitted.

4. CONCLUSIONS
In this paper we described WADE, an open source framework to
develop distributed applications based on the agent programming
paradigm. WADE is based on JADE and in particular adds to it

the possibility of modeling the agents’ behaviours following the
workflow metaphor. Moreover some administration and fault
tolerance features are provided too.

As mentioned, in WADE a workflow is represented as a java class
and WOLF provides a graphical view of it, making available to
the developers both the expressiveness of a visual representation
and the power of usual programming languages.

As well known, the workflow metaphor is traditionally used in the
BPM context for web service orchestration. Because WADE
provides support for Web Service invocation, it can be used even
in this context, but its actual challenge is to bring the workflow
approach from the business process level to the level of system
internal logics. A direct consequence of the approach described is
that the full power of WADE can be exploited for applications
that imply the execution of possibly long and fairly complex tasks.

Furthermore, unlike the majority of existing workflow systems
that provide a powerful centralized engine, in WADE each agent
can embed a “micro workflow engine” and therefore a complex
process can be carried out by a set of cooperating agents through
the delegation mechanism.

From an industrial point of view WADE can be particularly useful
to develop applications with strong requirements of both
performance and scalability and high flexibility in defining the
systems’ logics.

5. REFERENCES
[1] JADE - Java Agent Development framework.

http://jade.tilab.com
[2] FIPA – Foundation for Intelligent Physical Agents

http://www.fipa.org
[3] FIPA – The FIPA Contract Net interaction protocol
[4] XPDL XML Process Definition Language,

http://www.wfmc.org/standards/xpdl.htm
[5] Shapiro, R. 2002. A comparison of XPDL, BPML and

BPEL4WS (Rough Draft), Cape Vision
[6] BPMN Business Process Modeling Notation

http://www.bpmn.org/
[7] G. Caire “WADE: An Open Source Platform for Workflows

and Agents”
http://jade.tilab.com/wade/doc/tutorial-aamas2008.zip

[8] Caire G., Gotta D., Banzi “WADE: A software platform to
develop mission critical applications exploiting agents and
workflows”, M., Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008) – Industry
and Applications Track, Berger, Burg, Nishiyama (eds.),
May, 12-16., 2008, Estoril, Portugal, pp. 29-36.

[9] “WADE User Guide”
http://jade.tilab.com/wade/doc/WADE-User-Guide.pdf

[10] G. Caire, M. Porta, E. Quarantotto, G. Sacchi “ Wolf – An
Eclipse Plug-in for WADE”

public class SendMail extends WorkflowBehaviour {...
protected void defineActivities() {
 //ACTIVITY Prepare Mail …
 registerActivity(prepareMail, INITIAL);
 //ACTIVITY Verify Mail…
 registerActivity(verifyMail);
 …}

protected void defineTransitions() {
 registerTransition(new Transition(), PREPARE_MAIL,
 VERIFY_MAIL);
 registerTransition(newTransition("IsCorrect", this),

VERIFY_MAIL, SEND_MAIL);}
protected void executePrepareMail (final ApplicationList
 applications) throws Exception {…
}
protected boolean checkIsCorrect() {...

}

Verify MailSend

Prepare Mail

Modify Mail

SEND MAIL PROCESS

MALLOW’009: Turin, Italy, September 7-10, 2009

72

MALLOW Workshop on
Coordination, Organization, Institutions and Norms

in Agent Systems & On-line Communities
(COIN@MALLOW2009)

Julian Padget∗ and Axel Polleres†
∗Department of Computer Science, University of Bath, Bath BA2 7AY, United Kingdom

Email: jap@cs.bath.ac.uk
† Digital Enterprise Research Institute, National University of Ireland, Galway

Email: axel.polleres@deri.org

Abstract

The COIN (Coordination, Organizations, Institutions and Norms) workshop series began in 2005 with a single
satellite workshop at AAMAS in Utrecht [1]. Since then two meetings have been organized each year, with one
typically attached to AAMAS and the other to another major conference in a different continent from AAMAS [2],
[3], [4]. This year, exceptionally, a third event is being held in support of the MALLOW federated workshops. Each
meeting—particularly those not associated with AAMAS—aims to build links to an associated research theme to
explore and encourage opportunities for cross-fertilization.

I. INTRODUCTION

For this edition of COIN, the focus is on how COIN topics influence and are realized in on-line
communities, where it is necessary to take into account social, legal, economic and technological di-
mensions of agent-agent, agent-human, human-human interactions in order to ensure social order within
these environments. Such communities are dynamic and offer significant challenges because of their
potential dissimilarity to conventional human social structures, with the associated strengths, weaknesses,
opportunities and threats posed by alternative interaction modalities that derive from the different physics
of such virtual environments. This leads to the exploration and establishment of new normative frameworks
that do not necessarily have parallels in the physical world but are well reflected in “made natures” such
as the Web. Such frameworks are not only interesting for the agent community but also have attracted
interest of the Semantic Web Community in events such as the recent W3C Workshop on the Future of
Social Networking.

The accepted presentations reflect a mix of both classical COIN topics and theme-related papers. Highly
interactive sessions are a feature of the COIN meetings that we try to enable through a range of alternative
approaches: in this case one session will comprise regular papers where each of these papers is introduced
by one of the other presenters; a second session features an invited talk from Alexandre Passant who is
closely involved with the W3C Social Web Incubation Group, while the third session will function as a
round table, driven by several short presentations of work in progress, highlighting open issues and again
related to the on-line communities theme.

There are five regular papers, each of which received at least three reviews in order to supply the authors
with comprehensive feedback, and four work-in-progress/project status papers. Selected and extended
papers will appear in the annual COIN volume in the Springer LNCS series. We would like to thank
all authors for their contributions and the members of the Programme Committee for the excellent work
during the reviewing phase.

Julian Padget, Axel Polleres
August 11, 2009

MALLOW’009: Turin, Italy, September 7-10, 2009

73

II. WORKSHOP COMMITTEES

Workshop Organizers
Julian Padget University of Bath, UK
Axel Polleres National University of Ireland, Galway

Programme Commitee
Alexander Artikis Demokritos Research Centre, Greece
Sören Auer University of Leipzig, Germany
Guido Boella Universitá degli Studi di Torino, Italy
Frances Brazier Vrije Universiteit Amsterdam, Netherlands
Dan Brickley FOAF Project
John Breslin National University of Ireland, Galway
Antonio Carlos Costa Universidade Catolica de Pelotas, Brazil
Stephen Cranefield University of Otago, New Zealand
Harry Halpin University of Edinburgh, UK
Jomi Fred Hübner ENS Mines Saint-Etienne, France
Lloyd Kamara Imperial College London, UK
Eric Matson Purdue University, USA
Pablo Noriega IIIA-CSIC, Spain
Eamonn O’Neill University of Bath, UK
Alexandre Passant National University of Ireland, Galway
Jeremy Pitt Imperial College London, UK
Juan Antonio Rodriguez Aguilar IIIA-CSIC, Spain
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Sebastian Schaffert Salzburg Research, Austria
Jaime Sichman University of São Paulo, Brazil
Maarten Sierhuis RIACS/NASA Ames Research Center, USA
Kostas Stathis Imperial College London, UK
Harko Verhagen Stockholm University/KTH, Sweden
Niek Wijngaards D-CIS Lab (Thales), The Netherlands

COIN Steering Commitee
Guido Boella University of Torino, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Nicoletta Fornara University of Lugano, Italy
Christian Lemaı̂tre Universidad Autónoma Metropolitana, Mexico
Eric Matson Purdue University, USA
Pablo Noriega IIIA-CSIC, Spain
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Jeremy Pitt Imperial College London, UK
Jaime Sichman University of São Paulo, Brazil
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vázquez Salceda Universitat Politècnica de Catalunya, Spain
George Vouros University of the Aegean, Greece

MALLOW’009: Turin, Italy, September 7-10, 2009

74

III. LIST OF PAPERS

Full Papers:
• Normative Programming for Organisation Management Infrastructures

Jomi Fred Hübner, Olivier Boissier and Rafael H. Bordini
• Towards an architecture for self-regulating agents: a case study in international trade

Brigitte Burgemeestre, Joris Hulstijn and Yao-Hua Tan
• Four Ways to Change Coalitions: Agents, Dependencies, Norms and Internal Dynamics

Guido Boella, Leon van der Torre and Serena Villata
• Dealing with incomplete normative states

Juan Manuel Serrano and Sergio Saugar
• Directing Status Messages to their Audience in Online Communities

Milan Stankovic, Alexandre Passant and Philippe Laublet
Project Descriptions:
• Managing water demand as a regulated open MAS

Vicent Botti, Antonio Garrido, Adriana Giret and Pablo Noriega
• Open Interaction System Specification and Monitoring Using Semantic Web Technology

Nicoletta Fornara
• SIOC Project: Semantically Interlinked Online Communities

Uldis Bojars and Alexandre Passant
• Norms, Organisations and Semantic Web Services: The ALIVE approach

Sergio Alvarez-Napagao, Owen Cliffe, Julian Padget and Javier Vázquez

IV. SPONSORING INSTITUTIONS

Axel Polleres’ work is supported by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2)

REFERENCES

[1] O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Simão Sichman, and J. Vázquez-Salceda, Eds., Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems: AAMAS 2005 International Workshops on Agents, Norms and Institutions
for Regulated Multi-Agent Systems, ANIREM 2005, and Organizations in Multi-Agent Systems, OOOP 2005, Revised selected papers.,
ser. LNCS, vol. 3913. Springer Verlag, June 2006, iSBN: 3-540-35173-6. Available via http://dx.doi.org/10.1007/11775331.

[2] J. Vazquez-Salceda and P. Noriega, Eds., Coordination, Organizations, Institutions and Norms, COIN 2006, Hakodate, Japan, May 8–9,
2006 and Riva del Garda, Italy, August 21–22, 2006, Revised Selected and Invited Papers, ser. Lecture Notes in Computer Science, vol.
4386. Springer, 2007.

[3] J. S. Sichman, J. A. Padget, S. Ossowski, and P. Noriega, Eds., Coordination, Organizations, Institutions, and Norms in Agent Systems
III, COIN 2007, International Workshops COIN@AAMAS 2007, Honolulu, HI, USA, May 14, 2007, COIN@MALLOW 2007, Durham,
UK, September 3-4, 2007, Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 4870. Springer, 2008.

[4] J. F. Hübner, E. Matson, O. Boissier, and V. Dignum, Eds., Coordination, Organizations, Institutions and Norms in Agent Systems IV
COIN 2008 International Workshops, COIN@AAMAS 2008, Estoril, Portugal, May 12, 2008. COIN@AAAI 2008, Chicago, USA, July
14, 2008. Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 5428. Springer, 2009, iSBN 978-3-642-00442-1.
Available via http://dx.doi.org/10.1007/978-3-642-00443-8.

MALLOW’009: Turin, Italy, September 7-10, 2009

75

MALLOW’009: Turin, Italy, September 7-10, 2009

76

Normative Programming for Organisation
Management Infrastructures

Jomi F. Hübner†∗
∗Dept Automation and Systems Eng.
Federal University of Santa Catarina

Florianópolis, Brazil
Email: jomi@das.ufsc.br

Olivier Boissier†
†Ecole Nationale Supérieure des Mines

Saint Etienne, France
Email: {hubner, boissier}@emse.fr

Rafael H. Bordini‡
‡Intitute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Email: R.Bordini@inf.ufrgs.br

Abstract—Recent work shows a tendency to use programming
languages specific to the social aspects of multi-agent systems,
for example in programming norms that agents ought to follow.
In this paper, we introduce a simple and elegant normative
programming language called NPL and show its operational
semantics. We then define a particular class of NPL programs
that are suitable for programming Organisation Management
Infrastructures (OMI) forMOISE, defining a Normative Organ-
isation Programming Language (NOPL). We show howMOISE’s
Organisation Modelling Language can be translated into NOPL,
and briefly describe how this all has been implemented on top
of an artifact-based OMI for MOISE.

I. INTRODUCTION

The use of organisational and normative concepts is widely
accepted as a suitable approach for the design and implemen-
tation of Multi-Agent Systems (MAS) [1]–[4]. Although these
concepts are useful for MAS methodologies and therefore
used at design time, in this paper we focus on their use at
run-time. We conceive of a multi-agent system as a set of
agents participating to an organisation by playing roles in it.
An important component of MAS is thus the Organisation
Management Infrastructure (OMI), which exists in a system
to help and supervise agents in the achievement of the purpose
of the organisation.

A recent trend in the development of OMIs is to provide
languages that the MAS designer (human or artificial in
the case of self-organisation) uses to write a program that
will define the organisational functioning of the system,
complementing agent programming languages that defines
the individual functioning of the system. The former type
of languages can focus on different aspects of the overall
system, for example: structural aspects (roles and groups) [5],
dialogical aspects [2], coordination aspects [6], and normative
aspects [7], [8]. The OMI is then responsible for interpreting
such a language and providing corresponding services to the
agents. For instance, in the case ofMOISE+ [4], the designer
can program a norm such as “an agent playing the role ‘seller’
is obliged to deliver some goods after being payed by the agent
playing role ‘buyer”’. The OMI is responsible for identifying
the activation of that obligation and to enforce the compliance
to that norm by the agents playing the corresponding roles.

We are particularly interested in a flexible and adaptable
implementation of OMIs. Such implementation is normally

coded using an object-oriented programming language (e.g.
Java). However, the exploratory stage of current OMI lan-
guages often requires changes in the implementation so that
one can experiment with new features. The refactoring of the
OMI for such experiments is usually an expensive task that
we would like to simplify. Our work therefore addresses one
of the main missing ingredients for the practical development
of sophisticated multi-agent systems where the macro-level
requires complex organisational and normative structures in
the context of so many different views and approaches still
being actively researched by the MAS research community.

This problem is particularly complex for organisation mod-
els that consider elements with different natures like groups,
roles, common goals, and norms. These elements have their
own life cycle, are bound together, and are constrained by a
set of properties (e.g. role compatibility and cardinality). Our
proposal is thus an uniformed approach where all kinds of
constraints are expressed by norms. These norms then can be
explicitly and flexibly enforced by different mechanisms. The
OMI is then mainly concerned with providing such mechanism
instead of considering all kinds of constraints. However, we
do not want to force the MAS designer to program the organ-
isation using only norms. The designer should program their
organisation using more suitable constructors. For example,
using a role cardinality constructor to state “a classroom has
one professor” instead of a norm like “it is prohibited that two
agents play the role professor in the same classroom”).

The solution presented in this paper is to translate a more
abstract language into another simpler language. The problem
of implementing the OMI is thus reduced to a translation
problem, which is usually much simpler and less error prone.
We start from an organisational modelling language which is
then automatically translated into a normative programming
language. The language available to the MAS designer has
thus more abstract concepts (such as groups, roles, and global
plans) than normative languages. More precisely, our starting
language is the MOISE Organisation Modelling Language
(OML — see Sec. III) and our target language is the Normative
Organisation Programming Language (NOPL — Sec. IV).
NOPL is a particular class of programs of a normative pro-
gramming language presented and formalised in this paper
(Sec. II). All of this has been implemented on top of our

MALLOW’009: Turin, Italy, September 7-10, 2009

77

previous work on OMI where an artifact-based approach,
called ORA4MAS, is used (Sec. V).

The main contributions of this work are: (i) a normative
programming language and its formalisation using operational
semantics; (ii) the translation from an organisational language
into the normative language; and (iii) an implemented artifact-
based OMI that interprets the target normative language. These
contributions are better discussed and placed in the context of
the relevant literature in Sec. VI.

II. NORMATIVE PROGRAMMING LANGUAGE

Although several languages for norms are available, (e.g.
[7]–[9]), for this project we need a language that handles
obligations and regimentation. While agents can violate obli-
gations (and sanctions might take place later), regimentation is
a preventive strategy of enforcement: agents are not capable to
violate a regimented norm [10]. Regimentation is important for
an OMI to allow situations where the designer wants to define
norms that must be followed because its violation represent a
serious risk for the organisation.1 The current languages either
consider obligation or regimentation as enforcement strategies,
and do not allow the designers (nor the agents) to dynamically
choose the best strategy for their application.

Our language can be relatively simple because we do not
need prohibitions nor permission as primitives. By default,
everything is permitted and thus the designer does not need
to code permissions. Prohibitions can be represented either by
regimentation or as an obligation for someone else to decide
how to handle the situation (this approach is inspired by the
approach by Grossi et al. [10]). For example, consider the
norm “it is prohibited to submit a paper with more than 6
pages”. In case of regimentation of this norm, tentatives to
submit a paper with more than 6 pages will fail. In case this
norm is not regimented, the designer has to define a norm
such as “when a paper with more than 6 pages is submitted,
the chair has to decide wether to accept the submission or
not”. Another assumption that allowed us to devise a simple
language is that we do not consider inconsistent norms. Either
the programmer or the program generator are supposed to
handle this issue.

A. Syntax

Given the above requirements and simplifications, we intro-
duce below a new Normative Programming Language (NPL)
(Fig. 1 contains the definition of its syntax).2 A normative
program np is composed of: (i) a set of facts and inference
rules (as in Prolog); and (ii) a set of norms. A NPL norm has
the general form norm id : ϕ -> ψ, where id is a unique
identifier of the norm; ϕ is a formula that determines the
activation condition for the norm; and ψ is the consequence of

1The importance of regimentation is corroborated by relevant implementa-
tions of OMI, such as AGR, S-MOISE+, and ISLANDER, which consider
regimentation as an important enforcement mechanism.

2The non-terminals not included in the specification, atom, id, var, and
number, correspond, respectively, to predicates, identifiers, variables, and
numbers as used in Prolog.

np ::= “np” atom “{” (rule | norm)* “}”
rule ::= atom [“:-” formula] “.”
norm ::= “norm” id “:” formula “->” (fail | obl) “.”

fail ::= “fail(” atom “)”
obl ::= “obligation(”

(var | id) “,” atom “,” formula “,” time “)”

formula ::= atom | “not” formula |
atom (“&” | “|”) formula

time ::= “‘” (“now” |
number (“second” | “minute” | ...))
“‘” [(“+” | “-”) time]

Fig. 1. EBNF of the NPL

the activation of the norm. Two types of norm consequences
ψ are considered:
• fail – fail(r): represents the case where the norm is

regimented. Argument r represents the reason for the
failure;

• obl – obligation(a, r, g, d): represents the case where a
new obligation has to be created for some agent a as the
consequence of the norm activation. Argument r is the
reason for the obligation (which has to include the norm’s
id); g is the formula that represents the obligation (a state
of the world that the agent must try to bring about, i.e. a
goal it has to achieve); and d is the deadline to fulfil the
obligation.

A simple example to illustrate the language is given below;
we used source code comments to explain the program.

np example {
a(1). a(2). // facts
ok(X) :- a(A) & b(B) & A>B & X = A*B. // rule

// note that b/1 is not defined in the program;
// it is a dynamic fact provided at run-time

// alice has 4 hours to achieve a value of X < 5
norm n1: ok(X) & X > 5
-> obligation(alice,n1,ok(X) & X<5,‘now‘+‘4 hours‘).

// bob is obliged to sanction alice in case X > 10
norm n2: ok(X) & X > 10
-> obligation(bob,n2,sanction(alice),‘now‘+‘1 day‘).

// example of regimented norm; X cannot be > 15
norm n3: ok(X) & X > 15 -> fail(n3(X)).
}

As in other approaches (e.g. [11], [12]), we have a
static/declarative aspect of the norm (where norms are ex-
pressed in NPL resulting in a normative program) and a
dynamic/operational aspect (where obligations are created for
existing agents). We call the first aspect simply norm and the
second obligation. An obligation has thus a run-time life-cycle.
It is created when the activation condition ϕ of some norm n
holds. The activation condition formula is used to instantiate
the values of variables a,r,g, and d of the obligation to be
created. Once created, the initial state of an obligation is active
(Fig. 2). The state changes to fulfilled when agent a fulfils the
norm’s obligation g before the deadline d. The obligation state
changes to unfulfilled when agent a does not fulfil the norm’s

MALLOW’009: Turin, Italy, September 7-10, 2009

78

d > nowactive

fulfilled

unfulfilled

inactive

g

¬ ø

ø

Fig. 2. State Transitions for Obligations

obligation g before the deadline d. As soon as the activation
condition of the norm that creates the the obligation (ϕ) ceases
to hold, the state changes to inactive. Note that a reference to
the norm that led to the creation of the obligation is kept as
part of the obligation itself (the r argument), and the activation
condition of this norm must remain true for the obligation
to stay active; only an active obligation will become either
fulfilled or unfulfilled, eventually. Fig. 2 shows the obligation
life-cycle.

B. Semantics

We now give semantics to NPL using the well known
structural operational semantics approach [13].

A program in NPL is essentially a set of norms where each
norm is given according to the grammar in Fig. 1; it can also
contain a set of initial facts and inference rules specific to the
program’s domain (all according to the grammar of the NPL
language). The normative system operates in conjunction with
an agent execution system; the former is constantly fed by the
latter with “facts” which, possibly together with the domain
rules, express the current state of the execution system. Any
change in such facts leads to a potential change in the state of
the normative system, and the execution system checks that the
normative system is still in a sound state before committing
towards particular execution steps; similarly, it can have access
to current obligations generated by the normative system. The
overall system’s clock also causes potential changes in the
state of the transition system, by changing the time component
of its configuration.

As we use operational semantics to give semantics to the
normative programming language (i.e. the language used to
program the normative system specifically), we first need
to define a configuration of the transition system that will
be defined through the semantic rules presented later. A
configuration of our normative system, giving semantics to
NPL, is a tuple 〈F,N,>, OS, t〉 where:

• F is a set of facts received from the execution system
and possibly rules expressing domain knowledge. The
former works as a form of input from the agent execution
system to the normative system. Each formula f ∈ F is,
as explained earlier, an atomic first order formula or a
Horn clause.

• N is a set of norms, where each norm n ∈ N is a norm
in the syntax defined for norm in the grammar in Fig. 1.

• The state of the normative system is either a sound state
denoted by > or a failure state denoted by ⊥; the latter
is caused by regimentation through the fail() language
construct within norms. This is accessible to the agent
execution system which prevents the execution of the
action which would lead to the facts causing the failure
state, and rolls back the facts about the state of the
execution system.

• OS is a set of obligations, each accompanied by its
current state; each element os ∈ sosts is of the form
〈o, ost〉 where o is an obligation, again according to
the syntax for obligations given in Fig. 1, and ost ∈
{active, fulfilled,unfulfilled, inactive} (the possi-
ble states of each individual obligation). This is also of
interest to the agent execution system and thus accessible
to it.

• t is the current time which is automatically changed
by the underlying execution system, using, of course, a
discrete, linear notion of time. For the purpose of the
operational semantics, it is assumed that all rules that
apply at a given time are actually applied before the
system changes the state to the next time.

Given a normative program P — which is, remember, a
set of facts and rules (PF) and a set of norms (PN) written
in NPL — the initial configuration of the normative system
(before the system execution starts) is 〈PF , PN ,>, ∅, 0〉.

In the semantic rules, we use the notation Tc to denote the
component c of tuple T . The semantic rules are as follows.

1) Norms: The rule below formalises regimentation: when
any norm n becomes active — i.e. its condition component
holds in the current state — and its consequence is fail(),
we move to a configuration where the normative state is no
longer sound but a failure state (⊥). Note that we use nϕ to
refer to the condition part of norm n (the formula between “:”
and “->” in NPL’s syntax) and nψ to refer to the consequence
part of n (the formula after “->”).

n ∈ N F |= nϕ nψ = fail()
〈F,N,>, OS, t〉 −→ 〈F,N,⊥, OS, t〉 (Regim)

The underlying execution system, after realising a failure
state caused by Rule Regim above, needs to ensure the facts
are rolled back to the previously consistent state, which will
make the following rule apply.

∀n ∈ N.(F |= nϕ ⇒ nψ 6= fail())
〈F,N,⊥, OS, t〉 −→ 〈F,N,>, OS, t〉 (Consist)

The next rule is similar to Rule Regim but instead of
failure, the consequence is the creation of an obligation. In
the rule, ‘m.g.u.’ means “most general unifier” as in Prolog-
like unification; the notation tθ means the application of the
variable substitution function θ to formula t. Note that we
required that the deadlines of newly created obligations are not

MALLOW’009: Turin, Italy, September 7-10, 2009

79

yet past. The notation obl= is used for equality of obligations,
which ignores the deadline in the comparison. That is, we
define that an obligation obligation(a, r, g, d) is equals to
an obligation obligation(a′, r′, g′, d′) if and only if a = a′,
r = r′, and g = g′. Because of this, Rule Oblig does not
allow the creation of the same obligation with two different
deadlines. Note also that if there already exists an equal
obligation but it has become inactive, this does not prevent
the creation of the obligation.

n ∈ N F |= nϕ nψ = o oθd > t

¬∃〈o′, ost〉 ∈ OS . (o′ obl= oθ ∧ ost 6= inactive)
〈F,N,>, OS, t〉 −→

〈F,N,>, OS ∪ 〈oθ,active〉, t〉
where θ is the m.g.u. such that F |= oθ

(Oblig)

2) Obligations: Recall that a NPL obligation has the
general form obligation(a, r, g, d). With a slight abuse of
notation, we shall use oa to refer to the agent that has the
obligation o; or to refer to the reason for obligation o; og
to refer to the state of the world that agent oa is obliged to
achieve (the goal the agent should adopt); and od to refer to
the deadline for the agent to do so. An important aspect of
obligation syntax is that the NPL parser always ensures that
the programmer used the norm’s id as predicate symbol in
or and so in the semantics, when we say or, we are actually
referring to the activation condition nϕ of the norm used to
create the obligation.

Rule Fulfil says that the state of an active obligation o
should be changed to fulfilled if the state of the world og
that the agent agent was obliged to achieve has already been
achieved (i.e. the domain rules and facts from the underlying
system imply g). Note however that such state must have been
achieved within the deadline.

os ∈ OS os = 〈o,active〉
F |= og od ≥ t
〈F,N,>, OS, t〉 −→

〈F,N,>, (OS \ {os}) ∪ {〈o, fulfilled〉}, t〉
(Fulfil)

Rule Unfulfil says that the state of an active obligation o
should be changed to unfulfilled if the deadline is already
past; note that the rule above would have changed the status
to fulfilled so the obligation would no longer be active if it
had been achieved in time.

os ∈ OS os = 〈o,active〉 od < t

〈F,N,>, OS, t〉 −→
〈F,N,>, (OS \ {os}) ∪ {〈o,unfulfilled〉}, t〉

(Unfulfil)

Rule Inactive says that the state of an active obligation o
should be changed to inactive if the reason (i.e. motivation)
for the obligation no longer holds in the current system state
reflected in F .

os ∈ OS os = 〈o,active〉 F 6|= or

〈F,N,>, OS, t〉 −→
〈F,N,>, (OS \ {os}) ∪ {〈o, inactive〉}, t〉

(Inactive)

III. MOISE ORGANISATIONAL MODELLING LANGUAGE

MOISE proposes an organisational modelling language
(OML) that explicitly decomposes the specification of or-
ganisation into structural, functional, and normative dimen-
sions [4]. The structural dimension specifies the roles, groups,
and links of the organisation. The definition of roles states
that when an agent chooses to play some role in a group, it
is accepting some behavioural constraints and rights related to
this role. The functional dimension specifies how the global
collective goals should be achieved, i.e. how these goals are
decomposed (within global plans), grouped in coherent sets
(through missions) to be distributed among the agents. The
decomposition of global goals results in a goal-tree, called
scheme, where the leaf-goals can be achieved individually by
the agents. The normative dimension is added in order to bind
the structural dimension with the functional one by means
of the specification of the roles’ permissions and obligations
within missions.

As an illustrative and simple example of an organisation
specified usingMOISE+, we consider agents that aim at writ-
ing a paper and therefore have an organisational specification
to help them collaborate. Due to lack of space, we will focus
on the functional and normative dimensions in the remainder
of this paper. For the structure of the organisation, it is enough
to know that there is only one group (wpgroup) where two
roles (editor and writer) can be played.

To coordinate the achievement of the goal of writing a
paper, a scheme is defined in the functional specification of
the organisation (Fig. 3(a)). In this scheme, a draft version of
the paper has to be written first (identified by the goal fdv
in Fig. 3(a)). This goal is decomposed into three sub-goals:
write a title, an abstract, and the section titles; the sub-goals
have to be achieved in this very sequence. Other goals, such
as finish, have sub-goals that can be achieved in parallel. The
specification also includes a “time-to-fulfil” (TTF) attribute for
goals indicating how much time an agent has to achieve the
goal. The goals of this scheme are distributed in three missions
which have specific cardinalities (see Fig. 3(c)): the mission
mMan is for the general management of the process (one and
only one agent must commit to it), mission mCol is for the
collaboration in writing the paper’s content (from one to five
agents can commit to it), and mission mBib is for gathering
the references for the paper (one and only one agent must
commit to it). A mission defines all goals an agent commits to
when participating in the execution of a scheme; for example,
a commitment to mission mMan is effectively a commitment
to achieve four goals of the scheme. Goals without an assigned
mission are satisfied by the achievement of their sub-goals.

The normative specification relates roles to missions (Ta-
ble I). For example, norm n2 states that any agent playing the
role writer has one day to commit to mission mCol. Designers
can also define their own application-dependent conditions (as

MALLOW’009: Turin, Italy, September 7-10, 2009

80

(a) Paper Writing Scheme

(b) Monitoring Scheme

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

mr 1..1
ms 1..1

(c) Mission Cardinalities

Fig. 3. Functional Specification for the Paper Writing Example

id condition role type mission TTF

n1 editor per mMan –
n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 unfulfilled(n2) editor obl ms 3 hours
n5 fulfilled(n3) editor obl mr 3 hours
n6 #mc editor obl ms 1 hour

#mc stands for the condition “more agents committed to a mission than
permitted by the mission cardinality”

TABLE I
NORMATIVE SPECIFICATION FOR THE PAPER WRITING EXAMPLE

in norms n4–n6). Norms n4 and n5 define sanction and reward
strategies for fulfilment and unfulfilment of norms n2 and n3
respectively. Norm n5 can be read as “the agent playing role
‘editor’ has 3 hours to commit to mission mr when norm n3
is fulfilled”. Once committed to mission mr, the editor has
to achieve the goal reward. Note that a norm in MOISE is
always an obligation or permission to commit to a mission.
Goals are therefore indirectly linked to roles since a mission
is a set of goals.

IV. NORMATIVE ORGANISATION
PROGRAMMING LANGUAGE

The NOPL is a particular class of NPL programs applied to
MOISE. The syntax and semantics are the same as presented
in Sec. II, but the set of facts, rules, and norms are specific
for MOISE model and the organisational artifacts presented

in Sec. V. The main idea is that an OS is translated to
different programs in NOPL, such programs define then the
management of norms for groups and schemes. In this section
we consider only the programs for schemes.

A. Facts

For scheme programs, the following facts, defined in the
OS, are considered:
• scheme_mission(m,min,max): is a fact

that defines the cardinality of a mission (e.g.
scheme_mission(mCol,1,5)).

• goal(m,g,pre-cond,‘ttf‘): is a fact that defines the
arguments for a goal g: its mission, pre-conditions, and
TTF (e.g. goal(mMan,wsec,[wcon],‘2 days‘)).

The NOPL also defines some dynamic facts that represent
the current state of the organisation and will be provided by
the artifact that manage the scheme instance:
• plays(a,ρ,gr): agent a plays the role ρ in the group

instance identified by gr.
• responsible(gr,s): the group instance gr is responsi-

ble for the missions of scheme instance s.
• committed(a,m,s): agent a is committed to mission
m in scheme s.

• achieved(s,g,a): goal g in scheme s has been
achieved by agent a.

B. Rules

Besides facts, we define some rules that will be useful for
the norms. The rules are used to infer the state of the scheme
(e.g. whether it is well-formed) and goals (e.g. whether it is
ready to be achieved or not). Note that the semantics of well-
formed and ready goal are formally given by these rules. As
an example, some of such rules for the paper writing scheme
are listed below.

// number of players of a mission M in scheme S
mplayers(M,S,V) :- .count(committed(_,M,S),V).

// status of a scheme S
well_formed(S) :-
mplayers(mBib,S,V1) & V1 >= 1 & V1 <= 1 &
mplayers(mCol,S,V2) & V2 >= 1 & V2 <= 5 &
mplayers(mMan,S,V3) & V3 >= 1 & V3 <= 1.

// ready goals: all pre-conditions have been achieved
ready(S,G) :-
goal(_, G, PCG, _) & all_achieved(S,PCG).
all_achieved(_,[]).
all_achieved(S,[G|T]) :-
achieved(S,G,_) & all_achieved(S,T).

C. Norms

We have three classes of norms in NOPL: norms for goals,
norms for properties, and domain norms (which are explicitly
stated in the normative specification). For the former class, we
have the following norm:

// agents are obliged to fulfil their ready goals
norm ngoa:

committed(A,M,S) & goal(M,G,_,D) &
well_formed(S) & ready(S,G)

-> obligation(A,ngoa,achieved(S,G,A),‘now‘ + D).

This norm can be read as “when an agent A: (1) is committed
to a mission M that (2) includes a goal G, and (3) the mission’s

MALLOW’009: Turin, Italy, September 7-10, 2009

81

scheme is well-formed, and (4) the goal is ready, then agent
A is obliged to achieve the goal G before the deadline for the
goal”. This norm thus gives a precise semantics for commit-
ment. It also illustrates the advantage of using a translation to
implement the OMI instead of an object oriented programming
language. For example, if some application or experiment
requires a semantics of commitment where the agent is obliged
to achieve the goal even if the scheme is not well-formed,
it is simply a matter of changing the translation to a norm
that does not include the well_formed(S) predicate in the
activation condition of the norm. One could even conceive an
application using schemes being managed by different NOPL
programs (i.e. schemes translated differently).

For the second class of norms, only the mission cardinality
property is considered in this paper since other properties are
handled in a similar way. In the case of mission cardinality, the
norm has to define the consequences of a circumstance where
there are more agents committed to a mission than permitted
in the scheme specification. As presented in Sec. II, two kinds
of consequences are possible, obligation and regimentation,
and the designer chooses one or the other when writing
the OS. Regimentation is the default consequence and it
is used when there is no norm with condition #mc in the
normative specification. Otherwise, as in norm n6 of Table I,
the consequence will be an obligation. The norm for mission
cardinality regimentation is:

// norm for the cardinality regimentation
norm mission_cardinality:

scheme_mission(M,_,MMax) &
mplayers(M,S,MP) & MP > MMax

-> fail(mission_cardinality).

and the norm without regimentation is:
// norm for the cardinality regimentation
norm mission_cardinality:

scheme_mission(M,_,MMax) &
mplayers(M,S,MP) & MP > MMax
responsible(Gr,S) & plays(A,editor,Gr)

-> obligation(A,mission_cardinality,
committed(A,ms,_), ‘now‘+‘1 hour‘).

where the agent playing editor is obliged to commit to the
mission ms in one hour.

For the third class of norms, each norm in the normative
specification of the OML has a corresponding norm in NOPL.
Whereas OML obligations refer to roles and missions, NPL
requires that obligations are for agents and towards a goal.
The NOPL norm thus identifies the agents playing the role
in groups responsible for the scheme and, if the number of
players still does not reach the maximum, the agent is obliged
to achieve a state where it is committed to the mission. For
example, the NOPL norm for norm n2 of Table I is:

norm n2:
plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

V. ARTIFACT-BASED ARCHITECTURE

The proposals of this paper have been implemented on
an OMI that follows the Agent & Artifact [14], [15]. In
this approach, a set of organisational artifacts is available
in the MAS environment providing operations for the agents
so that they can interact with the OMI. For example, each

scheme instance is managed by an artifact. We can effortlessly
distribute the OMI by deploying as many artifacts as necessary
for the application.

Each organisational artifact has an NPL interpreter loaded
with (i) the NOPL program automatically generated from
the OS for the type of the artifact and (ii) dynamic facts
representing the current state of (part of) the organisation. The
interpreter is then used to compute: (i) whether some operation
will bring the organisation into a inconsistent state (where
inconsistency is defined by the designer by means of regi-
mentations), and (ii) the current state of the obligations. The
following algorithm, implemented on top of CArtAgO [16],
shows the general pattern we used to implement every op-
eration (e.g. role adoption, commitment to mission) in the
organisational artifacts. In this new approach, the artifacts
still provide an interface for the agents, and are now mostly
programmed in NOPL instead of Java.

// let oe be the current state of the organisation managed by the
artifact

// let p be the current NOPL program
// let npi be the NPL interpreter
when an operation o is triggered by agent a do

oe′ ← oe // creates a “backup” of current oe
executes operation o to change oe
f ← a list of predicates representing oe
r ← npi(p, f) // runs the interpreter for the new state
if r = fail then

oe← oe′ // restore the state backup
fail operation o

else
update obligations in the observable properties
succeed operation o

We also developed a program that automatically generate
the NOPL given an OS, however, due the lack of space, it is
not presented here. The reader will find more details about this
architecture, the translation, and a complete implementation of
this OMI at https://sourceforge.net/scm/?type=svn&group id=
163721.

VI. RELATED WORKS

This work is based on several approaches to organisation,
institutions, and norms (cited throughout the paper). In this
section, we briefly relate and compare our main contributions
to such work.

The first contribution of the paper, the NPL, should be
considered specially for two properties of the language: its
simplicity and its formalisation (that led to an available
implementation). Similar work has been done by Tinnemeier
et al. [7], where the operational semantics for a normative
language was also proposed. They assume the availability of
a snapshot of the global state of the organisation to evaluate
activation of norms, which may hinder the implementation in
a distributed scenario. Our NPL also requires a snapshot of

MALLOW’009: Turin, Italy, September 7-10, 2009

82

the organisational artifact state to evaluate norms, however
the distribution problem is solved by generating different
normative programs for several distributed artifacts where only
the local state of the organisation is required. Another impor-
tant difference is that in our approach the designer specifies
the organisation in a higher-level language (OML) that is
translated into a normative programmin language (NOPL).

Regarding the second contribution, namely the automatic
translation, we were inspired by work on ISLANDER [8], [17].
The main difference here is the initial and target languages.
While they translate a normative specification into a rule-based
language, we start from an organisational language and target
at a normative language. It is simpler to translate organisational
norms into NPL norms, since we have norms in both sides
of the translation it is a 1-to-1 translation, than translate
organisational norms into rules.

Regarding the third contribution, the OMI, we started from
ORA4MAS [15]. The advantages of the approach presented
here are twofold: (i) it is easier to change the translation
than the Java implementation of the OMI; and (ii) from the
operational semantics of NPL and the formal translation we
are taking significant steps towards a formal semantics for
MOISE.

VII. CONCLUSION

In this paper we showed an approach for translating an
organisation specification written in MOISE OML into a
normative program that can be interpreted by an artifact based
OMI. Focusing on the translation instead of Java coding,
we have brought flexibility to the development of the OMI.
We also stressed the point that such a normative language
can be based on only two basic concepts: regimentation and
obligation. Prohibitions are considered either as regimentation
or as an obligation for someone else. The resulting NPL is thus
simpler to formalise (only 6 rules in operational semantics)
and implement. Future work will explore NPL translations for
other organisational and institutional languages. We also plan
to prove correctness of the translation from OML into NOPL
in future work.

REFERENCES

[1] O. Boissier, J. F. Hübner, and J. S. Sichman, “Organization oriented pro-
gramming from closed to open organizations,” in Engineering Societies
in the Agents World VII (ESAW 06), ser. LNCS, G. O’Hare, M. O’Grady,
O. Dikenelli, and A. Ricci, Eds., vol. 4457. Springer, 2007, pp. 86–105.

[2] M. Esteva, D. de la Cruz, and C. Sierra, “ISLANDER: an electronic
institutions editor,” in Proc. of the First International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS 2002), ser.
LNAI 1191, C. Castelfranchi and W. L. Johnson, Eds. Springer, 2002,
pp. 1045–1052.

[3] V. Dignum, J. Vazquez-Salceda, and F. Dignum, “OMNI: Introducing
social structure, norms and ontologies into agent organizations,” in Proc.
of the Programming Multi-Agent Systems (ProMAS 2004), ser. LNAI
3346, R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah-Seghrouchni,
Eds. Berlin: Springer, 2004.

[4] J. F. Hübner, J. S. Sichman, and O. Boissier, “Developing organised
multi-agent systems using the MOISE+ model: Programming issues at
the system and agent levels,” International Journal of Agent-Oriented
Software Engineering, vol. 1, no. 3/4, pp. 370–395, 2007.

[5] J. Ferber and O. Gutknecht, “A meta-model for the analysis and design of
organizations in multi-agents systems,” in Proc. of the 3rd International
Conference on Multi-Agent Systems (ICMAS’98), Y. Demazeau, Ed.
IEEE Press, 1998, pp. 128–135.

[6] D. V. Pynadath and M. Tambe, “An automated teamwork infrastructure
for heterogeneous software agents and humans,” Autonomous Agents
and Multi-Agent Systems, vol. 7, no. 1-2, pp. 71–100, 2003.

[7] N. Tinnemeier, M. Dastani, and J.-J. Meyer, “Roles and norms for
programming agent organizations,” in Proc. of AAMAS 09, J. Sichman,
K. Decker, C. Sierra, and C. Castelfranchi, Eds., 2009.

[8] A. Garcı́a-Camino, J. A. Rodrı́guez-Aguilar, C. Sierra, and W. Vas-
concelos, “Constraining rule-based programming norms for electronic
institutions,” Journal of Autonomous Agents and Multi-Agent Systems,
vol. 18, no. 1, pp. 186–217, Feb 2009.

[9] F. L. y López, M. Luck, and M. d’Inverno, “Constraining autonomy
through norms,” in Proc. of first ICMAS. ACM, 2002, pp. 674 – 681.

[10] D. Grossi, H. Aldewered, and F. Dignum, “Ubi Lex, Ibi Poena: Design-
ing norm enforcement in e-institutions,” in Coordination, Organizations,
Institutions, and Norms in Agent Systems II, ser. LNAI, P. Noriega,
J. Vázquez-Salceda, G. Boella, O. Boissier, V. Dignum, N. Fornara,
and E. Matson, Eds., vol. 4386. Springer, 2007, pp. 101–114, revised
Selected Papers.

[11] N. Fornara and M. Colombetti, “Specifying and enforcing norms in
artificial institutions,” in Proc. of the 4th European Workshop on
Multi-Agent Systems (EUMAS 06), A. Omicini, B. Dunin-Keplicz, and
J. Padget, Eds., 2006.

[12] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum, “Norms in multia-
gent systems: some implementation guidelines,” in Proc. of the Second
European Workshop on Multi-Agent Systems (EUMAS 2004), 2004,

[13] G. D. Plotkin, “A structural approach to operational semantics,” Com-
puter Science Department, Aarhus University, Aarhus, Denmark, Tech.
Rep., 1981.

[14] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the A&A meta-model
for multi-agent systems,” Autonomous Agents and Multi-Agent Systems,
vol. 17 (3), pp. 432–456, Dec. 2008.

[15] J. F. Hübner, O. Boissier, R. Kitio, and A. Ricci, “Instrumenting multi-
agent organisations with organisational artifacts and agents: “giving
the organisational power back to the agents”,” Journal of Autonomous
Agents and Multi-Agent Systems, 2009.

[16] A. Ricci, M. Piunti, M. Viroli, and A. Omicini, “Environment program-
ming in CArtAgO,” in Multi-Agent Programming: Languages, Tools
and Applications, R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, Eds. Springer, 2009, ch. 8, pp. 259–288.

[17] V. T. da Silva, “From the specification to the implementation of norms:
an automatic approach to generate rules from norm to govern the
behaviour of agents,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 17, no. 1, pp. 113–155, Aug 2008.

MALLOW’009: Turin, Italy, September 7-10, 2009

83

 1

-�

Abstract—Norm-enforcement models applied in human

societies may serve as an inspiration for the design of multi-agent

systems. Models for norm-enforcement in multi-agent systems

often focus either on the intra- or inter-agent level. We propose a

combined approach to identify objectives for an architecture for

self-regulating agents. In this paper we assess how changes on the

inter-agent level affect the intra-agent level and how a generic

BDI architecture IRMA can be adapted for self-regulation. The

approach is validated with a case study of AEO certification, a

European wide customs initiative to secure the supply chain while

facilitating international trade.

Index Terms—self-regulation, agent architectures, norm

compliance

I. INTRODUCTION

o motivate autonomous agents to comply with norms

various enforcement mechanisms have been proposed.

Norms here define standards of behavior that are acceptable in

a society, indicating desirable behaviors that should be carried

out, as well as undesirable behaviors that should be avoided

[8]. Enforcement mechanisms often require the introduction of

special “observers” or “regulator agents” that actively monitor

the behavior of the other agents [1]. Such agents are assigned

to monitor the behavior of other agents and sanction them in

case of norm violations. When developing norm enforcement

mechanisms for multi-agent systems, the modeling is often

focused on the inter-agent level (between agents). Such models

aim to analyze agent interactions and dependencies to

construct norm enforcement mechanisms. The intra-level

(inside the agent) is mainly treated as a black box. We argue

that the intra- and inter-agent aspects cannot be viewed

separately from each other, especially in norm enforcement

where perceptions of external stimuli should motivate an agent

to adapt its behavior and thereby its internal mechanisms.

Norm-enforcement models applied in human societies may

serve as an inspiration for the design of electronic institutions

Manuscript received June 26, 2009. This research was partially funded by

PGS IT Audit of the VU Amsterdam and the integrated project ITAIDE of

the 6th Framework of the IST Programme of the European Commission

All authors are with the faculty of Economics and Business Administration

of the VU University, Amsterdam, The Netherlands. The third author is also

with the Dept. of Technology, Policy and Management of the Technical

University Delft.

Brigitte Burgemeestre (e-mail: cburgemeestre@feweb.vu.nl).

Joris Hulstijn (e-mail: jhulstijn@feweb.vu.nl).

Yao-Hua Tan (e-mail: ytan@feweb.vu.nl).

and open agent systems. An enforcement mechanism that

elaborates on an agent’s internal architecture to achieve

compliant behavior, and does not require additional

‘observers’ is self-regulation. Self-regulation is a control

approach in which rule making and/ or enforcement are carried

out by the agent itself, instead of a regulator agent or

institution. It can be an alternative or extension to direct

control, when external supervision and norm enforcement are

not possible at all, are ineffective or when there is a lack of

controlling resources. For example, in e-institutions it might be

impossible to check all agent actions for compliance in real

time. A solution then might be to do a code review up

forehand and determine if an agent is compliant by design. In

human societies programs of self–regulation have been found

to contribute to expanded control coverage and greater

inspectorial depth [2]. Self regulation can be implemented in

various ways: from voluntary self regulation, where a group of

agents voluntary chooses to regulate themselves, to mandated

or enforced self-regulation, where a government agency

delegates some of its regulative and enforcing tasks to the

agents subjected to the norm, but retains the supervision, to a

combination of mandated self regulation and direct control by

regulator agents [10]. Each model of self-regulation causes

different agent dependencies and information needs, which

imposes different requirements on the IT architecture.

A special case of self regulation for international trade is the

Authorized Economic Operator (AEO) program [7]. The AEO

program is a European wide customs initiative that aims to

secure the supply chain while at the same time reducing the

administrative burden for companies through the use of self-

control. Companies that are reliable in the context of customs

related operations and have a good internal control system may

apply for the AEO certificate and receive operational benefits

from simplified customs procedures, preferential treatment,

and less physical inspections. Companies that do not have an

AEO certificate remain subject to the current level of customs

controls. Participation in the AEO program is voluntary, but

effective self-control is an obligatory requirement.

Implementing self-regulation as a control mechanism thus

results in a redistribution or delegation of control tasks among

the actors. Agents have to adapt their internal mechanisms to

cope with these tasks. We see that changes at the inter-agent

level affect the intra-level. We therefore propose a combined

approach to develop an architecture to embed self-regulation

as a control mechanism for multi-agent systems.

Towards an architecture for self-regulating

agents: a case study in international trade

Brigitte Burgemeestre, Joris Hulstijn, and Yao-Hua Tan

T

MALLOW’009: Turin, Italy, September 7-10, 2009

84

 2

In this paper we present our first steps towards an

architecture for self-regulating agents. The research questions

we like to answer in this paper are: 1. What objectives need to

be met by an architecture on self-regulating agents? 2. How do

we need to adapt existing Beliefs Desires Intentions (BDI) [9]

architectures? As a starting point we propose a combination of

frameworks to cover the inter- as well as the intra-agent

analysis. For the inter-agent analysis the Intelligent Resource-

Bounded Machine Architecture (IRMA) [3] is a good starting

point because it is a general BDI architecture that is well

accepted and has formed the basis for more recent agent

architectures. Software engineering methodology TROPOS

[6] provides suitable concepts to analyze and model agents’

dependencies. We analyze direct regulation and self-regulation

using TROPOS (Section II). Using this analysis we generalize

the objectives for the internal architecture of a self-regulating

agent. We try to embed the normative objectives in IRMA

(Section III). Using the extended architecture and TROPOS

model, we analyze a case study of AEO (Section IV). We

examine if our adapted version of the architecture covers the

findings of the case study. We identify its suitability and the

shortcomings.

II. INTER-AGENT ANALYSIS

We first analyze the agents and the dependencies among

agents. To do this we use concepts from the early requirements

phase of the TROPOS methodology [4], which is derived from

the i*conceptual framework[11]. The key concepts we use are:

actor, goal, plan, resource and dependency. An actor can be an

autonomous agent that has a goal or strategic interest. A goal

can be satisfied through the execution of a plan, which is an

abstract representation of a way of doing something. A

resource can be a physical or informational entity. Actors can

depend on each other to reach a certain goal, to execute a plan

or to obtain resources. The agent that depends on another

agent is called the depender, the agent he depends on is called

the dependee. The object which is the subject of the

dependency relation is called the dependum.

We first model the direct control approach where the actions

of autonomous agents are regulated by special regulator

agents. After that we analyze self-regulation and assess what

changes when an autonomous agent internalizes control tasks

of the regulator agent.

A. Agents’ dependencies in direct control

In direct control we have two types of agents: an Actor

agent (A) that is carrying out an activity and a Regulator agent

(R) that is responsible for regulating A’s actions such that

agent A complies with the norms that are applicable to A. An

agent can violate the norms through pursuing an illegal goal or

by performing an illegitimate action. We assume that R has a

norm framework from which it derives the set of norms

tailored to an agent’s specific situation. To regulate A, agent R

has to have the following plans: R1: Specify norms for actor,

R2 ‘Determine control indicators of actor’, R3 ‘Monitor

actor’s actions’ and R4 ‘Sanction actor’. R1 generates a set of

norms for A. R uses information about A and A’s actions to

select the appropriate norms from the norm framework that

apply to A’s specific situation. R2 determines ‘control

indicators’ of A. A ‘control indicator’ is the kind of evidence

required to demonstrate compliance of a norm, as well as

infrastructural requirements to collect that evidence. For

example: when a company sends an invoice, they always make

a copy of the invoice and store the copy to be able to check if

the invoice payments are correct and complete. R3 is the

monitoring performed by R on A’s actions, based on

information provided by A about the control indicators. R4

describes the plan of R to sanction A in case of a norm

violation. Agent A’s model is quite simple, as A is a ‘blind’

agent that has no knowledge about the norms or control

indicators and only acts. Therefore it is possible that A

unknowingly engages in an activity that violates a norm that is

imposed upon A by R. However, we do assume that A

remembers action-sanction relations and that it can decide to

cancel an action that will lead to a sanction. Figure 1 shows the

dependency analysis for direct control.

Figure 1: TROPOS model of direct control. The actions of

an actor (A) are regulated by a regulator (R). Note that

arrows depict dependency, not information flow. So to

regulate A’s actions, R depends on A for info about actor

and actions.

B. Agents’ dependencies in self-regulation

For self-regulation we start again with two types of agents:

the actor agent (A) and the regulator agent (R). In self-

regulation control tasks are delegated from R to A. Since A is

autonomous, R can never be absolutely certain that A

complies. R thus has to implement a mechanism to motivate A

to regulate itself appropriately. Furthermore to maintain the

power of the regulator to handle non-compliant agents, the

sanctioning task (R4) remains the regulators responsibility.

We first consider the consequences of the internalization of

MALLOW’009: Turin, Italy, September 7-10, 2009

85

 3

control tasks by A. Plans R1, R2 and R3 may be internalized

by agent A as plans: A1 ‘Specify norms’, A2 ‘Determine

control indicators’ and A3 ‘Monitor actions’. A1 specifies

norms based on a norm framework which originates from R.

This entails a new dependency between A and R: A now

depends on R for communicating the norm framework. When

the norm specification is done by A, A is also supposed to be

able to differentiate between norm violations and norm

compliance. A therefore no longer depends for information

about violations and permissions on R, but has to do it himself.

A2 defines control indicators about A’s actions, based on the

norms defined in A1. A3 describes the monitoring actions of A

which it performs in the context of the control indicators from

plan A2. The plans A1, A2, and A3 together, should support A

to act compliantly with the norms. The acts of A in return

affect the nature of the control actions. If A starts doing

different activities the control indicators may become less

effective and A therefore has to determine new control

indicators that cover the norms. For example, if A replaces the

process of sending paper invoices to its customers by sending

them electronic invoices, new control indicators are required;

e.g. log files instead of paper copies of the invoice.

Figure 2: TROPOS model of self-regulation, control tasks

of the regulator are internalized by the actor agent.

Now we describe the consequences of A’s internalization of

the control tasks of R’s goals and plans. Since A now has to

control its own actions, the goal of R to regulate A’s actions is

supposed to be met by the control activities of A. To determine

if this delegation of control is effective, R’s has adopted a new

goal which is to regulate the control activities of A. To reach

this goal, R also has defined a new plan (R5). R5 describes the

activities of R to monitor and evaluate A’s control actions. R

now depends on A for information about its control activities

instead of its activities. In auditing R5 refers to a system-based

audit, were the focus is on the control system itself instead of

the business transactions. Before an agent thus can enter in a

self-regulative relation it has to provide for its authenticated

control architecture or control script to the regulator. Figure 2

shows the dependencies between agents A and R when they

engage in self-regulation. When we compare direct control

with self-regulation we see that A internalizes some of R’s

control activities on A. New information resources have to be

gathered to be used within the control activities. Also new

goals evolve and consequently the adoption of new plans. In

correspondence new dependencies between R and A develop

for the acquisition of other information resources

Summarizing, a self-regulating agent has to have the

capabilities to: (1) Detect, internalize and store applicable

norms in the environment, (2) Translate norms into measurable

control indicators, and (3) ‘Monitor, detect and mitigate

possible norm violations’. In the next section we zoom into the

internal architecture of the actor agent in self-regulation

III. INTER-AGENT ANALYSIS

We now analyze how the new tasks and dependencies

revealed by the TROPOS models affect an agent’s internal

architecture. We acknowledge that these tasks are complex

normative tasks As a basis for our model we use the Intelligent

Resource-Bounded Machine Architecture (IRMA) [3]. The

architecture is a BDI architecture where the intentions are

structured into plans. A plan can be the plan that an agent has

actually adopted, or a plan-as-recipe that is stored into the plan

library. Plan options are proposed as a result of means-end

reasoning or by the opportunity analyzer. The opportunity

analyzer detects changes in the environment and determines

new opportunities, based on the agent’s desires. The options

are filtered through a compatibility filter, that checks the

options to determine compatibility with the agent’s existing

plans, and a filter override mechanism, in which the conditions

are defined under which (portions) of plans need to be

suspended and replaced by another option. The deliberation

process determines the best option on the basis of current

beliefs and desires.

Consider an autonomous agent that likes to achieve a certain

goal. The agent has already several plans of action available

(in its plan-library) to reach this goal. Before deliberating on a

plan, the agent engages in a filtering process. This process

constrains the agent’s possible plans, to plans that can be

completed given its available (sub) plans in the plan library, its

beliefs and desires. The agent chooses from this selection the

best plan, given its beliefs and desires, and executes the plan.

Figure 3 shows our extension of the IRMA architecture,

adapted for self-regulation. Norm related adaptations are

shown in grey and dotted lines. The ovals in the figure are

information stores (repositories) and the rectangles are process

modules.

Within IRMA we like to implement the processes and

information stores that are needed for self-regulation. A self-

MALLOW’009: Turin, Italy, September 7-10, 2009

86

 4

regulating agent needs to internalize certain control activities

to control its actions. The activities are: specify norms (A1),

determine control indicators (A2), and monitor actions (A3).

These control activities require input from the agent’s actions,

and the actions in turn are influenced by the norms. We first

analyze what modules IRMA are possibly affected by

normative reasoning

Figure 3: A reasoning component for self-regulating agents

adapted from [3]

Norms can impact the information stores and or processes

of the architecture. A norm can be implemented in plans and

function as a threshold to restrict the outcome. For example, a

thermostat function that tries to keep the room heated at a

certain temperature. Norms can also restrict the possible set of

plans. Plans that violate the norm are not stored in the plan

library. Or in means-end reasoning: there are illegal plans

available in the plan library but we do not consider them as

appropriate options to reach a goal. Norms can also prevent

the actual execution of a plan. For example, a person can plan

to rob a bank, but decide not to do so.

Besides that, norms affect the beliefs, and beliefs affect the

norms. An agent may realize, based on its beliefs, that it is

acting non-compliant with the norms. Or, an agent realizes that

due to a change in activities certain norms are no longer

applicable and new norms must be incorporated. When an

agent adopts a new norm, this must be known (believed).

Norms are also related to the desires of an agent. An agent’s

desires may violate the norms. For example, an agent may

desire a handbag that is made of the skin of a protected snake.

A norm is that killing a protected animal is illegal. If norms are

included in the compatibility filter, an agent can check if an

option is compatible with its norms. If norms are part of the

filter override mechanism, non-compliance can be a condition

under which an agent always has to reconsider its plans. Both

implementations make it possible for an agent to decide not to

consider a plan option that aims at buying a snake skin

handbag. The opportunity analyzer may use the norms and

beliefs to search for an alternative, such as a fake snake skin

handbag.

We find that norms can impact all components of the

architecture. To assure consistent norm application we propose

a central information-storage for norms similar to what the

plan library is for plans. Activity A1 updates the norm library

according to the beliefs of the agent. Only norms that are

considered to be applicable to the agent’s specific situation are

included. To make an agent aware of a norm (violation) we

connect the norm library with the reasoner module that is

attached to the beliefs. If an agent then reasons about its

beliefs, it takes the norms into account. Beliefs about a norm

(violation) can be used as input for the means-end reasoner,

opportunity analyzer and the deliberation process. Besides

that, the agent may use its knowledge about norms to

determine the control indicators of A2. We consider the

filtering process the best location to implement the control

indicators. Beliefs about norms are already included in the

other reasoning processes. The filtering process and reasoning

thus together consider (non-) compliant behavior. We think

that the majority of the control indicators should be embedded

in the compatibility filter and only severe violations should be

handled by the filter override mechanism. Otherwise it could

happen that the filtering is too strict. The monitoring in A3 is

handled through a comparison of the beliefs about the data on

the indicators with the norms. Based on results from this

analysis controls in the filtering process may be adapted.

Figure 3 shows an adapted version of the rational agent

reasoning architecture for self-regulation.

 Our approach of embedding norms into the filtering process

is compatible with the framework that is proposed by [8].

Norms can also be implemented into the goal generation

mechanism as was done in the BOID architecture [5]. In

BOID one can distinguish two kinds of goals: internal

motivations (desires), representing individual wants or needs,

and external motivations (obligations) to model social

commitments and norms[5]. All these potential goals may

conflict with each other. To resolve conflicts among the sets of

beliefs, obligations, intentions and desires, a priority order is

needed. In the BOID, such a (partial) ordering is provided by

the agent type.

IV. CASE STUDY AEO CERTIFICATION

 We use our models to analyze a specific case of self-

regulation: AEO certification. The case study results are based

on document analysis and a series of semi-structured

interviews with experts from Dutch Tax and Customs

Administration, held in the period of May till November 2009.

Meeting notes were made by the authors and verified by

interview partners. Intermediate results of the case study were

validated in a one-day workshop.

An Authorized Economic Operator (AEO) can be defined as

MALLOW’009: Turin, Italy, September 7-10, 2009

87

 5

a company that is in-control of its own business processes, and

hence is reliable throughout the EU in the context of its

customs related operations [7]. Typically, modern enterprise

information systems (e.g ERP, CRM etc.) play an essential

role for companies to be in-control. AEO’s will receive several

benefits in customs handling, such as a “Green Lane”

treatment with a reduced number of inspections. These

benefits can lead to considerable cost-reductions for

businesses. For non-certified enterprises customs will continue

to carry out the traditional supervision. Customs can thus

direct their efforts towards non-certified companies to increase

the security of international supply chains, while at the same

time reducing the administrative burden for AEOs.

To qualify as AEO, a company must meet a number of

criteria, which are described in the community customs code

and the AEO guidelines [7], which are developed by the

European Commission. Part of the application procedure is a

self-assessment on the quality of the company’s internal

control system for aspects that are relevant to the type of AEO

certificate (‘Customs simplifications’, ‘Security and safety’ or

‘Combined’ [7]). The company’s approach and the results of

the self-assessment are inspected by customs. The customs

determine whether the self-assessment is performed well and

whether the results indicate that a company is able to control

its business processes such that they contribute to a secure

supply chain. If this is the case and the other requirements are

met an AEO certificate is issued by the customs office. Next

we focus on the self-assessment task.

A. The self-assessment task

The company’s first task is to collect information related to

the specific nature of the company to focus the self-

assessment. This step is called ‘Understanding the business’.

The next step is to identify (potential) risks to which the

business is exposed using the AEO guidelines, which provide

an overview of general risk and attention points. The company

determines which sections are important according to the

nature of the business activities. A company then has to

identify, what risks affect the supply chain’s safety, and are

therefore of interest of the customs authorities. The company

thus replaces the customs’ task of risk identification. For

example, computer components are valuable goods, which are

subject to theft. Trading valuable goods requires more security

measures, than, say, trading in a mass product like fertilizer.

However, some ingredients of fertilizer may be used to

assemble explosives, leading to a different set of risks

A company then assess if appropriate internal control

measures are taken to mitigate these risks. The vulnerability of

a company to threats depends on its current control measures.

Control measures either reduce the likelihood, by dealing with

vulnerabilities (preventative controls), or reduce the impact

(detective and corrective controls). A robust system of controls

is thus able to prevent, detect and correct threats. A robust

system of controls should also monitor its own functioning.

For risks that are not controlled, additional measures may be

implemented or the risk is “accepted”. Risks can be accepted,

if the likelihood of a threat is limited and the risk is partially

covered, or if the costs for complete coverage are very high.

The company has to motivate its choices in its system of

control measures to customs. It has to show how its risk

management approach contributes to being a self-controlling

and reliable party. The company therefore evaluates the

effective implementation of the proposed measures, using the

COSO internal control scoring definitions. COSO is a

framework for risk management and internal control [12]. The

scores range from 0 “no control measures in place”, 1 “internal

control is ad hoc and unorganized”, 2 “internal control has a

structured approach”, 3 “internal control is documented and

known”, 4 “internal control is subject to internal audits and

evaluation” until 5 “internal control measures are integrated

into the business processes and continuously evaluated”. This

scoring provides the customs with an indication of the maturity

level of the company’s self-controlling abilities.

B. Case analysis

In the AEO case study we see the implementations of tasks

A1, A2, and A3 at the company’s side. A company has to

define a control system appropriate to handle its specific risks.

The company therefore translates the general AEO guidelines

into norms that are applicable in its own practice and

circumstances (compatible with A1). Thereby a company

determines parameters to control its business processes (A2).

A company with a control system of a high maturity level

monitors its actions (A3) through internal audits and controls

that are integrated in the processes. The customs replaces its

traditional controls of the company’s processes (R1, R2, R3)

by an assessment of the company’s self-regulating capabilities

and monitors the control actions of the company (R5). We also

observe dependencies on information needs. The company

depends on abstract norms (e.g. the AEO Guidelines) provided

by the customs, which they try to apply to themselves as

customs would do. The customs on the other hand depends on

the company for information about their control system.

The AEO case provides us a new approach of control that

could be applied to a multi agent system. It shows that norm

enforcement can be a task that can be distributed between

various types of agents. Furthermore we learned that self-

regulation only works under certain conditions and that

delegating control tasks is not simple. In general companies

find it difficult to do a self-assessment as they do not know

what customs expects from them. Especially the specification

of abstract norms of the AEO guidelines into company specific

concrete norms proved to be hard. For companies it is thus

unclear when they have taken sufficient measures to secure

their part of the supply chain. Companies expect from the

customs to indicate on a more detailed level what is sufficient:

“A fence for a chemical company should be X meters high”.

Even for customs such knowledge is often only implicitly

available as “expert knowledge” that is difficult to externalize

and make accessible for companies.

 When we look at the company’s internal control system we

see that norms have to be internalized based on perceptions of

MALLOW’009: Turin, Italy, September 7-10, 2009

88

 6

the environment. Only applicable norms are implemented. The

norms have to be implemented in a systematic and structured

way such that they detect norm violations and prevent them

from occurring. In the architecture we see norms implemented

as a filtering mechanism. In the AEO certification we see norm

control as a structured process. In addition, mature self-

controlling companies may have controls integrated in the

processes or audits to check the functioning of the controls.

The total control system of a company could be seen as their

implementation of the internal control architecture. Therefore

these new monitoring activities of customs in the AEO case

could be seen as quality assessment of such a control

architecture rather than the traditional role of Customs to

control the specific business operations of the company. This

fundamental change in the controlling role of the government

is often referred to as the transformation from operational

control to meta-control, where operational control is delegated

by the Customs to the companies themselves.

V. DISCUSSION

The combination of TROPOS and IRMA for self-regulating

agents also has its limitations. However, we do not claim that

these are the best approaches currently available. Instead we

used the approaches as a means to identify requirements for

self-regulating agent at the intra- and inter-agent level. Below

we describe the two most important limitations.

First, the most important limitation of the architecture is that

it is not reflective. By this we mean that agents cannot learn

from their mistakes. When the agent determines that a plan

contains or leads to a norm violation it is only able to cancel

this plan as a current possible option. It lacks mechanisms to

delete or change such plans in a plan library. Desires that

violate norms can also not be changed. The agent therefore

keeps proposing violating plans and desires. Since norms are

context dependent it is quite complex to differentiate violating

plans from non-violating plans. Plans that are allowed in one

situation may be a violation under different circumstances. An

adaption of the plan mechanism is needed.

Secondly, there seems to be fundamental problem in

delegation of control; namely that often it is not clear how to

communicate the delegated norms from the regulator agent to

the regulated agent. For companies it is difficult to interpret

and implement the customs’ norms for their business activities.

Should customs and companies implement protocols, a

vocabulary or procedures such that they effectively can

communicate information? How should a company make its

internal control system available to customs, such that they can

determine the quality of a control system in a specific context

with limited expert knowledge? These and related questions

have to be answered through a study of norm communication

between agents.

VI. CONCLUSION AND FURTHER RESEARCH

A combined approach, that analyses the inter- (between

agents) and intra-agent level (inside agents), was suitable to

identify objectives for an architecture for self-regulation. We

identified key processes and their influence on the

dependencies between agents and the internal agent

architecture. The models provide insight in differences in

requirements for direct controlled agents and self-regulating

agents. The analysis also points out the limitations of some

well-known existing approaches. IRMA lacked in reflective

capabilities and is therefore not sufficient to model a truly self-

regulating agent: an agent that is able to learn from its

experiences with norms and use these experiences as

constraints for future normative reasoning. Also unaddressed

were aspects of norm communication. For two agents to

engage in a self-regulation relation, they must able to

communicate the norms effectively. Since the agents are

autonomous we cannot simply assume that both agents use

similar vocabularies or protocols [6]. A solution for norm

communication should take the agent’s autonomy into account.

Future research will zoom in on the role of reflection on

normative behavior and the communication of norms. Besides

that we are also interested in the evolution process of an agent

from direct control to self-regulation.

Acknowledgments We would like to thank the Dutch Tax and

Customs administration for their discussions.

REFERENCES

[1] G. Boella, L. van der Torre, and H. Verhagen: Introduction to normative

multiagent systems. Computational and Mathematical Organization

Theory, 12:71–79, 2006P

[2] J. Braithwaite: Enforced self-regulation: a new strategy for corporate

crime control. Michigan law review vol. 80, pp 1466-1506, 1982

[3] M. E. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded

practical reasoning. In R. Cummins and J. L. Pollock, editors,

Philosophy and AI: Essays at the Interface, pages 1--22. The MIT Press,

Cambridge, Massachusetts, 1991.

[4] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos.

Tropos: An agent-oriented software development methodology. Journal

of Autonomous Agents and Multi-Agent Systems, 8, pp. 203–236,

2004.

[5] J. Broersen, M. Dastani, J. Hulstijn, Z. Huang and L. van der Torre. The

BOID architecture - Conflicts between beliefs, Obligations, Intentions

and Desires. In Proceedings of the Fifth International Conference on

Autonomous Agents, pp. 9-16, Montreal Canada, May 2001

[6] C.B. Burgemeestre, J. Liu, J. Hulstijn and Y. Tan: Early Requirements

Engineering for e-Customs Decision Support: Assessing Overlap in

Mental Models. In the Forum Proceedings of the 21st CAiSE

conference, pp 31-36, Amsterdam , The Netherlands 2009

[7] European Commission: AEO Guidelines, TAXUD/2006/1450, 2007.

http://ec.europa.eu/taxation_customs/customs/policy_issues/customs_se

curity/aeo/

[8] F. Meneguzzi and M. Luck: Norm-based behaviour modification in BDI

agents. Proceedings of the 8th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), Budapest, Hungary, 2009.

[9] A.S. Rao and M.P. Georgeff: Modelling rational agents within a BDI-

architecture, in proceedings of Knowledge representation and reasoning

(KRR-91) Conference, San Mateo CA, 1991.

[10] J. Rees, Self Regulation: An Effective Alternative to Direct Regulation
by OSHA? , Policy Studies Journal, 16:3 pp 602-614, 1988

[11] E.K.S. Yu, Towards Modelling and Reasoning Support for Early-Phase

Requirements Engineering, in: Proceedings of the Third IEEE

International Symposium on Requirements engineering, pp. 226-235,

1997

[12] COSO enterprise risk management framework. Available:

http://www.coso.org

MALLOW’009: Turin, Italy, September 7-10, 2009

89

Four Ways to Change Coalitions:
Agents, Dependencies, Norms and Internal Dynamics

Guido Boella
University of Turin

Italy
Email: guido@di.unito.it

Leendert van der Torre
University of Luxembourg

Luxembourg
Email: leon.vandertorre@uni.lu

Serena Villata
University of Turin

Italy
Email: villata@di.unito.it

Abstract

We introduce a new formal approach to social networks
in order to distinguish four ways in which coalitions change.
First, the agents in the network change. Second, dependen-
cies among the agents change, for example due to addition
or removal of powers and goals of the agents. Third, norms
can introduce normative dependencies for obligations and
prohibitions. Fourth, coalitions can change due to internal
processes. We propose a number of stability measures to
identify each one of the four proposed sources of coalitions’
dynamics and the consequences they induce on the stability
of coalitions.

1. Introduction

Coalitions play a central role in social reasoning, and
thus various theories have been used and developed in mul-
tiagent systems. For example, coalitional game theory has
been adopted from economics and extended for multiagent
systems [6], [7], and social networks have been adopted
from social sciences and modified to represent dependence
networks among agents [8], [4], [5]. These theories differ in
various ways. For example, in the former, potential coalitions
may be seen as sets of agents while in the latter, dependence
networks can be seen as criteria for proposing/accepting
to form coalitions [8], orpotential coalitions are viewed
as sets of dependencies (the dependencies represent the
contract of the potential coalition) [5]. Moreover, in the
former various notions of stability are defined, whereas in
the latter they are not. In this paper, we address the question
how to distinguish and model the different reasons behind
the change of coalitions in requirements analysis.

Possible reasons behind these changes are due to oper-
ations of addition and removal of the components of our
model such as agents, dependencies among agents, norma-
tive dependencies concerning normative goals and powers.
More precisely, how do we measure the evolution and the
changes of a coalition over time in terms of:
Changes of the agents and dependencies.We distinguish
two kinds of uses for dependence networks: global use in

software engineering where the designer models all stake-
holders [2], and social simulation where no such assumption
is made [8]. In the former, game theory can be used for
reasoning about social interaction, in the latter simulation
methods are used. We follow the tradition of TROPOS [2]
for requirements analysis, as formalized by Sauro [5] and
close to qualitative game theories developed by Wooldridge
et al. [1], not the latter [8].
Changes of the dependencies related to norms.Norms
are used for the dynamics of dependence networks, which
explained why they have not been considered thus far in
the static dependence networks [9]. A norm analytically
implies that agents (intend to) execute them, and therefore
leads to dependencies among agents just like the original
goal-based dependencies studied by Sichman and Conte [9].
Norms should be clearly distinguished from obligations.
More precisely, norms are used to generate new dependence
networks in which a number of dependencies are normative
ones. Within a dependence network, the effect of the norm
consists in a normative goal such as an obligation. These
normative goals, i.e., obligations, are treated just like goals
derived from the agent’s desires. The coalitions which may
emerge depend on the dependencies among the agents, so
since norms change the dependencies among agents, they
also change the coalitions which will emerge.
Internal dynamics. Changes of the coalition itself in terms
of goal-based and norm-based dependencies composing the
coalition, e.g., an agent is excluded from a coalition because
of a malicious behaviour.

We call the last kind of changeinternal dynamicsto
distinguish it from the other dynamics related to the ad-
dition or deletion of agents or goal-based and norm-based
dependencies. They represent the case in which the network
remains the same, involving the same agents and dependen-
cies, but the composition of the coalition changes, including
new dependencies or excluding the old ones. A simple and
intuitive common sense example of the above presented
changes can be the next one. Consider a soccer team as
a coalition. It can change because new players come in, or
players retire. It can change, because agents acquire new
abilities or loose abilities, e.g., they loose their form, they

MALLOW’009: Turin, Italy, September 7-10, 2009

90

break a leg, and so on, or get new goals, e.g., they want
to play in the national team. Concerning norms, there can
be the obligation set by the trainer for a player to play in
the left wing position. Concerning internal dynamics, there
may be a malicious behavior of a player, e.g., he gets too
many red cards since he is too aggressive and he is no longer
allowed to play. In the paper, we explain the changes using
a grid-based running example.

From the multiagent systems field, we use the normative
multiagent paradigm while from social network theory we
take the idea of defining graph theoretic measures. Concern-
ing measures, we define measures associated to the number
of agents and the number of goal-based dependencies present
in each time instant, counting the number of norm-based
dependencies in each time instant and counting the changes
in the dependencies composing coalitions. Our measures are
unified in an average measure returning coalitions’ stability
depending on the differences between values associated to
consecutive time instants.

In this paper, we do not give a formal ontology but
we define indications of the possible changes of coalitions.
Moreover, we do not perform any simulation as in Carley’s
dynamic networks analysis [3]. This paper is organized as
follows. Section 2 presents a grid-based scenario. Section
3 and 4 present the key concepts of our metamodel and
the three coalitions’ changes in detail. Related work and
conclusions end the paper.

2. Changing coalitions in a GRID scenario

We use the following example of a coalition in a grid envi-
ronment. Inside a virtual organization (VO), local coalitions
may be formed in order to cooperate to achieve shared goals
such as, i.e., computations and storage of satellites’ data.
We depict a section of the VO composed by five nodes,
as in Figure 1.a, following the legend of Figure 3. The
VO is composed by four nodes connected to each other
by dependencies based both on goals and on norms and
nodesa, b and c form a local coalition. Considering goal-
based dependencies, nodeb depends on nodea to save the
file satellite.jpg, nodec depends on nodeb to save the file
satellite.mpegand nodec depends on noded to run the file
results.mat, since they are not able to perform their goals
alone. Considering norm-based dependencies, instead, node
a depends on nodec to have the permission to open the file
dataJune.matwhile nodec is obliged to give to nodeb the
results of the running of filemining.mat.

The first kind of change of coalitions in the grid scenario
follows directly from the grid metaphor. Computers can
be connected to the grid like electrical machines can be
connected to the power net. So the computers connected
to the grid changes frequently, e.g., nodee. If they do so,
then also the coalition changes. How frequently they change
is our first measure.

Figure 1. Grid network:C={a, b, c};C={a, b, c, d}.

The second kind of change concerns goal-based depen-
dencies. Nodeb fulfilled the goal of nodec to save the
file satellite.mpeg. This dependency does not hold anymore
and it is deleted, as shown in Figure 1.b. This deletion of
dependencies changes the structure of the local coalition
because of now the reciprocity involves also noded inside
the system. The deletion, as the addition, of a goal-based
dependency may cause a change in the coalitions composed
by these dependencies.

The third kind of change is related with security. A node
has a number of private information, e.g., a unique access
to its pc. If another node has the necessity to access to it,
it has to ask the first node the permission, e.g., a login and
a password, as in the norm-based dependency among nodes
a and c. Obligations, instead, are due to particular services
provided by the nodes. The obligation is represented as a
dependency, as in the case of the norm-based dependency
among nodesd andb, and it is removed if the obligation is no
more active in the system. Figure 2.a shows the introduction
of a norm-based dependency representing the obligation for
nodeb to give the access to filefinalres.txtto nodea.

Figure 2. Grid network: C={a, b, c, d};C={a, b, c}.

The fourth kind of change, internal changes of coali-
tions, represents changes in the composition of the coalition
because of internal reasons. In Grid networks, malicious
behaviors can be recognized, e.g., in case of attacks or for
not properly following the protocol, and malicious nodes can
be excluded from further interactions with the other nodes,
as shown in Figure 2.b.

MALLOW’009: Turin, Italy, September 7-10, 2009

91

3. The model

3.1. The model definition

Our modeling approach aims to provide a design method-
ology both for multiagent systems and social systems, based
on the normative multiagent paradigm. We present our
model as a tuple composed by the concepts of agents,
goals, norms and time. This notions are represented in our
dependency modeling as nodes or dependency relations be-
tween these entities. For more details about the dependency
modeling, see Villata [10]. Our model can be represented as
follows:

Definition 1: 〈A, G, N, T, D, D ⊆ A × A × G, T →
2A, T → 2D, N → 2D, C ⊆ 2D, N ⊆ C〉 consists in a
set of agentsA, a set of goalsG, a set of normsN , a
set of time instantsT and a set of dependenciesD. Every
time instant is related to the set of agents and to the set of
dependenciesD present in the system in that instant. Norms
are represented as a subset of dependencies. A coalition is
represented as a set of dependencies and a subset of the
dependencies composing a coalition can be represented by
norms.

In this model, a coalition can be represented by a set
of dependencies, represented byC(a, B, G) wherea is an
agent,B is a set of agents andG is a set of goals. Intuitively,
the coalition agrees that for eachC(a, B, G) part of the
coalition, the set of agentsB will see to the goalG of agent
a. Otherwise, the set of agentsB may be removed from the
coalition or be sanctioned.

In a multiagent system, since an agent is put into a system
that involves also other agents, he can be supported by the
others to achieve his own goals if he is not able to do them
alone. This leads to the concept of power representing the
capability of a group of agents (possibly composed only
by one agent) to achieve some goals (theirs or of other
agents) performing some actions without the possibility to
be obstructed. The power of a group of agents is defined as
follows:

Definition 2 (Agents’ power):〈A, G, power : 2A →
22G〉 whereA is a set of agents,G is a set of goals. The
function power relates with each setS ⊆ A of agents the
sets of goalsG1

S , . . . , Gm
S they can achieve.

Definitions 1 and 2 have the aim to explain how social
dependence networks can be seen as multiagent systems.
The notion of power is relevant for our methodology since
it represents the social basis for the development of our
model based on the methodology of dependence networks
as developed by Conte and Sichman [9]. In this model, an
agent is described by a set of prioritized goals, and there is
a global dependence relation that explicates how an agent
depends on other agents for fulfilling its goals. For example,
dep({a, b}, {c, d}) = {{g1, g2}, {g3}} expresses that the set
of agents{a, b} depends on the set of agents{c, d} to see

to their goals{g1, g2} or {g3}. A dependence network is
defined as follows:

Definition 3 (Dependence Networks (DN)):A
dependence network is a tuple〈A, G, dep,≥〉 where:

• A is a set of agents andG is a set of goals;
• dep : 2A × 2A → 22G

is a function that relates with
each pair of sets of agents all the sets of goals on which
the first depends on the second.

• ≥: A → 2G× 2G is for each agent a total pre-order on
goals which occur in his dependencies:G1 ≥ (a)G2

implies that∃B, C ⊆ A such thata ∈ B andG1, G2 ∈
depend(B, C).

The dependency modelingrepresents our modeling ac-
tivity consisting in the identification of the dependencies
among the agents. Ourdependency modelingis represented
as a directed labeled graph whose nodes are instances of the
concepts of the metamodel, e.g., agents, goals, and whose
arcs are instances of the notions representing relationships
between them such as goal-based dependency and norm-
based dependency. A graphical representation of the model
obtained following this modeling activity is depicted in the
legend of Figure 3. Open and closed arrows are used to
provide an immediate graphical representation of coalitions.

4. Coalitions’ Dynamics

In this section, we present a definition of coalition based
on the structure of dependence network and how to use
these different kinds of dependencies to model and measure
coalitions’ dynamics. In our model, a coalition is defined as
follows:

Definition 4 (Coalition): Let A be a set of agents andG
be a set of goals. A coalition function is a partial function
C : A × 2A × 2G such that{a | C(a, B, G)} = {b | b ∈
B, C(a, B, G)}, the set of agents profiting from the coalition
is the set of agents contributing to it. Let〈A, G, dep,≥〉 be
a social dependence network, a coalition functionC is a
coalition if ∃a ∈ A, B ⊆ A, G′ ⊆ G such thatC(a, B, G′)
implies G′ ∈ dep(a, B).

As introduced before, we can model and measure coali-
tions’ dynamics over time in terms of: changes of the agents
and goal-based dependencies, changes of the dependencies
related to norms and changes inside the coalition itself.

4.1. Agent and dependencies’ changes

The first kind of change is due to agents entering or
leaving the multiagent system we model or to the depen-
dencies added or deleted depending on the fulfillment of
the related goal or the presence of the power to fulfill this
goal. In our model, we distinguish two different kinds of
goals, achievement goals and maintenance goals. In con-
tracts goals are typically achievement ones while, in game

MALLOW’009: Turin, Italy, September 7-10, 2009

92

theoretical approaches, coalitions are typically concerned
with maintenance goals. In this paper, we assume that goals
are maintenance goals rather than achievement ones, which
give us automatically a longer term and a more dynamic
perspective to define the evolution of coalitions and thus
their stability. Moreover, our model aims to distinguish
and represent not only short term situations such as, for
example, a virtual meeting on Second Life but also long
term situations as, for example, the work of a particular
department or office or, in the Grid scenario, the work of a
virtual organization for e-Research.

We can define two measures associated to the number of
agents and the number of goal-based dependencies present in
each time instant. The first measure calculates the ratio be-
tween the number of agents added and removed in a particu-
lar time instant depending and the number of agents present
at the previous time instant. The second measure calculates
the ratio between the number of goal-based dependencies
added and deleted in a particular time instant depending
and the number of goal-based dependencies present at the
previous time instant. The measures are defined as follows:

Definition 5 (Agents and Dependencies Measures):Let i
be a time frame,NAgent

i is given by the number of agents
entering the systemA+

i and leaving the systemA−
i , depend-

ing on the total number of agentsAi−1 present at time frame
i− 1:

NAgent
i =

∑ (
A+

i

Ai−1

)
+

∑(
A−

i

Ai−1

)
Let i be a time frame,NDep

i is given by the number
of goal-based dependencies added to the networkD+

i and
deleted form the networkD−

i , depending on the total
number of goal-based dependenciesDi−1 present at time
frame i− 1:

NDep
i =

∑(
D+

i

Di−1

)
+

∑ (
D−

i

Di−1

)
Example 1: In Figure 3, we present the case of six time

frames visualizing the evolution of a coalition. In the first
time frame, we have five agents and a coalition involving
agentsa, b, c, as shown by the dependencies composing it.
There are also two norm-based dependencies and three goal-
based dependencies. The passage from the first instantt1 to
the second one shows the deletion of agente. From instant
t2 to instantt3, we observe the deletion of the goal-based
dependency connecting agentsc and b. Also the coalition
changes and it is formed by all the four agents. From instant
t3 to instantt4, the situation changes back to the original
configuration but the coalition is fixed. From instantt4 to
instantt5, agentd disappears, a norm-based dependency is
deleted and the coalition changes its actors, involving now
a, b andc. From instantt5 to instantt6, the situation cames
back to the situation of instantt4.

4.2. Norms’ changes

The second kind of change is due to norms and, in par-
ticular, to obligations. An obligation is a requirement which
must be fulfilled to take some course of action, whether
legal or moral. Normative reasoning is strictly related to
norms’ changes and the definition of a representation and a
measure for them allows to do it. The norm sets a particular
kind of dependency among two agents. This dependency can
be deleted if the obligation is fulfilled or a new obligation
can be inserted into the system to regulate its behaviour.
In our model, we distinguish, represent and measure both
short term contracts, e.g., a transaction on e-Bay such as an
agreement carried out between separate entities involvingthe
exchange of items of value as goods and money, and long
term contracts, e.g., the marriage contract which hopefully
lasts forever.

We can define a measure associated to the number of
norm-based dependencies present in each time instant. This
measure calculates the ratio between the number of norm-
based dependencies added and deleted to each time instant
depending and the total number of norm-based dependencies
present in that time instant. The measure is defined as
follows:

Definition 6 (Norms Measure):Let i be a time frame,
NNorm

i is given by the number of norm-based dependencies
added to the networkO+

i and deleted form the networkO−
i ,

depending on the total number of norm-based dependencies
Oi−1 present at time framei− 1:

NNorm
i =

∑ (
O+

i

Oi−1

)
+

∑ (
O−

i

Oi−1

)
Example 2: In Figure 4, we model three time instants. In

the first time instantt1, we have a coalition formed by all the
four agents, three goal-based dependencies and two norm-
based dependencies. From time instantt1 to time instant
t2, the norm-based dependency involving agentsd and b is
removed due to the removal of the normative goal or the
removal of the associated power. From time instantt2 to
time instantt3, a new norm-based dependency is set due
to the insertion of a new normative goal or the associated
normative power.

Figure 4. Norms’ change.

MALLOW’009: Turin, Italy, September 7-10, 2009

93

Figure 3. Agents and dependencies’ change.

4.3. Coalitions’ changes

The third kind of change is related to changes inside the
coalition itself, e.g., an agent is excluded from a coalition
because of a malicious behaviour. This third kind of change
is the only one related to the coalition itself and it has
to represent and measure the changes in the composition
of each coalition of the system. We define a measure
which calculates the ratio between the number of the goal-
based and norm-based dependencies composing the coalition
in each time instant and the dependencies composing the
coalition in the previous time instant, as follows:

Definition 7 (Coalitions Measure):Let i be a time frame,
NCoal

i is given by the number of norm-based and goal-based
dependencies of a coalition added to the network(D+

i +
O+

i) ∈ Ci and deleted from the network(D−
i + O−

i) ∈ Ci

depending on the total number of norm-based and goal-based
dependencies composing the coalition(Di−1 + Oi−1) ∈
Ci−1 at time framei− 1:

NCoal
i =

∑(
(D+

i
+ O+

i
)Ci

(Di−1 + Oi−1)Ci−1

)
+

∑(
(D−

i
+ O−

i
)Ci

(Di−1 + Oi−1)Ci−1

)
Example 3:Consider the coalition depicted in time in-

stant t1 of Figure 5. The coalition is composed by agents
a, b andc. The passage from time instantt1 to time instant
t2 sees the addition inside the coalition of agentd due to
the reciprocity-based principle of coalition formation. From
time instantt2 to time instantt3, agentd is excluded from
the coalition, without any change in the number or type of
the dependencies composing the coalition itself. This can
depend, as said, on a malicious behaviour of the excluded
agent.

Figure 5. Coalitions’ change.

The above measures are defined for one time moment
only. We can unify these measures for a sequence of
dependence networks associating to each time instant the

average number of changes. We can define this measure as
follows:

Definition 8 (Changes Measures):Let i be a time frame
of a sequence of social dependence networks, the measure of
the changes’ average is given by the fraction of the sum of
the single measures and the number of available measures:

NAgent
i + NDep

i + NNorm
i + NCoal

i

measures
Measures of example 1 vary as shown in Table 1.

t1 t2 t3 t4 t5 t6
NAgent

i 0/5 1/5 0/4 0/4 1/4 1/3

NDep
i 0/3 0/3 1/3 1/2 1/3 1/2

NNorm
i 0/2 0/2 0/2 0/2 1/2 1/1

NCoal
i 0/3 0/3 3/3 0/4 3/4 3/3

Changes 0 0, 05 0, 33 0, 12 0, 55 0, 85

Table 1. Measures of Figure 3

Thanks to the changes measure, we underline that the
two time frames with the main changes in comparison
with their previous time frame aret3 and t5, as can be
supposed observing the relative figure. It can be noted that
in our measures the deletion of a component increases the
difference of the changes measure associated to two time
frames in a row while the addition of these components
causes a minor change. This behaviour is due to the relation
of our measure with the game theoretical approaches for
defining stability: the stability is maintained in order to avoid
the breaking off of the agents from the grand coalition and
form their own group.

We choose the simplest possible measures that capture the
stability of the networks, because they represent all possible
changes can be performed in the composition of coalitions
and of the networks. When the average of the measures for a
sequence of dependence networks presents a great difference
in the values of two connected time instants, it underlines a
lack of stability while when the average presents a small or
inexistent difference between two connected time instants,
the stability of the coalition and of the network in general is
maintained. Moreover, the measures now only give a global
indication of the stability of agents, dependencies, normsand
coalitions. We could also measure whether changes in agents
and dependencies coincides with changes in the coalition
thanks to our four measures.

MALLOW’009: Turin, Italy, September 7-10, 2009

94

5. Related Work

In a multiagent perspective, a coalition can be viewed
under two different representational frameworks. The first
one regards cooperative game theory. Cooperative game
theory studies those games in which players are able to make
binding agreements with the aim to achieve a collective ben-
efit. This approach is strictly related to the field of economics
and various approaches of this kind have been presented in
literature as, for example, the work of Shehory and Kraus
[6]. The second perspective is based on the theory of the so-
cial power and dependence pioneered by Castelfranchi [4] as
starting point and then developed in the context of coalition
formation by Sichman [8] and Sauro [5]. This involves the
development of a social reasoning mechanism that analyzes
the possibility to profit from mutual-dependencies, e.g., two
agents depend on each other for the satisfaction of a shared
goal, or reciprocal-dependencies, e.g., two agents dependon
each other for the satisfaction of two different goals. Both
these two approaches present the following problems: they
do not provide a modeling technique to represent coalitions’
dynamics and to distinguish them.

6. Conclusions

We present a model to represent, at each time instant, the
state of the system in terms of agents, goals, norms and
the dependencies relating all these concepts. This model
allows the distinction and measure of the possible coali-
tions’ dynamics. In particular, we distinguish among three
different kinds of coalitions’ changes: changes based on
addition or deletion of agents or goal-based dependencies,
changes based on the addition or deletion of norm-based
dependencies and changes on the internal structure of the
coalition itself. It can be observed that with a more detailed
model we could make more detailed and precise distinctions
between the four kinds of changes. However, often we
only have the given information, for example in systems’
design, and we already would like to do this kind of
analysis on these models. This is precisely where graph-
theoretical social network techniques are useful. We combine
these techniques with the normative multiagent paradigm
introducing in the networks norm-based dependencies. The
strength of this combination consists in building a modeling
technique able to represent in an intuitive way not only
the inter-relationships among the actors of the system but
also external constraints such as norms and, particularly,
obligations, e.g., in our Grid scenario. The main difficulty
of this approach consists in the creation of a common model
without simplifying too much the two original frameworks.

Moreover, we introduce four measures aiming to measure
these changes inside the networks to each time instant and
an average measure to compute the stability of a sequence
of dependence networks. Our model allows to measure

coalitions’ dynamics in terms of changing dependencies,
agents and coalitions, distinguishing also among goal-based
dependencies and norm-based ones. Using dependence net-
works as methodology to model a system advantages us from
different points of view. First, they are abstract, thus they
can be used for conceptual modeling, simulation, design and
formal analysis. Second, they are used in high level design
languages, like TROPOS [2], thus they can be used also in
software implementation.

Concerning future work, we are working on a definition
of coalitions’ stability in our model, based on the presented
measures, because of a lack of a definition of this notion
in the field of social network theory. The notion of stability
in our model can be identified intuitively in the absence
of coalitions’ changes we described but it is necessary to
provide a formal definition of this notion and to associate it
a measure able to represent it. Moreover, we start to simulate
the use of our model and its associated measures in order to
provide quantitative results based on our approach, similarly
to social network theory approaches.

References

[1] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Temporal
qualitative coalitional games. InAAMAS, pages 177–184,
2006.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems
Journal, 8:203–236, 2004.

[3] K. M. Carley. Dynamic network analysis. InDynamic Social
Network Modeling and Analysis: Workshop Summary and
Papers, pages 133–145, 2003.

[4] C. Castelfranchi. The micro-macro constitution of power.
Protosociology, 18:208–269, 2003.

[5] L. Sauro. Formalizing admissibility criteria in coalition
formation among goal directed agents. PhD thesis, University
of Turin, 2005.

[6] O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation.Artificial Intelligence, 101:165–
200, 1998.

[7] Y. Shoham and K. Leyton-Brown.Multiagent Systems: Al-
gorithmic, Game-Theoretic, and Logical Foundations. Cam-
bridge University Press, 2008.

[8] J. S. Sichman. Depint: Dependence-based coalition formation
in an open multi-agent scenario.Artificial Societies and Social
Simulation, 1(2), 1998.

[9] J. S. Sichman and R. Conte. Multi-agent dependence by
dependence graphs. InAAMAS’02, pages 483–490, 2002.

[10] S. Villata. A normative multiagent approach to requirements
engineering.The logic journal of the IGPL, 2009.

MALLOW’009: Turin, Italy, September 7-10, 2009

95

Dealing with incomplete normative states
Juan Manuel Serrano

University Rey Juan Carlos
Madrid, Spain

juanmanuel.serrano@urjc.es

Sergio Saugar
University Rey Juan Carlos

Madrid, Spain
sergio.saugar@urjc.es

Abstract—This paper puts forward a normative framework for
computational societies which enables the handling of incomplete
knowledge about normative relations. In particular, attempts to
perform a social action are evaluated as permitted, prohibited (i.e.
not permitted) or pending for execution (i.e. neither permitted nor
prohibited). This latter category of attempts can eventually be
resolved as permitted or prohibited attempts using the speech acts
allow and forbid. We make use of the support for incompleteness
of action language K in the formalisation of the framework. The
proposal will be illustrated with some scenarios drawn from the
management of university courses.

I. INTRODUCTION

Empowerments and permissions are two common normative
devices in the design of computational societies [1], [2],
[3], [4], [5]. The former notion allows us to model the
institutional capabilities ascribed to agents of the society; the
latter one serves to represent those desirable institutional states
or courses of action which do not lend themselves to violation.
The relations between both notions are commonly considered
application-dependent, i.e. in some domains permission may
be a necessary condition for empowered agents to act, whereas
in others empowerment alone may be a sufficient condition.
Concerning permissions, a difference is also made between
regimentation and enforcement mechanisms in the implemen-
tation of normative systems [6]: regimented infrastructures
(e.g. AMELI [7]) effectively prevent agents from executing
some action if the corresponding permission does not hold;
on the contrary, systems based upon enforcement rely on a
subsidiary normative corpus of checking and sanctioning rules
to bias the behaviour of agents towards the desired courses
of actions. Finally, a common assumption in the literature
is to consider that both empowerments and permissions are
necessarily either true or false.

This paper challenges this last assumption for the case
of permissions. In particular, it considers those situations
in which the designers of the computational society do not
have enough knowledge so as to generate a complete set of
permission rules for certain classes of actions. For instance, let
us consider a computational society designed to support the
management of university courses. As part of the resulting
specification, empowerment and permission rules are defined
which partially regulate the social processes of the application
domain, namely assignments, examinations, tutoring, lectur-
ing, and so forth. In particular, the following norms concerning
the creation of assignment groups will be considered. Firstly,
empowerment to set up a working group for some assignment
is granted to any student of the course who has not yet passed

that assignment. The attempt of setting up an assignment
group will be permitted if, and only if, the assignment has
been published, the specified submission deadline has not yet
passed and the student is not participating in any other working
group for that assignment. Alternatively, instead of setting
up her own working group, a student may join a working
group set up by another colleague in order to collaborate
with him. Empowerment conditions for joining assignment
groups coincide with those identified for the setting up of
new groups. Some of the permission conditions for setting up
working groups are also relevant, although only as necessary
conditions. In particular, if some student attempts to join some
working group and the corresponding submission deadline
passed or she is already participating in another working
group, then the attempt will be prohibited (i.e. not permitted).
If none of these conditions hold, then there are no grounds for
prohibiting the attempt. However, this does not mean that there
are grounds for permitting the execution of the social action,
since the ultimate decision on the permission or prohibition
of the attempt lies with the initiator of the group (i.e. the
student who set up the group). Thus, sufficient conditions for
permitting or prohibiting the joining action can not be specified
in advance by the designer of the society. In these scenarios, it
would be very convenient to give the initiator of the group the
possibility of either allowing or forbidding the corresponding
social action so that the attempt is eventually permitted or
prohibited.

This paper puts forward a formal model of permission which
enables the representation of incomplete information about
the normative status of social action attempts, such as the
one commented above. Moreover, it formalises the meaning
of the speech acts allow and forbid in the context of the
previous model. In order to proceed with this formalization,
we build on the notions of empowerment and permissions
reported in [5]. That work introduces an operational semantics
of computational societies using the action language C+ [8].
In this paper, we opt for the alternative action language K [9]
due to its support for incompleteness.

The rest of the paper is structured as follows. Firstly, the
most salient features of action language K for the purpose
of this paper will be reviewed. Then, the general framework
for social action processing will be introduced, describing
the major features of the action description in language K.
Next, the speech acts of allowing and forbidding will be
formalised. Last, the major differences with previous work
will be discussed and current work briefly described.

MALLOW’009: Turin, Italy, September 7-10, 2009

96

II. REVIEW OF ACTION LANGUAGE K

Action languages are formal techniques for representing
and reasoning about the performance of actions in dynamic
domains. The semantics of action languages is given in terms
of transition systems, namely graphs whose states and arcs
represent, respectively, the possible configurations of the do-
main and its evolution due to the concurrent execution of a set
of actions. Commonly, action languages such as C+ describe
transitions between states of the physical world, i.e. states
which represent complete configurations of the domain, where
each fluent is necessarily either true or false. In contrast, action
language K [9][10] allows us to describe transitions between
states of knowledge, where the truth values of some fluents
may be neither true nor false, but unknown. The motivation
behind action language K was thus to support agents with an
incomplete view of the world in their planning processes.

An action description in language K is composed of a set
of fluent and action declarations, a set of causation rules and
a set of executability conditions:

• A fluent or action p is declared using an expression of
the form:

p(X1,. . .,Xn) requires t1,. . .,tn
where Xi are variables and ti are positive literals (i.e.,
true atoms) which specify the types of the corresponding
variables1.

• Causation rules are expressions of the form:
caused f if B after A

If the subexpression f is a fluent literal, the causation
rule expresses that f is known to be true in the current
state if B holds in the current state and A also holds
in the preceding state. The subexpressions B and A are
actually sequences of literals, possibly prefixed with the
default (or weak) negation operator not. The expression
not f holds if f is not known to be true, whereas the
expression not −f holds if f is not known to be false.
If both expressions hold then the truth value of f is
unknown.

• The subexpression B can only refer to type or fluent
predicates, whereas A can also refer to action predicates.
If sequences B and A are empty, the corresponding if

and after parts can be dropped from the expression.
If the after part is empty the rule is called static,
otherwise the causation rule is dynamic. Moreover, if
f is the atom false , the causation rule represents an
static (resp. dynamic) integrity constraint which allows us
to filter out from the transition system ill-formed states
(resp. transitions). Dynamic rules can be used to represent
the non-executability conditions and effects of actions. In
particular, the following macro rule is a shorthand of a
dynamic constraint to represent that condition B blocks
the execution of action a [10, sec. 2]:

nonexecutable a if B

1This is actually a slightly simplified version of this construction. See [10]
for the full version and the meaning of type predicates.

• Executability statements are primitive (i.e. not macro)
expressions of the form

executable a if B

This kind of declaration expresses that action a is eligible
for execution in any state of knowledge in which B holds.
If we want the execution of action a to be not only
possible but also mandatory, then a dynamic constraint
can be declared. Since this a common requirement, this
paper introduces the following macro rule which allows
us to declare B as a sufficient condition for executing a:

executed a if B ⇔ executable a if B
caused false after not a, B

III. SOCIAL ACTION PROCESSING

Departing from its original motivation, action language K
will be used in this paper for describing transitions between
states of institutional worlds, rather than states of knowledge
of some planning agent. In particular, the technical apparatus
of language K will be exploited to represent institutional
states where some normative fluents (e.g., permissions) may
have an inherent, non-epistemic indeterminacy. In software
engineering terms, the dynamic domain to be modeled is
thus the social middleware infrastructure in charge of the
management of the institutional state of the computational
society, rather than the software components participating as
agents in the society. The corresponding action description
is partitioned in several sub-specifications corresponding to
the different types of social entities of the computational
society, namely social interactions, agents and social actions.
A complete account of this specification, however, is beyond
the scope of this paper2. Instead, the focus here will be on the
major features concerning the processing of social actions.

A. Social interactions

The institutional state of computational societies is hierar-
chically structured in terms of a tree of social interactions. The
root of this tree, or top-level interaction, represents the social
context within which the whole agent activity takes place;
the other sub-interactions represent the social contexts for
particular joint activities (i.e. social processes). For instance,
assignment groups are represented by social interactions which
are sub-interactions of courses, another type of social interac-
tion. Social interactions may be initiated within the context of
some other interaction, and eventually finished by the social
middleware. The conditions which cause the execution of these
actions are, in general, dependent on the type of interaction.
Thus, university courses are automatically initiated when the
new academic year begins, and assignment groups are initiated
when some student successfully declares its initiation through
the performance of the set up social action – in accordance
with the empowerment and permission rules of the society. In
this latter case, the initiator of the social interaction can be
defined as the performer of the set up action.

2But see the C+ version [5] of the specification (which is not able to handle
incomplete states), and the full K implementation available from http://zenon.
etsii.urjc.es/∼jserrano/speech/k-impl.tgz

MALLOW’009: Turin, Italy, September 7-10, 2009

97

1fluents :
2s t a t e i (I , S) requires
3i n t e r a c t i o n (I) , i n t e r a c t i o n s t a t e (S) .
4c o n t e x t i (I1 , I2) requires
5i n t e r a c t i o n (I1) , i n t e r a c t i o n (I2) .
6i n i t i a t o r (I ,A) requires
7i n t e r a c t i o n (I) , a g e n t (A) .
8. . .
9actions :
10i n i t i a t e (I1 , I2) requires
11i n t e r a c t i o n (I1) , i n t e r a c t i o n (I2) .
12. . .
13always :
14nonexecutable i n i t i a t e (I1 , I2) if
15s t a t e i (I1 , open) .
16caused s t a t e i (I1 , open) after
17i n i t i a t e (I1 , I2) .
18caused c o n t e x t i (I1 , I2) after
19i n i t i a t e (I1 , I2) .
20. . .

Listing 1. K-specification of social interactions

Listing 1 shows some relevant features of the specification
in language K of social interactions. In particular, it shows the
declaration of fluents state i , context i and initiator , which
represent, respectively, the run-time state of social interactions
(either open or closed, values of the interaction state predicate
defined elsewhere), its interaction context and the possible
initiator. Also shown is the declaration of the initiate action
together with its non-executability conditions and effects (lines
14–19). These rules are declared within the scope of the
always section, since they apply to every possible institutional
state.

B. Agents

Agents are software components which interact through the
social middleware as members of a given social interaction
context, with the purpose of achieving some goal. In order to
do so, they are empowered to perform social actions such as
setting up new interactions, joining existing interactions, and
so forth. For instance, the purpose of students is to pass the
course to which they belong as members. In order to achieve
this goal, students are empowered to set up working groups
or to join existing ones in order to carry out some mandatory
assignment. In case that the purpose of agents is too complex,
its whole activity may be arranged in terms of a role-playing
hierarchy of further agents. Thus, the activity of students
within the context of working groups is represented by a
new kind of agent role played by the course student. Agent
roles are played and abandoned by the social middleware
according to certain conditions. For instance, a course student
role is automatically abandoned as soon as the agent passes
the subject; a working group student is automatically created
for the initiator of the working group, and for any student who
successfully manage to join a pre-exiting working group.

Listing 2 partially shows the K-specification of the agent

1fluents :
2s t a t e a (A, S) requires
3a g e n t (A) , a g e n t s t a t e (S) .
4c o n t e x t a (A, I) requires
5a g e n t (A) , i n t e r a c t i o n (I) .
6p l a y e r (A1 , A2) requires
7a g e n t (A1) , a g e n t (A2)
8. . .
9actions :
10p l a y (A, I) requires
11i n t e r a c t i o n (I) , a g e n t (A) .
12p l a y f o r (A1 , A2 , I) requires
13a g e n t (A1) , a g e n t (A2) , i n t e r a c t i o n (I) .
14. . .
15always :
16nonexecutable p l a y (A, I) if
17s t a t e a (A, p l a y i n g) .
18caused s t a t e a (A, p l a y i n g) after
19p l a y (A, I) .
20caused c o n t e x t a (A, I) after
21p l a y (A, I) .
22executed p l a y (A1 , I) if
23p l a y f o r (A1 , A2 , I) .
24caused p l a y e r (A1 , A2) after
25p l a y f o r (A1 , A2 , I) .
26. . .

Listing 2. K-specification of agents

type, which includes the declaration of general fluents and
actions shared by any kind of agent. Particularly, it shows the
declaration of the fluents state a , context a and player , which
represent the run-time state of agents (playing or abandoned),
the social interaction context to which the agent belongs and
its player agent, respectively. Also, it shows the declaration
of the actions play and play for . The former one causes some
agent to be created within some social interaction context.
The general specification only includes its non-executability
condition and effect (lines 16–21). The action play for causes
some agent to be played (line 22) for a particular player agent
(line 24).

C. Social actions

The activity of agent components within a multiagent so-
ciety manifest itself through the performance of attempts.
This external action allows an agent component to perform
a given social action, namely to say something, manipulate
the environment or observe the current state of some social
entity. Due to lack of space, this paper will refer only to speech
acts and, particularly, to declarations such as set up and join.
Nevertheless, the processing of attempts by the social middle-
ware is independent of the kind of social action. This process
takes into account the empowerments and permission rules of
the society. In particular, empowerments shall represent the
institutional capabilities of agents, i.e. which social actions a
given agent is capable of performing; permissions shall denote
the circumstances under which these institutional capabilities
can be exercised. Attempts by agent components are processed
according to the following procedure:

MALLOW’009: Turin, Italy, September 7-10, 2009

98

• If the agent is empowered to perform the specified social
action, then the attempt will be taken into account;
otherwise, i.e. either if it is known for certain that the
agent is not empowered, or it can not be concluded that
it is empowered, the external action will be dismissed.
In this latter case, the institutional state of the multiagent
society will not be altered at all.

• If the agent is empowered to perform the action, but it
is known that the specified performer is not permitted
to perform it (i.e. it is prohibited), then the process is
finished with a prohibited attempt status. On the contrary,
if the agent is both empowered and permitted, then the
social action is performed by the middleware. The effects
caused through this execution depend on the kind of
social action being performed.

• If the agent is empowered to perform that action, but it is
neither known that the action is permitted nor prohibited,
then the social action is kept in a pending state. This
state will be eventually resolved into a performed or
prohibited state as soon as it is known whether the action
is permitted or prohibited.

This procedure is formalised as part of the social action type
specification, whose major features are shown in listing 3. The
signature of this specification includes the action declaration
attempt (Act,A), which represents the attempt made by some
agent component A to perform the social action Act. This
action is exogenous, i.e. its cause is to be found outside the
system being modeled; correspondingly, it is unconditionally
declared as executable (cf. line 20).

The different scenarios described above concerning the
processing of attempts are modeled through different groups
of static and dynamic rules. Firstly, if the intended agent
is empowered to perform the social action then it will be
declared as its performer (line 22), irrespective of the permis-
sion status. Empowerments, permissions and the performers
of social actions, are represented by the fluents empowered,
permitted and performer, respectively. If the agent attempting
to perform the social action is empowered then the social
action will be brought about in the next state to one of
three execution states (represented by the fluent state sa):
pending, prohibited or performed (the possible values of the type
predicate social action state).

• Firstly, if it is known that the action is not permitted
(i.e. −permitted(Act,A)) then the resulting state will be
prohibited (line 24).

• Secondly, if it is permitted then the action will be
performed (line 27). Execution of actions is represented
by the action perform, whose only effect at this level of
abstraction is the change in the run-time execution state
(line 39).

• Last, if the social action is neither known to be permitted
nor prohibited, then the social action is kept in a pending
execution state in the resulting system state (line 30).
Eventually, the circumstances may change in such a
way that the social action is known to be permitted

1fluents :
2s t a t e s a (Act , S) requires
3s o c i a l a c t i o n (Act) ,
4s o c i a l a c t i o n s t a t e (S) .
5c o n t e x t s a (Act , I) requires
6s o c i a l a c t i o n (Act) , i n t e r a c t i o n (I) .
7p e r f o r m e r (Act ,A) requires
8s o c i a l a c t i o n (Act) , a g e n t (A) .
9empowered (Act ,A) requires
10s o c i a l a c t i o n (Act) , a g e n t (A) .
11p e r m i t t e d (Act)
12requires s o c i a l a c t i o n (Act) .
13. . .
14actions :
15a t t e m p t (Act ,A) requires
16s o c i a l a c t i o n (Act) , a g e n t (A) .
17pe r fo rm (Act) requires
18s o c i a l a c t i o n (Act) .
19always :
20executable a t t e m p t (Act ,A) .
21. . .
22caused p e r f o r m e r (Act ,A) after
23a t t e m p t (Act ,A) , empowered (Act ,A) .
24caused s t a t e s a (Act , p r o h i b i t e d) after
25a t t e m p t (Act ,A) , empowered (Act ,A) ,
26−p e r m i t t e d (Act) .
27executed pe r fo rm (Act) if
28a t t e m p t (Act ,A) , empowered (Act ,A) ,
29p e r m i t t e d (Act) .
30caused s t a t e s a (Act , pend ing) after
31a t t e m p t (Act ,A) , empowered (Act ,A) ,
32n o t p e r m i t t e d (Act) , n o t −p e r m i t t e d (Act) .
33. . .
34caused s t a t e s a (Act , p r o h i b i t e d) after
35s t a t e s a (Act , pend ing) , −p e r m i t t e d (Act) .
36executed pe r fo rm (Act) if
37s t a t e s a (Act , pend ing) , p e r m i t t e d (Act) .
38. . .
39caused s t a t e s a (Act , pe r fo rmed) after
40pe r fo rm (Act) .

Listing 3. K-specification of social actions

or prohibited. In those cases, the social action will be
resolved to the execution or the prohibition states by the
corresponding rules (lines 34–37). Otherwise, the social
action will persist until the performer agent is abandoned
(i.e. its run-time state is changed to abandoned) or the
interaction context is closed.

IV. FORBIDDING AND ALLOWING SOCIAL ACTIONS

Those social actions pending for execution will be resolved
as prohibited or permitted attempts as soon as the rules of the
society enables a definite conclusion on its permission status.
As a complementary mechanism, particularly useful in the
absence of general rules, run-time agents may also change the
permission status through the speech acts allow and forbid3.

3Of course, since allow and forbid are speech acts, their performance is
also governed by the corresponding empowerment and permission rules. For
instance, initiators of assignment groups are unconditionally empowered and
permitted to allow other students to join their groups. In other application
domains, however, it may happen, for instance, that some agent is required
to allow other agent to allow some other agent to do something.

MALLOW’009: Turin, Italy, September 7-10, 2009

99

1fluents :
2new ro le (Jo in ,A) requires
3j o i n (J o i n) , a g e n t (A) .
4. . .
5always :
6executed p l a y f o r (A1 , A2 , I) if
7j o i n (J o i n) , pe r fo rm (J o i n) ,
8c o n t e x t s a (Jo in , I) ,
9p e r f o r m e r (Jo in , A2) , new ro le (Jo in , A1) .
10. . .

Listing 4. K-specification of the join social action

This section provides a formal account of the meaning of these
speech acts and illustrates the formalisation of the assignment
group scenario with the execution of a planning query. To
account for a complete example, besides the allow and forbid
speech acts, the join declaration will also be formalised.

A. Formalizing social actions

The specification of a new type of social action t1 pro-
ceeds, firstly, by declaring a rule social_action(x) :-
t_1(x). This rule establishes that any entity of the new type
shall be regarded as a social action, so that the rules which
define the general structure and dynamics of social actions (cf.
listing 3) are applicable for entities of that type. Secondly, new
fluents representing the additional arguments of the new social
action type must be declared. Last, new rules for representing
the post-conditions of the performance of the new type of
action, as well as their additional non-executability conditions,
etc., have to be declared as well.

For instance, listing 4 shows the formalisation of the join
declaration. By performing this speech act, the speaker de-
clares that a new role is played within some interaction by it.
The interaction and the speaker are represented by generic
fluents of social actions, namely context sa and performer.
The new role to be played is declared as a new fluent,
new role, pertaining to this kind of speech act. The rest of
the specification includes the particular effects associated to
the execution of this kind of declaration, which are indirectly
achieved through the internal action play for (cf. listing 3).

Figure 5 shows the partial specification of the allow speech
act. In this case, the generic social action specification is
extended with the new fluent action a , which represents the
social action targeted by the allow speech act. The specifi-
cation includes a condition which establishes that the social
action to be allowed must be pending for execution (line 6).
The effect of performing the allow action is to explicitly cause
that the social action is permitted (9). The specification of the
forbid speech act is similar to the one shown in listing 5. The
only major difference pertains to its post-condition, which in
this case resorts to the strong negation operator, i.e.

caused −p e r m i t t e d (Act) after
f o r b i d (F o r b i d) , pe r fo rm (F o r b i d) ,
a c t i o n f (Forb id , Act)

1fluents :
2a c t i o n (Allow , Act) requires
3a l l o w (Allow) , s o c i a l a c t i o n (Act) .
4. . .
5always :
6nonexecutable a t t e m p t (Allow ,A) if
7a l l o w (Allow) , a c t i o n (Allow , Act) ,
8n o t s t a t e s a (Act , pend ing) .
9caused p e r m i t t e d (Act) after
10a l l o w (Allow) , pe r fo rm (Allow) ,
11a c t i o n (Allow , Act) .
12. . .

Listing 5. K-specification of the allow social action

1initially :
2−h a s s t a t e s a (j o i n 1) . −h a s s t a t e a (s21) .
3−h a s s t a t e s a (a l l o w1) .
4always :
5s t a t e a (s1 , p l a y i n g) . c o n t e x t a (s1 , t o p) .
6s t a t e a (s2 , p l a y i n g) . c o n t e x t a (s2 , t o p) .
7s t a t e i (wg1 , open) . i n i t i a t o r (wg1 , s1) .
8s t a t e a (s11 , p l a y i n g) . c o n t e x t a (s11 , wg1) .
9p l a y e r (s11 , s1) . empowered (s2 , j o i n 1) .
10a c t i o n a (a l low1 , j o i n 1) .
11empowered (a l low1 , s11) . p e r m i t t e d (a l l o w1) .
12goal :
13member (wg1 ,A) , p l a y e r (A, s2) ? (3)

Listing 6. Working group scenario

B. Planning query

This section illustrates the semantics of the previous speech
acts through a simplified implementation of the working group
scenario. This implementation, shown in listing 6, features a
consistent situation where the top-level interaction represents
the university course to which two student agents, s1 and s2,
belong as members. The university course has a single working
group wg1, previously set up by student s1. The activity of this
student within the working group is represented by the role
s11. The query posed to the DLVk planner (an implementation
of action language K as a front end to the DLV answer set
programming framework [9], [11]) asks for the possible ways
in which the student s2 may play a role within the working
group wg1, in exactly three planning steps.

The output of the DLVk planner is shown below. As ex-
pected, the first action that needs to be performed is an attempt
by agent s2 to join the working group. Two additional objects
have to be declared in the scenario in order for this action
to be performed: a join social action, join1, and the agent
to be played within the working group, s21. These objects
initially belong to the pool of objects which are available
for the planning process4. Since the student is empowered to
perform the join action but no permission rules are declared,
the attempt to perform it results in a pending status. The next
state features an attempt by agent s11 to allow the performance
of the join action, namely to perform action allow1. Since this

4Formally, these are objects which have no state, e.g. agents which are
being neither played nor have been abandoned.

MALLOW’009: Turin, Italy, September 7-10, 2009

100

agent is both empowered and permitted to perform that social
action, the permissions to execute the join1 action are in effect
in the next state. This, in turn, causes the performance of the
join action and the consequent playing of the student agent
within the working group.
STATE 0: state_a(s2,playing) state_i(wg1,open)

empowered(s2,join1) new_role(join1,s21) ...
ACTIONS: attempt(join1,s2)
STATE 1: state_sa(join1,pending) performer(join1,s2)

empowered(s11,allow1) permitted(allow1)
action_a(allow1,join1) ...

ACTIONS: attempt(allow1,s11) perform(allow1)
STATE 2: state_sa(allow1,performed)

state_sa(join1,pending) performer(join1,a1)
permitted(join1) ...

ACTIONS: perform(join1) play_for(s21,s2,wg1) play(s21,wg1)
STATE 3: state_a(s21,playing) player(s21,s2)

context_a(s21,wg1) ...

V. DISCUSSION

The model of empowerment and permission put forward
in this paper contrasts with other approaches based on ASP
[3], [12], the event calculus [4] or action languages [2] in
several respects. Firstly, the subjects of empowerments and/or
permissions in these approaches are events which represent the
observable or institutional actions to be evaluated. Moreover,
normative fluents are boolean so that these events are evaluated
in a single transition step either as permitted or prohibited.
In contrast, permissions are applied in our framework to a
particular kind of social entity, viz. social actions, which
can be assigned a permitted and prohibited status, but also
an unknown one. Thus, our framework does not force the
designer of the computational society to add a complete set
of permission rules.

Secondly, the strong negation operator allows the designer to
explicitly declare prohibition rules, whereas other approaches
have to resort to the default “everything which is not per-
mitted, is prohibited”, which may not always be adequate. In
particular, explicit prohibitions are very convenient in order
to represent necessary conditions of permission rules. For
instance, the following rule states that a necessary condition
to join some working group is that the deadline for submitting
the corresponding assignment has not passed yet:

caused −p e r m i t t e d (J o i n) if
c o n t e x t s a (Jo in ,W) , work ing group (W) ,
a s s i g n m e n t (W,A) , d e a d l i n e (W,D) ,
c u r r e n t t i m e (T) , D<T .

The assignment group scenario also served to illustrate a
situation where empowerments and permission rules concern-
ing a single type of social action are, respectively, complete
and incomplete. This represents a good case in favour of the
distinction between empowerments and permissions, which
some approaches neglect (dispensing with one of the two
notions).

Lastly, two normative social actions, allow and forbid, are
smoothly introduced within the normative framework in order
to handle those situations of incomplete normative knowledge.
The semantics proposed for these actions is aimed at particular
cases that can not be solved using the general normative

knowledge of the society. This ad-hoc character tallies well
with the natural language meaning of the corresponding En-
glish speech act verbs [13].

The normative framework reported in this paper is part of
a larger research project aimed at the specification of a lan-
guage for programming social applications [5], viz. software
systems designed to support human interaction in arbitrary
social contexts. This broad class of target applications include
common online communities, but also other software systems
deployed in more specialised settings such as business process
management. This general goal partly explains some of the
features of the proposed normative framework, such as its bias
towards regimentation. Current work focuses on extensions to
support commitments, an essential construct for many social
application domains.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their detailed comments. Research sponsored by the Spa-
nish MICINN, project TIN2006-15455-C03-03.

REFERENCES

[1] A. J. I. Jones and M. J. Sergot, “A formal characterisation of institution-
alised power,” Logic Journal of the IGPL, vol. 4, no. 3, pp. 427–443,
1996.

[2] A. Artikis, M. Sergot, and J. Pitt, “Specifying norm-governed compu-
tational societies,” ACM Transactions on Computational Logic, vol. 10,
no. 1, 2009.

[3] O. Cliffe, M. D. Vos, and J. A. Padget, “Answer set programming for
representing and reasoning about virtual institutions,” in CLIMA VII, ser.
Lecture Notes in Computer Science, K. Inoue, K. Satoh, and F. Toni,
Eds., vol. 4371. Springer, 2006, pp. 60–79.

[4] N. Fornara and M. Colombetti, “Specifying artificial institutions in the
event calculus,” in Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, V. Dignum, Ed.
IGI Global, 2009, ch. 14, pp. 335–366.

[5] J. M. Serrano and S. Saugar, “Run-time semantics of a language
for programming social processes,” in 9th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA IX), ser. Lecture
Notes in Artificial Intelligence, M. Fisher, F. Sadri, and M. Thielscher,
Eds., vol. 5405. Springer, 2009, pp. 37–56.

[6] D. Grossi, Designing Invisible Handcuffs. SIKS Dissertation Series No.
2007-16, 2007.

[7] M. Esteva, B. Rosell, J. A. Rodrı́guez-Aguilar, and J. L. Arcos, “AMELI:
An agent-based middleware for electronic institutions,” in Proceedings
of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, vol. 1, 2004, pp. 236–243.

[8] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner, “Non-
monotonic causal theories,” Artif. Intell., vol. 153, no. 1-2, pp. 49–104,
2004.

[9] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres, “A logic pro-
gramming approach to knowledge-state planning, ii: The dlvk system,”
Artif. Intell., vol. 144, no. 1-2, pp. 157–211, 2003.

[10] ——, “A logic programming approach to knowledge-state planning:
Semantics and complexity,” INFSYS Research Report, Tech. Rep. 1843-
01-11, Oct. 2002.

[11] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The dlv system for knowledge representation and reasoning,”
ACM Trans. Comput. Log., vol. 7, no. 3, pp. 499–562, 2006.

[12] M. Gelfond and J. Lobo, “Authorization and obligation policies in dy-
namic systems,” in Logic Programming, 24th International Conference,
ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, ser. Lecture
Notes in Computer Science, M. G. de la Banda and E. Pontelli, Eds.,
vol. 5366. Springer, 2008, pp. 22–36.

[13] A. Wierzbicka, English speech act verbs. A semantic dictionary. Aus-
tralia: Academic Press, 1987.

MALLOW’009: Turin, Italy, September 7-10, 2009

101

 1

Abstract— In this paper we present the results of our user

study about status message sharing on the Social Web. The study

revealed the privacy and information noise (sometimes

originating from gap of understanding and sometimes from lack

of significance) to be the key problems in the domain and allowed

us to unveil their nature. Further on we present the existing

solutions and workarounds for those problems and introduce the

idea that Semantic Web technologies could help confront those

problems in a more complete way. We propose a way to use

semantic descriptions of status messages, their intended audiences

and distributed data about users to direct status messages to their

intended recipients. Particularly, we rely on the Online Presence

Ontology as a vocabulary for exposing status message semantics,

and we provide necessary extensions to support status message

directing.

Index Terms—Faceted Identity, Linked Data, Online Presence,

Social Web, Social Networks.

I. INTRODUCTION

TATUS messages are short textual expressions that

describe the state of a user’s presence in the online world.

Sharing status messages on different social services on the

Web (Microblogging services, Instant Messaging platforms,

Social Networks) became a common practice for people to

share thoughts, feelings of the moment, announce one’s

presence in the online world and broadcast information.

However, as more and more users take part in status message

sharing, the open communities become overloaded with status

updates. Many problems arise from such an overload. Firstly,

confidentiality of status messages in open communities is a

significant question, since not all status messages are meant for

general public. Some should be kept private from certain

contacts who might use them in an inappropriate way. An

example could be a status message revealing somebody’s

drinking habits, meant to amuse personal friends, but the same

status message could be a source of inconvenience if shown to

work colleagues.

Apart from private nature of some status messages there are

other reasons why a particular status message might not be

Manuscript received July 30, 2009.

The work presented in this paper has been funded in part by Science

Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lìon-2).

suitable for a certain audience. For example, some status

message updates may have no significance for certain groups

of contacts that consider them as information noise. It is a

common case that we subscribe to someone’s statuses because

of the interest in professional news he/she is sharing, but aside

we get a lot of postings about the person’s personal life that

don’t interest us. Problems like those limit in a great deal, the

usefulness of today’s status sharing services (mostly

microblogging services and Social Networks)

In order to explore more deeply the nature of the problem of

confidentiality and other key problems in status message

sharing in large communities on the Social Web we conducted

a qualitative user study with subjects who are using status

messages for different purposes and in different contexts. The

goal of the study was to develop understanding of the key

problems, factors that make a status message open or

confidential – that determine its intended audience. Apart from

understanding the problems, the study allowed us to explore

the space of possible solutions. In Section 2 we present the

results of our user study. Section 3 presents the Presence

Diamond, a useful notion for the study of presence online as a

faceted phenomenon. Section 4 lists currently available

solutions for problems identified in the study. In Section 5 we

introduce a way to direct a status message to its intended

audience using Semantic Web technologies, and we show how

those technologies are flexible to support even dynamic

audience definitions (where members of the audience change

frequently). Section 6 presents related work and in Section 7

we conclude the paper.

II. THE USER STUDY

The user study was conducted through a series of ten

interviews with users of social networks and microblogging

platforms who have been using them for status message

sharing for some time (a year in average). The 30-35 minute

interviews were field-noted and audio recorded for further

reference. Users’ age ranged from 22 to 35. This choice

proved to correspond well to demographics of users of the

most active microblogging services (documented in a

statistical report done by Pew Internet
1
). Equal number of male

and female subjects, from France and Ireland, with different

1http://www.pewinternet.org/Reports/2009/Twitter-and-status-updating.aspx

Directing Status Messages to their Audience in

Online Communities

Milan Stankovic, Philippe Laublet

LaLIC

Université Paris IV – Sorbonne, Paris, France

milan@milstan.net, philippe.laublet@paris-sorbonne.fr

Alexandre Passant

Digital Enterprise Research Institute

NUI-Galway, Galway, Ireland

alexandre.passant@deri.org

S

MALLOW’009: Turin, Italy, September 7-10, 2009

102

 2

origins and backgrounds, took part in the interviews.

After a couple of questions about users’ background, users

were asked to tell their status message publishing experiences.

The main goal was to identify their context in the time of

publishing, nature of the status message content and the

intended audience. The inconveniences and the inability of

microblogging tools and social networks to meet their status

message sharing needs were also explored.

Once we collected the user stories, we relied on Grounded

Theory inspired approach to extract relevant categories from

them, and further generalize the categories to super-categories

that we call – major issues. Open and Axial coding were used

with participation of two researchers in order to reduce the

impact of subjectivity.

Grounded Theory was introduced by Glaser and Strauss [1]

and has served ever since for analysis of results in qualitative

research in Social Sciences. Grounded Theory is an approach

to looking systematically at qualitative data to derive codes

and group them into relevant categories that will further be

generalized into concepts that make the ground for generating

a theory. Generalizations are derived by thinking efforts of

researchers. Due to a space limit, in this paper we present only

a part of our findings - the highest level generalizations, and

we briefly describe them with some of the lower level

generalizations that we find the most relevant to our intended

readers.

Generally we discovered that many times when users

publish a status message, they have a certain audience in mind.

The status message is intended for a particular audience either

because of its ability to understand the message (or the

inability of others to understand it properly) either because of

significance of the message for a certain group (and

insignificance for others) or because of the confidential nature

of the status message content. The next three sections present

those major issues – reasons why a status message has its

particular audience.

A. Gap of Understanding

In many cases where a certain status message is not meant

for a certain group of people it is because of their inability to

understand, properly interpret and maybe even reply to the

content of the message. Sometimes the inability arises from

shallow acquaintance like in cases where the user publishing

a status messages knows a certain group of people for a short

time. The shallowness of acquaintance can be an obstacle for

this group of people to understand jokes, metaphors and

properly interpret the intended meanings of status messages.

Sometimes the gap of understanding results from lack of

competence like in cases where users use status messages to

ask for advice, or provoke professional discussions. This

problem is also present in scenarios of automatic postings of

status messages across services (e.g. automatic forwarding

from Twitter to Facebook) where mostly different audiences

are present on different services. Quite often personal friends

from one service (Facebook in our case) don’t understand and

find irrelevant the profession-related status messages posted on

another service (Twitter in our case).

Some status messages bear a socially established meaning,

understood by a small community of people, like those

containing internal jokes, or internal aliases and metaphors.

Such status messages may be misinterpreted by people outside

that small community and may be source of

misunderstandings, inappropriate comments and other

inconveniences.

B. Lack of Significance

In other cases, a status message is not intended for some

people simply because they have no interest in it. This is the

case when a status message relates to a certain domain and

thus can be of significance only to people with an interest in

the domain. This case is common when people make

connections based on a shared interest, stay in touch and then

use status messages to spread domain related news, announce

events and provoke discussions. In some cases it is the interest

in the domain that makes a certain group of people not

interested in other non domain-related status messages of a

user. For people who are not familiar with the domain such

messages can represent noise.

In other cases some groups of people might not be able to

make use of the information in the status message which has

an informative purpose. This is the case with status messages

highly dependent on location – like those containing

invitations to local parties and announcements of local events.

In both cases such status messages are irrelevant to people

from other locations who could not make use of the

announcement.

C. Privacy

Privacy is an issue that occurs when a user wants to

explicitly restrict access to some groups of contacts for some

types of status message or even only for a particular status

message. It is usually related to groups of higher granularity,

like the case of separating status messages for work and

private contacts. People usually perceive some content types

(like feelings and moods or travel experiences) to be suitable

only for closer contacts or contacts of a more private nature,

while those status messages should be kept private from some

other (more professional) groups of contacts.

Some users, on the other hand express concern about the

possibilities to track their status messages to the past and

draw conclusions about their personality which would be out

of their control. The concern is expressed about the

uncontrolled data integration possibilities across services and

attempts to integrate status messages with other content about

the user and thus perform some spy-like behavior.

III. THE PRESENCE DIAMOND

Once we acknowledge that many status messages have an

intended audience and that access to them should in some

cases be restricted to that particular audience (in cases of

confidential messages), it becomes clear that one user might

have different status messages for different audiences at the

MALLOW’009: Turin, Italy, September 7-10, 2009

103

 3

same time.

In fact, emitting different information (appearances) to

different groups of observers is not restricted to status

messages, but spans the whole notion of online presence. By

the term online presence we refer to the totality of information

that allows perceiving one’s presence in online communities.

Apart from status messages as an element of presence,

availability for interaction might also have a faceted nature and

be different for different groups at different times. One can

easily imagine a working situation where a user is available for

interaction only with his work colleagues and busy for all the

others. Access to different presence information might also be

given only to specific groups of contacts (like in the case of

sharing the current location only with closest friends).

Therefore, there is a need to look at the notion of online

presence as a faceted phenomenon. For this reason we

introduce the notion of the presence diamond (Figure 1.) to

capture the faceted nature of presence and the need to appear

differently to different groups of people.

Figure. 1. The Presence Diamond
2

The notion of presence diamond allows us to look at a

person’s online presence as a diamond whereby different

observers are introduced to different facets of the diamond.

Facets differ among themselves in different types of presence

data that is accessible by observers of a facet (like in cases

where one group of observers can access a person’s location,

availability and a status message, and another group can access

only the status message), different granularity of data (like

in the case of sharing the exact location with closest friends

and only the current city/country with strangers), and in

different data that is emitted to different observers (like

having different status messages and different availability for

different groups of contacts).

Even though we focus on status messages in this paper, we

will look at the problem of directing status messages to their

intended audience as a sub-problem of enabling faceted online

presence, and will therefore favor solutions general enough to

address the faceted nature of presence as a whole.

IV. INCOMPLETE WAYS TO DEAL WITH STATUS MESSAGE

DIRECTING

Some ways to direct status message updates to a particular

audience already exist. In this section we present the

workarounds found and applied by users, as well as solutions

2 The figure and the notion of the Presence Diamond are strongly inspired

by the notion of the diamond of digital identity, that Mike Roch, Director of

IT Services at University of Reading, introduced at the Eduserv Digital

Identity Workshop in London, January 08, 2009

developed as features of Social Web sites. For each of these

solutions we discuss its incompleteness.

A. User Workarounds

Some users manage to separate their contacts on different

Social Web services, by taking into account the nature of

relationship with a particular contact. For example, a number

of users maintain a list of work-related contacts on twitter

while having a more personal network of friends on Facebook,

and then share different status message updates for the

different audiences. This way status messages related to

private life can be kept confidential from work colleagues, and

personal friends don’t have to be bothered by work related

postings. However, the fact that some contacts use only one

social network stands in the way of such a separation. If some

of the user’s work colleagues use only Facebook, then

maintaining the separation would mean not connecting at all

with those persons. Apart from this limitation, if the separation

by purpose is not done at the start, it is hard to impose it once

the user has accepted different types of contacts to his/her

social network.

Another way to deal with the identified issues is just to

restrict oneself to publishing only status messages acceptable

for the wide audience. Some users choose not to publish too

personal status messages because work-related contacts might

see them, and not to publish work-related status messages

because they might not be of interest to their friends. This

approach limits the potential of status message sharing in a

great deal excluding many professional and staying-in-touch

use cases.

B. Solutions developed by Social Web Sites

Solutions for niche microblogging and micro-broadcasting

began to emerge recently. Those Social Web sites allow for

broadcasting of status messages in closed communities (like in

ShoutEm
3
) or to people gathered around a certain interest (like

in Static
4
). However they mostly require intended recipients of

the status message updates to join each closed community

which can get quite complicated having in mind the number of

intended audiences a user might have. This approach certainly

leads to social network fatigue – a phenomenon of loss of

motivation to participate in yet another social network when

confronted with joining many social networks and building

identities on them.

The new service E
5
 can be used to manage adding different

people to different social networks according to the nature of

the acquaintance (e.g. adding friends to Facebook and business

contacts to MySpace). However, it is hard to enforce this

separation since not all users are present on each of those

networks and therefore some of connections might be lost if

they do not meet the purpose one user has given to his/her

social network account.

3 http://www.shoutem.com/
4 http://www.static.com/
5 http://www.mynameise.com/

MALLOW’009: Turin, Italy, September 7-10, 2009

104

 4

V. THE LINKED DATA WAY

The term Linked Data [2] refers to publishing and

interlinking structured data on the Web in RDF
6
 with the

assumption that the value and usefulness of data increases the

more it is interlinked with other data. This effort to publish the

data online using open standards and interlink data sources is

aimed at transforming the Web of documents towards a more

(re)usable, machine readable Web of Data.

We argue that additional semantics describing a status

message, as well as semantics (partially already published as

Linked Data) describing users and their current context can be

helpful to direct a status message to its intended audience, and

thus reduce information noise and contribute to ensuring

privacy. In particular we argue that currently available Linked

Data sources can help define the intended audiences of status

messages, relying on user properties described in those sources

(interests, locations, social graph, etc.)

To enable publishing and exchange of such additional

semantics, we decided to enrich an existing vocabulary - the

Online Presence Ontology (OPO)
7
 - with the information about

intended audience of a status message. The Online Presence

Ontology presented in [3] provides a way to describe a user’s

current state of presence in the online world, including his/her

availability for interaction, current status message, location

and other elements of context. As such this vocabulary can be

elegantly complemented with a way to direct a status message

(or even the whole notion of Online Presence) to a certain

audience. To enable this, we have extended the OPO with the

notion of Sharing Space.

Figure 2. An excerpt from the Online Presence Ontology

A Sharing Space, in our specification, is a group of people

(or agents) with whom particular information can be shared.

As shown on Figure 2, the OnlinePresence, encompassing

(among other properties) the current status message of a user,

can be connected to its intended audience through a property

intendedFor by linking it with the notion of SharingSpace.

The status message itself is represented using the Item concept

from the SIOC
8
 [4] ontology in order to enable replies to the

status message and make use of this concept’s suitable

semantics. Sharing Space is also enriched with a list of

properties to allow representing of the common attributes that

bound members of the Sharing Space together (e.g., common

interest, common current location). In order to express the

6 Resource Description Framework http://www.w3.org/RDF/
7 http://www.milanstankovic.org/opo/

8 http://sioc-project.org/

semantics of those attributes we relied on concepts from

widely used vocabularies (FOAF
9
, SWC

10
, WGS84

11
). For

more details about the ontology design we refer the readers to

the project website and the ontology specification
12

.

By identifying people who are intended to receive a status

message, the notion of Sharing Space can help software

systems to deliver status messages to specific people (members

of the Sharing Space) and thus deal with information noise and

even ensure confidential status message exchange.

In order to properly define Sharing Spaces according to the

needs of real life scenarios, we will rely on the results of our

user study, presented in Section 2. According to our study

results, some of the major ways to define the intended

audience are: friends of a certain friend; people having a

certain interest; friends from a particular online community;

people being in a certain location; people having a certain

nature of relationship with the user; people who were affiliated

in the same institution; and custom assembled groups of

contacts.

A lot of information needed to define those groups (users’

current and permanent locations, interests, friends’ lists, etc.)

is already available on the Social Web, and many sources

already publish this data using vocabularies such as FOAF and

SIOC [4]. Relying on those existing resources, Sharing Spaces

could be dynamically defined using simple SPARQL
13

 queries

that could identify the members of a particular Sharing Space

by collecting data across different data sources. We believe

that this way of defining Sharing Spaces is flexible enough to

cover the needs of real life scenarios identified in our user

study, and we will illustrate it on an example in the following

subsection.

When proposing to use data from various distributed

datasets, we should acknowledge that executing queries over

distributed datasets might be a challenging task. However, this

challenge has already attracted researchers to develop

solutions for this distributed scenario. One of them is a system

DARQ [5], an engine for federated SPARQL queries.

Apart from specifying Sharing Space members using

SPARQL, the new version of the OWL language
14

, currently

available as OWL 2 Working Draft [6] will provide a way to

define Sharing Spaces through richer restriction axioms such

as property chains. Property chains would allow to state that if

a user satisfies a certain property then he is automatically a

member of a Sharing Space. We also believe that the emerging

Rule Interchange Format [7] (currently a working draft) will

be a useful way to define and exchange Sharing Space

definition rules across different systems that may use different

rule languages internally.

9 Friend-f-a-Friend vocabulary http://xmlns.com/foaf/spec/
10 Semantic Web Conference Ontology

http://data.semanticweb.org/ns/swc/swc_2009-05-09.html
11 World Geodetic System ontology http://www.w3.org/2003/01/geo/
12 Other properties and classes introduced to support the notion of Sharing

Space can be found in the specification document

http://www.milanstankovic.org/opo/specs/
13 http://www.w3.org/TR/rdf-sparql-query/

14 http://www.w3.org/2004/OWL/

MALLOW’009: Turin, Italy, September 7-10, 2009

105

 5

A. Scenario of Use

To better illustrate the flexibility of our approach and the

usefulness of Linked Data, we present a scenario of publishing

a status message together with a dedication to a particular

Sharing Space. Figure 3 will serve as a graphical support to

our explanations.

In this scenario, our example user Harry is organizing a

reunion for his friends from the Semantic Web community.

The reunion will take place in Paris, and Harry wants to

announce it in his status message.

Figure 3. Publishing a Status Message

Thanks to the open nature of Semantic Web technologies,

any status message publishing service (including

microblogging platforms, social networks, chat platforms) can

publish a status message and describe it using the OPO

vocabulary. So, Harry’s status message publishing service can

make the semantically described message available to all status

message consuming services. It can further associate it with a

particular audience, by using the intendedFor property and

the concept of a SharingSpace. Along with OPO data about

the status message itself, Harry’s service can publish a

SPARQL query to define the members of the Sharing Space.

In our case, since Harry’s message is intended for people

interested in Semantic Web who are currently in Paris, the

SPARQL Query would look like shown on Figure 4.

To make better use of the data available in Linked Data

sources, we can reuse existing URIs used by those sources. In

our example we rely on the Geonames
15

 URI for Paris, to

uniquely identify this geographical location.

Once the message is available together with its semantic

description, and a Sharing Space definition, other services can

consume it and make it available to their users. Let us take

another example user, Sally. She is Harry’s friend, interested

in Semantic Web and currently visiting Paris (according to her

last published status message with associated geographic

location information). Although Sally is not using the same

status message publishing service as Harry, her Social

Network (SN) service, can retrieve semantically described

status messages and SPARQL queries defining Sharing

Spaces. Since information about Sally’s interest is available in

one of her FOAF files, and available to her SN, and since her

current location is also known to SN, applying the SPARQL

query from Figure 4 will put Sally in SWPeopleInParis

Sharing Space - the one Harry’s status message is intended for.

Sally’s interface for browsing status messages can now

15 http://www.geonames.org/

make sure that status messages intended for her get to her

attention and somehow stand out from the abundance of other

status messages put online by her friends and other people.

Figure 4. Example definition of a Sharing Space

B. Some Benefits of Sharing Spaces

Using the definitions of Sharing Spaces, like those shown in

this paper, and publishing status messages that rely on the

extended OPO vocabulary can help direct a status message to

its audience. As opposed to solutions where particular

(sometimes even closed) services are used to dedicate a status

message to a certain group of people, our approach offers a

way to dedicate a status message to a certain audience

regardless of the service being used to publish them and

present them. It is the use of widely accepted Semantic Web

standards (e.g., RDF(S) and OWL) that make the intended

audience specifications universal and thus applicable

everywhere.

The approach also allows to take into account the ever

changing nature of user-related data, since membership in a

Sharing Space can be defined through a property and not by

naming particular members. Therefore users can belong to a

sharing space at one time when they satisfy a certain condition

(e.g. currently located in Paris), and not belong to it at all other

times.

Apart from combating status message overload and helping

relevant messages to reach their audience, Sharing Spaces can

serve as a ground for ensuring privacy and confidential status

message sharing. Our approach is based on the idea [8] that

ensuring trust and privacy on the future Web can be grounded

on the interlinked graph of data (i.e. Linked Data) and policies

that take advantage of existing data sources. The introduced

change in the OPO vocabulary is a first step in this direction,

allowing to specify the intended audience of a status message

by reusing existing (linked) data on the Web. Further

mechanisms to enforce the delivery of a status message to the

specified intended audience can be built on top of our

presented solution. The advantage of this approach is that

dedicating a status message to its audience is quite a general

solution, addressing at the same time the challenge of dealing

with information noise, and being the ground for ensuring the

confidential status message sharing.

PREFIX opo: <http://http://ggg.milanstankovic.org/opo/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT
{

 <http://example.org/ns#SWPeopleInParis>
 rdf:type opo:SharingSpace;

 foaf:member ?person.

}
WHERE
{

 ?person foaf:topic_interest
 <http://dbpedia.org/resource/Semantic_Web>.
 ?person opo:declaresOnlinePresence ?presence .

 ?presence opo:currentLocation
 <http://sws.geonames.org/2988507/>.
}

MALLOW’009: Turin, Italy, September 7-10, 2009

106

 6

VI. RELATED WORK

Similar to our use of SPARQL to define sharing spaces i.e.

intended audience groups, Alessandra Toninelli et al. [9] use

RDF and SPARQL triple patterns to build social graph aware

policies. Using triple patterns different policies can be created

to grant access to user’s attention (e.g., ring her phone).

However this work is more related to mobile devices as it

strongly reflects the specifics of communication using a mobile

device, and in this sense it is complementary to our work in

effort to make use of social data available in Linked Data

sources to enhance user’s interaction with devices and make

her communications more adapted to her current situation.

Another point of difference is that the socially-aware policy

model is more concerned at granting/restricting access to a

certain resource than dedicating/directing presence information

to a certain audience.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the results of our user study,

based on qualitative research techniques, which was aimed at

identifying the nature of problems surrounding status message

publishing. Our study emphasized the need to direct a status

message to a particular audience in order to deal with major

issues like: Lack of Understanding, Significance, and Privacy.

We have shown how users try to deal with those issues and

what solutions did the Social Web sites come up with to help

with directing a status message to a certain audience.

However, we judged all those solutions as incomplete either

because they require users to join particular status sharing

networks or because they restrain users from publishing certain

types of status messages.

Our solution to the problem of dedicating a status message

to a particular audience is based on providing semantic

descriptions of intended audience and taking advantage of

existing data about users published as Linked Data on the

Web. Particularly we rely on a small extension of the Online

Presence Ontology that allows for associating the intended

audience information to a status message. Since the solution is

based on Semantic Web technologies it allows a high level of

interoperability and gives the intended audience information

the ability to flow across different status message sharing

services. Moreover, our semantic descriptions of intended

audiences possess the ability to collect the intended audience

members information from different Linked Data sources

across the Web, which makes them universal.

Our future work will consist in evaluating the practical

aspects of our proposal by extending the distributed

microblogging platform SMOB
16

, described in [10] to publish

and take into account the intended audience information

through the use of new notion of Sharing Space introduced in

the Online Presence Ontology. The new version of SMOB will

make use of data available as Linked Data on the Web to

create refined descriptions of audience for its status messages.

16 http://smob.sioc-project.org/

While the simple publishing and taking into account of

intended audience information would be sufficient to combat

the information noise problem, encompassing both issues of

Lack of Understanding and Significance; some additional

access control mechanisms must be employed to ensure that

the intended audience specifications are properly applied

across the Web. As a solution to access control we are

considering to use the FOAF + SSL protocol [11] – a

lightweight solution for authentication and authorization,

based on the semantics exposed using the widespread FOAF

vocabulary. The OpenID
17

 framework for providing a single

digital identity across the internet can also elegantly contribute

to achieve simple access control. OAuth
18

 authorization

protocol could also be helpful in ensuring secure exchange of

intended audience information across different services on the

Social Web.

Although our solution for directing a status message to its

audience is flexible in specifying the intended recipients of the

status message, a lot of work remains to be done to ensure that

the unintended recipients do not get access to it. We see the

presented extension of OPO and the notion of Sharing Space

as a first step in this direction.

VIII. REFERENCES

[1] Glaser, B. & Strauss, A. Discovery of Grounded Theory.
Chicago: Aldine, 1976.

[2] Berners-Lee, T. Design Issues: Linked Data., 2006,
http://www.w3.org/DesignIssues/LinkedData.html

[3] Stankovic, M. Modeling Online Presence. In: Proceedings of the
First Social Data on the Web Workshop, Karlsruhe, Germany,
2008.

[4] Breslin, J.G., Harth, A., Bojars, U. & Decker, S. "Towards

Semantically-Interlinked Online Communities", Proceedings of
the 2nd European Semantic Web Conference (ESWC '05), LNCS
vol. 3532, pp. 500-514, Heraklion, Greece, 2005.

[5] Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources
with SPARQL. In: ESWC. (2008) Available:
http://www.eswc2008.org/final-pdfs-for-web-site/qpII-2.pdf

[6] Motik, B., Patel-Schneider, P.F. & Parsia, B. OWL 2 Web
Ontology Language: Structural Specification and Functional-
Style Syntax, 2008, http://www.w3.org/TR/2008/WD-owl2-
syntax-20081008/

[7] Boley, H., Hallmark, G., Kifer, M., Pasche, A., Pollares, A. &
Reynolds, D. RIF Core, 2008, http://www.w3.org/TR/rif-core/

[8] Passant, A., Kärger, P., Hausenblas, M., Olmedilla, D., Pollares,
A. & Decker, S. Enabling Trust and Privacy on the Social Web,
In Proceedings of W3C Workshop on the Future of Social
Networks, 15-16 January 2009, Barcelona,

[9] Toninelli, A., Khushraj, D., Lassila O., and Montanari, R.:
Towards Socially Aware Mobile Phones. In: Proceedings of the
First Social Data on the Web Workshop, Karlsruhe, Germany,
October 27, 2008, CEUR Workshop Proceedings, ISSN 1613-
0073,

[10] Passant, A., Hastrup, T., Bojars, U. & Breslin, J. Microblogging:
A Semantic Web and Distributed Approach. In: Proceedings of
the 4th Workshop on Scripting for the Semantic Web, Tenerife,
Spain, June 02, 2008, CEUR Workshop Proceedings, ISSN
1613-0073,

[11] Story, H. FOAF & SSL: Creating a global decentralized
authentication protocol, 2009. In W3C Workshop on the Future
of Social Networking, 15-16 January 2009, Barcelona, Spain.

17 http://openid.net/
18 http://oauth.net/

MALLOW’009: Turin, Italy, September 7-10, 2009

107

1

Managing water demand as a regulated open MAS.
(Work in progress)

Vicente Botti1, Antonio Garrido1, Adriana Giret1 and Pablo Noriega2

1 DSIC, Department of Information Systems and Computation, Universitat Politècnica de Valencia,
2 IIIA, Artificial Intelligence Research Institute, CSIC, Spanish Scientific Research Council,

{vbotti,agarridot,agiret}@dsic.upv.es, pablo@iiia.csic.es

I. WATER MANAGEMENT AS A MAS

The management of natural resources is a challenge of
significant social relevance. At the core of water policy
is the need to foster a more rational use of the resource
and this may be addressed by creating an efficient market
of water rights [4]. However the design and operation of
such a market is not an easy endeavor because it needs
to coexist in a complex social and legal framework.

Most water management models are based on equa-
tional descriptions of aggregate supply and demand in a
water basin [2] but few include an agent-based perspec-
tive. We explore an alternative approach in which indi-
vidual and collective agents are an essential component
because their behavior (and effects) may be influenced
by policy-making. Our focus is on water-right demand
and, in particular, on the type of legal and market
mechanisms that may have an incidence on that, so that
water use is efficient. In particular we acknowledge the
following facts: (1) that many stakeholders are involved
in the market; (2) that stakeholders have different and
frequently conflicting objectives; (3) that stakeholders
have decision-making capabilities; (4) that there is the
possibility of establishing conventions that are applicable
to the actions of stakeholders, and that stakeholders are
capable of complying with those conventions; (5) that
these stakeholders are autonomous to comply or not,
with the conventions.

With respect to demand we build on two assumptions.
First, we assume that water use is granted to individual
agents or to groups of individuals through water rights
that specify the amount of water, period and type of use
granted, as well as the location where that water may be
extracted. Second, we assume that these rights may be
traded.1

1The Spanish Water Law and its amendments —’Real Decreto
Legislativo 1/200, BOE 176’ and the initiatives approved in 2001,
2004 and 2007– institute tradable water rights and the creation of
”water banks” during extreme draught conditions.

In brief, we claim that one can see the use of water in a
basin as a regulated open MAS and we bet on designing
an agent-based market of water rights to micro-model
model demand and foster efficient use.

We foresee the following potential uses for that mar-
ket:

A test bed for agreement technologies. From a research
perspective, our interest is on the role agreement plays
in this social system, on the mechanisms that facilitate
an agreement, on the management of agreements, on
the normative organizational environments. Thus, we
are designing a testbed to provide adequate inspiration
for theoretical cogitations on agreement and for the
development of the corresponding technologies [3]

A demand component of a sophisticated basin model
to visualize and explore water management policies.

A prototype for an online market of water-rights.

II. mWater, A REGULATED MAS FOR THE EXCHANGE

OF WATER RIGHTS

In this paper we only sketch a bare-bones institutional
framework that regiments the market and the main an-
cillary activities. For the construction of that framework
we follow the IIIA Electronic Institution (EI) conceptual
model [1] where an institutional is specified through two
main blocks: one that deals with ontological compo-
nents (the dialogical framework that specifies ontology,
language, roles and information model) and another for
deontological components (the performative structure for
interaction models and procedural prescriptions and rules
of behavior for commitment-making conventions).

We should mention that our framework captures those
conventions that are imposed by current legislation and
become regimented in the market, but it also captures
new conventions to make the market agile and contract
management realistic. Thus, for instance, we keep those
roles sanctioned by current legislation, but add those that
make a richer market or affect conflicts. Likewise, we

MALLOW’009: Turin, Italy, September 7-10, 2009

108

2

keep the (totally ordered) seven types of water use, but
specify a water right by a 5-tuple (location, basin district,
use, volume, duration), and introduce the possibility of
splitting (i.e. trading parts) and joining (i.e. trade a
combination) water rights.

The procedural norms in mWater are specified through
a nested performative structure. The top one, mWaterPS,
describes de overall market with five active scenes
and two sub-structures: TradingTablesPS and Agreement-
ManagementPS. Interactions in mWaterPS start with an
Entitlement process through which an individual may
become a rightful holder of a water right , followed by
a process of Accreditation, that brings that right into
the market. The third scene is a Trading Hall where
traders are notified of upcoming negotiations and the
reaching of agreements. Actual negotiations take place in
the scenes that belong to TradingTablesPS and once an
agreement on transfering a water right has been reached
it is ”managed” according to the market conventions
captured in AgreementManagementPS. Two final scenes
take care of the (permanent) annulment and (temporary)
suspension of rights. The TradingTablesPS includes a
scene schema for each trading mechanism. Currently,
a right-holder may opt for a standard double auction
or a closed bid or face-to-face negotiation but other
mechanisms may be added as needed. AgreementMan-
agementPS works roughly as follows: First of all, when
an agreement is reached, mWater staff checks if the
agreement satisfies some formal conditions and if so,
a transfer contract is signed. When a contract is active,
other right-holders and external stakeholders may initiate
a grievance procedure that impact the transfer agreement.
AgreementManagementPS includes different scenes to
address such grievances or for the disputes that may arise
among co-signers. If things proceed smoothly, the right
subsists until maturity.

III. RESEARCH OPPORTUNITIES

mWater allows us to envision the following research
opportunities:

Organizational models that are dynamic and flexible
enough to specify evolving regulated market scenarios.
Because water’s unique characteristics, mWater requires
organization structures that restrict the way agreements
are reached by fixing the social structure of the partic-
ipating entities, the capabilities of their roles and the
relationships among them (e.g. power, authority).

Reasoning about normative regulation and social
norms for negotiation and execution of agreements and
contracts. On and off-line, from an individual agent’s
perspective and from the market design perspective.
Dynamics of norms and norm adoption.

Techniques for flexible on-demand individual and col-
lective negotiation among humans or non-human actors
(i.e., agents and services). It is often the case that a water
right holder is motivated to achieve a goal (buy or sell a
right) that is only possible by gaining the collaboration of
others (i.e., a federation of water right holders), then it
is required to generate an explicit mutually acceptable
agreement through negotiation and to define detailed
workflows that regulate the activities and combinations
of roles in the organization as well as their associated
data flow. mWater also requires models and techniques
for judgement aggregation, argumentation, persuasion,
normative reasoning and agreement planning.

Models for agreement conceptualization and patterns
specification, e-Contracting. Relations among different
agreements (sub-agreements), for example a situation in
which in order to get a water right transfer a buyer
requires to contract a transportation resource from other
users.

Techniques for initiation, coordination, and supervi-
sion of different forms of agreement, contracts and
grievances. Even when water right agreements or con-
tracts are signed, the behavior of the participating entities
might not be completely determined as their autonomy
and selfishness might cause them not to honour their
commitments if there is a potential gain in doing so.
Online Dispute Resolution environments.

An approach to summarize the life-cycle of agree-
ments in order to build long-term relationships between
the water rights market participants.

IV. ACKNOWLEGEMENT

This paper was partially funded by the Consolider
programme of the Spanish Ministry of Science and In-
novation through project AT (CSD2007-0022, INGENIO
2010).

REFERENCES

[1] Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez-
Aguilar, and Carles Sierra. Engineering open environments with
electronic institutions. Engineering Applications of Artificial
Intelligence, (18):191–204, 2005.

[2] F. Martin de Santa Olalla, A. Dominguez, F. Ortega, A. Artigao,
and C. Fabeiro. Bayesian networks in planning a large aquifer in
eastern mancha, spain. Environmental Modelling and Software,
22:1089–1100, 2007.

[3] Juan A. Rodriguez-Aguilar. AGREEMENT TECHNOLOGIES.
Towards a new programming paradigm for agent-oriented tech-
nologies. Position Statement at Future of Software Engineering
and Multi-Agent Systems - FOSE-MAS 2008, 2008.

[4] M. Thobani. Formal water markets: Why, when and how to
introduce tradable water rights. The World Bank Research
Observer, 12(2):161–179, 1997.

MALLOW’009: Turin, Italy, September 7-10, 2009

109

1

Open Interaction System Specification
and Monitoring Using Semantic Web Technology

Nicoletta Fornara Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
Email: nicoletta.fornara@usi.ch

I. INTRODUCTION

The design and development of open distributed inter-
action systems, where heterogeneous, autonomous, and
self-interested agents can interact by entering and leaving
dynamically the system, is widely recognized to be a
crucial issue in the development of nowadays applica-
tions on the Internet: like e-commerce applications [1],
collaborative social systems [2], or application to support
the automatic management of virtual organizations [3].
In particular in our view the interacting agents may range
from very complex autonomous software agents able to
reason and to plan their actions and that behave on behalf
of their human owners, to very simple software used by
human beings as an interface to interact with the system.

Given that the agents are assumed to be heterogeneous
because they may be developed by different designers
or they may be human beings, no assumptions can
be made on their internal architecture. Given that the
system is open and agents may enter and leave it
dynamically, it is necessary to find a standard way for
specifying a communication language for the interacting
agents and for defining the context and the rules of the
interaction. Moreover given that the interacting agents
are autonomous it is necessary to find a way to regulate
interactions so that agents may have reliable expectations
on the future development of the system. Furthermore
given that these systems will be used to enrich and
improve human beings interactions, it is crucial that the
proposed design approach is defined taking inspiration
from existing studies about human interactions.

Starting from these requirements in our previous
works [4], [5], [6], [7], [8] we proposed a meta-model for
the conceptual design of open interaction systems based
on speech act theory [9], [10] and on Searle’s theory
on construction of social reality [11]. In particular we
proposed the OCeAN metamodel, which is base on the
definition of a set of application independent concepts
that have to be used in the specification of every type of
interaction system. We initially proposed an agent com-
municative language whose semantics is based on the
notion of social commitment and temporal proposition.

Therefore in order to be able to define the semantics
of declarative communicative acts, we introduced in our
model other institutional concepts, like the notion of
institutional action, institutional power, and role. Finally
in order to constrain agents’ actions we formalized the
notion of norm and of sanction or reward that are used
for norm enforcement[12]. We model open interaction
systems as a set of artificial institutions. In particular in
our view the definition of a specific artificial institution
consists of: (i) a component, called meta-model, which
includes the definition of basic entities common to the
specification of every institution, like the concepts of
commitment, institutional power, role, and norm, and
the actions necessary for exchanging messages; (ii) a
component specific to the institution in question, which
includes the specification of the powers and norms that
apply to the agents playing roles in the institution, and
the definition of the concepts pertaining to the domain
of the interaction (for example the actions of paying or
delivering a product, bidding in an auction, etc.).

Regarding the language used to specify the various
components of the model we initially adopted a language
with an operational intuitive semantics based on the
notion of object and attribute close to object oriented
programming. The difficult that we experimented with
this approach was in developing agents able to reason on
their actions and able to monitor the agent’s behavior.
We therefore proposed a formalization of the OCeAN
meta-model based on the Discrete Event Calculus [8].
This approach resulted very fruitful for unambiguously
specifying the concepts of our meta-model and for
being used to simulate the time evolution of an actual
interaction, but we experimented performance problems
and we did not find a simple way to interface our event
calculus specification with an external application used
to enable agents interactions, like for instance the JADE
framework1.

We therefore decide to follow a new approach that we
plan to investigate and evaluate in the future. Our idea
is to use standard Semantic Web Technology to specify,

1http://jade.tilab.com/

MALLOW’009: Turin, Italy, September 7-10, 2009

110

2

to reason on, and to monitor agent’s actions. In [13]
we started to formalize the deontic part of the OCeAN
meta-model using OWL 2 DL2), SWRL rules (Semantic
Web Rule Language3), and a Java application, developed
using OWL-API 4 and the source code of the Pellet5

reasoner, to overcome certain expressiveness limitations
of OWL. More precisely, we showed how it is possible
to specify and monitor the time evolution of social
commitment used to express conditioned obligations and
prohibitions on time intervals.

The main advantages of using a decidable logical
language like OWL to specify an open interaction sys-
tem are that Semantic Web technologies are increas-
ingly becoming a standard for Internet applications and
therefore they are supported by many reasoners (like
Fact++6, Pellet7, or Racer8); moreover ontologies and
reasoning services are easily interfaced with applications
programmed in Java or other well known languages.

When facing this approach we discovered that there
may be the following main problems. Firstly the treat-
ment of time: OWL has no temporal operators, in
some cases it is possible to bypass the problem by
using SWRL rules and built-ins for comparisons, but in
any case this does not provide full temporal reasoning
capabilities; notice furthermore that using the OWL
Time Ontology9 would not be a solution, given that
its axiomatization is very weak. Secondly the open-
world assumption: in many applications nor being able
to infer that an action has been performed is sufficient
evidence that the action has not been performed. We
faced this second problem by using an external program
to simulate a closed world assumption by adding certain
closure axioms to the ontology. But there is still the
open problem of understanding what part of the model
it is better and possible to represent in the ontology in
order to be able to reason on it and what part of the
model it is better to represent in the external application
because current semantic web standards do not support
its representation.

REFERENCES

[1] M. Esteva, D. de la Cruz, and C. Sierra, “Islander: an electronic
institutions editor,” in Proceedings of the First International

2http://www.w3.org/2007/OWL/wiki/OWL Working Group
3http://www.w3.org/Submission/SWRL/
4http://owlapi.sourceforge.net/
5http://clarkparsia.com/pellet
6http://owl.man.ac.uk/factplusplus/
7http://clarkparsia.com/pellet
8http://www.sts.tu-harburg.de/ r.f.moeller/racer/
9http://www.w3.org/TR/owl-time/, http://www.w3.org/2006/time.rdf

Joint Conference on Autonomous Agents and MultiAgent Sys-
tems (AAMAS 2002), C. Castelfranchi and W. L. Johnson, Eds.
ACM Press, 2002, pp. 1045–1052.

[2] V. Dignum, F. Dignum, and J.-J. Meyer, “An agent-mediated
approach to the support of knowledge sharing in organizations,”
Knowl. Eng. Rev., vol. 19, no. 2, pp. 147–174, 2004.

[3] H. L. Cardoso and E. Oliveira, “Virtual enterprise normative
framework within electronic institutions,” in Engineering Soci-
eties in the Agents World V. Springer, 2004, pp. 14–32.

[4] N. Fornara and M. Colombetti, “Operational specification
of a commitment-based agent communication language,” in
Proceedings of the First International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS 2002),
C. Castelfranchi and W. L. Johnson, Eds. ACM Press, 2002,
pp. 535–542.

[5] ——, “Defining interaction protocols using a commitmentbased
agent communication language,” in Proceedings of the Second
International Joint Conference on Autonomous Agents and Mul-
tiAgent Systems (AAMAS 2003), J. Rosenschein, T. Sandholm,
M. Wooldridge, and M. Yokoo, Eds. ACM Press, 2003, pp.
520–527.

[6] N. Fornara, F. Viganò, and M. Colombetti, “Agent communica-
tion and artificial institutions,” Autonomous Agents and Multi-
Agent Systems, vol. 14, no. 2, pp. 121–142, April 2007.

[7] N. Fornara, F. Viganò, M. Verdicchio, and M. Colombetti,
“Artificial institutions: A model of institutional reality for open
multiagent systems,” Artificial Intelligence and Law, vol. 16,
no. 1, pp. 89–105, March 2008.

[8] N. Fornara and M. Colombetti, Specifying Artificial Institutions
in the Event Calculus, ser. Information science reference. IGI
Global, 2009, vol. Handbook of Research on Multi-Agent
Systems: Semantics and Dynamics of Organizational Models,
ch. XIV, pp. 335–366.

[9] J. L. Austin, How to Do Things With Words. Oxford: Oxford
University Press, 1962.

[10] J. R. Searle, Speech Acts: An Essay in the Philosophy of Lan-
guage. Cambridge, United Kingdom: Cambridge University
Press, 1969.

[11] ——, The construction of social reality. New York: Free Press,
1995.

[12] N. Fornara and M. Colombetti, “Specifying and enforcing
norms in artificial institutions,” in Declarative Agent Languages
and Technologies VI 6th International Workshop, DALT 2008,
Revised Selected and Invited Papers, ser. LNCS, M. Baldoni,
T. Son, B. van Riemsdijk, and M. Winikoff, Eds., vol. 5397.
Springer Berlin / Heidelberg, 2009, pp. 1–17.

[13] ——, “Ontology and time evolution of obligations and prohi-
bitions using semantic web technology,” in Proceedings of the
Workshop on Declarative Agent Languages and Technologies
DALT@AAMAS09, Budapest, Hungary, 11 May 2009, M. Bal-
doni, J. Bentahar, and M. v. R. J. Lloyd, Eds., 2009.

MALLOW’009: Turin, Italy, September 7-10, 2009

111

The SIOC Project: Semantically-Interlinked Online
Communities

Uldis Bojārs and Alexandre Passant and John G. Breslin and Stefan Decker
Digital Enterprise Research Institute,

National University of Ireland, Galway, Ireland.
Email: [uldis.bojars,alexandre.passant,john.breslin,stefan.decker]@deri.org

Abstract—The SIOC project is aimed at expressing information
about the structure and content of online community sites and
at enabling interoperability on the Social Web using Semantic
Web technologies. In this paper we briefly describe the SIOC
project, introduce the SIOC Core ontology and its modules, and
discuss some SIOC-based applications in terms of human and
agent communication.

I. INTRODUCTION

While new paradigms, tools and web services introduced
by the Social Web (such as blogs, wikis, tagging practices)
are now widely accepted in both public and scientific com-
munities, these tools generally act as independent data silos;
hence, interoperability between applications is a complex
issue. The SIOC project1 aims at solving this by providing
a comprehensive data model (as well as related tools and
applications) based on Semantic Web technologies [1] in order
to represent online communities and their activities in an
homogenous way.

The SIOC project consists of two main parts:
• The SIOC Ontology, composed of a Core ontology and

different modules;
• A set of applications, for both producing and consuming

SIOC data, constantly evolving based on the user needs
and implementations.

II. THE SIOC ONTOLOGY

The SIOC Ontology is composed of a Core ontology and a
set of modules, focusing on the ease of integration of SIOC
in existing applications by Web developers. With an emphasis
on standard Semantic Web technologies since its beginning,
the whole ontology has been designed using RDF(S)/OWL.
A comprehensive overview of the SIOC ontology is provided
in [2].

A. SIOC Core Ontology

Main classes and properties in the SIOC ontology2 are
shown in Figure 1. While relatively small and simple, this
model is yet powerful enough to represent the content pro-
duced and exchanged within online communities. For instance,
a Forum represents a space in which discussion happen (not
necessarily a bulletin board, in spite of its name, but for
example as a weblog), and contains different Posts, written

1http://sioc-project.org
2http://rdfs.org/sioc/spec

by Users. The following example then describes that Alice
has created a post in a particular forum (i.e. an area of
discussion) and that Bob replied to it — as follows (using the
N3 notation - prefixes omitted). In order to represent more
abstract containers (such as a personal information space),
more general Container and Space classes can be used.

:post a sioc:Post ;
sioc:has_creator :alice ;
sioc:has_container :forum ;
sioc:has_reply :reply .

:forum a sioc:Forum .
:reply a sioc:Post ;

sioc:has_creator :bob .
:alice a sioc:User .
:bob a sioc:User .

Fig. 1. Main classes and properties in the SIOC ontology.

Other properties and classes exist in the ontology, for
instance properties to represent previous and next versions of
an item, which can be used when representing Wikis.

It is worth noticing that each sioc:User is actually
related to the Agent class (from the FOAF3 — Friend Of
A Friend [3] — ontology), and that sioc:User can be
consequently associated with both software agents and human
users. Hence, SIOC can be used to represent communication
between bots on the Social Web (e.g. on IRC using the

3http://foaf-project.org

MALLOW’009: Turin, Italy, September 7-10, 2009

112

SIOC-IRClog project4) and then enable a machine-readable
description of communities of agents interacting together on
social websites. Moreover, another link between FOAF and
SIOC is that the social networking aspect can be represented
using FOAF (by foaf:knows), while SIOC can be used to
represent aspects of relationships inside the community, e.g.
a user following another (on microblogging services) can be
expressed by the sioc:follows property.

B. SIOC Modules

Several SIOC modules have been defined to extend the
available terms and to avoid making the SIOC Core Ontology
too complex and unreadable. SIOC has 4 ontology modules:
Access, Argumentation, Services and Types5.

• the Access module defines simple classes and properties
regarding the notions of Role and Permission to represent
access rights and permissions in online communities
websites;

• the Argument module defines classes and properties
to represent simple argumentative discussions in online
communities websites.

• the Services module defines classes and properties to
reprsent Web services related to online communities (e.g.
API endpoint and return format, etc.);

• the Types module defines advanced content-types to be
used when defining user-generated content from online-
communities. For instance, it includes classes such as
sioct:BlogPostor sioct:Wiki that respectively
subclass the sioc:Postand sioc:Forumclasses from
the Core Ontology;

In addition, one of the recent development of SIOC is a
module defining alignments between SIOC and the SWAN
— Semantic Web Applications in Neuromedicine — ontology
[4]6, providing a complete model for fine-grained argumenta-
tive discussions in online scientific communities.

III. STATUS AND UPDATE OF SIOC

Since the goal of SIOC is to provide interoperability be-
tween communities on the Social Web, one way to evaluate
its success is to consider its uptake on the Web. To illustrate
the amount of SIOC data on the Web, according to the
PingTheSemanticWeb (PTSW) service7 on June 2009 there
were 132’475 URIs which contain data described using the
SIOC ontology8.

In addition to the uptake in terms of number of documents,
SIOC is now widely accepted as a core ontology to describe
Social Web communities using Semantic Web technologies,
alongside with FOAF. Hence, the use of SIOC is suggested by
the Yahoo! SearchMonkey developer documentation9 (SIOC

4http://irc.sioc-project.org/about.html
5Information about SIOC modules: http://rdfs.org/sioc/spec/#sec-modules
6http://rdfs.org/sioc/swan
7http://pingthesemanticweb.com
8The full amount of SIOC information on the Web is larger than described

here as PTSW indexes only a part of available RDF data.
9http://developer.yahoo.com/searchmonkey/smguide/profile vocab.html

data being indexed by SearchMonkey to improve presentation
of search results) and by various best practices documents
describing data publishing on the Semantic Web such as [5].

Various SIOC-enabled applications have been created10,
forming a food-chain (Figure 2) that includes data exporters
for Web 2.0 platforms and services (e.g. Drupal11, WordPress,
Flickr, etc.), tools for indexing of distributed data, and browser
and visualization applications, allowing users to consume
SIOC data from various sources in an integrated way.

!"#$%#&'()(*+

!,-.&'/01%2(3%'4,%!(0/.)%5,6

"&'3(780'/(&

!"#$%&'()*$%'+$,)+'-such as blog+.'/$0$+'
%1*'23&&),$1'2"%4*+5'%4)'6&%7$18'%1'
$(6"4,%1, 4"&)'$1'0))6$18'6)"6&)'
$19"4()*'%1*'9%#$&$,%,$18'
#"((31$#%,$"1'"1',:)';)2<'=>)47'*%7'
&%48)'%("31,+'"9'$19"4(%,$"1'%4)'
2)$18'#4)%,)*'27'3+)4+'"9',:)+)'+$,)+<

?"/)>)4.'currently these +$,)+'%4)'
+$($&%4',"'$+&%1*+'/:)4)'%&&',:)'
$1,)4%#,$"1':%66)1+'/$,:',:)'+$,)'%1*'
there is little interlinking /$,:'4)&)>%1,'
#"1>)4+%,$"1+'%1*'#"1,)1,)&+)/:)4)<'

@:)4)'$+'%'1))*',"'$1,)4&$10'+"#$%&'
()*$%'#"1>)4+%,$"1+'%1*'%'1))*'9"4'
$19"4(%,$"1')A#:%18)'9"4(%,',:%,'
%&&"/+',"'4)64)+)1,'%&&'$(6"4,%1,'
*),%$&+'"9'+3#:'#"1>)4+%,$"1+<

9(4&%:;%<3,1)/&=%>)7/1%<(?!31=%@),A.&73,%B.11.&'=%!,3*/(%C,3&D&7,E=%

F4(-.1%!04.&7)=%F88GG.%H.1'38I=%!',2.&%J,0G,3

#83%@II3(.04

B C)>)&"6'%1'!"#!$!%& "9',)4(+'9"4'
4)64)+)1,$18'4$#:'*%,%'94"(',:)'
!"#$%&';)2

B D4)%,)'%''!!()*+,-" "9'%66&$#%,$"1+'
9"4'64"*3#$18.'#"&&)#,$18'%1*'
#"1+3($18'!EFD'*%,%

B C$++)($1%,) -"'!./,#-!")%2"3,'
!EFD'>$%'6%6)4+.',3,"4$%&+.
"#3()1,%,$"1'%1')A%(6&)+

"&2(3-.'/(&%.6(8'%!"#$

@3,"4$%&+'%,';;;'GHHI'%1*'!)(@)#:'
GHHI'-36#"($185'#"19)4)1#)+<

!"#$%&'C%,%'"1',:)';)2'-!C";'GHHI5'
/"40+:"6'%,'E!;D'GHHI'-36#"($185<

JGK'!EFDL4)&%,)*'632&$#%,$"1+'94"('
C=ME'$1',:)'N"341%&'"9';)2'
!)(%1,$#+.'E==='E1,)&&$8)1,'!7+,)(+.'
E==='E1,)41),'D"(63,$18.'=34"6)%1'
!)(%1,$#';)2'D"19)4)1#).'),#<

@0G&(K),7*,-,&'1

@:$+'/"40':%+'2))1'931*)*'27'
!#$)1#)'O"31*%,$"1'E4)&%1*'31*)4'
84%1,'13(2)4'!OEPHGPD=QPEQRQ.

S%$1'#&%++)+'%1*'64"6)4,$)+'$1',:)'!EFD'F1,"&"87

!"#$%&'()*+'%, -++./00)*12,.314'2+51360

012. $+'%'6)4+"1'/$,:'%1'%##"31,'
"1'%'#"((31$,7'+$,)<'T+)4+'
#4)%,)'U"+,+'%1*'%4)'#"11)#,)*'
,"'",:)4'3+)4+',:)7'01"/<

3!1# $+'%1'%4,$#&)'"4'()++%8)'
6"+,)*'27'%'T+)4',"'%'O"43(<'
U"+,+'(%7'2)',:4)%*)*<

4!.5/ $+'%'*$+#3++$"1'%4)%'"1'
/:$#:'U"+,+'"4')1,4$)+'%4)'(%*)<

6-#2 $+'%1'"1&$1)'#"((31$,7'"4'
+),'"9'#"((31$,$)+<

+,17.28$& 64"6)4,7'#"11)#,+'
U"+,+',"'",:)4'#"(()1,+'"4'
6"+,+'/:$#:'4)6&7',"',:)(<

!"#$%#&'()(*+

SIOC ontology is an open data format for

describing structure and content of social

media sites in RDF.

SIOC follows best practices of the

Semantic Web by reusing existing

ontologies: Dublin Core, FOAF, SKOS.

Modularised design allows us to keep the

SIOC Core ontology simple and easy to

understand while ensuring extensibility.

W3C Member Submission of the SIOC

Ontology published in July 2007.

@:)'!EFD'%66&$#%,$"1'9""*'#:%$1

>1.*,%.&7%@II)/0.'/(&1

!EFD'"1,"&"87'$+'4%10)*'V,:'%1*'
!EFD'@76)+'("*3&)'L K,:'$1'KHH'
"1,"&"8$)+'%,'U@!;<'S"4)',:%1'
QHH',:"3+%1*'!EFD'*"#3()1,+'
$1*)A)*'27'U@!;.'%4"31*'
VR',:"3+%1*':$,+'"1'!/""8&)<

!EFD'C)>)&"6)4+'&$+,W'GHH'()(2)4+'
%1*'XHH'6"+,+

• JVH'%66&$#%,$"1+'%1*'+)4>$#)+'
3+$18'%1*'64"*3#$18'!EFD'*%,%

• YGH'%66&$#%,$"1+'9"4'!"#$%&'()
!EFD'*%,%'94"('2&"8+.'9"43(+.'
(%$&$18'&$+,+'%1*';)2'G<H'+$,)+

• !EFD'ZUE+'9"4'U?U.'U)4&.'N%>%.'
M327'"1'M%$&+

B3(780,31 $()),0'(31 $(&18-,31

Applications with
Native Storage of

SIOC Data

Bypassing Apps by
Directly Mapping
RDBMS to SIOC

Add-Ons and Fns
for Exporting SIOC
from Existing Apps

SIOC from Semi-
Structured Data

or Queryable APIs

SIOC Crawlers
and Aggregate
Storage of Data

Indexers of
SIOC Instances
w/o Full Storage

RDF Browsers
and Other Custom

SIOC Explorers

SIOC Detectors
and Clipping
Applications

Reuse and Import
for Data Portability

Requirements

Graphical Viz of
Derived SIOC

Networks

C((7%$4./&
(2%@II)/0.'/(&1

has_host

has_reply

has_container

User

Role

has_function

Usergroup

has_member

has_scope

has_creator

has_parent

Container

Space

has_space

Item

has_container

subClassOf

subClassOf

subClassOf

Forum

Site

Post

Topic

topic

Fig. 2. The SIOC food-chain

IV. CONCLUSION

In this paper, we briefly introduced the SIOC project, its
goals and means as well as uptake and services overview. In
particular, in the context of multi-agent systems and online
communities, an already active fields for several years if we
consider for instance [6], the SIOC ontology could be used to
express in a unified way information about activities of both
humans and agents interacting in these communities.

ACKNOWLEDGEMENTS

The work presented in this paper has been funded in part by
Science Foundation Ireland under Grant No. SFI/08/CE/I1380
(Lı́on-2).

REFERENCES

[1] T. Berners-Lee, J. A. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[2] U. Bojārs, J. G. Breslin, V. Peristeras, G. Tummarello, and S. Decker,
“Interlinking the Social Web with Semantics,” IEEE Intelligent Systems,
vol. 23, no. 3, pp. 29–40, May/June 2008.

[3] D. Brickley and L. Miller, “FOAF Vocabulary Specification,”
FOAF Project, Namespace Document 2 Sept 2004, 2004,
http://xmlns.com/foaf/0.1/. [Online]. Available: http://xmlns.com/foaf/0.1/

[4] P. Ciccarese, E. Wu, G. Wong, M. Ocana, J. Kinoshita, A. Ruttenberg,
and T. Clark, “The SWAN biomedical discourse ontology,” Journal of
Biomedical Informatics, vol. 41, no. 5, pp. 739–751, 2008.

[5] C. Bizer, R. Cyganiak, and T. Heath, “How to Publish Linked Data on
the Web,” Tech. Rep., 2007, http://www4.wiwiss.fu-berlin.de/bizer/pub/
LinkedDataTutorial/.

[6] F. Gandon and R. Dieng-Kuntz, “Distributed Artificial Intelligence for
Distributed Corporate Knowledge Management,” in CIA 2002 - 6th
Cooperative Information Agents - Intelligent Agents for the Internet and
Web September. Springer LNAI 2446, pp. 202–217.

10http://rdfs.org/sioc/applications/
11http://drupal.org/project/sioc

MALLOW’009: Turin, Italy, September 7-10, 2009

113

Norms, Organisations and Semantic Web Services:
The ALIVE approach

Sergio Alvarez-Napagao∗, Owen Cliffe†, Javier Vazquez-Salceda∗ and Julian Padget†
∗Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Barcelona, ES

†Department of Computer Science, University of Bath, BATH BA2 7AY, UK

Abstract—ALIVE is an EU FP7 STREP whose goal is the
convergence of organisational and normative modelling with
and service-oriented architectures (SOAs) using model-driven
software engineering. The project provides a framework for
designing and implementing systems, taking into account organ-
isational, coordination and service perspectives. A key project
aspect is the integration of normative systems with live SOAs,
through the distributed monitoring of normative state. Here we
give a brief overview of the project, explore of the domain from
a service context, outline the architecture under construction and
sketch the use-cases that illustrate and inform the project.

I. INTRODUCTION

Recent developments in service-oriented architectures, in-
cluding the proliferation of web services (both in a con-
ventional context and in the context of the semantic web)
have opened up the possibility for a new class of loosely
coupled, open system. The software engineering methodol-
ogy employed however constrains the resulting system and
approaches such as UML lack the means both to capture high-
level, abstract whole-system properties and to maintain them
at run time of systems without explicit (user) specification.

In the context of socially-situated systems organisational
models provide a way to model the relationships between
users and system components as roles. In addition norms
allow designers to specify succinctly the regulations that
govern actors playing given roles and the expectations on
their behaviour. These relationships may be maintained as the
normative state of a system either explicitly or implicitly at
run time, allowing designers to identify quickly where given
system behaviours (specified as norms) are being upheld or
violated. The ALIVE project aims to link existing work in
modelling organisational structures and norms with the state
of the art in service-oriented computing, allowing designers to
build service oriented architectures that enact organisational
interactions in a natural way. The process of engineering the
systems themselves remains very complex, so the project takes
advantage of model-driven development methodology to assist
in the development of tools and software by offering the
potential for verifiable automation of key translation processes.

II. THE ALIVE CONTEXT

The ALIVE architecture combines model driven develop-
ment (MDD) [6] with coordination and organisational mecha-
nisms, providing support for live and open systems of services.
ALIVE’s approach extends current trends in engineering by

Fig. 1. ALIVE Multi-Level Architecture

defining three levels in the design and management of dis-
tributed systems: the Service, Coordination and Organisation
Levels, illustrated in Fig. 1, and explained below.

The Service Level extends existing service models, to
make components aware of their social context and of the
rules of engagement with other components and services, by
means of semantic Web technologies. This “semantification”
is particularly useful when highly dynamic and frequently
changing services (the WSs in Fig. 1) are present, as the meta-
information in each service description (stored in a service
directory) aids tasks such as finding substitute services (either
via a matchmaker or manually) when the original fails.

The Coordination Level provides the means to specify, at a
high level, the patterns of interaction among services, using
a variety of powerful coordination techniques from recent
agent research [2], [5]. These are represented by agentified
services, that are organisationally-aware, meaning they are
aware of system objectives and manage task allocation and
workflow generation and agreement. Also, at the coordination
level agreed workflows can be adapted while the system is
running—essential when the system has to react to failures or
exceptions (e.g., failing payment or booking systems).

The Organisational Level provides a social context for the
Coordination and Service levels, specifying the organisational
rules that govern interaction and using recent developments in
organisational dynamics [7] to allow the structural adaptation

MALLOW’009: Turin, Italy, September 7-10, 2009

114

of systems over time. This is important when frequent changes
of rules and restrictions are expected.

The ALIVE architecture can be seen as a service-oriented
middleware supporting the combination, reorganisation and
adaptation of services at both design- and run-time. These
activities follow organisational patterns and adopt coordination
techniques. Furthermore, the MDD paradigm offers significant
developer assistance, through semi-automated transformations
between models of the three levels, as well as the capacity
for multiple target platforms and representation languages.
More details of the theoretical and methodological aspects
are available as public deliverables on the ALIVE website
(http:www.ist-alive.eu).

III. PROJECT USE-CASES

We now outline the three use cases on which we draw to
demonstrate and evaluate the effectiveness of the approach.

Intelligent tourism: The first use case (from TMT Factory
(http://tmtfactory.com), a company selling smart displays for
urban tourist environments) focuses on providing assistance
and advice to tourists through a variety of devices (including
static displays). At the organisational level the use case applies
models of city, regional and national laws to tune the types
of services which are offered to customers (for instance
night clubs not being recommended to under 18s), at the
coordination it negotiates connected services (such as transport
and activities) and at the service level it interacts with existing
providers (such as cinema booking services and transport
planning services).

Disaster Management: The second use case (from Thales D-
CIS laboratory (http://www.decis.nl/)) extends existing work
on the modelling and simulation of urban disasters (here the
flooding of the Rotterdam harbour area). At an organisational
level we model the structure and roles of the services (e.g. city
councils, local and national disaster centres and emergency
services) involved in handling a disaster at various scales
(from simple localised flooding to a city-wide flood) and
the regulations relating to how those parties interact. At the
coordination level we model interactions between parties,
instructions to particular agents (e.g. dispatching fire trucks to
a particular area) and at the service level we link to an existing
simulation environment which models the physical conditions
of a flood as it happens.

Communication in Virtual Environments: The final use case
(from Calico Jack Ltd. (http://www.calicojack.co.uk/), a net-
working research and services provider) deals with modelling
human norms and conventions relating to conversation in
virtual and on-line environments. The use case assumes that
users are active in a number of contexts (such as FaceBook,
Second life, Bebo, via SMS and over email) and handles
the intelligent redirection of communication between users
within these contexts, preserving modelled norms relating to
those communications, such as a user’s desire not to receive
unsolicited communication from unknown parties while in
Second Life. At the coordination level models relationships
between users and their presence in particular contexts, while

at the service level the focus is on low-level interaction with
the underlying services (e.g. via game APIs, or SMS gateways)
and composing services to interchange information contained
within communications, such as transcribing voice-mail mes-
sages to text for delivery within a text-only environment.

IV. CURRENT STATUS

The key to the success of the project is integrating state-of-
the art approaches and tools from each of the areas of interest
(organisations, coordination and services). To date, the project
has focused on developing an end-to-end methodology and
meta-model which unifies and relates concepts as follows:
(i) Using the OPERA [1] organisational model and corre-
sponding Operetta tool organisational concepts (Roles, Inter-
actions, and Norms) can be specified. (ii) These concepts are
reified as coordination actions and agents, which in turn may
be used to build coordination plans (using the GPGP/TÆMS
coordination framework [3]) for groups of agents enacting
roles within the organisation. (iii) Actions in coordination
plans link to the provision or consumption of semantic web
services, by matchmaking tasks to existing semantic service
descriptions and services using a hybrid matchmaker derived
from OWL-S MX [4]. We are developing tools to assist in the
process of semantic annotation of services. (iv) Agents enact
their roles within the (either autonomously or via human con-
trollers) organisation, by direct communication or by invoking
the selected services, maintaining relevant state. (v) Monitors
observe agent interactions, normative and organisational state
(e.g. the status of agents’ obligations, permissions, powers and
the roles currently being assumed), and the agents interact
with these monitors allowing them reason about the normative
effects of their actions and re-plan after service failures.

Planned project deliverables include a comprehensive de-
velopment methodology and a suite of Eclipse-based devel-
opment tools (design and run time user assistance tools and
programming libraries for system development).

Acknowledgement: This work has been supported in part by the
European Commission, project FP7-215890 (ALIVE).

REFERENCES

[1] Dignum, V.: A Model for Organizational Interaction Based on Agents,
Founded in Logic. PhD thesis, University of Utrecht. 2004.

[2] Ghijsen, M., Jansweijer, W., Wielinga, B.B.: Towards a Framework for
Agent Coordination and Reorganization, AgentCoRe. In: Coordination,
Organizations, Institutions, and Norms in Agent Systems III. LNCS, vol.
4870, pp. 1–14. Springer, Heidelberg (2008).

[3] Lesser, V: Evolution of the GPGP/TAEMS domain-independent coordi-
nation framework. In AAMAS ’02: Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems, pages
1-2, New York, NY, USA, 2002. ACM.

[4] Klusch, M., Fries, B., Sycara, K., Automated Semantic Web Service
Discovery with OWLS-MX, Proc. 5th Intl Conf. on Autonomous Agents
and Multi-Agent Systems (AAMAS), Hakodate, Japan, 2006.

[5] Matskin, M. et al.: Enabling Web Services Composition with Software
Agents. In: Proc. of the Conference on Internet and Multimedia Systems,
and Applications. Honolulu (2005)

[6] OMG: Model Driven Architecture. http://www.omg.org/mda/. Retrieved
20090527.

[7] van der Vecht, B., Dignum, F., Jules, J., Meyer, Ch., Dignum, V.:
Organizations and Autonomous Agents: Bottom-up Dynamics of Coor-
dination Mechanisms. In: 5th Workshop on Coordination, Organizations,
Institutions, and Norms in Agent Systems. Estoril (2008).

MALLOW’009: Turin, Italy, September 7-10, 2009

115

MALLOW’009: Turin, Italy, September 7-10, 2009

116

Introduction to the Proceedings of FAMAS’09
Formal Approaches to Multiagent Systems

(Introductory Essay of the Workshop)

Barbara Dunin-Kȩplicz∗ and Rineke Verbrugge†
∗Institute of Informatics, Warsaw University

Banacha 2, 02-097 Warsaw, Poland and
Institute of Computer Science, Polish Academy of Sciences

Ordona 21, 01-237 Warsaw, Poland Email: {keplicz}@mimuw.edu.pl
†Institute of Artificial Intelligence, University of Groningen

PO Box 407, 9700 AK Groningen, The Netherlands
Email: rineke@ai.rug.nl

Abstract

In recent years, multiagent systems have come to form one of the key technologies for software development. The
Formal Approaches to Multiagent Systems (FAMAS) workshop series brings together researchers from the fields
of logic, theoretical computer science and multi-agent systems in order to discuss formal techniques for specifying
and verifying multiagent systems, including many subtle and not easy to formalize aspects of agency.

FAMAS addresses logics and formal methods for multiagent systems. Specifically, the workshop series addresses
formal approaches to cooperation, multi-agent planning, communication, coordination, negotiation, games, and
reasoning under uncertainty in a distributed environment.

FORMAL APPROACHES TO MULTIAGENT SYSTEMS: THE FOUR WORKSHOPS

The first FAMAS workshop, FAMAS’03, was a successful satellite event of the European Conference on
Theory and Practice of Software (ETAPS’03) in Warsaw. It took place on April 12th 2003, and afterwards
a selection of contributed and invited papers was published in Fundamenta Informaticae as volume 63,
issue 2,3 of 2004.

The second FAMAS workshop, FAMAS’06, took place on Monday 28 August, 2006 in conjunction with
the European Conference on Artificial Intelligence (ECAI’06) at the Riva del Garda. Again, a selection
of FAMAS speakers were invited to contribute an extended version of their work to a special issue of a
well-known international journal, this time the Journal of Autonomous Agents and Multiagent Systems
(JAAMAS), volume 19 (1), 2009.

The third FAMAS workshop, FAMAS’007, was one of the agent workshops gathered together under the
umbrella of MALLOW’007 and AGENTS’007, taking place from 3 to 7 September 2007 in Durham.
A special issue of the Logic Journal of the IGPL will gather extended versions of the best papers of
FAMAS’007.

As its predecessor, this fourth FAMAS workshop, FAMAS’09, is a part of MALLOW, this time organized
in Torino, from September 7 to 10, 2009. We look forward to a lively workshop with high-quality
contributions. Again, best papers will be invited to submit an extended version for a special issue of
the Logic Journal of the IGPL.

MALLOW’009: Turin, Italy, September 7-10, 2009

117

Let us give a short preview of the volume. All research reported here is squarely related to practice, even
if the formal approach is taken. Thus, just as in previous installments of FAMAS, contributions devote
their attention to pressing practical problems such as supporting organizations, allocating goods in a fair
way, and effective communication.

Since the first FAMAS edition, emphasis has been shifting to correspond to multi-agent systems being
situated in a dynamic environment. Also, quite a few authors take on the challenge to combine different
logics or to investigate the relations between different formal viewpoints, for example game theory and
learning theory, or epistemic logic and belief revision, in a methodologically sound manner.

MECHANISMS FOR REACHING AGREEMENT

Gujar and Narahari, in their paper “Redistribution mechanisms for the assignment of heterogeneous
objects”, consider a problem of which one can meet many variations in practice. Suppose that there
is a certain number of different resources available, and that there is a higher number of agents, each of
them interested in using one of the resources.

It seems clear that one should try to assign the resources in such a way that the agent who values an
object the most gets it, and preferably in such a way that in the end the total transfer of money in the
system is balanced: the system or the auctioneer are not left with a deficit or a surplus. This may be done
by redistributing some money after the allocation of the objects to the paying agents. The authors show
which types of constraints on the redistribution mechanism are feasible, and which are not.

In “Talking your way into agreement: Belief merge by persuasive communication”, Baltag and Smets take
a dynamic approach to the issue of how a group of agents’ individual knowledge and belief could be
merged into a single set of group beliefs. The simplest example is that of distributed ‘hard’ knowledge,
which can be transformed into group knowledge if the agents make truthful public announcements of all
their individual knowledge. At the other extreme, for agents’ ‘soft’ beliefs, one could enforce a hierarchy
by giving priority to certain agents’ beliefs over others in a so-called lexicographic merge.

The authors also consider some more or less democratic intermediate possibilities, such as sincere persua-
sive public announcements of ‘soft’ (defeasible) knowledge. They illustrate their definitions with concrete
examples. It turns out the essential role of the person who sets the agenda and determines the order in
which speakers and issues are scheduled.

NEW APPROACHES TO KNOWLEDGE AND BELIEF

In the paper “Comparing strengths of beliefs explicitly”, authors de Jongh and Ghosh introduce a novel
ordering of formulas: ϕ ≥B ψ for an agent, if its strength of belief in ϕ is greater than that in ψ. Such
explicit comparative formulas can be used to express notions such as plausibility and disbelief in ϕ, where
an agent’s degree of belief in ¬ϕ is greater than that in ϕ.

The authors show how this added expressivity to the standard logic of beliefs helps to model common
decision situations. The authors investigate both the resulting comparative belief ordering and a different
but related plausibility ordering reminiscent of David Lewis’ sphere systems for counterfactuals. Then
they provide a sound and complete axiomatization for the single-agent case. Finally, they extend their
approach to multi-agent situations and dynamic environments.

MALLOW’009: Turin, Italy, September 7-10, 2009

118

Schwarzentruber aims to develop a multi-agent epistemic logic based on spatial geometric semantics in his
contribution “Knowledge about lights along a line”. Interestingly, the paper has been inspired by didactical
considerations: in a given concrete situation in which agents and lamps are placed on a line, what do
agents know about lamps and about the knowledge of the other agents of these? Such concrete reasoning
based on what agents can and cannot see, may help students to learn abstract aspects of epistemic logics,
such as higher-order knowledge and the effects of public announcements.

STRATEGIC GAMES

Gierasimczuk, Kurzen and Velazquez-Queseda, in their paper “Games for learning: a sabotage approach”,
also cast their results in an educative framework, in their case in the much more abstract setting of learning
theory. They introduce calibrated versions of a sabotage game, where a ‘teacher’ is sometimes helpful to
a ‘student’ in getting from the initial state to a final state, sometimes not, and where also the student may
display different degrees of helpfulness.

The paper describes the interactive nature of learning by game-theoretical and logical means. The existence
of a winning strategy is characterized by formulas in Sabotage Modal Logic, and the paper is rounded
off with a complexity analysis.

The contribution by Chandrashekar and Narahari, “On the incentive compatible core of a procurement
network game with incomplete information” is also set squarely in a game-theoretical framework, namely
that of cooperative games with incomplete information. Suppose that a single buyer is interested in buying
multiple units of a single item, that can be supplied through a linear supply chain in which multiple
suppliers may take part. At each stage, all suppliers have their own costs and a limited capacity . How
can this negotiation problem be solved in a manner profitable to all participants if the information such
as each supplier’s cost is only privately held? Taking off from earlier work by Myerson, the authors show
precisely how such allocations to coalitions of suppliers can be done.

FORMAL APPROACHES TO THE DYNAMICS OF MULTI-AGENT SYSTEMS

Goranko and Shkatov, in their contribution “Tableau-based decision procedure for the full coalitional
multiagent logic of branching time”, take a second look at the coalitional multi-agent temporal-epistemic
logic of branching time, as introduced by Halpern and Vardi in 1989. The new logic extends standard
computation tree logic (CTL) by adding modalities expressing distributed and common knowledge among
all possible teams of agents in the language.

Goranko and Shkatov provide an elegant tableau-based decision procedure for this logic. They prove that
the procedure is sound and complete, and show that the decision procedure works in exponential time.
Therefore in terms of complexity, their quite expressive logic fares no worse than standard epistemic logic
with common knowledge.

In their paper “A framework to model norm dynamics in answer set programming”, the authors Panagiotidi,
Nieves and Vazquez-Salceda fruitfully apply methods from logic programming to the representation of
deontic concepts like prohibitions, obligations and permissions in normative multi-agent systems.

Their Answer Set Programming approach provides a neat operational semantics that helps to model how
agents reason about norms and actions in a dynamic setting. Thus, important aspects like effects of
actions, deadlines, violations and sanctions are naturally represented. The authors present some results
about reachability and a partial implementation.

MALLOW’009: Turin, Italy, September 7-10, 2009

119

ACKNOWLEDGMENTS

We would like to thank all the people who helped to bring about FAMAS’09. First of all, we thank all
speakers for ensuring a diverse and interesting workshop. Special thanks are due to the members of the
program committee for their professionalism and their dedication to select papers of quality and to provide
authors with useful, constructive feedback during the in-depth reviewing process:

Program committee
• Hans van Ditmarsch, University of Aberdeen, UK and University of Sevilla, Spain
• Andreas Herzig, Université Paul Sabatier, France
• Wiebe van der Hoek, University of Liverpool , UK
• Wojtek Jamroga, Clausthal University of Technology, Germany and University of Luxembourg
• John-Jules Meyer, Utrecht University, The Netherlands
• Wojciech Penczek, University of Podlasie and Polish Academy of Sciences, Poland
• David Robertson, University of Edinburgh, UK
• Jeff Rosenschein, The Hebrew University of Jerusalem, Israel
• Carles Sierra, IIIA, Spanish Research Council, Spain
• Andrej Szałas, Warsaw University, Poland and Linköping University, Sweden
• Onn Shehory, IBM - Haifa Research Labs, Israel

The FAMAS website would not exist without the help of Michal Ślizak in Warsaw.

Warszawa Barbara Dunin-Kȩplicz
Groningen Rineke Verbrugge

August 2009

MALLOW’009: Turin, Italy, September 7-10, 2009

120

Redistribution Mechanisms for Assignment of Heterogeneous Objects

Sujit Gujar
Dept of Computer Science and Automation

Indian Institute of Science
Bangalore, India

sujit@csa.iisc.ernet.in

Y Narahari
Dept of Computer Science and Automation

Indian Institute of Science
Bangalore, India

hari@csa.iisc.ernet.in

Abstract

There are p heterogeneous objects to be assigned to n
competing agents (n > p) each with unit demand. It is
required to design a Groves mechanism for this assign-
ment problem satisfying weak budget balance, individual
rationality, and minimizing the budget imbalance. This calls
for designing an appropriate rebate function. Our main
result is an impossibility theorem which rules out linear
rebate functions with non-zero efficiency in heterogeneous
object assignment. Motivated by this theorem, we explore
two approaches to get around this impossibility. In the first
approach, we show that linear rebate functions with non-
zero efficiency are possible when the valuations for the
objects have some relationship. In the second approach,
we show that rebate functions with non-zero efficiency are
possible if linearity is relaxed.
Keywords: Groves Mechanism, Budget imbalance, Redistri-
bution mechanism, Rebate function

1. Introduction

Consider that p resources are available and each of n > p
agents is interested in utilizing one of them. Naturally. we
should assign these resource such that those who value
them most get it. Since Groves mechanisms [13], [3], [6]
have attractive game theoretic properties such as domi-
nant strategy incentive compatibility (DSIC) and allocative
efficiency (AE), Groves mechanisms are widely used in
practice. However, in general, a Groves mechanism need not
be budget balanced. That is, the total transfer of money in
the system may not be zero. So the system will be left with
a surplus or deficit. Using Clarke’s mechanism [3], we can
ensure under fairly weak conditions that there is no deficit
of money, that is the mechanism is weakly budget balanced.
In such a case, the system or the auctioneer will be left with
some money.

Often, the surplus money is not really needed in many
social settings such as allocations by the Government among
its departments, etc. Since strict budget balance cannot
coexist with DSIC and AE (Green-Laffont theorem [5]), we
would like to redistribute the surplus to the participants as

far as possible, preserving DSIC and AE. This idea was
originally proposed by Laffont [11]. The total payment made
by the mechanism as a redistribution will be referred to as
the rebate to the agents.

In this paper, we consider the following problem. There
are n agents and p heterogeneous objects (n ≥ p > 1).
Each agent desires one object out of these p objects. Each
agent’s valuation for any of the objects is independent of his
valuations for the other objects. Valuations of the different
agents are also mutually independent. Our goal is to design
a mechanism for assignment of the p objects among the
n agents which is allocatively efficient, dominant strategy
incentive compatible, and maximizes the rebate (which is
equivalent to minimizing the budget imbalance). In addition,
we would like the mechanism to satisfy feasibility and
individual rationality. Thus, we seek to design a Groves
mechanism for assigning p heterogeneous objects among n
agents satisfying:

1) Feasibility (F) or weak budget balance. That is, the
total payment to the agents should be less than or equal
to the total received payment.

2) Individual Rationality (IR), which means that each
agent’s utility by participating in the mechanism
should be non-negative.

3) Minimizes budget imbalance.

We call such a mechanism Groves redistribution mech-
anism or simply redistribution mechanism. Designing a
redistribution mechanism involves design of an appropriate
rebate function. If in a redistribution mechanism, the rebate
function for each agent is a linear function of the valuations
of the remaining agents, we refer to such a mechanism as a
linear redistribution mechanism (LRM). In many situations,
design of an appropriate LRM turns out to be a problem of
solving a linear program.

Due to the Green-Laffont theorem [5], we cannot guaran-
tee 100% redistribution at all type profiles. So a performance
index for the redistribution mechanism would be the worst
case redistribution. That is, the fraction of the surplus which
is guaranteed to be redistributed irrespective of the bid
profiles. This fraction will be referred to as efficiency in
the rest of the paper (Note: This efficiency is not to be

MALLOW’009: Turin, Italy, September 7-10, 2009

121

confused with allocative efficiency). The advantage of worst
case analysis is that, it does not require any distributional
information on the type sets of the agents. It is desirable
that the rebate function is deterministic and anonymous.
A rebate function is said to be anonymous if two agents
having the same bids get the same rebate. So, the aim
is to design an anonymous, deterministic rebate function
which maximizes the efficiency and satisfies feasibility and
individual rationality.

Our paper seeks to non-trivially extend the results of
Moulin [12] and Guo and Conitzer [8] who have indepen-
dently designed a Groves mechanism in order to redistribute
the surplus when objects are identical (homogeneous objects
case). Their mechanism is deterministic, anonymous, and
has maximum efficiency over all possible Groves redis-
tribution mechanisms. We will refer to their mechanism
as the worst case optimal (WCO) mechanism. The WCO
Mechanism is a linear redistribution mechanisms. In this
paper, we concentrate on designing a linear redistribution
mechanism for the heterogeneous objects case.

1.1. Relevant Work

As it is impossible to achieve allocative efficiency, DSIC,
and budget balance simultaneously, we have to compromise
on one of these properties. Faltings [4] and Guo and Conitzer
[9] achieve budget balance by compromising on AE. If we
are interested in preserving AE and DSIC, we have to settle
for a non-zero surplus or a non-zero deficit of the money
(budget imbalance) in the system. To reduce budget imbal-
ance, various rebate functions have been designed by Bailey
[1], Cavallo [2], Moulin [12], and Guo and Conitzer [8].
Moulin [12] and Guo and Conitzer [8] designed a Groves
redistribution mechanism for assignment of p homogeneous
objects among n > p agents with unit demand. Guo and
Conitzer [10] designed a redistribution mechanism which is
optimal in the expected sense for the homogeneous objects
setting. Thus, it will require some distributional information
over the type sets of the agents. Gujar and Narahari [7] have
designed a non-linear rebate function in the heterogeneous
settings. However they only conjectured that the rebate
function has a non-zero efficiency and is worst case optimal.
To the best of our knowledge, linear rebate functions have
not been investigated in the heterogeneous settings.

1.2. Contributions and Outline

In this paper, we investigate the question of existence
of a linear rebate function for redistribution of surplus in
assignment of heterogeneous objects. Our result shows that
in general, when the domain of valuations for each agent is
Rp+, it is impossible to design a linear rebate function, with
non-zero efficiency, for the heterogeneous settings. However,
we can relax the assumption of independence of valuations

of different objects to get a linear rebate function with non-
zero efficiency. Another way to get around the impossibility
theorem is to relax the linearity requirement of a rebate
function. In particular, our contributions in this paper can
be summarized as follows.
• We first prove the impossibility of existence of a

linear rebate function with non-zero efficiency for the
heterogeneous settings when the domain of valuations
for each agent is Rp+ and the valuations for the objects
are independent.

• When the objects are heterogeneous but the values
for the objects of an agent can be derived from one
single number, that is, the private information is still
single dimensional, we design a Groves redistribution
mechanism which is linear, anonymous, deterministic,
feasible, individually rational, and efficient. In addition,
the mechanism is worst case optimal.

• We show the existence of a non-linear rebate function
that has non-zero efficiency. This is different from
the rebate function presented in [7] which is only
conjectured to have non-zero efficiency.

The paper is organized as follows. In Section 2, we
introduce the notation followed in the paper and describe
some background work from the literature. In Section 3,
we state and prove the impossibility result. We derive an
extension of the WCO mechanism for heterogeneous objects
but with single dimensional private information in Section
4. The impossibility result does not rule out possibility of
non-linear rebate functions with strictly positive efficiency.
We show this with a redistribution mechanism, BAILEY,
which is Bailey’s mechanism [1] applied to the settings
under consideration in Section 5. We will conclude the paper
in Section 6. We need an ordering of the bids of the agents
which we define in Appendix A.

2. Preliminaries and Notation

The notation used is summarized in Table 2. Note that,
where the context is clear, we will use t, ti, ri, k, and vi to
indicate t(b), ti(b), ri(b), k(b), and vi(k(b)) respectively. In
this paper, we assume that the payment made by agent i is
of the form ti(·)− ri(·), where ti(·) is agent i’s payment in
the Clarke pivotal mechanism [3]. We refer to

∑
i ti, as the

total Clarke payment or the surplus in the system.

2.1. Optimal Worst Case Redistribution when Ob-
jects are Identical

When the objects are identical, every agent i has the same
value for each object, call it vi. Without loss of generality,
we will assume, v1 ≥ v2 ≥ . . . ≥ vn. In Clarke pivotal
mechanism, the first p agents will receive the objects and
each of these p agents will pay vp+1. So, the surplus in the

MALLOW’009: Turin, Italy, September 7-10, 2009

122

n Number of agents
N Set of the agents = {1, 2, . . . , n}
p Number of objects
i Index for an agent, i = 1, 2, . . . , n
j Index for object, j = 1, 2, . . . , p

R+ Set of positive real numbers
Θi The space of valuations of agent i, = Rp

+

bi Bid submitted by agent i, = (bi1, bi2, . . . , bip) ∈ Θi

b (b1, b2, . . . , bn), the bid vector
K The set of all allocations of p objects to n agents, each getting at most one object

k(b) An allocation, k(.) ∈ K, corresponding to the bid profile b
k∗(b) An allocatively efficient allocation when the bid profile is b
k∗−i(b) An allocatively efficient allocation when the bid profile is b and agent i is

excluded from the system
vi(k(b)) Valuation of the allocation k to the agent i,

when b is the bid profile
v v : K → R, the valuation function, v(k(b)) =

P
i∈N vi(k(b))

ti(b) Payment made by agent i in the Clarke pivotal mechanism, when the bid
profile is b, ti(b) = vi(k

∗(b))−
“
v(k∗(b))− v(k∗−i(b))

”
t(b) The Clarke payment, that is, the total payment received from all the agents,

t(b) =
P

i∈N ti
t−i The Clarke payment received in the absence of the agent i
ri(b) Rebate to agent i when bid profile is b

e The efficiency of the mechanism, = infb:t6=0

P
ri(b)

t(b)

Table 1. Notation

system is pvp+1. For this situation, Moulin [12] and Guo and
Conitzer [8] have independently designed a redistribution
mechanism.

Guo and Conitzer [8] maximize the worst case fraction of
the total surplus which gets redistributed. This mechanism
is called the WCO mechanism. Moulin [12] minimizes
the ratio of budget imbalance to the value of an optimal
allocation, that is the value of an allocatively efficient
allocation. The WCO mechanism coincides with Moulin’s
feasible and individually rational mechanism. Both the above
mechanisms work as follows. After receiving bids from
the agents, bids are sorted in decreasing order. The first
p agents receive the objects. Each agent’s Clarke payment
is calculated, say ti. Every agent i pays, pi = ti − ri,
where, ri is the rebate function for an agent i. Suppose
y1 ≥ y2 ≥ . . . ≥ yn−1 are the bids of the (n − 1) agents
excluding the agent i, then the rebate to the agent i is given
by,

rWCO
i =

n−1∑
j=p+1

cjyj (1)

where,

cj =
(−1)j+p−1 (n− p)

(
n− 1
p− 1

)
j

(
n− 1
j

)∑n−1
k=p

(
n− 1
k

)

n−1∑
k=j

(
n− 1
k

)
(2)

for j = p+ 1, . . . , n− 1.
The efficiency of this mechanism is e∗, where e∗ is given by,

e∗ = 1−

(
n− 1
p

)
∑n−1
k=p

(
n− 1
k

)
This has been shown to be optimal in the sense that no
other mechanism can guarantee greater than e∗ fraction
redistribution in the worst case.

3. Impossibility of Linear Rebate Function
with Non-Zero
Efficiency

We have just reviewed the design of a redistribution
mechanism for homogeneous objects. We have seen that the
WCO mechanism is a linear function of the types of agents.
We now explore the general case. In the homogeneous
case, the bids are real numbers which can be arranged in
decreasing order. The Clarke surplus is a linear function
of these ordered bids. For the heterogeneous scenario, this
would not be the case. Each bid bi belongs to Rp+; hence,
there is no unique way of defining an order among the bids.
Moreover, the Clarke surplus is not a linear function of
the received bids in the heterogeneous case. So, we cannot
expect any linear/affine rebate function of types to work well
at all type profiles. We will prove this formally.

We first generalize a theorem due to Guo and Conitzer
[8]. The context in which Guo and Conitzer [8] stated and
proved the theorem is in the homogeneous setting. We show
that this result holds true in the heterogeneous objects case

MALLOW’009: Turin, Italy, September 7-10, 2009

123

also. The symbol < denotes the order over the bids of the
agents, as defined in the Appendix A.2.

Theorem 3.1: Any deterministic, anonymous rebate func-
tion f is DSIC iff,

ri = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) ∀ i ∈ N (3)

where, v1 < v2 < . . . < vn.
Proof: We provide only a sketch of the proof.
• The “if” part: If ri takes the form given by equation

(3), then the rebate of agent i is independent of his
valuation. The allocation rule satisfies allocative effi-
ciency. So, the mechanism is still Groves and hence
DSIC. The rebate function defined is deterministic.
If two agents have the same bids, then, as per the
ordering defined in Appendix, <, they will have the
same ranking. Suppose agents i and i + 1 have the
same bids. Thus vi < vi+1 and vi+1 < vi. So,
ri = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) and ri+1 =
f(v1, v2, . . . , vi, vi+2, . . . , vn). Since vi = vi+1, ri =
ri+1. Thus the rebate function is anonymous.

• The “only if” part: The homogeneous objects case is
a special case of the mechanism. When objects are
homogeneous, the ordering of the bids < matches the ≥
ordering on real numbers. If the rebate function is not
in the form defined in the theorem, the rebate function
would not simultaneously satisfy the DSIC, anonymity,
and deterministic properties. This is because the above
form of the rebate function is a necessary condition
when the objects are identical. Thus we need a rebate
function in this form in heterogeneous settings as well.

�
We now state and prove the main result of this paper.
Theorem 3.2: If a redistribution mechanism is feasible

and individually rational, then there cannot exist a linear
rebate function which satisfies all the following properties:
• DSIC
• deterministic
• anonymous
• non-zero efficiency.

Proof : Assume that there exists a linear function, say f ,
which satisfies the above properties. Let v1 < v2 < . . . <
vn. Then according to Theorem 3.1, for each agent i,

ri = f(v1, v2, . . . , vi−1, vi+1, . . . , vn)
= (c0, ep) + (c1, v1) + . . .+ (cn−1, vn)

where, ci = (ci1, ci2, . . . , cip) ∈ Rp, ep = (1, 1, . . . , 1) ∈
Rp, and (·, ·) denotes the inner product of two vectors in
Rp. Now, we will show that the worst case performance of
f will be zero. To this end, we will study the structure of
f , step by step.

Observation 1: Consider type profile (v1, v2, . . . , vn) where
v1 = v2 = . . . = vn = (0, 0, . . . , 0). For this type profile,

the total Clarke surplus is zero and ri = (c0, ep) ∀ i ∈ N .
Individual rationality implies,

(c0, ep) ≥ 0 (4)

Feasibility should imply the total redistributed amount is less
than the surplus, that is,∑

i

ri = n(c0, ep) 6 0 (5)

From, (4) and (5), it is easy to see that, (c0, ep) = 0.

Observation 2: Consider type profile (v1, v2, . . . , vn) where
v1 = (1, 0, 0, . . . , 0) and v2 = . . . , vn = (0, 0, . . . , 0). For
this type profile, r1 = 0 and if i 6= 1, ri = c11 ≥ 0 for
individual rationality. For this type profile, the Clarke surplus
is zero. Thus, for feasibility,

∑
i ri = (n − 1)c11 ≤ t = 0.

This implies, c11 = 0.
In the above profile, by considering v1 = (0, 1, , 0, . . . , 0),

we get c12 = 0. Similarly, one can show c13 = c14 = . . . =
c1p = 0.

Observation 3: Continuing like above with, v1 = v2 = . . . =
vi = ep, and vi+1 = (1, 0 . . . , 0) or (0, 1, 0 . . . , 0), . . . or
(0, . . . , 0, 1), we get, ci+1 = (0, 0, . . . , 0) ∀ i ≤ p−1. Thus,

ri =

 (cp+1, vp+2) + . . .+ (cn−1, vn) : if i ≤ p+ 1
(cp+1, vp+1) + . . .+ (ci−1, vi−1)

+(ci, vi+1) + . . .+ (cn−1, vn) : otherwise

We now claim that the efficiency of this mechanism is
zero. That is, in the worst case, the fraction of the Clarke
surplus that gets redistributed is zero. Suppose we show that
there exists a type profile, for which the Clarke surplus is
non-zero and the rebate to each agent is zero. Then the
theorem is proved. So, it remains to show the existence of
such a type profile. Consider the type profile:

v1 = (2p− 1, 2p− 2, . . . , p)
v2 = (2p− 2, 2p− 3, . . . , p− 1)
...
vp = (p, p− 1, . . . , 1)

(6)

and vp+1 = vp+2 . . . = vn = (0, 0, . . . , 0).
Now, with this type profile, agent 1 pays (p − 1), agent

2 pays (p− 2), . . . , agent (p− 1) pays 1 and the remaining
agents pay 0. Thus, the Clarke payment received is non-zero
but it can be seen that ri = 0 for all the agents.

�
The above theorem provides disappointing news. It rules out
the possibility of a linear redistribution mechanism for the
heterogeneous settings which will have non-zero efficiency.
However, there are two ways to get around it.

1) The domain of types under which Theorem 3.2 holds
is, Θi = Rp+, ∀ i ∈ N . One idea is to restrict the
domain of types. In Section 4, we design a worst

MALLOW’009: Turin, Italy, September 7-10, 2009

124

case optimal linear redistribution mechanism when the
valuations of agents for the heterogeneous objects have
a certain type of relationship.

2) Explore the existence of a rebate function which is
not a linear and yields a non-zero performance. We
explore this in Section 5.

4. A Redistribution Mechanism for Heteroge-
neous Objects When Valuations have Scaling
Based Relationship

Consider a scenario where the objects are not identical
but the valuations for the objects are related and can be
derived by a single parameter. As a motivating example,
consider the website somefreeads.com and assume that
there are p slots available for advertisements and there are
n agents interested in displaying their ads. Naturally, every
agent will have a higher preference for a higher slot. Define
click through rate of a slot as the number of times the ad
is clicked, when the ad is displayed in that slot, divided by
the number of impressions. Let the click through rates for
slots be α1 ≥ α2 ≥ α3 . . . ≥ αp. Assume that each agent
has the same value for each click by the user, say vi. So,
the agent’s value for the jth slot will be αjvi. Let us use the
phrase valuations with scaling based relationship to describe
such valuations. We define this more formally below.

Definition 4.1: We say the valuations of the agents have
scaling based relationship if there exist positive real numbers
α1, α2, α3, . . . , αp > 0 such that, for each agent i ∈ N , the
valuation for object j, say θij , is of the form θij = αjvi,
where vi ∈ R+ is a private signal observed by agent i.
Without loss of generality, we assume, α1 ≥ α2 ≥ α3 . . . ≥
αp > 0. We immediately note that the homogeneous setting
is a special case that arises when α1 = α2 = α3 = . . . =
αp > 0

For the above setting, we design a Groves mechanism
which is almost budget balanced and optimal in the worst
case. Our mechanism is similar to that of Guo and Conitzer
[8] and our proof uses the same line of arguments.

The following theorem by Guo and Conitzer [8] will be
used to design our mechanism.

Theorem 4.1: For given n and real numbers
a1, a2, . . . , an,
for any x1 ≥ x2 ≥ . . . xn ≥ 0,

a1x1+a2x2+. . . anxn ≥ 0 iff
j∑
i=1

ai ≥ 0 ∀j = 1, 2 . . . , n

4.1. The Proposed Mechanism

We will use a linear rebate function. (For simplifying
equations, we will assume that there are (n − p) virtual
objects, with αp+1 = αp+2 = . . . = αn = 0). We propose
the following mechanism:

• The agents submit their bids.
• The bids are sorted in decreasing order.
• The highest bidder will be allotted the first object, the

second highest bidder will be allotted the second object,
and so on.

• Agent i will pay ti−ri, where ti is the Clarke payment
and ri is the rebate.

ti =
p∑
j=i

(αj − αj+1)vj+1

• Let agent i’s rebate be,

ri = c0 +c1v1 + . . .+ci−1vi−1 +civi+1 + . . .+cn−1vn

The mechanism is required to be individually rational and
feasible.
• The mechanism will be individually rational iff ri ≥

0 ∀i ∈ N . That is, ∀ i ∈ N ,

c0 +c1v1 + . . .+ci−1vi−1 +civi+1 + . . .+cn−1vn ≥ 0.

• The mechanism will be feasible if the total redistributed
payment is less than or equal to the surplus. That is,∑
i ri ≤ t =

∑
i ti or t−∑i ri ≥ 0, where,

t =
p∑
j=1

j(αj − αj+1)vj+1.

With the above setup, we now derive c0, c1, . . . , cn−1 that
will maximize the fraction of the surplus which is redis-
tributed among the agents.

Step 1: First, we claim that, c0 = c1 = 0. This can be proved
as follows. Consider the type profile, v1 = v2 = . . . = vn =
0. For this type profile, individual rationality implies ri =
c0 ≥ 0 and t = 0. So for feasibility,

∑
i ri = nc0 ≤ t = 0.

That is, c0 should be zero. Similarly, by considering type
profile v1 = 1, v2 = . . . = vn = 0, we get c1 = 0.

�
Step 2: Using c0 = c1 = 0,
• The feasibility condition can be written as:

n−1∑
j=2

{
(j − 1)(αj−1 − αj)− (j − 1)cj−1

−(n− j)cj
}
vj − (n− 1)cn−1vn ≥ 0 (7)

• The individual rationality condition can be written as

c2v2 + . . .+ci−1vi−1 +civi+1 + . . .+cn−1vn ≥ 0 (8)

Step 3: When we say our mechanism’s efficiency is e, we
mean,

∑
i ri ≥ et, that is,

n−1∑
j=2

(
− e(j − 1)(αj−1 − αj) + (j − 1)cj−1

+(n− j)cj
)
vj + (n− 1)cn−1vn ≥ 0 (9)

MALLOW’009: Turin, Italy, September 7-10, 2009

125

Step 4: Define β1 = α1−α2, and for i = 2, . . . , p, let βi =
i(αi−αi+1)+βi−1. Now, inequalities (7), (8), and (9) have
to be satisfied for all values of v1 ≥ v2 ≥ . . . ≥ vn.
Invoking Theorem (4.1), we need to satisfy the following
set of inequalities:∑j

i=2 ci ≥ 0 ∀j = 2, . . . n− 1
eβ1 ≤ (n− 2)c2 ≤ β1

eβi−1 ≤ n
∑i−1
j=2 cj + (n− i)ci ≤ βi−1 i = 3, . . . , p

eβp ≤ n
∑i−1
j=2 cj + (n− i)ci ≤ βp i = p+ 1, . . . , n− 1

eβp ≤ n
∑n−1
j=2 cj ≤ βp

(10)
Now, the social planner wishes to design a mechanism that
maximizes e subject to the above constraints.

Define xj =
∑j
i=2 ci for j = 2, . . . , n − 1. This is

equivalent to solving the following linear program.

maximize e
s.t.

eβ1 ≤ (n− 2)x2 ≤ β1

eβi−1 ≤ ixi−1 + (n− i)xi ≤ βi−1 i = 3, . . . , p
eβp ≤ ixi−1 + (n− i)xi ≤ βp i = p+ 1, . . . , n− 1

eβp ≤ nxn−1 ≤ βp
xi ≥ 0 ∀i = 2, . . . , n− 1

(11)
So, given n and p, the social planner will have to solve
the above optimization problem and determine the optimal
values of e, c2, c3, . . . , cn−1. It would be of interest to derive
a closed form solution for the above problem.

The discussion above can be summarized as the following
theorem.

Theorem 4.2: When the valuations of the agents have
scaling based relationship, for any p and n > p + 1, the
linear redistribution mechanism obtained by solving LP (11)
is worst case optimal among all Groves redistribution mech-
anisms that are feasible, individually rational, deterministic,
and anonymous.
Proof: This can be proved following the line of arguments
of Guo and Conitzer [8].

�

5. Non-linear Redistribution Mechanisms for
the Heterogeneous Setting

We should note that the homogeneous objects case is a
special case of the heterogeneous objects case in which each
bidder submits the same bid for all objects. Thus, we cannot
expect any redistribution mechanism to perform better than
the homogeneous objects case. For n ≤ p+1, the worst case
redistribution is zero for the homogeneous case and so will
be for the heterogeneous case. So, we assume n > p+1. We
construct a redistribution scheme by applying the mechanism
proposed by Bailey [1] to the heterogeneous settings. We
refer to this proposed mechanism on heterogeneous objects

as BAILEY redistribution mechanism. It is crucial to note
that the non-zero efficiency of the BAILEY mechanism does
not trivially follow from that of the mechanism in [1].

5.1. BAILEY Mechanism

First, consider the case when p = 1. Let the valuations of
the agents for the object be, v1 ≥ v2 ≥ . . . ≥ vn. The agent
with the highest valuation will receive the object and would
pay the second highest bid. Cavallo [2] proposed the rebate
function as,

r1 = r2 = 1
nv3

ri = 1
nv2 i > 2 (12)

Motivated by this scheme, we propose a scheme for the
heterogeneous setting. Suppose agent i is excluded from the
system. Then let t−i be the Clarke surplus in the system
(defined in Table 2). Define,

ri
B =

1
n
t−i ∀ i ∈ N (13)

• As the Clarke surplus is always positive, riB ≥ 0 for
all i. Thus, this scheme satisfies individual rationality.

• t−i ≤ t ∀ i (revenue monotonicity). So,
∑
i ri

B =∑
i

1
n t
−i ≤ n 1

n t = t. Thus, this scheme is feasible.
We now show that the BAILEY scheme has non-zero

efficiency if n ≥ 2p + 1. First we state two lemmas. The
proof will be given in Appendix B. These lemma’s are
useful in designing redistribution mechanisms for the hetero-
geneous settings as well as in analysis of the mechanisms.
Lemma 2 is used to show non-zero efficiency of the BAILEY
mechanism. Lemma 1 is used to find an allocatively efficient
outcome for the settings under consideration. Also, this
lemma 1 is useful in determining the Clarke payments.

Lemma 1: If we sort the bids of all the agents for each
object, then

1) An optimal allocation, that is an allocatively efficient
allocation, will consist of the agents having bids
among the p highest bids for each object.

2) Consider an optimal allocation k∗. If any of the p
agents receiving objects in k∗ is dropped, then there
always exists an allocation k∗−i that is an optimal
allocation (on the remaining n − 1 agents) which
allocates objects to the remaining (p− 1) agents. The
objects that these p-1 agents receive in k∗−i, may not
however be the same as the objects they are allocated
in k∗.

Lemma 2: There are at most 2p agents involved in decid-
ing the Clarke payment.

Note: When the objects are identical, the bids of (p+ 1)
agents are involved in determining the Clarke payment.

Now, we show non-zero efficiency of the BAILEY redis-
tribution scheme.

Proposition 1: The BAILEY redistribution scheme has
non-zero efficiency, if n ≥ 2p+ 1.

MALLOW’009: Turin, Italy, September 7-10, 2009

126

Proof: In Lemma 2, we have shown that there will be at
most 2p agents involved in determining the Clarke surplus.
Thus, given a type profile, there will be (n−2p) agents, for
whom, t−i = t and this implies that at least n−2p

n t will be
redistributed.

�
Note: The proof of Proposition 1 indicates that the effi-

ciency of this mechanism is at least n−2p
n .

6. Conclusion
We addressed the problem of assigning p heterogeneous

objects among n > p competing agents. When the valuations
of the agents are independent of each other and their
valuations for each object are independent of valuations
on the other objects, we proved the impossibility of the
existence of a linear redistribution mechanism with non-
zero efficiency. Then we explored two approaches to get
around this impossibility. In the first approach, we showed
that linear rebate functions with non-zero efficiency are
possible when the valuations for the objects have scaling
based relationship. In the second approach, we showed that
rebate functions with non-zero efficiency are possible if
linearity is relaxed.

It would be interesting to see if we can characterize
the situations under which linear redistribution mechanisms
with non-zero efficiency are possible for heterogeneous
settings. Another interesting problem to explore is to design
redistribution mechanisms that are worst case optimal for
heterogeneous settings.

References
[1] M. J. Bailey, “The demand revealing process: To distribute

the surplus,” Public Choice, vol. 91, no. 2, pp. 107–26, April
1997.

[2] R. Cavallo, “Optimal decision-making with minimal waste:
strategyproof redistribution of VCG payments,” in AAMAS
’06: Proceedings of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems. New York,
NY, USA: ACM, 2006, pp. 882–889.

[3] E. Clarke, “Multi-part pricing of public goods,” Public
Choice, vol. 11, pp. 17–23, 1971.

[4] B. Faltings, “A budget-balanced, incentive-compatible scheme
for social choice,” in Agent-Mediated Electronic Commerce,
AMEC. Springer, 2005, pp. 30–43.

[5] J. R. Green and J. J. Laffont, Incentives in Public Decision
Making. Amsterdam: North-Holland Publishing Company,
1979.

[6] T. Groves, “Incentives in teams,” Econometrica, vol. 41, pp.
617–631, 1973.

[7] S. Gujar and Y. Narahari, “Redistribution of VCG payments
in assignment of heterogeneous objects,” in Proceedings of
4th International Workshop on Internet and Network Eco-
nomics, WINE 2008. Springer, 2008, pp. 438–445.

[8] M. Guo and V. Conitzer, “Worst-case optimal redistribution
of VCG payments,” in EC ’07: Proceedings of the 8th ACM
conference on Electronic Commerce. New York, NY, USA:
ACM, 2007, pp. 30–39.

[9] ——, “Better redistribution with inefficient allocation in
multi-unit auctions with unit demand,” in EC ’08: Proceed-
ings of the 9th ACM conference on Electronic commerce.
New York, NY, USA: ACM, 2008, pp. 210–219.

[10] ——, “Optimal-in-expectation redistribution mechanisms,” in
AAMAS ’08: Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems. Rich-
land, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2008, pp. 1047–1054.

[11] J. Laffont and E. Maskin, “A differential approach to expected
utility maximizing mechanisms,” in Aggregation and Revela-
tion of Preferences, J. J. Laffont, Ed., 1979.

[12] H. Moulin, “Almost budget-balanced VCG mechanisms to
assign multiple objects,” Journal of Economic Theory, 2008,
in Press.

[13] W. Vickrey, “Counterspeculation, auctions, and competitive
sealed tenders,” Journal of Finance, vol. 16, no. 1, pp. 8–37,
March 1961.

Appendix A.
Ordering of the Agents Based on Bid Profiles

We will define a ranking among the agents. This ranking
is used crucially in proving Theorem 3.1 on rebate function.
This theorem is similar to Cavallo’s theorem on characteriza-
tion of DSIC, deterministic, anonymous rebate functions for
homogeneous objects. We would not be actually computing
the order among the bidders. We will use this order for
proving impossibility of the linear rebate function with the
desired properties.

A.1. Properties of the Ranking System

When we are defining ranking/ordering among the agents,
we expect the following properties to hold true:
• Any permutation of the objects and the corresponding

permutation on bid vector, (bi1, bi2, . . . , bip) for each
agent i, should not change the ranking. That is, the
ranking should be independent of the order in which
the agents are expected to bid for this objects.

• Two bidders with the same bid vectors should have the
same rank.

• By increasing the bid on any of the objects, the rank
of an agent should not decrease.

A.2. Ranking among the Agents

This is a very crucial step. First, find out all feasible
allocations of the p objects among the n agents, each

MALLOW’009: Turin, Italy, September 7-10, 2009

127

agent receiving at most one object. Sort these allocations,
according to the valuation of an allocation. Call this list L.
To find the ranking between i and j, we use the following
algorithm.

1) Lij = L
2) Delete all the allocations from Lij which contain both

i and j.
3) Find out the first allocation in Lij which contains one

of the agents i or j. Say k′.
a) Suppose this allocation contains i and has value

strictly greater than any of the remaining alloca-
tions from Lij containing j, then we say, i � j.

b) Suppose this allocation contains j and has value
strictly greater than any of the remaining alloca-
tions from Lij containing i, then we say, j � i.

4) If the above step is not able to decide the ordering
between i and j, let A = {k ∈ K|v(k) = v(k′)}.
Update Lij = Lij\A and recur to step (2) till EITHER
• there is no allocation containing the agent i or j
OR
• the ordering between i and j is decided.

5) If the above steps do not give either of i � j or j � i,
we say, i ≡ j or i < j as well as j < i

Before we state some properties of this ranking system <,
we will explain it with an example. Let there be two items
A and B, and four bidders. That is, p = 2, n = 4 and let
their bids be: b1 = (4, 5), b2 = (2, 1), b3 = (1, 4), and b4 =
(1, 0).

Now, allocation (A = 1, B = 3) has the highest valuation
among all the allocations. So,

agent 1 � agent 2
agent 1 � agent 4
agent 3 � agent 2
agent 3 � agent 4

(14)

Now, in L13 defined in the procedure above, the allocation
(A = 2, B = 1) has strictly higher value than any other
allocation in which the agent 3 is present. So,

agent 1 � agent 3.

Thus,
agent 1 � agent 3 � agent 2 and

agent 1 � agent 3 � agent 4

In L24, the allocation (A = 2, B = 1) has strictly higher
value than any other allocation in which the agent 4 is
present. Thus, the ranking of the agents is,

agent 1 � agent 3 � agent 2 � agent 4

We can show that the ranking defined above, satisfies the
following properties.

1) < defines a total order on set of bids.
2) < is independent of the order of the objects.

3) If two bids are the same, then they are equivalent in
this order.

4) By increasing a bid, no agent will decrease his rank.
If agent i < agent j, we will also say vi < vj .

Appendix B.
B.1. Proof of Lemma 1

Proof:
• Suppose an optimal allocation contains an agent whose

bid for his winning object, say j, is not in the top p bids
for the jth object. There are other (p − 1) winners in
an optimal allocation. So, there exists at least one agent
whose bid is in the top p bids for the jth object and does
not win any object. Thus, allocating him the jth object,
we have an allocation which has higher valuation than
the declared optimal allocation.

• Suppose an agent i who receives an object in an optimal
allocation is removed from the system. The agent will
have at most one bid in the top p bids for each object.
So, agents now having bids in the top p bids, will be at
the pth position. It can be seen that there will be at most
one agent in an optimal allocation who is on the pth

position for the object he wins. If there is more than one
agent in an optimal allocation on the pth position for the
object they win, then we can improve on this allocation.
Hence, after removing i, there will be at most one more
agent who will be a part of a new optimal allocation.

�

B.2. Proof of Lemma 2

Proof: The argument is as follows:
1) Sort the bids of the agents for each object.
2) The optimal allocation consists of agents having bids

in the p highest bids for each of the objects (Lemma
1).

3) For computing the Clarke payment of the agent i, we
remove the agent and determine an optimal allocation.
And, using his bid, the valuation of optimal allocation
with him and without him will determine his payment.
This is done for each agent i. As per Lemma 1, if any
agent from an optimal allocation is removed from the
system, there exists a new optimal allocation which
consists of at least (p − 1) agents who received the
objects in the original optimal allocation.

4) There will be p agents receiving the objects and
determining their payments will involve removing one
of them at a time, there will be at most p more agents
who will influence the payment. Thus, there are at
most 2p agents involved in determining the Clarke
payment.

�

MALLOW’009: Turin, Italy, September 7-10, 2009

128

Talking Your Way into Agreement:
Belief Merge by Persuasive Communication

Alexandru Baltag
Computing Laboratory

Oxford University
Email: Alexandru.Baltag@comlab.ox.ac.uk

Sonja Smets
Dept. of Artificial Intelligence,

and Dept. of Philosophy
University of Groningen

&
IEG, Oxford University

Email: S.J.L.Smets@rug.nl

I. INTRODUCTION

We investigate the issue of reaching doxastic
agreement among the agents of a group by “shar-
ing” information via successive acts of sincere,
persuasive public communication within the group.

As usually considered in Social Choice theory,
the problem of preference aggregation is to find
a natural and fair “merge” operation (subject to
various naturalness or fairness conditions), for ag-
gregating the agents’ preferences into a single group
preference. Depending on the stringency of the
required fairness conditions, one can obtain either
an Impossibility theorem (e.g Arrows theorem [2])
or a classification of the possible types of reasonable
merge operations [1].

In this paper we propose a more “dynamic” ap-
proach to this issue. Dynamically speaking, “merg-
ing” preference relations means finding an action
or a sequence of actions (a protocol) that, when ap-
plied to any arbitrary multi-agent preference model,
produces a new model in which all the agents’
preference relations are the same. When the new
relations are the result of a specific merge operation,
we say that we have “realized” this operation via
the given (sequence of) action(s). One would like to
know what types of merges are realizable by using
only specific types of preference-changing actions.

In a doxastic/epistemic setting, the agents pref-
erence relations are interpreted as “doxastic pref-
erences” or “doxastic plausibility” orders. These
encode the agents beliefs, but in fact they capture
all their doxastic-epistemic attitudes: their “knowl-

edge” (in the sense of absolutely certain, un-
revisable, irrevocable knowledge, i.e. the epistemic
concept mostly used in Logic, Computer Science
and Economics), their “strong beliefs” and “safe
beliefs” (also known as “defeasible knowledge”, i.e.
the epistemic concept used mostly by philosophers
and researchers in Belief Revision theory), as well
as their “conditional beliefs” (encoding their “belief-
revision strategy”, i.e. their contingency plans for
belief change). In other words, an agent’s doxastic
preference structure capture all her “information”:
both her “hard” (absolutely certain, infallible) infor-
mation and her “soft” (potentially fallible) informa-
tion. In this context, a preference merge operation
corresponds to a way of combining the agents
information into a single “group information”.

Similarly, preference-changing actions can be in-
terpreted in a doxastic setting as acts of commu-
nication or persuasion. But not every preference-
changing action can be understood in this way: there
has to be a specific relation between one agent’s (the
speaker’s) prior preferences before the action and
the whole’s group’s posterior preferences. Actions
in which this relation holds will be instances of
sincere and persuasive public communication.

An announcement of some information P is said
to be “public” when it is common knowledge that
this particular message P is announced and that all
the agents are adopting the same attitude towards
the (plausibility of the) announcement: they all
adopt the same opinion about the reliability of this
information. Depending on the specific common

MALLOW’009: Turin, Italy, September 7-10, 2009

129

attitude, there are three main possibilities that have
been discussed in the literature: 1) the informa-
tion P is certainly true: it is common knowledge
that the message is necessarily truthful; (2) the
announcement is strongly believed by all agents to
be true: it is common knowledge that everybody
strongly believes that the speaker tells the truth;
(3) the announcement is (simply) believed: it is
common knowledge that everybody believes (in the
simple, “weak” sense) that the speaker tells the
truth. These three alternatives correspond to three
forms of “learning” a public announcement, forms
discussed in [12], [14] in a Dynamic Epistemic
Logic context: “update” 1 !P , “radical upgrade”
⇑ P and “conservative upgrade” ↑ P . Under various
names, they have been previously proposed in the
literature on Belief Revision, e.g. by Rott [23] and
Boutilier [10] , and in the literature on dynamic
semantics for natural language by Veltman [28]. The
first operation (update) models a “truthful public
announcements” of “hard” information; the other
two are models of “soft” public announcements.

“Sincerity” of a communication act can be de-
fined as sharing of information that was already
“accepted” by the speaker (before the act). The
meaning of “acceptance” depends on the form
of communication: as we’ll see, for updates with
“hard” information, acceptance means “knowledge”
(in the irrevocable sense), while for upgrades with
“soft” information, acceptance just means some type
of “belief” or “strong belief” (depending on whether
the upgrade is “conservative” or “radical”). But, as
a general concept, prior acceptance requires that
the speaker’s own doxastic structure should not be
changed by her sincere communication.

“Persuasiveness” requires that the communicated
information becomes commonly “accepted” by all
the agents (in the same sense of “acceptance” that
the speaker has adopted): this means that, after the
act, everybody commonly exhibits the same doxastic
attitude as the speaker (knowledge, belief or strong
belief) towards the communicated information. So,

1Note that in Belief Revision, the term “belief update” is used
for a totally different operation (the Katzuno-Mendelzon update[21]),
while what we call “update” is known as “conditioning”. We choose
to follow here the terminology used in Dynamic Epistemic Logic,
but we want to warn the reader against any possible confusions with
the KM update.

after a persuasive communication, all agents reach
a partial agreement, namely with respect to the
specific information that has been communicated.

In a cooperative setting, the goal of “sharing”
doxastic information is reaching “agreement” with
respect to all the (relevant) issues. Indeed, the
natural stopping point of iterated sharing is when
nothing is left for further sharing or persuading; i.e.
complete agreement. Any further sincere persuasive
communication is redundant at that stage: it can no
longer change any agent’s doxastic structure. This
happens exactly when all the agents’ relevant doxas-
tic attitudes towards all issues are exactly the same.
(Which attitude is relevant depends again of the
type of communication: “knowledge” for updates,
“belief” for conservative upgrades, “strong belief”
for radical upgrades). This means that the agents’
(relevant) accessibility relations (i.e. respectively,
the knowledge relations, the belief structure or the
strong belief structure) became identical: we say
that these structures have “merged” into one.

So we arrive in a natural way at the main issue
addressed in this paper: the “dynamic merge” of
doxastic structures by sincere persuasive public
communication. In particular, we investigate the
realizability of merge operations via (1) updates,
(2) radical upgrades and (3) conservative upgrades.
We show that, in the first case, only the epistemic
structures (given by the “hard” knowledge relations)
can be merged; and moreover, the only form of
realizable merge is in this case the so-called “par-
allel merge” [1], given by the intersection of all
preference relations. Epistemically, this corresponds
to the familiar concept of “distributed knowledge”.
The realizability result is constructive, it comes
with a specific announcement-based protocol for
realizing this merge. This is essentially the algo-
rithm in van Benthem’s paper “One is a Lonely
Number” [11]: the agents announce “all they know”,
in no particular order. In the second case (radical
upgrade), the “defeasible knowledge” structures are
merged, but in fact this implies that all the other
doxastic attitudes become the same: the agents’
whole “doxastic preference” structures are merged.
The natural analogue of the above-mentioned pro-
tocol for radical upgrades realizes now a different
type of merge (“priority merge”, itself a natural
epistemic modification of the other basic type of

MALLOW’009: Turin, Italy, September 7-10, 2009

130

merge considered in [1], the “lexicographic merge”).
Finally, in the case of conservative upgrades, only
the (simple) belief structures (given by the doxastic
relations) can be merged. Moreover, priority merge
is realizable via the natural analogue of the same
protocol above for conservative upgrades.

This surface similarity between the three cases is
pleasing, but in fact it hides deeper dissimilarities.
As we mentioned, the realizable merge is unique in
the first case. This is not true in the other cases: a
whole class of merge operations can be realized by
radical or conservative upgrades. Moreover, in the
first case, the order in which the announcements is
irrelevant, while in the other cases the order matters:
if the upgrades are performed in a different order
than the one prescribed in the protocol, then dif-
ferent merge operations may be realized! Finally, in
the first case, the merge may be realized by allowing
only one announcement by each agent (of “all she
knows”). But this is not true in the other cases: the
agents may have to make many soft announcements,
including announcing facts that may already be
entailed by their previous announcements!

Some of the questions we address in this paper
came to our attention after hearing a presentation
by J. van Benthem on “The Social Choice Behind
Belief Revision” at the workshop “Dynamic Logic
Montreal” in 2007 [13]. Van Benthem’s view was
that belief dynamics in itself can be captured as
a form of preference merge (between the prior
doxastic preferences and the on-going doxastic pref-
erences about the new information). One can see
that our approach here is actually the dual of the per-
spective adopted in [13]: implementing preference
merge dynamically by successive belief revisions,
instead of understanding belief revision in terms of
preference merge.

In the next section we introduce the necessary
background on different notions of knowledge, be-
lief and other doxastic attitudes. The main focus
will be on the semantics, which is given via pref-
erence models. In section III, we introduce the
main concepts of belief dynamics, following the
work in [3], [4], [5], [6], [12] on joint upgrades,
as models for “sincere, persuasive public announce-
ments”. In section IV we present three natural merge
operations: parallel merge, lexicographic merge and

(relative) priority merge. In section V we present
the protocols for dynamic realizations of parallel
merge and priority merge, giving counterexamples
that point out the differences between them. We
end with a short note and an open question in our
Conclusions section.

II. PLAUSIBILITY STRUCTURES AND DOXASTIC
ATTITUDES

In this section, we review some basic notions and
results from [3]. We use finite “plausibility” frames,
in the sense of our papers [3], [4], [5], [6], [7], [8].
These kind of semantic structures are the natural
multi-agent generalizations of structures that are
standard, in one form or another, in Belief Revi-
sion: Halpern’s “preferential models” [20], Spohn’s
ordinal-ranked models [24], Board’s “belief-revision
structures” [16], Grove’s “sphere” models [19]. Un-
like the settings in [7], [8], we restrict here to the
finite case, for reasons of simplicity.

For a given set A of labels called “agents”, a
(finite, multi-agent) plausibility frame is just a finite,
multi-agent Kripke frame (S,Ra)a∈A in which the
accessibility relations Ra ⊆ S × S are usually
denoted by ≤a, are called “plausibility orders” or
“doxastic preference” relations, and are assumed
to be locally connected preorders. Here, a “locally
connected preorder” ≤⊆ S × S is a reflexive and
transitive relation such that: if s ≤ t and s ≤ w
then either t ≤ w or w ≤ t; and if t ≤ s and
w ≤ s then either t ≤ w or w ≤ t. See [3] for
a justification and motivation for these conditions.2

We use the notation s ∼a t for the comparability
relation with respect to ≤a (i.e. s ∼a t iff either
s ≤a t or t ≤a s), s <a t for the corresponding strict
order relation (i.e. s <a t iff s ≤a t but t 6≤a s), and
s ∼=a t for the corresponding indifference relation
(i.e. s ∼=a t iff both s ≤a t and t ≤a s). When
using the Ra notation for the preference relations
≤a, we also use the notations R<

a , R∼a and R
∼=
a to

denote the corresponding strict order, comparability
and indifference relations <a, ∼a and ∼=a.

In a plausibility frame, the comparability relations
∼a are equivalence relations, hence they induce par-
titions. We denote by s(a) := {t ∈ S : s ∼a t} the

2In the infinite case, one has to add a well-foundedness condition,
obtaining “locally well-preordered” relations.

MALLOW’009: Turin, Italy, September 7-10, 2009

131

∼a-partition cell of s, comprising all a’s epistemic
alternatives for s. Finally, we use →a to denote the
“best alternative” or “most preferred” relation →a,
given by: s →a t iff t ∈ s(a) and t ≥a t

′ for all
t′ ∈ s(a).
Plausibility Models A (finite, multi-agent, pointed)
plausibility model is a structure S = (S,≤a

, ‖·‖, s0)a∈A, consisting of a plausibility frame
(S,≤a)a∈A together with a valuation map ‖·‖ : Φ→
P(S), mapping every element p of some given set Φ
of “atomic sentences” into a set of states ‖p‖ ⊆ S,
and together with a designated state s0 ∈ S, called
the “actual state”.
(Common) Knowledge and (Conditional) Belief
Given a plausibility model S, sets P,Q ⊆ S of
states, an agent a ∈ A and some group G ⊆ A,
we define: besta P = Max≤aP := {s ∈ P : t ≤a

s for all t ∈ P}, KaP := {s ∈ S : s(a) ⊆ P},
BaP := {s ∈ S : bestas(a) ⊆ P}, BQ

a P := {s ∈
S : besta(s(a) ∩ Q) ⊆ P}, EkGP :=

⋂
a∈GKaP ,

EbGP :=
⋂

a∈GBaP , CkGP :=
⋂

n∈N Ek
n
GP

(where Ek0
GP := P and Ekn+1

G := EkG(Ekn
GP)

), EbP := EbAP , and CkP := CkAP .

Interpretation. The elements of S represent the
“possible worlds”, or possible states of a system:
possible descriptions of the real world. The correct
description of the real world is given by the “actual
state” s0. The atomic sentences p ∈ Φ represent
“ontic” (non-doxastic) facts, that might hold or
not in a given state. The valuation tells us which
facts hold at which worlds. For each agent a, the
equivalence relation ∼a represents the agent a’s
epistemic indistinguishability relation, inducing a’s
information partition; s(a) is the state s’s infor-
mation cell with respect to a’s partition: if s were
the real state, then agent a would consider all the
states t ∈ s(a) as “epistemically possible”. KaP
is the proposition “agent a knows P ”: observe that
this is indeed the same as Aumann’s partition-based
definition of knowledge. The plausibility relation
≤a is agent a’s “doxastic preference” relation:
her plausibility order between her “epistemically
possible” states. So we read s ≤a t as “agent a
considers t at least as plausible as s (though the two
are epistemically indistinguishable)”. This is meant
to capture the agent’s (conditional) beliefs about the
state of the system. Note that s ≤a t implies s ∼a t,

so that the agent only compares the plausibility of
states that are epistemically indistinguishable: so we
are not concerned here with counterfactual beliefs
(going against the agent’s knowledge), but only with
conditional beliefs (if given new evidence that must
be compatible with prior knowledge). So BQ

a P is
read “agent a believes P conditional on Q ” and
means that, if a would receive some further (certain)
information Q (to be added to what she already
knows) then she would believe that P was the case.
So conditional beliefs BQ

a give descriptions of the
agent’s plan (or commitments) about what would
she believe (about the current state) if she would
learn some new information Q. To quote J. van
Benthem in [12], conditional beliefs are “static pre-
encodings” of the agent’s potential belief changes
in the face of new information. The above definition
says that BQ

a P holds iff P holds in all the “best”
(i.e. the most plausible) Q-states (that are consistent
with a’s knowledge). In particular, a simple (non-
conditional) belief BaP holds iff P holds in all the
best states that are epistemically possible for a.
Kripke Modalities For any binary accessibility re-
lation R ⊆ S×S and set P ⊆ S, the corresponding
Kripke modality is given by:

[R]P := {s ∈ S : ∀t (sRt⇒ t ∈ P)}
We think of sets P ⊆ S as propositions and write
s |= P instead of s ∈ P .

It is easy to see that belief is the Kripke modality
Ba = [→a] for the “best alternative” relation →a

defined above. Similarly, knowledge is the Kripke
modality for the epistemic relation Ka = [

a∼].
Safe belief as “defeasible knowledge” The Kripke
modality for the plausibility relation 2a := [≤a]
was called “safe belief ” in [3], and “the prefer-
ence modality” in [15]. It was also considered by
Stalnaker in [25], as a formalization of Lehrer’s
notion of “defeasible knowledge”. According to
this so-called defeasibility theory of knowledge, a
belief counts as “knowledge” if it is stable under
belief revision with any true information. Indeed,
the safe belief modality has the property that it is
conditionally believed under any true condition:

s |= 2aQ iff: s |= BP
a Q for all P such that s |= P.

For this reason, we’ll refer to 2 using either of
the terms “safe belief” and “defeasible knowledge”.

MALLOW’009: Turin, Italy, September 7-10, 2009

132

In contrast, the knowledge concept captured by the
K modality can be called “irrevocable knowledge”,
since it is a belief that is stable under revision with
any information (including false ones):

s |= KaQ iff: s |= BP
a Q for all P.

There are other differences: irrevocable knowledge
K satisfies the axioms of the modal system S5,
so it is fully introspective; in contrast, defeasible
knowledge 2 is only positively introspective, but
not necessarily positively introspective. (In fact, the
complete logic of 2 is the modal logic S4.3.) An
agent’s belief can be safe without him necessarily
“knowing” this (in the “strong” sense of the irrevo-
cable knowledge K): “safety” (similarly to “truth”)
is an external property of the agent’s beliefs, that
can be ascertained only by comparing his belief-
revision system with reality. Indeed, the only way
for an agent to know a belief to be safe is to actually
know it to be truthful. This is captured by the valid
identity: Ka2aP = KaP . In other words: knowing
that something is safe to believe is the same as just
knowing it to be true. In fact, all beliefs held by
an agent “appear safe” to him: in order to believe
them, he has to believe that they are safe. This is
expressed by the valid identity: Ba2aP = BaP ,
saying that: believing that something is safe to
believe is the same as just believing it3. Contrast
this with the situation concerning “knowledge”: in
our logic (as in most standard doxastic-epistemic
logics), we have the identity: BaKaP = KaP . So
believing that something is known is the same as
knowing it!

The difference between K and 2 and their dif-
ferent properties, expressed by the above identities,
are enough to solve the so-called “Paradox of the
Perfect Believer” in [18], [29], [27], [22], [30], [17]:
when we say that somebody “only believes that
she knows something (without really knowing it)”,
we’re using the word “knowledge” in a different
sense than the fully introspective K modality. A
natural reading reading is to interpret it as the
defeasible knowledge 2, in which case “believing

3The proof is an easy semantic exercise, which can be rendered
in English as: saying that “the best worlds have the property that all
the worlds at least as good as them are P -worlds” is equivalent to
simply saying that “the best worlds are P -worlds”.

that you know” is the same as “believing”, by the
identity Ba2aP = BaP .
“Strong Belief” Another important doxastic atti-
tude, called strong belief, is given by:
SbaP = {s ∈ P : s(a) ∩ P 6= ∅ and w >a

t for all t ∈ s(a) ∩ P and all w ∈ s(a) \ P}.
So P is strong belief at a state s iff P is epis-

temically possible and moreover all epistemically
possible P -states at s are more plausible than all
epistemically possible non-P states. This notion was
called “strong belief” by Battigalli and Siniscalchi
[9], while Stalnaker [26] calls it “robust belief”. It is
easy to see that we have the following equivalence:
S |= SbaP iff S |= BaP and S |= BQ

a P for every
Q such that S |= ¬Ka(Q → ¬P). In other words:
something is strong belief iff it is believed and if this
belief can only be defeated by evidence (truthful or
not) that is known to contradict it. An example is
the “presumption of innocence” in a trial: requiring
the members of the jury to hold the accused as
“innocent until proven guilty” means asking them
to start the trial with a “strong belief” in innocence.

Example 1: Consider the situation of Professor
Albert Winestein. Albert feels that he is a genius. He
knows that there are only two possible explanations
for this feeling: either he is a genius or he’s drunk.
He doesn’t feel drunk, so he believes that he is
a sober genius. However, if he realized that he’s
drunk, he’d think that his genius feeling was just
the effect of the drink; i.e. after learning he is drunk
he’d come to believe that he was just a drunk non-
genius. In reality though, Albert is both drunk and
a genius.

We can represent Albert’s information and (con-
ditional) by the following plausibility relation:
�� ��
�� ��¬D,¬G

�� ��
�� ��D,G

a //
�� ��
�� ��D,¬G a //

�� ��
�� ��¬D,G

Here, as in all other drawings, we use labeled
arrows for plausibility relations ≤a (not for the
“best alternative” relations →a !), going from less
plausible to more plausible worlds, but we skip
loops and composed arrows (since ≤a are reflex-
ive and transitive). The real world is (D,G). Al-
bert considers (D,¬G) as being more plausible
than (D,G), and (¬D,G) as more plausible than
(D,¬G). Albert can distinguish all these worlds

MALLOW’009: Turin, Italy, September 7-10, 2009

133

from (¬D,¬G), since (in the real world) he knows
(“Ka”) that either D or G holds.

Consider another agent, Professor Mary Curry.
She is pretty sure that Albert is drunk: she can see
this with her very own eyes. But Marry is completely
indifferent with respect to Albert’s genius: so she
considers the possibility of genius and the one of
non-genius as equally plausible. However, having a
philosophical mind, Mary is aware of the possibility
that the testimony of her eyes may in principle be
wrong: it is in principle possible that Albert is not
drunk, despite the presence of the usual symptoms.
Marry’s beliefs are captured by her plausibility
order:�� ��
�� ��¬D,¬G oo m //

�� ��
�� ��¬D,G m //

�� ��
�� ��D,G oo m //

�� ��
�� ��D,¬G

We can see from the drawing that Mary strongly
believes D, and in fact her belief is safe: so she
“knows” that Albert is drunk, in the sense of defea-
sible knowledge (although she doesn’t know it, in
the sense of K). But she is completely indifferent
with respect to G: hence she considers the possibil-
ity of G and ¬G as equally plausible.

To put together the agents’ plausibility orders, we
need to be told what do they know about each other.
Suppose all their opinions as described above (i.e.
all their conditional beliefs) are common knowledge:
essentially, this means their doxastic preferences are
common knowledge. We thus obtain the following
multi-agent plausibility model:
�� ��
�� ��¬D,¬G m //

�� ��
�� ��¬D,Goo

m
11

�� ��
�� ��D,¬G

aqq
11

�� ��
�� ��D,G

aqq

m
mm

At the real world (D,G), one can check that
BaG is true. Further, Albert does not know G,
hence (D,G) |= ¬KaG ∧ ¬2aG while (D,G) |=
Ka(D∨G). Moreover, he doesn’t “know” G in the
defeasible sense either: his belief in G is not safe,
since BD

a ¬G holds in the real world: so if Albert
would learn (correctly) that he was drunk, he’d lose
his (true) belief in being a genius.
Example 2 Let us now relax our assumptions about
the agents’ mutual knowledge: suppose that only Al-
bert’s opinions are common knowledge; in addition,
suppose that it is common knowledge that Mary
has no opinion on Albert’s genius (so she considers
genius and non-genius as equi-plausible), but that

she has a strong opinion about his drunkness: she
can see him, so judging by his behavior she either
strongly believes he’s drunk or she strongly believes
he’s not drunk. However, her actual opinion about
this is unknown to Albert, who thus considers both
opinions as equally plausible.

The resulting model is:

�� ��
�� ��¬D,¬G m //

a

��

�� ��
�� ��¬D,Goo

m
11

a

��

�� ��
�� ��D,¬G

aqq
11

a

��

�� ��
�� ��D,G

aqq

m
mm

a

���� ��
�� ��¬D,¬G m //

OO

�� ��
�� ��¬D,Goo

OO

�� ��
�� ��D,¬G

aqq
11

OO

m
mm

�� ��
�� ��D,G

aqq

m
mm

OO

The real world is represented by the upper (D,G)
state. One can check that, in the real world, Mary
still strongly believes Albert he’s drunk; but he does
not know this: Mary’s plausibility relation between
D and ¬D is unknown to Albert. However, he
knows that either she strongly believes D or she
strongly believes ¬D.

We can go on and modify the example further, by
allowing that Albert’s plausibility is not commonly
known either etc. But, for simplicity of drawing,
we stop here: when less common knowledge is
assumed, more worlds are possible, and hence the
drawings get more and more complex.
G-Bisimulation For a group G ⊆ A of agents,
we say the pointed models S = (S,≥a, ‖ ‖, s0)a∈A
and S′ = (S ′,≥′a, ‖ ‖′, s′0)a∈A are G-bisimilar, and
write S 'G S′, if the pointed Kripke models (S,≥a

, ‖ ‖, s0)a∈G and (S ′,≥′a, ‖ ‖′, s′0)a∈G (having as ac-
cessibility relations only the G-labeled relations) are
bisimilar in the usual sense from Modal Logic [?].
When G = A, we simply write S ' S′, and say
S and S′ are bisimilar. Bisimilar models differ only
formally: they encode precisely the same doxastic-
epistemic information, and they satisfy the same
modal sentences.

III. BELIEF DYNAMICS: SINCERE, PERSUASIVE
PUBLIC COMMUNICATION

We move on now to belief dynamics: what hap-
pens when some proposition P is publicly an-
nounced? According to Dynamic Epistemic Logic,
this induces, not only a revision of beliefs, but a
change of model: a “revision” of the whole rela-
tional structure, changing the agents’ plausibility

MALLOW’009: Turin, Italy, September 7-10, 2009

134

orders. However, the specific change depends on
the agents’ attitudes to the plausibility of the an-
nouncement: how certain is the new information?
Three main possibilities have been discussed in the
literature: (1) the announcement P is certainly true:
it is common knowledge that the speaker tells the
truth; (2) the announcement is strongly believed to
be true by everybody: it is common knowledge that
everybody strongly believes that the speaker tells the
truth; (3) the announcement is (simply) believed: it
is common knowledge that everybody believes (in
the simple, “weak” sense) that the speaker tells
the truth. These three alternatives correspond to
three forms of “joint learning”, forms discussed in
[12], [14] in a Dynamic Epistemic Logic context:
“update” 4 !P , “radical upgrade” ⇑ P and “con-
servative upgrade” ↑ P . Under various names, the
single-agent versions of these doxastic transformers
have been previously proposed by e.g. Rott [23],
Boutilier [10] and Veltman [28].

We will use “joint upgrades” as a general term
for all these three model transformers, and denote
them in general by †P , where † ∈ {!,⇑, ↑}. For-
mally, each of our joint upgrades is a (possibly
partial) function taking as inputs pointed models
S = (S,≤a, ‖ ‖, s0) and returning new (“upgraded”)
pointed models †P (S) = (S ′,≤′a, ‖ ‖′, s′0), with
S ′ ⊆ S. Since upgrades are purely doxastic, they
won’t affect the real world or the “ontic facts”
of each world: i.e. they all satisfy s′0 = s0 and
‖p‖′ = ‖p‖ ∩ S ′ , for atomic p. So, in order to
completely describe a given upgrade, we only have
to specify (a) its possible inputs S, (b) the new set
of states S ′; (c) the new relations ≤′a.
(1) Learning Certain information: Joint “Up-
date”. The update !P is an operation on pointed
models which is executable (on a pointed model S)
iff P is true (at S) and which deletes all the non-P -
worlds from the pointed model, leaving everything
else the same. Formally, an update !P is an upgrade
such that: (a) it takes as inputs only pointed models
S, such that S |= P ; (b) the new set of states

4Note that in Belief Revision, the term “belief update” is used
for a totally different operation (the Katzuno-Mendelzon update[21]),
while what we call “update” is known as “conditioning”. We choose
to follow here the terminology used in Dynamic Epistemic Logic,
but we want to warn the reader against any possible confusions with
the KM update.

is S ′ = {s ∈ S : s |= P}; (c) s ≤′a t iff
s ≤a t and s, t ∈ S ′.
(2) Learning from a Strongly Trusted Source:
(Joint) “Radical” Upgrade. The “radical upgrade”
(or “lexicographic upgrade”) ⇑ P , as an operation
on pointed plausibility models, can be described as
“promoting” all the P -worlds within each informa-
tion cell so that they become “better” (more plau-
sible) than all ¬P -worlds in the same information
cell, while keeping everything else the same: the
valuation, the actual world and the relative ordering
between worlds within either of the two zones (P
and ¬P) stay the same. Formally, a radical upgrade
⇑ P is (a) a total upgrade (taking as input any model
S), such that (b) S ′ = S, and (c): s ≤′a t iff either
s 6∈ PS and t ∈ s(a) ∩ PS, or s ≤a t.

(3) “Barely believing” what you hear: (Joint)
“Conservative” Upgrade. The so-called “conser-
vative upgrade” ↑ P (called “minimal conditional
revision” by Boutilier [10]) performs in a sense
the minimal possible revision of a model that is
forced by believing the new information P . As an
operation on pointed models, it can be described
as “promoting” only the “best” (most plausible)
P -worlds, so that they become the most plausible
in their information cell, while keeping everything
else the same. Formally, ↑ P is (a) a total upgrade,
such that (b) S ′ = S, and (c): s ≤′a t iff either
t ∈ besta(s(a) ∩ PS) or s ≤a t.

Redundancy, Informativity and Sincerity A joint
upgrade †P is redundant on a model S with respect
to a group of agents G ⊆ A if the upgraded model
is G-bisimilar to the original one: †P (S) 'G S.
This means that, as far as the group G is concerned,
†P doesn’t change anything: all the group G’s
doxastic attitudes stay the same after the upgrade.
An upgrade †P is informative (on S) to group G if
it is not redundant with respect to G. An upgrade
†P is redundant with respect to an agent a if it is
redundant with respect to the singleton {a}.

Redundancy is especially important if we want
to capture the “sincerity” of an announcement
made by a speaker. Intuitively, an announcement
is “sincere” when it agrees with the speaker’s prior
epistemic state: accepting the announcement doesn’t
change the speaker’s own state.

Definition: A (public) announcement †ϕ made

MALLOW’009: Turin, Italy, September 7-10, 2009

135

by an agent a is said to be sincere if it leaves
unchanged agent a’s own plausibility structure; i.e.
it’s non-informative to agent a.
Proposition 1

1) In a pointed model S, !P is redundant with re-
spect to a group G iff P is common knowledge
in S among the group G; i.e.: S 'G!P (S) iff
S |= CkGP . Special case: an announcement
!P made by an agent a is sincere iff a knows
P , i.e. if KaP holds in the original model
(before the announcement).

2) ⇑ P is redundant with respect to a group G iff
it is common knowledge in the group G that
P is strongly believed (by all G-agents); i.e.
S 'G⇑ P (S) iff S |= CkG(ESbG). Special
case: an announcement ⇑ P made by an agent
a is sincere iff a strongly believes P (before
the announcement).

3) ↑ P is redundant with respect to a group
G iff it is common knowledge in the group
G that P is believed (by all G-agents); i.e.
S 'G↑ P (S) iff S |= CkG(EbGP). Special
case: an announcement ↑ P made by an
agent s is sincere iff a believes P (before the
announcement).

Invariance under communication: For a given
upgrade type † ∈ {!,⇑, ↑}, we say that a pointed
model S is invariant under †-communication within
group G iff, for all propositions P , any sincere
announcement of the form †P made by any agent
in G is redundant in S.
Proposition 2

1) A pointed model S is invariant under !-
communication within G iff all (irrevocable)
knowledge is common knowledge within G,
i.e. for all propositions P and all agents
a, b ∈ A, KaP holds in S iff KbP holds
in S; equivalently: iff all G-agents’ epistemic
relations coincide: ∼a=∼b for all a, b ∈ G.

2) A pointed model S is invariant under ⇑-
communication within G iff all “defeasible
knowledge” is common defeasible knowledge
within G, i.e. for all propositions P and all
agents a, b ∈ A, 2aP holds in S iff 2bP
holds in S; equivalently: iff all strong be-
liefs (conditional beliefs) are common strong
beliefs (common conditional beliefs); equiva-

lently: iff all G-agents’ plausibility relations
coincide: ≤a=≤b for all a, b ∈ G.

3) A pointed model S is invariant under ↑-
communication within G iff all (simple) be-
liefs are common beliefs within G, i.e. for all
propositions P and all agents a, b ∈ A, BaP
holds in S iff BbP holds in S; equivalently:
iff all G-agents’ “best alternative” relations
coincide: →a=→b for all a, b ∈ G.

Example 3 Suppose that in the situation in Ex-
ample 1 above, a trusted, infallible source publicly
announces that Albert is drunk: this is “hard”, in-
controvertible information, corresponding to a joint
update !D. The updated model is

�� ��
�� ��D,¬G 11

�� ��
�� ��D,G

aqq

m
mm

After the update, Albert starts to wrongly believe
that ¬G is the case! This is an example of true but
un-safe belief : it can be lost after acquiring (new)
true information.
Example 4 Consider again the situation in example
3, but instead of Albert receiving the information
from an infallible source, he receives the informa-
tion from Mary. Mary announces publicly (to Al-
bert) that D is the case and we assume that Mary’s
announcement is both sincere and persuasive: she
tells what she thinks and she convinces Albert.
Since Mary is a fallible agent (and not an infallible
source), this announcement is soft: in principle, she
could be wrong, or she could lie, or she could
simply guess and be right only by chance. So we
cannot interpret Mary’s announcement as a “hard”
update !D, since such an announcement wouldn’t be
sincere: the update !D would automatically change
Mary’s order (making her irrevocably know D,
when she didn’t know it before!). But we can model
it as a “soft” announcement ⇑ D; i.e. after hearing
it, all agents upgrade with D: they start to prefer any
D-world to any ¬D-world. The upgraded model is
�� ��
�� ��¬D,¬G m //

�� ��
�� ��¬D,Goo

m
11

a --�� ��
�� ��D,G 11

a --�� ��
�� ��D,¬G

m
mm

Note that Mary’s order is left unchanged, so the
announcement was indeed sincere.
Example 5 What if instead Mary announces that
she “knows” that Albert is drunk? If we take this in

MALLOW’009: Turin, Italy, September 7-10, 2009

136

the sense of irrevocable knowledge K, then such
an announcement would not be sincere: indeed,
in the original situation of Example 1, KmD was
false. However, she did “know” it in the sense of
defeasible knowledge 2mD: she correctly believed
D, and this belief was safe. This “knowledge” was
fallible, and she was aware of this: she didn’t believe
that she knows irrevocably (¬BmKmD), but she
believed that she “knows” defeasibly (Bm2mD).
Hence, she is sincere if she announces that she
“knows” in this sense. Assuming that Albert is also
aware of the fallibility of her knowledge, but that
he still highly trusts her to be right, we can interpret
this as a sincere and persuasive announcement of the
form ⇑ (2D). Its effect is the same as in Example
4: the upgraded model is the same.
Counterexample 6 Note that simply announcing
that she believes D, or even that she strongly
believes D, won’t do: this will not be persuasive,
since it will not change Albert’s beliefs about the
facts of the matter (D or ¬D), although it may
change his beliefs about her beliefs. Being informed
of another’s beliefs is not enough to convince you
of their truth. Indeed, Mary’s beliefs are already
common knowledge in the initial model of Example
1: so an upgrade ⇑ (BmD) would be superfluous!
Persuasiveness So what is needed for persuasive
communication is that the speaker (Mary) “con-
verts” the others to her own beliefs. For this, she
should not simply announce that she believes them.
Instated, she can either announce that something is
the case (when in fact she just strongly believes
that it is the case), or else announce that she
defeasibly “knows” it (when she only believes that
she “knows” it, and in fact this implies that she
strongly believes that she “knows”).

IV. MERGE OPERATIONS

A merge operation, or “aggregation procedure”,
is an operator taking any sequence {Ri}1≤i≤n of
preference relations into a “group preference” rela-
tion

⊙
iRi = R1

⊙
R2

⊙ · · ·Rn. In [1] the authors
give a general classification of types of preference
merge, in a very general context, subject to some
minimal “fairness” and rationality conditions. They
show that all the merge operations satisfying these
conditions can be represented as compositions of

only two basic merge operators: “parallel merge”
and “lexicographic merge”.
Parallel Merge The merge operation we consider
first can be thought of as the most “democratic”
form of aggregation: everybody has a veto, so
that group preferences are unanimous preferences.
Following [1], we call it parallel merge. It simply
takes the merged relation to be the intersection⊙

aRa∈G :=
⋂

a∈GRa of all the preference relations
of the agents in a given group G ⊆ A.5

Parallel merge is particularly well suited for ag-
gregating the agents’ “hard information” (irrevoca-
ble knowledge) K, i.e. for merging the epistemic
relations {∼a}a∈G. Since if we consider absolutely
certain and fully introspective knowledge, there is
no danger of introducing an inconsistency. The
agents can pool their information in a completely
symmetric manner, accepting the other’s bits with-
out reservations. In fact, parallel merge of the
agents’ irrevocable knowledge gives us the standard
concept of “distributed knowledge” DK:

DKGP = [
⋂
a∈G

Ra]P.

Lexicographic Merge When the group is hierarchi-
cally structured according to some total order (on
agents), called a “priority order”, then the agents
with higher priority are thought of as having a
higher “epistemic expertise” than the agents with
lower priority. For a group G = {a, b} of two
agents, in which a has higher priority, we can think
of a as the “expert” (or the professor) and of b
as the “layman” (or the student). In this context,
the natural doxastic merge operation is the so-
called lexicographic merge. For two agents a, b, the
“lexicographic merge” Ra/b gives priority to agent
a’s strong (i.e. strict) preferences over b’s: first, the
strict preference order of a is adopted by the group;
and when a is indifferent between two options, then
b’s preference is adopted; finally, a-incomparability
gives group incomparability. Formally:

Ra/b := R<
a ∪ (R

∼=
a ∩Rb) = R<

a ∪ (Ra ∩Rb) =

Ra ∩ (R<
a ∪Rb).

5From a purely formal perspective, parallel merge resembles the
so-called “non-prioritized belief revision” known from the work of
S. H. Hansson, H. Rott, H. van Ditmarsch. But note that “merge” is
not “revision”!

MALLOW’009: Turin, Italy, September 7-10, 2009

137

The lexicographic merge is particularly suited for
aggregating “soft information” (strong beliefs, safe
beliefs, conditional beliefs) in the absence of any
hard information: since soft information is not fully
reliable (because of lack of negative introspection
for 2, and because of potential falsity for belief,
conditional belief and strong belief), some “screen-
ing” must be applied to some agents’ information
(and so some hierarchy must be enforced), in order
to ensure consistency of the merge.
(Relative) Priority Merge Note that, in lexico-
graphic merge, the first agent’s priority is “abso-
lute”. But in the presence of “hard” information,
the lexicographic merge of soft information must
be modified, by first pooling together all the hard
information and then using it to restrict the lexico-
graphic merge of soft information. This leads us to
a “more democratic” combination of Parallel Merge
and Lexicographic Merge, called “(relative) priority
merge” Ra⊗b:

Ra⊗b := (R<
a ∩R∼b) ∪ (R

∼=
a ∩Rb) =

Ra ∩R∼b ∩ (R<
a ∪Rb).

In a Relative Priority Merge, both agents have a
“veto” with respect to group incomparability. Here
the group can only compare options that both agents
can compare; and whenever the group can compare
two options, everything goes on as in the lexico-
graphic merge. Agent a’s order gets priority, while
b’s order is adopted only when a is indifferent.

Since our plausibility structures they encode both
the “hard” and the “soft” information possessed by
the agent, it seems that Priority Merge is best suited
for aggregating the agents’ plausibility relations.
Example 7: If in Example 1, we give priority to
Mary, the relative priority merge Rm⊗a of Mary’s
and Albert’s original plausibility orders amounts to:�� ��
�� ��¬D,¬G

�� ��
�� ��¬D,G //

�� ��
�� ��D,G //

�� ��
�� ��D,¬G

If instead we give priority to Albert, we simply
obtain Albert’s order as our “merge”:

Ra⊗m = Ra.

It is important to note that in both cases of Example
7, some of the resulting joint beliefs are wrong:
when giving priority to Mary, both agents end up

believing ¬G; while if we give priority to Albert,
they both end up believing ¬D. In fact, no type of
hierarchic belief merge is a warranty of veracity.

V. “REALIZING” MERGE DYNAMICALLY

Intuitively, the purpose of sharing hard knowl-
edge, defeasible knowledge or beliefs is to achieve a
state in which there is nothing else to share, i.e. one
in which any further sharing is redundant: all hard
knowledge, or defeasible knowledge, or beliefs, are
already shared in common. For sharing via a specific
type of public communication † ∈ {!,⇑, ↑}, this
happens precisely when the model-changing process
induced by †-type sharing reaches a fixed point of †-
communication: a model that is invariant under that
particular type of announcements.

For every specific type of public communica-
tion † ∈ {!,⇑, ↑}, agent a’s “relevant structure”
in a model S is given by: a’s epistemic relation
a∼⊆ S × S in the case of updates !; a’s plausibility
relation ≤a in the case of radical upgrade ⇑; and
a’s doxastic “best alternative” relations →a in the
case of conservative upgrade.

A (finite) †-upgrade sequence is a finite sequence
†~P = (†P 1, . . . , †P n) of upgrades †P i of the
given type † ∈ {!,⇑, ↑}. Any †-upgrade sequence
induces a (partial) function, mapping every pointed
model S into a finite sequence †~P (S) = (Si)i of
pointed models, defined inductively by: S0 := S;
and Si+1 := †P i(Si), if this is defined (and un-
defined otherwise). A †-upgrade sequence †~P is a
†-communication sequence within group G if all its
upgrades are sincere for at least one G-agent at the
moment of speaking: i.e. for every i ≤ n there exists
ai ∈ G such that †P i is sincere for ai on Si.

A †-communication sequence †~P within a group
G is exhaustive on a model S if the last model
Sn of the induced sequence †~P (S) is invariant
under (sincere) †-communication; equivalently, iff
it is maximal: it cannot be extended to any longer
†-communication sequence. By Proposition 2, the
last model Sn generated by an exhaustive †-
communication sequence is one in which all the
G-agents’ “relevant structures” Rn

a coincide.
An exhaustive †-communication sequence within

G realizes a given preference merge operation
⊗

on a given pointed model S if, for any agent
b ∈ G, the relevant structures Rn

b in the last

MALLOW’009: Turin, Italy, September 7-10, 2009

138

generated model is the
⊗

-merge of the initial
relevant structures {R0

a}a∈G: i.e. Rn
b =

⊗
a∈GR

0
a,

for all b ∈ G. A merge operation
⊗

is realizable
by †-communication (within a group G) if there
exists some exhaustive †-communication sequence
(within G) that realizes

⊗
. The merge opera-

tion is said to be constructively realizable by †-
communication if there exists a protocol such that
every †-communication sequence that complies with
the protocol is exhaustive and realizes

⊗
.

For each of the above types of public communica-
tion (!,⇑, ↑), we can ask which merge operations are
realizable, or constructively realizable. The answer
depends on the constraints (transitivity, connected-
ness etc.) satisfied by the agents’ relevant structures
(epistemic, doxastic or plausibility relations).

Proposition 3 Parallel merge is the only merge
operation that is realizable by updates (i.e. by !-
communication). Moreover, parallel merge is con-
structively realizable by updates. The protocol is as
follows: in no particular order, the agents have to
publicly announce “all that they know” (in the sense
of irrevocable knowledge K). More precisely, for
each set of states P ⊆ S such that P is known to a
given agent a, a public announcement !P is made.

This essentially is the protocol in van Benthem’s
paper “One is a Lonely Number” [11]. Formally,
the protocol consists of n steps, each step being a
sequence of announcements by the same agent: first,
one of the agents, say a, announces all he knows.
This is the sequence of announcements:

σa :=
∏
{!P : P ⊆ S such that s |= KaP}

(where
∏

is sequential composition of actions).
Then, another agent b performs a similar step (an-
nouncing all she knows after the first step), etc.

Important Observations: (1) The order in which
the agents make the announcements doesn’t actually
matter. The may even “interrupt” each other: any
exhaustive !-communication sequence produces the
same result. (2) The protocol can be simplified by
restricting it only to knowledge announcements, i.e.
of the form !(KaP) (for each P such KaP holds):
instead of announcing all they know, the agents
announce that they know all that they know. (3) The
protocol can be simplified by allowing each agent

to make only one announcement: instead of succes-
sively announcing everything he knows, he can just
announce the conjunction !(

∧{P : S |= KaP}) of
all the things he knows.
Proposition 4 For every given priority order
(a1, . . . , an) on agents, the corresponding prior-
ity merge (of plausibility relations) is construc-
tively realizable by radical upgrades (i.e. by ⇑-
communication), but is not the only such realizable
operation. The protocol is a natural modification
of the previous one: following the priority order,
the agents have to publicly announce “all that
they strongly believe”. More precisely, for each set
P ⊆ S such that P is strongly believed by the given
agent a, a joint radical upgrade ⇑ P is performed.

Formally, the protocol consists again of n steps,
each step being a sequence of announcements by
the same agent: first, the first agent according to the
priority order, say a, announces all that he strongly
believes. This is the sequence of radical upgrades:

ρa :=
∏
{⇑ P : P ⊆ S such that S |= SbaP}.

Then, the next agent in the hierarchy, say b, per-
forms a similar step (announcing all she strongly
believes after the first step), etc.
Important Observations: (1) Now, the order of the
announcements matters: the agents have to respect
the priority order. Moreover, no interruptions are
allowed: agents with lower priority can speak only
after the agents with higher priority finished an-
nouncing all their strong beliefs. Any interruptions
may lead to the realization of complete different
merge operations (see the Counterexample below)!
(2) This protocol can also be simplified by restrict-
ing it only to “defeasible knowledge” announce-
ments, i.e. announcements of the form !(2aP). But
recall that, unlike irrevocable knowledge, defeasible
is not negatively introspective: so the agents don’t
know for sure what things they “know” and what
not, and hence the best they can do is to announce
all the things they believe they “know”. But, since
believing to (indefeasibly) “know” is the same as
believing, they have to announce that they “know”
P , for each proposition P which they believe. So
the simplified protocol replaces e.g. the first step by
the following sequence of radical upgrades

ρ′a :=
∏
{⇑ (2aP) : P ⊆ S such that S |= BaP}.

MALLOW’009: Turin, Italy, September 7-10, 2009

139

(3) Unlike the case of upgrades and parallel merge,
in general the above protocol actually requires mul-
tiple announcements by the same agents, includ-
ing announcing facts that may already be entailed
by their previous announcements! A sequence of
radical upgrades is in general not equivalent to a
radical upgrade, so there is no way to compress the
sequences ρa or ρ′a into a single upgrade!
Example 8 Recall the initial order of Marry and
Albert in Example 1. Consider the protocol:

⇑ 2mD;⇑ Ka(D ∨G);⇑ 2a¬G
The first is a sincere announcement by Mary, the rest
are sincere announcements by Albert. The second
announcement, though not in “defeasible knowl-
edge” form (as required by the simplified protocol
in observation 2 above), is equivalent to one in this
form, because of the identity: KaP = 2aKaP . This
communication sequence yields the model presented
in Example 7, as the result of the priority merge
Rm⊗a of the two plausibility orders.
Counterexample 9 To show the non-uniqueness of
priority merge among ⇑-realizable merge operations
and the order-dependency of the above protocol,
note first that the priority merge of the ordering

a

$$?>=<89:;s
a 33 ?>=<89:;u a 33 GFED@ABCw

with the ordering

b

##GFED@ABCw
b

44 ?>=<89:;s
b

33 ?>=<89:;u
is equal to either of the two orders (depending on
which agent has priority). But consider now the
following public dialogue

⇑ 2bu · ⇑ 2a(u ∨ w)

This first is a sincere announcement by b, the second
is sincere announcement by a. This is an exhaustive
⇑-communication sequence, but note that the strict
priority order required by the above protocol is not
respected here: the first speaker b is “interrupted” by
the second speaker a before she finished announcing
all his strong beliefs. (Indeed, s∨u is also a strong
belief of agent b, though one that is entailed by

the first announcement; nevertheless, b should have
first announced this second strong belief before a
would have been allowed to speak!) And, indeed,
the resulting model, though a fixed point of ⇑-
communication (since all the plausibility relations
come to coincide), realizes a different merge oper-
ation than either of the two priority merges:

a,b

##?>=<89:;s
a,b 33 GFED@ABCw

a,b
33 ?>=<89:;u

The Power of Agendas This order-dependence
illustrates a phenomenon well-known in Social
Choice Theory: the important role of the person
who “sets the agenda”: the “Judge” who assigns
priorities to witnesses’ stands; the chairman or
moderator who determines the order of the speakers
in a meeting, as well as the the issues to be discussed
and the relative priority of each issue.
Proposition 5 For every given priority order
(a1, . . . , an) on agents, the corresponding prior-
ity merge of doxastic “best alternatives” relations
{→a}a is constructively realizable by conservative
upgrades (i.e. by ↑-communication). The protocol
is the natural modification of the previous one:
following the priority order, the agents have to
publicly announce “all that they (simply) believe”.
More precisely, for each set of states P ⊆ S such
that P is believed by the given agent a, a joint
conservative upgrade ↑ P is performed.

Similar observations as the ones following Propo-
sition 4 apply to the case of doxastic upgrades:
priority merge is not the only realizable merge
operation; the order of announcements does mat-
ter; in general, the protocol may require multiple
announcements by the same agents.

VI. CONCLUSION

In this paper, we focused on dynamically re-
alizing two specific merge operations by public
communication. But, as we saw, depending on the
“agenda”, soft announcements can realize a whole
plethora of merge operations. Nevertheless, not
everything goes: the requirements imposed on the
plausibility relations generally pose restrictions to
which kinds of merge are realizable. This raises an
important open question: characterize the class of
merge operations realizable by radical (or conser-
vative) upgrades.

MALLOW’009: Turin, Italy, September 7-10, 2009

140

REFERENCES

[1] H. Andreka, M. Ryan and P-Y. Schobbens “Operators and Laws
for Combining Preference Relations”, Journal of Logic and
Computation, 12(1), 13–53, 2002.

[2] K.J. Arrow, “A Difficulty in the Concept of Social Welfare”,
Journal of Political Economy, 58(4), 328-346, 1950.

[3] A. Baltag and S. Smets, “Conditional doxastic models: a
qualitative approach to dynamic belief revision”, Electronic
Notes in Theoretical Computer Science, 165, 5–21, 2006.

[4] A. Baltag and S. Smets, “The Logic of Conditional Doxastic
Actions: A Theory of dynamic multi-agent belief revision”, in
S. Artemov and R. Parikh (eds.), Proceedings of the Workshop
on Rationality and Knowledge, 13–30, ESSLLI 2006.

[5] A. Baltag and S. Smets, “Dynamic Belief Revision over Multi-
Agent Plausibility Models”, in G. Bonanno, W. van der Hoek,
M. Woolridge (eds.), Proceedings of the 7th Conference on
Logic and the Foundations of Game and Decision (LOFT 2006),
11–24, University of Liverpool, 2006.

[6] A. Baltag and S. Smets, Probabilistic Dynamic Belief Revision,
in J. van Benthem and S. Ju and F. Veltman (eds.), Proceedings
of LORI’07, College Publications London, 21–39, 2007.

[7] A. Baltag and S. Smets, “A Qualitative Theory of Dynamic
Interactive Belief Revision”, in G. Bonanno, W. van der Hoek,
M. Wooldridge (eds.), Logic and the Foundations of Game
and Decision Theory, Texts in Logic and Games, 3, 9–58,
Amsterdam University Press, 2008.

[8] A. Baltag and S. Smets, “The Logic of Conditional Doxastic
Actions”, in R. van Rooij and K. Apt (eds.), New Perspectives
on Games and Interaction, Texts in Logic and Games, 4, 9–31,
Amsterdam University Press, 2008.

[9] P. Battigalli and M. Siniscalchi, “Strong Belief and Forward
Induction Reasoning”, Journal of Econonomic Theory, 105,
356–391, 2002.

[10] C. Boutilier, “Iterated Revision and Minimal Change of Con-
ditional Beliefs”, JPL, 25(3), 262–305, 1996.

[11] J.F.A.K. van Benthem, “One is a lonely number”. In P. Koepke
Z. Chatzidakis and W. Pohlers, (eds.) Logic Colloquium 2002,
96-129, ASL and A.K. Peters, Wellesley MA, 2006.

[12] J.F.A.K. van Benthem, “Dynamic logic of belief revision”,
JANCL, 17 (2), 129-155, 2007.

[13] J.F.A.K. van Benthem, “Priority Product Update as Social
Choice” (Expanded version), Unpublished Manuscript, Novem-
ber 2007

[14] J.F.A.K. van Benthem, Logical Dynamics of Information and
Interaction, Manuscript, To appear, 2009.

[15] J.F.A.K. van Benthem and F. Liu, “Dynamic logic of preference
upgrade”, Journal of Applied Non-Classical Logics, University
of Amsterdam, 17 (2), 157–182, 2007.

[16] O. Board, “Dynamic interactive epistemology”,Games and Eco-
nomic Behaviour, 49, 49–80, 2002.

[17] N. Friedmann and J.Y. Halpern, “Conditional logics of belief
revision”, Proc. of 12th National Conference in Artificial Intel-
ligence, AAAI Press, Menlo Park, CA, 915–921, 1994.

[18] P. Gochet and P. Gribomont, “Epistemic Logic”, D.M. Gabbay
and J. Woods (eds.), Handbook of the History of Logic, Elsevier,
7, 99–195, 2006.

[19] A. Grove, “Two modellings for theory change”, Journal of
Philosophical Logic, v17, 157–170, 1988.

[20] J.Y. Halpern, Reasoning about Uncertainty, MIT Press, Cam-
bridge MA, 2003.

[21] H. Katsuno and A. Mendelzon, “On the difference between

updating a knowledge base and revising it”,Cambridge Tracts
in Theoretical Computer Science, 183–203, 1992.

[22] J.-J.Ch. Meyer and W. van der Hoek, Epistemic Logic for AI and
Computer Science, Cambridge Tracts in Theoretical Computer
Science, 41, Cambridge University Press, Cambridge, 1995.

[23] H. Rott, “Conditionals and theory change: revisions, expan-
sions, and additions” in Synthese, 81(1), 91-113, 1989.

[24] W. Spohn, “Ordinal conditional functions: a dynamic theory
of epistemic states”, in W.L. Harper and B. Skyrms (eds.),
Causation in Decision, Belief Change, and Statistics, vol. II,
105–134, 1988.

[25] R. Stalnaker, “On Logics of Knowledge and Belief”, Philo-
sophical Studies, vol. 128, 169–199, 2006.

[26] R. Stalnaker, “Knowledge, Belief and Counterfactual Reasoning
in Games”, Economics and Philosophy, vol. 12, 133–163, 1996.

[27] W. van der Hoek, “Systems for knowledge and beliefs”, Journal
of Logic and Computation, 3, nr. 2, 173–195, 1993.

[28] F. Veltman, “Defaults in Update Semantics”, Journal of Philo-
sophical Logic, 25, 221–261, 1996.

[29] F.P.J.M. Voorbraak, As Far as I Know, Utrecht University,
Utrecht, NL, Questiones Infinitae volume VII, 1993.

[30] T. Williamson, “Some philosophical aspects of reasoning about
knowledge”, Proceedings of TARK’01, J. van Benthem (ed.),
97–97, Morgan Kaufmann Publishers, San Francisco, 2001.

MALLOW’009: Turin, Italy, September 7-10, 2009

141

Comparing strengths of beliefs explicitly
Dick de Jongh

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Email: D.H.J.deJongh@uva.nl

Sujata Ghosh
Institute of Artificial Intelligence

Rijksuniversiteit Groningen
Email: Sujata.Ghosh@rug.nl

Abstract—Inspired by a similar use in provability logic, for-
mulas pÂB q and p <B q are introduced in the existing logical
framework for discussing beliefs to express that the strength
of belief in p is greater than (or equal to) that in q. This
explicit mention of the comparison in the logical language aids in
defining several other concepts in a uniform way, viz. older and
rather clear concepts like the operators for universality (which
possibilities ought to be considered), together with newer notions
like plausibility (in the sense of ‘more plausible than not’) and
disbelief. Moreover, it assists in studying the properties of the
concept of greater strength of belief itself. A heavy part is played
in our investigations by the relationship between the standard
plausibility ordering of the worlds and the strength of belief
ordering. If we try to define the strength of belief ordering in
terms of the world plausibility ordering we get some undesirable
consequences, so we have decided to keep the relation between
the two orderings as light as possible to construct a system that
allows for widely different interpretations. Finally, after a brief
discussion on the multi-agent setting, we move on to talk about
the dynamics - the change of ordering under the influence of
hard and soft information.

Index Terms—doxastic logic, belief, disbelief, plausibility

I. INTRODUCTION

Being subject to doubts and dilemmas while making
decisions is like second nature to the human mind. The
difference in the strengths of beliefs of an agent regarding the
occurrence of different events may clear doubts of this kind. In
betting on games, people make their choices for putting their
money on different teams, based on their strengths of beliefs
about which team will win. Similarly, when voting, one’s
preference for the candidates is again based on the strength of
beliefs about one candidate’s ability to perform compared to
the others. Thus, this notion is inherently present in various
fields of research like decision theory, game theory and others.

Before proceeding further, let us first consider the following
real life situation where comparison of strength of beliefs plays
a key role in decision-making for recruitments.

Alice often has applications for jobs in her departmental
store. The first time Burt and Cora apply. Alice believes both
can do the job, but her belief in Cora being able to do it is
stronger than that Burt will be able to do it. She chooses Cora.

The second time Deirdre and Egon apply. She believes
that Egon can do the job whereas she is is ambiguous about
Deirdre: she neither has the belief that Deirdre can do it, nor
that she cannot. She chooses Egon.

The third time Fiona and Gregory apply. About both she is
ambiguous, but her strength of belief in Gregory being able
to do it is stronger than that in Fiona. She chooses Gregory,
maybe she has to help him along a little.

The fourth time the applicants are Harold and Irma. She
believes neither can do the job. She decides to take neither
and hold another round of applications.

All these situations regarding the belief states of Alice can
be aptly described, if we talk not only about her beliefs but
also compare the strength of her beliefs in the applicants.
One can argue that these situations can be described by the
very well-studied notion of preference, but the essence of
describing the mental states of Alice will be lost then. This
paper addresses the notion of comparison of the strength of
beliefs of an agent directly. A great volume of literature and
extensive philosophical debates are available on reasoning
about knowledge and belief of agents. This paper adds a
new notion to this line of work, viz. comparing the strengths
of beliefs, and very pertinently, doing this in a qualitative
manner. The ordering introduced here operates on formulas.

The introduction of explicit notions of ordering for
comparing strengths of beliefs in the logical language has
various applications. It aids in defining several other concepts
in a uniform way, viz. older and rather clear concepts like the
operators for universality, together with newer notions like
plausibility and disbelief. Moreover it assists in studying the
properties of the concept of greater strength of belief itself.
In the semantics, the question - which worlds are going to be
a part of the model, gets in our approach a clearer formal and
intuitive understanding. It also becomes more evident that the
universality operator cannot be identified with the knowledge
operator even if they both share the S5-properties. Above all
it has its advantages in an explicit study of the properties of
the orderings themselves, semantically and axiomatically. All
these investigations can be carried over to a dynamic setting.
A pleasant fact is that we can fit the system easily into the
framework of dynamic epistemic logic ([1], see also [2]) as
explained in section III.

As mentioned in a brief interlude later, the explicit belief
ordering also aids in providing an additional feather to
the already existing close relationship between beliefs and
preferences which is thoroughly discussed in [3].

MALLOW’009: Turin, Italy, September 7-10, 2009

142

Before entering into the actual study, let us first discuss
the previous work on provability logics which inspired
this idea of explicit belief ordering. In Provability Logic,
an extensive overview of which can be found in [4],
¤ϕ is interpreted as ∃xProofPA(x, ϕ), which means
that there is a proof x in the axiomatization PA (Peano
Arithmetic) for the statement ϕ. With PA understood,
we also write it in the form - ∃xProof(x, ϕ). In this
framework, to handle Rosser’s form of incompleteness, one
introduces witness comparisons of proofs with formulas like
¤ϕ4¤ψ := ∃x(Proof(x, ϕ) ∧ ∀y < x¬Proof(y, ψ)),
which is interpreted as that ϕ has a proof that is at
least as small as any (possible) proof of ψ. Similarly,
¤ϕ≺¤ψ := ∃x(Proof(x, ϕ) ∧ ∀y ≤ x¬Proof(y, ψ))
means that ϕ has a proof that is smaller than any (possible)
proof of ψ. Logics for these witness comparison formulas
were successfully introduced by [5], and the completeness
proof for this logic was simplified in [6].

Motivated by the ideas above, formulas ϕÂB ψ and
ϕ<B ψ are introduced in the existing logical framework for
discussing beliefs to express that the strength of belief in
ϕ is greater than (or equal to) that in ψ. We should note
here that in the Rosser framework proofs of ϕ and ψ are
compared only if one of these proofs really exists, whereas
strengths of beliefs are also discussed when neither ϕ nor
ψ are really believed, which makes them less concrete, and
therefore we express their comparison as ϕÂB ψ, rather than
Bϕ Â Bψ. As mentioned earlier, these formulas can be used
to express notions like ‘disbelief’ (the inclination to believe
in ¬ϕ is greater than the inclination to believe in ϕ), and its
dual ‘more plausible than not’, which can be represented by
¬ϕÂB ϕ and ϕÂB ¬ϕ, respectively.

Let us now mention some related works in this area.
In [7], [8], orderings of formulas are considered but their
interpretations are probabilistic in nature. A binary sentential
operator is introduced in the language with the intended
interpretation ‘at least as probable as’. While [8] takes the
explicit ordering operator in a simple language consisting of
the truth-functional connectives only, [7] discusses this issue
in a modal setting. Related as well are Lewis’s proposal for
a plausibility ordering of formulas [9] and Spohn’s work on
giving plausibility ordering of possible worlds in terms of
ordinal functions [10]. More recently, we find some similar
work in the economics literature [11]. Also, the notion of
epistemic entrenchment [12] gives a syntactic ordering of
formulas, which is studied in connection with belief revision.
The ordering influences the abandoning and retaining of
formulas when a belief contraction or revision takes place.
In our setting the dynamics operates rather differently, as the
reader will see.

With this background, we now provide a brief summary
regarding the structure of this paper. Explicit belief-

ordering over formulas is introduced in section 2. Several
possible interpretations of the belief-ordered formulas, viz.
plausibility and disbelief are discussed, together with the
inter-relationship of these ordering formulas and safe belief,
and also, preference. Complete axiomatizations of the new
belief logic with explicit ordering (KD45−O), with safe
belief added (KD45−OS), plausibility logic (P -logic),
logic of belief and plausibility (BP -logic) and logic of
belief and disbelief (BD-logic) are provided. The section
ends with a short discussion on the multi-agent setting.
Section III brings in dynamics to the whole framework
and discusses the influence of hard information as well as
soft information over these ordering formulas, and provides
complete axiomatizations to the dynamic logics under
consideration. The conclusions are drawn in section IV.

II. COMPARING STRENGTH OF BELIEFS EXPLICITLY

Modal logic is a useful tool to study knowledge and belief
of human agents, which has been a main issue of concern
to philosophers as well as computer scientists. Von Wright’s
work [13] is generally accepted as initiating this line of
research, which was further extended by [14]. Subsequently
a huge research area has been developed, trying to provide
answers to various philosophical issues as well as aiding into
the development of several areas of computer science, like
distributed systems, security protocols, database theory and
others.

Possible-world semantics [15] has been used to model
knowledge as well as belief. An extensive discussion together
with all pre-requisite definitions can be found in [16]. In
this work we are only concerned with beliefs of agents,
comparison of their strengths as well as some related notions
like universality, safe beliefs, plausibility, disbelief and others.
Various debates and discussions are still going strong among
the philosophers regarding the axioms that characterize belief
- for this paper we will stick to the KD45-model of belief.

In the following, we talk about Kripke structures as well
as the plausibility models [2], [17] as and when needed while
talking about beliefs. The readers should note that plausibility
models are more general in nature in the sense that one
can always build up a KD45 Kripke structure from them as
described in [17].

With this brief overview, we now move on to introduce
explicit ordering of beliefs in the logical language, which is
the essential new feature of this paper. This explicit mention
of such comparison of beliefs provides an informative and
uniform way to discuss certain relevant issues like disbeliefs,
plausibility and others.

To introduce this comparison of strengths of beliefs explic-
itly in the logical language, we add new relation symbols to
the existing modal language of belief to form the language

MALLOW’009: Turin, Italy, September 7-10, 2009

143

Fig. 1. Plausibility ordering

of Belief logic with explicit ordering (KD45−O), whose
language is defined as follows:

Definition II.1 Given a countable set of atomic propositions
Φ, formulas ϕ are defined inductively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | ϕ<B ψ |
where p ∈ Φ.

The intuitive reading of the formula Bϕ is “ϕ is believed”,
and that of ϕ<B ψ is “belief in ϕ is at least as strong as belief
in ψ”. We introduce the notations ϕÂB ψ for (ϕ<B ψ) ∧
¬(ψ<B ϕ) and ϕ≡B ψ for (ϕ<B ψ)∧ (ψ<B ϕ). Intuitively,
they can be read as “belief in ϕ is stronger than that in ψ”
and “belief in ϕ and ψ are of same strength”, respectively. We
now move on to define a model for this logic.

Definition II.2 A KD45−O model is defined to be a structure
M = (S,≤,≥B , V), where S is a non-empty finite set of
states, V is a valuation assigning truth values to atomic
propositions in states, ≤ is a quasi-linear1 order relation (a
plausibility ordering) over S, and ≥B is a quasi-linear order
relation over P(S), satisfying the conditions

1) If X ⊆ Y , then Y ≥B X
2) If B is the set of all ≤-minimal worlds (the set of most-

plausible worlds, called the center), then B ⊆ X and
B 6⊆ Y imply X >B Y , where X >B Y iff X ≥B Y
and not (Y ≥B X).

3) If X is non-empty, then X >B ∅.
The first condition says that larger sets of worlds are more
plausible, the second one that the sets containing the center
are more plausible than those not containing it, and the third
one that non-empty sets are more plausible than the empty
set. Truth on the center suffices to make an assertion to be
believed. Note that all the models are considered to be finite.
This assumption ensures the existence of minimal worlds in
terms of the plausibility ordering of the model. The truth
definition for formulas ϕ in a KD45−O model M is as
usual with the following clauses for the belief and ordering
modalities.

M, s |= Bϕ iff M, t |= ϕ for all ≤-minimal worlds t.

1A binary relation ≤ on a non-empty set S is said to be quasi-linear if it
is reflexive, transitive and linear, i.e. a total pre-order.

M, s |= ϕ<B ψ iff {t |M, t |= ϕ} ≥B {t |M, t |= ψ}.

We consider <B to be a global notion, if ϕ<B ψ is
true anywhere in the model, it is true everywhere. So, it is
either true or false throughout the whole model; <B is a
global notion like B. Of course, being global in the model is
strongly connected with introspection. From the definition of
ÂB , it follows that,

M, s |= ϕÂB ψ iff {t |M, t |= ϕ} >B {t |M, t |= ψ}.

Thus, ÂB is also a global notion. We will now show
that the universal modality U can also be expressed in
KD45−O . The modality Eϕ (the abbreviated form of
¬U¬ϕ) can be defined as ϕÂB ⊥, and hence Uϕ itself
as ⊥<B ¬ϕ. To clarify matters we should mention here
- Uϕ expresses that ϕ is true in all possible worlds in
the model, whereas Eϕ stands for existence of a possible
world in the model where ϕ is true. The formula ϕÂB ⊥
which defines Eϕ expresses clearly which worlds should be
considered in the model: those worlds of which the existence
is expressed by a positive strength of belief, those possibilities
which the agent does not want to exclude. Evidently, we have,

M, s |= Uϕ iff M, t |= ϕ for all worlds t.

Thus U is definable in the language above, but to get the
properties of the universal modality, we will need to have the
S5-axioms that hold for U [18] plus the axiom Bϕ→ UBϕ,
which expresses that B is a global notion in a model where U
expresses universality. In such a model there is only one center.

There are various possible ways of interpreting the formula
ϕ<B ψ in plausibility models expressing the belief modality.
The foremost question is whether to try to define semantically
ϕÂB ψ in terms of the plausibility ordering of the worlds.
If one wants to base the strength of belief ordering on
the plausibility ordering of the worlds, then immediately
the following option comes to mind: the interpretation of
ϕÂB ψ can be that there exist ϕ-worlds which are more
plausible than any ψ-world (similar to the proposal in [9]).
For ϕ<B ψ it can be given as follows: for each ψ-world
there exist ϕ-worlds which are at least as plausible. If one
does this however, Bϕ becomes equivalent to ϕ<B ¬⊥.
In fact, no distinction in strength of belief can be made
between propositions which are believed. This is not at all
our aim. A more pleasurable consequence of this definition
is that conditional belief Bψϕ can equivalently be expressed
as - (ψ ∧ ϕ)ÂB (ψ ∧ ¬ϕ). Ultimately though we think
that the price is too high: this interpretation of the ordered
formulas gives rise to more unintended validities in the logic
KD45−O (cf. section II-C). There are more sophisticated
reductions of strengths of beliefs to the plausibility ordering
of the worlds but we think that they will all have undesirable
consequences. This is only partly due to the fact that belief
is identified with truth in the most plausible worlds, which

MALLOW’009: Turin, Italy, September 7-10, 2009

144

seems necessary for a dynamic interpretation. To do away
with this issue we decided to define another set-plausibility
ordering ≥B between the sets of worlds in the plausibility
models. We have put very minimal requirements on this
ordering. In fact, as we will see in section II-B, belief can be
interpreted in terms of belief ordering and safe beliefs. How
this will relate the world ordering and the set ordering is an
interesting study, but we leave it for the future.

We should mention here that the idea of modeling
epistemic notions in terms of set orders is not really new.
In [19], [20], preferential structures are considered where a
preference ordering over worlds is lifted to an ordering of
sets of worlds. Plausibility measures are considered in [21]
to give a semantics of default logic. These measures can
be identified with a partial ordering on sets of worlds and
they also provide an interpretation of the notion of beliefs.
We are not going into a detailed comparison of these works
with ours due to lack of space, but just note that an essential
difference is that in our case the ordering of the sets of
worlds is only partly determined by the ordering of the worlds.

Alice’s belief states (as described in the introduction)
can now be formally presented as follows: suppose each
of the applicants’ names denotes the proposition that “he
(she) can do the job”. CoraÂB Burt in the first case;
(B(Egon) ∧ ¬B(Deirdre) ∧ ¬B(¬Deirdre)) implies that
EgonÂB Deirdre in the second case, with the third case
simply being GregoryÂB Fiona again, and the fourth one,
B(¬Harold)∧B(¬Irma). The readers can easily see that in the
second case there is some reasoning going on which leads
to Egon being given the job, because Alice’s belief in the
ability of Egon is stronger than her belief in the ability of
Deirdre. Even in the fourth example where Alice believes that
both Harold and Irma are unable to perform, her belief in the
ability of one might be higher than that of the other. Then,
if forced to choose, she could do without another round of
applications.

A. Axioms and Completeness

Let us first look into some interesting validities of this logic.

• (ϕÂB ψ)→ E(ϕ ∧ ¬ψ)
• ϕ<B ϕ ∧ ψ
• ϕ ∨ ψ<B ϕ
• B(ϕ<B ψ)→ (ϕ<B ψ)

Before providing a complete axiomatization of KD45−O,
we discuss the motivations behind some of these axioms.
Since, by the set-ordering relation in the KD45−O model,
≥B is a reflexive, transitive and connected relation over P(S),
and >B is the corresponding strict ordering, the following
axioms need no introduction:

ϕ<B ϕ (refl-axiom)
(ϕ<B ψ) ∧ (ψ<B χ) → ϕ<B χ (trans-axiom)
(ϕ<B ψ) ∨ (ψÂB ϕ) (lin-axiom)

From these axioms, it follows that,

(ϕÂB ψ) ∧ (ψÂB χ) → (ϕÂB χ)

and so we get the transitivity of >B . We have already seen that
Eϕ can be defined as ϕÂB ⊥, because of the 3rd condition
that >B satisfies in the model. Using lin-axiom it is easy to
show that Uϕ is equivalent to ⊥<B ¬ϕ. The following axiom
takes care of the 2nd condition.

(Bϕ ∧ ¬Bψ)→ (ϕÂB ψ) (center-axiom)

Since the ordering formulas are either globally true or globally
false in the model, we have:

(ϕ<B ψ)→ B(ϕ<B ψ) (intros-axiom1)
(ϕÂB ψ)→ B(ϕÂB ψ) (intros-axiom2)

It immediately follows that,

¬(ϕ<B ψ)→ B¬(ϕ<B ψ)
¬(ϕÂB ψ)→ B¬(ϕÂB ψ)

The inverses of all these implications above follow from the
lin-axiom. This means that all these ordering statements can
be considered to be B-statements, i.e. ϕ<B ψ, ϕÂB ψ, Uϕ,
Eϕ are all B-statements. As a result, the inclusion formula
concerning the belief and the universal modality, viz. Uϕ →
Bϕ also follows. The following axiom and rule take care of
replacement with equivalent formulas in the ordering formulas:

U(ϕ→ ψ) → (ψ<B ϕ) (U <B -axiom)
ϕ→ ψ (inclusion rule)
ψ<B ϕ

We can conclude then

ϕ (Ugen-rule)
Uϕ

and the equivalence rule:

ϕ↔ ψ

ϕ ≡B ψ

which means that logically equivalent formulas can be sub-
stituted for each other in the ordering formulas as well
and hence everywhere. We now have the gen-rule for the
universal modality, the K-axiom for U also follows from these
principles. We move on to get the other sound ordering axiom,
which will help us to get the S5-properties of the universal
modality U [18]. It is:

ϕ→ Eϕ (existence axiom)

The existence axiom is basically the equivalent ordered for-
mula for Uϕ → ϕ. We end with the axiom which forces the
KD45−O models to have a unique center B and hence makes
B a global property.

EBϕ→ Bϕ (un.center-axiom)

From this the principle Bϕ → UBϕ readily follows. The
transitivity and the symmetry axioms for U follow because of
the very significant property of Uϕ being a B-statement, the
un.center-axiom applies to U -statements as well.

Thus we have the following theorem which is the most basic
and important result of this work.

MALLOW’009: Turin, Italy, September 7-10, 2009

145

Theorem II.3 KD45−O is sound and complete with respect
to KD45−O models and its validities are completely axiom-
atized by the following axioms and rules:

a) all KD45 axioms and rules
b) ordering axioms:

ϕ<B ϕ (refl-axiom)
(ϕ<B ψ) ∧ (ψ<B χ) → ϕ<B χ (trans-axiom)
(ϕ<B ψ) ∨ (ψÂB ϕ) (lin-axiom)
(Bϕ ∧ ¬Bψ)→ (ϕÂB ψ) (center-axiom)
(ϕ<B ψ)→ B(ϕ<B ψ) (intros-axiom1)
(ϕÂB ψ)→ B(ϕÂB ψ) (intros-axiom2)
U(ϕ→ ψ) → (ψ<B ϕ) (U <B -axiom)
ϕ→ Eϕ (existence axiom)
EBϕ→ Bϕ (un.center-axiom)

c) inclusion rule:
ϕ→ ψ (inclusion rule)
ψ<B ϕ

Proof: The readers can easily verify the soundness
of these ordering axioms. The U <B -axiom is covered by
property 1 of Definition II.2, existence axiom by property 3,
and the center axiom describes property 2. With U and E
defined as indicated previously, one can easily show that the
S5-axioms are derivable for U . It is also not very hard to
show completeness using finite sets of sentences.

Assume 0KD45−O ϕ. We will have to construct a counter-
model to ϕ as a KD45−O-model. We take a finite adequate
set Φ containing ϕ. In this case an adequate set will be: a
set of formulas that is closed under subformulas containing
with each formula ψ (a formula equivalent to) ¬ψ, containing
with Bψ and Bχ (a formula equivalent to) B(ψ ∧ χ) and
a formula (equivalent to) B(ψ ∨ χ). We also need Φ to
contain with each formula Bϕ a formula (equivalent to) UBϕ.
Finally, Φ contains B> and B⊥. It is easy to see that any
finite set is contained in a finite adequate set. We use the
Henkin method restricted to Φ. Consider the m.c. (maximally
consistent) subsets of Φ. In particular consider such an m.c.
set Φ0 containing ¬ϕ. When we now refer to Uψ we mean
its translation into KD45−O . It can be shown that the S5-
axioms to hold for this translation. The proof is made more
perspicuous by referring to U .

The relations RB and RU are defined as follows:
PRBQ iff (1) for all Bϕ in P , ϕ as well as Bϕ are in Q,

(2) for all ¬Bϕ in P , ¬Bϕ in Q.
PRUQ iff (1) for all Uϕ in P , ϕ as well as Uϕ are in Q,

(2) for all ¬Uϕ in P , ¬Uϕ in Q

We have to show that RU is an equivalence relation and
RB a Euclidean sub-relation of RU . Finally, within one U -
equivalence class there is one, nonempty set of B-reflexive
elements, which forms a B-equivalence class. Since all these
things are standard we skip this part.

We now take the submodel generated by RU from Φ0. The
set of worlds W of our model will be the set of worlds

in this submodel and the RB and RU the restrictions of
the original RB and RU to this submodel. RU is now the
universal relation.

As before, we write B for the set of RB-reflexive elements.
The axiom Bϕ → UBϕ implies that this set is unique and
a B-equivalence class. The world plausibility ordering is
given as follows: any world in B is more plausible than
any in W \ B, and within these two sets, the worlds are
equi-plausible. So, with respect to the modal operators B
and U the model behaves properly, and we have a proper
world-ordering as well. We will now have to order P(W) in
a proper way.

Let us say that ψ represents subset X of W if X is the set of
nodes where ψ is true, which we may write as V (ψ) = X . We
say that X is representable if for some Bψ in Φ, ψ represents
X. By the conditions on Φ the representable sets are closed
under unions and intersections, and contain W itself and the
empty set.

The representable subsets of Φ are quasi-linearly ordered
by the relation ≥1 defined by V (ψ) ≥1 V (χ) iff ψ<B χ is
true in the model, V (ψ) >1 V (χ) iff ψÂB χ is true in the
model. These follow from the first three ordering axioms.

Moreover, if V (ψ) ⊆ V (χ) then V (ψ) ≥1 V (χ) (subset
condition), by the axiom: U(χ → ψ) → ψ<B χ. Finally if
V (ψ) properly contains B and V (χ) does not, then V (ψ) >1

V (χ) (sufficient belief condition) by the axiom: Bψ∧¬Bχ→
ψÂB χ.

So, ≥1 behaves properly on the representable elements of
P(W). What remains is to extend ≥1 to an ordering ≥ with
the right properties over all of P(W).

Take an arbitrary subset X of W . We define R(X) to be
the largest subset of X that is representable. That such a set
exists follows from the fact that the representable subsets are
closed under finite unions and the finiteness of the model.

We now define X ≥ Y iff R(X) ≥1 R(Y). This imme-
diately makes ≥ a quasi-linear order. That ≥ satisfies the
subset condition follows from the fact that, if X ⊆ Y , then
R(X) ⊆ R(Y).

We will conclude this proof with a lemma showing
that B is representable, i.e. B=R(B). From that result
it follows that, if B ⊆ X , then B ⊆ R(X). This is
clearly sufficient to ensure the sufficient belief condition. So,
once we finish the proof of the following lemma, we are done.

Lemma. B is representable.
Proof of Lemma. Consider w not in B. Then it is not the

case that wRBw. This means that, for some particular B(ψw)
in Φ, B(ψw) is in w but ψw is not. Note that this implies that
ψw is true all over B. Consider the conjunction ψ of all ψw for
w in the complement of B. B(ψ) is a member of Φ while ψ
is true in all elements of B, but is falsified at all elements u in
the complement of B, since ψ implies ψu and ψu is falsified
in u. We have shown that B is represented by ψ.

MALLOW’009: Turin, Italy, September 7-10, 2009

146

Since the counter-model constructed is finite, we also have
that the logic KD45−O is decidable. Before ending this
section we mention some intuitively true formulas, which we
did not need as axioms, but are definitely worth thinking about.
One of them is,

(ϕÂB ⊥)→ (>ÂB ¬ϕ),

which says that if ϕ is true somewhere then ¬ϕ is not as
much to be believed as a tautology. The other direction of the
implication can be derived. An equivalent formulation is,

(ϕ)→ (⊥<B ¬ϕ).

To make this true, the model needs an extra clause 4, saying
that,

if S 6= X then S >B X .

This seems a very reasonable addition as it makes the models
more symmetric. A more general version of this possible
axiom is,

(ϕÂB ψ)→ (¬ψÂB ¬ϕ).

which, if considered definitely increases the already-existing
probabilistic flavor of the axiomatization. Another possible
principle with a similar flavor is

(ϕÂB ψ)→ (ϕ ∧ ¬ψ)ÂB (ψ ∧ ¬ϕ).

This one exemplifies the notion that if ϕ is more believed
than ψ, then that should be based on the idea that the
common part of ϕ and ψ is irrelevant in the estimation of
their relative strengths of belief. Readers can note here that
if we strengthen this formula above to its bi-implication, then
(ϕÂB ψ)→ (¬ψÂB ¬ϕ) follows.

B. Safe Belief

The notion of ‘safe belief’ has been introduced in [17]
which also corresponds to “Stalnaker knowledge” [22], where
evidence is considered as true information. The authors gave
this name to single out those beliefs “that are safe to hold, in
the sense that no future learning of truthful information will
force us to revise them.” The safe belief modality is generally
denoted by ¤. Evidently, ‘safe beliefs’ are truthful (¤ϕ |= ϕ)
and positively introspective (¤ϕ |= ¤¤ϕ), but not necessarily
negatively introspective (in general, ¬¤ϕ 6|= ¤¬¤ϕ).

Adding safe belief to our ordering framework is interesting
both from the technical as well as intuitive point of view. We
already have an understanding of the interplay between beliefs
and the comparison of strength of beliefs. Our study will be
incomplete, if we do not investigate the lively relationship
between the very relevant and important issue of safe beliefs
together with our notion of belief orderings.

In the plausibility models, the truth definition of ¤ϕ is given
by the following clause:

M, s |= ¤ϕ iff M, t |= ϕ for all worlds t ≤ s.
which says that ϕ can be safely believed at some world s if it
holds at all the worlds which are at least as plausible as s. In
the following we will introduce the safe belief modality in the
setting of KD45−O, and give a complete axiomatization of
this logic. The language of the logic KD45−OS is defined
as follows:

Definition II.4 Given a countable set of atomic propositions
Φ, formulas ϕ are defined inductively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Bϕ | ¤ϕ | ϕ<B ψ

where p ∈ Φ.

We now present the axioms of the logic KD45−OS.
Together with the axioms and rules of the KD45-logic of
beliefs, and the relevant ordering axioms, viz. refl, trans, lin,
center, existence, U <B -axiom and the S4-axioms and rules
for the safe belief ¤ operator, we will have the following extra
axioms,

(¤ϕ ∧ ¬¤ψ)→ (ϕÂB ψ) (¤order-axiom)
(ϕ<B ψ)→ ¤(ϕ<B ψ) (¤intros-axiom1)
(ϕÂB ψ)→ ¤(ϕÂB ψ) (¤intros-axiom2)

In addition to all these, the following axiom relates the
operator ¤ with B.

¤ϕ→ Bϕ (¤B-axiom)

The intros-axioms(1-2) and the un.center axioms of KD45−O
are derivable from KD45−OS. We can also derive:

Uϕ→ ¤ϕ
Regarding the ¤order-axiom, it should be mentioned that,
unlike belief (center axiom), relating safe belief and belief
ordering in this manner may be considered questionable. It
says that, if ϕ is safely believed and ψ is more strongly
believed than ϕ, then ψ can also be safely believed. This seems
alright at a first glance, but if we consider the subjectivity
of the ordering, this axiom may lead to some dispute. Still,
technical reasons make it very desirable, the relationship
between the world and set orderings becomes much closer,
so we decided to keep this axiom. So, we have the following
theorem.

Theorem II.5 The logic KD45−OS is sound and its validi-
ties can be completely axiomatized by the following axioms
and rules.

a) all KD45−O axioms and rules
b) S4-axioms and rules for the modal operator ¤
c) ordering axioms:

ϕ<B ϕ (refl-axiom)
(ϕ<B ψ) ∧ (ψ<B χ) → ϕ<B χ (trans-axiom)
(ϕ<B ψ) ∨ (ψÂB ϕ) (lin-axiom)
(⊥<B (¬(¤ϕ→ ¤ψ)) ∨ (⊥<B ¬(¤ψ → ¤ϕ))

(¤lin-axiom)
(Bϕ ∧ ¬Bψ)→ (ϕÂB ψ) (center-axiom)

MALLOW’009: Turin, Italy, September 7-10, 2009

147

(¤ϕ ∧ ¬¤ψ)→ (ϕÂB ψ) (¤order-axiom)

(ϕ<B ψ)→ ¤(ϕ<B ψ) (¤intros-axiom1)

(ϕÂB ψ)→ ¤(ϕÂB ψ) (¤intros-axiom2)

U(ϕ→ ψ) → (ψ<B ϕ) (U <B -axiom)

ϕ→ Eϕ (existence axiom)

d) ¤ϕ→ Bϕ (¤B-axiom)

e) inclusion rule:
ϕ→ ψ

ψ<B ϕ

We should mention here that, according to [17], belief and
conditional belief can be expressed in terms of knowledge and
safe belief as,

Bψϕ := K̂ψ → K̂(ψ ∧¤(ψ → ϕ)),
Bϕ := B>ϕ,

where K̂ψ := ¬K¬ψ. They gave complete axiomatizations for
conditional doxastic logic (logic of conditional belief) as well
as the logic of knowledge and safe beliefs. We do not consider
knowledge but for this part of the discussion it can be replaced
by U . Neither do we talk about conditional belief here, but
belief can be defined in terms of the existential modality and
safe belief (i.e. in terms of safe belief and belief ordering) as
follows:

Bϕ := E¤ϕ
Once we have in this manner the modal operator B as

a defined concept, we can easily derive all its well-known
properties in KD45−OS, but if that holds fully for its
relations with <B remains to be seen.

C. Plausibility

Comparing the strength of beliefs explicitly has its various
advantageous applications. By plausibility of a proposition we
generally mean that we tend to believe in its happening rather
than its not happening. That is the interpretation we take here.
Hence, in terms of ordered formulas, Pϕ can be expressed
as ϕÂB ¬ϕ. Of course, there are other possible notions of
plausibility, but here we interpret Pϕ as ‘more plausible than
not’. We now explore this notion of ‘plausibility’ in terms of
belief ordering.

An important principle that will be valid for the plausibility
operator P is U(ϕ→ ψ)→ (Pϕ→ Pψ). This holds because
if U(ϕ → ψ), not only will belief in ψ be at least as strong
as in ϕ, but U(ϕ → ψ) implies U(¬ψ → ¬ϕ), so belief in
¬ψ is not greater than in ¬ϕ. This leads to consequences like
P (ϕ ∧ ψ)→ Pϕ.

The reason to take the set semantics for ordering formulas
(cf. Definition II.2) becomes clear. If we would adhere to the
semantics we may have had for ÂB in terms of plausibility
ordering for worlds (instead of sets of worlds), Pϕ would
become equivalent to Bϕ, which obviously is undesirable.

One can just subdivide the most plausible worlds (the
center) into more and less plausible ones to rectify this, but
besides endangering the transition to dynamics this will not
yet be really satisfactory in its own right. It will result in
interpreting Pϕ into something like ‘ϕ is weakly believed’.
This would make the modal logic of P a normal modal logic
(of weak belief). In particular Pϕ ∧ Pψ → P (ϕ ∧ ψ) would
become valid, which is not very intuitive.

For example, you may judge it more plausible than not that
your next client will be male. Similarly, you may consider
it to be plausible that your next client will be a foreigner.
But, it doesn’t follow that it is more plausible than not that
the next client will be a foreign male, most of one’s foreign
clients may be female.

We now move on to showing an independent axiomatization
of the plausibility logic P . The language of the P -logic is
given by

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Pϕ
We read Pϕ as “ϕ is plausible”. As mentioned above,

the intuitive meaning of Pϕ can be captured by the formula
ϕÂB ¬ϕ, and as such, the truth definition of Pϕ in the
KD45−O model is given by,

M, s |= Pϕ iff {t |M, t |= ϕ} >B {t |M, t |= ¬ϕ}.

Theorem II.6 P -logic is complete and its validities are com-
pletely axiomatized by the following axioms and rules:
(a) all propositional tautologies and inference rules
(b) plausibility axioms:

Pψ ∧ Pϕ→ P (ψ ∧ Pϕ)
Pψ ∧ ¬Pϕ→ P (ψ ∧ ¬Pϕ)
Pϕ→ ¬P¬ϕ
P>

c) monotonicity rule:
if ϕ→ ψ then Pϕ→ Pψ

Proof: First of all, we show that any formula in P-logic
is equivalent to a formula with P -depth at most one. For that
purpose we first derive the following schemes:

1) Pψ → (ϕ↔ ϕ[>/Pψ])
2) ¬Pψ → (ϕ↔ ϕ[⊥/Pψ])

Here, ϕ[>/Pψ] means ϕ with > substituted for some
occurrences of Pψ. We prove by induction on the complexity
of formulas ϕ with possible occurrences of > and ⊥.

In the base case, that is for the atomic propositions and
propositional constants, the result follows immediately.

Induction step. This is trivial for the boolean connectives.
So, it suffices to prove it for Pϕ assuming it holds for ϕ.
From the induction hypothesis for the first scheme it follows
that (Pψ ∧ ϕ)↔ (Pψ ∧ ϕ[>/Pψ]) is provable. Now assume
Pψ and Pϕ. By an axiom P (ϕ ∧ Pψ) follows. From the

MALLOW’009: Turin, Italy, September 7-10, 2009

148

fact just proved it follows that P (ϕ[>/Pψ]∧ Pψ) and hence
P (ϕ[>/Pψ]). The proof for the second scheme is very similar.

To see that these schemes imply that each formula in
P -logic is equivalent to a formula with P -depth at most one,
just note that ` ϕ ↔ ((Pψ ∧ ϕ) ∨ (¬Pψ ∧ ϕ)). Now, if we
want to get rid of occurrences of Pψ in ϕ we can replace ϕ
by ((Pψ ∧ ϕ[>/Pψ]) ∨ (¬Pψ ∧ ϕ[⊥/Pψ])). By doing this
consecutively for all occurrences of Pψ with no occurrences
of P in ψ we obtain the desired result.

Next, we show that any consistent set has a model. Assume
we have a consistent set in the P -logic which can be extended
to a maximal consistent set Γ, say. Since we can restrict
attention to formulas which are boolean combinations of
atoms and formulas of the form Pϕ where ϕ no longer
contains P , a maximal consistent set is essentially only a
set of atoms, negations of atoms, such Pϕ’s and ¬Pϕ’s and
their boolean combinations.

We now make a model in our sense where Pϕ gets
interpreted as ϕ >B ¬ϕ. The worlds will be simply defined
by a number of atoms being true in it and the rest of
the atoms false. Let us now consider the following model,
M = (S,≤,≥B , V), where S is the set of all maximal
consistent subsets. The ordering of the subsets is as follows:
There are 5 equivalence classes in the ordering starting with
the highest grade of believability. We take membership of
those classes to determine the degree of belief in the sets.
(1) The whole set, which is of course represented by >.
(2) The sets represented by those ϕ for which Pϕ is in Γ
(except for >).
(3) The sets represented by those ϕ for which ¬Pϕ is in Γ
as well as ¬P¬ϕ.
(4) The sets represented by those ϕ for which P¬ϕ is in Γ
(except for ⊥).
(5) The empty set, which is of course represented by ⊥.
These are all possibilities because of axiom Pϕ → ¬P¬ϕ.
Finally we take B, the center, to be the whole set (so, there
are no beliefs except the trivial one in >).

The two things we have to check are: First, that, if
a set is in class (2), then any larger one will be in (2)
as well (or in (1)). This follows from the monotonicity
rule. Similarly for the other classes. Second, that, if a set
X contains all of B, and another set Y doesn’t, then X
> Y . That is trivial: X has to be B, the whole set, and Y isn’t.

As earlier, we can induce an ordering over all subsets
satisfying the required conditions. All the single worlds have to
be taken to be equally plausible, i.e. s ≤ t, for all s, t ∈ S. So,
for each consistent set we can have a model in KD45−O. So,
the axioms and rules given in Theorem 2.6 axiomatize the P -
logic of ‘more plausible then not’. It is also worth-mentioning
why (Pϕ∧ Pψ)→ P (ϕ∧ψ) will fail in general. There may
be sets in (2), the intersection of which, is not in (2).

Evidently, Pϕ is a global notion - its value does not
vary through the model. Again, P is clearly an introspective
notion. Interestingly, the principles 4 and 5 for the modal
operator P are derivable in this P -logic, but the K-axiom
is not. That Pϕ ∧ Pψ → P (ϕ ∧ ψ) ought not to be a
valid principle in the P -logic is clear if we interpret Pϕ as
ϕÂB ¬ϕ.

Let us finally note that an interpretation of Pϕ as ϕ
as having probability more than 0.5 (or any other number
between 0.5 and 1) leads to exactly the P -axioms provided
one considers the probability statements themselves to always
have probability 1.

We now consider a system having both belief and the
plausibility operator, viz. the BP -system. This system will
provide pointers to discuss logics of belief and disbelief in the
next subsection. The language is that of the P -logic, together
with the additional modal operator for belief, B.

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Pϕ | Bϕ
Some validities of this logic in the KD45−O model are,

• Bϕ→ Pϕ
• Pϕ→ BPϕ
• ¬Pϕ→ B¬Pϕ

Theorem II.7 BP -logic is complete and its validities are
completely axiomatized by the following axioms and rules:

a) all propositional tautologies and inference rules
b) all KD45 axioms and rules
c) all P axioms and rules
d) special axioms:

Bϕ→ (ψ ↔ ψ[>/Bϕ])
¬Bϕ→ (ψ ↔ ψ[⊥/Bϕ])
Bϕ→ Pϕ

The proof is very similar to that for the P -logic. It uses
the fact that the axioms force all formulas to be equivalent
to boolean combinations of atoms and formulas of the form
Pϕ and Bϕ, where ϕ is boolean. It is noteworthy that the
principle Bϕ∧Pψ → P (ϕ∧ψ) of [23] fails in the BP -logic.
It is not difficult to construct a counterexample.

D. Disbelief

Disbelief in a proposition is governed by exactly the
opposite situation to the one discussed in the previous
subsection, Dϕ can be expressed as ¬ϕÂB ϕ, that is P¬ϕ.

With the huge amount of work going on in logics of
beliefs and belief revision, consideration of disbelief as a
separate epistemic category came to fore in the latter part
of last decade ([24], [25]). Consideration of changing or
revising disbeliefs as a process analogous to belief revision
was taken up by [26]. Belief-disbelief pairs i.e. simultaneous
consideration of belief and disbelief sets were also taken up
([27], [28]) through which various connections of possible

MALLOW’009: Turin, Italy, September 7-10, 2009

149

inter-connectivity of beliefs and disbeliefs have come into
focus. As mentioned earlier our notion of explicit belief
ordering provides another path into expressing the concept of
disbelief.

The basic idea for disbelieving a proposition is that, the
inclination to believe in its negation is stronger than that
to believe it. Consequently, disbelieving is a much weaker
notion than believing the negation of the proposition, but it
should imply that one does not believe in the proposition. In
other words, Dϕ is implied by B¬ϕ and implies ¬Bϕ but
not the other way around in either case.

To exemplify the matter a bit, let us consider the following
situation. Due to the unpredictable weather conditions, Pom’s
belief in that she should not cycle from Amsterdam to Leiden
is much stronger than her belief that she should. When
options like this are available, it is very natural to have this
sort of ordering dilemma playing around people’s mind. This
can be interpreted as that Pom disbelieves that she should
bike, which evidently implies that she does not believe that
she should bike. But that ‘she believes that she should not
bike’ is a much stronger statement, which fails to express the
finer interplay of doubts that is always prevalent in one’s mind.

In general, if a person faces a decision based on whether
a certain state of affairs is the case or an event happens, she
may not have enough evidence to believe that the state of
affairs is the case or is not the case. Then she may base her
decision on whether she thinks the state of affairs plausible or
disbelieves in it. Only in the case that her strength of belief
in the two possibilities is equal, translated into our framework
as ϕ ≡B ¬ϕ, it is a real tossup for her.

Various principles for the ‘disbelief’ operator together
with the ‘belief’ one have been discussed in [25] in the
autoepistemic logic framework of [29]. As such, the possible
world semantics provided there which is based on separate
sets of worlds for beliefs and disbeliefs is not very interesting,
and suffers from ‘disjointedness’ as well as ‘mirror-image’
problems. These questions will not arise in the semantics we
propose here. The basic reason is the fact that ‘disbelief’ is
given a global stance in contrast to ‘belief’ which is apparent
from their respective interpretations. This also emphasizes the
fact that disbelieving something is different from both from
‘not believing’ as well as ‘believing the negation’.

We now focus on getting a more feasible logic of belief and
disbelief in similar lines to BP logic introduced earlier. From
our formal understanding Dϕ is same as P¬ϕ and hence we
get the following dual axiomatization of the BD-logic -

Theorem II.8 BD-logic is complete and its validities are
completely axiomatized by the following axioms and rules:

a) all propositional tautologies and inference rules

b) all KD45 axioms and rules

c) disbelief axioms:
Dϕ→ (ψ ↔ ψ[>/Dϕ])

¬Dϕ→ (ψ ↔ ψ[⊥/Dϕ])

Dϕ→ ¬D¬ϕ
D⊥

d) special axioms:
Bϕ→ (ψ ↔ ψ[>/Bϕ])

¬Bϕ→ (ψ ↔ ψ[⊥/Bϕ])

Bϕ→ D¬ϕ
e) anti-monotone rule:

if ϕ→ ψ then Dψ → Dϕ

Some interesting validities of this logic are,

• B¬ϕ→ Dϕ
• Dϕ→ ¬Bϕ
• Dϕ→ BDϕ
• ¬Dϕ→ B¬Dϕ
• ¬Dϕ→ DDϕ
• ¬Bϕ→ DBϕ

On the other hand, as in P -logic and BP -logic,
the corresponding intuitively incorrect principle,
Dϕ ∧ Dψ → D(ϕ ∨ ψ) can also be avoided in the
BD-logic.

E. Preference

There is a very close relationship between an agent’s beliefs
and her preferences which has been extensively discussed in
([30], [3]). Based on the ideas from optimality theory, intrinsic
preference on the basis of priority sequences P1 >> . . . >>
Pn is formulated. Here, the P ′is are first-order formulas with
exactly one free variable, which is common to all of them.
Preferences over objects can be defined in terms of these
sequences. The basic idea is to define objective preference
by:

Pref(d, e)⇔ ∃i(Pid∧¬Pie)∧∀j < i (Pjd↔ Pje)
For subjective preferences over objects, which in fact are
considered to be influenced by beliefs, several options are
considered. We mention a few of them for the benefit of the
readers, their meanings are more or less obvious.

Pref(d, e)⇔ ∃i(B(Pid) ∧ ¬B(Pie) ∧ ∀j < i(B(Pjd)↔
B(Pje)))

Pref(d, e)⇔ ∃i(¬B(¬Pid) ∧B(¬Pie) ∧ ∀j < i(B(¬Pjd)
↔ B(¬Pje)))

Pref(d, e)⇔ ∃i ((B(Pid) ∧ ¬B(Pie)) ∨ (¬B(¬Pid)∧
B(¬Pie)) ∧ ∀j < i ((B(Pjd)↔ B(Pje)) ∧ (B(¬Pjd)
↔ B(¬Pje))))

MALLOW’009: Turin, Italy, September 7-10, 2009

150

It is clear that the above three approaches are different
attempts to express that up to a certain level of the priority
sequence the degree of belief in the objects d and e having
the mentioned properties is the same and that at the next level
the degree of belief in d having the right property is greater
than that in e having it. Here we can express this directly in
the language as below, and the way greater strength of belief
is to be taken in a particular application is then delegated to
the semantics.

Pref(d, e)⇔ ∃i(PidÂB Pie ∧ ∀j < i(Pjd ≡B Pje)).

F. Multi-agent case

We have been focusing on beliefs and strengths of beliefs of
a single agent. The whole idea can be generalized to the multi-
agent framework. We only give some preliminary ideas here.
The technical details need to be worked out, and we leave it
for the future. The language of the logic of belief ordering in
the multi-agent case, KD45−OM can be defined as follows:

Definition II.9 Given a finite set of agents A, and a countable
set of atomic propositions Φ, formulas ϕ are defined induc-
tively:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | Baϕ | ϕ<Ba ψ

where p ∈ Φ.

The indices in the belief and universality modality and
in the ordering formula denote the agents whose beliefs or
strengths of beliefs are considered. The operators ÂBa and
Ua are defined in the usual way. The fact that U is also
indexed may surprise the reader for a moment but it is the
only coherent way to extend the one agent case. Existence
of a location for a proposition to be true meant for us that
for the one agent belief in the proposition was stronger than
belief in a contradiction. With more agents we may have
agents who differ in regard to the existence of propositions:
more worlds will have to be added to the model, and it will
not stop there: there is no reason for EaEb to be equivalent
to Ea or Eb, etc. It is appropriate to add a real universality
operator U that corresponds to the agent’s Ua as the common
knowledge operator corresponds to the knowledge of the
individual agents. With regard to axioms the upshot is for
example that the existence axiom ϕ → (ϕÂBa ⊥) will have
to be weakened to Ua(ϕ→ (ϕÂBa ⊥)).

Likewise, the models for KD45−OM have to be multi-
agent generalizations of those for KD45−O . The basic idea
to consider here is that we can no longer rule out worlds that
are impossible for an agent a. They might well be possible for
another agent b and also have to be considered while talking
about agent a’s belief about agent b’s beliefs and so on.
Evidently, the earlier plausibility ordering and set ordering
of worlds will get indexed by agents (one for each agent),
and the global concept of belief will give way to more local
concepts of beliefs. This fact becomes apparent in the syntax

ψ

Fig. 2. A public announcement ψ is uttered

also, with the introduction of formulas like Uaϕ. The notion
of comparative classes [17] which gives the set of worlds that
an agent considers relevant while positioned at her current
world comes into play. Formally, a comparative class of some
world is just the set of worlds that are related to the current
world by the plausibility order. To give meaning to agents’
beliefs, strength of beliefs, these relevant worlds are needed
to be considered only, unlike the single agent case, where the
whole model is taken into account. As mentioned earlier, we
leave the technical details for later.

III. DYNAMICS OF ORDERING FORMULAS

Till now we have been talking about the static language of
belief ordering and its corresponding models, representing the
information states (possible worlds) of an agent. We move on
to discuss the effect of information-update procedures which
change the models under consideration.

It should be mentioned here that we will see an extensive
use of the notion of conditional belief while discussing the
dynamics of belief change. Conditional beliefs [2] pre-encode
beliefs in a static way in situations which arise after new
information comes in. Formulas of the form Bψϕ (believing
in ϕ, given ψ) express that we believe in ϕ, once we assume
that ψ is the case. This induces that if ψ is learnt then it is
to be believed that ϕ was the case (before the learning) [17].
This does not literally tell us what happens after ψ is learnt.
For example, if ϕ is unknown but true and one learns that
¬Bϕ ∧ ϕ then afterwards Bϕ will be true, contrary to what
was learnt.

In [2], van Benthem discusses three different update
procedures influencing the beliefs of an agent, viz. the
influence of hard information like public announcement of ψ
(the not-ψ-worlds get deleted from the model and only the
ψ-worlds remain), and of soft information with lexicographic
upgrade (introducing a preference for the ψ-worlds, all the
ψ-worlds become more plausible than all the not-ψ-worlds
- within these zones, the existing ordering remains), and
lastly the impact of soft information with elite upgrade (the
best ψ-worlds come out on top, beside that the previous
ordering remains). We currently just focus on the effect of
hard information and soft information with lexicographic
upgrade.

MALLOW’009: Turin, Italy, September 7-10, 2009

151

ψ

Fig. 3. The influence of hard information

A. Influence of hard information

While discussing the influence of ‘hard’ information over
beliefs, [2] considered the following reduction axioms for
the logic of public announcement in terms of ‘belief’ and
‘conditional belief’, where [!ψ]ϕ is to be read as ‘after the
public announcement of ψ, ϕ is true’.

• [!ψ]q ↔ (ψ → q)
• [!ψ]¬ϕ↔ (ψ → ¬[!ψ]ϕ)
• [!ψ](ϕ ∧ χ)↔ ([!ψ]ϕ ∧ [!ψ]χ)
• [!ψ]Bϕ↔ (ψ → Bψ[!ψ]ϕ)
• [!ψ]Bχϕ↔ (ψ → Bψ∧[!ψ]χ[!ψ]ϕ)

In fact, the effect of public announcements of ψ over an
ordered model should be clear from the figures 2 and 3.
Under the announcement of ψ, the earlier model M, say (cf.
fig 2), reduces to a model relativized to ψ (cf. fig 3), which
is essentially a submodel of M, whose domain set is the set
where ψ holds.

Let us now first investigate how the KD45−O model
changes under the influence of a public announcement !ψ, say.
The definition is as follows:

Definition III.1 A KD45−O model is defined as in definition
II.2 as the structureM = (S,≤,≥B , V). Under the influence
of public announcement of ψ the model becomes M!ψ =
(S!ψ,≤!ψ,≥!ψ

B , V
!ψ) where S!ψ = {s ∈ S : M, s |= ψ},

≤!ψ=≤ºS!ψ×S!ψ , ≥!ψ
B =≥BºP(S!ψ)×P(S!ψ), and V !ψ = V ºS!ψ .

The model satisfies the following conditions:

1) If X ⊆ Y ⊆ S!ψ , then Y ≥!ψ
B X

2) if B!ψ is the new set of plausible worlds, truth on which
suffices to make an assertion to be believed, then B!ψ ⊆
X ⊆ S!ψ ∧ B!ψ 6⊆ Y ⊆ S!ψ ⇒ X >!ψ

B Y , where >!ψ
B

denotes the corresponding strict ordering.
3) If X is non-empty, then X >!ψ

B ∅.
The truth definitions of the formula [!ψ]ϕ in a KD45−O

model is given by,

M, s |= [!ψ]ϕ iff if M, s |= ψ, then M!ψ, s |= ϕ.

Any logic L completing KD45−O to contain conditional
beliefs will have to contain

Bψϕ ∧ ¬Bψχ→ (ψ ∧ ϕ)ÂB (ψ ∧ χ).

This axiom ensures that the updated model still has the
necessary property 2 of Definition II.2 and thus will be a
KD45−O model. We have the following theorem:

Theorem III.2 If we take L to be a complete axiomatization
of KD45−O together with conditional beliefs, then its exten-
sion under public announcement is complete and its validities
are completely axiomatized by the following axioms and rules
in addition to L:
(a) PAL reduction axioms for atomic facts, Boolean opera-

tions, belief and conditional belief

(b) PAL reduction axioms for ordering formulas:
[!ψ](ϕ<B χ)↔ ψ → ((ψ ∧ [!ψ]ϕ) <B (ψ ∧ [!ψ]χ))
[!ψ](ϕÂB χ)↔ ψ → ((ψ ∧ [!ψ]ϕ)ÂB (ψ ∧ [!ψ]χ))

B. Influence of soft information

Following [2], we considered the influence of hard infor-
mation over beliefs. Van Benthem continued by discussing
the effect of the arrival of soft information on beliefs, which
does not influence the existence of the possible worlds, only
their plausibility ordering. We now give the definition of
the changed models under the influence of soft information
with lexicographic upgrade and the corresponding reduction
formulas.

Definition III.3 A KD45−O model is defined as in def-
inition II.2 as the structure M = (S,≤,≥B , V). Under
the influence of soft information ψ, say the model becomes
M⇑ψ = (S⇑ψ,≤⇑ψ,≥⇑ψB , V ⇑ψ) where S⇑ψ = S, ≤⇑ψ=≤
ºK×K ∪ ≤ºL×L ∪ {(u, v) : u ∈ K and v ∈ L}, where
K = {s ∈ S : M, s |= ψ}, L = S \ K, ≥⇑ψB =≥B , and
V ⇑ψ = V .

Once again, the model M⇑ψ satisfies the conditions,

1) If X ⊆ Y , then Y ≥⇑ψB X
2) if B⇑ψ is the new set of plausible worlds, truth on which

suffices to make an assertion to be believed, then B⇑ψ ⊆
X ∧ B⇑ψ 6⊆ Y ⇒ X >⇑ψB Y , where >⇑ψB denotes the
corresponding strict ordering.

3) If X is non-empty, then X >⇑ψB ∅.
The truth definitions of the formula [!ψ]ϕ in a KD45−O

model is given by,

M, s |= [⇑ ψ]ϕ iff M⇑ψ, s |= ϕ.

We have the following theorem:

Theorem III.4 If we take L to be a complete axiomatization
of KD45−O with conditional beliefs, then its extension under
announcement of soft information with lexicographic upgrade
is complete and its validities are completely axiomatized by
the following axioms and rules in addition to L:
(a) reduction axioms:

[⇑ ψ]q ↔ q

[⇑ ψ]¬ϕ↔ ¬[⇑ ψ]ϕ
[⇑ ψ](ϕ ∧ χ)↔ ([⇑ ψ]ϕ ∧ [⇑ ψ]χ)
[⇑ ψ]Bχϕ ↔ (E(ψ ∧ [⇑ ψ]χ) ∧ (Bψ∧[⇑ψ]χ[⇑ ψ]ϕ ∨
B[⇑ψ]χ[⇑ ψ]ϕ))

MALLOW’009: Turin, Italy, September 7-10, 2009

152

[⇑ ψ](ϕ<B χ) ↔ Eψ ∧ (((ψ ∧ [⇑ ψ]ϕ)<B (ψ ∧ [⇑
ψ]χ)) ∨ ([⇑ ψ]ϕ<B [⇑ ψ]χ))

[⇑ ψ](ϕÂB χ) ↔ Eψ ∧ (((ψ ∧ [⇑ ψ]ϕ)ÂB (ψ ∧ [⇑
ψ]χ)) ∨ ([⇑ ψ]ϕÂB [⇑ ψ]χ))

The product-update model [2] or the more general version
of the action-priority update model [17] may not be of much
use in the modelling of the ordering formulas, because the
first order frame conditions of KD45−O-models are not all
universal Horn sentences (e.g. the linearity condition), which
is required for easy passage to this type of update models [2].

IV. CONCLUSION AND FURTHER WORK

An explicit ordering of formulas to compare the strengths of
beliefs is introduced. A complete axiomatization for this belief
logic with explicit ordering is provided. This notion aids in
giving intuitive formulations for various related concepts like
universality as well as some other epistemic attitudes - much
older and thoroughly discussed notions like universality and
preference, together with relatively newer ones like plausibil-
ity and disbelief. Independent axiomatizations for the logics
of plausibility, belief and plausibility as well as belief and
disbelief are also provided. Interplay of belief ordering with
the concept of safe beliefs is discussed. Lastly, we delved into
the dynamics of this ordering concept, e.g. the effect of hard
as well as soft information over the ordering formulas. A few
possible avenues for future work are discussed below.

a) Interpreting the ordered formulas: We have provided
different ways of interpreting these ordered belief formulas,
and a complete axiomatization is provided with respect to a
most general one. It will be interesting to find extensions for
other possible applications and their properties, specially to get
more interesting inter-connections between the world-ordering
and the set-ordering.

b) Dynamic setting: As evident from the discussions in
section 3, the whole system fits very well into the dynamic
epistemic logic framework. But clearly this is the just the start
of serious research in this area. There are various notions in
this context that need to be thoroughly investigated, especially
the relation to conditional belief. There are also important
model-theoretic issues that one can look into. In short, a
lot of possibilities have emerged with the introduction of
this ordering of beliefs in the already existing dynamic logic
framework dealing with epistemic attitudes.

Acknowledgements: We thank the unknown referees for their
close reading and extensive comments. We will keep these
comments in mind when writing a more extensive journal
version. The second author also thanks the Center for Soft
Computing Research, Indian Statistical Institute, Kolkata for
the congenial atmosphere she had there while doing this work
during February, 2008 to February, 2009 and also August,
2009.

REFERENCES

[1] J. Gerbrandy, “Bisimulation on planet kripke,” Ph.D. dissertation, Uni-
versity of Amsterdam, 1999.

[2] J. v. Benthem, “Dynamic logic for belief revision,” Journal of Applied
Non-Classical Logic, vol. 17, no. 2, pp. 129–155, 2007.

[3] F. Liu, “Changing for the better: Preference dynamics and agent diver-
sity,” Ph.D. dissertation, University of Amsterdam, 2008.

[4] S. Artemov and L. Beklemishev, “Provability logic,” in Handbook
of Philosophical Logic, 2nd ed., D. Gabbay and F. Guenthner, Eds.
Kluwer, Dordrecht, 2004, vol. 13.

[5] D. Guaspari and R. Solovay, “Rosser sentences,” Annals of Mathematical
Logic, vol. 16, pp. 81–89, 1979.

[6] D. d. Jongh, “A simplification of a completeness proof of Guaspari and
Solovay,” Studia Logica, vol. 46, pp. 187–192, 1987.

[7] K. Segerberg, “Qualitative probability in a modal setting,” in Pro-
ceedings of the 2nd Scandinavian Logic Symposium, J. Fenstad, Ed.
Amsterdam: North-Holland, 1971.

[8] P. Gardenfors, “Qualitative probability as an intentional logic,” Journal
of Philosophical Logic, vol. 4, pp. 171–185, 1975.

[9] D. Lewis, Counterfactuals. Blackwell and Harvard U.P., 1973.
[10] W. Spohn, “Ordinal conditional functions. a dynamic theory of epis-

temic states,” in Causation in Decision, Belief Change, and Statistics,
W. Harper and B. Skyrms, Eds. Kluwer, Dordrecht, 1988, vol. II.

[11] O. Board, “Dynamic inetractive epistemology,” Games and Economic
Behavior, vol. 49, pp. 49–80, 2004.

[12] P. Gärdenfors and D. Makinson, “Revisions of knowledge systems and
epistemic entrenchment,” in Proceedings of the Second Conference on
Theoretical Aspects of Reasoning about Knowledge, M. Vardi, Ed. Los
Altos: Morgan Kaufmann, 1988, pp. 83–95.

[13] G. v. Wright, “Deontic logic,” Mind, vol. 60, pp. 1–15, 1951.
[14] J. Hintikka, Knowledge and Belief. Ithaca, N.Y.: Cornell University

Press, 1962.
[15] S. Kripke, “Semantical considerations on modal logics,” Acta Philosoph-

ica Fennica, vol. 16, pp. 83–94, 1963.
[16] J. Halpern and Y. Moses, “A guide to completeness and complexity for

modal logics of knowledge and belief,” Artificial Intelligence, vol. 54,
pp. 319–379, 1992.

[17] A. Baltag and S. Smets, “A qualitative theory of dynamic interactive
belief revision,” in Logic and the Foundations of Game and Decision
Theory, Texts in Logic and Games, G. Bonanno, W. van der Hoek, and
M. Wooldridge, Eds., vol. 3. Amsterdam University Press, 2008, pp.
9–58.

[18] V. Goranko and S. Passy, “Using the universal modality: Gains and
questions,” Journal of Logic and Computation, vol. 2, no. 1, pp. 5–30,
1992.

[19] J. Halpern, “Defining relative likelihood in partially-ordered preferential
structures,” Journal of AI Research, vol. 7, pp. 1–24, 1997.

[20] ——, Reasoning About Uncertainty. MIT Press, 2003.
[21] N. Friedman and J. Halpern, “Plausibility measures and default reason-

ing,” Journal of the ACM, vol. 48, no. 4, pp. 648–685, 2001.
[22] R. Stalnaker, “On logics of knowledge and belief,” Philosophical Stud-

ies, vol. 128, no. 1, pp. 169–199, 2006.
[23] J. Burgess, “Probability logic,” Journal of Symbolic Logic, vol. 34, no. 2,

pp. 264–274, 1969.
[24] A. Ghose and R. Goebel, “Belief states as default theories: Studies

in non-prioritised belief change,” in Proceedings of the 13th European
Conference on Artificial Intelligence, H. Prade, Ed., 1998, pp. 8–12.

[25] A. Gomolinska, “On the logic of acceptance and rejection,” Studia
Logica, vol. 60, pp. 233 – 251, 1998.

[26] A. Gomolinska and D. Pearce, “Disbelief change,” Electronic essays on
the occasion of the fiftieth birthday of Peter Gardenfors, 2001.

[27] S. Chopra, J. Heidema, and T. Meyer, “Logics of belief and disbelief,”
in Proceedings of the ninth International Workshop on Non-Monotonic
Reasoning, 2002.

[28] M. Chakraborty and S. Ghosh, “Belief-disbelief interface: A bi-logical
approach,” Fundamenta Informaticae, to appear.

[29] R. Moore, “Semantical considerations on nonmonotonic logic,” Artificial
Intelligence, vol. 25, pp. 75–94, 1985.

[30] D. d. Jongh and F. Liu, “Optimality, belief and preference,” in Pro-
ceedings of the Workshop on Rationality and Knowledge, ESSLLI,
S. Artemov and R. Parikh, Eds., 2006.

MALLOW’009: Turin, Italy, September 7-10, 2009

153

1

Knowledge about lights along a line
François SCHWARZENTRUBER

Abstract—In this article, we are going to talk about spatial sit-
uations. Every agent (human, camera etc.) and every proposition
(lamp, object, etc.) are located in the space (here a line) and we
express properties over a situation using standard epistemic logic
language possibly extended with public announcements. We study
links between validities of this geometricalversion of epistemic
logic and the standard one. We also investigate complexities of
model checking and satisfiability.

Keywords: Multi-agent system. Epistemic logic. Spatial rea-
soning. Public announcements. Pedagogical tool. Complexity
theory. Polynomial hierarchy.

I. I NTRODUCTION

Many authors in logic and in Artificial Intelligence [5]
developed epistemic logic and studied mathematical properties
of it. Epistemic logic is theoretical and may be difficult to
explain to students. This is the reason why in this article we
are going to study a concrete example of multi-agent system.
Let us take a line. We are going to put lamps and agents
on this line as shown in the Figure 1. Now the question is
“what do agents know about lamps and knowledge of other
agents about lamps”? This system has been implemented as
a pedagogical tool in order to illustrate any epistemic logic
course. Indeed, students can easily understand some epistemic
logic on concrete examples:

• Agent a sees the lampp on, so he knowsp;
a

☼
p

• Agent a does not see the lampp, so he does not know

whetherp or ¬p;
☼
p a

• Agent a sees another agentb seeing the lampp on, so

agenta knows agentb knowsp;
a b

☼
p

• Agent a sees another agentb, and the lampp, but agent
a sees that agentb is not looking in the direction of the
lampp, so agenta knows agentb does not know whether

p or ¬p;
a

☼
p b

• Agenta and agentb are looking at each other and there is
the lampp between them, so there is common knowledge
that p is true. This kind of situations have already been

considered in [8].
a

☼
p b

This approach can be compared to the approach in [2] for
first order logic. In [2], you put objects like cube, pyramids
and you can then write formulas in first order logic to check
properties over those objects. Here the approach is similar:

you put agents and lamps and then you can write formulas in
epistemic logic to check whether properties over those agents
and lamps are true.

Generally speaking many examples of epistemic situation
mix time and space. The link between time and knowledge
(perfect recall etc.) has been studied and you can find a
survey in [3]. There exists also some work linking space and
knowledge like in [10]: they provide a logic with a spatial
modal operator dealing with topology and an epistemic modal
operator. Here, our approach is different: we want to deal
with a spatially grounded epistemic logic. We are not going to
provide operators in the language to deal with space but only
provide an epistemic operator for each agent in the language.
The semantics will then directly rely on the geometrical
properties of a line. We would like to describe a situation
but directly by the graphical and natural representation of the
system and not with a Kripke structure. We can formalize well
known toy examples as Russian cards [13], Muddy children
([4], [11], [3]) or the prisoner’s test. For instance:
• The Muddy children. The spatial configuration

is the following: two children are looking at
each other. One knows the other’s forehead
is dirty. But one does not know he is

dirty.
☼

a’s forehead_dirty a b
☼

b’s forehead_dirty

• The prisoner’s test. There are three prisoners on a
line. Each prisoner must guess the color of his head.

☼
pr1’s head pr1

�
pr2’s head pr2

☼
pr3’s head pr3

Another motivation would be video surveillance. Proposi-
tions are objects we have to take care of. Agents are camera.
We then can specify the video surveillance with epistemic
logic formulas. Another possible application may be robots’
space and knowledge reasoning because robots evolve in
our spatial world. A last application could be video games.
In many role playing games or strategy games, players or
non-playing characters can have knowledge about the virtual
world. The behaviours of a non-playing character can then
be described by the game designer using a knowledge based
programming language. For instance, the designer can specify
that the guardian of the castle gets crazy if he knows that
the door of the castle is open. A preliminary work about
formalizing the video game Thief has been done in [7].

A piece of software is available on the Web Site http://www.
irit.fr/~Francois.Schwarzentruber/agentsandlamps/. It provides
a model-checker: you specify the graphical situation and a
formula written using epistemic modal operators and/or public
announcements operators. In this article:

MALLOW’009: Turin, Italy, September 7-10, 2009

154

2

• We are going to present the semantics of the geometric
version of epistemic logic in section II;

• We are going to deal with the model checking and
satisfiability problems’ complexities in section III;

• In section IV, we will add public announcements to our
language to model examples like Muddy children;

• In section V, we are going to present the current imple-
mentation.

II. SEMANTICS

We are going to define a new logic based on the same
language than the epistemic logicS5n [5]. S5n is the logic of
frames where relations are equivalence relations. Here we are
defining a logic where the semantics is based on a geometric
point of view.

A. Language

Our logic is based on the same language asS5n’s one. Let
us recall the language of the epistemic logicS5n [5].

Definition 1 (language):
Let ATM be a countable set of atomic propositions. LetAGT
be a countable set of agents. The languageLAGT is defined by
the following BNF:

ϕ ::= > | p | ϕ ∧ ϕ | ¬ϕ | Kaψ

wherep ∈ ATM anda ∈ AGT.
As usual,ϕ ∨ ψ =def ¬(¬ϕ ∧ ¬ψ). K̂aψ =

def ¬Ka¬ψ.
Notice that we can only deal with knowledge (operator

Ka) and states of lamps (propositionp is true means that
the lamp calledp is on) in the language. One may expect
to deal also with position of lamps, position of agents or
maybe spatial topologic operator like in [10] etc. This may
be very interesting, especially in all applications cited in the
introduction. For instance, we can not express a sentence like
“the guardian knows that the beetle isnear the old man.” but
we can say “The guardian knows that the beetle knows the
old man’s hat is red.” (KguardianKbeetleold_man_red) Here
we have preferred to keep the language of classical epistemic
logic for two reasons:
• a pedagogical tool for understanding epistemic logic

should be simple and should have a simple syntax;
• to focus on complexity results with the simple expressiv-

ity asS5n.

B. Definitions

The semantics is not defined with a class of models but
directly from what a concrete situation is. From this, we
will obtain a spatially grounded epistemic logic. Aworld
is situation where all agents have alocation (position and
direction where they look), alllamps (atomic propositions)
have alocation and astate(on or off). Formally:

Definition 2 (world):
A world w is a tuple〈pAGT, dAGT, pATM , π〉 where:
• pAGT : AGT→ R;
• dAGT : AGT→ {−1,+1};
• pATM : ATM → R;

1

☼
p1 2

�
p2 3

☼
p3

Fig. 1. Example of a world

• π : ATM → {⊥,>}.
The set of all worlds is notedW .

In a world〈pAGT, dAGT, pATM , π〉, pAGT(a) denotes the posi-
tion of agenta. dAGT(a) denotes the direction where the agent
a looks: if dAGT(a) = +1, the agenta will look on the right and
if dAGT(a) = −1, he will look on the left.pATM (p) denotes the
position of the lamp saying whetherp is true or not.π(p) = >
iff the lamp “p” is on. π(p) = ⊥ means that the lamp “p” is
off.

We have defined a world in the more close to the reality
manner: that is to say using the real numbers. We could also
consider locations of agents and lamps as a total preorder over
ATM ∪AGT. Considering a total preorder is discussed at the
end of this section and total preorder is used in Section III.
Here we prefer to use the Definition 8 whose advantage is that
it can be easily generalized to dimensionn ≥ 2: you just have
to replaceR by Rn and to adapt the notion of direction. In
dimension 2 or more, total preorders can no longer be used.

We can also discuss the Definition 8 by the way propositions
are treated. Here, a propositionp is associated to a point
pATM (p). This seems to be the simple way to define the
semantics. But be aware that in some cases this is a limitation:
• Maybe a propositionp can be associated to a set of points.

For instance, if you are at home, you can know it rains
either by looking towards the window of the leftL or the
window of the rightR. Hence, here the propositionrain
may be associated to the set of points{L,R};

• Maybe you want that a lamp is associated not to a
proposition but more generally to a formula. For instance,
when you know that the alarm system located on pointP
is on, you in fact know that either there is an oil problem
or overheating. Hence, here the point is associated to the
formula oil_problem ∨ overheating.

Here we stay with the simple definition for two reasons:
• it is easier for a pedagogical tool to have a simple and

clear semantics;
• it is easier for us to begin study a simple case.
Definition 3 (cone):

Let us consider a worldw = 〈pAGT, dAGT, pATM , π〉. We note
cone(a) the set{pAGT(a) + λ.dAGT(a) | λ ∈ R+}.
cone(a) denotes all the set of points the agenta sees.

Example 1:The Figure 1 gives us an example of a world
w. We have:
• pAGT(1) = 0; pAGT(2) = 2; pAGT(3) = 4;
• dAGT(1) = +1; dAGT(2) = −1; dAGT(3) = −1;
• pATM (p1) = 1; pATM (p2) = 3; pATM (p3) = 5;
• π(p1) = >;π(p2) = ⊥;π(p3) = >;
• cone(1) = [0,+∞[;
• cone(2) =]−∞, 2];

MALLOW’009: Turin, Italy, September 7-10, 2009

155

3

• cone(3) =]−∞, 4].

Now we are going to define the epistemic relation over worlds.
wRau means that agenta can not distinguishw from u. In
other words,wRau iff agenta sees the same things inw and
u. Formally:

Definition 4 (epistemic relation):
Let a ∈ AGT. We define the relationRa over worlds:
〈pAGT, dAGT, pATM , π〉Ra〈p′AGT, d

′
AGT, p

′
ATM , π

′〉 iff for all b ∈
AGT, for all p ∈ ATM ,
• if pAGT(b) ∈ cone(a) then

pAGT(b) = p
′
AGT(b) anddAGT(b) = d

′
AGT(b);

• if pAGT(b) 6∈ cone(a) thenp′AGT(b) 6∈ cone(a);
• if pATM (p) ∈ cone(a) then

pATM (p) = p
′
ATM (p) andπ(p) = π′(p)

• if pATM (p) 6∈ cone(a) thenp′ATM (p) 6∈ cone(a).
Briefly, suppose thatwRau. If agenta see the agentb in the

world w, then he will also see agentb in world u and agentb
will have the same location (position and direction). If agent
a does not see agentb in the worldw, then he also does not
see agentb in u. If agenta see the lampp in the worldw,
then he will also see the lampp in world u. The lamp will
have the same position and state both inw andu. If agenta
does not see the lampp in w, then he will also not see the
lamp p in u.

Until now, we have finally defined a modelM =
〈W, (Ra)a∈AGT, ν〉 whereν maps each worldw ∈ W to πw.
From now, the truth conditions is standard:

Definition 5 (truth conditions):
Let w ∈W . We definew |= ϕ by induction:
• w |= >;
• w |= p iff π(p) = >
• w |= ϕ ∧ ψ iff w |= ϕ andw |= ψ;
• w |= ¬ϕ iff w 6|= ϕ;
• w |= Kaψ iff for all w′, wRaw′ impliesw′ |= ψ.

C. Comparison with epistemic logic

Now we are going to compare the epistemic logicS5n and
the set of validities we obtain with the truth conditions of
Definition 12. First we give the definition of validities.

Definition 6 (set of validities):
We denote the set of all validities byL☼1D , that is to say,
L☼1D = {ϕ ∈ LAGT | ∀w ∈W,w |= ϕ}.

In “L☼1D ”, “ 1D” stands for “one dimension” (a line). Now,
we can see that our setL☼1D contains all validities ofS5n.

Proposition 1: S5n ⊆ L☼1D .
Proof: We prove that for alla ∈ AGT, the relation

Ra is an equivalence relation. Hence, the modelM
is a model of the logic S5n and satisfies validities
of S5n. We have to prove reflexivity, symmetry and
transitivity. Let us just begin to prove transitivity. Suppose
we have: 〈pAGT, dAGT, pATM , π〉Ra〈p′AGT, d

′
AGT, p

′
ATM , π

′〉
and 〈p′AGT, d

′
AGT, p

′
ATM , π

′〉Ra〈p′′AGT, d
′′
AGT, p

′′
ATM , π

′′〉. Let us
prove that〈pAGT, dAGT, pATM , π〉Ra〈p′′AGT, d

′′
AGT, p

′′
ATM , π

′′〉.
First we havepAGT(a) ∈ cone(a). SopAGT(a) = p

′
AGT(a) =

p′′AGT(a) and dAGT(a) = d′AGT(a) = d′′AGT(a). In other words,
cone(a) = cone′(a) = cone′′(a).

From now on, ifpAGT(b) ∈ cone(a), thenpAGT(b) = p
′
AGT(b)

and dAGT(b) = d′AGT(b). But, we have effectivelly,pAGT(b) =
p′AGT(b) and cone(a) = cone′(a). So p′AGT(b) ∈ cone

′(a). So
p′AGT(b) = p

′′
AGT(b) andd′AGT(b) = d

′′
AGT(b). Finally, pAGT(b) =

p′′AGT(b) anddAGT(b) = d
′′
AGT(b). The other cases are treated in

the same manner.
The semantics ofKap in L☼1D corresponds to the fact

that the agenta sees the lightp and the lightp is on. More
generally,Kaψ means that the agenta has the proof thatψ.
That is why we have those validities inL☼1D :

Proposition 2: Let p, q ∈ ATM .
|=L☼1D K1(p ∨ q)→ K1p ∨K1q.
|=L☼1D K1(¬p ∨ ¬q)→ K1¬p ∨K1¬q.
If p 6= q, |=L☼1D K1(p ∨ ¬q)→ K1p ∨K1¬q

Proof: Let us prove|=L☼1D K1(p ∨ q) → K1p ∨ K1q.
Let w = 〈pAGT, dAGT, pATM , π〉 be a world such thatw |=
K1(p ∨ q). We are going to prove that eitherw |= K1p or
w |= K1q. We havepATM (p) ∈ cone(1) or pATM (q) ∈
cone(1). Indeed, if we suppose the contrary, that is to say
pATM (p) 6∈ cone(1) and pATM (q) 6∈ cone(1), there exists a
world u = 〈pAGT, dAGT, pATM , π

′〉 such thatπ′(p) = ⊥ and
π′(q) = ⊥ andwR1u. Hence,w 6|= K1(p∨ q). Contradiction.
So pATM (p) ∈ cone(1) or pATM (q) ∈ cone(1). For instance,
pATM (p) ∈ cone(1). And for all u ∈ R1(w), πu(p) = >. So
w |= K1p. The other cases are treated in the same manner.

Informally, K1(p ∨ q) means that agent1 has a proof that
p ∨ q. In other words, either he seesp on, or he seesq on.
Hence, eitherK1p orK1q. Nevertheless,K1(ϕ∨ψ)→ K1ϕ∨
K1ψ is not valid inL☼1D .

Notice that there are crucial differences betweenS5n and
L☼1D :
• S5n is defined as the logic of aclassof frames and has

the property of uniform substitution. If|=S5n ϕ[p], we
have|=S5n ϕ[ψ/p] for every formulaψ ∈ LAGT;

• On the contrary (see Definition 12),L☼1D is defined
as the set of formulas valid onone model: the model
M. As the definition ofRa (Definition 4) depends on
worlds, and especially on valuations, it is not surprising
that L☼1D does not have the property of uniform sub-
stitution. A just one model semantics may seem a poor
pedagogical application. But, the modelM is big (if AGT
and ATM are finite, the size ofM is exponential in
card(ATM ∪ AGT). In fact, you can imagine the model
M to be a kind of canonical model. The modelM is
made up with many connected components. For instance,
Figure 2 and 8 show two connected components of the
modelM.

Now, here is a Proposition showing that we can have
common knowledge only whenK1K2p ∧K2K1p.

Proposition 3: We have:
|=L☼1D K1K2p ∧ K2K1p → K1K2K1 . . .K2 . . . p where

“K1K2K1 . . .K2 . . . ” denotes any finite sequence ofK1 and
K2.

Proof: Let w = 〈pAGT, dAGT, pATM , π〉 be world such
that w |= K1K2p ∧ K2K1p. We want to prove thatw |=
K1K2K1 . . .K2 . . . p. We are going to prove that:
• pAGT(2) ∈ cone(1);

MALLOW’009: Turin, Italy, September 7-10, 2009

156

4

• pAGT(1) ∈ cone(2);
• pATM (p) ∈ cone(1);
• pATM (p) ∈ cone(2).
Let us provepATM (p) ∈ cone(1) by contradiction. Suppose

that pATM (p) 6∈ cone(1). Thus there exists a worldw′ =
〈p′AGT, d

′
AGT, p

′
ATM , π

′〉 such thatwR1w′ andπ′(p) = ⊥.
We havew′ 6|= p so w′ 6|= K2p. So w 6|= K1K2p.

Contradiction.
Same proof forpATM (p) ∈ cone(2).
Let us prove thatpAGT(2) ∈ cone(1) by contradiction.

Suppose thatpAGT(2) 6∈ cone(1). Thus there exists a world
w′ = 〈p′AGT, d

′
AGT, p

′
ATM , π

′〉 such thatw R1w
′ and d′AGT(2)

is such thatpATM (p) 6∈ cone′(2). Thus, there exists a world
w′′ = 〈p′′AGT, d

′′
AGT, p

′′
ATM , π

′′〉 such thatw′R2w′′ andπ′′(p) =
⊥. Sow′ 6|= K2p. Hencew 6|= K1K2p. Contradiction.

Same proof forpAGT(1) ∈ cone(2).
Now we can prove by induction onn that for n ∈ N, for

all u ∈ (R1 ◦R2)n(w), we have:

• pAGT(2) ∈ cone(1);
• pAGT(1) ∈ cone(2);
• pATM (p) ∈ cone(1);
• pATM (p) ∈ cone(2).
• π(p) = >.

Hencew |= K1K2K1 . . .K2 . . . p.

The validity K1K2p ∧ K2K1p → K1K2K1 . . .K2 . . . p
expresses that ifK1K2p ∧K2K1p then the state of the lamp
p is the topic of amutual social perception, studied in [8].

Corollary 1: If n ≥ 2 or card(ATM) ≥ 2, S5n (L☼1D .
Proof: The formulaK1(p∨q)→ K1p∨K1q andK1K2p∧

K2K1p→ K1K2K1p are inL☼1Dbut are not valid inS5n.
More surprising is the fact that common knowledge is not

guaranteed byK1K2ϕ ∧ K2K1ϕ for all ϕ. More precisely,
K1K2ϕ ∧K2K1ϕ→ K1K2K1ϕ is notL☼1D -valid for all ϕ.
Look at the model of the Figure 2: agent 1 = agent in blue.
agent 2 = agent in red. Consider the world on the bottom
on the right. Let us call itw. We havew |= K1K2¬K2p ∧
K2K1¬K2p. But, we havew 6|= K1K2K1¬K2p. Indeed there
existsw′ such thatwR1 ◦R2 ◦R1w′ such thatw′ |= K2p.

Nevertheless, there are other formulas where it remains true.
For instance, we have|=L☼1D K1K2K3p ∧ K2K1K3p →
K1K2K1 . . .K2 . . .K3p.

Question 1:What aboutK1K2ϕ ∧K2K1ϕ → K1K2K1ϕ
if ϕ do not contain agent 1 or 2? Do we have a characterisation
or exhibit an interesting set of formulasϕ such thatK1K2ϕ∧
K2K1ϕ→ K1K2K1ϕ holds?

D. A compact representation

Last but not the least, you can remark that if we want
to deal with model-checking, satisfiability problem and other
algorithmic problems, we need a compact representation that
an algorithm can manipulate. Worlds are difficult to manip-
ulate: in particular, it is unadapted thatRa(w) is infinite
given a agenta and a worldw. According to the Definition
8, the setW is infinite. Nevertheless, the semantics do not
depend on positions of lamps and agents but only on how

�

� �

Fig. 2. Some worlds of the modelM

they are ordered on the line. For instance,
☼
p a and

☼
p a stands for the same world. We can

define the notion ofdescription of a worldw: it is simply a
total preorder over all propositions and agents appearing in a
formula, plusdAGT andπ. Notice that we can do this because
the space is a line. If our space wereRn (n ≥ 2), the notion
of total preorder would unfortunately not be suited anymore.

Definition 7 (description of a world):
A description of a worldw is a tuple〈<, dAGT, π〉 where:

• ≤ is a total preorder overAGT∪ATM ;
• dAGT : AGT→ {−1,+1};
• π : ATM → {⊥,>}.
We can also define the epistemic relation between two

description of a worldw:

Definition 8 (epistemic relation):
Let a ∈ AGT. We define theepistemic relationRa on the set
of descriptions of worlds bywRav iff:

• if dAGT(a) = +1,

– for all x ∈ AGT∪ATM , (x ≤w a iff x ≤v a);
– for all x, y ∈ AGT∪ ATM such thata ≤w x and
a ≤w y, we have (x ≤w y iff x ≤v y);

– for all x ∈ AGT, a ≤w x implies dAGTw(x) =
dAGTv(y);

– for all x ∈ ATM , a ≤w x implies πw(x) = πv(y).

• if dAGT(a) = −1,
– for all x ∈ AGT∪ATM , (x ≥w a iff x ≥v a);
– for all x, y ∈ AGT∪ ATM such thata ≥w x and
a ≥w y, we have (x ≥w y iff x ≥v y);

– for all x ∈ AGT, a ≥w x implies dAGTw(x) =
dAGTv(y);

– for all x ∈ ATM , a ≥w x implies πw(x) = πv(y).

MALLOW’009: Turin, Italy, September 7-10, 2009

157

5

In the same way, we can define an epistemic model. We
can define truth conditions of a formulaϕ in LAGT over the
set of descriptions of worlds, using the epistemic relation. We
can prove that we obtain the same validities.

Definition 9 (extracting description of world from a world):

Given a world w, we define the description of world
d(w) by:

• for all x, y ∈ AGT∪ ATM , x ≤d(w) y iff p(x) ≤R p(y)
wherep(x) stands forpAGT(x) if x ∈ AGT or pATM (x)
if x ∈ ATM ;

• dAGTw = dAGTd(w);
• πw = πv.

Proposition 4: For all w ∈ W , for all ϕ ∈ LAGT, w |= ϕ
iff d(w) |= ϕ.

Proof: By induction onϕ.
In the case of one dimension, we simply rewrite mapping

from ATM or AGT to real numbers into a total preorder over
ATM ∪AGT. In the case of two or more dimensions, it is an
open problem how to represent a world in a compact way.

III. M ODEL-CHECKING AND SATISFIABILITY PROBLEM

For definitions for complexity class and for more details
about the problem QSAT (quantified boolean formulas satisfi-
ability problem), the reader may refer to [9].

A. Definitions

Now we are going to recall the classical problem of model-
checking and satisfiability. The problem of model-checking
consists on testing if a given formulaϕ is true in a given
world w. Satisfiability problem consists to test if there exists
a worldw in which a given formulaϕ is true.

Definition 10 (model-checking ofL☼1D
AGT,ATM):

Let AGT be a set of agents andATM a set of atoms. We
call model-checking ofL☼1D

AGT,ATM problem the following
problem:

• Input: a formulaϕ ∈ LAGT, a description of a worldw
where only atoms and agents occurring inϕ are given;

• Output: Yes iff we havew |=L☼1D ϕ. No, otherwise.

In the previous Definition, we give a description of a world
w that is to say a total preorder over all agents and propositions
occurring inϕ where we say for each agent if he is look on
the left or on the right and for each proposition if it is true
or not. We do not care about propositions or agents not in the
formulaϕ. The description ofw is thenfinite.

Definition 11 (L☼1D
AGT-satisfiability problem):

Let AGT be a set of agents. We callL☼1D
AGT-satisfiability

problem the following problem:

• Input: a formulaϕ ∈ LAGT;
• Output: Yes iff there exists a worldw such thatw |=L☼1D
ϕ. No, otherwise.

function check(w,ϕ)
match (ϕ)

>:
return >;

p ∈ ATM :
return > if p is true inw;
return ⊥ if p is false inw;

ψ1 ∧ ψ2:
return check(w,ψ1) ∧ check(w,ψ2);

¬ψ:
return ¬check(w,ψ);

Kaψ:
for u ∈ Ra(w) do

if check(u, ψ) = ⊥ then
return ⊥;

endIf
endFor
return >;

endMatch
endFunction

Fig. 3. A PSPACE-algorithm for model-checking ofL☼1DAGT

B. PSPACE-ness upper-bound of the two problems

In this subsection, we are going to give PSPACE-ness
upper-bound of the model checking problem and also of the
satisfiability problem. As you will see, the proof are directly
given with algorithms using a polynomial amount of memory
(Figures 3 and 4).

Proposition 5: Let AGT be any set of agents. The model-
checking ofL☼1D

AGT problem is in PSPACE.
Proof:

You can take a look at the recursive algorithm of Figure 3.
We have to prove three points: terminaison, correctness and
PSPACE-ness.

1) First let us prove terminaison by induction onϕ. Let
T (ϕ) be the property “for every worldw, the call
check(w,ϕ) terminates”.

• check(w,>) andcheck(w, p) terminates. SoT (>)
andT (p);

• Let us prove thatcheck(w,Kaψ) terminates. By
induction, T (ψ) so every callcheck(u, ψ) termi-
nates. So the callcheck(w,Kaψ) terminates and
T (Kaψ);

• Other cases are treated in the same manner.

2) Secondly, we have to prove correctness. Correctness
corresponds to the propertyC(ϕ) defined by “for all
world w, w |= ϕ iff check(w,ϕ) = >”. We also prove
C(ϕ) for all formulaϕ by induction.

3) Finally, we prove thatcheck only requires a polyno-
mial amount of memory. Just be careful at the line
“ for u ∈ Ra(w) do ”: although Ra(w) may be of
size exponential we do not compute it. Here we only
enumerate here elements ofRa(w) one by one. This
can be done using only a linear amount of memory.
This part is technical but I will nevertheless give some
details how to implement a enumeration of elements of
Ra(w).
The block:

MALLOW’009: Turin, Italy, September 7-10, 2009

158

6

for u ∈ Ra(w) do
if check(u, ψ) = ⊥ then

return ⊥;
endIf

endFor

can be rewritten in a unreadable block using a linear
amount of memory in (*):

u := first_permutation(w)
while ¬is_last_permutation(u) do

if u ∈ Ra(w)
if check(u, ψ) = ⊥ then

return ⊥;
endIf

endIf
u := next_permutation(u);

endWhile

where:

• assuming we have an order< over permutations of
elements appearing inw, first_permutation(w)
gives, using a linear amount of memory, the first
permutation we can make with elements ofw; For

instance, ifw = 0
☼
p

, first_permutation(w)

can be 0
�
p

;

• next_permutation(u) is a function, using a linear
amount of memory, giving the<-successor ofu;
For instance, we may have:

– next_permutation(0
�
p
) = 0

☼
p

;

– next_permutation(0
☼
p
) =

0

☼
p

;

– next_permutation(
0

☼
p
) =

�
p 0 etc.

• is_last_permutation(u) = > iff u has no<-
successor.

Now, we can prove by induction onϕ the following
property for allϕ, P(ϕ) defined as “for all worldw,
the callcheck(w,ϕ) needsO(|ϕ|× |w|) memory cells”.

• P(>) andP(p) are true;
• Let us proveP(ψ1∧ψ2). The first callcheck(w,ϕ1)

needsO(|ϕ1| × |w|) by hypothesis of induction.
Then we can release all the memory cells used for
the sub-callcheck(w,ϕ1) and we can treat the call
check(w,ϕ2). It needsO(|ϕ2| × |w|). Hence, the
sub-call check(w,ϕ1 ∧ ϕ2) needsmax(O(|ϕ1| ×
|w|), O(|ϕ2|×|w|)) = O(|ϕ|×|w|). SoP(ψ1∧ψ2).

function sat(ϕ)
w := choose_world_with_symbols_in(ϕ)
return check1(w,ϕ)

endFunction

Fig. 4. A PSPACE-algorithm for satisfiability problem ofL☼1DAGT

card(AGT) L☼1D
AGT−md L☼1D

AGT− sat
1 Σ1-hard, inΔ2-hard Σ2-complete
n ∈ N, n ≥ 2 Σn-hard, in?? Σn+1-hard, in??
∞ PSPACE-complete PSPACE-complete

card(AGT) S5card(AGT) − sat
1 NP-complete
n ≥ 2 PSPACE-complete
∞ PSPACE-complete

Fig. 5. Table of complexities

• Now, we prove P(Kaψ). By induction, every
sub-call check(w,ψ) needs at mostO(|ψ| × |w|)
memory cells. Furthermore, we needO(|w|) for
first_permutation(w), is_last_permutation(u)
and next_permutation(u) and also to keep the
local variableu in memory. So we need,O(|ψ| ×
|w|) +O(|w|) = O(|ϕ| × |w|).

Finally, P(ϕ) is true for all ϕ. In other words, the
algorithm of Figure 3 only use a polynomial number
of memory cells (we take in account (*)).

Proposition 6: Let AGTbe any set of agents. TheL☼1D
AGT-

satisfiability problem is in PSPACE.
Proof: You can read the algorithm of Figure 4. The

algorithm consists in guessing non-deterministically a world
w and then call the routinecheck of Figure 3 to check ifϕ is
true inw. So, the problem is NPSPACE, hence from Savitch’s
theorem [12], it is PSPACE.

Now we are going to investigate more in details com-
plexities of the model checking and satisfiability problem
depending on the size ofAGT. The table of Figure 5 sums
up all results we have. There is also the recall of complexity
results aboutS5n satisfiability problem as comparison.

C. When AGT is infinite: PSPACE-complete

We recall the complexity result about QBF formulas satis-
fiability problem:

Theorem 1:The QSAT-problem defined as following:
• Input: a formulaϕ = ∃~p1∀~p2∃~p3∀~p4 . . . Qn~pnψ where:

– n is any integer;
– ψ is a boolean formula;
– andQi = ∀ if i is even andQi = ∃ if i is odd;
– ~pj is a finite set of variables for eachj.

• Output: Yes iff |=QBF ϕ. No, otherwise.
is PSPACE-complete.

Now the following Proposition gives a translation of a
QBF-instance into aL☼1D -model-checking instance or aL☼1D -
satisfiability problem instance.

MALLOW’009: Turin, Italy, September 7-10, 2009

159

7

Proposition 7: Let ϕ = ∃~p1∀~p2∃~p3∀~p4 . . . Qn~pnψ be a
formula of the logic QBF. We definef(ϕ) by induction:

• f(ψ) = ψ;
• f(∀~pi...Qn~pnψ) = Ki−1(puti → f(∃~pi+1...Qn~pnψ);
• f(∃~pi...Qn~pnψ) = K̂i−1(puti ∧ f(∀~pi+1...Qn~pnψ);

where:

• puta =
∧
i∈{a+1...2n} ¬K

if
a~pi ∧

∧
i∈{1...a}K

if
a~pi;

• K if
a~p =

∧
q∈~pK

if
aq;

• K if
aq = Kaq ∨Ka¬q.

We have equivalence between:

• |=QBF ϕ;
• put1 ∧ f(∀~p2∃~p3∀~p4 . . . Qn~pnψ) is L☼1D

AGT-satisfiable;
• and w |=L☼1D f(ϕ) wherew ∈ W0 whereW0 is the

set of all worlds where agent0 is completely on the left

looking to the left. (we noteW0 = “ 0 . . . ”).

Proof: We are going to note for allU ⊆ W , U |= ϕ iff
for all u ∈ U , u |= ϕ. We are going to prove by induction
|=QBF ϕ iff W0 |=L☼1D f(ϕ). We are going to note for all
i ∈ N, for all valuationν[~p1, . . . ~pi],

Wi(ν[~p1, . . . ~pi])

‖def

“ 0
☼

~ν(p1) 1
☼

ν(~p2) 2 . . .
☼
ν(~pi) i ...′′.

The induction hypothesis is:

ν[~p1, . . . ~pi−1] |=QBF Qi~pi . . . Qn~pnψ

iff

Wi−1(~p1, . . . ~pi−1) |=L☼1D f(Qi~pi . . . Qn~pnψ)

.
The basis case correspond toi = n+1. It is the propositional

case. We have:

ν[~p1, . . . ~pn] |=QBF ψ iff Wn(~p1, . . . ~pn) |=L☼1D ψ.

Now we can attack the induction case. Let us prove
for i odd. ν[~p1, . . . ~pi−1] |=QBF Qi~pi . . . Qn~pnψ
means that there exists a valuationν(pi) such that
ν[~p1, . . . ~pi] |=QBF Qi+1~pi+1 . . . Qn~pnψ. By induction,
it means thatWi(~p1, . . . ~pi) |=L☼1D f(Qi~pi . . . Qn~pnψ).

But for all wi−1 ∈ Wi−1(~p1, . . . ~pi−1) and for all wi ∈
Wi(~p1, . . . ~pi), we have:

• wi−1Ri−1wi;
• wi |= puti. Indeed, for allj > i, we havew |= ¬K if

i ~pj
because agentj does not see lamps~pj in wi. On the
contrary, for all j < i, we havew |= K if

i ~pj because
agenti do see lamps~pj in wi (the valuation of lamps
~pj is the same in all worldsu ∈ Ri(wi)). The technical
proof of wi |= puti is left to the reader.

As f(∃~pi . . . Qn~pnψ) = K̂i−1(puti ∧ f(∀~pi+1 . . . Qn~pnψ),
we have:
Wi−1(~p1, . . . ~pi−1) |=L☼1D f(∃~pi . . . Qn~pnψ). We ensure

that it is equivalent.
The case wherei is even is similar.

Immediately from this translation, we deduce the lower
bound for model-checking inL☼1D .

Corollary 2: Let AGT an infinite enumerable set of agents.
The model-checking problem ofL☼1D

AGT is PSPACE-hard.
Proof: Reduction via Proposition 7 and Theorem 1 in

order to the PSPACE-hardness and Proposition6.
In the same way we have:
Corollary 3: Let AGT an infinite enumerable set of agents.

The satisfiability problem ofL☼1D
AGT is PSPACE-hard.

D. When AGT is finite

We recall the complexity result about QBF formulas satis-
fiability problem but when the nesting of∀ and∃ is bounded
by a fixed integern.

Theorem 2:Let n be a integer. The QSATn-problem de-
fined as following:
• Input: a formulaϕ = ∃~p1∀~p2∃~p3∀~p4 . . . Qn~pnψ whereψ

is a boolean formula, andQi = ∀ if i is even andQi = ∃
if i is odd;

• Output: Yes iff |=QBF ϕ. No, otherwise.
is Σn-complete.
The Theorem 2 only differ from Theorem 1 by the fact that
n is no more a input of the problem but is now fixed inside
the problem. For each integern, we have defined the QSATn-
problem. There is a enumerable number of problems.

In the same way, this precise complexity result of QBF
combined with the translation of QBF toL☼1Dallows us
to have complexity lower bounds of model-checking and
satisfiability problem when the cardinality of the setAGT is
finite and fixed.

Corollary 4: Let AGT a finite set of agents. The model-
checking problem ofL☼1D

AGT is Σcard(AGT)P-hard.
Proof: Reduction via Proposition 7 and Theorem2.

Corollary 5: Let AGT a finite set of agents. The satisfiabil-
ity problem ofL☼1D

AGT is Σcard(AGT)+1P-hard.
Proof: Reduction via Proposition 7 and Theorem2.

E. Whencard(AGT) = 1

Unfortunately we do not have a precise complexity upper-
bound for those problems in the general case whencard(AGT)
is finite. Nevertheless, we have the exact complexity when
card(AGT) = 1.

Proposition 8: The model-checking problem ofL☼1D
{1} is

in Δ2P.
Proof: The figure 6 gives us anΔ2P-algorithm (a P-

algorithm with NP-oracles) for the model-checking problem
of L☼1D

{1}. Given a worldw, first we compute theV of
propositions occurring inϕ that the agent 1 sees andI
the set of propositions the agent 1 does not see. Then we
can replace each occurrencep of a propositionp from V

MALLOW’009: Turin, Italy, September 7-10, 2009

160

8

function check1(w,ϕ)
V := set of variables that agent1 sees inw;
I := set of variables that agent1 does not see inw;
ψ := ψ in which we replace eachp ∈ V by πw(p);
ψ := ψ in which we replace eachp ∈ I not in the scope
of a K1 by πw(p);
while there existsK1χ subformula ofψ, whereχ is a
boolean formulado

if oracle− sat(¬χ) then
ψ := ψ in which we replaceK1χ by ⊥;

else
ψ := ψ in which we replaceK1χ by >;

endIf
endWhile
return PCL({⊥,>})− sat(ψ);

endFunction

Fig. 6. AΔ2P -algorithm for model checking ofL☼1D {1}

function sat(ϕ)
w := choose_world_with_symbols_in(ϕ)
return check1(w,ϕ)

endFunction

Fig. 7. OptimalΣ2P-algorithm for satisfiability problem ofL☼1D {1}

in ϕ by the corresponding valuationπw(p). Concerning a
propositionp ∈ I, we only replace occurrences which are
not in the scope of aK1. For instance, ifp ∈ I, q ∈ V , and
πw(p) = >, πw(q) = ⊥ p ∧ q ∨ K1(p ∨ q) is replaced by
> ∧ ⊥ ∨ K1(p ∨ ⊥). Then we test satisfiability of boolean
formulas¬χ such thatK1χ is a subformula ofψ and replace
K1χ by⊥ if ¬χ is satisfiable and by> otherwise. At the end,
we obtain a boolean formulaψ containing no variables. We
test its satisfiability withPCL({⊥,>})− sat(ψ). Notice the
while -loop is done in linear time because there are a linear
number of subformulas inψ.

Proposition 9: The satisfiability problem ofL☼1D
{1} is

Σ2P-complete.
Proof:

The hardness comes from Corollary 5. The Figure 7 gives
us anΣ2P-algorithm (a NP-algorithm with NP-oracles) for the
satisfiability problem ofL☼1D

{1}.

F. When AGT andATM are both finite

Proposition 10: Let ATM a finite set of agents and
AGT = {1}. The satisfiability problem and model-checking
of L☼1D

{1} is in P.
Proof: We adapt algorithms of the figure 6 and 7 in order

to have an optimal polynomial algorithm. More precisely:

• You replacechoose_world_with_symbols_in in Figure
7 by a loop over all worlds. You can notice that the set
of all possible worlds is fixed, that is to say it does not
depend onϕ;

• oracle − sat can now run in polynomial time because
there is a fixed number ofpropositions.

Fig. 8. World for Muddy children

IV. PUBLIC ANNOUNCEMENTS

As done in [11] we can extend our framework with public
announcements. This is essentially motivated by modelling
examples like Muddy children. With public announcements,
an agent will be able to learn something about the part of the
actual world which he can not see. The technique is classical:
we add an operator[ϕ!] and we define semantics as inS5n.

A. Definitions

Our new languageL!AGT is defined by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Kaψ | [ϕ!]ϕ

wherep ∈ ATM anda ∈ AGT.

From now, we do not only parameter|= with a world but
also with the set of worlds.

Definition 12 (truth conditions):
Let U a set of worlds (U ⊆ W). Let w ∈ U . We define
U,w |= ϕ by induction:

• U,w |= p iff π(p) = >
• U,w |= ϕ ∧ ψ iff U,w |= ϕ andU,w |= ψ;
• U,w |= ¬ϕ iff U,w 6|= ϕ;
• U,w |= Kaψ iff for all w′ ∈ U , wRaw′ impliesU,w′ |=
ψ;

• U,w |= [ϕ!]ψ iff U,w |= ϕ implies U ∩
{w′ ∈ U | U,w′ |= ϕ}, w |= ψ.

The set of validities we obtain is notedL☼1D ! =
{ϕ |W,w |= ϕ} whereW is the set of all worlds defined
Definition 8.

B. Example

Now we are going to study the Muddy children example.
This example is also studied in [11]. You can also find this
example in [4] and [3] with more than two children. The
situation is the following: there are two children named 1
and 2. Their foreheads are dirty. They see each others. The
situation is represented by the worldw shown in Figure 8
in the top left. One child do not know if he is dirty or not
but he knows the state of the forehead of the other one. We
introduce two propositions:p stands for “1’s forehead is dirty”
andq stands for “1’s forehead is dirty”.

We have:

• W,w |= K1q ∧K2p;
• W,w |= ¬K1p ∧ ¬K1(¬p) ∧ ¬K2(¬q).

Then:

• the father says at least one of them are dirty;

MALLOW’009: Turin, Italy, September 7-10, 2009

161

9

Fig. 9. World for Muddy children after having announcedϕ1

Fig. 10. World for Muddy children after having announcedϕ1 andϕ2

• the children answer that they do not know whether they
are dirty of not.

Formally, we also have:

W,w |= [ϕ1!][ϕ2!](K1p ∧K2q)

where:

• ϕ1 = p ∨ q;
• ϕ2 = (¬K1p ∨ ¬K1¬p) ∧ (¬K2q ∨ ¬K2¬q).

We verify that after having announcedϕ1, we only consider
worlds in Figure 9. Then we only consider the initial worldw
drawn in 10.

C. Complexity

BecauseL☼1D ! is a conservative extension ofL☼1D , we
inherit from the lower bound results both for model-checking
and satisfiability. In fact, we keep the PSPACE-ness upper-
bound with public announcements.

Proposition 11: The model-checking and satisfiability
problem inL☼1D ! is PSPACE-complete.

Proof: The Figure 11 gives an algorithm for model-
checking. As usual,w is a world,ϕ is a formula. The second
argumentC is a list of formulas and stands for thecontext: if
C = [] (empty list), it corresponds to the whole set of worlds
otherwise it is a list of announced formulas used to update the
model. More precisely, let us define:

• W [] =W ;
• W [ψ1:C

′] = {w ∈WC′ |WC′ , w |= ψ1}.

We want:

• mc(w,C, ϕ) returns true iffWC , w |= ϕ;
• inupdatedM(w,C) returns true iffw ∈WC .

We have to prove terminaison, correctness and complexity.
Let us begin to prove terminaison. First of all, we are going
to introduce an order≺ over all possible inputs(C,ϕ) of the
functionmc! of Figure 11.

We define(C,ϕ) ≺ (D,ψ) by:

• |C|+ |ϕ| < |D|+ |ψ|;

• or

{
|C|+ |ϕ| = |D|+ |ψ|
and |ϕ| < |ψ|

where

function mc!(w,C, ϕ)
match (ϕ)

>:
return >;

p ∈ ATM :
return > if p is true inw;
return ⊥ if p is false inw;

ψ1 ∧ ψ2:
return mc!(w,C, ψ1) ∧mc!(w,C, ψ2);

¬ψ:
return ¬mc!(w,C, ψ);

Kaψ:
for u ∈ Ra(w) do

if inupdatedM(u,C) and
mc!(u, ψ) = ⊥ then

return ⊥;
endIf

endFor
return >;

[ψ1!]ψ2:
if mc!(w,C, ψ1) then

return mc!(w, [ψ1 : C], ψ2)
else

return >
endIf

endMatch
endFunction

Fig. 11. Algorithm for model-checking inL☼1D !

• |ϕ|, |ψ| denotes the length (number of symbols) inϕ,ψ;
• |C|, |D| denotes also the number of symbols inC, D.

More precisely:

– |[]| = 0;
– |[ψ1 : C ′]| = |ψ1|+ |C ′|.

The order≺ is well-founded and we can use it to prove
terminaison by induction.

• Basic case:(∅, p) etc.
• Induction case: you just have to see thatmc!(w,C, ϕ)

will only call mc!(u,D, ψ) with (D,ψ) ≺ (C,ϕ). For
instance, whenmc!(w,C, ϕ) calls inupdatedM(u,C)
which callsmc!(w,C ′, ψ), we have|C ′| + |ψ| = |C| <
|C|+ |ϕ|.

Correction and the fact that the algorithm runs using a
polynomial space can also be proved by induction using the
order≺.

The hardness comes from the fact thatL☼1D ! is a conser-
vative extension ofL☼1D and the model checking ofL☼1D is
PSPACE-hard (Corollary 2).

Concerning the satisfiability, we can make the same remark
than in the proof of Proposition6.

The upper-bound in special cases (AGT finite etc.) has not
been studied yet.

From now, we are to discuss about the implementation and
develop the example of the Muddy children.

MALLOW’009: Turin, Italy, September 7-10, 2009

162

10

function inpudatedM(w,C)
match (C)

[]: return >;
[ψ : C ′]: mc!(w,C ′, ψ);

endMatch
endFunction

Fig. 12. Algorithm for testing if a worldw is in the updated model formulas
in C

V. I MPLEMENTATION

You can find an implementation on the Web site. You can
put positions and directions of agents and positions and states
of lamps on your own. Then you can write down a formula
and check if your formula is true in the world you have drawn.

This program offers a concrete example to illustrate epis-
temic logic to students.

A. Description

The program is written in Scheme for the easy use of data
structures and recursive programming. Haskell could also be
a well-suited language especially for the lazy evaluation en-
abling us to write a program which seems to use a exponential
amount of memory whereas it uses only a polynomial amount
of memory. Here are the main Scheme functions:

• (mc world formula) computes if the formula
formula is true in the worldworld ;

• (mc-with-context world context
formula) computes of the formulaformula is
true in the world world but we restrict our check
computations only on worlds satisfying the formula
context ;

• (worldset-delete-not-satisfying
worldset formula) removes from the set of
world worldset all worlds which does not satisfy the
formula formula . This function is used to deal with
updated models;

• (world-getpossibleworlds world agent)
computes the set of all possible worlds for agentagent
in world world .

In order to be human readable, the implementation does
not run in polynomial space but in exponential time. For
instance the function(world-getpossibleworlds w
a) computes reallyall worlds inRa(w).

B. Practising Muddy children

You can describe thecurrent situation(world w on the top
left in Figure 8 by((p #t) (1 <) (2 >) (q #t)) .
Notice that we are not going to construct the Kripke structure
by hand. When you draw a Kripke model, you can easily
mistakes all the more so the model is theoretical. Here we
just enjoy specifyinggraphically the situation. The Kripke
structure is then generated on-the-fly by the algorithm. You
can test ifW,w |= K1p ∧K2q by calling

(mc ’((p #t) (1 <) (2 >) (q #t)) ((1
knows p) and (2 knows q))) .

The function returns#f meaning that we do not have
W,w |= K1p ∧K2q.

We ask the computer the different worlds the agent1
imagine. To do this we write

(world-getpossibleworlds ’((p #t) (1 <)
(2 >) (q #t)) 1) .

The system gives:
(((p #t) (1 <) (2 >) (q #t))

((p #f) (1 <) (2 >) (q #t))) .
We can now test if the formulaW,w |= [ϕ1!][ϕ2!](K1p ∧

K2q). You simply write
(mc ’((p #t) (1 <) (2 >) (q #t))

(announce (p or q) (announce ((not (1
knows p)) and (not (2 knows q))) ((1 knows
p) and (2 knows q)))))

The system answers#t .

VI. CONCLUSION

The epistemic logicS5n is a general and theoretical frame-
work for the representation of knowledge. In this paper, we
have studied a spatially grounded epistemic logic. We have
investigated two aspects of knowledge learning:

• With L☼1D , we can reason about what agents know by
learning only with their eyes (when they are located on
a line space);

• With L☼1D ! we can reason about what agents know by
looking at their environments and by listening to public
announcements.

Of course the case of the line is restrictive. The case of the
plane or of the space may be more interesting. Nevertheless,
this paper gives complexity results for model-checking and
satisfiability problem for the case of the line. Even the line
looks like easy, problems are already PSPACE-complete if
the number of agents is not bounded. We conjecture that
the complexity of this logic for dimensionn ≥ 2 remains
PSPACE-complete.

From now, there are two main perspectives: to adapt this
logic to the case of two dimensions [1] and to study properly
complexity of model checking and satisfiability with/without
public announcements. Other perspectives are numerous:

• fill the Figure 5. The exact complexity classes of model
checking and satisfiabilityL☼1D

AGT when AGT is finite
are still open questions;

• Study and implement the logic with agents and lamps
in the plane [1] and compare it to the logic in the line.
Writing down the semantics is quite easy: you just have to
replaceR by R2 in Definition 8 and tune the definition of
directions and Definition 3. The main difficulty is to find
a compact representation in order to deal with the model
checking and satisfiability problem. In two dimensions
it is no more possible to consider a total preorder on
elements. Finding a good equivalent of Definition 7
satisfying Proposition 4 in the case of dimension 2 or
more is still an open problem.

• Study the logic in the 3D-space and compare it to the
one in the plane (I guess we obtain the same validities);

MALLOW’009: Turin, Italy, September 7-10, 2009

163

11

• Find an axiomatization of those logics in order to under-
stand better how they work;

• Study if it is possible to have a normal form (like for S5,
where all formulas are equivalent to a formula of modal
degree 1 [6]);

• Extend with a common knowledge operator. Will the
complexity of the satisfiability problem also increase and
become EXPTIME-complete?

• Extend with private communications between agents.

Acknowledgements.
I thank Philippe Balbiani, Olivier Gasquet, Andreas Herzig,

Emiliano Lorini and the reviewers for their different helpful
remarks.

REFERENCES

[1] Edwin Abbott Abbott. Flatland. Basil Blackwell, 1884.
[2] Jon Barwise and John Etchemendy.Tarski’s World: Version 4.0 for

Macintosh (Center for the Study of Language and Information - Lecture
Notes). Center for the Study of Language and Information/SRI, 1993.

[3] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

[4] V. Goranko and M. Otto.Handbook of Modal Logic, chapter Model
Theory of Modal Logic, pages 255–325. Elsevier, 2006.

[5] Joseph Y. Halpern and Yoram Moses. A guide to completeness
and complexity for modal logics of knowledge and belief.Artificial
Intelligence, 54(3):319–379, 1992.

[6] G. E. Hughes and M. J. Cresswell.An Introduction to Modal Logic.
Methuen and Co., 1968.

[7] Ethan Kennerly, Andreas Witzel, and Jonathan A. Zvesper. Thief belief
(extended abstract). Presented at Logic and the Simulation of Interaction
and Reasoning 2 (LSIR2) Workshop at IJCAI-09, July 2009.

[8] E. Lorini, L. Tummolini, and A. Herzig. Establishing mutual beliefs
by joint attention: towards a formal model of public events. In Mon-
ica Bucciarelli Bruno G. Bara, Lawrence Barsalou, editor,Proceedings
of the XXVII Annual Conference of the Cognitive Science Society, pages
1325–1330. Lawrence Erlbaum, 2005.

[9] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley,
1994.

[10] Rohit Parikh, Lawrence S. Moss, and Chris Steinsvold. Topology and
epistemic logic. InHandbook of Spatial Logics, pages 299–341. 2007.

[11] Jan Plaza. Logics of public communications.Synthese, 158(2):165–179,
2007.

[12] Walter J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities.J. Comput. Syst. Sci., 4(2):177–192, 1970.

[13] Hans P. van Ditmarsch, Wiebe van der Hoek, Ron van der Meyden, and
Ji Ruan. Model checking russian cards.Electr. Notes Theor. Comput.
Sci., 149(2):105–123, 2006.

MALLOW’009: Turin, Italy, September 7-10, 2009

164

Games for Learning
A Sabotage Approach

Nina Gierasimczuk, Lena Kurzen and Fernando R. Velázquez-Quesada
Institute for Logic, Language and Computation

Universiteit van Amsterdam
Email: {N.Gierasimczuk | L.M.Kurzen | F.R.VelazquezQuesada}@uva.nl

Abstract—In formal approaches to inductive learning, the
ability to learn is understood as the ability to single out a cor-
rect hypothesis from a range of possibilities. Although most
of the existing research focuses on the characteristics of the
learner, in many paradigms the significance of the teacher’s
abilities and strategies is in fact undeniable. Motivated by
this observation, in this paper we highlight the interactive
nature of learning by proposing a game-theoretical and
logical approach. We consider learning as a sabotage-type
game between Teacher and Learner, and present different
variants based on the level of cooperativeness and the actions
available to the players. We characterize the existence of a
winning strategy in such games by formulas of Sabotage
Modal Logic, analyzing also their complexity. Our work
constitutes the first step towards a unified game-theoretical
and logical approach to formal learning theory.

I. I

The objective of this paper is to investigate how logics
for interaction in multi-agent systems can be used to rea-
son about strategic abilities and information flow during
the learning process. Formal learning theory (see e.g. [4])
is concerned with the process of inductive inference: it
formalizes the process of inferring general conclusions
from partial, consecutively given information, as in the
case of language learning (inferring grammars from
sentences) and scientific inquiry (drawing general con-
clusions from partial experiments). We can think of this
general process as a game between two players: Learner
and Teacher. The game starts with a class of possible
worlds from which Teacher chooses the actual one, and
Learner has to find out which one it is. Teacher provides
information about the world in an inductive manner,
and whenever Learner receives a piece of information,
he picks a conjecture from the initial class, indicating
which one he thinks is the case. Several conditions can
be defined for the success of the learning process: we can
require that Learner arrives at a correct hypothesis (finite
identification), or that the sequence of Learner’s conjec-
tures converges to a correct hypothesis (identification in
the limit) [3].

We give a high-level analysis of the described process.
First, we treat learning as a procedure of singling out one
correct hypothesis from a range of possibilities. Second,
we see this procedure not as a one-move choice; instead,
we allow many steps of update before the conclusion is

reached. These two properties make our notion of learn-
ing different from the concept of learning formalized as
epistemic update in Dynamic Epistemic Logic (see e.g. [2]),
where the word “learning” is often used as a synonym of
“getting to know” and is usually represented as a one-
step epistemic update. Moreover, in our approach we
pay attention to the strategies for teaching, highlighting
the fact that restricted power and knowledge of the
learner can be compensated by additional insights and
intentions of the teacher.

The paper is structured as follows. Section II intro-
duces the framework of learning as Sabotage Games,
shows how sabotage modal logic can express the exis-
tence of winning strategies in three different versions of
Sabotage Learning Games and gives complexity results
for them. Section III analyzes Sabotage Learning Games
in which the players do not need to move in alterna-
tion. Section IV presents a refined interactive view on
teaching based on existing learning algorithms. Section
V concludes.

II. L S G

Our work is motivated by the learning from queries and
counterexamples model [1]. In that paradigm, the goal of
Learner is to recognize an initially unknown language L.
In order to do this, he is allowed to ask Teacher two types
of questions: about the membership of a certain string
to L, and about the equivalence of his conjecture (an-
other language) to L. When answering those questions,
Teacher does not have any freedom — her responses
are restricted by L. However, a negative answer to the
second question is accompanied by a counterexample,
which plays the role of a hint for Learner. This is the only
point of the procedure in which Teacher has a relative
freedom of choice, and in fact, the informativeness of
the string given as a counterexample influences the
effectiveness of the learning process. We want to focus
on this aspect of learning and show that the “profile” of
Teacher is relevant for the learning process. We consider
several possible scenarios — we describe games in which
Teacher is either helpful or unhelpful, and Learner is
either eager or unwilling to learn.

Let us consider a very simple “classroom” situation
with one teacher and one learner. From our high-level

MALLOW’009: Turin, Italy, September 7-10, 2009

165

TABLE I
C LM

Learning Model Sabotage Games

hypotheses states

correct hypothesis goal state

possibility of a mind change from
hypothesis a to hypothesis b

edge from state a to b

a mind change from hypothesis a
to hypothesis b

transition from state a to b

giving a counterexample that
eliminates the possibility of a
mind change from a to b

removing a transition between
a and b

perspective, learning is a step-by-step process through
which Learner changes his information state, and the
process is successful if he eventually reaches a state
representing the goal. The information Teacher provides
can be seen as feedback about Learner’s current con-
jecture, allowing him to rule out possible changes of
mind. We can represent the situation as a graph whose
vertices represent Learner’s possible information states
and edges stand for transitions between them. During
the learning process, Learner can change his information
state by moving along the edges and Teacher can cut off
edges, thereby preventing Learner from making certain
transitions. One state is associated with the learning goal:
if Learner reaches it, we say that the learning process
has been successful. The correspondence between the
learning model from formal learning theory and our
proposal is described in Table I.

Observe that in learning from queries and counterex-
amples, a counterexample results in the absolute removal
of some initially possible hypothesis. Our setting gen-
eralizes this idea: the removal of a transition need not
make the target vertex unreachable.

A. Sabotage Games

Our perspective on learning leads naturally to the
framework of Sabotage Games [6], [11]. A sabotage game
is played in a directed multi-graph, with two players,
Runner and Blocker, moving in alternation with Runner
being the first. Runner moves by making a single transi-
tion from the current vertex; Blocker moves by deleting
a single edge from any part of the graph. We begin by
defining the structure in which a Sabotage Game takes
place.

Definition 2.1 ([6]): A directed multi-graph is a tuple G =
(V,E) where V is a set of vertices and E : V × V → N is
a function indicating the number of edges between any
two vertices.

The Sabotage Game is defined as follows.
Definition 2.2 ([6]): A Sabotage Game SG = 〈V,E, v, vg〉 is

given by a directed multi-graph (V,E) and two vertices
v, vg ∈ V. Vertex v represents the position of Runner and
vg represents the goal state.

Each match is played as follows: the initial position
〈E0, v0〉 is given by 〈E, v〉. Round k + 1 from position
〈Ek, vk〉 consists of Runner moving to some vk+1 such
that E(vk, vk+1) > 0, and then Blocker removing an
edge (v, v′) such that Ek(v, v′) > 0. The new position is
〈Ek+1, vk+1〉, where Ek+1(v, v′) := Ek(v, v′)−1 and, for every
(u,u′) , (v, v′), Ek+1(u,u′) := Ek(u,u′). The match ends if
a player cannot make a move or if Learner reaches the
goal state, which is the only case in which he wins.

Remark 1: It is easy to see that Sabotage Games have
the history-free determinacy property: if one of the players
has a winning strategy then she has a winning strategy
that depends only on the current position. Then, each
round can be viewed as a transition from a Sabotage
Game SG = 〈V,Ek, vk, vg〉 to another Sabotage Game
SG′ = 〈V,Ek+1, vk+1, vg〉, since previous moves become
irrelevant. We will use this fact through the whole paper.
Also, by edges and vertices of SG = 〈V,E, v, vg〉, we will
mean edges and vertices of its underlying directed multi-
graph (V,E).

In this definition of the Sabotage Game, Blocker re-
moves an edge between two states v, v′ by decreasing
the value of E(v, v′) by 1. As we will see later, this
definition of the game based on the above definition
of multi-graphs can lead to some technical problems
when transforming such a graph into a Sabotage Model.
Therefore, we will now present an alternative definition,
which we later show (Theorem 1) to be equivalent with
respect to the existence of a winning strategy.

Definition 2.3: Let Σ = {a1, . . . an} be a finite set of labels.
A directed labelled multi-graph is a tuple GΣ = (V,E) where
V is a set of vertices and E = (Ea1 , . . . ,Ean), where Eai ⊆
V × V for each ai ∈ Σ.
In this definition, labels from Σ are used to represent
multiple edges between two vertices; E is simply an
ordered collection of binary relations on V with labels
from Σ. Then, the definition of the game is as follows.

Definition 2.4: A Labelled Sabotage Game SGΣ =
〈V,E, v, vg〉 is given by a directed labelled multi-graph
(V,E) and two vertices v, vg ∈ V. Vertex v represents the
position of Runner and vg represents the goal state.

Each match is played as follows: the initial position
〈E0, v0〉 is given by 〈E, v〉. Round k + 1 from position
〈Ek, vk〉 with Ek = (Ek

a1
, . . . ,Ek

an
), consists of Runner mov-

ing to some vk+1 such that (vk, vk+1) ∈ Ek
ai

for some
ai ∈ Σ, and then Blocker removing an edge ((v, v′), a j),
where (v, v′) ∈ Ek

a j
for some a j ∈ Σ. The new position

is 〈Ek+1, vk+1〉, where Ek+1
a j

= Ek
a j
\ {(v, v′)} and Ek+1

ai
= Ek

ai

for all i , j. The match ends if a player cannot make
a move or if Runner reaches the goal state, with him
winning only in the last case.
What is said in Remark 1 also holds for Labelled Sabo-
tage Games.

In this definition of the game, it is easy to see that
when Blocker removes an edge from v to v′, it is irrele-
vant what is the label of the removed edge; what matters

MALLOW’009: Turin, Italy, September 7-10, 2009

166

for the existence of a winning strategy is the number of
edges from v to v′ that are left.

Observation 1: Let SGΣ = 〈V,E, v0, vg〉 and SG′Σ =
〈V,E′, v0, vg〉 be two Labelled Sabotage Games that differ
only in the labels of their edges, that is,

∀(v, v′) ∈ V × V : |{Eai | (v, v′) ∈ Eai }| = |{E′ai
| (v, v′) ∈ E′a}|,

where | · | stands for cardinality. Then Runner has a
winning strategy in SGΣ iff he has a winning strategy
in SG′Σ.

We will now show that the problems of deciding
whether Runner has a winning strategy in each of the
Sabotage Games SG and SGΣ are polynomially equiva-
lent. We start by formalizing the problems.

Definition 2.5: The decision problem SABOTAGE is
defined as follows.
• INPUT: A Sabotage Game SG = 〈V,E, v0, vg〉.
• QUESTION: Does Runner have a winning strategy

in SG?
Definition 2.6: The decision problem Σ-SABOTAGE is

defined as follows.
• INPUT: A Sabotage Game on a labelled multi-graph

SGΣ = 〈V,E, v0, vg〉.
• QUESTION: Does Runner have a winning strategy

in SGΣ?
Theorem 1: SABOTAGE and Σ-SABOTAGE are poly-

nomially equivalent.
Proof: We show that the problems can be polynomi-

ally reduced to each other.
First we show that SABOTAGE can be reduced to Σ-

SABOTAGE. Given a Sabotage Game SG = 〈V,E, v0, vg〉,
let m := max{E(u,u′) | (u,u′) ∈ (V × V)}. Define the
Labelled Sabotage Game f (SG) := 〈V,E, v0, vg〉 where
E := (E1, . . . ,Em) and each Ei is given by Ei := {(u,u′) ∈
V × V | E(u,u′) ≥ i}.

We show that Runner has a winning strategy (w.s.) in
SG iff he has one in f (SG). The proof is by induction on
n =
∑

(v,v′)∈V×V E(v, v′), which is the number of edges of
SG. Note that by definition of f , n =

∑i=m
i=1 |Ei|, that is,

f (SG) has the same number of edges.
The base case is straightforward since in both games

Runner has a w.s. iff v0 = vg. For the inductive case,
from left to right, suppose Runner has a w.s. in the game
SG = 〈V,E, v0, vg〉 with n + 1 edges. Then, there is some
v1 ∈ V such that E(v0, v1) > 0 and Runner has a w.s.
for all games SG′ = 〈V,E′, v1, vg〉 that result from Blocker
removing any edge (u,u′) with E(u,u′) > 0. Note that
all such games SG′ have just n edges, so by induction
hypothesis Runner has a w.s. in f (SG′). But then, by
Observation 1, Runner has also a w.s. in all games f (SG)′
that result from removing an arbitrary edge from f (SG),
because for any removed edge (u,u′), the only possible
difference between f (SG′) and f (SG)′ is in the labels of
the edges between u and u′ (in f (SG′) the removed label
was the largest, in f (SG)′ the removed label is any). Now,

TABLE II
S L G

Game Winning Condition

SLGUE Learner wins iff he reaches the goal state. Teacher wins
otherwise.

SLGHU Teacher wins iff Learner reaches the goal state. Learner
wins otherwise.

SLGHE Both players win iff Learner reaches the goal state. Both
lose otherwise.

by definition of f , choosing v1 is also a legal move for
Runner in f (SG) and, since he can win every f (SG)′, he
has a w.s in f (SG).

From right to left, Runner having a w.s. in f (SG)
means that he can choose some v1 with (v0, v1) ∈ Ei
for some i ≤ m such that he has a w.s. in all games
f (SG)′ resulting from Blocker’s move. Choosing v1 is
also a legal move of Runner in SG. Suppose that Blocker
replies by choosing (v, v′). Let us call the resulting game
SG′. By assumption and Observation 1, Runner also has
a w.s. in the game f (SG′) which is the result from Blocker
choosing ((v, v′),E(v, v′)). Since f (SG)′ = f (SG′), we can
apply the inductive hypothesis.

Let us see now how SGΣ can be polynomially reduced
to SG. Given SGΣ = 〈V,E, v, vg〉 with Σ = {a1, . . . am},
define f ′(SGΣ) := 〈V,E, v, vg〉, where E(v, v′) := |{Eai |
(v, v′) ∈ Eai }|.

Showing that Runner has a w.s. in SGΣ iff he has one in
f (SGΣ) is straightforward, and can be done by induction
on n :=

∑
a∈Σ |Ea|. Both f and f ′ are polynomial.

B. Sabotage Learning Games

Based on the Sabotage Games framework, we define
Sabotage Learning Games as follows.

Definition 2.7: A Sabotage Learning Game (SLG) is a
Labelled Sabotage Game played by Learner (L, taking the
role of Runner) and Teacher (T, taking the role of Blocker).
We distinguish between three different versions, SLGUE,
SLGHU and SLGHE, differing in the winning conditions
(given in Table II).

The different winning conditions correspond to differ-
ent levels of Teacher’s helpfulness and Learner’s willing-
ness to learn. We can have an unhelpful teacher and an
eager learner (SLGUE), but there is also the possibility
of a helpful teacher and an unwilling learner (SLGHU).
The cooperative case corresponds to the version with a
helpful teacher and an eager learner (SLGHE).

We now show how Sabotage Modal Logic can be used
for reasoning about Learner’s and Teacher’s strategic
power in the learning games previously defined.

C. Sabotage Modal Logic

Sabotage Modal Logic (SML) has been introduced in
[11]. Besides the standard modalities, it also contains

MALLOW’009: Turin, Italy, September 7-10, 2009

167

“transition-deleting” modalities for reasoning about
model change that occurs when a transition is removed.
To be more precise, we have formulas of the form –̂φ,
expressing that it is possible to delete a pair from the
accessibility relation such that φ holds in the resulting
model at the current state.

Definition 2.8 (Sabotage Modal Language [11]): Let PROP
be a countable set of propositional letters and let Σ be a
finite set. Formulas of the language of Sabotage Modal
Logic are given by

φ ::= p | ¬φ | φ ∨ φ | ^aφ | –̂ aφ

with p ∈ PROP and a ∈ Σ. We write ^φ for
∨

a∈Σ^aφ and
–̂φ for

∨
a∈Σ –̂ aφ.

Definition 2.9 ([7]): Given a countable set of proposi-
tional letters PROP and a finite set Σ = {a1, . . . , an}, a
Sabotage Model is a tuple M = 〈W, (Rai)ai∈Σ,Val〉 where
W is a non-empty set of worlds, each Rai ⊆ W × W is
an accessibility relation and Val : PROP → P(W) is a
propositional valuation function. The pair (M,w) with
w ∈W is called a Pointed Sabotage Model.

For the semantics of SML, we first define the model
that results from removing an edge.

Definition 2.10: Let M = 〈W,Ra1 , . . .Ran ,Val〉 be a Sabo-
tage Model. The model Mai

(v,v′) that results from removing
the edge (v, v′) ∈ Rai is defined as

Mai
(v,v′) := 〈W,Ra1 , . . .Rai−1 ,Rai \ {(v, v′)},Rai+1 , . . .Ran ,Val〉.

Definition 2.11: Given a Sabotage Model
M = 〈W, (Ra)a∈Σ,Val〉 and a world w ∈ W, atomic
propositions, negations, disjunctions and standard
modal formulas are interpreted as usual. For the case of
“transition-deleting” formulas, we have

M,w |= –̂ aφ iff ∃ v, v′ ∈W : (v, v′) ∈ Ra & Ma
(v,v′),w |= φ,

and –�aφ is defined to be equivalent to ¬ –̂ a¬φ.
Theorem 2 ([7]): Combined complexity of model

checking for SML is PSPACE-complete.
Note that “combined complexity” means that both the
formula and the model are taken as input.

D. Sabotage Learning Games in Sabotage Modal Logic

For any given Sabotage Learning Game SGΣ we
can construct a Pointed Sabotage Model M(SGΣ) in a
straightforward way.

Definition 2.12: Let SGΣ = 〈V,E, v0, vg〉 be a Sabotage
Game with E = (Ea)a∈Σ. We define the Pointed Sabotage
Model (M(SGΣ), v0) over the set of atomic propositions
PROP := {goal} with

M(SGΣ) := 〈V,E,Val〉,
where Val(goal) := {vg}.

In the light of this construction, SML becomes useful
for reasoning about players’ strategic power in SLGs.
For each winning condition in Table II, we can define

a formula of SML that characterizes the existence of a
winning strategy, that is, the formula is true in a given
Pointed Sabotage Model if and only if the corresponding
player has a winning strategy in the game represented
by the model.

First we look at the game SLGUE (the standard Sabo-
tage Game of [11]), with Learner trying to reach the goal
state and Teacher trying to prevent him from doing so.
Inductively, we define:

γUE
0 := goal, γUE

n+1 := goal ∨^–�γUE
n .

Our following result is a variation of Theorem 7 of
[7], rephrased for Labelled Sabotage Games. We provide
a detailed proof to show how our “labelled” definition
avoids a technical issue present in the original proof.

Theorem 3: Learner has a winning strategy in the
SLGUE game SGΣ = 〈V,E0, v0, vg〉 iff M(SGΣ), v0 |= γUE

n ,
for n :=

∑
a∈Σ |E0

a | (the number of edges in (V,E0)).
Proof: The proof is by induction on n.

Base case
(⇒) L having a w.s. in SGΣ implies that v0 = vg. Thus,

M(SGΣ), v0 |= goal and hence, M(SGΣ), v0 |= γUE
0 .

(⇐) M(SGΣ), v0 |= γUE
0 means that M(SGΣ), v0 |= goal.

Thus v0 = vg. Hence, L wins SGΣ immediately.
Inductive case
(⇒) Suppose that SGΣ has n+1 edges, and assume that

L has a w.s. There are two possibilities. (1) v0 is the goal
state; then M(SGΣ), v0 |= goal and hence M(SGΣ), v0 |=
γUE

n+1. (2) v0 is not the goal state. Since L has a w.s.,
there is some v1 ∈ V such that (v0, v1) ∈ E0

ai
for some

ai ∈ Σ and no matter which pair ((u,u′), a j) ∈ (V ×V)×Σ
with (u,u′) ∈ E0

a j
T chooses, L has a w.s. in the resulting

game SG′Σ = 〈V,E1, v1, vg〉, with E1 = (E0
a1
, . . .E0

a j−1
,E0

a j
\

{u,u′},E0
a j+1
, . . .E0

a|Σ|). Now, SG′Σ has n edges and thus by
inductive hypothesis, M(SG′Σ), v1 |= γUE

n . This implies
M(SGΣ), v0 |= ^–�γUE

n and thus M(SGΣ), v0 |= γUE
n+1. (⇐)

M(SGΣ), v0 |= goal ∨ ^–�γUE
n implies that v0 is the goal

state (so L wins immediately) or else there is v1 ac-
cessible from v0 such that M(SGΣ), v1 |= –�γUE

n , that is,
M(SGΣ)ai

(v,v′), v1 |= –�γUE
n for any ((v, v′), ai) ∈ (V × V) × Σ.

By inductive hypothesis, this gives L a w.s. at v1 in a
game that results from removing any edge from SGΣ,
and hence a w.s. at v0 in the game SGΣ.
They key observation for the left-to-right direction of
this proof is that the model that results from removing
an edge from M(SGΣ) is always a model that results
from transforming a Labelled Sabotage Game into a
model. With the original definition of a Sabotage Game,
this is not the case: after removing an edge between v
and v′ with label k, the resulting model does not need
to be the image of a multi-graph because the label of
the removed edge does not need to be the biggest of
them. Another way to look at it is the following: the
multiple edges of the original multi-graph can be seen

MALLOW’009: Turin, Italy, September 7-10, 2009

168

as implicitly labelled by numbers, and the existence of
an edge labelled with k implies the existence of edges
labelled with 1, . . . , k − 1. This property is not preserved
when Teacher removes an edge with an arbitrary label
from the model M(SG).

Consider now the game SLGHU, with Teacher trying
to force Learner to reach the goal state. Inductively,
define

γHU
0 := goal, γHU

n+1 := goal ∨ (^> ∧ � –̂γHU
n).

Now, we can show that this formula corresponds to the
existence of a winning strategy for Teacher. Note that in
order to win, Teacher has to make sure that Learner does
not get stuck before he has reached the goal state. This
is why we need the conjunct ^> in the formula.

Theorem 4: Teacher has a winning strategy in the
SLGUE game SGΣ = 〈V,E0, v0, vg〉 iff M(SGΣ), v0 |= γHU

n ,
for n :=

∑
a∈Σ |E0

a |.
Proof: Similar to the proof of Theorem 3.

Finally, consider SLGHE, with Teacher and Learner
winning iff Learner reaches the goal state. The corre-
sponding formula is defined as follows

γHE
0 := goal, γHE

n+1 := goal ∨^ –̂γHE
n .

Theorem 5: Teacher and Learner have a joint winning
strategy in the SLGHE game SGΣ = 〈V,E0, v0, vg〉 iff
M(SGΣ), v0 |= γHE

n , for n :=
∑

a∈Σ |E0
a |.

Proof: Note that L and T have a joint w.s. iff there is
a path from v0 to vg. From left to right this is obvious.
From right to left, if there is such path, then there is also
one without cycles; then, there is a joint w.s. that follows
the path and at each step removes the edge that has just
been used. The Theorem follows by observing that γHE

n
expresses the existence of such path.

The previous results are summarized in Table III.

TABLE III
W C SLG SML

Game Winning Condition in SML Winner

SLGUE γUE
0 := goal, γUE

n+1 := goal ∨^–�γUE
n Learner

SLGHU γHU
0 := goal, γHU

n+1 := goal ∨ (^> ∧ (� –̂γHU
n)) Teacher

SLGHE γHE
0 := goal, γHE

n+1 := goal ∨^ –̂γHE
n Both

E. Complexity of Sabotage Learning Games
Intuitively, some versions of the Sabotage Learning

Game are simpler than others. With a helpful teacher
and an eager learner, the learning process should be
easier than with an unhelpful teacher or a unwilling
learner. This is indeed reflected in the computational
complexity of deciding in a given game whether the
winning condition is satisfied.

We have shown that our three winning conditions
(Table III) can be expressed in SML, and Theorem 2

(proved in [7]) tells us that model checking of SML is
PSPACE-complete. This gives us PSPACE upper bounds
for the complexity of the problems of deciding whether
each winning condition is satisfied in a given game. For
two of the winning conditions (SLGUE and SLGHE), we
can also give tight lower bounds.

For SLGUE – the standard Sabotage Game – PSPACE-
hardness is shown by reduction from QBF [7].

Theorem 6 ([7]): SLGUE is PSPACE-complete.
As mentioned above, for SLGHU we obtain a PSPACE

upper bound.
Theorem 7: SLGHU is in PSPACE.

Proof: Follows from Theorem 2 and Theorem 4.
It remains to be shown whether SLGHU is also

PSPACE-hard. Whereas at first sight, SLGHU and SLGUE
might seem to be duals of each other, the relationship
between them is more complex due to the different
nature of the players’ moves (Learner moves locally
by choosing an accessible state, whereas Teacher moves
globally, manipulating the structure in which Learner
moves).hus, a reduction from SLGUE to SLGHU is not
straightforward. Let us now look at SLGHE. This game
is of a different nature than the two previous ones. It is
cooperative, and a winning strategy is a joint strategy
for both players. Such a strategy does not need to take
into account all possible moves of the opponent. This
suggests that this version should be less complex than
SLGUE and SLGHU.

The following result shows that at least for the com-
parison of SLGUE and SLGHE, this is indeed the case:
for an eager learner, learning with a helpful teacher
is easier than learning with an unhelpful one. This
follows from the fact that the winning condition of
SLGHE is satisfied iff the goal vertex is reachable from
the initial vertex (note that Learner moves first). Thus,
determining whether Teacher and Learner can win
SLGHE is equivalent to solving the REACHABILITY
(st-CONNECTIVITY) problem, which is known to be
nondeterministic logarithmic space (NL)-complete [9].

Theorem 8: SLGHE is NL-complete.
Proof: Polynomial equivalence of SLGHE and

REACHABILITY follows from the argument given in the
proof of Theorem 5.

Table IV summarizes the complexity results for the
different versions of SLG.

TABLE IV
C R S L G

Game Winning Condition Complexity

SLGUE Learner wins iff he reaches the goal
state, Teacher wins otherwise

PSPACE-
complete.

SLGHU Teacher wins iff Learner reaches the
goal state, Learner wins otherwise.

PSPACE

SLGHE Both players win iff Learner reaches the
goal state. Both loose otherwise.

NL-
complete

MALLOW’009: Turin, Italy, September 7-10, 2009

169

In the case of an eager Learner, the complexity results
agree with our intuitions when comparing the cooper-
ative version of the Sabotage Game (SLGHE) with the
non-cooperative one (SLGUE). The easiest way to learn
for an eager Learner is when the Teacher is helpful.

III. R

As mentioned above, Learner’s moves in the graph
are interpreted as changes of information states. Then,
when Teacher removes an edge, she actually informs
Learner which changes of information state should not
be performed. In this perspective, Learner’s moves can
be seen as internal ones while Teacher’s moves can
be interpreted externally. Due to this asymmetry, each
Learner’s move does not in principle need to be followed
by a teacher’s move.

Definition 3.1: A Sabotage Learning Game without strict
alternation (for Teacher) is a tuple SLG∗ = 〈V,E, v0, vg〉.
Moves of Learner are as in the Sabotage Learning Game
and, once he has chosen a vertex v1, Teacher has a
choice between removing an edge, in which case the next
game is given as in SLG, and doing nothing, in which
case the next game is 〈V,E, v1, vg〉. We again distinguish
between three versions, SLG∗UE, SLG∗HU and SLG∗HE,
with winning conditions given as before.

Though we provide Teacher with an additional pos-
sible move, this does not change her winning abilities.
In the rest of this section we show that, for the three
variations of a Sabotage Learning Game, a player has a
w.s. in SLG∗ iff she has a w.s. in SLG.

Consider the case of an unhelpful teacher and an eager
learner SLG∗UE. Before we go into the details, note that
if Learner can win the game, he can do so in a finite
number of rounds.

Theorem 9: Consider the SLG 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v, vg vertices in it.
If Learner has a winning strategy in the corresponding
SLGUE, then he has a winning strategy in the corre-
sponding SLG∗UE.

Proof: This can be shown by induction on the num-
ber of rounds. The idea is that in each round L “pre-
tends” that T has removed some edge and then makes
the move given by his strategy for SLGUE.
If L can win a SLG∗UE, then it is easy to see that he
can also win the corresponding SLGUE by using his w.s.
from SLG∗UE.

Corollary 1: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v, vg vertices in it.
Learner has a winning strategy in the corresponding
SLG∗UE iff he has a winning strategy in the correspond-
ing SLGUE.

The case of a helpful teacher and an unwilling learner
is more interesting. One might expect that the additional
possibility of an empty move gives more power to
Teacher since it allows her to skip a move in cases

when removing an edge would have made the goal
unreachable from the current vertex. However, we can
show that this is not the case. First, we state the following
lemmas.

Lemma 1: For any SLG∗HU 〈V,E, v0, vg〉, if there is a
path from v0 to vg and there is no path from v0 to a state
from where vg is not reachable, then T has a winning
strategy.

Proof: By assumption, all states reachable from v0
are on paths to vg. Therefore, even if T will refrain from
removing any edge, L will always be on some path to
the goal. There are two possibilities: either the path to
the goal does not include a loop or it does. If it does not
then T can simply wait until L will arrive to the goal.
If it does, in order to win T can remove the edges that
lead into the loops in such a way that vg is still reachable
from any vertex. L will eventually have to move to vg.

Lemma 2: Consider the SLG∗HU game 〈V,E, v0, vg〉. If T
has a winning strategy and there is some edge (v, v′) ∈ Ea
for some a ∈ Σ such that no path from v0 to vg goes via
the edge (v, v′), then T also has a winning strategy in
〈V,E′, v0, vg〉, where E′ is the result of removing (v, v′)
from Ea.

Proof: If v is not reachable from v0, it is easy to see
that the claim holds. Let us consider the case that v is
reachable from v0. Since there is no path to vg visiting
v, T’s winning strategy should keep L away from it
(otherwise L would win). Hence, T can also win if the
edge (v, v′) is not there.

Theorem 10: If Teacher has a winning strategy in the
SLG∗HU 〈V,E, v0, vg〉, then she also has a winning strat-
egy in which she removes an edge in each round.

Proof: The proof proceeds by induction on the num-
ber of edges n =

∑
a∈Σ |Ea|.

The base case is straightforward. For the inductive
case, assume that T has a winning strategy in SLG∗HU
〈V,E, v0, vg〉 with

∑
a∈Σ |Ea| = n + 1.

Then if v0 = vg, we are done. Thus, assume that v0 ,
vg. Then, since T can win, there is some v1 ∈ V such that
(v0, v1) ∈ Ea for some a ∈ Σ and for all such v1 it holds
that:

1) There is a path from v1 to vg, and
2) a) T can win 〈V,E, v1, vg〉, or

b) there is some ((v, v′), a) ∈ (V×V)×Σ such that
(v, v′) ∈ Ea and T can win 〈V,E′, v1, vg〉 where
E′ is the result from removing (v, v′) from Ea.

If 2b holds, since
∑

a∈Σ |E′a| = n, we are done — we can
use the inductive hypothesis and conclude that T has
a w.s. in which she removes an edge in each round (in
particular, she chooses ((v, v′), a) in the first round). This
((v, v′), a) can be chosen in one of the following ways.

If there is some (v, v′) ∈ V ×V such that (v, v′) ∈ Ea for
some a ∈ Σ and this edge is not part of any path from
v1 to vg then by Lemma 2, T can remove this edge and
2b holds and we are done.

MALLOW’009: Turin, Italy, September 7-10, 2009

170

If every edge in (V,E) belongs to some path from v1 to
vg, from 1, there are two cases: either there is only one,
or there are more than one paths from v1 to vg.

In the first case (only one path) (v0, v1) can be chosen
since it cannot be part of the unique path from v1 to vg.

Assume now that there is more than one path from v1
to vg. Let p = (v1, v2, . . . , vg) be the/a shortest path from v1
to vg. This path cannot contain any loops. Then, from this
path take vi such that i is the smallest index for which
it holds that from vi there is a path (vi, v′i+1, . . . vg) to vg
that is at least as long as the path following p from vi (i.e.
(vi, vi+1, . . . , vg)). Intuitively, when following path p from
v1 to vg, vi is the first point at which one can deviate
from p in order to take another path to vg (recall that
we consider the case where every vertex in the graph
is part of some path from v1 to vg). Now it is possible
for T to choose ((vi, v′i+1), a) such that (vi, v′i+1) ∈ Ea. Let
E′ be the resulting set of edges after removing (vi, v′i+1)
from Ea. Then we are in the position 〈V,E′, v1, vg〉. Note
that because of the way we chose the edge that has been
removed, in the new graph it still holds that from v0
there is no path to a vertex from which vg is not reachable
(this holds because from vi the goal vg is still reachable).
Then by Lemma 1, T can win 〈V,E′, v1, vg〉, which then
implies 2b.

Hence, we conclude that 2b has to be the case and thus
using the inductive hypothesis, we conclude that T can
win the game 〈V,E, v0, vg〉 also by removing an edge in
every round.

Corollary 2: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v0, vg vertices in it.
Teacher has a winning strategy in the corresponding
SLG∗HU, iff she has a winning strategy in the corre-
sponding SLGHU.

Finally, let us move to the case of a helpful teacher
and an eager learner.

Theorem 11: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v0, vg vertices in
it. If Learner and Teacher have a winning strategy in
the corresponding SLG∗HE, then they have a winning
strategy in the corresponding SLGHE.

Proof: The proof of Theorem 5 provides the needed
strategy.

Corollary 3: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v, vg vertices in it.
Learner and Teacher have joint winning strategy in the
corresponding SLG∗HE iff they have a joint winning
strategy in the corresponding SLGHE.

In this section we have shown that in Sabotage Learn-
ing Games, allowing Teacher to skip moves, does not
change the winning abilities of the players. Using these
results, both the complexity and definability results from
the previous section also apply to the versions of the
game in which Teacher can refrain from making a move.

IV. R :
The perspective on learning that we have adopted is

very general. To give a more refined view, let us go back
to the queries and counterexamples paradigm (see [1]). In
that approach, Learner is an algorithm that embodies a
winning strategy in the game of learning (the learning
procedure succeeds on all possible true data). Teacher
can significantly influence the learning process by giv-
ing counterexamples, and the time needed for learning
depends on her choices. Therefore, the game of teaching
in such a setting can be formalized in extensive form as
presented in Figure 1.

C0

w1 w2 w3 w4

C1 C2 C3

w′1 w′2 w′3 w′′1 w′′2 w′′3 w′′′1 w′′′2 w′′′3

.

C5

C5 C5 C5

. . .

.

Fig. 1. The tree of the teaching game: dotted lines are Learner’s moves,
which are determined by his algorithm; solid lines are Teacher’s moves;
wi are counterexamples given by Teacher; Ci are conjectures made by
Learner; C5 is the correct hypothesis.

There are many game-theoretical issues that arise
when viewing the run of the learning algorithm as
a game. We can for example consider the epistemic
status of the players, introduce imperfect information
and analyze payoff characteristics. Concerning the pay-
off characteristics and different classes of teachers such
as (un)helpful teachers, we can define corresponding
preference relations or payoffs: the helpful teacher may
strictly prefer all shortest paths in the game tree, i.e.
the paths in which the learner learns the fastest. The
unhelpful teacher might strictly prefer all the longest
paths in the game tree, i.e. the paths in which the learner
learns slowly.

We can also provide a choice for Learner in this game.
Firstly, we can allow that at each step the learner can
choose from one or more procedures which are part
of one algorithm. Secondly, in the beginning Learner
can decide with which of the available algorithms he
is going to proceed. Moreover, we can consider also an-
other possibility that involves extending the traditional
inductive inference paradigm. Usually, learnability of a
class is interpreted as the existence of a learner that
learns every element from the class independently of the
behavior of Teacher — if we introduce the possibility of
non-learnability to the game, we can view learning algo-
rithms as winning strategies for an eager learner in the

MALLOW’009: Turin, Italy, September 7-10, 2009

171

learning game. With the possibility of non-learnability,
there are also paths in the game tree in which the learner
never makes a correct conjecture. In this framework,
a helpful teacher would also prefer all (shortest) paths
ending in a position in which the learner makes a correct
conjecture over all the other paths. An unhelpful teacher
then prefers all the paths in which the learner does not
learn over those in which he does learn.

V. C

We have provided a game theoretical approach to
learning that allows us to analyze different levels of
cooperativeness between Learner and Teacher. We have
defined Sabotage Learning Games with three variations,
representing different didactic scenarios. Then, we have
shown how Sabotage Modal Logic can be used to reason
about these games and, in particular, we have identified
certain formulas of the language with the existence of
a winning strategy. We gave complexity results for the
decision problems associated with each version of the
game. These problems correspond to model checking
for the associated formulas and models. Our complexity
results support the intuitive claim that the cooperation
of agents facilitates learning. We investigated an exten-
sion of the Sabotage Learning Games that relaxes the
condition of the strict alternation of moves. Our results
presented in Section III show that if we allow Teacher to
skip a move, the winning abilities of the players do not
change with respect to the original versions of the games.
In the case of the helpful teacher and unwilling learner,
this is quite surprising since it says that if Teacher
can force Learner to learn in the game with nonstrict
alternation, then even if she is forced to remove edges
in each round she can do so without removing edges
that are necessary for Learner to eventually reach the
goal state.

From the perspective of Formal Learning Theory,
several relevant extensions can be done. We have de-
scribed the learning process as changes in information
states, without going further into their epistemic and/or
doxastic interpretation. A deeper analysis can give us
insights about how the learning process is related to
different notions of dynamics of information, such as
belief revision or dynamic epistemic logic.

Moreover, it can be argued that in some natural learn-
ing scenarios, e.g. language learning, the goal of the
learning process, e.g. a correct grammar, is concealed
from Learner. In our approach we assume that Learner
has at least some markers of the goal state, otherwise
we could not introduce the two possible characteristics
of Learner. The assumption of the absence of any ability
to recognize the goal by Learner, leads to a model in
which the Learner moves randomly. Some approaches
that take into account randomness in Sabotage Games
have already been introduced [8] and hopefully can be
extended to deal with the aforementioned issue. What

we can now hypothesize is that the complexity of the
scenario with a random Learner and a helpful Teacher
is bounded by the worst case scenario, in which Learner
avoids the goal as long as possible, i.e. the game SLGHU.

In the introduction we described the concepts of finite
identification and identification in the limit. Our work on
SLGs is closer to the first one, as we understand learning
as the ability to reach an appropriate information state,
without taking into account what will happen after
such a state has been reached. In particular, we are
not concerned with the stability of the resulting belief.
Identification in the limit extends finite identification by
looking beyond reachability in order to describe “ongo-
ing behaviour”. Fixed-point logics, like the propositional
µ-calculus [10], [5], can provide us with tools to express
this notion of learnability. In this case, epistemic and dox-
astic interpretations of learning would involve notions of
stable belief and a kind of operational, non-introspective
knowledge as a result of the process.

R
[1] Dana Angluin. Learning regular sets from queries and counterex-

amples. Information and Computation, 75(2):87–106, 1987.
[2] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic

Epistemic Logic. Springer Netherlands, 2007.
[3] E.M. Gold. Language identification in the limit. Information and

Control, 10:447–474, 1967.
[4] Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma.

Systems that Learn. MIT Press, Chicago, 1999.
[5] Dexter Kozen. Results on the propositional mu-calculus. Theoret-

ical Computer Science, 27:333–354, 1983.
[6] Christof Löding and Philipp Rohde. Solving the Sabotage Game

is PSPACE-hard. In Proceedings of the 28th International Symposium
on Mathematical Foundations of Computer Science, MFCS ’03, volume
2474 of LNCS, pages 531–540. Springer, 2003.

[7] Christof Löding and Philipp Rohde. Solving the Sabotage Game
is PSPACE-hard. Technical report, Aachener Informatik Berichte,
Rwth Aachen, 2003.

[8] Dominik Klein, Frank G. Radmacher, and Wolfgang Thomas.
The Complexity of Reachability in Randomized Sabotage Games.
Proceedings of FSEN 2009, LNCS, 2009.

[9] Christos M. Papadimitriou. Computational complexity. Addison-
Wesley, MA, 1994.

[10] Dana Scott and J. W. de Bakker. A theory of programs. Unpub-
lished manuscript, IBM, Vienna, 1969.

[11] Johan van Benthem. An essay on sabotage and obstruction. In
Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H.
Siekmann on the Occasion of His 60th Birthday, pages 268–276, 2005.

A
The authors would like to thank Jakub Szymanik

and Johan van Benthem for their help and their useful
comments on previous versions.

Fernando R. Velázquez-Quesada is supported by Con-
sejo Nacional de Ciencia y Tecnologı́a (CONACyT),
México (scholarship # 167693).

MALLOW’009: Turin, Italy, September 7-10, 2009

172

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 1

On the Incentive Compatible Core of a Procurement
Network Formation Game with Incomplete

Information
Chandrashekar T S, Narahari Y

Abstract—In this paper we present a model of the multiple
unit, single item procurement network formation problem in
environments with incomplete information (MPNFI). For this we
first develop the structure of the procurement network formation
problem within Myerson’s framework for cooperative games
with incomplete information [1]. Using this framework we then
investigate the non-emptiness of the incentive compatible core,
an extension of the notion of the core for complete information
settings based on Myerson’s framework, and show that it is
indeed non-empty for the class of MPNFI games.

Index Terms—Cooperative Games, Incomplete Information,
Procurement Networks

I. INTRODUCTION

THE problem that we consider in this paper is the fol-
lowing: We have a buyer who is interested in buying

multiple units of a single item. He associates a certain value
for each unit of the item. The item goes through many stages
of value addition through a linear supply chain. For each stage
of value addition, there is at least one supplier. Each supplier
has his own cost of value addition in each of the stages that
he is present and also has a limited amount of capacity. The
buyer’s valuation and the suppliers’ costs are assumed to be
private information. The buyer and the suppliers can enter into
a negotiation to finalize an outcome that indicates the number
of units that would be produced, the suppliers who would
be engaged in the value addition process, and a division of
the surplus that accrues from the transaction. In a situation
where information is not privately held a division of surplus
could be done such that the allocations are in the core of
the induced cooperative game. In the incomplete information
situation however, this notion of the core needs to be extended
appropriately. In doing this there are three basic issues to be
considered as to how the agents’ information may be used.

1) First, in evaluating whether a coalition can make all
its members better off, we must be sure about when
the agents’ welfare should be evaluated. There are
three stages - ex-ante, interim and ex-post, when this
evaluation may be carried out. The appropriate stage to
evaluate the welfare of agents in the MPNFI problem
is the interim stage when each agent has learnt his own
private type information but not that of the other agents.

This work was carried out while the first author was a student at the Indian
Institute of Science. E-mail: chandrashekar.ts@gmail.com. Narahari Y is with
the Department of Computer Science and Automation at the Indian Institute
of Science, Bangalore, INDIA. E-mail: hari@csa.iisc.ernet.in

2) Secondly, in defining what a coalition can do, we assume
that the agents will use all the information that is
available to all its members in deciding upon a blocking
plan which leads to the definition of a fine core [2].

3) Finally, when we assume that agents share information,
we must specify whether such communication between
agents is verifiable or not. It is natural to see that the
private information (valuation and costs) of the agents
(buyer and suppliers) is not inherently verifiable and
hence incentive constraints need to be incorporated into
any analysis of the MPNFI problem.

To summarize, the solution concept that we focus upon for
the MPNFI problem is the interim, incentive compatible fine
core.

A. Interim Incentive Compatible Fine Core

The extension of the core to a cooperative game with incom-
plete information that we consider for the MPNFI problem is
a generalized version of the NTU game involving the method
of fictitious transfers of weighted utilities. With incomplete
information the role of weighted utility transfers is taken on by
virtual utility. Virtual utility is defined by a formula that takes
informational incentive constraints into account (see papers by
Myerson [3], [4], [5]).

B. Contributions of the paper

Our specific contributions in this paper are twofold and are
as follows:

• We believe that this is the first attempt to model the
procurement network formation problem as a cooperative
game within the context of an incomplete information
environment.

• We develop the structure of the game based on Myerson’s
approach [1] and focus on the incentive compatible fine
core as a relevant solution concept to be used for this
game. Our main result is to show that the incentive
compatible fine core of MPNFI game is non-empty.

II. THE MPNFI PROBLEM

For the scenario introduced in Section I, we would expect
the buyer and the suppliers to enter into negotiations to find
the best way of forming the procurement network. The notion
of best here includes (a) an efficiency criterion - selecting a
set of suppliers and a quantity to be procured that maximizes

MALLOW’009: Turin, Italy, September 7-10, 2009

173

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 2

the surplus and (b) an equity criterion - sharing the surplus
such that the procurement network that is formed remains
stable. Clearly the agents would like to negotiate a contract
that achieves these objectives. Such a contract would be a
state dependent contract. Our problem in this paper is to know
whether such a contract exists.

A. Formulation of the MPNFI problem
We let the feasible network for forming the multiple unit

single item procurement network be a directed graph G =
(V, E) with V as the set of vertices, two special nodes vo

(origin vertex) and vt (terminal vertex), and E ⊆ V × V as
the set of edges. With each of the edges e ∈ E we associate the
numbers c(e), l(e), and u(e). c(e) represents the cost, l(e) the
lower bound on the capacity of the edge, and u(e) the upper
bound on the capacity of the edge, respectively. Now, assume
that each of the edges is owned by an agent i ∈ N where N
is a finite set of agents N = {1, . . . , n, n + 1}. The agents
{1, 2, . . . , n} own edges in the network and agent (n+ 1) is
the buyer. That is, we let ψ : E → N such that ψ(e) = i
implies that agent i owns (possesses) edge e. We let I(j) and
O(j) represent the set of all incoming and outgoing edges at
vertex j ∈ V .

We let ES represent the set of edges owned by agents in S.
We also designate FS as the flow in the network between the
two special nodes vo and vt using only the edges ES that are
owned by agents in S. For any flow FS , we denote the set of
owners of the edges that facilitate the flow FS as ψ(FS). We
assume that if multiple units of the item are available to the
buyer by using the flow FS , then it costs c(FS) and the buyer is
willing to compensate the edge owners with a value bFS where
b is the value that the buyer attaches to a single unit of the
item. The surplus from such a transaction is bFS − c(FS). We
now follow the structure presented in [5] to model the MPNFI
scenario as a cooperative game with incomplete information.

1) Agents and their Resources: For simplicity of exposi-
tion, we assume here that each agent owns one edge in the
network. The analysis however can be extended to scenarios
where each agent owns multiple edges. We treat the edges and
the money that is owned by agents as resources that are to
be traded. Each agent i ∈ N has an initial resource vector
r0i ∈ ℜn+1

+ where r0i,j ∈ {0, 1}, ∀ j ∈ {1, 2, . . . , n} and
r0i,(n+1) ∈ ℜ+. This implies that when agent i owns the edge
j ∈ E then r0ij = 1 and is otherwise 0. Having assumed that
there is a one-to-one correspondence between the edges and
the agents, we have r0i,i = 1 and r0i,j = 0, ∀ j 6= i. In addition
the (n + 1)th entry in the endowment vector r0i indicates the
amount of money that agent i has.

2) Type Information of Agents: We now specify the private
information (costs and valuations) of the agents through the
notion of types as introduced in [6]. For any agent i ∈ N
we let Ti denote the set of possible types. For the MPNFI
problem we assume that the type refers to one of two pieces
of information. The type ti ∈ Ti for all edge owning agents
i ∈ N\{(n+ 1)} is a description of the cost that is incurred
when an edge is used for an unit amount of flow and for
buying agent (n + 1) it describes the valuation for a single
unit of the item.

With N = {1, 2, . . . , n, n + 1} as the finite set of agents,
we let T = TN = ×i∈NTi be the set of all type profiles of all
the agents in the game. An information state of the MPNFI
scenario is given by t ∈ T and also written as t = (t−i, ti)
where the notation −i denotes N\{i}. Similarly, (t−i, t̂i)
denotes the vector t where t−i = (t1, . . . , ti−1, ti+1, . . . , tn+1)
and the ith component ti is changed to t̂i ∈ Ti . Similarly,
T−i = ×j 6=iTj , and for any coalition S, a non-empty subset
of N , we let TS = ×i∈STi so that any tS ∈ TS denotes a
combination of types (ti)i∈S . We also let C denote the set of
all possible coalitions or non empty subsets of N , that is, C
= {S|S ⊆ N, S 6= ∅}.

Now, for each possible type ti ∈ Ti, we let qi(ti) denote
the probability that agent i is of type ti and we assume that
there is probability that the agent is of any one of the types in
Ti is positive. That is qi(ti) > 0, ∀ ti ∈ Ti. We assume that
the agents’ types are independent random variables and hence
we can write the following:

• q(tS) = ×i∈S qi(ti), ∀ S ⊆ N, ∀ tS ∈ TS .
• q(t−i) = ×j∈N−i qj(tj), ∀ i ∈ N, ∀ t ∈ T .
• q(t) = ×j∈N qj(tj), ∀ t ∈ T .

3) Outcome Sets: Now, for any subset S ∈ C, which
includes the agent (n+ 1), we define a set of market transac-
tions. Note that without the buying agent being a part of the
coalition, no transaction is possible. The market transaction
follows from a surplus maximizing flow computation using
the network flow model described earlier in the section.
This computation is carried out when the types ti ∈ Ti

are declared by the agents i ∈ S. We call this set of
market transactions as the set of possible outcomes XS(tS),
such that XS(tS) = {(ri)i∈S |ri ∈ ℜn+1

+ and
∑

i∈S rij ≤∑
i∈S r

0
ij, ∀ j ∈ {1, 2, . . . , n, n + 1}}, where ri is the

outcome vector of agent i after the transaction is carried out.
The outcome set specifies that the reallocation of resources and
money is such that there is no infusion of additional resources
into the system. We also define the set XS and the set X as the
sets that include the outcomes for all possible type declarations
tS ∈ TS and all possible coalitions S ∈ C respectively. So,
XS =

⋃
tS∈TS

XS(tS) and X =
⋃

S∈C XS .
The reallocation of resources, i.e., the edges and the money,

is carried out as follows: Given the set of edges owned by
the agents in S, the capacities on these edges, the edge costs
declared by them and the valuation declared by the buyer,
a surplus maximising network flow computation identifies
the set of edges and edge capacities whose ownership is
to be transferred to the buying agent. Following this, each
edge agent whose edge is transferred to the buying agent
is compensated according to the declared cost. The entire
surplus, defined as the difference between the buyer’s valuation
for the entire flow and the cost incurred by the edge agents in
maintaining this flow, that results from the transaction is then
given to either the buying agent or to one of the agents who
plays an active role in providing the surplus maximising flow.

4) Utility Functions: Now, for any outcome x ∈ X and
any t ∈ T , we let the utility for an agent i ∈ N be ui(x, t).
For any agent i and outcome x, the final outcome vector ri

reflects the edges that it currently owns and the money that it

MALLOW’009: Turin, Italy, September 7-10, 2009

174

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 3

has after the transfers have been carried out. That is ri,i can
be either 0 or 1 and ri,(n+1) ∈ ℜ.

So, the utility that an agent i = N\{(n+1)} receives from
outcome x when his type is ti is given by:

ui(x, t) = ri,(n+1) + (ri,i − r0i,i)ti. (1)

The payoff that the buying agent (n + 1) gets from an
outcome x, when xvt is the number of units of the item that
he gets, and his type is t(n+1), is given by:

u(n+1)(x, t) = xvtt(n+1) + r(n+1),(n+1) − r0(n+1),(n+1). (2)

5) Representation of the MPNFI Game: The MPNFI
scenario can now be described by the structure Γ =
(X, x∗, (Ti)i∈N , (ui)i∈N , (qi)i∈N).

Here, X refers to the set of all outcomes for all coalitions
S ∈ C that could be formed; x∗ is a default outcome that
results when the agents are unable to come to an agreement
over the solution. In the context of the MPNFI problem, the
default outcome is a null transaction whose utility for all types
of all agents is 0. Ti, ui, and qi are as defined earlier. This
structure Γ of the game is assumed to be known to all agents.
In addition we assume that each agent knows his own type
before the start of negotiations. We now need to develop a
solution to this cooperative game.

III. STATE CONTINGENT CONTRACTS

We assume here that the state contingent contract will be
implemented by an external trustworthy mediator who can
make side-payments to the agents. A state contingent contract
is now defined as follows.

Definition 3.1: A state contingent contract is represented by
a pair of functions (µ : T → ∆(X), χ : T → ℜ|N|) where
µ(x|t) represents the probability of choosing the outcome
x ∈ X when the agents’ types are t and χ(t) denotes the
net monetary side-payments that the mediator makes to agent
i when the agents’ types are t.

If a mediator proposes to implement such a state contingent
contract (µ, χ), then the agents must evaluate how they would
fare if they agreed to its implementation. This evaluation
is carried out by the agents at the interim stage and hence
the correct measure of evaluation is conditionally expected
utilities, conditioned on their private information.

A. Conditionally Expected Utilities

The conditionally expected utility of agent i if he were
to agree to participate in the state contingent contract (µ, χ)
proposed by a trustworthy mediator is given by:

Ui(µ, χ|ti) =
∑

t−i∈T−i

q(t−i)[χi(t) +
∑
x∈X

µ(x|t)ui(x, t)] (3)

Now, if agent i is of type ti but pretends to be of type t̂i
when he reports his type to the mediator who is implementing
the state contingent contract (µ, χ), then his expected utility
is given by:

Ui(µ,χ, t̂i|ti) =
∑

t−i∈T−i

q(t−i)[χi(t−i, t̂i) +
∑
x∈X

µ(x|t−i, t̂i)ui(x, t)]

(4)

B. Incentive Feasible Contracts

If a trustworthy mediator were to implement the state
contingent contract (µ, χ) by asking all the agents to reveal
their types confidentially to him, then each of the agents would
find it in their best interest to report their types honestly if
and only if the contract (µ, χ) was incentive compatible. That
is, conditionally expected utilities of the agents satisfy the
following inequality:

Ui(µ, χ|ti) ≥ Ui(µ, χ, t̂i|ti), ∀ ti ∈ Ti, ∀ t̂i ∈ Ti, ∀ i ∈ N
(5)

Since we have assumed that the mediator makes side-
payments to the agents, the expected utility for the mediator
from implementing the incentive compatible contract (µ, χ) is
−∑

t∈T q(t)
∑

i∈N χi(t). So, if we want a state contingent
contract that is implementable, we should then look for one
that is (a) incentive compatible and (b) gives the mediator non-
negative utility so that he does not lose from implementing the
mechanism.

The utility that the mediator gets from implement-
ing the state contingent contract (µ, χ) is equal to
−∑

t∈T q(t)
∑

i∈N χi(t). So we want the following inequality
to be satisfied. ∑

t∈T

q(t)
∑
i∈N

χi(t) ≤ 0 (6)

Formally, we call such state contingent contracts as incen-
tive feasible contracts and we define these as follows.

Definition 3.2: We say that a state contingent contract is
incentive feasible if and only if it is incentive compatible and
yields a non-negative expected payoff to the mediator. That is,
it satisfies the inequalities 5 and 6.

In general, we know that there are a number of such
incentive feasible state contingent contracts. The mediator’s
problem is to pick one such state contingent contract to im-
plement. It would therefore be useful if he could be guided by
the same criteria of efficiency and equity, but with appropriate
extensions, in evaluating the incentive feasible state contingent
contract to implement.

IV. THE EFFICIENCY PRINCIPLE

We have seen that in cooperative games with incomplete
information, the appropriate object over which negotiations
are carried out is the interim incentive compatible state con-
tingent contract. And since conditionally expected utility is the
appropriate measure of welfare evaluation of the agents, the
mediator would be well placed in selecting a state contingent
contract that maximizes the sum of conditionally expected
utilities of the agents in the MPNFI game. We call such a
contract an incentive-efficient contract. Formally, it is defined
as follows:

MALLOW’009: Turin, Italy, September 7-10, 2009

175

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 4

Definition 4.1: A state contingent contract (µ, χ) is weakly
incentive-efficient if and only if it is incentive feasible and no
other feasible state contingent contract yields higher expected
utilities for all types of all agents.

So, we are interested in choosing a state contingent contract
(µ, χ) that maximizes the conditionally expected utilities of all
agents from among all contracts that obey inequalities (5) and
(6). It is easy to see that the incentive constraints specified by
(5) are convex. So, from convexity of the incentive constraints
and linear programming theory, we can say that a feasible state
contingent contract (µ̂, χ̂) is incentive efficient if and only
if there exists some vector λ = (λi(ti))ti∈Ti,i∈N such that
λi(ti) ≥ 0, ∀ ti ∈ Ti, ∀ i ∈ N with at least one strict inequal-
ity and (µ̂, χ̂) maximizes

∑
i∈N

∑
ti∈Ti

λi(ti)Ui(µ, χ|ti) over
all feasible state contingent contracts (µ, χ) (See [5]). This is
a linear programming problem in (µ, χ).

Maximize
∑

i∈N

∑
ti∈Ti

λi(ti)Ui(µ, χ|ti)
s.t.

Ui(µ, χ|ti) ≥ Ui(µ, χ, t̂i|ti), ∀ ti, t̂i ∈ Ti, ∀ i ∈ N∑
t∈T

q(t)
∑
i∈N

χi(t) ≤ 0

λi(ti) ≥ 0, ∀ ti ∈ Ti, ∀ i ∈ N,
(7)

For this linear program we can construct a Lagrangean
function. We let α(t̂i|ti) be the Lagrange multiplier for the
constraint that says that type ti should not hope to gain
by reporting type t̂i to the state contingent contract being
implemented by the mediator. With this we can write the
Lagrangean of the linear programming problem as follows:

L(µ, χ, λ, α) =
∑
i∈N

∑
ti∈Ti

Ui(µ, χ|ti)

+
∑

t̂i∈Ti

αi(t̂i|ti)(Ui(µ, χ|ti)− Ui(µ, χ, t̂i|ti)) (8)

A. The Notion of Virtual Utility

We now introduce an important notion that was first devel-
oped by Myerson in [5]. This is the notion of virtual utility
which is defined by a formula that takes incentive constraints
into account. For any outcome x ∈ X, type profile t ∈ T ,
and any given vectors λ and α we define the virtual utility
vi(x, t, λ, α) for agent i as follows:

vi(x, t, λ, α) =
1

qi(ti)

(λi(ti) +
∑

t̂i∈Ti

αi(t̂i|ti))ui(x, t)

−
∑

t̂i∈Ti

αi(ti|t̂i)ui(x, (t−i, t̂i)

 (9)

Notice in equation (9) above that the Lagrange multiplier
αi(t̂i|ti) is the dual variable corresponding to the incentive
constraint which says an agent i of type ti should not gain

by misrepresenting his type as t̂i. From linear programming
theory, we know that this dual variable αi(t̂i|ti) will be non-
zero when the corresponding constraint is tight. In the context
of the MPNFI problem, if the constraint corresponding to the
dual variable αi(t̂i|ti) is non-zero, then we can infer that agent
i is tempted to misrepresent his type as t̂i when his actual
type is ti because he gets the same expected utility. From an
inspection of equation (9), we can conclude that the virtual
utility of agent i for an outcome x ∈ X when the type profile
is t magnifies the difference between the utilities of his true
type ti and the type t̂i that would tempt him to misrepresent.

Now, we can rewrite the Lagrangean in equation (8) by
using equations (3), (4) and (9) as follows:

L(µ, χ, λ, α) =
∑
t∈T

q(t)
∑
x∈X

µ(x|t)
∑
i∈N

vi(x, t, λ, α)

+
1

qi(ti)

∑
t∈T

q(t)
∑
i∈N

χi(t)

 ∑
t̂i∈Ti

αi(t̂i|ti)

−
∑

t̂i∈Ti

αi(ti|t̂i) + λi(ti)

 (10)

So, the linear programming problem given by equation (7)
can be rewritten in terms of virtual utilities as follows:

Max
∑
t∈T

q(t)
∑
x∈X

µ(x|t)
∑
i∈N

vi(x, t, λ, α) +

1
qi(ti)

∑
t∈T

q(t)
∑
i∈N

χi(t)

 ∑
t̂i∈Ti

αi(t̂i|ti) +

−
∑

t̂i∈Ti

αi(ti|t̂i) + λi(ti)

 (11)

s.t. ∑
t∈T

q(t)
∑
i∈N

χi(t) ≤ 0 (12)

λi(ti) ≥ 0, ∀ ti ∈ Ti, ∀ i ∈ N, with at least one strict inequality
(13)

B. Incentive Efficient Contracts

From this reformulation of the optimization problem, it is
easy to note that the mediator must pick a state contingent
contract that maximizes the sum of the virtual utilities of all
types of all agents. Now, the Lagrangean in equation (10) can
be maximized only if the coefficients of χi(t) are constant
over all i and t. Such a constant can be set to 1 without loss
of generality. A standard Lagrangean analysis now allows us
to record the following proposition:

Proposition 4.2: A feasible state contingent contract (µ, χ)
is incentive efficient if and only if there exist vectors λ and α
such that:

MALLOW’009: Turin, Italy, September 7-10, 2009

176

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 5

λi(ti) ≥ 0 and αi(t̂i|ti) ≥ 0, ∀ ti ∈ Ti, ∀ t̂i ∈ Ti, ∀ i ∈ N.
(14)

λi(ti) +
∑

t̂i∈Ti

αi(t̂i|ti)−
∑

t̂i∈Ti

αi(ti|t̂i) = qi(ti). (15)

αi(t̂i|ti)
[
Ui(µ, χ|ti)− Ui(µ, χ, t̂i|ti)

]
= 0, ∀ ti, t̂i ∈ Ti, ∀ i ∈ N.

(16)

µ(x|t) > 0 =⇒ x ∈ argmaxy∈X

∑
i∈N

vi(y, t, λ,α),∀ t ∈ T,∀ x ∈ X.

(17)
Equation (14) comes from (a) our choice of the λ vector

that is chosen to maximize the expected utilities and (b)
the α vector corresponds to Lagrangean multipliers or dual
variables corresponding to the incentive constraints, which by
definition are non-negative. Equation (15) comes from setting
the coefficients of χi(t) to unity. Equation (16) is nothing
but the complementary slackness conditions corresponding to
the incentive constraints of the original linear programming
problem. Finally, equation (17) comes from the fact that the
mediator is maximizing the sum of the virtual utilities of all
the agents when he chooses the state contingent contract.

V. THE EQUITY PRINCIPLE

In the theory of the core for games with complete informa-
tion, we are interested in establishing an allocation of surplus
that inhibits agents from deviating and joining a coalition that
can offer an alternative allocation of surplus which blocks the
former. That is, we compare alternative contracts (allocations
of surplus) with an established one. In extending this idea to
the incomplete information case, we should think in terms of
an established mediator who implements a state contingent
contract that inhibits agents from deviating to cooperate with
another blocking mediator who has a blocking state contingent
contract to offer.

In addition, in the complete information case, we allow
agents to compare an alternative contract with an established
contract with the assumption that any agent who rejects the
alternative will still get his allocation as specified by the
established contract. For such an assumption to be workable,
we then require that if any one agent rejects the alternative
then all agents must continue to adhere to the established
contract. That is, there can be no blocking without unanimity
among all agents that are invited to block. In the incomplete
information case, we must recognize the fact that some agents
may be willing to block when they are of a certain type
and not otherwise. So, an agent who agreed to block but
was returned to the original contract would have now learnt
new information which he could possibly use profitably in
the established contract. So, to maintain the assumption that
agents allocations as specified in the established contract are
guaranteed, we will have to think about the blocking question
being raised after the agents have sent in their type information
to the established mediator, but before they are committed to

the state contingent contract that is to be implemented. This
means that we need to formalize the blocking procedure and
the blocking state contingent contacts.

A. Blocking Coalitions and Blocking State Contingent Con-
tracts

The blocking procedure that we follow includes a blocking
mediator. We assume that the blocking mediator may invite
different coalitions according to some known randomized plan.
The plan includes a specification of the probability of any
coalition being chosen to implement a specific outcome that
is feasible for that coalition. The outcome should of course
depend on the information available to the coalition since it
is unreasonable to allow blocking by a coalition to depend on
information of agents outside the coalition.

So, we assume that a blocking mediator can ask any random
subset S about their types and, based on their responses, must
either invite all of S to join the blocking coalition to implement
a jointly feasible outcome xS ∈ XS or invite no coalition at
all.

Such a blocking procedure may be characterized as follows:
For any outcome xS ∈ XS and any type profile tS ∈ TS of the
agents in S, we let νS(xS |tS) represent the probability that
coalition S would be invited to block and implement the jointly
feasible outcome xS ∈ XS if the agents in S report a type
profile tS . Also, since we allowed the established mediator
to make side-payments, we must also allow the blocking
mediator to make side-payments. We do this by allowing the
blocking mediator to specify the expected side-payment for
each possible type of each agent. So, for each type ti of each
agent i, we let ξi(ti) be the blocking mediator’s expected side-
payment to agent i if i would be willing to block and report
type ti to the blocking mediator. With this we can define a
blocking state contingent contract (ν, ξ) as follows:

Definition 5.1: A blocking state contingent contract by a
blocking mediator is a pair of vectors (ν, ξ) such that:

1) ν = (νS)S⊆N ,
2) νS(xS |tS) ≥ 0, ∀ x ∈ XS , ∀ tS ∈ TS ,
3)

∑
S⊆N

∑
tS∈TS

∑
xS∈XS

νS(xS |tS) ≤ 1, and
4) ξi(ti) ∈ ℜ, ∀ ti ∈ Ti, ∀ i ∈ N .

In definition (5.1) above, the blocking state contingent
contract is a pair of vectors where the probability of any
coalition S being picked to implement an outcome xS ∈ XS

when its type profile is tS is always non-negative; and the
probability of any such coalition being chosen by the blocking
mediator is never greater than unity. With this definition of a
blocking state contingent contract, we can now specify the
blocking procedure.

1) The Blocking Procedure: We can describe the blocking
procedure with this series of steps:

• First, according to the probability distribution specified by
ν = (νS)S⊆N , the blocking mediator chooses a random
coalition S ⊆ N , a random profile of types tS ∈ TS and
a random outcome xS ∈ XS .

• The mediator then asks each of the agents in S whether
he is willing to block and, if so, what his type is.

MALLOW’009: Turin, Italy, September 7-10, 2009

177

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 6

• If the agents in S all agree to block and their type profiles
coincide exactly with tS then the blocking mediator
forms the coalition S and implements the jointly feasible
outcome xS .

• But if anyone of the agents does not agree to block or
if the type profile does not match with tS then he asks
all the agents in S to continue with the state contingent
contract from the established mediator.

• Now, when the blocking coalition does form, the planned
monetary side-payments from the blocking mediator to
the agents could depend on the blocking coalition S,
the type profile tS , and the jointly feasible outcome xS

that they implement. We let this be described by any
function ξ̂(xS , tS) such that:∑

S∋{i}
∑

tS\{i}∈TS\{i}

∑
xS∈XS

νS(xS |tS)ξ̂i(xS , tS) =
ξi(ti)

Now that we have formalized the notions of a blocking
state contingent contract and the blocking procedure, to opera-
tionalize the idea of equity in selecting an implementable state
contingent contract we would need to compare the utilities that
such blocking state contingent contracts provide to agents in
a blocking vis-a-vis the utilities that they derive by continuing
to remain in the state contingent contract that an established
mediator seeks to implement. We do this next.

2) Tenable Blocking State Contingent Contracts: For the
purpose of comparing the welfare that agents get by either
going along with a blocking mediator or staying with an
established mediator, we let ωi(t) denote the utility allocation
from a state contingent contract of the established mediator
that an agent i would lose when the type profile was t and he
decided to join a blocking mediator. Let ω = (ωi(t))i∈N,t∈T

be a vector of such utility allocations. Given this vector of
utility allocations, any blocking state contingent contract that
a blocking mediator proposes must be such that it gives the
agents more than what they can get in the established plan. We
call such a state contingent contract a tenable state contingent
contract and define it formally below:

Definition 5.2: A blocking state contingent contract (ν, ξ) is
tenable against an established state contingent contract (µ, χ)
which gives utility allocations ω = (ωi(t))t∈T,i∈N if and only
if it satisfies the conditions in equations 18 to 20:

Equation (18) states the fact that agents in a blocking
coalition must not lose when they deviate from the established
mediator; equation (19) is simply the incentive compatibility
condition that says that agents must find it beneficial to report
their true types to the blocking mediator when they have
deviated from the established mediator; finally equation (20)
simply says that the blocking mediator must get a non-negative
payoff from forming a blocking coalition and implementing
the blocking contract.

With this definition of a blocking state contingent contract,
we can now sharpen our focus on isolating those contracts that
are both efficient and equitable that an established mediator
can hope to implement. Such contracts can be said to be
inhibitive since they inhibit agents from cooperating with
a blocking mediator and forming a blocking coalition that
implements a blocking state contingent contract. We define

such contracts next.

B. Inhibitive State Contingent Contracts and Allocations

Recall from our discussion on the efficiency criterion in
selecting a state contingent contract by an established medi-
ator, we were able to define an optimization problem whose
objective was to maximize the sum of virtual utilities of all
the agents. That is, in selecting a state contingent contract to
implement, the mediator would have to assume that the agents
were behaving in a manner to maximize their virtual utilities
and not their actual utilities. So, in order to operationalize the
equity criteria in the selection of a contract, we would have
to carry out the comparisons between contracts offered by an
established mediator and a blocking mediator in virtual utility
terms.

Recall now our utility allocation vector ω = (ωi(t))i∈N,t∈T .
Such a utility allocation vector is said to be inhibitive if and
only if there does not exist any blocking state contingent
contract (ν, ψ) that is tenable against it. Since the Lagrangean
function (11) that we are maximizing is specified in terms of
virtual utilities, we would need to make these comparisons
between the utility allocation vector ω and those from a
blocking state contingent contract in virtual utility terms.

1) A Virtual Utility Transformation of Inhibitive Alloca-
tions: We let Vi(ω, t, λ, α) be the transformation of agent i’s
utility allocations in ω into virtual utility in state t, according
to the equation (9) with parameters λ and α. We therefore
have the following relation:

Vi(ω, t, λ, α) =
1

qi(ti)

(λi(ti) +
∑

t̂i∈Ti

αi(t̂i|ti))ωi(t)

− 1

qi(ti)

 ∑
t̂i∈Ti

αi(ti|t̂i)ωi(t−i, t̂i)

 (21)

With this relation in place, we can now redefine an inhibitive
allocation vector in terms of its virtual utilities. That is, we
say that the utility allocation vector ω coming from a state
contingent contract (µ, χ) is inhibitive if and only if there
exist parameters λ and α such that, for any coalition S, the
sum of virtual utilities that the members of S can expect
with any outcome that is feasible for them, given all their
information, is not more than the virtual-utility transformation
of what they expect from the inhibitive utility allocation vector
ω. We record this as a theorem below.

theorem 5.3: An allocation vector ω from a state contingent
contract (µ, χ) offered for implementation by an established
mediator is inhibitive if and only if there exist vectors λ and
α such that:

1) λi(ti) +
∑

t̂i∈Ti
αi(t̂i|ti) − ∑

t̂i∈Ti
αi(ti|t̂i) =

qi(ti), ∀ ti ∈ Ti, ∀ i ∈ N ,
2)

∑
tN\S∈TN\S

q(tN\S)
∑

i∈S Vi(ω, t, λ, α) ≥∑
tN\S∈TN\S

q(tN\S)
∑

i∈S vi(xS , t, λ, α), ∀ S ⊆
N, ∀ xS ∈ XS , ∀ tS ∈ TS ,

3) λi(ti) ≥ 0 and αi(t̂i|ti) ≥ 0, ∀ ti ∈ Ti, ∀ t̂i ∈ Ti, ∀ i ∈
N .

MALLOW’009: Turin, Italy, September 7-10, 2009

178

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 7

ξi(ti) +
∑

t−i∈T−i

q(t−i)
∑

S⊇{i}

∑
xs∈XS

νS(xS |tS)(ui(xS , t)− ωi(t)) ≥ 0, ∀ ti ∈ Ti, ∀ i ∈ N. (18)

ξi(ti) +
∑

t−i∈T−i

q(t−i)
∑

S⊇{i}

∑
xs∈XS

νS(xS |tS)(ui(xS , t)− ωi(t))

≥ ξi(t̂i) +
∑

t−i∈T−i

q(t−i)
∑

S⊇{i}

∑
xs∈XS

νS(xS |tS−i, t̂i)(ui(xS , t)− ωi(t)), ∀ ti ∈ Ti, ∀ t̂i ∈ Ti, ∀ i ∈ N. (19)

−
∑
i∈N

∑
ti∈Ti

qi(ti)ξi(ti) ≥ 0. (20)

Proof: The proof for this theorem is along the lines of the
proof in Theorem 1 in [1] and hence is omitted here.

The theorem basically says that the utility allocation vector
is inhibitive if and only if there exist parameters λ and α such
that, for any coalition S, the sum of all virtual utilities that
the members of S can expect is not more than the sum of the
virtual utility transformations of what they can expect from
the ω given all their type information.

With this understanding of inhibitive allocations, we are
ready to define the notion of the core as extended to coop-
erative games with incomplete information.

VI. THE INTERIM INCENTIVE COMPATIBLE FINE CORE OF
THE MPNFI GAME

Recall from our preliminary discussion on the core for the
MPNFI game in Section I that we assumed the mediator can
make severance payments to agents who deviate from the
established mediator to a blocking mediator. This assumption
at first glance may seem surprising because such severance
payments in the complete information case can never be
beneficial. But in the incomplete information case they are
serve an essential technical purpose in deriving the proof of
existence of the core [1].

A. Balancedness and Balanced Games

For now, we let ǫi(t) denote the severance payment that
agent i would get from the established mediator if he joined
a blocking coalition after the type profile t was reported to
the established mediator. We can now define the notion of an
utility allocation vector that is achievable by a state contingent
contract (µ, χ).

Definition 6.1: A utility allocation vector ω =
(ωi(t))t∈T,i∈N is achievable by a state contingent contract
(µ, χ) if and only if (µ, χ) is feasible (as defined in Definition
3.2) and there exists a promised vector of severance payments
ǫ = (ǫi(t))t∈T,i∈N such that:

1) ǫi(t) ≥ 0, and
2) ωi(t) = χi(t) +

∑
x∈X µ(x|t)ui(x, t) − ǫi(t), ∀ t ∈

T, ∀ i ∈ N .
It is easy to see that ωi(t) is the residual stake that an

agent i has in the established plan which he stands to lose if
he deviates to blocking coalition in state t. With this, we are
ready to define the interim incentive compatible fine core of
the MPNFI game and then examine its non-emptiness.

1) The Incentive Compatible Fine Core:
Definition 6.2: A utility allocation vector ω is said to be

in the incentive compatible fine core if and only if ω is
inhibitive and achievable by some feasible state contingent
contract (µ, χ).

In general, we have seen in the case of complete information
games that (a) the non-emptiness of the core is not guaranteed
and (b) to show non-emptiness of the core a balancedness
condition should be satisfied. Our main result is to show that
the incentive compatible fine core of the MPNFI game is non-
empty. To show this we use the extension of the balancedness
condition to incomplete information settings as introduced in
[1].

2) Balancedness and Balancing Weights:
Definition 6.3: We let a vector of weights θ =

(θS,xS)xS∈XS ,S⊆N be a balanced collection of weights if and
only if the following conditions are satisfied:

1) θS,xS ≥ 0 ∀ xS ∈ XS , ∀ S ⊆ N
2)

∑
S⊇{i}

∑
xS∈XS

θS,xS = 1, ∀ i ∈ N .
3) Balanced Games:
Definition 6.4: We say that a game is balanced if for

any balanced collection of weights θ = (θS,xS)xS∈XS ,S⊆N ,
there is some randomized strategy σ ∈ ∆(X) such that the
following condition is satisfied.

∑
x∈X

σ(x)ui(x, t) =
∑

S⊇{i}

∑
xS∈XS

θS,xSui(xS , t),

∀ t ∈ T, ∀ i ∈ N. (22)

Myerson [1] has shown that if the game is balanced then the
core is non-empty. We record this as a theorem below which
we use to show the non-emptiness of the incentive compatible
fine core of the MPNFI game.

theorem 6.5: If a cooperative game with incomplete infor-
mation is balanced then the incentive compatible fine core is
non-empty.

B. Non-Emptiness of the Incentive Compatible Fine Core of
the MPNFI Game

theorem 6.6: The incentive compatible fine core of the
MPNFI game is non-empty.
Proof: To show that this theorem holds, we simply need to
show that the MPNFI game is balanced. That is, we need

MALLOW’009: Turin, Italy, September 7-10, 2009

179

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 8

to show that there is some randomization over the set of
outcomes (σ ∈ ∆(X)) such that the condition given by
equation (23) is satisfied for any balanced collection of weights
θ = (θS,xS)xS∈XS ,S⊆N , for the class of MPNFI games.

∑
x∈X

σ(x)ui(x, t) =
∑

S⊇{i}

∑
xS∈XS

θS,xSui(xS , t),

∀ t ∈ T, ∀ i ∈ N (23)

To show this we first consider two special cases of the
balanced collection of weights θ = (θS,xS)xS∈XS ,S⊆N .

Case 1: Consider the collection of singleton subsets of N .
With such a collection of subsets of N , it is easy to see
that the only outcome possible for each subset is the no-trade
outcome and we know that the utility that an agent gets from
the no-trade outcome is zero. So, for any agent i ∈ N and
for any singleton coalition S = {i}, the set of outcomes is a
singleton ‖XS‖ = 1 and the utility of this outcome xS ∈ XS

is ui(xS , t) = 0, ∀ t ∈ T . Such a collection of subsets can
be a balanced collection if we associate the weights θ{i} = 1.
Notice that we have dropped the subscript associated with the
outcome since the the set of outcomes is a singleton. With
this set of balancing weights and utilities associated with the
outcomes, it is easy to see that the LHS of equation (23) is
always zero.
Now, looking at the RHS of equation (23), it is clear that we
can always pick a randomization σ over the set of outcomes
X such that the probability associated with the outcome which
gives no agent any of the surplus is always 1. Such an outcome
can be trivially constructed by giving all the surplus to the
mediator. So, the RHS of (23) is also zero and we have a
randomization over the set of outcomes such that the condition
in equation (23) is satisfied.

Case 2: We now consider a balancing vector θ such that
θ
N,x̂

= 1 for some x̂ ∈ X and θS,xS = 0 for all other
(S, xS) 6= (N, x̂).

This can be easily proved and hence for reasons of con-
sevring space is omitted.

The General Case: We now consider the case of an arbitrarily
balanced collection, say
C = {S1,x11, S1,x12 , . . . , S1,x1k, S2,x21 , . . . , Sj,xj1 , . . . , Sl,x1m}
where an element Sj,xj1 of the set C refers to the fact that
coalition Sj ⊆ N forms and implements the outcome
xj1 ∈ Xj . Given the above balanced collection C, from the
definition of balancedness, we have the following relations.

θS,xS ≥ 0, ∀ xS ∈ XS , ∀ S ∈ C (24)

∑
S∋{i};S∈C

∑
xS∈XS

θS,xS = 1, ∀ i ∈ N. (25)

For this balanced collection, consider a partition of the set
C into two such that one of them includes all the elements
Sj,xji where the buying agent (n+1) ∈ S and another where
the buying agent is not included. We denote these sets as

C(n+1) and C−(n+1) respectively. Now consider the RHS of
the balancedness condition given in equation 23:

RHS =
∑

S⊇{i}

∑
xS∈XS

θS,xSui(xS , t), ∀ t ∈ T, ∀ i ∈ N (26)

Equation (26) can be rewritten by taking the summation
over all coalitions in Sj,xji ∈ C(n+1) and Sj,xji ∈ C−(n+1).

RHS =
∑

S∈C(n+1) ,S⊇{i}

∑
xS∈XS

θS,xSui(xS , t) +

∑
S∈C−(n+1) ,S⊇{i}

∑
xS∈XS

θS,xSui(xS , t),

∀ t ∈ T, ∀ i ∈ N (27)

From the structure of the MPNFI problem, it is clear that
the only outcome possible for any coalition S that does not
contain the buying agent is the no-trade outcome. The utility
of the no-trade outcome is zero for all agents in a coalition S
that does not contain the buying agent (n+1). This means that
in equation (27) above, we have ui(xS , t) = 0, ∀ i ∈ S, S ∈
C−(n+1), ∀ t ∈ T . So, equation (27) can be written as

RHS =
∑

S∈C(n+1)

∑
S⊇{i}

∑
xS∈XS

θS,xSui(xS , t), ∀ t ∈ T, ∀ i ∈ N

(28)
Now, from the condition of the balanced collection of sets,

we have:

θS,xS ≥ 0, ∀ S ∈ C(n+1) (29)

∑
S∈C(n+1)

∑
xS∈XS

θS,xS = 1 (30)

Equation (29) follows from equation (24). Equation (30)
follows from the fact that the C(n+1) contains all those sets
which include the buying agent (n + 1) and sum of the
weights associated with these sets and their outcomes must
sum to unity given the fact that we are considering a balanced
collection of weights.

This immediately implies the following:

∑
S∈C(n+1) ;S∋i

∑
xS∈XS

θS,xS = 1, if i = (n+ 1) (31)

∑
S∈C(n+1) ;S∋i

∑
xS∈XS

θS,xS ≤ 1, if i 6= (n+ 1) (32)

So, the vector of balancing weights (θS,xS)xS∈XS ,S∈C(n+1)

is akin to a probability distribution over the set of all pos-
sible outcomes (XS)S∈C(n+1) . Since any outcome that can
be achieved by a coalition S ⊂ N where S ∋ {(n + 1)}
can also be achieved by the grand coalition N , we can
construct a randomization σ over the set of outcomes X such
that the randomization simply assigns the same weight as
the corresponding balancing weight to a particular outcome
(S, xS).

MALLOW’009: Turin, Italy, September 7-10, 2009

180

FORMAL APPROACHES TO MULTI-AGENT SYSTEMS, 2009 9

With this, it is clear that given an arbitrary set of balancing
weights, a randomization over the set of outcomes X is always
possible such that the condition in Equation (23) always holds.
This proves that the MPNFI game is balanced. And from
Theorem 6.5 we can infer that the MPNFI game has a non-
empty incentive compatible fine core.

VII. DISCUSSION AND CONCLUSION

In studying the procurement network formation problem
when informational asymmetries exist, we have borrowed
the conceptual apparatus from the stream of literature that
extends the core to incomplete information settings [7], [8],
[9], [10], [11]. Our result on the non-emptiness of the interim
incentive compatible fine core of the multiple unit, single item
procurement network formation problem shows clearly that
a mediator, possibly a web based market maker can always
come up with a mechanism to form the procurement network.
The mechanism here is simply an implementation of the state
contingent contract. However, before we can operationalize
this there are several open issues that need to be addressed.

1) Our result on the non-emptiness of the incentive com-
patible fine core is a non-constructive existence result.
We still need to develop an algorithmic procedure to
identify a state contingent contract that is in the core of
the game.

2) The interim incentive compatible core is an axiomatic
exogenously imposed solution concept. If agents were
to engage in endogenous non-cooperative play to agree
upon a state contingent contract, then designing an
extensive form game to reconcile the endogenous and
exogenous viewpoints is an interesting question. Such
games have been designed for the complete information
setting, but we are not aware of any literature in the
incomplete information context.

REFERENCES

[1] R.B. Myerson, “Virtual utility and the core for games with incomplete
information”, Tech. Rep., Department of Economics, University of
Chicago, Chicago, IL, 2005.

[2] R. Wilson, “Information, efficiency and the core of an economy”,
Econometrica, vol. 46, no. 4, pp. 807–816, July 1978.

[3] R.B. Myerson and M.A. Satterthwaite, “Efficient mechanisms for
bilateral trading”, Journal of Economic Theory, vol. 28, pp. 265–283,
1983.

[4] R.B. Myerson, “Two-person bargaining problems with incomplete
information”, Econometrica, vol. 52, pp. 461–487, 1984.

[5] R.B. Myerson, “Cooperative games with incomplete information”,
International Journal of Game Theory, vol. 13, pp. 69–96, 1984.

[6] J.C Harsanyi, “Games with incomplete information played by Bayesian
players”, Management Science, vol. 14, no. 7, pp. 486–502, March 1968.

[7] A.M. Kwasnica, “Bayesian implementable efficient and core alloca-
tions”, 2000, Pennsylvania State University. Working Paper.

[8] F. Forges, E. Minelli, and R. Vohra, “Incentives and the core of an
exchange economy: A survey”, Journal of Mathematical Economics,
vol. 38, pp. 1–41, 2002.

[9] D. Lee and O. Volij, “The core of economies with asymmetric infor-
mation: An axiomatic approach”, Journal of Mathematical Economics,
vol. 38, pp. 43–63, 2002.

[10] T. Ichiishi and A. Yamazaki, “Interim core concepts for a Bayesian pure
exchange economy”, Journal of Mathematical Economics, vol. 40, pp.
347–370, 2004.

[11] G. de Clippel, “Values for cooperative games with incomplete informa-
tion: An eloquent example”, Games and Economic Behavior, vol. 53,
pp. 73–82, 2005.

MALLOW’009: Turin, Italy, September 7-10, 2009

181

Tableau-based decision procedure for the full coalitional multiagent
temporal-epistemic logic of branching time

Valentin Goranko Dmitry Shkatov

Abstract

We develop a sound and complete tableau-based deci-
sion procedure for the full coalitional multiagent temporal-
epistemic logic of branching timeCMATEL(CD+BT) that
extends logicCTL with epistemic operators for common
and distributed knowledge for all coalitions of agents re-
ferred to in the language. The procedure runs in exponen-
tial time, which matches the lower bound established by
Halpern and Vardi for a fragment of our logic, thus pro-
viding a complexity-optimal decision procedure and a com-
plete deductive system for our logic.

1 Introduction

Reasoning about knowledge and time is crucial for de-
signing, and verifying properties of, distributed and mul-
tiagent systems. A number oftemporal-epistemic logics
were proposed as logical frameworks for modeling of, and
reasoning about, these aspects of distributed systems in
the 1980’s. This research was summarized in the com-
prehensive study by Halpern and Vardi [7]. In that study,
the authors considered several essential characteristicsof
temporal-epistemic logics, namely:one vs. several agents,
synchrony vs. asynchrony, (no) learning, (no) forgetting,
linear vs. branching time, and the (non)existence of a
unique initial state. Based on these, they identify and ana-
lyze 96 temporal-epistemic logics and obtain lower bounds
for the complexity of the satisfiability problem in all of
them. It turns out that most of the systems with more than
one agents who do not learn or do not forget are unde-
cidable, oftenΠ1

1-hard (with common knowledge), or de-
cidable but with non-elementary time lower bound (with-
out common knowledge). For most of the remaining log-
ics, the lower bounds established in [7] for the multiagent
case range from PSPACE (synchronous systems without
common knowledge), through EXPTIME (with common
knowledge), to EXPSPACE (synchronous systems with no
learning and unique initial state).

Despite the conceptual importance and wide range of po-

tential applications of temporal-epistemic logics, to thebest
of our knowledge, no efficient decision procedures for log-
ics studied in [7] had been developed until quite recently,
even for the systems with a relatively low known lower
bounds. The only exception is [11], where a top-down
tableau-style decision procedure for the logicATEL , which
subsumes the basic branching-time logic considered in [7]
and this paper, was presented. In our view (to be explained
further), however, [11] should be seen as a contribution to
the complexity-theoretic analysis of the temporal-epistemic
logics rather than to the development of efficient decision
procedures for them.

In the recent precursor [5] to the present paper, we
set out to fill in the above-mentioned gap by develop-
ing a practically efficient (within the theoretical complex-
ity bounds) tableau-based decision procedure for the coali-
tional multiagent temporal-epistemic logic of linear time
CMATEL(CD+LT) (for both the synchronous and asyn-
chronous cases), building both on Wolper’s incremental
tableaux forLTL [13] and on our earlier work on tableaux
for the full coalitional multiagent (purely) epistemic logic
CMAEL(CD) [6].

In the present paper, we report on the second, and fi-
nal, part of the project undertaken with the publication
of [5]; namely, we present a sound, complete, and termi-
nating incremental tableau for theCoalitional Multi-Agent
Temporal Epistemic Logic with operators forCommon
and Distributed knowledge andBranching Time, CMA-
TEL(CD+BT) . The tableau procedure presented herein fol-
lows the tableau-building philosophy developed for the log-
ics PDL by Pratt in [9],UB by Ben-Ari, Manna and Pnueli
in [1], andCTL by Emerson and Halpern in [3]. Our pro-
cedure essentially combines incremental tableaux forCTL
from the latter (see also [10] for a recent detailed exposi-
tion) and tableaux for the full coalitional multiagent epis-
temic logicCMAEL(CD) developed in [6]. In the present
paper, as in [6], we work with a more expressive epistemic
language than the one considered in [7], as it contains op-
erators for common and distributed knowledge forall non-
empty coalitions(i.e., subsets) of the set of agents. The re-
sulting decision procedure for testing satisfiability inCMA-

1

MALLOW’009: Turin, Italy, September 7-10, 2009

182

TEL(CD+BT) runs in exponential time, which is the opti-
mal lower-bound, as established in [11].

We should mention that, even though the procedure pre-
sented in [11] can be used to testCMATEL(CD+BT) -
formulae for satisfiability, this would not give us the optimal
procedure, since such a procedure wouldalwaysrequire ex-
ponential time predicted by the worst-case estimate. The in-
cremental tableau presented in this paper, on the other hand,
on average requires much less time than the theoretical up-
per bound (this claim cannot be made mathematically pre-
cise without an a priori probability distribution on formu-
lae; however, it is substantiated by example in [4], where
we compare the incremental tableaux presented in that pa-
per with the top-down tableux-style procedure from [12]).

Besides presenting the tableau-based procedure for
CMATEL(CD+BT) , the other major objective of this pa-
per is to demonstrate how two tableau procedures for log-
ics with non-interacting fixed-point operators (the epistemic
and the temporal ones, in our case) can be combined into a
tableau procedure for the fusion of these logics, thus offer-
ing a contribution to the area of combination of logics (see
e.g., [8]).

The present paper is structured as follows. In Sec-
tion 2, we introduce the logicCMATEL(CD+BT) . In
Section 3, we introduce Hintikka structures forCMA-
TEL(CD+BT) and show that satisfiability ofCMA-
TEL(CD+BT) -formulae in Hintikka structures is equiva-
lent to satisfiability in models introduced in Section 2. In
Section 4, we present the tableau procedure forCMA-
TEL(CD+BT) and, in Section 5, sketch out the proofs of
soundness and completeness and briefly discuss the com-
plexity of the procedure. The Appendix contains an exam-
ple of a run of the procedure.

2 Syntax and semantics of the logic CMA-
TEL(CD+BT)

The languageL of CMATEL(CD+BT) contains a (pos-
sibly infinite) setAP of atomic propositions; the Boolean
connectives¬ (“not”) and ∧ (“and”); the unary temporal
operators∃ g and ∀ g (existential and universal “next”,
respectively); the binary temporal operators∃(−U−) and
∀(−U−) (existential and universal “until”, respectively),
as well as the unary epistemic operatorsDAϕ (“ it is dis-
tributed knowledge among agents inA thatϕ”), andCAϕ
(“ it is common knowledge among agents ofA thatϕ”) for
every non-emptyA ⊆ Σ, whereΣ is the finite, non-empty
set of names of agents belonging toL. Subsets ofΣ are
calledcoalitions. Thus, the formulae ofL are defined as
follows:

ϕ := p | ¬ϕ | (ϕ1 ∧ ϕ2) | ∃ gϕ | ∀ gϕ |
| ∃(ϕ1 Uϕ2) | ∀(ϕ1 Uϕ2) | DAϕ | CAϕ

wherep ranges overAP andA ranges over the setP+(Σ)
of non-empty subsets ofΣ. We writeϕ ∈ L to mean thatϕ
is a formula ofL and∆ ⊆ L to mean that∆ is a set of such
formulae.

Thus,L combines the language of Computational Tree
Logic CTL [2] with the language of the full coalitional
multi-agent epistemic logicCMAEL(CD) [6]. Although
∀ gϕ is definable as¬∃ g¬ϕ, it is convenient to treat it as
a primitive connective. The operator for individual knowl-
edgeKaϕ (“agenta knows thatϕ”), wherea ∈ Σ, can then
be defined asD{a}ϕ, henceforth writtenDaϕ. The other
Boolean and temporal connectives can be defined as usual.
We omit parentheses when this does not result in ambiguity.

Formulae of the form¬CAϕ areepistemic eventualities,
while those of the form∃(ϕ Uψ) and∀(ϕ Uψ) aretemporal
eventualities.

The semantics of temporal-epistemic logics considered
in [7] is based onsystem of runswithm processors (agents).
A run is a function from (the set of natural numbers)N to
the productLm regarded as the set ofglobal states, where
L is the set oflocal states; each agent can be in one of
local states at any moment in time. Thus, a global state
is a tuple〈l1, . . . , lm〉; the i-th componentli of this global
state representing thelocal view of the agenti. The pair
(r, n), wherer is a run andn ∈ N, is called in [7] apoint.
With every agenti, the authors of [7] associate the binary
epistemic indistinguishability relation∼i onLm, defined as
follows: 〈l1, . . . , lm〉 ∼i 〈l′1, . . . , l′m〉 if li = l′i; i.e., if the
agenti has the same local views in these states.

According to [7], a system issynchronouswhen it has
a ‘global clock’ observable by all agents and thus synchro-
nizing their local times; formally, a system is synchronous
if (r, n) ∼i (r′, n′) impliesn = n′, for everyi = 1, . . . ,m,
runsr, r′, and time momentsn, n′. It turns out that the pres-
ence or absence of synchrony, under no other assumptions,
does not affect the outcome of our tableau procedure, and
therefore, the satisfiability of formulae.

The systems with (global) states represented as tuples of
local states are generalized in [7] to systems where global
states are abstract primitive entities and the epistemic rela-
tions are abstract equivalence relations on the set of such
states. In the present paper, we work with this abstract
semantics from [7]. We note that, as we show later, this
semantics ismore generalthan the above mentioned ‘con-
crete’ semantics from [7], despite the apparent assumption
made in [7] that the two semantics are equivalent. We now
turn to the presentation of the abstract semantics from [7].

Definition 2.1 A temporal-epistemic system(TES) is a tu-
pleG = (Σ, S,R, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ)), where:

1. Σ is a finite, non-empty set ofagents;

2. S 6= ∅ is a set ofstates;

MALLOW’009: Turin, Italy, September 7-10, 2009

183

3. R 6= ∅ is a set of runs: each r ∈ R is a function
r : N 7→ S. A state visited by a computation can, then,
be represented asr(n), wherer ∈ R andn ∈ N. Also,
with a stater(n) we associate a pair(r, n), referred
to as apoint; the set of all points inG is denoted by
P (G). Notice that different points may be associated
with the same state.

4. for everyA ∈ P+(Σ), RD
A andRC

A are binary rela-
tions on P(G), such thatRC

A is the reflexive and tran-
sitive closure of

⋃
A′⊆ARDA′ .

A TESG is synchronous(STES) if((r, n), (r′, n′)) ∈
RD
A impliesn = n′ for everyA ∈ P+(Σ).

Hereafter we write ‘(S)TES’ to refer to general or syn-
chronous temporal-epistemic system.

Definition 2.2 Let (r, n) ∈ P (G) for some (S)TESG with
a set of runsR and letr′ ∈ R. We say thatr′ extends(r, n)
if r(m) = r′(m) holds for allm ≤ n.

Definition 2.3 A (synchronous) temporal-
epistemic frame ((S)TEF) is a (S)TES G =
(Σ, S,R, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ)), where each

RD
A is an equivalence relation satisfying the following

condition:

(†) RD
A =

⋂
a∈ARD

{a}

If condition (†) is replaced by the following, weaker one:

(††) RD
A ⊆ RD

B wheneverB ⊆ A,

thenF is a (synchronous) temporal-epistemic pseudo-frame
(pseudo-(S)TEF).

Notice that in (pseudo-)(S)TEFsRC
A is the transitive clo-

sure of
⋃

a∈ARD{a}, for everyA ∈ P+(Σ); furthermore, in

such structures, eachRC
A is an equivalence relation.

Definition 2.4 A (synchronous) temporal-epistemic model
((S)TEM, for short) is a tupleM = (F, L), where

(i) F is a (S)TEF with a set of runsR;

(ii) L : R × N 7→ P(AP) is a labeling function, such
thatL(r, n) is the set of atomic propositions ‘true’ at
a point(r, n).

If condition (i) is changed so thatF is a pseudo-(S)TEF, then
M is a (synchronous) temporal-epistemic pseudo-model
(pseudo-(S)TEM).

Definition 2.5 The satisfaction relation between
(pseudo-)(S)TEMs, points, and formulae ofL is recursively
defined as follows:
M, (r, n) p iff p ∈ L(r, n);

M, (r, n) ¬ϕ iff M, (r, n) 1 ϕ;
M, (r, n) ϕ∧ψ iff M, (r, n) ϕ andM, (r, n) ψ;
M, (r, n) ∃ gϕ iff M, (r′, n+1) ϕ holds for some

r′ extending(r, n);
M, (r, n) ∀ gϕ iff M, (r′, n+1) ϕ holds for every

r′ extending(r, n);
M, (r, n) ∃(ϕ Uψ) iff, for somer′ extending(r, n),

there existsi ≥ n such thatM, (r′, i) ψ and
M, (r′, j) ϕ holds for everyn ≤ j < i;
M, (r, n) ∀(ϕ Uψ) iff, for everyr′ extending(r, n),

there existsi ≥ n such thatM, (r′, i) ψ and
M, (r′, j) ϕ holds for everyn ≤ j < i;
M, (r, n) DAϕ iff M, (r′, n′) ϕ for every

((r, n), (r′, n′)) ∈ RD
A ;

M, (r, n) CAϕ iff M, (r′, n′) ϕ for every
((r, n), (r′, n′)) ∈ RC

A.

Satisfiability and validity of formulae are defined as
usual.

Note that in the semantics abovethe labeling functionL
acts on points, not states, i.e., the semantics ispoint-based.
To make the semanticsstate-based, one needs to impose
the additional condition1: r(n) = r′(n′) impliesL(r, n) =
L(r′, n′). The two semantics differ: e.g., the formulap →
∀(⊤Up) is valid in the state-based semantics, but not in the
point-based one.

The satisfaction condition for the operatorCA can be
paraphrased in terms of reachability. LetF be a (pseudo)-
(S)TEF over the set of runsR and let (r, n) ∈ R × N.
We say that point(r′, n′) is A-reachable from(r, n) if ei-
ther (r, n) = (r′, n′) or there exists a sequence(r, n) =
(r0, n0), (r1, n1), . . . , (rm−1, nm−1), (rm, nm) = (r′, n′)
of points inR × N such that, for every0 ≤ i < m, there
existsai ∈ A such that(ri, ni), (ri+1, ni+1)) ∈ RDai

. It is
then easy to see that the following satisfaction condition for
CA is equivalent to the one given above:
M, (r, n) CAϕ iff M, (r′, n′) ϕ for every(r′, n′),

A-reachable from(r, n).
Note that ifΣ = {a}, thenDaϕ ↔ Caϕ is valid in

every (S)TEM, for allϕ ∈ L. Thus, the single-agent case is
essentially trivialized, so we assume throughout the rest of
the paper thatΣ contains at least 2 (names of) agents.

Also note that in models where states are tuples of local
states, ifs ∼i s′ holds for everyi = 1, . . . ,m, thens = s′

and, therefore, the formulap→ DΣp is valid in every such
model, but it is not valid in every (S)TEM. Thus, the ab-
stract semantics presented above differs from the ‘concrete’
semantics presented in [7], despite the apparent assumption
to the contrary made in [7].

Hereafter, we consider general temporal-epistemic sys-
tems; all definitions and results also apply to the syn-
chronous variety, unless stated otherwise.

1This condition is not imposed in [7], but this is an apparent omission
because it is essentially assumed there.

MALLOW’009: Turin, Italy, September 7-10, 2009

184

3 Hintikka structures for CMA-
TEL(CD+BT)

Even though we are ultimately interested in testing for-
mulae ofL for satisfiability in a TEM, the tableau proce-
dure we present tests for satisfiability in a more general kind
of semantic structure—aHintikka structure. We will show
that θ ∈ L is satisfiable in a TEM iff it is satisfiable in a
Hintikka structure, hence the latter test is equivalent to the
former. The advantage of working with Hintikka structures
lies in the fact that they contain just as much semantic in-
formation aboutθ as is necessary for computing its truth
value at a distinguished state. More precisely, while models
provide the truth value of every formula ofL at every state,
Hintikka structures only determine the truth values of for-
mulae directly involved in the evaluation of a fixed formula
θ, in the satisfiability of which we are interested. Another
important difference between models and Hintikka struc-
tures is that, in Hintikka structures, the epistemic relations
RD
A andRC

A only have to satisfy the properties laid down in
Definition 2.1. All the other information about the desirable
properties of epistemic relations is contained in the labeling
of states in Hintikka structures. This labeling ensures that
every Hintikka structure generates a pseudo-model (by the
construction of Lemma 3.5), which can then be turned into
a model.

Definition 3.1 A set∆ ⊆ L is patently inconsistentif it
contains a complementary pair of formulae (i.e., formulae
ψ and¬ψ for some formulaψ).

A set ∆ ⊆ L is fully expandedif it is not patently
inconsistent2 and satisfies the following conditions, where
Sub(ψ) stands for the set of subformulae of a formulaψ:

1. if ¬¬ϕ ∈ ∆, thenϕ ∈ ∆;
2. if ϕ ∧ ψ ∈ ∆, thenϕ ∈ ∆ andψ ∈ ∆;
3. if ¬(ϕ ∧ ψ) ∈ ∆, then¬ϕ ∈ ∆ or ¬ϕ ∈ ∆;
4. if ¬∃ gϕ ∈ ∆, then∀ g¬ϕ ∈ ∆;
5. if ¬∀ gϕ ∈ ∆, then∃ g¬ϕ ∈ ∆;
6. if ∃(ϕ Uψ) ∈ ∆, thenψ ∈ ∆ or ϕ,∃ g∃(ϕ Uψ) ∈ ∆;
7. if ¬∃(ϕ Uψ) ∈ ∆, then ¬ψ,¬ϕ ∈ ∆ or
¬ψ,¬∃ g∃(ϕ Uψ) ∈ ∆;

8. if ∀(ϕ Uψ) ∈ ∆, thenψ ∈ ∆ or ϕ,∀ g∀(ϕ Uψ) ∈ ∆;
9. if ¬∀(ϕ Uψ) ∈ ∆, then ¬ψ,¬ϕ ∈ ∆ or
¬ψ,¬∀ g∀(ϕ Uψ) ∈ ∆;

10. if DAϕ ∈ ∆, thenDA′ϕ ∈ ∆ for everyA′ such that
A ⊆ A′ ⊆ Σ;

11. if DAϕ ∈ ∆, thenϕ ∈ ∆;
12. ifCAϕ ∈ ∆, thenDa(ϕ∧CAϕ) ∈ ∆ for everya ∈ A;

2Even though in general, not being patently inconsistent is aweaker
condition than a propositional consistency, in the case of fully expanded
sets, they coincide.

13. if ¬CAϕ ∈ ∆, then¬Da(ϕ ∧ CAϕ) ∈ ∆ for some
a ∈ A;

14. ifψ ∈ ∆ andDAϕ ∈ Sub(ψ), then eitherDAϕ ∈ ∆
or ¬DAϕ ∈ ∆.

Definition 3.2 A temporal-epistemic Hin-
tikka structure (TEHS) is a tuple
(Σ, S,R, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ),H) such that

(Σ, S,R, {RD
A}A∈P+(Σ), {RC

A}A∈P+(Σ)) is a TES, andH
is a labeling of points(r, n) ∈ R× N with sets of formulae
ofL satisfying the following constraints, for all(r, n):

H1 H(r, n) is fully expanded;
H2 if ¬ϕ ∈ H(r, n), thenϕ /∈ H(r, n);
H3 if ∃ gϕ ∈ H(r, n), thenϕ ∈ H(r′, n + 1) holds for

somer′ extending(r, n);
H4 if ∀ gϕ ∈ H(r, n), thenϕ ∈ H(r′, n + 1) holds for

everyr′ extending(r, n);
H5 if ∃(ϕ Uψ) ∈ H(r, n), then, for somer′ extending

(r, n), there existsi ≥ n such thatψ ∈ H(r′, i) and
ϕ ∈ H(r′, j) holds for everyn ≤ j < i;

H6 if ∀(ϕ Uψ) ∈ H(r, n), then, for everyr′ extending
(r, n), there existsi ≥ n such thatψ ∈ H(r′, i) and
ϕ ∈ H(r′, j) holds for everyn ≤ j < i;

H7 if ¬DAϕ ∈ H(r, n), then there ex-
ists r′ ∈ R and n′ ∈ N such that
((r, n), (r′, n′)) ∈ RD

A and¬ϕ ∈ H(r′, n′);
H8 if ((r, n), (r′, n′)) ∈ RD

A , thenDA′ϕ ∈ H(r, n) iff
DA′ϕ ∈ H(r′, n′) holds for everyA′ ⊆ A;

H9 if ¬CAϕ ∈ H(r, n), then there ex-
ists r′ ∈ R and n′ ∈ N such that
((r, n), (r′, n′)) ∈ RC

A and¬ϕ ∈ H(r′, n′).

Synchronous temporal-epistemic Hintikka structures are
defined accordingly.

Definition 3.3 A formulaθ is satisfiablein a TEHSH with
a labeling functionH if θ ∈ H(r, n) for some point(r, n)
ofH. A set of formulaeΘ is satisfiableinH if Θ ⊆ H(r, n)
for some point(r, n) ofH.

Now, we show thatθ ∈ L is satisfiable in a TEM iff
it is satisfiable in a TEHS. One direction is almost imme-
diate, as every TEM naturally induces a TEHS. More pre-
cisely, given a TEMM, we define theextended labeling
L+
M on the set of points ofM as follows: L+

M(r, n) =
{ϕ | M, (r, n) ϕ } for every(r, n). The following claim
is then straightforward.

Lemma 3.4 Let M =
(Σ, S,R, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ), L) be

a TEM satisfying θ ∈ L, and let L+
M be

the extended labeling onM. Then, H =
(Σ, S,R, {RD

A}A∈P+(Σ), {RC
A}A∈P+(Σ), L

+) is a TEHS
satisfyingθ.

MALLOW’009: Turin, Italy, September 7-10, 2009

185

To establish the converse, we first prove that the exis-
tence of a Hintikka structure satisfyingθ implies the exis-
tence of a pseudo-model satisfyingθ; then, we prove that
this in turn implies the existence of a model satisfyingθ.

Lemma 3.5 If θ ∈ L is satisfiable in a TEHS, then it is
satisfiable in a pseudo-TEM.

Proof. LetH = (Σ, S,R, {RD
A}A∈P+(Σ), {RC

A}A∈P+(Σ),H)
be a TEHS satisfyingθ. We build a pseudo-TEM satis-
fying θ as follows. First, for everyA ∈ P+(Σ), let
R′D
A be the reflexive, symmetric, and transitive closure

of
⋃

A⊆BRD
B and letR′C

A be the transitive closure of⋃
a∈AR′D

a . Notice thatRD
A ⊆ R′D

A andRC
A ⊆ R′C

A for
everyA ∈ P+(Σ). Next, letL(r, n) = H(r, n) ∩ AP, for
every point(r, n) ∈ R × N. It is then easy to check that
M′ = (Σ, S,R, {R′D

A }A∈P+(Σ), {R′C
A }A∈P+(Σ), L) is a

pseudo-TEM.
To complete the proof of the lemma, we show, by induc-

tion on the formulaχ ∈ L that, for every point(r, n) and
everyχ ∈ L, the following hold:

(i) χ ∈ H(r, n) impliesM′, (r, n) χ;
(ii) ¬χ ∈ H(r, n) impliesM′, (r, n) ¬χ.
Let χ be somep ∈ AP. Then,p ∈ H(r, n) implies

p ∈ L(r, n) and thus,M′, (r, n) p; if, on the other hand,
¬p ∈ H(r, n), then due to (H2),p /∈ H(r, n) and thus
p /∈ L(r, n); hence,M′, (r, n) ¬p.

Assume that the claim holds for all subformulae ofχ;
then, we have to prove that it holds forχ, as well.

Suppose thatχ = ¬ϕ. If ¬ϕ ∈ H(r, n), then the induc-
tive hypothesis immediately gives usM′, (r, n) ¬ϕ; if
¬¬ϕ ∈ H(r, n), then by virtue of (H1),ϕ ∈ H(r, n) and
hence, by inductive hypothesis,M′, (r, n) ϕ and thus
M′, (r, n) ¬¬ϕ.

The cases ofχ = ϕ ∧ ψ, χ = ∃ gϕ, andχ = ∀ gϕ are
straightforward, using (H1) – (H4).

Let χ be∃(ϕ Uψ). If ∃(ϕ Uψ) ∈ H(r, n), then the de-
sired conclusion immediately follows from (H5) and the in-
ductive hypothesis. If¬∃(ϕ Uψ) ∈ H(r, n), then due to
(H1), either¬ψ,¬ϕ ∈ H(r, n) or ¬ψ,¬∃ g∃(ϕ Uψ) ∈
H(r, n). In the former case, the conclusion immediately
follows from the inductive hypothesis. Otherwise, due to
(H1) and (H4),¬∃(ϕ Uψ) ∈ H(r′, n + 1) holds for ev-
ery run r′ extending(r, n). By repeating the argument,
we obtain that, for every runr′ extending(r, n), either
¬ϕ ∈ H(r′, i) for somei ≥ 0 and¬ψ ∈ H(r′, j) for
every0 ≤ j ≤ i or ¬ψ ∈ H(r′, i) for everyi ≥ 0. In ei-
ther case, the inductive hypothesis implies thatM, (r, n)
¬∃(ϕ Uψ), as desired.

The case ofχ = ∀(ϕ Uψ) is similar to the previous one
and is left to the reader.

Suppose thatχ = DAϕ. Assume, first, thatDAϕ ∈
H(r, n). In view of the inductive hypothesis, it suffices to
show that((r, n), (r′, n′)) ∈ R′D

A impliesϕ ∈ H(r′, n′).

So, assume that((r, n), (r′, n′)) ∈ R′D
A . There are two

cases to consider. If(r, n) = (r′, n′), then the conclusion
immediately follows from (H1). Otherwise, there exists an
undirected path from(r, n) to (r′, n′) along the relations
RD
A′ , where eachA′ is a superset ofA. Then, due to (H8),

DAϕ ∈ H(r′, n′); hence, by (H1),ϕ ∈ H(r′, n′), as de-
sired.

Now, let ¬DAϕ ∈ H(r, n). In view of the inductive
hypothesis, it suffices to show that there existr′ ∈ R
andn′ ∈ N such that((r, n), (r′, n′)) ∈ R′D

A and¬ϕ ∈
H(r′, n′). By (H7), there existsr′ ∈ R and n′ ∈ N
such that((r, n), (r′, n′)) ∈ RD

A and¬ϕ ∈ H(r′, n′). As
RD
A ⊆ R′D

A , the desired conclusion follows.
Suppose thatχ = CAϕ. Assume thatCAϕ ∈ H(r, n).

In view of the inductive hypothesis, it suffices to show that
if (r′, n′) is A-reachable from(r, n) in M′, then ϕ ∈
H(r′, n′). If (r, n) = (r′, n′) the claim follows from (H1).
So, suppose that, for somem ≥ 1, there exists a sequence of
points (r, n) = (r0, n0), . . . , (rm−1, nm−1), (rm, nm) =
(r′, n′) such that, for every0 ≤ i < m, there existsai ∈ A
such that((ri, ni), (ri+1, ni+1)) ∈ R′D

ai
. Then, for every

0 ≤ i < m, there exists a path from(ri, ni) to (ri+1, ni+1)
along relationsRD

A′ such thatai ∈ A′ for everyA′. Then,
we can show by induction oni, using (H1) and (H8), that
CAϕ ∈ H(ri, ni) holds for every0 ≤ i < m. Indeed,
this holds fori = 0; assuming that it holds for somei, by
(H1)(12) we have thatDai

(ϕ ∧CAϕ) ∈ H(ri, ni), hence,
by (H1)(10) and (H8),ϕ ∈ H(ri+1, ni+1). Now, by taking
i = m− 1 we obtainϕ ∈ H(r′, n′), as required.

Finally, assume that¬CAϕ ∈ H(r, n). Then, the
desired conclusion follows from (H9), the fact that
RC
A ⊆ R′C

A , and the inductive hypothesis. 2

Lemma 3.6 If θ ∈ L is satisfiable in a pseudo-TEM, then
it is satisfiable in a TEM.

Proof. The proof is exactly the same as in [5, Section 3],
as the pseudo-models are only ‘defective’ with respect to
epistemic, but not temporal, relations; therefore, the con-
struction for branching time is the same as for linear time.2

Lemmas 3.4, 3.5, and 3.6 immediately give us the fol-
lowing theorem.

Theorem 3.7 A θ ∈ L is satisfiable in a TEM iff it is satis-
fiable in a TEHS.

4 Tableau procedure for CMATEL(CD+BT)

In this section, we present a tableau procedure forCMA-
TEL(CD+BT) . We describe a procedure for testing for sat-
isfiability in synchronous models, as it requires extra care.
We then briefly mention how the general case is different

MALLOW’009: Turin, Italy, September 7-10, 2009

186

and argue that the outcome of the procedure is the same
in both cases, implying that, satisfiability-wise, generaland
synchronous semantics are equivalent.

4.1 Overview of the procedure

The tableau procedure for testing a formulaθ ∈ L for
satisfiability attempts to construct a non-empty graphT θ
(calledtableau), whose nodes are finite sets ofL-formulae,
encoding ‘sufficiently many’ TEHSs forθ, in the sense that
if θ is satisfiable, then it is satisfiable in a TEHS represented
by T θ. The main ideas underlying our tableau algorithm
come from the tableau procedures for the logicsPDL in
[9], UB in [1] and CTL in [3] (see also a detailed exposi-
tion of tableaux forCTL in [10]), as well as recently de-
veloped tableaux for multiagent epistemic logics in [6]. To
make the present paper self-contained, we outline the basic
ideas behind our tableau algorithm in line with those refer-
ences, and then describe the particulars specific toCMA-
TEL(CD+BT) .

Usually, tableaux work by decomposing the input for-
mula into simpler formulae, in accordance with the seman-
tics of the logical connectives. In the classical propositional
case, “simpler” implies shorter, thus ensuring the termina-
tion of the procedure. The decomposition into simpler for-
mulae in the tableau for classical propositional logic pro-
duces a tree representing an exhaustive search for a Hintikka
set, the classical propositional analogue of Hintikka struc-
tures, for the input formulaθ. If at least one leaf of that tree
is a Hintikka set forθ, the search has succeeded andθ is
proved satisfiable; otherwise, it is declared unsatisfiable.

When applied to logics containing fixpoint-definable op-
erators, such asCA, ∃ U , and ∀ U , these two defining
features of the classical tableau method no longer apply.
First, the decomposition of the fixpoint formulae, which
is done by unfolding their fixpoint definitions, usually pro-
duces larger formulae:CAϕ is decomposed into the formu-
lae Da(ϕ ∧ CAϕ); analogously for formulae of the form
∃(ϕ Uψ) and ∀(ϕ Uψ). Hence, we need a termination-
ensuring mechanism. In our tableaux, such a mechanism
is provided by the use (and reuse) of so called “pre-states”,
whose role is to ensure the finiteness of the construction
and, hence, termination of the procedure. Second, the only
reason why a tableau may fail to produce a Hintikka set for
the input formula in the classical case is that every attempt
to build such a set results in a collection of formulae con-
taining apatent inconsistency, i.e., a complementary pair of
formulaeϕ,¬ϕ. In the case ofCMATEL(CD+BT) , there
are other such reasons, specific to TEHS, which are more
involved structures than classical Hintikka sets. One such
reason has to do with eventualities: the truth of an eventu-
ality at a states in a TEMM requires existence of a path
going froms to a state ofM at which the ‘promise’ of that

eventuality is fulfilled. Since truth in TEMs is simulated by
membership in state labels of Hintikka structures, eventual-
ities impose respective conditions on the labels. Thus, the
presence of an eventuality¬CAϕ in the label of a states
of a TEHSH requires the existence inH of anA-path (i.e.
a path along relations of the formRD

B , whereRD
B ⊆ RD

A)
from s to a statet whose label contains¬ϕ, due to con-
dition (H9) of Definition 3.2. Similar requirements apply
to eventualities of the form∃(ϕ Uψ) and∀(ϕ Uψ) due to
conditions (H5) and (H6) of Definition 3.2. The tableau
analogs of these conditions are calledrealization of even-
tualities. If a tableau contains a node with an unrealized
eventuality in its label, then it cannot produce a TEHS, and
thus is ‘bad’ and needs repairing by removing such nodes.
The third possible reason for a tableau to be ‘bad’ has to do
with successor nodes: it may so happen that some of the re-
quired successors of a nodes are missing from the tableau;
then,s is ‘bad’, and hence needs to be removed. Notice that
in TEHSs, and thus in tableaux, states have two kinds of
successors: temporal and epistemic. The absence of either
kind of successor can ruin the chances of a tableau node to
correspond to a state of a TEHS.

The tableau procedure consists of three major phases:
pretableau construction, pre-state elimination, and state
elimination. During the first, we produce thepretableau
for θ—a directed graphPθ, from which the tableauT θ will
be extracted. The nodes ofPθ are sets of formulae com-
ing in two varieties:statesandpre-states. States are fully
expanded sets, meant to represent (labels of) states of a Hin-
tikka structure, while pre-states only play a temporary role
in the construction ofT θ. During the second phase, all pre-
states fromPθ are removed and their incoming edges are
redirected, creating a smaller graphT θ0 , the initial tableau
for θ. Finally, we remove fromT θ0 all states, if any, that
cannot be satisfied in a TEHS, for any of the reasons men-
tioned above. The elimination procedure results in a (possi-
bly empty) subgraphT θ of T θ0 , called thefinal tableau for
θ. If some state∆ of T θ containsθ, we declareθ satisfiable;
otherwise, we declare it unsatisfiable. An example illustrat-
ing the tableau construction is provided in Appendix A.

4.2 Pretableau construction phase

All states and pre-states of the pretableauPθ constructed
during this phase are ‘time-stamped’. Whenever necessary
to make it explicit, we will use the notationΓ[k] indicating
that pre-stateΓ was created as thekth component of a run;
likewise for states.

The pretableau contains three types of edge, described
below. As already mentioned, a procedure attempts to
produce a compact representation of a sufficiently many
TEHSs for the input formulaθ by organizing an exhaustive
search for such structures. One type of edge, depicted by

MALLOW’009: Turin, Italy, September 7-10, 2009

187

unmarked double arrows=⇒, represents the search tran-
sitions in the tableau. The exhaustive search considers all
possible alternatives that arise when expanding pre-states
into states through branching when dealing with disjunc-
tive formulae. Thus, when we draw a double arrow from a
pre-stateΓ to states∆ and∆′ (depicted asΓ =⇒ ∆ and
Γ =⇒ ∆′, respectively), this intuitively means that, in any
TEHS, a state whose label extends the setΓ has to contain
at least one of∆ and∆′. Our first construction rule,(SR),
prescribes how to create tableau states from pre-states.

Given a setΓ ⊆ L, we say that∆ is a minimal, fully
expanded extension ofΓ if ∆ is fully expanded,Γ ⊆ ∆,
and there is no∆′ such thatΓ ⊆ ∆′ ⊂ ∆ and∆′ is fully
expanded.

Rule (SR)Given a pre-stateΓ[k] such that(SR) has not
been applied toΓ[k] earlier, do the following:

1. Add to the pretableau all minimal fully expanded ex-
tensions∆[k] of Γ[k] asstates;

2. if ∆[k] contains no formulae of the form∃ gϕ, add
∃ g⊤ to it;

3. for each so obtained state∆[k], putΓ[k] =⇒ ∆[k];
4. if, however, the pretableau already contains a state

∆′[m] that coincides with∆[k], do not create another
copy of∆′[m], but only putΓ[k] =⇒ ∆′[m].

We denote bystates(Γ) the (finite) set of states{∆ |
Γ =⇒ ∆ }.

Notice that in all construction rules, as in(SR), we allow
reuse of (pre)states, which were originally stamped with a
possibly different time-stamp. This does not correspond to
one (pre)state being part of two different runs at different
moments of time; rather, the ‘futures’ of these runs, starting
from the reused (pre)state, can be assumed to be identical,
modulo the time difference.

The second type of edge in a pretableau represents epis-
temic relations in the TEHS that the procedure attempts
to build. This type of edge is represented by single ar-
rows marked with epistemic formulae whose presence in
the source state requires the presence in the tableau of a tar-
get state, reachable by a particular epistemic relation. All
such formulae have the form¬DAϕ, as can be seen from
Definition 3.2. Intuitively if, say¬DAϕ ∈ ∆[k], then we
need some pre-stateΓ[k] containing¬ϕ to be accessible
from ∆[k] by RD

A .3 The reason we mark these single ar-
rows by a formula¬DAϕ (rather than by just coalitionA),
is that we have to remember why we had to create this par-
ticular Γ, and not just what relation connects∆ to Γ. This
information will be needed during the elimination phases.
We now formulate the rule producing this second type of
edge.

3We require the newly created pre-states to bear the same time stamp
as the source state for the sake of synchrony, as this reflectsthe fact that all
epistemic alternatives belong to the same temporal level of anyTEHS.

Rule (DR): Given a state∆[k] such that¬DAϕ ∈ ∆[k]

and (DR) has not been applied to∆[k] earlier, do the fol-
lowing:

1. Create a new pre-stateΓ[k] = {¬ϕ} ∪⋃
A′⊆A{DA′ψ | DA′ψ ∈ ∆ } ∪ ⋃

A′⊆A{¬DA′ψ |
¬DA′ψ ∈ ∆ }.

2. If pre-stateΓ[k] is patently inconsistent, remove it.

3. Otherwise, connect∆[k] to Γ[k] with
¬DAϕ−→ .

4. If, however, the tableau already contains a pre-state
Γ′[k] = Γ[k], do not add another copy ofΓ′[k], but sim-

ply connect∆[k] to Γ′[k] with
¬DAϕ−→ .

The third type of edge, depicted by single arrows marked
with formulae of the form∃ gϕ, represent temporal transi-
tions in TEHSs that the tableau is trying to build. The ra-
tionale for this rule is similar to that for(DR), the only dif-
ference being that we are now considering temporal, rather
than epistemic, formulae forcing creation of new pre-states.

Rule (Next): Given a state∆[k] such that(Next) has not
been applied to∆[k] earlier, do the following:

1. For each∃ gϕ ∈ ∆[k], create a new pre-stateΓ[k+1] =
{ϕ} ∪ {ψ | ∀ gψ ∈ ∆[k] }.4

2. If pre-stateΓ[k] is patently inconsistent, remove it im-
mediately.

3. Otherwise, connect∆[k] to Γ[k+1] with
∃ gϕ−→ .

4. If, however, the tableau already contains a pre-state
Γ′[m] = Γ[k+1], do not add another copy ofΓ′[m], but

simply connect∆[k] to Γ′[m] with
∃ gϕ−→ .

We now describe the order of application of the above
rules. We start off by creating a single pre-state{θ}, con-
taining the input formula. Then, we alternatingly apply
(DR) and(Next) to the states created at the previous stage
and then applying(SR) to the newly created pre-states. The
construction stage is over when the applications of(DR)
and(Next) do not produce any new pre-states.

4.3 Pre-State elimination phase

At this phase we remove fromPθ all pre-states and dou-
ble arrows, which results in a smaller graphT θ0 called the
initial tableau. Formally, we apply the following rule:

Rule (PR)For every pre-stateΓ in Pθ, do the following:

1. RemoveΓ fromPθ.
2. If there is a state∆ in Pθ with ∆

χ−→ Γ, then for every
state∆′ ∈ states(Γ), put∆

χ−→ ∆′.

4Note that, due to step 2 in the(SR) rule, every state contains at least
one formula of the form∃ eϕ.

MALLOW’009: Turin, Italy, September 7-10, 2009

188

4.4 State elimination phase

During this phase we remove fromT θ0 states that are not
satisfiable in a TEHS. As we do not create patently incon-
sistent states, there are two reasons why a state∆ of T θ0
can turn out to be unsatisfiable: either satisfiability of∆ re-
quires satisfiability of some other (epistemic or temporal)
successor states which turn out unsatisfiable, or∆ contains
an eventuality that is not realized in the tableau. Accord-
ingly, we have two elimination rules:(E1) and(E2).

Formally, the state elimination phase is divided into
stages; we start at stage 0 withT θ0 ; at stagen + 1, we re-
move exactly one state from the tableauT θn obtained at the
previous stage, by applying one of the elimination rules, ob-
taining the tableauT θn+1. In the rules below,Sθm denotes the
set of states of tableauT θm.

(E1) If ∆ contains a formulaχ of the form¬DAϕ or
∃ gϕ, and∆

χ−→ ∆′ does not hold for any∆′ ∈ Sθn, obtain
T θn+1 by eliminating∆ from T θn .

For the other elimination rule, we need the concept of
eventuality realizationin a tableau.

Definition 4.1 (Eventuality realization)

• The eventuality¬CAϕ is realized at∆ in T θn if there
exists a path∆ = ∆0,∆1, . . . ,∆m, wherem ≥ 0,
such that¬ϕ ∈ ∆m and, for every0 ≤ i < m, there
existχi = DBψi such thatB ⊆ A and∆i

χi−→ ∆i+1.

• The eventuality∃(ϕ Uψ) is realized at∆ in T θn if there
exists a path∆ = ∆0,∆1, . . . ,∆m, wherem ≥ 0,
such thatψ ∈ ∆m, and for every0 ≤ i < m, there

exist a formulaχi such that∆i
∃ gχi−→ ∆i+1 andϕ ∈

∆i.

• For eventualities of the form∀(ϕ Uψ), we define the
notion “is realized at∆ in T θn ” recursively as follows:

(i) If ψ ∈ ∆ then∀(ϕ Uψ) is realized at∆;

(ii) If ϕ ∈ ∆ and, for every∃ gχ ∈ ∆, there is a

state∆′ ∈ T θn such that∆
∃ gχ−→ ∆′ and∀(ϕ Uψ) is

realized at∆′, then∀(ϕ Uψ) is realized at∆.

Now, we can state our second state elimination rule.

(E2) If ∆ ∈ Sθn contains an eventualityξ that is not re-
alized at∆ in T θn , then obtainT θn+1 by removing∆ from
T θn .

We check for realization of eventualities by running
the following iterative procedures that eventually marks all
states realizing a given eventualityξ in T θn :

• If ξ = ¬CAϕ, then we initially mark all∆ ∈ Sθn
such that¬ϕ ∈ ∆. Then, we repeat the following sub-
procedure until no more states get marked: for every

still unmarked∆ ∈ Sθn, mark∆ if there is at least one

marked∆′ such that∆
DBψ−→ ∆′, for someB ⊆ A.

• If ξ = ∃(ϕ Uψ), then we initially mark all∆ ∈ Sθn
such thatψ ∈ ∆. Then, we repeat the following sub-
procedure until no more states get marked: for every
still unmarked∆ ∈ Sθn, mark∆ if ϕ ∈ ∆ and there is

at least one marked∆′ such that∆
∃ gξ−→ ∆′.

• If ξ = ∀(ϕ Uψ), then we initially mark all∆ ∈ Sθn
such thatψ ∈ ∆, and then we repeat the following sub-
procedure until no more states get marked: for every
still unmarked∆ ∈ Sθn, mark ∆ if ϕ ∈ ∆ and, for
every formula∃ gχ ∈ ∆, there is a marked state∆′ ∈
Sθn such that∆

∃ gχ−→ ∆′.

We now describe the order of application of the above
rules. We have to be careful, since having applied(E2) to
a tableau, we could have removed all the states accessible
from some∆ along the arrows marked with someχ; hence,
we need to reapply(E1) to the resultant tableau to remove
such∆’s. Conversely, having applied(E1), we could have
thrown away states needed for realizing certain eventuali-
ties; hence, we need to reapply(E2). Thus, we need to apply
(E1) and(E2) in an alternating sequence that cycles through
all eventualities. More precisely, we arrange all eventuali-
ties occurring in the states ofT θ0 in a list ξ1, . . . , ξm. Then,
we proceed in cycles. Each cycle consists of alternatingly
applying (E2) to the pending eventuality, starting withξ1,
and then applying(E1) to the resulting tableau, until all
the eventualities have been dealt with, i.e., we have reached
ξm. These cycles are repeated until no state is removed in a
whole cycle. Then, the state elimination phase is over.

The graph produced at the end of the state elimination
phase is called thefinal tableau forθ, denoted byT θ, whose
set of states is denoted bySθ.

Definition 4.2 The final tableauT θ is openif θ ∈ ∆ for
some∆ ∈ Sθ; otherwise,T θ is closed.

If the final tableau is closed, the tableau procedure re-
turns “no”; otherwise, it returns “yes”.

We briefly mention that, to test for satisfiability in gen-
eral models, we relax the rule(DR), allowing states to have
epistemic successors from different temporal levels. As
such a modification does not result in the outcome of the
procedure, we conclude that, satisfiability-wise, the seman-
tics based on general models is equivalent to the one based
on synchronous models.

5 Soundness, completeness, and complexity

Thesoundnessof a tableau procedure amounts to claim-
ing that if the input formulaθ is satisfiable, then the tableau

MALLOW’009: Turin, Italy, September 7-10, 2009

189

for θ is open. To establish soundness of the overall pro-
cedure, we use a series of lemmas showing that every rule
by itself is sound; the soundness of the overall procedure is
then an easy consequence. We give the proofs for the syn-
chronous case, the modification for the general case being
straightforward. The proofs of the following three lemmas
are straightforward.

Lemma 5.1 Let Γ be a pre-state ofPθ such that
M, (r, n) Γ for some TEMM and point(r, n). Then,
M, (r, n) ∆ holds for at least one∆ ∈ states(Γ).

Lemma 5.2 Let ∆ ∈ Sθ be such thatM, (r, n) ∆
for some TEMM and point (r, n), and let ¬DAϕ ∈
∆. Then, there exists a point(r′, n) ∈ M such that
((r, n), (r′, n′)) ∈ RD

A and M, (r′, n′) ∆′ where
∆′ = {¬ϕ} ∪ ⋃

A′⊆A{DA′ψ | DA′ψ ∈ ∆ } ∪⋃
A′⊆A{¬DA′ψ | ¬DA′ψ ∈ ∆ }.

Lemma 5.3 Let ∆ ∈ Sθ be such thatM, (r, n) ∆ for
some TEMM and point(r, n), and ∃ gϕ ∈ ∆. Then,
M, (r′, n+ 1) {ϕ} ∪ {ψ | ∀ gψ ∈ ∆ } holds for some
r′ extending(r, n).

Lemma 5.4 Let ∆ ∈ Sθ be such thatM, (r, n) ∆ for
some TEMM and a point(r, n), and let¬CAϕ ∈ ∆. Then,
¬CAϕ is realized at∆ in T θ.
Proof idea. Since¬CAϕ is true ats, there is a path in
M from s leading to a state satisfying¬ϕ. As the tableau
organizes an exhaustive search, a chain of tableau states
corresponding to those states in the model will be produced.
2

The next two lemmas are proved likewise.

Lemma 5.5 Let ∆ ∈ Sθ be such thatM, (r, n) ∆ for
some TEMM and a point(r, n), and let∃(ϕ Uψ) ∈ ∆.
Then,∃(ϕ Uψ) is realized at∆ in T θ.
Lemma 5.6 Let ∆ ∈ Sθ be such thatM, (r, n) ∆ for
some TEMM and a point(r, n), and let∀(ϕ Uψ) ∈ ∆.
Then,∀(ϕ Uψ) is realized at∆ in T θ.
Theorem 5.7 If θ ∈ L is satisfiable in a TEM, thenT θ is
open.

Proof sketch. Using the preceding lemmas, we show by
induction on the number of stages in the state elimina-
tion phase that no satisfiable state can be eliminated due
to (E1) or (E2). The claim then follows from Lemma 5.1.2

The completenessof a tableau procedure means that if
the tableau for a formulaθ is open, thenθ is satisfiable in
a TEM. In view of Theorem 3.7, it suffices to show that
an open tableau forθ can produce a TEHS satisfyingθ.
Moreover, we show that this TEHS can be constructed syn-
chronous.

Lemma 5.8 If T θ is open, thenθ is satisfiable in a (syn-
chronous) TEHS.

Proof sketch. We build the TEHSH for θ by induction on
the temporal levels. The main concern is to ensure that all
eventualities in the resultant structure are realized, i.e. the
properties (H5), (H6) and (H9) from the definition of Hin-
tikka structures hold; all the other properties of Hintikka
structures transfer, more or less immediately, from an open
tableau. We alternate between realizing epistemic eventu-
alities (formulae of the form¬CAϕ) and temporal eventu-
alities (formulae of the form∃(ϕ Uψ) and∀(ϕ Uψ)). Es-
sentially, the construction combines the construction used
in proving completeness of multi-agent epistemic Hintikka
structures from [6] and the one used in proving complete-
ness ofCTL (see [10], which essentially uses the construc-
tion that is a simplification of the construction forATL
from [4]).

We start by building the0th level of our prospective Hin-
tikka structure from the level0 of an open tableau. For each
state∆[0] on this level, if∆[0] does not contain any epis-
temic eventualities, we define∆[0]-epistemic component to
be∆[0] with exactly one successor reachable by¬DAψ, for
each¬DAψ ∈ ∆[0]; if, on the other hand,¬CAϕ ∈ ∆[0],
then the∆[0]-epistemic component is a tree obtained from
a path in the tableau leading from∆[0] along the arrows
marked with formulae of the form¬DBχ to a state∆′[0]

containingϕ; the tree is obtained from the path by giv-
ing each component of the path enough successors, as de-
scribed above. As all the unrealized epistemic eventualities
are propagated down the components (hence, appear in the
leaves of the tree), we can stitch them up together to obtain
a graph where each epistemic eventuality is realized.

Now, having built the0th level of our prospective Hin-
tikka structure, we take care of realizing all the temporal
eventualities contained in the states of level0. This is done
exactly as in the completeness proof of the tableau proce-
dure forCTL ([10]): we define the∆[0]-temporal compo-
nent for each∆[0] as follows: if it does not contain any
temporal eventualities, then we take∆[0] with one temporal
successor for each∃ gϕ ∈ ∆. If ∃(ϕ Uψ) ∈ ∆, then we
take a temporal path realizing∃(ϕ Uψ) ∈ ∆ and give to
every node enough temporal successors, as describe above.
Lastly, if ∀(ϕ Uψ) ∈ ∆, then we take a temporal tree wit-
nessing the the realizion of∀ϕ ∈ ∆ in the tableau (for de-
tails, see [10]). As eventualities are again passed down, we
can stitch up an infinite tree realizing all the eventualities
contained in the states making up the tree.

Next, we repeat the procedure inductively. For themth
epistemic level, we independently apply to each state on this
level the procedure described above for level0, so that the
epistemic structures unfolding from any two points on level
m are disjoint, and also give to each newly created point a
‘history’ consisting of a path ofm−1 states of the form{⊤}

MALLOW’009: Turin, Italy, September 7-10, 2009

190

(so that we do not create any new epistemic eventualities).
Having fixed all the epistemic eventualities at themth level,
we repeat the procedure described in the previous paragraph
to fix all the temporal eventualities contained in states of
levelm.

Thus, we produce a chain of structures ordered by
inclusion. Eventually, we take the (infinite) union of all the
structures defined at the finite states of that construction,
and then putH(∆[k]) = ∆[k] for every∆[k], to obtain a
TEHS satisfyingθ. 2

The completeness is now immediate from Lemma 5.8
and Theorem 3.7.

Theorem 5.9 (Completeness)If T θ is open, thenθ is sat-
isfiable, in a (synchronous) TEM.

As for the complexity, for lack of space, we only mention
that the above procedure runs in exponential time (the cal-
culations are fairly routine), thus matching the lower bound
known from [7].

6 Concluding remarks

We have presented an incremental tableau-based deci-
sion procedure for the full coalitional temporal-epistemic
logic of branching timeCMATEL(CD+BT) . The proce-
dure is complexity-optimal, intuitive, and practically rea-
sonably efficient (as the number of (pre)states it creates is
usually significantly smaller that the powerset of all subsets
of the close of the formula that is tested for satisfiability); it
is, therefore, suitable for both manual and automated exe-
cution. Moreover, it is fairly flexible and easily amenable to
modifications for variations of the semantics, such as those
mentioned in section 2. Since in the semantics considered
in this paper there is essentially no interaction between the
temporal and epistemic fragments, our procedure combines
in a modular way tableaux for the full coalitional multia-
gent epistemic logicCMAEL(CD) and forCTL . Such in-
teraction, however, can be triggered by imposing various
natural semantic conditions, such as “no learning” or “no
forgetting”. As shown in [7], such conditions may increase
dramatically the complexity of the logic, up to highly un-
decidable. However, even for the relatively ‘easy’ cases of
EXPSPACE-hard logics, the construction of a tableau pro-
cedures is still an open challenge, which we intend to ad-
dress in the future.

References

[1] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna.
The temporal logic of branching time.Acta Informat-
ica, 20:207–226, 1983.

[2] E. Allen Emerson. Temporal and modal logics. In
J. van Leeuwen, editor,Handbook of Theoretical
Computer Science, volume B, pages 995–1072. MIT
Press, 1990.

[3] E. Allen Emerson and Joseph Halpern. Decision pro-
cedures and expressiveness in the temporal logic of
branching time.Journal of Computer and System Sci-
ences, 30(1):1–24, 1985.

[4] Valentin Goranko and Dmitry Shkatov. Tableau-
based decision procedures for logics of strategic abil-
ity in multi-agent systems. To appear inACM
Transactions on Computational Logic. Available at
http://tocl.acm.org/accepted.html.

[5] Valentin Goranko and Dmitry Shkatov. Tableau-
based decision procedure for full coalitional multi-
agent temporal-epistemic logic of linear time. In
Decker, Sichman, Sierra, and Castelfranchi, editors,
Proc. of the 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), May 2009, Bu-
dapest, Hungary, 2009.

[6] Valentin Goranko and Dmitry Shkatov. Tableau-based
procedure for deciding satisfiability in the full coali-
tional multiagent epistemic logic. In Sergei Artemov
and Anil Nerode, editors,Proc. of the Symposium
on Logical Foundations of Computer Science (LFCS
2009), volume 5407 ofLecture Notes in Computer
Science, pages 197–213. Springer-Verlag, 2009.

[7] Joseph Y. Halpern and Moshe Y. Vardi. The complex-
ity of reasoning about knowledge and time I: Lower
bounds. Journal of Computer and System Sciences,
38(1):195–237, 1989.

[8] Agi Kurucz, Frank Wolter, Michael Zakharyaschev,
and Dov Gabbay.Multi-dimentional Modal Logics:
Theory and Applications. Elsevier, 2003.

[9] Vaughan R. Pratt. A practical decision method for
propositional dynamic logic. InProceedings of the
10th Annual ACM Symposium on the Theory of Com-
puting, pages 326–227, San Diego, California, May
1979.

[10] Dmitry Shkatov. IncrementalCTL -tableaux revisited.
Submitted.

[11] Dirk Walther. ATEL with common and distributed
knowledge is ExpTime-complete. InProceedings of
Methods for Modalities 4, Berlin, 2005.

[12] Dirk Walther, Carsten Lutz, Frank Wolter, and
Michael Wooldridge. ATL satisfiability is indeed
ExpTime-complete.Journal of Logic and Computa-
tion, 16(6):765–787, 2006.

MALLOW’009: Turin, Italy, September 7-10, 2009

191

[13] Pierre Wolper. The tableau method for temporal logic:
an overview. Logique et Analyse, 28(110–111):119–
136, 1985.

A Example

In the present appendix, we provide an exam-
ple of how our procedure works on the formula
∀(¬C{a,b}p U ¬D{a,c}p). To simplify the exam-
ple, we test for satisfiability of the equivalent set
{∀(¬C{a,b}p U ¬D{a,c}p,⊤}. Displayed below is
the complete pretableau for this set.

Γ
[0]
0

��	
∆

[0]
1

?
χ1

�
χ0 χ0?

∆
[0]
2

-
χ0

@@R
∆

[0]
3

?
χ2

I

Γ
[0]
1

��	
∆

[0]
4

�

-
χ0

χ1
?

∆
[0]
5

I
χ1

@@R

Γ
[0]
2

��	 ?@@R

@@Rχ0

∆
[0]
6

?
χ0

�χ1 -χ2

∆
[0]
7

I
χ2

��	χ0

∆
[0]
8

� χ0

I
χ2

Γ
[1]
3

?
∆

[0]
9

I

χ0 = ∃ e⊤;
χ1 = ¬Da(p ∧C{a,b}p);
χ2 = ¬Db(p ∧C{a,b}p);
Γ0 = {∀(¬C{a,b}p U D{a,c}p) = θ,⊤};
∆1 = {θ,¬C{a,b}p,∀ eθ, χ1, ∃ e⊤};
∆2 = {D{a,c}p, p,∃ e⊤};
∆3 = {θ,¬C{a,b}p,∀ eθ, χ2, ∃ e⊤};
Γ1 = {χ1,¬(p ∧C{a,c}p)};
Γ2 = {χ2,¬(p ∧C{a,c}p)};
∆4 = {χ1,¬p,∃ e⊤};
∆5 = {χ1,¬C{a,b}p,∃ e⊤};
∆6 = {χ1,¬C{a,b}p, χ2, ∃ e⊤};
∆7 = {χ2,¬C{a,c}p,∃ e⊤};
∆8 = {χ2,¬p,∃ e⊤};
Γ3 = {⊤};

∆9 = {⊤, ∃ e⊤}.

The initial tableau is obtained by removing all pre-states
(the Γs) and redirecting the arrows (i.e,∆1 will be con-
nected by unmarked single arrows to itself,∆2, and∆3). It
is easy to check that no states get removed during the state
elimination stage; hence, the tableau is open andθ is satis-
fiable.

MALLOW’009: Turin, Italy, September 7-10, 2009

192

A framework to model norm dynamics in Answer
Set Programming

Sofia Panagiotidi and Juan Carlos Nieves and Javier Vázquez-Salceda
Knowledge Engineering and Machine Learning Group

Universitat Politecnica de Catalunya, Spain
{panagiotidi,jcnieves,jvazquez}@lsi.upc.edu

Abstract—This paper presents ongoing work in the formal
definition and implementation of a normative framework in
Answer Set Programming. The framework uses as basis an
existing action language and enriches it with a formal definition
of norms (implementing standard deontic operators such as
obligations and permissions). Properties of a norm’s lifecycle
such as active, inactive, violated are specified. We argue that such
properties can serve as a reasoning basis for the agent’s cycle.
A partial implementation of the framework is then presented.
An example is used in order to illustrate the application of the
principles presented.

I. INTRODUCTION

The field of normative systems is an active area where
researchers try to find formalisations and mechanisms to model
and reason about normative statements. There is a lot of
formal work on the formalisation of norms, typically based
in variants of monadic or dyadic Deontic Logic. In this way,
normative systems predefine the desired behaviour in terms
of deontic concepts (obligations, prohibitions, permissions),
which typically are extended with other concepts such as
deadlines, violations and sanctions. But there is few work on
how to bring these theories into practice.

One of the main barriers for the use of deontic-like for-
malisations is the lack of operational semantics [1]. Without
clear operational semantics an agent cannot clearly reason
about the influence of these norms in its practical reasoning
mechanism. Some attempts have been made to reduce deontic
formalisations of norms into operational formalisations based
on, e.g. dynamic Logic [2] or Linear Temporal Logic [3], but
often such formalisations cannot really be used at execution
time.

Other attempts focus on extending existing operational
formalisms with some normative concepts. These attempts
mainly concern the design of action languages based on the
effects of axioms and drawing inferences from the axioms and
concentrate on ways of reasoning about actions. [4] presents an
action description language capable of expressing causal laws
which describe effects of actions as well as statements about
values of fluents in possible states of the world. Work of the
same authors covers some aspects of reasoning over dynamic
domains [5] and representation and reasoning over properties
of actions [6]. In [7] the authors intent to provide a logic based
language in order to represent authorizations and obligation
policies within dynamic environments as well as methods for
checking compliance of performed actions with the defined

policies. Still, the work lacks support for time. Insight into
intelligent decision and possible prediction of desired or non-
desired behaviours in advance seems to be absent too.

We are aware of the work in [8] in which the authors present
a language for implementing multi-agent systems consisting of
individual agents that interact with a computational organiza-
tion specified in terms of roles, norms and sanctions. Still,
this piece of work adopts an organisation-centered view more
on the flexible role enactment within a BDI cycle while ours
assumes a static role enactment and focuses on a decision
making mechanism inferring possible future action taking and
violated states.

In the last two decades, one of the most successful logic
programming approach has been Answer Set Programming
(ASP) [9]. ASP is the realization of much theoretical work
on Non-monotonic Reasoning and Artificial Intelligence appli-
cations. It represents a new paradigm for logic programming
that allows, using the concept of negation as failure, to handle
problems with default knowledge and produce non-monotonic
reasoning. Since its inception, ASP has been regarded as the
computational embodiment of Nonmonotonic Reasoning and
a primary candidate for an effective knowledge representation
tool. This view has been boosted by the emergence of highly
efficient solvers for ASP [10], [11], [12]. The efficiency of the
answer set solvers has allowed to increase the list of ASP’s
practical applications, e.g., planning [13], Bioinformatics [14],
[15], argumentation theory [16], etc. Answer Set Programming
does not represent a conventional logic programming approach
as PROLOG. Usually an answer set program P can be
regarded as a specification of a given problem where each
answer set (a model) of P represents a possible solutions of
the given problem.

In this paper (Figure 1) we propose, based on a previous
normative formalisation [17], a methodology to represent
such normative frameworks in Answer Set Programming.
This representation can be used as a basis for decision
making procedures as well as planning methodologies.
We use as example the obligations between two actors (a
Insurance Company and a Repair Company) defined in a
electronic contract. This contract is composed by deontic
clauses which will become norms of the expected behaviour
of the contractual parties. Therefore each instantiated contract
becomes a normative context at execution time.

MALLOW’009: Turin, Italy, September 7-10, 2009

193

Fig. 1. Architecture of the normative framework implementation

The work is at a preliminary state. Still, integrated within an
agent’s operating cycle, such a framework can operate as the
brain of the agent [18], providing the necessary information
over the current state of the world such as pending norms
and currently violated obligations. Additional layers of plan-
ning rules and preferred choices might lead to the desired
intelligence and flexibility an agent needs to perform in a
normative environment. We define several layers of abstraction
(Figure 1). An agent (possibly interacting with an ontology)
can interpret the environment it operates in through an action
language. The deontic restrictions (which in this paper come
from a contract, but in other scenario could come from a
Institutional specification) provide guidelines over the agent’s
behaviour and are formalised through a deontic framework.

Generic rules over the interpretation of norms, the
interpretation of the action language and planning rules
defined with respect to the action language might be added on
top of the previous in order to be able to extract information
over the agent’s state, know the possible actions to take,
predict possible violations and foresee future paths. Our
interest and focus can be summarised in the following four:

• An action language representation
• Contract (viewed as a set of norms) representation
• Generic rules over the norm lifecycle
• Generic planning and choice rules

Currently, the three first of the above are implemented while
the fourth and equally interesting issue is under research. In
this paper we are aiming to provide the functionality of the
aforementioned as well as some preliminary planning rules.
We argue that the implemented layers leave further space
for future research over the agent’s planning capabilities and
behavioural choices.

The rest of the paper is structured as follows. Section II
defines the stable model semantics which is the basis for
Answer Set Programming. In section III we present a simple
motivating example which supports our work while in section

IV we detail the action and normative language used and
define formal properties of the framework with respect to the
aforementioned. A partial implementation of the action and
normative language in Answer Set Programming is provided
in sections V and VI and parts of the motivating example
presented in the beginning are cited in section VIII. We
conclude in section IX and summarise future work.

II. BACKGROUND

In this section, we present some basic definitions w.r.t.
normal programs and the stable model semantics.

A. Syntax
A signature L is a finite set of elements that we call atoms.

A literal is either an atom a, called positive literal; or the
negation of an atom not a, called negative literal. Given a set
of atoms {a1, ..., an}, we write not {a1, ..., an} to denote the
set of atoms {not a1, ..., not an}. A normal clause, C, is a
clause of the form

a← b1, . . . , bn, not bn+1, . . . , not bn+m

where a and each of the bi are atoms for 1 ≤ i ≤ n + m.
In a slight abuse of notation we will denote such a clause by
the formula a ← B+ ∪ not B− where the set {b1, . . . , bn}
will be denoted by B+, and the set {bn+1, . . . , bn+m} will be
denoted by B−. We define a normal program P , as a finite
set of normal clauses.

If the body of a normal clause is empty, then the clause is
known as a fact and can be denoted just by a ← . or simply
a. We write LP , to denote the set of atoms that appear in
the clauses of P . We denote by HEAD(P) the set {a|a ←
B+, not B− ∈ P}.
B. Stable model semantics.

The stable model semantics was defined in terms of the
so called Gelfond-Lifschitz reduction [19] and it is usually
studied in the context of syntax dependent transformations
on programs. The following definition of a stable model for
normal programs was presented in [19]:

Let P be any normal program. For any set S ⊆ LP , let PS

be the definite program obtained from P by deleting
(i) each rule that has a formula not l in its body with

l ∈ S, and then
(ii) all formulæ of the form not l in the bodies of the

remaining rules.
Clearly PS does not contain not. Hence S is a stable model
of P if and only if S is a minimal model of PS .

In order to illustrate this definition let us consider the
following example:

Let S = {b} and P be the following logic program:
b← not a. b← >.
c← not b. c← a.

We can see that PS is:
b← >. c← a.

Notice that PS has three models: {b}, {b, c} and {a, b, c}.
Since the minimal model amongst these models is {b}, we
can say that S is a stable model of P .

MALLOW’009: Turin, Italy, September 7-10, 2009

194

III. EXAMPLE

The focus of interest of this example is to show how a
contract and a set of instantiated norms over the repair of
a car operate within the domain and normative environment
implemented in ASP. Such a case is useful to demonstrate how
reasoning and planning over the norms defined in a contract
can be done throughout its execution.

Our scenario is as follows: Two actors, a Repair Company
and a Client create a contract (RepairContract) over the
repair of a broken car. Initially, the Client takes the car to the
Repair Company. Once the car is there, the Repair Company
has to repair it. Whenever it is repaired, the Client has to pay
a previously agreed price. Once the car is repaired, the client
has the right to make a complaint.

Figure 2 depicts a pseudo-diagram including the interesting
states that the process will go into.

Fig. 2. Pseudo states diagram

The focus of interest of this example is to show how the
norms of an electronic contract (explicitly expressed as clauses
in the contract) can be mapped into ASP rules and, in a
combination with an appropriate action language, to reason
over, plan future actions and detect violations within the
agent’s scope.

IV. LANGUAGE USED

A. Actions

The action description in our approach is done as in most
action description languages. In this work we use the formal-
isation of [6] but adapt several rules to fit our requirements.

Thus the alphabet of the action language A consists of
two nonempty disjoint sets of symbols F and A. They are
called the set of fluents and the set of actions. Fluents express
the property of an object in a state of the world. A fluent
or fluent literal (e.g. car_at_shop) is a positive literal or a
strongly negated literal (a fluent preceded by ¬). A state σ
is a collection of fluents. We say a fluent f holds in a state σ
if f ∈ σ. We say a fluent literal ¬f holds in σ if f 6∈ σ.

An action domain description D within the action language
A consists of effect propositions of the following form:

a causes f if p1, ..., pn,¬q1, ...,¬qr (4.1)

where a is an action in A, f is a fluent literal in F (also

called postcondition of the action a) and p1, ..., pn, q1, ..., qr
are fluents (also called preconditions of the action a) in F .

We assume a set of initial observations O that consists of
value propositions of the following form:

f after a1, ..., am (4.2)

where f is a fluent literal and a1, ..., am are actions.
Intuitively that means that f will hold after the execution of
a1, ..., am.
When a1, ..., am is an empty sequence then we write:

initially f (4.3)

We also condense a set of value propositions of the
form {initially f1, ..., initially fn} by

initially f1, ..., fn (4.4)

The role of effect propositions is to define a transition
function from states and actions to states. Given a domain
description D, such a transition function Φ should satisfy the
following properties. For all actions α, fluents g, and states
σ:

• if D includes an effect proposition of the form (4.1)
where f is the fluent g and p1, ..., pn,¬q1, ...,¬qr hold
in σ then g ∈ Φ(α, σ);

• if D includes an effect proposition of the form
(4.1) where f is a negative fluent literal ¬g and
p1, ..., pn,¬q1, ...,¬qr hold in σ then g 6∈ Φ(α, σ);

• if D does not include such effect propositions then
g ∈ Φ(α, σ) iff g ∈ σ;

If such a transition function exists, then we say that D is
consistent, and refer to its transition function by ΦD. Given
a consistent domain description D the set of observations O
is used to determine the states corresponding to the initial
situation, referred to as the initial states and denoted by σ0.
While D determines a unique transition function, an O may
not always lead to a unique initial state.

We say σ0 is an initial state corresponding to a consistent
domain description D and a set of observations O, if for all
observations of the form (4.2) in O, the fluent literal f holds
in the state Φ(αm,Φ(αm−1, ...Φ(α1, σ0)...)) (We will denote
this state by [αm, ..., α1]σ0). We then say that (σ0,ΦD)
satisfies O.

Given a consistent domain description D and a set of
observations O, we refer to the pair (ΦD, σ0) where ΦD
is the transition function of D and σ0 is an initial state
corresponding to (D, O) as a model of (D, O). We say (D,
O) is consistent if it has a model and say it is complete if it
has a unique model.

MALLOW’009: Turin, Italy, September 7-10, 2009

195

We say a consistent domain description D in the presence of
a set of observations O entails a query Q of the form (4.2)
if for all initial states σ corresponding to (D, O), the fluent
literal f holds in the state [αm, ..., α1]σ0]. We denote this as
D |=O Q.

Example 1: With respect to our example,
let’s assume that the set of actions A =
{repair(Actor), pay(Actor), complain(Actor)}, the
set of fluents

F = {car_at_shop, repaired(Actor),
paid(Actor), complained(Actor)}

and that the domain description consists of the following:

repair(Actor) causes repaired(Actor) if car_at_shop

pay(Actor) causes paid(Actor)

complain(Actor) causes complained(Actor)

Also suppose we have a set of observations

O = {initially car_at_shop, ¬repaired(rc),
¬ paid(cl), ¬ complained(cl)}. 2

A set of observations O is said to be initial state complete,
if O only consists of propositions of the form (4.3) and for
all fluents, either initially f is in O, or initially ¬ f is in O,
but not both.

B. Deontic statements

Norms (clauses) express agreements between parties in the
form of deontic statements. In order to express the clauses we
have adopted a variation [20] [17] of the norm representation
defined in [3].

Since norms may have normative force only in certain
situations, they are associated with an activation condition.
Norms are thus typically abstract, and are instantiated when
the norm’s activation condition holds. Once a norm has been
instantiated, it remains active, irrespective of its activation
condition, until a specific expiration condition holds. When
the expiration condition occurs, the norm is assumed no
longer to have normative force. Independent of these two
conditions is the norm’s normative goal, which is used
to identify when the norm is violated (in the case of an
obligation), or what the agent is actually allowed to do
(in the case of a permission). Obligations and permissions
are the two norm types on which our framework focuses.
For every norm there is a maintenance condition which, if
does not hold while the norm is active then a violation is
considered to be taking place. Finally, for every norm there
exists another one (violation norm) indicating what happens

if it gets violated. Such properties of norms with respect to a
normative environment are implemented in section VI.

We assume a set of norms DS. A norm N in DS is
represented as a tuple of the form [17]:

<NormType,DeonticStatement,ActivatingCondition,
MaintenanceCondition,DisactCondition,Actor> (4.5)

such that:

• NormType ∈ {obligation, permission}
• DeonticStatement is an action a in the set of actions
Anorm subset of A

• an ActivatingCondition is of the type:
k1, ..., kn,¬l1, ...,¬ln, where k1, ..., kn, l1, ..., ln are
fluents in F

• a DisactCondition is of the type:
u1, ..., un,¬v1, ...,¬vn, where u1, ..., un, v1, ..., vn
are fluents in F

• a MaintenanceCondition is of the type:
w1, ..., wn,¬z1, ...,¬zn, where w1, ..., wn, z1, ..., zn
are fluents in F

• a Actor is the actor responsible for the deontic statement

The definition and semantics of permissions are not trivial.
For example, it is dubious whether their existence can
be assumed within the context of an environment without
obligations. In [21] the authors discuss the different types of
permissions and their role in deontic logic. We assume that
permissions are an explicit indication on what an actor can
perform. As in standard deontic logic we assume further that
whenever there is an obligation it is always implied that the
same is a permission too (Oa → Pa, axiom D of deontic
logic).

Example 2: Figure 3 depicts the formal representation
of the deontic statements within the contract of the example
presented in the third section. 2

Below we give some definitions with respect to the action
language and the deontic statements. Let a norm N be in the
form of (4.5) and σ be a state.

• N is activated in σ iff k1, ..., kn,¬l1, ...,¬ln hold in
σ. We denote this as D |=DS, O,σ activated(N). In
the contrary case, N is not activated. We denote this as
D |=DS, O,σ ¬activated(N).

• N is disactivated in σ iff u1, ..., un,¬v1, ...,¬vn hold in
σ. We denote this as D |=DS, O,σ disactivated(N). In
the contrary case, N is not disactivated. We denote this
as D |=DS, O,σ ¬disactivated(N).

• N is violated in σ iff at least one of
w1, ..., wn,¬z1, ...,¬zn does not hold in σ. We
denote this as D |=DS, O,σ violated(N). In the
contrary case, N is not violated. We denote this as
D |=DS, O,σ ¬violated(N).

MALLOW’009: Turin, Italy, September 7-10, 2009

196

Fig. 3. Formal representation of norms in the Repair Contract

Queries with respect to norms consist of value propositions
of the form:

activated(N) after a1, ..., am
disactivated(N) after a1, ..., am (4.6)
violated(N) after a1, ..., am

where N is a deontic statement of the form (4.5), and
a1, ..., am are actions in A.

We say a consistent domain description D in the
presence of a set of observations O and a set of norms
DS entails a query Q of the form (4.6) if for all
initial states σ0 corresponding to (D,O) the proposition
activated(N), disactivated(N), violated(N) holds
respectively in the state [αm, ..., α1]σ0. We denote this
as D |=DS, O Q.

Example 3: Let’s assume the set of actions A, the set
of fluents F and the set of observations O in example 1

and the set of norms DS in example 2. O is an initial state
complete. Then the initial state corresponding to (D,O) will
be

σ0 = {initially car_at_shop, ¬repaired(rc),
¬ paid(cl), ¬ complained(cl)}.

Then:

D |=DS, O activated(NRC2) since activated(NRC2)
holds in the state [repair(rc)]σ0.

D |=DS, O activated(NRC3) since activated(NRC3)
holds in the state [repair(rc)]σ0.

where NRC2 is the norm RC2 and NRC3 is the norm
RC3. 2

Proposition 1: Let D be a consistent domain description, O
be an initial state complete set of observations and DS a set
of deontic statements. If (D,O) is consistent then ∀N ∈ DS
and for any state σ reached by ΦD:
• D |=DS,O,σ activated(N) or D |=DS,O,σ

¬activated(N)
• D |=DS,O,σ disactivated(N) or D |=DS,O,σ

¬disactivated(N)
• D |=DS,O,σ violated(N) or D |=DS,O,σ ¬violated(N)

C. Temporal Projection

Planning: In the case of planning we are given a domain
description D, a set of observations about the initial state
O, a collection of deontic statements DS and a collection
of fluent literals G = {g1, ..., gh} which we will refer to as
goal. We are required to find a sequence of actions aa, ..., an
such that for all 1 ≤ i ≤ h,D |=O gi after a1, ..., an and for
all states σ passed throughout the execution of the actions,
6 ∃σ such that D |=DS,O,σ violated(N).

V. REPRESENTATION OF ACTIONS

Given an action domain description D, a set of observations
O and a set of deontic statements DS we construct a program
that partially implements the above. The basic elements and
definitions of types are (πbasic). The program putting into
effect (D, O) consists of three parts namely πef , πobs, πin
which represent the effect propositions, observations and
inertia rules. In addition, πnorm and (πlc) partly implement
the norms specification and norm lifeycle. We denote the
union of πbasic ∪ πef ∪ πobs ∪ πin ∪ πnorm ∪ πlc as π.

In addition to the approach of [6], we assume that actions are
durative. That is, they have a starting and ending time and
a duration which is the interval between the two. For this,
we use predicates like started and teminated to indicate
the time that an action starts being executed and the time it

MALLOW’009: Turin, Italy, September 7-10, 2009

197

terminates.

A. Basic elements

We introduce here some predicates (πbasic) which avoid
the program to have weakly restricted rules.

(1) The predicate fluent. For every fluent f ∈ F we
add the following rule to the program.

fluent(f)← .

(2) The predicate action. For every action a ∈ A we
add a rule:

action(a)← .

(3) The predicate time. The predicate is used to represent
number of distinct times which in their turn represent the
time flow. Initially time(T) where T is a constant.

B. Action rules

(1) Translating effect propositions (πef). The effect
propositions in D are translated as follows. For every effect
proposition of the form (4.1) if f is a fluent in F then the
following rules are created:

holds(f, T + 1)← terminated(a, T), time(T).

ab(f, a, T)← terminated(a, T), time(T).

else if f is the negative fluent literal ¬g then the following
rules are created:

¬ holds(g, T + 1)← terminated(a, T), time(T).

ab(g, a, T)← terminated(a, T), time(T).

Intuitively, predicate holds indicates whether a fluent’s
value is true or false throughout time. The ab predicate
represents changes of a fluent’s value at some specific
timestep.

(2) Translating observations (πobs). We intentionally omit
observations of the type (4.2) and assume that all observations
are of the type (4.3). The value propositions in O then are
translated as follows. For every value proposition of the form
(4.3) if f is a positive fluent literal then the following rule is
made:
holds(f, 1)← .

else if f is the negative fluent literal ¬g then the following
rule is created:

¬ holds(g, 1)← .

(3) Inertia rules (πin). Besides the above, we have the
following inertia rules. The first one makes sure that if no
action is executed during a timestep then a fluent will keep
holding a true value at the next timestep if it already holds
true at the current timestep. The second one makes sure that
if a fluent holds a true value and the action that is performed
at some timestep does not make it false, then in the next
timestep it will also hold true. The third one says that if no
action is executed during a timestep then a fluent will keep
holding a flse value at the next timestep if it already holds
false at the current timestep. The fourth one makes sure that
if a fluent holds a false value and the action that is performed
at some timestep does not make it true, then in the next
timestep it will also hold false.

holds(F, T + 1)← holds(F, T), not terminated(A, T).

holds(F, T + 1)← holds(F, T), terminated(A, T),
not ab(F, A, T).

¬ holds(F, T + 1)← not holds(F, T),
not terminated(A, T).

¬ holds(F, T + 1)← not holds(F, T), terminated(A, T),
not ab(F, A, T).

The following proposition demonstrates how the holds
predicate of π will hold a true value at some time step if f
holds true at some state σ reached by the function ΦD.

Proposition 2: Let D be a consistent domain description
and O be an initial complete set of observations such that
(D, O) is consistent. Let (σ0, ΦD) be the unique model
of (D, O) and M a stable model of π. If f is a fluent in F then

f ∈ ΦD(αn, ...,ΦD(α1, σ0)) iff holds(f, T) ∈ M for
some T ∈ N.

(4) Executability rules. It is assumed that every action
might be executed whenever the conditions are fulfiled. We
use the predicate executable to model the state where the
preconditions of action are fulfiled and the action might be
executed.

Thus, for every effect proposition of the form (4.1) the
following is created:

executable(a, T)← holds(p1, T), ..., holds(pn, T),
not holds(q1, T), ..., not holds(qn, T),
time(T).

MALLOW’009: Turin, Italy, September 7-10, 2009

198

VI. REPRESENTATION OF DEONTIC STATEMENTS

We assume that for every norm N of the form (4.5) a
unique id id is assigned to it. In order to represent a norm, a
rule of the respective type below is made (πnorm).

activating_condition(id, a, T)← holds(k1, T), ...,
holds(kn, T),
not holds(l1, T), ...,
not holds(ln, T),
time(T).

disact_condition(id, a, T) ← holds(u1, T), ...,
holds(un, T),
not holds(v1, T), ...,
not holds(vn, T),
time(T).

maintain_cond(id, a, T)← holds(w1, T), ...,
holds(wn, T),
not holds(z1, T), ...,
not holds(zn, T),
action(Action), time(T).

Keeping in mind the normative semantics described in IV-B
we define the rules that implement a norm’s lifecycle (πlc).

obligation_activated(Id, Action, T)←
activating_condition(Id, Action, T),
not active(Id, Action, T − 1),
action(Action), time(T),
obligation_id(Id).

obligation_disactivated(Id, Action, T)←
disact_condition(Id, Action, T),
active(Id, Action, T − 1),
action(Action), time(T),
obligation_id(Id).

The two rules below define when an obligation is active.

active(Id, Action, T)←
obligation_activated(Id, Action, T),
action(Action), time(T),
obligation_id(Id).

active(Id, Action, T)← active(Id, Action, T − 1),
not obligation_disactivated(Action, T),
action(Action), time(T), obligation_id(Id).

VII. REPRESENTATION OF PLANNING

We assume that for every action we have an estimated
duration on its execution time:

estimated_time(a, t)← .

where t is a constant.

The generic rule

started(Action, T)← obligation_activated(Id,Action, T),
executable(Action, T), time(T),
action(Action), obligation_id(Id).

ensures that an action starts whenever it is executable and an
obligation to execute it becomes active.

terminated(Action, T2)← started(Action, T1),
estimated_time(Action, EstimatedT ime),
T2 = T1 + EstimatedT ime,
time(T2), time(T1).

The generic rule

violation(Id, Action, T)← active(Id, Action, T),
not maintain_cond(Id, Action, T),
action(Action), time(T), obligation_id(Id).

detects a violation whenever a clause is active and the
maintenance condition is not true.

The following propositions ensure the correctness of
the program π implementing the norm’s lifecycle properties.

Proposition 3: Let D be a consistent domain description,
O be an initial state complete set of observations such that
(D, O) is consistent, DS a set of norms and M a stable
model of π. If there is a state σ reached by ΦD such that
D |=DS,O,σ activated(N) then there is a T ∈ N such that
activating_condition(id, a, T) ∈ M where id is the unique
identifier of the norm N and a is the DeonticStatement of
the norm N .

Proposition 4: Let D be a consistent domain description,
O be an initial state complete set of observations such that
(D, O) is consistent, DS a set of norms and M a stable
model of π. If there is a state σ reached by ΦD such that
D |=DS,O,σ disactivated(N) then there is a T ∈ N such
that disact_condition(id, a, T) ∈ M where id is the unique
identifier of the norm N and a is the DeonticStatement of
the norm N .

Proposition 5: Let D be a consistent domain description,
O be an initial state complete set of observations such that
(D, O) is consistent, DS a set of norms and M a stable
model of π. If there is a state σ reached by ΦD such that
D |=DS,O,σ violated(N) then there is a T ∈ N such that
maintain_cond(id, a, T) and active(id, a, T) ∈ M where

MALLOW’009: Turin, Italy, September 7-10, 2009

199

id is the unique identifier of the norm N and a is the
DeonticStatement of the norm N .

Example 4: Let D, O, DS be the domain description,
observations and deontic statements of the examples
1 and 2, π the program modeling D, O and
DS and M one of its stable models. As seen in
the example 3, in the state σ = [repair(rc)]σ0

activated(NRC2) will hold. Thus, there for some T ∈ N
activating_condition(idRC2, repair(rc), T) ∈ M where
idRC2 is the unique identifier of the norm RC2.

VIII. EXAMPLE

In our example, the initial observation can be:

holds(at_shop, 0).

time(0..30).

The model will include the following:

obligation_activated(rc1, repair(rc), 0)
obligation_disactivated(rc1, repair(rc), 10)

obligation_activated(rc2, pay(cl), 10)
obligation_disactivated(rc2, pay(cl), 11)

action_started(repair(rc), 0)
action_finished(repair(rc), 10)

action_started(pay(cl), 10)
action_finished(pay(cl), 11)

For further information and the ASP code, the reader
is referred to the web page where the code is hosted:
http://www.lsi.upc.edu/ panagiotidi/aspcode

IX. CONCLUSIONS, DISCUSSION AND FUTURE WORK

Assuming the environment that an agent operates can be
modelled by an action languange, norms impose restrictions
on the behaviour of the agent. This paper presents ongoing
work on the formal specification and development of a
framework that enables to model an action language with
respect to a normative environment. Semantics of the action
language are based on [6] and the language is partially
implemented and further enriched with temporal projection.
The deontic statements such as obligations and permissions as
well as properties related to the norm’s lifecycle (activation,
disactivation, violation) are formalised and implemented
according to [20]. An attempt to define and apply planning
techniques within the formal model and the implementation
is made.

This piece of work can be extended in various directions.
Formal aspects of planning need to be carefully considered

and taken into consideration while advancing with the use
of the framework in order to reach conclusions on the future
states. A formal notion of goal needs to be introduced in
order to reach a desired state. Another interesting aspect to
be examined is the use of weighted rules when reasoning
with respect to norms against the possible effects of one or
more violations. This will ensure that each agent can make
decisions on execution time based not only on a set of norms
indicating a desired behaviour but also on criteria such as
desires, preferences and time constraints.

X. ACKNOWLEDGEMENTS

This research has been funded by the FP7-215890 ALIVE
project, funded by the European Commission. Javier Vázquez-
Salceda’s work has been also partially funded by the "Ramón
y Cajal" program of the Spanish Ministry of Education and
Science.

REFERENCES

[1] J. Vázquez-Salceda and F. Dignum, “Modelling electronic
organizations,” Multi-Agent Systems and Applications III: 3rd.
International/Central and Eastern European Conference on
Multi-Agent Systems -CEEMAS’03, Lecture Notes in Artificial
Intelligence 2691, pp. 584–593, 2003. [Online]. Available:
http://people.cs.uu.nl/dignum/papers/harmonia-CEEMAS03.pdf

[2] J.-J. C. Meyer and R. J. Wieringa, “Deontic logic: a concise overview,”
pp. 3–16, 1993.

[3] H. Aldewereld, Autonomy vs. Conformity: an Institutional Perspective
on Norms and Protocols. PhD thesis, Utrecht University, 2007.

[4] C. Baral, M. Gelfond, and A. Provetti, “Representing actions: Laws,
observations and hypotheses,” The Journal of Logic Programming,
vol. 31, no. 1-3, pp. 201–243, 1997.

[5] C. Baral and M. Gelfond, “Reasoning agents in dynamic domains,” 2000,
pp. 257–279.

[6] M. Gelfond and V. Lifschitz, “Representing action and change by logic
programs,” Journal of logic programming, 1993.

[7] M. Gelfond and J. Lobo, “Authorization and obligation policies in
dynamic systems,” Proceedings of the 24th International Conference
on Logic Programming, pp. 22–36, 2008.

[8] N. Tinnemeier, M. Dastani, and J.-J. Meyer, “Roles and norms for
programming agent organizations,” in AAMAS ’09: Proceedings of The
8th International Conference on Autonomous Agents and Multiagent
Systems. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2009, pp. 121–128.

[9] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge: Cambridge University Press, 2003.

[10] S. DLV, “Vienna University of Technology,”
http://www.dbai.tuwien.ac.at/proj/dlv/, 1996.

[11] S. SMODELS, “Helsinki University of Technology,”
http://www.tcs.hut.fi/Software/smodels/, 1995.

[12] Potassco, “University of Potsdam,” http://potassco.sourceforge.net/,
2007.

[13] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres, “A logic
programming approach to knowledge-state planning, ii: The DLVk
system.” Artif. Intell., vol. 144, no. 1-2, pp. 157–211, 2003.

[14] S. Dworschak, S. Grell, V. Nikiforova, T. Schaub, and J. Selbig,
“Modeling Biological Networks by Action Languages via Answer Set
Programming,” Constraints, vol. 13, no. 1, pp. 21–65, 2008.

[15] C. Baral, K. Chancellor, N. Tran, N. Tran, A. M. Joy, and M. E. Berens,
“A knowledge based approach for representing and reasoning about
signaling networks,” in ISMB/ECCB (Supplement of Bioinformatics),
2004, pp. 15–22.

[16] J. C. Nieves, M. Osorio, and U. Cortés, “Preferred Extensions as Stable
Models,” Theory and Practice of Logic Programming, vol. 8, no. 4, pp.
527–543, July 2008.

MALLOW’009: Turin, Italy, September 7-10, 2009

200

[17] N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck,
and S. Miles, “Towards a formalisation of electronic contracting en-
vironments,” Coordination, Organization, Institutions and Norms in
Agent Systems, the International Workshop at AAAI 2008, pages 61-68,
Chicago, Illinois, USA, 2008.

[18] R. Confalonieri, S. Alvarez-Napagao, S. Panagiotidi, J. Vázquez-
Salceda, and S. Willmott, “A middleware architecture for
building contract-aware agent-based services,” LECTURE NOTES
IN COMPUTER SCIENCE, Jan 2008. [Online]. Available:
http://www.springerlink.com/index/m84n55h118j86178.pdf

[19] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming.” R. Kowalski and K. Bowen, editors, 5th Conference on
Logic Programming, pages 1070âĂŞ1080. MIT Press, 1988.

[20] S. Panagiotidi, J. Vázquez-Salceda, S. ÃĄlvarez Napagao, S. Ortega-
Martorell, S. Willmott, R. Confalonieri, and P. Storms, “Intelligent con-
tracting agents language,” Proceedings of the Symposium on Behaviour
Regulation in Multi-Agent Systems -BRMAS’08-, Aberdeen, UK, April
2008, 1988.

[21] G. Boella and L. van der Torre, “Permissions and obligations in
hierarchical normative systems,” Proceedings of the 9th international
conference on Artificial intelligence and law, pp. 109–118, 2003.

MALLOW’009: Turin, Italy, September 7-10, 2009

201

MALLOW’009: Turin, Italy, September 7-10, 2009

202

LAnguages, methodologies and Development tools
for multi-agent systemS, LADS’009

(Introductory Essay of the Workshop)

Mehdi Dastani∗, Amal El Fallah Seghrouchni†, João Leite‡, and Paolo Torroni§
∗ Department of Information and Computing Sciences, Utrecht University,

Email: mehdi@cs.uu.nl
† LIP6 - University Pierre and Marie Curie,

Email: Amal.Elfallah@lip6.fr
‡ CENTRIA & DI, FCT, Universidade Nova de Lisboa

Email: jleite@di.fct.ul.pt
§ Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna

Email: paolo.torroni@unibo.it

Abstract

LADS’09 aims to offer a rich forum for leading researchers, from both academia and industry, interested in
sharing their experiences about the theory and practice of formal approaches, programming languages, tools and
techniques that support the development and deployment of multi-agent systems. These are gaining increasing
attention in important application areas such as electronic institutions, semantic web, web services, security, grid
computing, ambient intelligence, pervasive computing, electronic contracting, among others.

I. INTRODUCTION

These are the pre-proceedings of the second international workshop on languages, methodologies
and development tools for multi-agent systems (LADS’009) to be held on 7-11 September 2009 in
Torino, Italy. LADS’009 workshop aims to address both theoretical and practical issues related to de-
veloping and deploying multi-agent systems. In particular, it will constitute a rich forum where leading
researchers from both academia and industry share their experiences on formal approaches, programming
languages, methodologies, tools and techniques that support the development and deployment of multi-
agent systems. From theoretical point of view, LADS’009 aims to address issues related to theories,
models, and approaches that are needed to facilitate the development of multi-agent systems ensur-
ing their predictability and verifications. From practical point of view, LADS’009 aims at stimulating
research and discussion on how multi-agent system specifications and designs can be effectively im-
plemented and tested. LADS’009 workshop promises to provide interesting discussion and exchange
of ideas concerning theories, methodologies, techniques and principles that are important for multi-
agent programming technology. The programme of the workshop consists of four sessions and covers
formal models and theories (session 1), development methodologies and tools (session 2), programming
languages (sessions 3), and Architectures (session 4). More details on the programme can be found at:
http://centria.di.fct.unl.pt/events/lads009/.

LADS’009 Programme Co-chairs
Mehdi Dastani

Amal El Fallah Seghrouchni
João Leite

Paolo Torroni

July 26, 2009

MALLOW’009: Turin, Italy, September 7-10, 2009

203

II. WORKSHOP COMMITTEES

A. Workshop Organizers
Mehdi Dastani Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris VI, France
João Leite Universidade Nova de Lisboa, Portugal
Paolo Torroni University of Bologna, Italy

B. Programme Commitee
Marco Alberti New University of Lisbon, Portugal
Natasha Alechina University of Nottingham, UK
José Júlio Alferes New University of Lisbon, Portugal
Matteo Baldoni University of Torino, Italy
Rafael H. Bordini Universidade Federal do Rio Grande do Sul, Brazil
Juan Botı́a Murcia University, Spain
Lars Braubach University of Hamburg, Germany
Keith Clark Imperial College London, UK
Mehdi Dastani Utrecht University, The Netherlands
Yves Demazeau Institut IMAG, Grenoble, France
Juergen Dix Clausthal University, Germany
Amal El Fallah Seghrouchni University of Paris 6, France
Paolo Giorgini University of Trento, Italy
Jorge Gómez-Sanz Universidad Complutense Madrid, Spain
Koen Hindriks Delft University, The Netherlands
Shinichi Honiden NII, Tokyo, Japan
Jomi Fred Hübner Universidade Regional de Blumenau, Brazil
Wojciech Jamroga University of Luxembourg, Luxembourg
Peep Küngas SOA Trader, Ltd., Tallin, Estonia
Joo Leite New University of Lisbon, Portugal
John Lloyd Australian National University, Canberra, Australia
Alessio Lomuscio Imperial College London, UK
Viviana Mascardi University of Genova, Italy
John-Jules Meyer Utrecht University, The Netherlands
Alexander Pokahr University of Hamburg, Germany
Patrick Tallibert Thales Airborne Systems, Elancourt, France
Paolo Torroni University of Bologna, Italy
Birna van Riemsdijk Delft University, The Netherlands
Leon van der Torre University of Luxembourg, Luxembourg
Gerhard Weiss Software Competence Center Hagenberg, Austria
Pinar Yolum Bogazici University, Istanbul, Turkey
Yingqian Zhang Delft University, The Netherlands

MALLOW’009: Turin, Italy, September 7-10, 2009

204

C. Additional Reviewers
Alejandro Guerra Hernandez, Matthias Nickles, Akin Gunay, Yasuyuki Tahara, Ozgur Kafali, Mario
Mendes

III. LIST OF PAPERS

• Detecting Exceptions in Commitment Protocols: Discovering Hidden States
by Ozgur Kafali and Pinar Yolum

• A Methodology for Developing Self-Explaining Agents for Virtual Training
by Maaike Harbers, Karel Van den Bosch, and John-Jules Meyer

• An Integrated Semantics of Social Commitments and Associated Operations
by Jamal Bentahar, M El-Menshawy, and R. Dssouli

• Externalisation and Internalization: A New Perspective on Agent Modularisation in Multi-Agent
Systems Programming
by Alessandro Ricci, Michele Piunti, and Mirko Viroli

• Call Graph Profiling for Multi Agent Systems
by Dinh Doan Van Bien, David Lillis, and Rem W. Collier

• ReSeagent: A Refactoring Tool for Plan Level Refactoring in MAS Development
by Ali Murat Tiryaki and Oguz Dikenelli

• Programming social middlewares through social interaction types
by Juan Manuel Serrano and Sergio Saugar

• Temporal Planning in Dynamic Environments for P-CLAIM Agents
by Adnan Hashmi and Amal El Fallah Seghrouchni

• Agents Secure Interaction in Data driven Languages
by Mahdi Zargayouna, Balbo Flavien, and Serge Haddad

• Executing Agent Plans by Reducing to Workflows
by Tayfun Gokmen Halac, Ovunc CETIN, Erdem Eser Ekinci, R. Cenk Erdur, and oguz dikenelli

• The ARTS Real-Time Agent Architecture
by Konstantin Vikhorev, Natasha Alechina, and Brian Logan

IV. ACKNOWLEDGMENT

The co-chairs of this workshop would like to thank all authors, invited speakers, programme committee
members, and additional reviewers for their outstanding contribution to the success of LADS’009. The co-
chairs would also like to thank all the sponsors and Springer. We are particularly grateful to MALLOW’009
organisers, Matteo Baldoni, Cristina Baroglio, and Guido Boella, for their technical support and for hosting
LADS’009.

MALLOW’009: Turin, Italy, September 7-10, 2009

205

MALLOW’009: Turin, Italy, September 7-10, 2009

206

Detecting Exceptions in Commitment Protocols:
Discovering Hidden States

Özgür Kafalı
Department of Computer Engineering

Boğaziçi University
TR-34342, Bebek,̇Istanbul, Turkey

e-mail: ozgurkafali@gmail.com

Pınar Yolum
Department of Computer Engineering

Boğaziçi University
TR-34342, Bebek,̇Istanbul, Turkey
e-mail: pinar.yolum@boun.edu.tr

Abstract—Open multiagent systems consist of autonomous
agents that are built by different vendors. In principle, open
multiagent systems cannot provide any guarantees about the
behaviors of their agents. This means that when agents are
working together, such as carrying out a business protocol,
one agent’s misbehavior may potentially create an exception for
another agent and obstruct its proper working. Faced with such
an exception, an agent should be able to identify the problemby
verifying the compliance of other agents.

Previous work on verification of protocols unrealistically
assume that participants have full knowledge of a protocol.
However, when multiple agents enact a protocol, each agent
has access to its part of the protocol and not more. This will
require agents to check verification by querying others and
more importantly by discovering the contracts between them.
Here, we propose a commitment-based framework for detecting
exceptions in which an agent augments its part of the protocol
with its knowledge to construct states that are previously hidden
to the agent by generating possible commitments between other
agents. The agent then queries others to confirm those states.
Our framework is formalized using C+ and is tested using a
realistic business scenario.

I. I NTRODUCTION

In open multiagent systems, it is possible for agents to
interact with others that they have no previous knowledge of.
Carrying out interactions, such as business dealings, withsuch
others is difficult since there is no guarantee about how the
other agents will act. If others do not follow their parts of
the interactions, the entire business may be jeopardized. This
requires an agent participating in such a situation to be able
to verify that others are acting by the rules.

Verification is especially important in the face ofexceptions.
Here, we deal with high-level exceptions that pertain to
the workings of the underlying protocol. For example, if a
buyer does not receive a merchandise that was scheduled
for delivery, it can conclude that there must have been an
exception in the workings of the entire protocol. When such
an exception occurs, the agent facing the exception needs to
identify the problem behind it. This is a two-phase procedure;
first detecting the exception, and then taking proper action
recover from the exceptional situation. In this paper, we focus
on the first phase. That is, we propose an algorithm for finding
the source of exceptions (i.e., caused by which parties and
why). In addition, if the source of the exception is identified

correctly, then it is a forward step in the recovery process,
because the agent facing the exception has a means of proof
for the cause of it. This proof can then be used to consult
other authorities, which can resolve inconsistencies between
parties.

Realistic business affairs consist of multiple parties that
carry out different tasks. Multiparty interactions have two
inherent properties; (1) interactions between different parties
are regulated by different contracts (i.e., a seller may exercise
different rules when dealing with an individual versus a cor-
poration), (2) rules of interaction between different parties are
private and not revealed to the outside world (i.e., a contract
between a seller and a carrier may never be revealed to buyers
publicly). While these properties are essential for multiparty
protocols, they pose important challenges for verification,
which brings the question of how an agent can verify others’
compliance when it has only partial information about their
activities. We use the scenario in Example 1 throughout the
paper as our running example.

Example 1. Consider the simple purchase-and-delivery proto-
col that includes three business roles. The roles in the protocol
arecustomer, bookstore, anddeliverer. In a normal execution,
the customer buys a book from the bookstore and the deliverer
delivers the book to the customer. However, certain exceptions
may occur during the enactment of this protocol. For example,
consider the case where the customer pays for the book and
expects delivery in three days. In addition, suppose that the
bookstore sends books to be delivered to the deliverer in large
groups. If at the time the customer buys the book, the number
of books pending for delivery at the bookstore is not enough,
the book will not be delivered causing an exception for the
customer. However, since the customer does not know the
details of the contract between the bookstore and the deliverer,
the source of the exception is not immediately clear to the
customer. One option for the customer is to simply ask the
bookstore about the cause of exception. However, this may not
be possible in some situations (i.e., the bookstore is not willing
to share information regarding its contracts with other parties,
or the exception is caused by a party beyond the knowledge of
the bookstore). Then, the customer has to use its knowledge
first to predict possible causes, and query corresponding agents

MALLOW’009: Turin, Italy, September 7-10, 2009

207

to determine which one is the actual cause of the exception.

In order to study verification rigorously, we capture agents’
interactions through commitments [1], and adopt C+ as a
language to formalize those interactions [2], [3]. In contrast to
previous work on verification, we propose a realistic exception
discovery framework in which; (1) multiple roles exist in
the business, (2) business scenarios are distributed (eachrole
has its own view of the protocol), and (3) each agent deals
with an exception by discovering contracts of other agents.
With this proposed approach, an agent only finds out the
necessary details to continue its operation in tracing downthe
incompliant agents.

The rest of this paper is organized as follows. Section II
gives necessary background on protocols, commitments and
C+. Section III describes the running example and defines
the problem formally. Section IV introduces our solution to
deal with exceptions in distributed scenarios, and SectionV
explains its details. Section VI presents a discussion of our
work with comparisons to the literature and provides directions
for further research.

II. T ECHNICAL BACKGROUND

In this section, we first describe formally what we mean
by a business protocol, then we review the necessary concepts
related to specifying commitments, and realizing them in a
formal description language.

A. Protocols & Runs

Definition II.1. A protocol P is a 6-tuple
〈S, A, C, R,SI ,SF〉, such thatS is a finite set of states,A is
a finite set of actions,C is a finite set of conditions,R is a
finite set of roles,SI is the set of initial states (SI ⊂ S), and
SF is the set of final states (SF ⊂ S). Intermediate (middle)
statesSM are states that are not inSI or in SF .

Definition II.2. A state is a set of conditions and commitments
that hold in it.

Definition II.3. A runR of a protocolP is simply a sequence
of states〈S0, ..., Sn〉 starting from an initial state (S0 ∈ SI).
For now, we consider only finite runs.

Definition II.4. A desirable run is the one that ends in a final
state (Sn ∈ SF).

Definition II.5. An exceptional run is the one that ends in an
intermediate state (Sn ∈ SM), and thus does not reach a final
state.

Desirable runs are preferred by agents since they lead them
to reach their goals, whereas exceptional runs are unexpected
by agents and proper action (i.e., exception handling routines)
has to be taken in order for the protocol to evolve from those
states.

Definition II.6. An agent-centric sub-protocol
P ′〈S′, A′, C′, R′,S′I ,S′F〉 is a subset of the main protocol
P〈S, A, C, R,SI ,SF 〉 in which; (1)∀s′ ∈ S′, ∃s ∈ S : s′ ⊆ s,

(2) A′ ⊆ A, (3) C′ ⊆ C, (4) R′ ⊆ R, (5)
∀s′ ∈ S′I , ∃s ∈ SI : s′ ⊆ s, (6) ∀s′ ∈ S′F , ∃s ∈ SF : s′ ⊆ s.

B. Commitments

Commitments are formed between two agents and roughly
correspond to obligations [1]. The debtor of a commitment
is the agent that is committed to bring about a condition.
The creditor benefits from the commitment. Commitments are
created and discharged by the interactions of the agents. There
are two types of commitments:

c(x, y, p): This is a base-level commitment between debtor
x and creditory with propositionp. When this commitment
is in charge, debtorx becomes committed to creditory for
satisfyingp.

cc(x, y, p, q): This is a conditional commitment between
debtorx and creditory with condition p and propositionq.
When this commitment is in charge, ifp is satisfied (byy), x
will become committed toy for satisfyingq.

The following four operations describe how commitments
are manipulated throughout a protocol. We assume that each
protocol action initiates a commitment operation (i.e., altering
a contract between agents). Thus, commitment operations
describe the semantics of protocol actions.

create(x, c(x, y, p)): This operation initiates the creation
of the base-level commitmentc. It is performed byx, the
debtor of the commitment. Since this operation creates a new
commitment which does not hold previously, it causes a state

transition (Si
create(x,c(x,y,p))−−−−−−−−−−−→ Si ∪ {c(x, y, p)}).

ccreate(x, cc(x, y, p, q)): This operation initiates the creation
of the conditional commitmentcc. It is performed byx, the
debtor of the commitment. This operation also causes a state

transition (Si
ccreate(x,cc(x,y,p,q))−−−−−−−−−−−−−−→ Si ∪ {cc(x, y, p, q)}).

discharge(x, c(x, y, p): This operation resolves the base-
level commitmentc. It is performed byx, the debtor of the
commitment, and the commitmentc is terminated afterward.
A base-level commitment is resolved when the propositionp
of the commitment becomes true. This operation causes a state
transition since a previously holding commitment disappears

(Si
discharge(x,c(x,y,p))−−−−−−−−−−−−−−→ Si − {c(x, y, p)} ∪ {p}).

cdischarge(x, cc(x, y, p, q)): This operation resolves the
conditional commitmentcc. It is performed byx, the debtor
of the commitment, and the conditional commitmentcc is
terminated afterward. If the propositionq of a conditional
commitmentcc becomes true, thencc is discharged imme-

diately causing a state transition (Si
cdischarge(x,cc(x,y,p,q))−−−−−−−−−−−−−−−−→

Si−{cc(x, y, p, q)}∪{q}). If the conditionp of cc is brought
about, thencc is discharged, and a new base-level commitment
is created with the propositionq of cc causing another state

transition (Si
cdischarge(x,cc(x,y,p,q))−−−−−−−−−−−−−−−−→ Si − {cc(x, y, p, q)} ∪

{c(x, y, q)} ∪ {p}).
C. Commitment Protocols

In this section, we integrate commitments into protocols.
Definitions II.7, II.8, and II.9 provide useful properties re-

MALLOW’009: Turin, Italy, September 7-10, 2009

208

garding states with respect to commitments.

Definition II.7. A state is inconsistent if it is one of the
following; (1) stateSi = {cc(x, y, p, q), p} is inconsistent
since the conditional commitment cannot coexist with its
condition, (2) stateSj = {p,¬p} is inconsistent since a
condition cannot coexist with its negation.

Definition II.8. Two states are equivalent with respect to an
agent if they share the same conditions and commitments
regarding that agent.

Example 2. Let Si = {cc(x, y, p, q), r} and Sj =
{cc(x, y, p, q), cc(y, z, v, w), r, u} be two states, and assume
r is a condition that agentx can bring about (but does not
affect agenty’s working) andu is a condition that agenty can
bring about (but does not affect agentx’s working). Then,Si

andSj are equivalent states for agentx (since the commitment
cc(y, z, v, w) is irrelevant to agentx), but not equivalent states
for agenty (since the commitmentcc(y, z, v, w) that is related
to agenty does not hold in stateSi, but holds in stateSj).

Definition II.9. The distance between two statesSi and Sj

is the number of commitment operations that are required to
bring the protocol from stateSi to stateSj .

Example 3. Let Si = {cc(x, y, p, q)} and Sj =
{c(x, y, q), cc(y, z, q, r), p} be two states. Then, the distance
between statesSi andSj is 2 since it takes two commitment
operations to go from stateSi to Sj ; a ccreateoperation to
createcc(y, z, q, r), and acdischargeoperation to resolvecc(x,
y, p , q) into c(x, y, q).

D. The Action Description Language C+

We realize the business scenarios to be described using com-
mitment protocols specified in the action description language,
C+ [2], [3]. A protocol in C+ is composed of a set of states
and transitions between states (i.e., a transition system). A
state may contain several fluents that hold in that state (true
propositions). A fluent’s value is changed as the consequence
of an action that is performed by an agent. An inertial fluent
is the one whose value is not changed until an action makes
it change. Our use of C+ for formalizing commitments and
their operations are based on that of Chopra and Singh [3].

Listing 1 shows how commitment operations are realized
in C+. This is a basis for other protocol specifications that
utilize commitments. Through lines 10-14, commitments and
conditional commitments are modeled as inertial fluents. Com-
mitment operations shown through lines 17-22 are modeled as
auxiliary (i.e., simple) actions. An auxiliary action has to be
initiated by a protocol action and cannot be performed inde-
pendently. The causation rules associated with those operations
are shown through lines 25-32.

III. B USINESSSCENARIO

In order to show how commitments are utilized in real
business environments, we describe in detail our running ex-
ample that represents concrete business interactions. Figure 1
describes the purchase protocol introduced in Section I. There

are four states (S0, S1, S2, andS3), three actions that enable
the transitions between the states (sendPayment, sellBook,
and deliverBook), and three conditions corresponding to the
outcomes of the actions in the protocol (payc, bookc, and
deliverc). There is a single initial state (S0), a single final
state (S3), and two intermediate states (S1 andS2).� �

1:− s o r t s
2r o l e ;
3c o n d i t i o n .

5:− v a r i a b l e s
6x , y , z : : r o l e ;
7p , q : : c o n d i t i o n .

9% D e c l a r a t i o n of commitments
10:− c o n s t a n t s
11commitment (ro le , ro le , c o n d i t i o n)
12: : i n e r t i a l F l u e n t ;
13ccommitment (ro le , ro le , c o n d i t i o n , c o n d i t i o n)
14: : i n e r t i a l F l u e n t ;

16% Commitment o p e r a t i o n s
17c r e a t e (ro le , ro le , c o n d i t i o n) : : a c t i o n ;
18d i s c h a r g e (ro le , ro le , c o n d i t i o n) : : a c t i o n ;
19c c r e a t e (ro le , ro le , c o n d i t i o n , c o n d i t i o n)
20: : a c t i o n ;
21c d i s c h a r g e (ro le , ro le , c o n d i t i o n , c o n d i t i o n)
22: : a c t i o n ;

24% Commitment r u l e s
25c r e a t e (x , y , p) causes commitment (x , y , p)
26where x<>y .
27d i s c h a r g e (x , y , p) causes−commitment (x , y , p)
28where x<>y .
29c c r e a t e (x , y , p , q) causes ccommitment (x , y , p , q)
30where x<>y & p<>q .
31c d i s c h a r g e (x , y , p , q) causes−ccommitment (x , y , p , q)
32& commitment (x , y , q) where x<>y & p<>q .� �

Listing 1. Commitment Operations in C+

{cc(bookstore,customer,payc,deliverc),

 cc(deliverer,bookstore,bookc,deliverc)}

sendPayment(customer)

se
ll
Bo
ok
(b
oo
ks
to
re
)

deliverBook(deliverer)

{payc, c(bookstore,customer,deliverc),

 cc(deliverer,bookstore,bookc,deliverc)}

{payc, bookc,

 c(bookstore,customer,deliverc),

 c(deliverer,bookstore,deliverc)}

s
0

s
1

s
2

s
3

{payc, bookc, deliverc}

Fig. 1. Purchase & Delivery Protocol

No conditions initially hold in S0, but two conditional
commitments are present. The first commitmentcc(bookstore,
customer, payc, deliverc)means that the bookstore is commit-
ted to make sure that the book is delivered if the customer
pays for it. The second commitmentcc(deliverer, bookstore,

MALLOW’009: Turin, Italy, September 7-10, 2009

209

bookc, deliverc)means that the deliverer is committed to
deliver the book to the customer if the bookstore sends it.
Since the customer’s goal is to get the book delivered, it
performs thesendPaymentaction. This brings the protocol
to stateS1 where conditionpayc holds as the outcome of
the sendPaymentaction. Also, the conditional commitment
cc(bookstore, customer, payc, deliverc)is discharged to the
base-level commitmentc(bookstore, customer, deliverc). Next,
the bookstore performs thesellBookaction which brings the
protocol to stateS2. Accordingly, conditionbookcholds and
the conditional commitmentc(deliverer, bookstore, bookc, de-
liverc) is discharged to the base-level commitmentc(deliverer,
bookstore, deliverc). Finally, the deliverer performs thede-
liverBook action which brings the protocol to stateS3. Both
commitments inS2 are discharged and conditiondeliverc
holds in S3. StateS3 is the final state for the protocol since
all three conditions hold at the same time. Thus, a desirable
run for the protocol is〈S0, S1, S2, S3〉.

sendPayment(customer)

de
li
ve
rB
oo
k(
bo
ok
st
or
e)

{cc(bookstore,customer,payc,deliverc)}

{payc,

 c(bookstore,customer,deliverc)}

s
0

s
1

s
3

{payc, deliverc}

Fig. 2. PCustomer Sub-Protocol

Note that statesS1 andS2 are equivalent states for the cus-
tomer, because conditionpayc and commitmentc(bookstore,
customer, deliverc)hold in both states. In addition, condition
bookcand the discharged commitmentcc(deliverer, bookstore,
bookc, deliverc)are irrelevant to the customer. Thus, the
customer’s sub-protocolPCustomer includes statesS0, S1,
and S3 as shown in Figure 2.S0 is the initial state,S3

is the final state, andS1 is the only intermediate state for
this sub-protocol. There are two actions (sendPaymentand
deliverBook) and two conditions (paycanddeliverc).

Listing 2 describes part of the customer’s protocol in C+.
Line 2 includes the commitment operations as introduced in
Listing 1. Lines 4-6 define the roles and conditions that are
involved in the protocol. Lines 9-11 define the fluents repre-
senting the messages that hold in certain states of the protocol.
For example, the messagepay(customer,bookstore)has the
meaning that the customer has paid the bookstore for the book.
The fluents in line 12 define the initial and final conditions
for the protocol. The protocol actions are defined through

lines 15-17. Theinitiate action is performed by the rolesuper
to initialize the conditional commitments between the parties
(i.e., supercan be considered as a protocol designer). Certain
actions cannot be performed by some agents. As line 20
suggests, thesendPaymentaction cannot be performed by the
bookstore.� �

1% I n c l u d e t h e commitment o p e r a t i o n s
2:− i n c l u d e ’com−spec ’ .

4:− o b j e c t s
5super , cus tomer , books to re , d e l i v e r e r : : r o l e ;
6payc , bookc , d e l i v e r c : : c o n d i t i o n .

8% F l u e n t s t h a t d e f i n e t h e s t a t e s of t h e p r o t o c o l
9:− c o n s t a n t s
10i n i t (r o l e) , pay (ro le , r o l e) , book (ro le , r o l e) ,
11d e l i v e r (ro le , r o l e) : : i n e r t i a l F l u e n t ;
12i n i t i a l , f i n a l : : s d F l u e n t .

14% P r o t o c o l a c t i o n s
15i n i t i a t e (r o l e) , sendPayment (r o l e) ,
16se l lBook (r o l e) , de l i ve rBook (r o l e)
17: : exogenousAct ion ;

19% C e r t a i n a c t i o n s a r e done by s p e c i f i c r o l e s on ly
20n o n e x e c u t a b l e sendPayment (b o o k s t o r e) .
21. . .

23% P r o t o c o l a c t i o n sendPayment i s v i s i b l e to t h e
24% cus tomer agen t
25sendPayment (cus tomer) causes
26pay (cus tomer , b o o k s t o r e) i f
27ccommitment (books to re , cus tomer , payc , d e l i v e r c) .
28sendPayment (cus tomer) causes
29d i s c h a r g e (cus tomer , books to re , payc)
30i f commitment (cus tomer , books to re , payc) .
31sendPayment (cus tomer) causes
32c d i s c h a r g e (books to re , cus tomer , payc , d e l i v e r c) i f
33ccommitment (books to re , cus tomer , payc , d e l i v e r c) .
34n o n e x e c u t a b l e sendPayment (cus tomer)
35i f pay (cus tomer , b o o k s t o r e) ++− i n i t (super) .

37% Other p r o t o c o l a c t i o n s a r e no t v i s i b l e to t h e
38% cus tomer agen t
39. . .

41% Causa t ion r e l a t i o n s f o r i n i t i a l and f i n a l s t a t e s
42caused i n i t i a l i f i n i t i a l .
43caused− i n i t i a l i f pay (x , y) .
44. . .
45caused− i n i t i a l i f ccommitment (x , y , p , q) .
46caused− f i n a l i f − f i n a l .

48% In f i n a l s t a t e , i f pay , book , and d e l i v e r ho lds
49caused f i n a l i f pay (cus tomer , b o o k s t o r e) &
50book (books to re , d e l i v e r e r) &
51d e l i v e r (d e l i v e r e r , cus tomer) .
52. . .� �

Listing 2. Customer’s Protocol Described in C+

The rules for the protocol actionsendPaymentare given
through lines 25-35. The first rule tells that the fluent
pay(customer, bookstore)will start to hold as a result of
the protocol actionsendPayment(customer)if the conditional
commitment cc(bookstore, customer, payc, deliverc)exists
prior to it (lines 25-27). The next two rules through lines 28-
33 describe how existing commitments are resolved and new
commitments are created as a result of the same action. The

MALLOW’009: Turin, Italy, September 7-10, 2009

210

last rule ensures that the actionsendPayment(customer)is not
performed if the payment is already made by the customer
or the protocol is not initialized yet bysuper (lines 34-35).
Since the scenario is distributed, other protocol actions,such
assellBookor deliverBook, are not accessible (i.e., hidden) by
the customer agent. The protocol starts with the stateinitial
and is expected to terminate in statefinal (lines 42-46), if the
required fluents hold (lines 49-51).

Now, let us study what can go wrong in a given protocol run
and what exceptions can take place. If an expected action is not
performed by an agent that is responsible for performing it,an
exception occurs. Two such exceptional runs for this protocol
are 〈S0, S1〉 and 〈S0, S1, S2〉. The former run gets stuck at
stateS1, because the bookstore does not send the book to
the deliverer. The latter run gets stuck at stateS2, because
the deliverer does not deliver the book to the customer. When
one of these exceptions occur, the customer agent cannot find
its cause immediately (i.e., in which of the main protocol
states the run gets stuck) since statesS1 andS2 are equivalent
for it. However, in order for the customer to deal with the
exception, it is crucial that it learns about which agent is
causing the exception. Next, we look at the general idea behind
our proposed solution, and then explain the details of our
approach.

IV. PROPOSEDSOLUTION

When faced with an exception, an agent tries to figure
out what might have gone wrong. Figure 3 summarizes the
approach that agents utilize when detecting exceptions. First,
the agent reasons using its own knowledge-base. In many
cases, this would not be enough to identify the exception.
However, in many settings, as time evolves, new information
about the environment becomes available (step 1). Based on
the new information, the agent again tries to predict possible
contracts between other agents so that it can figure out what
has been violated to cause an exception (step 2). Once the
agent has possible ideas about what might have gone wrong,
it queries other agents that are related to the possible cause of
the exception and asks them to confirm one of the possibilities
(step 3).

For the above example, this would work as follows: At the
beginning, note that the customer is not aware of the existence
of a deliverer since its sub-protocol does not include such a
role. Thus, its knowledge base includes only the bookstore
other than itself. In addition, the conditions initially known by
the agent are limited topaycand its goal conditiondeliverc.
With this information only, it is not possible to construct state
S2 since it involves a commitment between the bookstore
and the deliverer. However, even if its knowledge base does
not contain that information, the customer agent may become
aware of other roles, and extend its sub-protocol with new
information revealed by other agents. For example, if the
bookstore announces that the book is sent to the deliverer, then
the customer will be aware of the existence of a deliverer role
and the conditionbookc. Information exposure is a simple task
that is often performed in real-life delivery scenarios. Now, the

Knowledge Base

Environment

S
i

S
k

S
j

Agent

(1) information
reveal

(2) state

generation

A
l

A
m

A
n

(3) query & confirmation

Fig. 3. General Approach

agent has enough knowledge to generate other possible states
of the protocol. Once the states are generated, they need to be
verified to find out whether they have caused the exception.
Accordingly, the agent directs the query about each generated
state to one of the agents related to that state (i.e., involved in
a commitment within that state).

V. I DENTIFYING EXCEPTION SOURCES

When an exception takes place, it is necessary for the agent
to identify who caused the exception so that it can deal with
the exception accordingly. As seen in the previous section,
this is not easy since an agent may view a number of states
identical when indeed they are different for other agents. The
question then is how can an agent construct possible real states
of the world? If the agent can generate such possibilities, then
it can query the involved agents and ask them to confirm one
of these states. Next, we present such an algorithm. Without
loss of generality, we assume that the algorithm is used by the
customeragent.

A. State Prediction Algorithm

In this section, we propose an algorithm for the agents to
use for constructing the hidden states (i.e., unknown states
prior to exception) that might be the cause of exceptions. In
order to construct a state, the agent has to generate the possible
conditions and commitments that hold in that state. Recall that
each agent is only aware of the commitments it is involved in.
So, the agent has to predict the possible commitments among
other participants to fill the definition of a hidden state.

Algorithm 1 describes how the agent predicts the hidden
states for detecting exceptions. The requirements for the
algorithm to execute properly are; current state of the agent in
its sub-protocol, its goal condition, commitments it is involved
in, conditions and roles it is aware of, and a maximum allowed
distance parameter for selecting states to query. The algorithm
consists of two stages; state generation and state selection, that
we describe next.

State Generation Stage: This stage starts with creating a set

MALLOW’009: Turin, Italy, September 7-10, 2009

211

Algorithm 1 Predicting Hidden States

Require: Sc {current state}
Require: Cgoal {goal condition}
Require: commitments {initial commitments}
Require: C {conditions whose existence are known}
Require: R {roles whose existence are known}
Require: dist {maximum allowed distance}
{I. State Generation Stage}

1: S← {Sc} {add current state to the generated states}
2: for all commitmenti in commitments do
3: S ← Sc {create a new state from current state}
4: cc← cc(GoalRole, CondRole, Cond, Goal)
5: Goal ← Cgoal {replace goal condition}
6: GoalRole← select(R) {pick a role}
7: generateCond andCondRole usingcommitmenti
8: cond← select(C) {pick a set of conditions}
9: apply commitment operations oncc assuming condi-

tions in cond holds
10: S ← S ∪ cc {add the commitments to the state}
11: S ← S ∪ cond {add the set of conditions to the state}
12: S← S ∪ {S} {add the generated state to the result}
13: end for
{II. State Selection Stage}

14: for all Si in S do
15: if distance(Si,Sc) > dist then
16: S← S− {Si} {remove the state from the result}
17: end if
18: end for
19: return S

for storing generated states and the current state of the agent is
added to this set (line 1). A generated state is not constructed
from scratch, but rather extended from the current state of the
agent (line 3). In order to fill the state definition, the agentgen-
erates the hidden commitments between other parties starting
with a conditional commitment template with two roles and
two conditions (line 4). The goal condition for the commitment
(Goal) is the agent’s goal (line 5), and the business party that
can bring about that condition (GoalRole) is picked from the
set of roles the agent is aware of (line 6). In order to fill the
middle parts of the commitment (Cond andCondRole), the
agent traces through its own commitments and finds which
parties it has a commitment with. For each commitment
cc(x, Role, Cond, p) or cc(Role, x, p, Cond), whereRole is
the agent’s role andCond is one of the conditions that the
agent can bring about, it replacesCondRole and Cond of
the template commitment using all possible pairs ofx and
p as line 7 suggests. The agent then searches for conditions
to put into the state definition (line 8). Those conditions are
also used in applying commitment operations on the generated
commitments. Since the generated commitments are the initial
versions of contracts between other parties, they might have
been changed during the execution of the protocol. Line
9 of the algorithm provides this commitment manipulation

process. Note that no inconsistent states are generated at this
stage of the algorithm, because this process resolves necessary
commitments with conditions whenever is possible. The state
is then ready to be extended with the generated commitments
and conditions (lines 10-11). Finally, the state is added tothe
set of generated states (line 12). This stage continues until no
new states are generated.

State Selection Stage:This stage eliminates states generated
by the first stage of the algorithm which are at a distance
from the current state of the agent’s sub-protocol. We apply
the state distance property to compute the distance value.
The maximum allowed distance for selection is a configurable
parameter of the algorithm controlled by thedist value in line
15. The number of states selected out of this stage is expected
to decrease if we select this parameter to be low. However, it
increases the chance that the actual exceptional state is also
eliminated by this process.

Example 4. Let us now depict the algorithm using our sce-
nario. Recall that we’ve considered two exceptional situations;
one gets stuck at stateS1, and the other gets stuck at stateS2.
However, sinceS2 is a hidden state for the customer agent,
both S1 andS2 converge to stateS1 of the customer agent’s
sub-protocol. At this point, the customer agent thinks that
the exception is caused by the bookstore since the delivery
will be done by the bookstore according to its sub-protocol.
But, suppose that the bookstore agent informs the customer
agent on the delivery process. That is, it tells that the bookis
given to the deliverer agent. Now, the customer agent has extra
knowledge with which it can extend its sub-protocol. Now, the
customer agent can initiate the state generation process. The
goal of the agent is to successfully generate stateS2 and query
agents related to that state (i.e., deliverer) to see whether the
main protocol is actually in that state. If so, the exceptionis
caused by the deliverer agent, otherwise the bookstore agent
is the cause of the exception. Now, suppose the agent has
generated several different states among which one of them
is the stateS2. To learn whether the main protocol is in state
S2, the customer agent queries the deliverer agent to confirm
the existence of stateS2.

B. Implementation & Evaluation

In order to implement our approach, we used C+ to describe
the scenario formally as shown partly in Listings 1 and 2,
then implemented the state prediction algorithm in Java. In
the trivial cases where the initial commitments between the
parties are in force, the protocols terminate as desired for
the customer agent. However, since our aim is to observe
exceptional situations, we disrupt the C+ descriptions of the
scenarios (i.e., remove certain commitments) to enable the
occurrence of such exceptions. Once certain parts of the
scenario descriptions are extracted, the prediction algorithm
is run to generate the possible missing states. Finally, oneor
more generations complete the scenario descriptions as they
should be, leading to a desirable run for the customer agent.

MALLOW’009: Turin, Italy, September 7-10, 2009

212

The algorithm can be extended to support sequential pro-
tocols that involve more than one agent between the initiator
(i.e., customer) and the terminator of the protocol (i.e., de-
liverer). For example, consider an extension to our scenario
where books are packaged before they are sent for delivery.
This packaging process needs another role, thepackager, to be
present in the protocol. Thus, the algorithm has to generatetwo
conditional commitments instead of one for each state it will
generate, involving the contracts between; (1) the bookstore
and the packager, and (2) the packager and the deliverer. Our
current system supports these extensions.

Correctness of the Algorithm: Here, we discuss the two
stages of the algorithm (state generation and state selection)
in order to argue on the correctness of our algorithm. That is,
the state causing the exception has to be generated in the state
generation stage, and it has to be selected as a candidate for
querying in the state selection stage. Next, we consider each
stage separately:

State Generation Stage: The number of states generated is
limited to the knowledge of the agent about the protocol (i.e.,
the roles and conditions).

Lemma V.1. Let Se be a state in protocolP , and let c be
a customer agent executing inP . Assumec is currently in
stateSc of its sub-protocolPc (Pc ⊆ P), and assume stateSe

differs from stateSc in terms of the set of conditionsEcnd and
the set of commitmentsEcmm. Let the commitments inEcmm

include the set of conditionsEcon and the set of rolesErole,
and let Econd = Ecnd ∪ Econ. Now, if c faces an exception
caused at stateSe, and if c knows about the conditions in
Econd and the roles inErole, then stateSe will be generated
by agentc.

Proof: Recall that agentc generates a state by filling its
definition with conditions and commitments. Agentc tries all
possible combinations of conditions and commitments it can
generate using its knowledge aboutPc. Note thatSe = Sc ∪
Ecnd ∪ Ecmm, thus agentc needs to generate the conditions
in Ecnd and the commitments inEcmm. Using its knowledge
aboutEcond, agentc can generate the conditions inEcnd, since
Ecnd ⊆ Econd. Using its knowledge aboutEcond and Erole,
agentc can generate the commitments inEcmm, since those
commitments are composed of the conditions inEcon and the
roles in Erole which are known by agentc (Econ ⊆ Econd).
Thus, agentc generates stateSe.

State Selection Stage: The chance of the exceptional
state being selected is related to how distant it is from the
current state of the agent’s sub-protocol, and the choice of
the maximum allowed distance parameter used for deciding
whether two states are distant.

VI. D ISCUSSION

Commitment protocols have been used before to formalize
business scenarios [4], [5]. Chopra and Singh explain how
transformation specifications are used in order to extend
protocols to cover new situations [3]. Their formalizationof

commitment protocols in C+ form the basis of our work.
However, Chopra and Singh do not provide mechanisms for
distributed verification as we have done here.

Mallya and Singh divide exceptions into two categories
[6]; (1) expected exceptions which are handled at design-
time using preferences over protocol runs, and (2) unexpected
exceptions which occur at run-time and are handled via
splicing exception handlers with base protocols. Their work
helps protocol designers for handling exceptions. However,
handling unexpected exceptions with such generic handlersis
costly. The work of Venkatraman and Singh resembles our
work since each agent checks compliance on its own [7]. The
process is distributed in a sense that each agent has access to
its own set of messages during execution, but their business
scenario does not fully simulate a distributed environment. Our
work differs from theirs since an agent in our scenario needs
extra information when resolving an exception.

Our work can also be considered in the multiagent plan
execution context for identifying failures. Jongeet al. [8]
classify the diagnosis of plan failures into two categories; (1)
primary plan diagnosis simply points out the failed action,
(2) secondary plan diagnosis identifies the actual cause of the
failure as we also focus in our work. Although the agents
in their plan execution system have partial observations over
the system, they still have a major knowledge about their
environment. Thus, our work differs form theirs in terms of
the distributed protocol execution.

Expectations have also been used to formalize business
protocols as described in the SCIFF framework [9]. SCIFF
is based on abductive logic, and it does not only specify a
business protocol, but also helps verify agent interactions in
open systems. Compliance verification has been considered in
other domains; in composite Web services [10], or in agent
communication languages (ACLs) [11]. An ACL is part of an
agent communication framework. The proposed verification
process in Guerin and Pitt’s work [11] may require access
to agent’s internal process, whereas our idea of verification
depends only on interaction.

Our approach is based on constructing possible hidden
states and querying other agents for confirming those states
(i.e., identifying which one of them caused the exception in
the main protocol). Intuitively, it is reasonable for the agent
to query other agents which are committed to it (i.e., the
bookstore agent in our example). At this point, we assume
that the agent receives honest responses from others. In a
real-life scenario, this querying process will continue asa
delegation among the agents regarding their commitments
(i.e., the bookstore agent redirects the query of the customer
agent to the deliverer agent for inspecting the exception
further). This delegation is also important in more complicated
scenarios since the exception facing agent may not be in
contact with all other agents in the protocol. In addition, trust
is another important issue when considering multiple agents
that enact a distributed protocol. It is more probable that an
agent will respond to the agents it is committed to rather than
other agents that it has no previous contact with. We aim to

MALLOW’009: Turin, Italy, September 7-10, 2009

213

investigate the application of trust strategies when considering
such complicated scenarios.

ACKNOWLEDGEMENT

This research has been supported by Boğaziçi University
Research Fund under grant BAP09A106P, The Scientific and
Technological Research Council of Turkey by a CAREER
Award under grant 105E073, and the Turkish State Plan-
ning Organization (DPT) under the TAM Project, number
2007K120610. We thank the anonymous referees for their
comments on this paper.

REFERENCES

[1] M. P. Singh, “An ontology for commitments in multiagent systems:
Toward a unification of normative concepts,”Artificial Intelligence and
Law, vol. 7, pp. 97–113, 1999.

[2] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner, “Non-
monotonic causal theories,”Artificial Intelligence, vol. 153, no. 1-2, pp.
49–104, 2004.

[3] A. K. Chopra and M. P. Singh, “Contextualizing commitment protocols,”
in AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous Agents and Multiagent Systems. New York, NY, USA:
ACM, 2006, pp. 1345–1352.

[4] P. Yolum and M. P. Singh, “Flexible protocol specification and execution:
applying event calculus planning using commitments,” inAAMAS ’02:
Proceedings of the first international joint conference on Autonomous
Agents and Multiagent Systems. New York, NY, USA: ACM, 2002,
pp. 527–534.

[5] N. Desai, A. K. Chopra, M. Arrott, B. Specht, and M. P. Singh,
“Engineering foreign exchange processes via commitment protocols,”
in International Conference on Services Computing (IEEE SCC), 2007,
pp. 514–521.

[6] A. U. Mallya and M. P. Singh, “Modeling exceptions via commitment
protocols,” inAAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems. New York,
NY, USA: ACM, 2005, pp. 122–129.

[7] M. Venkatraman and M. P. Singh, “Verifying compliance with commit-
ment protocols,”Autonomous Agents and Multiagent Systems, vol. 2,
no. 3, pp. 217–236, 1999.

[8] F. D. Jonge, N. Roos, and C. Witteveen, “Diagnosis of multi-agent plan
execution,” inIn Multiagent System Technologies: MATES 2006, LNCS
4196. Springer, 2006, pp. 86–97.

[9] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,and P. Tor-
roni, “Verifiable agent interaction in abductive logic programming: The
sciff framework,” ACM Transactions on Computational Logic, vol. 9,
no. 4, pp. 1–43, 2008.

[10] A. Lomuscio, H. Qu, and M. Solanki, “Towards verifying compliance
in agent-based web service compositions,” inProceedings of 7th In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2008, pp. 265–272.

[11] F. Guerin and J. Pitt, “Agent communication frameworksand verifica-
tion,” in AAMAS 2002 Workshop on Agent Communication Languages,
2002.

MALLOW’009: Turin, Italy, September 7-10, 2009

214

A Methodology for Developing Self-Explaining
Agents for Virtual Training

Maaike Harbers1,2, Karel van den Bosch1 and John-Jules Meyer2

1TNO Human Factors, P.O.Box 23, 3769 ZG Soesterberg, The Netherlands
2Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{maaike,jj}@cs.uu.nl, karel.vandenbosch@tno.nl

Abstract—Intelligent agents are used to generate the behavior
of characters in virtual training systems. To increase trainees’
insight in played training sessions, agents can be equipped with
capabilities to explain the reasons for their actions. By using
an agent programming language in which declarative aspects of
an agent’s reasoning process are explicitly represented, expla-
nations revealing the underlying motivations for agents’ actions
can be obtained. In this paper, a methodology for developing
self-explaining agents in virtual training systems is proposed,
resulting in agents that can explain their actions in terms of
beliefs and goals.

I. INTRODUCTION

Virtual training systems are often used to train people for
complex, dynamic tasks in which fast decision making is
required, e.g. the persons in command in crisis management,
military missions or fire-fighting. During a training session,
trainees interact with other virtual players, such as team-
members, opponents, or colleagues from other domains. Using
intelligent agents to generate the behavior of these virtual
players lets trainees train at any place and time, reducing costs.

Typical mistakes of trainees include giving incomplete or
unclear instructions, forgetting to monitor task execution, and
failing to pick up new information and quickly adapt to it.
Many of these errors involve situations in which a trainee
makes false assumptions about other agents’ knowledge or
intentions. For example, a commanding fire-fighter who is in
a fire truck to contact the dispatch center will not hear that
one of his team members yelled that he saw a victim. His
team members, however, might not have seen the commander
in the truck and unjustly assume that he heard the message,
leading to suboptimal behavior. Evidence for the origin of
such mistakes can be found in literature; attributing incorrect
knowledge and intentions to others is a well described phe-
nomenon in cognitive sciences. For example, Nickerson gives
an overview on literature about the tendency to ascribe one’s
own knowledge to others [11], and Keysar reports on limits in
theory of mind use in practice, i.e. attributing incorrect mental
states to others [6].

To improve trainees’ performances, they should be made
aware of their (possibly) false assumptions about others. Better
understanding of past sessions should make trainees more alert
and decrease the probability that they will make similar errors
in a next incident. Therefore, we propose the use of self-
explaining agents in virtual training, i.e. agents able to explain

the reasons for their actions. Humans usually explain and
understand their own and others’ behavior in terms of beliefs,
desires and other mental contents [5]. Therefore, to provide
useful explanations for humans, agents should explain their
behavior in a similar terminology, e.g. by revealing the goals
they held during a training session. Such explanations serve to
increase the trainees’ awareness of other agents’ perspectives.

Current approaches of explanation in artificial intelligence
do not provide explanations from an intentional perspective,
that is, in terms of goals. Expert system explanations usually
provide traces of the steps behind an diagnose or advice, and
the justifications of those steps [17]. However, behavior of
expert system is usually not understood in terms of intentions,
in contrast to behavior of virtual characters. There are a
few accounts of self-explaining agents in virtual training
systems [8], [16], [3], but these do not provide information
about the actual goals behind an agent’s actions.

In order to explain agent behavior in terms of intentions,
agents must be implemented in such a way that they act
on the basis of intentions, and that their intentions are ex-
plicitly represented and thus available for the generation of
explanations. In other words, behavior generation and ex-
planation are connected; the reasoning steps that generate
an action, are also used to explain that action. Making a
connection between generation and explanation of behavior
can be achieved by implementing self-explaining agents in
a BDI-based agent programming language, because in those
languages the declarative concepts needed for explanation are
explicitly represented.

In this paper we introduce a methodology for developing
self-explaining agents for virtual training systems. The differ-
ent steps in the method are: determining the required scope of
an agent’s behavior (section II), constructing a task hierarchy
of the agent (section III), implementing the agent in a BDI-
based agent programming language (section IV), and then
adding explanation facilities to the implementation (section
V). Although explanation facilities are added to the agent only
in the end, the programming language and methods in the
previous steps were chosen in such a way that this would be
possible. In the paper we discuss all four steps, but we most
explicitly explain how a task hierarchy can be translated to a
BDI-based agent program. Section VI discusses related work,
and in section VII, we draw conclusions and give suggestions

MALLOW’009: Turin, Italy, September 7-10, 2009

215

for future research.

II. REQUIRED BEHAVIOR

To develop self-explaining agents for a virtual training
system, knowledge about the required behavior and capacities
of the agents is needed. Domain experts have knowledge
about the tasks that belong to the jobs and roles of the
agents, e.g. the tasks and responsibilities of a fire-fighter or
an operator. Additionally, the training scenario(s) in which the
agents will have to act give a lot of information about their
required capacities. Training scenarios determine the scope of
the situations in which the agents might arrive. For example, a
firefighter might be responsible for the maintenance of tools,
but tasks connected to this goal are not relevant in training
scenarios about incidents, and thus do not have to be modeled.

One of the difficulties of writing a training scenario is to
find a balance between freedom of the players (both agents
and trainee) and continuation of a storyline, also called the
narrative paradox [9]. On the one hand, trainees should be
able to act as if it were a real situation and experience the
consequences of their actions, e.g. believable reactions of the
agents. On the other hand, because of inadequate acting of the
trainee, the course of the scenario could change in such a way
that situations in which specific learning goals can be trained
do not occur. A possible solution of the narrative paradox
in virtual training is to correct the trainee in a natural way
if he deviates too much from the intended storyline, namely
by directing the trainee with behavior of other players in
the scenario. For instance, if a leading fire-fighter forgets to
initiate smoke evacuation, initially nothing might happen, but
eventually, a team member can ask for the smoke evacuation
plan so that the trainee can practice to lead a smoke evacuation
process. Thus, when determining the required capacities of an
agent, tasks and actions involving the redirection of the trainee
should be included.

A second aspect of importance for the scope of an agent’s
capacities concerns variation among different training scenar-
ios. Most virtual training systems offer several training scenar-
ios, to let trainees practice on different aspects of a mission.
For instance, a fire-fighter might encounter incidents with or
without victims, chemical substances or failing communication
tools. Scenarios can be adjusted to the trainee’s level of
competence, e.g. scenarios are offered to the trainee with
increasing difficulty. In conclusion, all possible scenario lines
should be taken into account when determining the required
capacities of an agent.

The required capacities of an agent in a scenario, including
redirection actions and actions in different variations on the
scenario, are input for the construction of a task hierarchy. A
discussion on task hierarchies is given in the next section.

III. THE AGENT’S TASKS

Writing a training scenario lays down the possible observ-
able actions of an agent, but actions are the result of unob-
servable processes leading to select those particular actions.
Many processes could underlie the generation of an action,

but we believe the generation of behavior should be connected
to behavior explanation. The deliberation steps that are taken
to generate an action can also be best used to explain that
action, and when these deliberation steps are understandable,
the explanations should be as well. So while designing an
agent with explanation capabilities, the unobservable internal
processes should be meaningful.

In cognitive psychology, simple task analysis techniques
restrict analyses to observable behavior, but cognitive task
analysis also involves the knowledge, thought processes, and
goal structures that underlie observable task performance.
Hierarchical task analysis (HTA) is a well established tech-
nique [15], which smoothly connects observable behavior to
internal cognitive processes by the systematical decomposition
of goals or tasks. This feature makes it appropriate for devel-
oping self-explaining agents, who are supposed to explain the
observable by the internal.

Many accounts of planning in artificial intelligence are
based on hierarchical task representations, called hierarchical
task networks (HTNs) [13]. In the strict sense, a HTN is the
decomposition of an abstract task into more detailed subtasks;
however, many accounts of HTN involve other features, e.g.
information about which subtasks to select under given cir-
cumstances.

HTA and HTN planning both refer to a wide range of
approaches, methods and techniques. In this paper, we leave it
open how the task analysis should be made, but we do specify
what should be the result. Namely, a task hierarchy represented
in the task hierarchy representation language as introduced in
the next section.

A. Task hierarchy representation language

A task hierarchy H in state S consists of a number of tasks
which are related to each other by task-subtask relations. A
task is defined as T(Type,[(T1,C1),...,(Tn,Cn)]), where Type
denotes the type of task T, [T1,..,Tn] are possible subtasks
of task T, and C1,..,Cn denote the conditions under which a
subtask is adopted. Subtasks can in turn be decomposed into
subtasks, etc. There are four types of tasks, namely all, one,
seq and prim. Tasks of the type all, one or seq have subtasks,
and a task’s type denotes the relation to its subtasks. Tasks of
the type prim are not decomposed, and can be achieved by
executing a single action in the environment. In that case, the
list with subtasks is empty: T(prim,[]).

Tasks can be adopted, which means that they are tried
to achieve, and dropped, which means that they are either
achieved or no longer tried to achieve. For all tasks but the
top task it holds that a task can only be adopted when its main
task is adopted, and the task is applicable, i.e. the conditions
Ci connected to that task are consistent with state S. If there
are no conditions connected to a task then Ci = true and
the task is always applicable. The three possible task-subtask
relations all, one and seq each imply their own conditions to
task adoption. A task-subtask relation of the type all means
that all applicable subtasks are adopted. A task-subtask relation
of the type one means that only one of the applicable subtasks

MALLOW’009: Turin, Italy, September 7-10, 2009

216

is adopted. The term seq refers to sequential and in such a
task-subtask relation all subtasks are adopted, but only one by
one in a specific order.

When a task is achieved it can be dropped. Task achieve-
ment depends either on state S, i.e. the conditions in the envi-
ronment, or on achievement of a task’s subtasks. An example
of the first possibility is that the task to extinguish a fire is
achieved when the fire is out. The second possibility occurs
when the environment does not immediately give feedback on
whether a task has been performed successfully. For instance,
the task to report something can be achieved by sending an
email, but one does not directly know if the email is read and
understood. In such a cases task performance depends on task
execution, that is, if a task is executed it is assumed to be
achieved.

In our task hierarchy language, task achievement of prim-
itive tasks always depends on task execution, and primitive
tasks are thus always dropped after execution. Task achieve-
ment of non-primitive tasks either depends on conditions
in state S, or on achievement of a task’s subtasks. If the
achievement of a task depends on the achievement of its
subtasks, the relation with its subtasks defines the dependence
relation. A task with a task-subtask relation of the type all
is achieved when all applicable subtasks are achieved. A task
with a task-subtask relation of the type one is achieved when
exactly one of its subtasks is achieved. A task with a task-
subtask relation of the type seq is achieved when all of its
subtasks are achieved one by one, in the right order.

For each task holds that it either is achieved or not. There
are several reasons for not allowing partially successful task
executions. First, it is often hard to determine the measure
of success of a task execution. Second, the task domains we
aim at are of a procedural nature; if a task is not executed
satisfactorily, alternative actions have to be taken, otherwise
not. Third, the easiest way to represent partially succeeded
tasks would be with a numerical approach, which makes it
more difficult to provide explanations. The last two reasons
together show that the domains we consider are appropriate
for developing self-explaining agents.

B. An example: a firefighting agent

In this section we introduce an agent that could be one of
the virtual characters in a scenario to train the head of a crisis
management team. In such training, the trainee, who is playing
the head, is confronted with a crisis he has to solve. A part
of his tasks is to instruct and monitor the leaders of several
teams, which are played by intelligent agents. The agent in
this example is a firefighter, leading a firefighting team. The
firefighting agent’s tasks consist of receiving an attack plan
from its head (the trainee) and pass corresponding instructions
to its team, monitor the execution of the plan, and finally,
report to the head that the incident has been solved.

Figure 1 shows the task hierarchy of the firefighting agent
during the plan execution phase. Its two main occupations
in this phase are checking the plan execution by its team,
which involves dealing with a fire, victims and explosives,

Fig. 1. Part of the firefighter’s task hierarchy

and reporting its observations to the head. Usually, the
firefighter reports several times to the head, and it can report
on one or more aspects of the incident at the same time. A
representation of the task hierarchy in figure 1 in the task
hierarchy representation language just introduced looks as
follows.

Monitor(all,[(Check(X),true),(Report,true)])
Check(X)(all,[(Check(Fire),true),(Check(Victims),true),

(Check(Explosives),true)])
Check(Fire)(prim,[])
Check(Victims)(prim,[])
Check(Explosives)(prim,[])
Report(seq,[(ContactHead(Y),torep(X)),(Inform(X),incontact)])
ContactHead(Y)(one,[(ContactHead(Member),available(member)),

(ContactHead(Self),not available(member)])
ContactHead(Member)(prim,[])
ContactHead(Self)(prim,[])
Inform(X)(all,[(Inform(Fire),torep(Fire))),(Inform(Victims),

torep(Victims)),(Inform(Explosives),torep(Explosives))])
Inform(Fire)(prim,[])
Inform(Victims)(prim,[])
Inform(Explosives)(prim,[])

In this representation the conditions C for task adoption and
the task’s relations Type, which are not shown in figure 1, are
given. For example, available(member) means that there is a
team member available, and torep(X) means that there is some
information X that has not been reported to the head yet.

The all relation of the task Monitor denotes that the
Check(X) and Report tasks are both adopted. To report,
the firefighter has to contact the head and report about the
different aspects of the incident. These two tasks have to be
performed one by one and in this order, which is denoted
by a seq relation. The fire-fighter agent can either contact
the head itself, ContactHead(Self), or let a team member do
it, ContactHead(Member). The one relation represents that
executing one of these options should be sufficient to achieve
contact with the head ContactHead(Y). Finally, the different
aspects of the incident all have to be checked and reported,
but the order in which they are checked and reported depends
on how each of the aspects develops. This is denoted by an
all relation.

MALLOW’009: Turin, Italy, September 7-10, 2009

217

IV. IMPLEMENTATION OF THE AGENT

The implementation of a self-explaining agent should fulfill
four requirements. First, it should be possible to explicitly
represent the agent’s beliefs and goals. As stated in the
introduction, the self-explaining agents should adopt the in-
tentional stance to explain their behavior, i.e. explaining their
actions in terms of goals. In section 3, we argued to connect
the generation and explanation of behavior, e.g. if goal G
makes an agent execute action A, G also explains why the
agent executed A. Therefore, to let agents generate intentional
explanations, they need to reason with beliefs and goals. The
second requirement is that the operationalization of the agent’s
reasoning elements should be present in the implementation
as well. Explanations should give insight into which elements
relate to each other, how they relate to each other and how
they interact. For instance, to achieve goal G it is necessary to
achieve subgoal Gi. Third, a self-explaining agent should be
able to introspect. An agent needs to have knowledge about its
own states and processes in order to explain them. The fourth
and last requirement is that a self-explaining agent needs to
have memory. To explain its actions, an agent not only needs
to have access to its states and processes at the time they occur,
but also has to memorize them for possible future use.

Concerning the first requirement, a declarative agent pro-
gramming language is needed. There are a number of agent
programming languages based on the BDI (belief desire inten-
tion) model [12], which do allow for explicit representations
of beliefs and goals. We have chosen to use 2APL [2] for our
implementation as it connects declarative aspects like beliefs
and goals to plans and actions, following from the interaction
between beliefs and goals. Introspection is also possible in
2APL, the agent can perform checks on its belief and goal
bases. A 2APL agent typically has no memory of its past
states, processes and actions; these are only implicitly present
in the interpreter. However, the agent’s belief base can be
considered as a memory, and a log about those aspects can
be created in its belief base. For a more detailed overview of
2APL see [2].

A. Task hierarchies vs. BDI models

Our aim is to translate task hierarchy representations as
discussed in section 3 to BDI-based agent programs. The
most important similarity between task hierarchies and BDI
models is that both reduce high-level entities into lower-
level ones. A difference is that the first only contains tasks
whereas the second makes a distinction between goals (desired
world states) and plans (sequence of actions or sub-plans
describing how a goal can be achieved). Table 1 shows the
correspondence between the elements in a task hierarchy and
a BDI-agent. An agent’s main task must be implemented as a
goal in order to generate plans and make the agent act, and
primitive tasks can only be implemented as plans. However,
the other tasks in the task hierarchy can be implemented as
either plans or goals. In this section we discuss the advantages
and disadvantages of representing tasks as goals or as plans.

Task hierarchy BDI agent
State Beliefs
Main task Goal
Subtask Goal or plan
Primitive task Action (atomic plan)

TABLE I
TASK HIERARCHIES VS. BDI AGENTS

Beliefs and goals of an agent are related to each other in
the sense that if an agent believes a certain fact, then the
agent should not pursue that fact as a goal. In general, a
goal remains in the agent’s goal base until it is achieved,
which is caused by sense actions leading to changes in
the agent’s belief base. In exceptional cases a goal can be
explicitly dropped by the agent (as part of a plan). Plans, in
contrast, are removed from an agent’s plan base once they
are executed. As a consequence, goals are more appropriate
for the implementation of tasks which are achieved by an
unknown number of actions (depending on the environment),
e.g. monitoring plan execution.

Another difference between plans and goals concerns the
way in which they are executed or achieved. The deliberation
cycle of an agent states which step the agent should perform
next, e.g. execute an action or apply a reasoning rule. In this
cycle, the rules that are applicable to goals (PG-rules) are
tried to be applied. But for plans, in contrast, plan by plan
is considered which rules (PC-rules) apply to that plan. Thus,
the order of goal execution depends on the order of the rules,
whereas the order of plan execution depends on the order of
the plans in the agent’s plan base. As a programmer it is easier
to exert control over the order of rules than over the order of
plans in a plan base because an agent’s rules remain the same,
but its plans change during program execution.

For domains in which the number and order of tasks to
be executed is fixed, it is easier to implement tasks as plans
because the agent program ensures that plans are executed in
the given order and dropped after execution automatically. In
general, however, implementing tasks as goals allows for more
flexibility because the number and order of actions to achieve
a goal may vary. Therefore, we argue to implement all tasks
in a hierarchy as goals, except for primitive tasks.

B. From task hierarchy to 2APL agent

In this section we discuss the translation of a task hierarchy
representation as introduced in section III to 2APL code. In
2APL, an agent’s beliefs are Prolog facts and rules, and the
belief base of a 2APL agents is a Prolog program. Thus,
from the beliefs x and y :- x, the belief y can be derived. To
reason with goals, so called PG-rules are used, which are of
the form Goal <- Belief | Plan. Informally this means that if
the agent believes Belief, then to achieve the Goal it should
execute Plan. To adopt a new goal (subtask), a Plan consists
of the action adopt(Subgoal), which means that the Subgoal
is added to the agent’s goal base. Dropping a goal is settled
by beliefs in the agent’s belief base. For each of the task
types (all, one, seq, prim) we show the transition from task
hierarchy representation to implementation. To ensure that
the program ’walks through’ the task hierarchy as desired,

MALLOW’009: Turin, Italy, September 7-10, 2009

218

we use the fact that the interpreter considers PG-rules from
top to bottom. More specific rules are implemented above
(and thus tried before) more general rules, so that the most
specific rule as possible is applied.

a) All tasks: For tasks of the type all, all applicable
subtasks are adopted. In the implementation, a PG-rule is
added for each subtask, thus an all-task with n subtasks is
implemented by n PG-rules. The task Monitor in our example
has an all relation with its subtasks: Monitor(all, [(Check(X),
true), (Report, true)]). The implementation looks as follows.

Monitor <- true | adopt(Check(X))
Monitor <- true | adopt(Report)

The first part of a rule is a check on the agent’s goal base.
Both PG-rules are only applied if Monitor is one of the agents
goals. The second part of the PG-rule is a check on the agent’s
belief base. In this case, the guards of both rules are always
true, i.e. the applicability of the subtasks is independent of
the agent’s beliefs. The body of the two rules states that the
goals Check(X) and Report have to be adopted, respectively.
If a subtask would only have to be adopted under certain
circumstances, these conditions can be specified in the guard
of the rule.

In 2APL, if a goal (a desired world state) is believed to be
true, that goal is dropped. For some goals it holds that they are
achieved if a certain situation in the environment is true. For
example, the goal to extinguish a fire can be dropped when
the agent believes that there is no fire.

ExtinguishFire :- not fire.

Other goals are achieved when its subtasks have been achieved.
For those goals, to ensure that they are dropped when neces-
sary, beliefs according to the following example should be in
the agent’s belief base.

Monitor :- Check(X), Report.

The code states that when both Check(X) and Report are
finished successfully, the Monitor task can be dropped. If the
goal Report would only be applicable under conditions C, the
following rule would have to be added.

Report :- not C.

The rule ensures that if a subtask is not applicable (in the
example when not C), that subtask does not have to be
actively achieved in order to achieve its main task. Note that
in some situations a task is achieved without executing any
action, e.g. when there is no incident.

b) One tasks: For tasks of type one holds that only one
of their subtasks is adopted. A one-task with n subtasks is im-
plemented by n PG-rules. The task G(one,[(G1,C1),(G2,C2)]),
for example, is implemented as follows.

G <- C1 | adopt(G1)
G <- C2 | adopt(G2)

C1 and C2 denote exclusive situations to ensure that only one
sub-goal is adopted.

The goal G can be dropped either if a certain situation in
the environment is true, or if one of the sub-goals is achieved.
The last is implemented in the agent’s belief base as follows.

G :- G1.
G :- G2.

Two separate beliefs are needed to express the dropping
condition of goal G because G might be achieved by G1 or
by G2.

c) Seq tasks: For tasks of the type seq, all of their
subtasks are adopted, but one by one and in a specific
order. For example, the task Report(seq, [(ContactHead(Y),
torep(X)), (Inform(X), incontact)]) is implemented as follows.

Report <- torep(X) | adopt(ContactHead(Y))
Report <- incontact | adopt(Inform(X))

The head of the rule contains the task for which subtasks
need to be achieved. The guard of the rule contains conditions
under which a rule can be adopted. As with tasks of the type
one, the conditions specify unique circumstances here, so that
only one subtask is executed at a time. Because the subtasks
must be achieved in a specific order, the guards of the rules
are beliefs related to goals, where the goal is the previous
task in the sequence. For instance, the firefighter agent only
starts to inform the head when it believes it is in contact. The
belief torep(X) can be derived from the belief base if there is
a priority that has been checked, but not yet been reported to
the head, which is implemented as follows.

torep(X) :- Check(X), not Inform(X).

In general, a task with relation seq can be dropped if its last
subtask is achieved.

Report :- Inform(X).

There is one exception. Namely, if the subtasks of a task
of the type seq are primitive tasks, only one PG-rule is
needed. For instance, a task with three subtasks who have
to be executed one by one in a fixed order is implemented as
follows.

Head <- Guard |
{ PrimTask1; PrimTask2; PrimTask3 }

As the order of the primitive subtasks is fixed and they can
be executed immediately, it is not necessary to use different
PG-rules. The different subtasks are added to the agent’s
plans base, and automatically executed in the right order.

d) Prim tasks: Primitive tasks are not divided into further
subtasks and therefore implemented as plans. The following
code shows an example of a task with the relation one to
its primitive subtasks, namely ContactHead(Y)(one, [(Contact-
Head(Member), available(member)), (ContactHead(Self), not
available(member)]).

MALLOW’009: Turin, Italy, September 7-10, 2009

219

ContactHead(Y) <- available(member) |
ContactHead(Member)

ContactHead(Y) <- not available(member) |
ContactHead(Self)

In this example the task ContactHead(Y) has two primitive
subtasks. Instead of adopting a new goal, they can immediately
be executed as actions in the environment. The implementation
of primitive tasks with a parent task of the type all is similar
to the example above.

As primitive tasks are implemented as plans, they are auto-
matically removed from the agent’s plan base once executed.
If the goal for which they were executed is only dropped when
certain conditions in the environment become true, they might
be executed again. The other possibility is that their parent
goal is dropped when (one of) its subtasks are (is) executed.
In that case, the primitive task should involve an action in
the environment, and add a belief to the agent’s belief base
which indicates that the action has been executed. In section
V it will be explained how actual actions and belief update
actions can be represented connected to each other, such that
they are seen as one atomic action and their execution cannot
be interrupted.

V. EXPLAINING ACTIONS

As stated before, self-explaining agents should be able to
introspect and memorize; they need to have knowledge about
their own past states and processes in order to explain them. In
2APL, the information required for explanations is present in
the program and the interpreter, but not available to the agent
for explanation at a later moment in time. One possibility is
to investigate how the information present in the interpreter
could be made accessible for explanation purposes, but in this
paper we chose to focus on a solution that does not require
adaptations to the programming language.

In order to reproduce past actions and motivations, an agent
needs to store them at the time it has access to them, which is
during task execution. The agent can store its present beliefs,
goals and actions in a so-called explanation log in its belief
base. Such a log can be created by connecting belief update
actions to actual actions of the agent. For instance, when the
agent adopts goal G at time t, it also logs that it adopted goal
G at t.

Monitor <- true |
[adopt(Check(X));

UpdateLog(Check(X),t)]

The [] brackets in the code ensure that the execution of the two
plans adopt() and UpdateLog() can not be interrupted by any
other process; they are considered as one atomic plan. Actions
that update an agent’s explanation log can be connected any
’normal’ action of the agent. Such update actions can of course
be connected to all actions of the agent, but some updates may
not be needed in an explanation. Therefore, the decision what
to log and what not should depend on the information that is
desired in an explanation.

In order to explain its behavior, an agent needs a log of
past actions, but it also needs to have knowledge about its own
task hierarchy. This knowledge is represented by beliefs of the
type Task(T,[T1,..,Tn]), where T1 to Tn are T’s subtasks. The
agent has such a belief for each task it could possibly adopt.
For example, our firefighting agent has the following beliefs
about its task hierarchy in its belief base.

Task(Inform(X),[Inform(Fire),
Inform(Victims),Inform(Explosives)]).

Task(Report,[ContactHead(Y),Inform(X)]).
Task(Monitor,[Check(X),Report]).

With a combination of the beliefs containing the agent’s
complete task structure and beliefs that were logged dur-
ing task execution, explanations of any action can be cre-
ated. An extensive explanation is for example I executed
Inform(Victims) to achieve the goal Inform(X), which was
executed to achieve the goal Report, which was executed
to achieve the goal Monitor. However, the complete trace
of tasks responsible for one action might provide too much
information; especially in bigger agent models it is crucial
to make a selection of explaining elements. Such a selection
consists of tasks either with a higher or a lower position in
the hierarchy, yielding more abstract or specific explanations,
respectively. An abstract explanation in this case would be:
I executed Inform(Victims) because I had the goal Monitor.
A specific explanation would be: I executed Inform(Victims)
because I had the goal Inform(X). More advanced explanation
facilities could be interactive. For instance, the self-explaining
agent starts with providing an abstract explanation, but if the
trainee asks for extra information, more specific goals are
provided.

VI. RELATED WORK

Already at an early stage in expert systems research it was
recognized that advices or diagnoses from decision support
systems should be accompanied by explanations [17], [4].
An often made distinction is that between rule trace and
justification explanations [17]. Rule trace or how explanations
show which rules or data a system uses to reach a conclu-
sion. Justification or why explanations, in addition, provide
the domain knowledge underlying these rules and decisions.
Research shows that users of expert system often prefer why
to how explanations. An important difference between expert
systems and self-explaining agents is that the self-explaining
agents are proactive, i.e. they have goals. Therefore, the goals
because of which an agent executed an action also form the
explanation of that action.

Explanations in virtual training systems are often pro-
vided by intelligent tutoring systems (ITSs), for an overview
see [10]. However, ITSs mostly provide hints and eventually
recipes of what is to be done. There are a few approaches of
self-explaining agents in virtual training systems that provide
explanations from the agents’ perspectives. The Debrief sys-
tem [8] explains actions by what must have been an agent’s
underlying beliefs. However, the explanations do not provide

MALLOW’009: Turin, Italy, September 7-10, 2009

220

the agent’s actual beliefs or goals. The XAI system [16] pro-
vides explanations about agents’ physical states, e.g. position
and health, but not about their motivations. An improved
version of the XAI system [3] aims to provide explanations
of agents’ motivations by making use of information made
available by the simulation. However, simulations often do
not provide information about agents’ motivations, and if so,
the explanations are not based on the actual motivations of the
agents.

Our approach of planning has similarities with HTN-
planning approaches. Currently, one of the most extensive ac-
counts of general (HTN) planning is the GPGP approach [7]).
GPGP (generalized partial global planning) is a framework
for the coordination of small teams of agents. Our approach
differs on the following aspects with the GPGP approach. First,
whereas the GPGP approach is designed for coordination of
a group of agents, our approach is designed for planning of a
single agent. Second, GPGP explicitly defines non-local task
structures: relations between two goals at any place in the
goal tree. In our model these relations are not specified, but
implicitly present in the adoption conditions of the goals. For
instance, the condition to adopt a goal is the achievement of
another goal. Finally, the GPGP approach involves partially
successful tasks, whereas we only allow tasks to be successful
or not. The reasons for this choice are explained in the last
paragraph of section III-A.

Sardina et al also used the similarities between BDI sys-
tems and HTN planners, for an approach on planning [14].
They present formal semantics for a BDI agent programming
language which incorporates HTN-style planning as a built-in
feature. In contrast to their approach, we do not incorporate
HTN-planning in a BDI-based agent program; instead, we give
a mapping of the former to the latter.

Self-explaining agents need to have knowledge about their
past mental states and actions. Such knowledge is called an
episodic or autobiographic memory. Most research on agents
with an episodic memory focuses on how the memory can
improve an agent’s performance. In our approach, agents do
not use their episodic memory during task execution, but
only afterwards, to explain their behavior. Nevertheless, our
approach has similarities with the work of Brom et al [1] as
they also use a hierarchical structure to model their agents,
both in the agent program and the episodic memory.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a methodology for de-
veloping self-explaining agents in virtual training systems.
The methodology involves: i) a determination of the agent’s
required behavior, ii) the construction of a task hierarchy,
iii) an implementation of the self-explaining agent in a BDI-
based agent programming language, and iv) the addition of
explanation capabilities.

Single phenomena and processes can be explained in many
different ways, but providing complete explanations is neither
possible, nor desired [5]. By using a BDI-based approach,
the scope of possible explanations is restricted; actions are

only explained in terms of beliefs and goals. Still, one action
might have many underlying goals, and some selection on
the information provided in an explanation might increase
its effectiveness. For example, abstract explanations are given
by just providing goals higher in the task hierarchy, and
more specific explanations only consist of elements lower in
the hierarchy. We are currently developing and implementing
actual self-explaining agents for a specific virtual training
system. When finished, we will be able to test the usefulness
of the provided explanations, and investigate e.g. whether there
is a general desired abstraction level of explanations.

ACKNOWLEDGMENTS

This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific Re-
search (NWO) and the Netherlands ICT Research and Inno-
vation Authority (ICT Regie).

REFERENCES

[1] C. Brom, K. Peskova, and J. Lukavsky. What does your actor remember?
towards characters with a full episodic memory. In M. Cavazza and
S. Donikian, editors, Proc. of ICVS 2007, pages 89–101. Springer-Verlag
Berlin Heidelberg, 2007.

[2] M. Dastani. 2APL: a practical agent programming language. Au-
tonomous Agents and Multi-agent Systems, 16(3):214–248, 2008.

[3] D. Gomboc, S. Solomon, M. G. Core, H. C. Lane, and M. van Lent.
Design recommendations to support automated explanation and tutoring.
In Proc. of the 14th Conf. on Behavior Representation in Modeling and
Simulation, Universal City, CA., 2005.

[4] S. Gregor and I. Benbasat. Explanation from intelligent systems:
theoretical foundations and implications for practice. MIS Quarterly,
23(4):497–530, 1999.

[5] F. Keil. Explanation and understanding. Annual Reviews Psychology,
57:227–254, 2006.

[6] B. Keysar, S. Lin, and D. Barr. Limits on theory of mind use in adults.
Cognition, 89:25–41, 2003.

[7] V. Lesser, K. Decker, N. Carver, A. Garvey, D. Neiman, M. Nagen-
dra Prasad, and T. Wagner. Evolution of the GPGP/TAEMS domain-
independent coordination framework. Autonomous agents and muli-
agent systems, 9:87–143, 2004.

[8] W. Lewis Johnson. Agents that learn to explain themselves. In Proc. of
the 12th Nat. Conf. on Artificial Intelligence, pages 1257–1263, 1994.

[9] S. Louchart and R. Aylett. Managing a non-linear scenario - a narrative
evolution. In Virtual Storytelling, pages 148–157. Springer Berlin, 2005.

[10] T. Murray. Authoring intelligent tutoring systems: An analysis of
the state of the art. International Journal of Artificial Intelligence in
Education, 10:98–129, 1999.

[11] S. Nickerson. How we know -and sometimes misjudge- what others
know: Imputing one’s own knowledge to others. Psychological Bulletin,
125(6):737–759, 1999.

[12] A. Rao and M. Georgeff. Modeling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc.
of the 2nd Internat. Conf. on Principles of Knowledge Representation
and Reasoning, pages 473–484, San Mateo, CA, USA, 1991. Morgan
Kaufmann publishers Inc.

[13] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach.
Pearson Education, Inc., New Jersey, USA, second edition, 2003.

[14] S. Sardina, L. De Silva, and L. Padgham. Hierarchical planning in BDI
agent programming languages: A formal approach. In Proc. of AAMAS
2006. ACM Press, 2006.

[15] J. Schraagen, S. Chipman, and V. Shalin, editors. Cognitive Task
Analysis. Lawrence Erlbaum Associates, Mahway, New Jersey, 2000.

[16] M. Van Lent, W. Fisher, and M. Mancuso. An explainable artificial
intelligence system for small-unit tactical behavior. In Proc. of IAAA
2004, Menlo Park, CA, 2004. AAAI Press.

[17] R. Ye and P. Johnson. The impact of explanation facilities on user
acceptance of expert systems advice. Mis Quarterly, 19(2):157–172,
1995.

MALLOW’009: Turin, Italy, September 7-10, 2009

221

An Integrated Semantics of Social Commitments
and Associated Operations

M. El-Menshawy
Depart. of Electrical and Computer Engineering

Concordia University, Montreal, Canada
m elme@encs.concordia.ca

J. Bentahar, R. Dssouli
Concordia Institute for Inf. Sys. Engineering

Concordia University, Montreal, Canada
{bentahar, dssouli}@ciise.concordia.ca

Abstract—In this paper, we develop a unified semantic model
for social commitments and associated operations. We propose a
logical model based on CTL∗ with modalities of commitments
and associated operations that represent the dynamic behavior
of agents. Our semantics differs from the previous proposals
in which the operations used to manipulate commitments (e.g.
creation, fulfillment, violation, withdrawn, etc.) have always been
defined as axioms or constrains on top of the commitment
semantics. The advantage of this logical model is to gather the
direct semantics of these operations and the semantics of social
commitments (propositional and conditional) within the same
framework. Furthermore, this paper proposes a new definition
of assignment and delegation operations by looking at the content
of the assigned and delegated commitment that could be different
from the content of the original commitment in terms of deadline.
Finally, to stress the soundness of the model, we prove that the
proposed semantics satisfies some properties that are desirable
when modeling commitment-based multiagent systems.

I. INTRODUCTION

The importance of defining suitable and formal semantics
of social commitments has been broadly recognized for multi-
agent systems. Particulary, social commitments have been used
for agent communication, coordination and artificial institu-
tions [22]. In communication protocols, commitments can
capture a high level meaning of interaction as opposed to low-
level operational representation [24], [14], [9]. However, the
meanings of messages exchanged between interacting agents
can also be interpreted directly into social commitments in an
operational semantics style [11], [6].

Some interesting semantic frameworks for social commit-
ments have already been proposed using different approaches
such as branching time logics (CTL∗ and CTL±) [2], [3],
[13], [19], [25]. Recently, a model-theoretic semantics of
social and dialogical commitments based on linear-time logic
(LTL) has been introduced in [20] and the proposed postulates
are reproduced in [7] to define semantics of commitment
operations in distributed systems.

In general, two categories of semantic frameworks for social
commitments can be distinguished. In the former category,
commitment operations are formalized based on Singh’s pre-
sentation [18] as axioms or constraints on top of commitment
semantics [6], [9], [13], [14], [24]. These axioms are repre-
sented either as reasoning rules, updating rules or enforcing
rules to evolve the truth of commitments’ states. However, the

real meanings of commitment operations themselves (e.g. Cre-
ate, Fulfill, etc.) are not captured. In the later category, social
commitments are formalized using object-oriented paradigm to
advance the idea of commitments as data structure [11]. Thus,
the main objective of defining clear, practical, and verifiable
semantics of commitments and associated operations in the
same framework is yet to be reached.

The objective of this paper aims to propose a new semantics
not only for social commitments, but also for all the opera-
tions used to manipulate commitments. For verification issues
and development methodologies of agent-oriented software
engineering, the semantics of these operations should not be
only captured by some enforced rules like in [13], but also
integrated in the same framework [15]. In essence, this work
is a continuation of our two previous publications [3], [15]. In
the former one [3], we have developed a framework unifying
commitments, actions on commitments and arguments that
agents use to support their actions. In the second one [15],
we have proposed a new logical semantics of social commit-
ments and associated two-party operations based on Branching
Space-Time (BST) logic. BST-logic provides this semantics
with agent life cycle, space-like dimension and causal relation
between interacting agents in the same (physical or virtual)
space. Specifically, here we refine the semantics of some
operations (e.g., Create, Withdraw, Fulfill) to overcome the
state explosion problem that arises in [3], complete the life
cycle of commitment operations introduced in [15], and define
a new semantics of multi-party operations, such as Delegate
and Assign using an extension of CTL∗.

The primary contribution of this paper is the unified log-
ical model for commitments and associated operations. In
fact, the paper introduces a new semantics of withdrawal,
fulfilment, violation and release operations using the notions
of accessible and non-accessible paths. New definitions of
assignment and delegation operations are also proposed by
taking into account the fact that the assigned and delegated
commitment’s deadline could be different form the deadline
of the original commitment. Some desirable properties such as
“the same social commitment (with the same identifier) cannot
be created twice” or “if it is fulfilled, the commitment cannot
be fulfilled again or withdrawn in the future” are captured,
which makes the model sound. The proposed logical model
uses a Kripke-like computational structure where accessibil-

MALLOW’009: Turin, Italy, September 7-10, 2009

222

ity relations for commitment modalities are defined using
a computational interpretation, which makes our semantics
computationally grounded [23] (this idea will be detailed
later). This compotional interpretation is suitable for formal
verification using model checking to verify interacting agent-
based systems against given properties [4], but model checking
algorithm is out of scope of this paper. Furthermore, the
logical model presented here is expressive because the content
of commitments are CTL*-like path formulae [10] and not
state formulae and their semantics is expressed in terms of
accessible paths and not in terms of deadlines.

The remainder of this paper is organized as follows. Section
II describes the notion of social commitment and its formal
notation extended from [15]. Given this context, Section III
presents the syntax and semantics of the main elements of our
logical model. Subsequently, Section IV proves some logical
properties based on the defined semantics. Finally, the paper
ends in Section V with a discussion of related work.

II. SOCIAL COMMITMENTS

A. Formal Notation

A commitment is an engagement made by one agent, the
debtor, and directed towards another agent, the creditor, so
that some fact is true. The debtor must respect and behave
in accordance with his commitments. These commitments
are contextual, manipulable and possibly conditional [18].
Furthermore, commitments are social and observable by all
the participants. Consequently, social commitments (SC) are
different from the agent’s private mental states like beliefs,
desires and intentions. Several approaches assume that agents
will respect their commitments. However, this assumption is
not always guaranteed in real-life scenarios (e.g in e-business)
since violation can occur if agents are malicious, deceptive,
malfunctioning or not reliable. Thus, it is natural to introduce
violation operation of social commitments along with their
satisfaction. We can also use a legal context of commitments
to define rules that impose penalties on the debtors that violate
their commitments. Below, we distinguish between two types
of social commitments: propositional and conditional.

Definition 1: Propositional social commitments are related
to the state of the world and denoted by SCp(id, Ag1, Ag2, φ)
where id is the commitment’s identifier, Ag1 is the debtor,
Ag2 is the creditor and φ is a well-formed formula (expressed
in some logics) representing the commitment content.

The basic idea is that Ag1 is committed towards Ag2 that
the propositional formula φ is true. We suppose that the
identifier id is unique so that there is at most one commitment
with a particular identifier. In several situations, agents can
only commit when some conditions are satisfied. Conditional
commitments are introduced to capture this issue.

Definition 2: Conditional social commitments are denoted
by SCc(id, Ag1, Ag2, τ, φ) where id, Ag1, Ag2, and φ have

the same meanings as in Def.1 and τ is a well-formed formula
representing the condition.

B. Social Commitment Life Cycle

Having explained the formal definitions of commitments, in
this section we present their life cycle to specify the relation-
ship between commitments’ states. Figure 1 describes this life
cycle using UML state diagram. The life cycle proceeds as
follows:

• The commitment could be conditional or unconditional
(i.e. propositional). This is represented by the selection
operator. The first operation an agent can perform on
a commitment is creation. When created, a conditional
commitment can move to the state of created uncondi-
tional commitment if the condition is true. Otherwise, the
conditional commitment moves to the final state.

• When the unconditional commitment is created, then
it may move to one of the following states: fulfilled,
violated, withdrawn, released, delegated or assigned.

• The commitment can be withdrawn if the debtor decides
to cancel it. Only the debtor is able to perform this action
without any intervention from the creditor.

• The commitment is fulfilled if its content is satisfied by
the debtor.

• The social commitment is violated if its content is vio-
lated by the debtor.

• The social commitment can be released by the creditor
so that the debtor is no longer obliged to carry out his
commitment.

Selection

[has_been _Released]

Fulfilled Violated Withdrawn

[has_been_ Violated]

[has_been_ Fulfilled] [has_been_ Withdrawn]

DelegatedReleased Assigned

[has_been _
Assigned]

[has_been _Delegated]

[Delegate_ new _ debtor]

[Assign_new_creditor]

Created
Conditional commitment

Created
Uncoditional commitment

Condition

[condition_ not_ met]

[condition_ met]

Creditor's action

Debtor's action

Legend

Fig. 1. Life cycle of social commitments

• The social commitment can be assigned by the creditor,
which results in releasing this creditor from the commit-
ment and having a new unconditional commitment with
a new creditor.

MALLOW’009: Turin, Italy, September 7-10, 2009

223

• The social commitment can be delegated by the debtor,
which results in withdrawing this debtor from the com-
mitment and delegating his role to another debtor within
a new commitment.

III. LOGICAL MODEL OF SOCIAL COMMITMENTS

This section introduces the syntax and semantics of the dif-
ferent elements of our formal language L. This propositional
language uses extended Computation Tree Logic (CTL*)[10]
with past operators and two additional modalities SCp for
propositional and SCc for conditional commitments, and Act
for actions applied to commitments. We refer to the resulted
branching time logic as CTL∗sc. The time in our model
is discrete and branching in future to represent all choices
that agents have when they participate in conversations and
linear in the past. On the other hand, the dynamic behavior of
agents is captured by actions these agents perform on different
commitments during conversations.

A. Syntax

Let Φp be a set of atomic propositions and ID be a set of
identifiers. AGT is a set of agent names and ACT is a set of
actions used to manipulate commitments (e.g. Create, Fulfill,
etc.). L and Act are nonterminals corresponding to L and
ACT , respectively. Furthermore, we use the following con-
ventions: id, id0, id1, etc. are unique commitment identifiers
in ID, Ag1, Ag2, Ag3, etc. are agent names in AGT , p, q, etc.
are atomic propositions in Φp and φ, ψ, etc. are formulae in L.
Table I gives the formal syntax of L expressed in Backus-Naur
Form (BNF) grammar where “→” and “|” are meta-symbols
of this grammar.

L1. L→ C | Act | p | ¬L | L ∨ L | X+L | X−L | L U+L |
L U−L | AL | EL

L2. C → SCp(id, Ag1, Ag2, L) | SCc(id, Ag1, Ag2, L, L)

L3. Act→ Create(Ag, C) | Fulfill(Ag, C) | V iolate(Ag, C)

| Withdraw(Ag, C) | Release(Ag, C)

| Assign(Ag1, Ag2, C) | Delegate(Ag1, Ag2, C)

TABLE I
THE SYNTAX OF CTL∗sc LOGIC

The intuitive meanings of the most constructs are straight-
forward (from CTL* with next (X+), previous (X−), until
(U+), and since (U−) operators). A and E are the univer-
sal and existential path-quantifiers over the set of all paths
starting from the current moment. Aφ (resp. Eφ) means
that φ holds along all (some) paths starting at the current
moment. Furthermore, there are some useful abbreviations
based on temporal operators (X+, X−, U+, U−): (sometimes
in the future) F+φ , true U+φ; (sometimes in the past)
F−φ , true U−φ; (globally in the future) G+φ , ¬F+¬φ
and (globally in the past) G−φ , ¬F−¬φ. We also introduce
L− ⊂ L as the subset of all formulae without temporal
operators.

B. Semantics of CTL∗sc

1) The formal model:
Our model M for L is based on a Kripke-like structure with
seven-tuple, M = 〈S, T,R,V,Rscp,Rscc,F〉, where:
• S = {s0, s1, s2, . . .} is a set of states.
• T : S → T P is a function assigning to any state the

corresponding time stamp where T P is a set of time
points.

• R ⊆ S × S is a total transition relation, that is, ∀si ∈
S, ∃ sj ∈ S : (si, sj) ∈ R, indicating branching time.
If there exists a transition (si, sj) ∈ R, then we have
T (si) < T (sj). A path P is an infinite sequence of states
P = 〈s0, s1, s2, . . .〉 where ∀ i ∈ N, (si, si+1) ∈ R. We
denote the set of all paths by σ and the set of all paths
starting at si by σsi .

• V : Φp → 2S is a valuation function that assigns to each
atomic proposition a set of states where the proposition
is true.

• Rscp : S × AGT × AGT → 2σ is a function producing
an accessibility modal relation for propositional commit-
ments.

• Rscc : S×AGT ×AGT → 2σ is a function producing an
accessibility modal relation for conditional commitments.

• F : L → L− is a function associating to each formula in
L a corresponding formula in L−.

The function Rscp associates to a state si the set of paths
starting at si along which an agent commits towards another
agent. These paths are conceived as merely “possible”, and
as paths where the commitments’ contents made in si are
true. The computational interpretation of this accessibility
relation is as follows: the paths over the model M are seen
as computations, and the accessible paths from a state si
are the computations satisfying (i.e. computing) the formulae
representing the contents of the commitments made at that
state by a given agent towards another given agent. For
example, if we have: P ′ ∈ Rscp(si, Ag1, Ag2), then the
commitments that are made in the state si by Ag1 towards
Ag2 are satisfied along the path P ′ ∈ σsi .
Rscc is similar to Rscp and it gives us the paths along which

the resulting unconditional commitment is satisfied if the
underlying condition is true. Because it is possible to decide
if a path satisfies a formula (see the semantics in this section),
the model presented here is computationally grounded
[23]. In fact, the accessible relations map commitment
content formulae into a set of paths that simulate the
behavior of interacting agents. The logic of propositional
and conditional commitments is KD4 modal logic and the
accessibility modal relations Rscp and Rscc are serials [3].
The function F is used to remove the temporal operators
from a formula in L. For example: F(X+X+p) = p and
F(SCp(id, Ag1, Ag2, X+q)) = SCp(id, Ag1, Ag2, q).

2) Semantics of social commitments:
Having explained our formal model, in this section we define

MALLOW’009: Turin, Italy, September 7-10, 2009

224

the semantics of the elements of L relative to a model
M , state si, and path P . The notation 〈si, P 〉 refers to
the path P starting at si meaning that P ∈ σsi where
P = 〈si, si+1, si+2, . . .〉. If P is a path starting at a given state
si, then prefix of P starting at a state sj (T (sj) < T (si)) is
a path denoted by P ↓ sj and suffix of P starting at a state
sk (T (si) < T (sk)) is a path denoted by P ↑ sk. Because
the past is linear, sj is simply a state in the unique past of si
such that P is a part of P ↓ sj . sk is in the future of si over
the path P such that P ↑ sk is part of P . If si is a state, then
we assume that si−1 is the previous state in the linear past
((si−1, si) ∈ R) and si+1 is the next state on a given path
((si, si+1) ∈ R).

In the metalanguage, we use the following symbols: &
means “and”, ⇔ means “is equivalent to” and ⇒ means
“implies that”. The logical equivalence is denoted ≡. As
in CTL∗, we have two types of formulae: state formulae
evaluated over states and path formulae evaluated over paths
[10]. M, 〈si〉 |= φ means “the model M satisfies the state
formula φ at si”. M, 〈si, P 〉 |= φ means “the model M
satisfies the path formula φ along the path P starting at si”. A
state formula φ is satisfiable iff there are some M and si such
that M, 〈si〉 |= φ. A path formula φ is satisfiable iff there are
some M , P , and si such that M, 〈si, P 〉 |= φ. A state formula
is valid when it is satisfied in all models M , in all states si in
M . A path formula is valid when it is satisfied in all models
M , in all paths P in M , in all states si. The formal semantics
of CTL∗ and SCp, SCc modalities of our model is illustrated
in Table II.

M1. M, 〈si〉 |= p iff si ∈ V(p) where p ∈ Φp

M2. M, 〈si〉 |= ¬ φ iff M, 〈si〉 2 φ

M3. M, 〈si〉 |= φ ∨ ψ iff M, 〈si〉 |= φ or M, 〈si〉 |= ψ

M4. M, 〈si〉 |= Aφ iff ∀ P ∈ σsi : M, 〈si, P 〉 |= φ

M5. M, 〈si〉 |= Eφ iff ∃ P ∈ σsi : M, 〈si, P 〉 |= φ

M6. M, 〈si〉 |= SCp(id, Ag1, Ag2, φ) iff
∀ P ∈ Rscp(si, Ag1, Ag2) M, 〈si, P 〉 |= φ

M7. M, 〈si〉 |= SCc(id, Ag1, Ag2, τ, φ) iff
∀ P ∈ Rscc(si, Ag1, Ag2) M, 〈si, P 〉 |= τ
⇒M, 〈si, P 〉 |= SCp(id, Ag1, Ag2, φ)

M8. M, 〈si, P 〉 |= φ iff M, 〈si〉 |= φ

M9. M, 〈si, P 〉 |= ¬ φ iff M, 〈si, P 〉 2 φ

M10. M, 〈si, P 〉 |= φ ∨ ψ iff M, 〈si, P 〉 |= φ or M, 〈si, P 〉 |= ψ

M11. M, 〈si, P 〉 |= X+φ iff M, 〈si+1, P ↑ si+1〉 |= φ

M12. M, 〈si, P 〉 |= φ U+ ψ iff ∃ j ≥ i : M, 〈sj , P ↑ sj〉 |= ψ &
∀ i ≤ k < j M, 〈sk, P ↑ sk〉 |= φ

M13. M, 〈si, P 〉 |= X−φ iff M, 〈si−1, P ↓ si−1〉 |= φ

M14. M, 〈si, P 〉 |= φ U− ψ iff ∃ j ≤ i : M, 〈sj , P ↓ sj〉 |= ψ &
∀ j < k ≤ i M, 〈sk, P ↓ sk〉 |= φ

TABLE II
SEMANTICS OF CTL∗ AND SCp , SCc MODALITIES

The semantics of state formulae is given from M1 to M7
and that of path formulae is given from M8 to M14. For
space limit reasons, we only explain the semantics of formulae
that are not in CTL*. M6 gives the semantics of propositional
commitment operator, where the state formula is satisfied in

the model M at si iff the content φ is true in all accessible
paths P starting at si. Similarly, M7 gives the semantics of
conditional commitment operator, where the state formula is
satisfied in the model M at si iff in all accessible paths P
if the condition τ is true, then the underlying unconditional
commitment is also true. The semantics of past operators X−

and U− is given by considering the linear past of the current
state si as prefix of the path P .

3) Semantics of actions on social commitments:
Having defined the semantics of commitments, below we
define the semantics of operations used to manipulate those
commitments and support flexibility. These operations are
of two categorizes: two-party operations: Create, Withdraw,
Fulfill, Violate and Release, and three-party operations:
Assign and Delegate because Assign and Delegate need
a third agent to which the new commitment is assigned
or delegated. The context and detailed exposition of these
operations are given in [13], [14], [18]. To simplify the
notations used in the semantics, we suppose that these actions
are momentary and do not need time to be performed.
Technically, this can be represented by allowing actions to be
performed on states or by supposing that transitions labeled
by these actions are connecting two states si and sj having
the same time stamp (T (sj) = T (si)). The first possibility
is adopted in this paper. Although actions are momentary,
action formulae are evaluated over paths. This is compatible
with the philosophical interpretation of actions, according to
which, by performing an action the agent selects a path or
history among the available paths or histories at the moment
of performing the action.

Creation action: the semantics of creation action of a propo-
sitional commitment (see Table III) is satisfied in the model M
at state si along path P iff (i) the commitment is established in
si (as a result of performing the momentary creation action);
and (ii) the created commitment was not established in the
past.

M15. M, 〈si, P 〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ)) iff
(i) M, 〈si, P 〉 |= SCp(id, Ag1, Ag2, φ) &

(ii) ∀ j < i, M, 〈sj〉 |= ¬SCp(id, Ag1, Ag2, φ)

TABLE III
SEMANTICS OF CREATION ACTION RELATIVE TO SCp

The semantics of creation action of a conditional commit-
ment (see Table IV) is defined in the same way.

M16. M, 〈si, P 〉 |= Create(Ag1, SCc(id, Ag1, Ag2, τ, φ)) iff
(i) M, 〈si, P 〉 |= SCc(id, Ag1, Ag2, τ, φ) &

(ii) ∀ j < i, M, 〈sj〉 |= ¬SCc(id, Ag1, Ag2, τ, φ)

TABLE IV
SEMANTICS OF CREATION ACTION RELATIVE TO SCc

Example 1: Let us consider a simple and modified case of
NetBill protocol to illustrate the semantics of different action

MALLOW’009: Turin, Italy, September 7-10, 2009

225

formulae. A customer (Cus) requests a quote for some goods
(rfq), followed by the merchant (Mer) sending the quote as
an offer. If the customer pays for goods, then the merchant
will deliver the goods, withdraw (within a specified time), or
not deliver. The customer can also release after receiving the
quote (see Fig.2).

S2

S3

S5

Cus: rfq

Mer: offer

Cus: pay

Mer: deliver

Cus: release

Mer: withdraw

S1

S4

S6

S7

S8Mer: not deliver

Fig. 2. Representation of NetBill

The offer message at state s2 means that Mer creates a
conditional commitment Create(Mer, SCc(id,Mer,Cus,
pay, delivergoods)) meaning that if the payment is
received, then Mer commits to deliver the goods to Cus.
〈s2, s3, s4, . . . 〉, 〈s2, s3, s5, s6, . . . 〉 and 〈s2, s3, s5, s8, . . . 〉
are not accessible paths for this commitment (i.e. are not
in Rscc(s2,Mer, Cus). However, 〈s2, s3, s5, s7, . . . 〉 is
an accessible path (i.e. is in Rscc(s2,Mer,Cus). As the
condition is true through 〈s2, s3, s5, s7, . . . 〉 (the customer
pays), the conditional commitment becomes unconditional:
SCp(id,Mer,Cus, delivergoods) along the same accessible
path. Before creating this unconditional commitment, Mer
checks that it has not been created before, as there is no
reason to create the same commitment twice.

Withdrawal action: the semantics of withdrawal action of
a propositional commitment (see Table V) is satisfied in the
model M at si along path P iff (i) the commitment was
created in the past at sj through the prefix P ↓ sj ; (ii)
this prefix is not one of the accessible paths via Rscp; and
(iii) at the current state si, there is still a possibility of
satisfying the commitment since there is a path P ′ whose
the prefix P ′ ↓ sj is still accessible using Rscp. Note that
the first argument of Rscp is sj where the commitment has
been created. This is because the accessible paths start from
the state where the commitment is created. Intuitively, when a
commitment is withdrawn along a path, the prefix of this path
from the creation state does not correspond to an accessible
path (condition ii).

M17. M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id1, Ag1, Ag2, φ)) iff
(i) ∃j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id1, Ag1, Ag2, φ))&

(ii) P ↓ sj /∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj ∈ Rscp(sj , Ag1, Ag2)

TABLE V
SEMANTICS OF WITHDRAWAL ACTION

Furthermore, a commitment can be withdrawn when its
satisfaction is still possible (condition iii), which is captured

by the existence, starting at the current moment, of an
accessible path the agent can choose (see Fig.3). In other
words, the agent Ag1 has another choice at the current
state, which is continuing in the direction of satisfying its
commitment. We also note that withdrawing a commitment
does not mean its content is false. For instance it can be
accidentally true even if the current path is not amongst the
accessible ones.

� ���������	
� �����
� �	
� �	�� ��� ����������	
� �����
� �	
� �	�� ���� � ��� � �
� � ������
� �	
� �	�� �� ��� ���������� ���� � !��������	�� �����
� �	
� �	�� �����

Fig. 3. Withdraw and Release actions at the state si along the path P

Example 2: The merchant Mer, before delivering the
goods to Cus, can withdraw the offer. Thus, there is no
accessible path for the commitment between Mer and
Cus at s6. At the same time, Mer still has a possibility
to satisfy its offer at state s5 through the accessible paths
〈s2, s3, s5, s7, . . . 〉.

Fulfillment action: the semantics of fulfillment action (see
Table VI) is defined in the same way as withdrawal. In (ii),
the prefix P ↓ sj of the current path P (along which the
commitment has been created) is accessible using Rscp; and
in (iii), at the current state si, there is still a possible choice
of not satisfying the commitment since a non-accessible path
P ′ ↓ sj exists. We notice that being accessible means that the
content φ is true along P ↓ sj . As for withdrawal, fulfillment
action makes sense only when a non-fulfilment action is still
possible.

M18. M, 〈si, P 〉 |= Fulfill(Ag1, SCp(id, Ag1, Ag2, φ)) iff
(i) ∃ j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ)) &

(ii) P ↓ sj ∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj /∈ Rscp(sj , Ag1, Ag2)

TABLE VI
SEMANTICS OF FULFILLMENT ACTION

Example 3: When the customer Cus pays for the goods
and the merchant Mer delivers the goods (within a specified
time), the merchant satisfies his commitment through
the accessible path 〈s2, s3, s5, s7, . . . 〉. At the moment
of satisfying the commitment, the merchant has still a
possibility of not satisfying it through the non-accessible path
〈s2, s3, s5, s6, . . . 〉.

Violation action: the semantics of violation action (see Table
VII) is almost similar to the semantics of withdrawal. The
main difference is related to the truth of the commitment’s

MALLOW’009: Turin, Italy, September 7-10, 2009

226

content, which is false in the case of violation (condition ii).
The fact that φ is false implies that P ↓ sj is not accessible,
but the reverse is not always true as explained above. Here
again, violation makes sense when a choice of satisfying the
commitment is still possible at the current state (condition iii).

M19. M, 〈si, P 〉 |= V iolate(Ag1, SCp(id, Ag1, Ag2, φ)) iff
(i) ∃ j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ)) &

(ii) M, 〈sj , P ↓ sj〉 |= ¬φ &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj ∈ Rscp(sj , Ag1, Ag2)

TABLE VII
SEMANTICS OF VIOLATION ACTION

Example 4: When Cus pays for the goods, but Mer does
not deliver them within a specified time, then Mer violates
his commitment. Through the path 〈s2, s3, s5, s8, . . . 〉 the
content delivergoods is false.

Release action: the semantics of release action (see Table
VIII) is similar to the semantics of withdrawal. The only
difference is that the release action is performed by the
creditor while withdrawal is performed by the debtor (see
Fig. 3).

M20. M, 〈si, P 〉 |= Release(Ag2, SCp(id1, Ag1, Ag2, φ)) iff
(i) ∃j < i : M, 〈sj , P ↓ sj〉 |= Create(Ag1, SCp(id1, Ag1, Ag2, φ))&

(ii) P ↓ sj /∈ Rscp(sj , Ag1, Ag2) &

(iii) ∃ P ′ ∈ σsi : P ′ ↓ sj ∈ Rscp(sj , Ag1, Ag2)

TABLE VIII
SEMANTICS OF RELEASE ACTION

Example 5: The customer Cus, before paying for the
goods, can release the offer. Thus, no accessible path exists
between Cus and Mer from s4. However, an accessible path
still exists from s3.

Assignment action: the semantics of assignment action of a
propositional commitment (see Table IX) is satisfied in the
model M at si along path P iff (i) the creditor Ag2 releases
the current commitment at si through P ; and (ii) a new
commitment with the same debtor and a new creditor appears
at si, so that the formula SCp(id1, Ag1, Ag3, φ

′) is true at
M, 〈si〉.

M21. M, 〈si, P 〉 |= Assign(Ag2, Ag3, SCp(id0, Ag1, Ag2, φ)) iff
(i) M, 〈si, P 〉 |= Release(Ag2, SCp(id0, Ag1, Ag2, φ)) &
(ii) ∃ j <i :M, 〈sj〉 |= SCp(id0, Ag1, Ag2, φ) &

M, 〈si〉 |= SCp(id1, Ag1, Ag3, φ′) such that:
(1) ∀ P ′ ∈ σsi , M, 〈sj , P ′ ↓ sj〉 |=φ⇔M, 〈si, P

′〉 |=φ′ &

(2) F(φ) ≡ F(φ′)
TABLE IX

SEMANTICS OF ASSIGNMENT ACTION

The most important issue in this semantics is that the content
φ′ of the new commitment is not necessarily the same as for
the assigned one (φ), but there is a logical relationship between
them. This is because the second commitment appears after

the previous one. Thus, we need to consider the temporal
component specifying the deadline of the first commitment.
The logical relationship between φ and φ′ is as follows: (1)
φ′ is true at the current state si through a given path P ′

iff φ is true at sj where the original commitment has been
created through the prefix P ′ ↓ sj ; and (2) the two contents are
logically equivalent when the temporal operators are removed.
We consider the current state si in (1) because the new content
φ′ should be true starting from the moment where the new
commitment is established (see Fig.4).

� ���������	
� ������� �	
� �	�� ��� ����	���	�� �	�� ������� �	
� �	�� �������� ��� � �������� �	
� �	�� �� �������
� �	
� �	�� ������ ���������� ��! "��������� �	
� �	�� ������������ ��! "��������� �	
� �	�� �� ���������� ��! "����� ��
� �	
� �	�� ���
Fig. 4. Assign action at the state si along the path P

To clarify this issue, let us suppose that the content of the
assigned commitment is φ = X+X+p where p is an atomic
proposition and the assignment action takes place at the next
moment after the creation action. The content of the resulting
commitment should be then φ′ = X+p, which is the content
we obtain by satisfying the conditions (1) and (2). By (1) we
have X+p is true at a state si through a path P ′ iff X+X+p
is true at the state sj (sj = si−1) through P ′ ↓ sj ; and by (2)
we have F(X+X+p) ≡ F(X+p). The second condition is
added to guarantee that the relationship between the contents
is not arbitrary.

Example 6: Suppose Cus commits to pay $200 to Mer in
two days. After one day, Mer, for some reasons, assigns this
commitment to Mer1 (we suppose that there is an agreement
between Cus and Mer1 about this commitment). Thus, Mer
releases the commitment with Cus and a new commitment
between Cus and Mer1 is established to pay the $200 after
only one day.

In the semantics proposed in previous frameworks (for
example in [13], [14] and [20]), the two commitments have
the same content, which implicitly suppose that the creation
of the commitment and its assignment take place at the same
moment. The previous example cannot be managed using this
assumption.

Delegation action: the semantics of delegation action (see
Table X) is similar to the semantics of assignment. The only
difference is that delegation is performed by the debtor while
assignment is performed by the creditor. Therefore, instead
of release, the semantics is defined in terms of withdraw.

Example 7: Suppose Cus commits to pay $200 to Mer

MALLOW’009: Turin, Italy, September 7-10, 2009

227

in two days. After one day, Cus, for some reasons, delegates
this commitment to a financial company (Bank) to pay
the $200 to Mer on his behalf. Thus, Cus withdraws his
commitment and a new commitment between Bank and
Mer is established to pay the $200 after only one day.

M22. M, 〈si, P 〉 |= Delegate(Ag1, Ag3, SCp(id0, Ag1, Ag2, φ)) iff
(i) M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id0, Ag1, Ag2, φ)) &

(ii) ∃ j <i :M, 〈sj〉 |= SCp(id0, Ag1, Ag2, φ) &

M, 〈si〉 |= SCp(id1, Ag3, Ag2, φ′) such that:
(1) ∀ P ′ ∈ σsi , M, 〈sj , P ′↓sj〉 |=φ⇔M, 〈si, P

′〉 |=φ′ &

(2) F(φ) ≡ F(φ′)
TABLE X

SEMANTICS OF DELEGATION ACTION

IV. COMMITMENTS’ PROPERTIES

The aim of this section is to prove that the model
aforementioned in the previous section presents a satisfactory
“logic of commitment”. We show some of desirable properties
related to the semantics of actions on social commitments
that are fundamental for soundness considerations where
alignment [7] among interacting agents in distributed systems
is satisfied. In the rest of this paper, the set of all models is
denoted M.

Proposition 1: If a commitment is created, then it has been
never created before.
AG+

[
Create(Ag1, SCp(id, Ag1, Ag2, φ))⇒

X−G−¬Create(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proof: Let M be a model in M, si be a state in S, and
P be a path in σ. Also, suppose that:
M, 〈si, P 〉 |= Create(Ag1, SCp(id, Ag1, Ag2, φ))
(Semantics of creation action)
⇒ ∀j < i M, 〈sj , P 〉 |= ¬SCp(id, Ag1, Ag2, φ)
(Semantic calculus)
⇒M, 〈si, P 〉 |= X−G−¬SCp(id, Ag1, Ag2, φ) (1)
Let us now suppose that:
M, 〈si, P 〉 |= X−F− Create(Ag1, SCp(id, Ag1, Ag2, φ))
(Semantics of creation action)
⇒M, 〈si, P 〉 |= X−F− SCp(id, Ag1, Ag2, φ)
There is then contradiction with (1). Consequently:
M, 〈si, P 〉 |= X−G−¬Create(Ag1, SCp(id, Ag1, Ag2, φ))

As a direct consequence of this proposition, we have the
following lemma:

Lemma 1: Once created, a commitment cannot be created
again in the future.
AG+

[
Create(Ag1, SCp(id, Ag1, Ag2, φ))⇒

X+AG+¬Create(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proof: Let us suppose that the negation is true. Therefore:
EF+

[
Create(Ag1, SCp(id, Ag1, Ag2, φ)) ∧

¬(X+AG+¬Create(Ag1, SCp(id, Ag1, Ag2, φ)))
]

(Semantic calculus)

⇒ EF+
[
Create(Ag1, SCp(id, Ag1, Ag2, φ)) ∧

X+EF+Create(Ag1, SCp(id, Ag1, Ag2, φ))
]

Consequently, there is a contradiction with Proposition 1 as
the second creation cannot take place since there is a creation
in its past. Thus, we are done.

Proposition 2: Once withdrawn, a commitment cannot be
withdrawn again in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒

X+AG+¬Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proof: Let M be a model in M, si be a state in S, and
P be a path in σ. Also, suppose that:
M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
(Semantics of withdrawal and creation actions)
⇒ ∃j < i : M, 〈sj , P ↓ sj〉 |= SCp(id, Ag1, Ag2, φ) &

P ↓ sj /∈ Rscp(sj , Ag1, Ag2) (2)
Let us now suppose that:
M, 〈si, P 〉 |= X+EF+ Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))

(Semantics of withdrawal action, X+ and EF+)
⇒∃k > i& ∃P ′ ∈ σsk:P ′↓sj ∈ Rscp(sj , Ag1, Ag2)
There is then contradiction with (2) because P ′ is a suffix of
P . Consequently:
M, 〈si, P 〉 |= ¬X+EF+Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))

⇒ M, 〈si, P 〉 |= X+AG+¬Withdraw(Ag1, SCp(id, Ag1,Ag2,φ))

In the same way, we can prove the following three proposi-
tions (3,4 and 5) using the semantics of withdraw, fulfillment,
violation and release actions, X+ and EF+.

Proposition 3: Once withdrawn, a commitment cannot be
fulfilled in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒

X+AG+¬Fulfill(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proposition 4: Once withdrawn, a commitment cannot be
violated in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒

X+AG+¬V iolate(Ag1, SCp(id, Ag1, Ag2, φ))
]

Proposition 5: Once withdrawn, a commitment cannot be
released in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒

X+AG+¬Release(Ag2, SCp(id, Ag1, Ag2, φ))
]

Proposition 6: Once withdrawn, a commitment cannot be
assigned in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒∀Ag∈AGT

X+AG+¬Assign(Ag1, Ag, SCp(id, Ag1, Ag2, φ))
]

Proof: Let M be a model in M, si be a state in S, and
P be a path in σ. Also, suppose that:
M, 〈si, P 〉 |= Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
(Proposition 5)
⇒M,〈si, P 〉 |=X+AG+¬Release(Ag2, SCp(id, Ag1, Ag2, φ))
(Semantics of assignment action)

MALLOW’009: Turin, Italy, September 7-10, 2009

228

⇒ ∀Ag ∈ AGT
M,〈si, P 〉 |=X+AG+¬Assign(Ag2, Ag, SCp(id, Ag1, Ag2, φ))

Using Proposition 2 and the semantics of delegation action,
we can prove the following proposition:

Proposition 7: Once withdrawn, a commitment cannot be
delegated in the future.
AG+

[
Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))⇒∀Ag∈AGT

X+AG+¬Delegate(Ag1, Ag, SCp(id, Ag1, Ag2, φ))
]

As for previous propositions for withdrawal action, we can
also prove the following proposition for fulfillment action:

Proposition 8: Once fulfilled, a commitment cannot be
fulfilled again, withdrawn, violated, released, assigned or
delegated in the future.

AG+
[
Fulfill(Ag1, SCp(id, Ag1, Ag2, φ))⇒∀Ag∈AGT

X+AG+¬[
Fulfill(Ag1, SCp(id, Ag1, Ag2, φ))
∨Withdraw(Ag1, SCp(id, Ag1, Ag2, φ))
∨ V iolate(Ag1, SCp(id, Ag1, Ag2, φ))
∨Release(Ag2, SCp(id, Ag1, Ag2, φ))
∨Assign(Ag2, Ag, SCp(id, Ag1, Ag2, φ))
∨Delegate(Ag1, Ag, SCp(id, Ag1, Ag2, φ))

]]
V. DISCUSSION AND RELATED WORK

A. Discussion

Our logical model is useful when developing agent com-
munication languages (ACL) thanks to its foundation based
on social semantics. Unlike mentalistic semantics that specifies
the semantics of communicative acts in terms of pre- and post-
conditions contingent on so-called agent’s mental states (e.g.
beliefs, desires and intentions), this social semantics can be
verified [4], [21], [22]. This is because our semantics allows
for tracing the status of existing commitments at any point
in time given observed actions. In commitment protocols,
social commitments capture a high meaning of interactions
and provide a useful level of abstraction. In this sense, Yolum
and Singh [24] have used commitment operations to show
how to build and execute commitment protocols and how to
reason about them using event calculus. In the same way,
Mallya and Singh [14] have showed how to reason about
subsumption among commitment protocols and how to refine
and aggregate protocols based on commitment semantics and
operations. Also, Desai and Singh [9] have studied a com-
position of commitment protocols and concurrent operations.
Our proposal belongs to the same line of research and can be
used to specify commitment protocols in terms of creation and
manipulation commitments using accessibility relation and the
principle properties of commitment.

In fact, our framework provides a unified semantics of
social commitments and associated operations that can be
used to enhance, e.g., Tropos methodology [16], where Tropos
is an agent-oriented software methodology, via capturing the
meaning of interactions in terms of task dependencies among

communicating agents. Also, in [20] Singh has delineated
the model-theoretic semantics of commitments by postulating
some rules as ways of using and reasoning with commitments.
This model combines two commitments (practical and dia-
logical), in the sense that when a commitment arises within
an argument and the content is satisfied with the same argu-
ment, then practical commitment would be satisfied. However,
this model does not include the semantics of commitment
operations. Chopra and Singh [7] have used the theoretical
model proposed in [20] to study the semantics of commitment
operations with message patterns that implement commitment
operations with some constraints on agents’ behaviors to
tackle the problem of autonomy in distributed systems. This
semantics is expressed in terms of the set of propositions that
can be inferred from the observation sequence that agents sent
or received. Moreover, this semantics must correspond to the
postulates introduced in [20]. However, the formal language
of those postulates is based on enhancing LTL (linear-time
logic) with two commitment modalities. Thus, this language
is less expressive than the formal language introduced here,
which is more compatible with agent choices. Furthermore,
our semantics is based on Kripke structure with accessibility
relations, which enables us to prove that the proposed model
is computationally grounded [23] and to verify this seman-
tics. Finally, in [5], the propositional commitment is fulfilled
when the creditor does not believe that the commitment’s
content is false and he cannot challenge it anymore. However,
this semantics uses mental states which cannot be verified.
The semantics defined here for conditional commitments is
different from the semantics defined in [17] and [20]. In
[17], conditional commitments are considered as intentions,
while commitments as social notion are different from private
intentions. In [20], Singh models conditional commitments as
fundamental and unconditional commitments as special cases
where the antecedent is true. In our semantics, the conditional
commitments are transformed into propositional commitments
in all accessible paths where the underlying condition is true.

B. Related Work

Let us now focus on comparing the proposed semantics for
commitment operations with the related ones. The semantics
proposed here is close to the semantics introduced in [3],
but does not suffer from the “recursion” problem, which is
the main problem in [3]. Recursion means the semantics of
one operation depends on the semantics of one or more other
operations. For example, in [3], a propositional commitment
is satisfied along a path P at a state si iff it is active
in this state along this path, and it was already created
at a state sj , and along this path from the state sj the
commitment content is true. Also, a commitment is active iff
this commitment was already created and until the current
moment the commitment was not withdrawn. Consequently,
the model checking technique for this logic is very complex
and probably suffers from the state explosion problem in the
early phases. On the contrary, the semantics we presented
here is independent, for each operation, of the semantics of

MALLOW’009: Turin, Italy, September 7-10, 2009

229

other operations. Furthermore, our semantics of commitment
operations is different from the ones given in [6], [8], [13] and
[14]. Particularly (as discussed in Section III-B3), assignment
and delegation operations should consider that the content of
the new resulting commitment could be different from, and
has a logical relationship with the content of the assigned and
delegated commitment. This issue is not captured in previous
frameworks. In addition, unlike our semantics, the violation
operation has been disregarded.

C. Directions: Theoretical and Practical

Here, we outline two promising directions of future work.
Theoretically. We plan to improve our proposed semantics

by removing the simplification based on the supposition that
actions are only momentary and considering time frames be-
tween the execution of actions. We also plan to study the com-
mitment operations needed to handle meta-commitments, that
is commitments about commitments, that often arise in real-
life scenarios. The proposed semantics would be augmented
with argumentation to enhance the Tropos methodology, which
we plan to apply for modeling and establishing communities
of web services introduced in [12].

Practically. We intend to integrate our logical model with
the logic of agent programs developed in [1] for the implemen-
tation of agents. Furthermore, a rigorous semantics opens up
the way for improving the verification of logic-based protocols
that govern a set of autonomous interacting agents against
given properties. The mainstream step in this regard would
be to map the commitment semantics introduced here to con-
ventional verification technologies. Our semantics is based on
Kripke structures (like interpreted systems). Currently model
checking techniques work best for logics whose semantics is
given via accessibility relations with the extension of CTL∗

as proposed in [4]. Two complementary software tools are
suggested to implement model checking algorithms to verify
whether or not the model M satisfies the proposed commit-
ments’ properties (i.e., M |= φ). Model checking algorithm
for our logic can be implemented via NuSMV tool, which
is the best-known for CTL∗. On the other hand, the proposed
logic and associated properties, which need to be checked,
can be specified as tableau-based rules. Such rules provide a
simple decision procedure for the logic and overcome model
checking algorithm from state explosion problem. As proposed
in [4], the verification method could be based on the translation
of formulae into a variant of alternating tree automata called
Büchi tableau automata (ABTA).

ACKNOWLEDGEMENTS

We would like to thank NSERC (Canada), NATEQ and
FQRSC (Québec) for their financial support.

REFERENCES

[1] N. Alechina, M. Dastani, B.S. Logan and J.-J. Ch. Meyer. A Logic of
Agent Programs. In Proc. of the Twenty-Second AAAI Conf. on Artificial
Intelligence (AAAI), pp.795-800, 2007.

[2] J. Bentahar, B. Moulin, J.-J. Ch. Meyer and B. Chaib-draa. A Logical
Model for Commitment and Argument Network for Agent Communica-
tion. In Proc. of the Int. Joint Conf. on AAMAS, pp.792-799, 2004.

[3] J. Bentahar, B. Moulin, J.-J. Ch. Meyer and Y. Lespérance. A New Logical
Semantics for Agent Communication. K. Inoue, K. Satoh, F. Toni (eds.),
Computational Logic in Multi-Agent Systems. LNAI 4371, pp.151-170,
2007.

[4] J. Bentahar, J.-J. Ch. Meyer and W. Wan. Model Checking Communica-
tive Agent-based Systems. In Knowledge-Based Systems, Special Issue
on Intelligent Software Design, vol.22(3), Elsevier, pp.142-159, 2008.

[5] G. Boella, R. Damiano, J. Hulstijn and L. Torre. Distinguishing Proposi-
tional and Action Commitment in Agent Communication. In Proc. of the
Workshop on Comput. Modles of Natural Argument (CMNA’07).

[6] A.K. Chopra and M.P. Singh. Constitutive Interoperability. In Proc. of
the Int. Joint Conf. on AAMAS, pp.797-804, 2008.

[7] A.K. Chopra and M.P. Singh. Multiagent Commitment Alignment. In
Proc. of the 8th Int. Joint Conf. on Autonomous Agents and MultiAgent
Sys. (AAMAS). May 2009.

[8] A.K. Chopra and M.P. Singh. Nonmonotonic Commitment Machines. In
Dignum F. (eds) Advances in Agent Communication. LNAI 2922, pp.183-
200, 2004.

[9] N. Desai, A.K. Chopra and M.P. Singh. Representing and Reasoning
About Commitments in Business Processes. In Proc. of the 22nd Conf.
AAAI, pp.1328-1333, 2007.

[10] E.A. Emerson and J.Y. Halpern. Sometimes and not never, Revisited:
on Branching versus Linear time Temporal Logic. Journal ACM (JACM)
vol.33(1), pp.151178, 1986.

[11] N. Fornara and M. Colombetti. Operational Specification of a
Commitment-based Agent Communication Language. In Proc. of the Int.
Joint Conf. on AAMAS, pp.535-542, 2002.

[12] Z. Maamar, S. Subramanian, J. Bentahar, P. Thiran P and D. Benslimane.
An Approach to Engineer Communities of Web Services Concepts,
Architecture, Operation and Deployment. In the Int. Journal of E-Business
Research, vol.5(4), IGI Global.

[13] A.U. Mallya, P. Yolum and M.P. Singh. Resolving Commitments among
Autonomous Agents. F. Dignum (eds.), Advances in Agent Communica-
tion. LNAI 2922, pp.166-182, 2004.

[14] A.U. Mallya and M.P. Singh. An Algebra for Commitment Protocols.
Autonomous Agents and Multi-Agent Systems, vol.14(2), pp.143-163,
2007.

[15] M. El-Menshawy, J. Bentahar and R. Dssouli. A New Semantics of
Social Commitments using Branching Space-Time Logic. In Proc. of the
IEEE/WIC/ACM Inter. Conf. on Inte. Agent Technology (IAT’09), Logics
for Inte. Agents and Multi-Agent Systems, Milano, Italy, September 15-
18, 2009.

[16] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos.
Tropos: An Agent-Oriented Software Development Methodology. Au-
tonomous Agents and Multi-Agent Systems, vol.8(3), pp.203-236, 2004.

[17] M.K. Shakil and L. Yves. On the Semantics of Conditional Commitment.
In Proc. of the Int. joint Conf. on AAMAS, pp.1337-1344, 2006.

[18] M.P. Singh. An Ontology for Commitments in Multiagent Systems: to-
ward a Unification of Normative Concepts. AI and Law, vol.7, pp.97113,
1999.

[19] M.P. Singh. A Social Semantics for Agent Communication Languages.
Issues in Agent Communication, Dignum, F. and Greaves, M. (eds.),
LNAI 1916, pp.31-45, 2000.

[20] M.P. Singh. Semantical Considerations on Dialectical and Pratical Com-
mitments. In Proc. of the 23rd Conf. AAAI, pp. 176-181, 2008.

[21] M.P. Singh. Agent Communication Languages: Rethinking the Princi-
ples. IEEE Computer, vol.31(12), pp.40-47, 1998.

[22] P. Torroni, F. Chesani, P. Yolum, M. Gavanelli, M.P. Singh, E. Lamma,
M. Alberti and P. Mello. Modelling Interactions via Commitments and
Expectations. In Handbook of Research on Multi-Agent Systems: Seman-
tics and Dynamics of Organizational Models, ch.11, V. Dignum (eds.),
pp.263-284, 2009.

[23] M. Wooldridge. Computationally Grounded Theories of Agency. In E.
Durfee, editor, In Proc. of the 4th Int. Conf. on Multi-Agent Sys. (ICMAS
2000). IEEE Press, 2000.

[24] P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution:
Applying Event Calculus Planning using Commitments. In Proc. of the
Int. Joint Conf. on AAMAS, pp.527-534, 2002.

[25] M. Verdicchio and M. Colombetti. A Logical Model of Social Com-
mitment for Agent Communication. In Proc. of the Int. Joint Conf. on
AAMAS, pp.528-535, 2003.

MALLOW’009: Turin, Italy, September 7-10, 2009

230

Externalisation and Internalization:
A New Perspective on Agent Modularisation in

Multi-Agent System Programming
Alessandro Ricci

DEIS, University of Bologna
Cesena, Italy

Email: a.ricci@unibo.it

Michele Piunti
DEIS, University of Bologna

Cesena, Italy
Email: michele.piunti@unibo.it

Mirko Viroli
DEIS, University of Bologna

Cesena, Italy
Email: mirko.viroli@unibo.it

Abstract—Agent modularisation is a main issue in agent and
multi-agent system programming. Existing solutions typically
propose some kinds of constructs – such as capabilities – to
group and encapsulate in well-defined modules inside the agent
different kinds of agent features, that depend on the architecture
or model adopted—examples are goals, beliefs, intentions, skills.
In this paper we introduce a further perspective, which can
be considered complimentary to existing approaches, which
accounts for externalizing some of such functionalities into the
computational environment where agents are (logically) situated.
In this perspective, agent modules are realised as suitably
designed artifacts that agents can dynamically exploit as external
tools to enhance their action repertoire and – more generally
– their capability to execute tasks. Then, to let agent (and
agent programmers) exploit such capabilities abstracting from
the low-level mechanics of artifact management and use, we
exploit the dual notion of internalization, which consists in
dynamically consulting and automatically embedding high-level
usage protocols described in artifact manuals as agent plans. The
idea is discussed providing some practical examples of use, based
on CArtAgO as technology for programming artifacts and Jason
agent platform to program the agents.

I. INTRODUCTION

Agent modularisation is a main issue in agent-oriented
software engineering and multi-agent system (MAS) program-
ming, accounting for devising proper structures and mecha-
nisms to modularise agent behaviour, enhancing maintainabil-
ity, extensibility and reuse of agent-based software. Existing
solutions – which are briefly surveyed in Section IV – typically
propose constructs that make it possible to group, encapsulate
and reuse in well-defined modules agent features, that can vary
according to the architecture or model adopted: for instance,
modularisation in BDI agents have been proposed in terms
of capabilities [3], [2], goals [17], intentions [8], to mention
some.

In all existing approaches modules are components inside
agents. In this paper we introduce a further complimen-
tary perspective, which accounts for improving modularity
by externalizing some functionalities into the computational
environment where agents are (logically) situated, as external
facilities that agents exploit as tools extending their capabili-
ties.

The background of this idea is given by the research work
on environment design and programming in MAS [19], [15],
in which the computational environment where agents are
situated is considered a first-class abstraction that can be
suitably designed and programmed so as to improve MAS
engineering, encapsulating functionalities that concern, for
instance, agent interactions, coordination and organisation.

In this context, CArtAgO [15], [16] – which will be
exploited in this paper – has been proposed as a general-
purpose framework and infrastructure for building shared
computational worlds that agents, possibly belonging to het-
erogeneous agent platforms and written using different agent
programming languages [14], can exploit to work together.
Being based on the A&A (Agents and Artifacts) meta-model
[15], [12], [16], CArtAgO’s computational environments are
modelled as set of distributed workspaces, containing dynamic
sets of artifacts.

The artifact abstraction is a key concept on which is the
contribution of this paper is based. From the agent viewpoint,
artifacts are first-class entities of agents’ world, representing
resources and tools that agents can dynamically instantiate,
share and use to support individual and collective activities.
From the MAS designer viewpoint, artifacts are useful to
uniformly design and program those abstractions inside a
MAS that are not suitably modelled as agents, and that
encapsulate functions to be exploited by individual agents
or the overall MAS—for instance mediating and empower-
ing agent interaction and coordination, or wrapping external
resources. CArtAgO provides a concrete computational and
programming model for artifacts [15], composed by a set of
Java-based API to program artifacts on the one side, and agent
API to work inside artifact-based environment on the other
side.

The availability of artifact-based computational environ-
ments in multi-agent system programming makes it possible
to enrich the strategies for modularising agents by exploit-
ing artifacts as modules that can be dynamically instanti-
ated/used/composed, extending the basic repertoire of agent
actions and capabilities. So, instead of being wrapped into
modules inside agents – either structuring the agent program

MALLOW’009: Turin, Italy, September 7-10, 2009

231

or extending the agent architecture – such capabilities are
externalised into artifacts that agents can use and exploit as
personal – and in some cases shared – tools.

In this paper we develop this idea, providing some practical
examples using CArtAgO and Jason agent programming
language. It is important to remark that this approach is not
meant to replace existing proposals, but to be integrated with
them. On the one side, some agent features are clearly not
externalisable, or – at least – it is not useful to externalise
them. For instance, for cognitive agents, capabilities concern-
ing deliberation or the manipulation of the internal mental
state. On the other side, the approach allows for properties
which are not typically provided by existing proposals. For
instance, the reuse of the same kind of module (artifacts)
across different agent programming languages and platforms.

The remainder of the paper is organised as follows: in
Section II we describe in detail the idea, providing some
examples to clarify the approach. Then, in Section III we
introduce internalization as a key mechanism layered on top
of externalisation that allows agents and agent programmers
to exploit functionalities externalized in artifacts abstracting
as much as possible from the low-level mechanics of artifact
management and use. In Section IV we provide an overview
of existing works on agent modularisation and how the con-
tribution of this paper is related to them. Finally, in Section V
we provide concluding remarks, sketching current limitations
and the next steps planned to further develop of the idea.

II. EXTERNALISATION: AGENT MODULES IMPLEMENTED
AS ARTIFACTS

A. The Basic Idea

The basic idea is to exploit artifacts as modules to en-
capsulate new capabilities for agents, in particular extending
the repertoire of agent actions with the set of operations
provided by artifacts1. We call this externalisation since the
capabilities of an agent are not extended by acting agent
internal architecture or program, but by extending the set of
external resources and tools (artifacts) that the agent can use
to do its work.

By applying externalisation, a module is conceived as a
tool that the agent may eventually create and use by need. In
particular: artifact operations encapsulate the functionalities
that would be provided by module actions; artifact usage
interface and observable properties (and events) represent the
module interface; the non-observable state of the artifact is
used to implement the hidden inner state of the module; and
finally the manual of an artifact can be used to store the
description of high-level usage protocols accompanying the
module—this point will be discussed in detail in Section III.

1the main features of the artifact abstraction are extensively described in
[12], [16], [15]. Briefly, each artifact has a usage interface listing a set of
usage interface controls that can be used to trigger and control the execution of
operations inside the artifact. By executing operations, an artifact can generate
observable events (signals) that can be perceived both by the agent using the
artifact and by all those that are focussing (observing) it. Besides observable
events, an artifact can have observable properties, whose value (and changes)
are automatically perceived by all the observing agents

At runtime (execution time) the burden of the execution
of modules is no more on the agent side, like in the case of
modules implemented as components inside agents, but on the
artifact side: artifact operations are executed asynchronously
by independent control flows, managed by the CArtAgO
machinery. The agent can control operations execution by
means of the usage interface of the artifact, perceiving its state
and results in terms of observable properties and events. This
has a strong impact on efficiency at runtime: (a) agents do not
waste time and computational resources for the execution of
the processes related to the module functionalities; (b) the ap-
proach transparently exploits the concurrency and parallelism
support provided by the underlying execution environment.

Then, module management is mapped on to artifact cre-
ation/disposal/discovery, in particular module activation is
given by instantiating the artifact or by locating an exist-
ing one; module composition is realised by using multiple
artifacts. Actually, the approach supports also a kind of
module sharing by exploiting artifacts shared and co-used
simultaneously by multiple agents: this can be very useful for
supporting effective and efficient forms of agent coordination
(Subsection II-E).

In the following, we clarify and discuss the idea by de-
scribing some concrete examples of increasing complexity,
exploiting CArtAgO to implement artifacts and Jason [1]
to program agents exploiting artifacts as modules. It’s worth
noting that here we use Jason, but an analogous discussion
would be for other agent programming languages, such as
2APL, or platforms like Jadex. The examples are classified
along two basic dimensions: the state dimension – differenti-
ating between state-less and state-full modules (tools) – and
the sharing dimension – differentiating between personal and
shared modules (tools).

B. Modules as State-less Tools

The simplest kind of module is given by a library of internal
actions which are meant to be exploited by agents as functions,
extending the basic computing capabilities provided by default
by the agent language.

As a concrete example, suppose to extend agents with some
math capabilities not directly supported by the language—let’s
take the sine function as a simple example. Languages like
Jason allow for solving the problem by extending the agent
architecture, with the implementation of new internal actions
exploiting the Java-based API provided by the Jason platform.
Externalisation makes it possible to solve the problem without
the need of extending directly agents, by programming a new
kind of artifact – functioning as a calculator tool in this
case – that the agent can instantiate and (re-)use by need.
Fig. 1 shows a sketch of its implementation in CArtAgO
API and of a Jason agent exploiting the functionality2. The
action module sin(+Value,?Result) is implemented by
the computeSin(+Value) operation of the artifact, and

2Details about the artifact abstraction and CArtAgO API, as well as Jason
and their integration, are outside the scope of this paper: the interested reader
can found them in literature [15], [12], [16], [14], [1]

MALLOW’009: Turin, Italy, September 7-10, 2009

232

package tools;

public class Calculator extends Artifact {

@OPERATION void computeSin(double x){
signal("sin",x,Math.sin(x));

}
@OPERATION void computeCos(double x){

signal("cos",x,Math.cos(x));
}
@OPERATION void computeSqrt(double x){

if (x >= 0){
signal("sqrt",x,Math.sqrt(x));

} else {
signal("math_error");

}
}
...

}

// Jason agent using its calculator

!doComputations.

+!doComputations
<- ?mytool("tools.Calculator",Id);

cartago.use(Id,computeSin(1.57),s0);
cartago.sense(s0,sin(1.57,Y));
cartago.use(console,
println("The sin value of 1.57 is ",Y)).

+?mytool(ToolType,Id)
<- .my_name(AgName);

.concat(AgName,"-",ToolType,ToolName);
cartago.makeArtifact(ToolName,ToolType,Id);
+mytool(ToolType,Id).

Fig. 1. (Left) A Calculator artifact encapsulating math functionalities. computeSin operation, once triggered, generates an observable event of the
type sin(X,Y) which is then perceived by the agent using the calculator. (Right) A Jason agent exploiting the calculator: the first time the calculator is
used it is created, using a conventional name given by concatenation of the agent name and the artifact type.

action execution is realised in terms of a sequence of basic
CArtAgO actions to interact with it. In particular, the agent
first retrieves the tool identifier – eventually creating the
artifact if it is the first time it is used and keeping track of such
identifier by a mytool belief; then, it triggers the execution
of the operation on the tool (by means of the use CArtAgO
primitive) and then exploits a sensor to perceive the result
(by means of the sense CArtAgO primitive). The result
is represented by an observable event sin(X,Y) generated
by the signal primitive executed in the computeSin
operation. It’s worth remarking that the computation of the
sine value is done asynchronously w.r.t. the agent activities:
synchronisation occurs when the agent inspects the sensor to
perceive the result.

This first example – in spite of its simplicity – is useful
to give a taste of the approach: instead of extending the
agent architecture by means of new (internal) sin action, in
this case the extension is achieved by means of en external
calculator tool that an agent can instantiate and use. Being ex-
ternalised into an artifact, the functionalities can be exploited
by any kind of agent whose platform has been integrated with
CArtAgO—besides Jason, other examples include Jadex,
2APL, AgentFactory: so the approach promotes extensibility
and reusability across heterogeneous agent languages and
platforms.

C. Modules as State-ful Tools

Then, besides state-less modules, artifacts can be useful
to encapsulate functionalities involving a state and providing
actions working with such state, functioning as personal state-
ful tools. The state can be either an observable part, i.e that
can be considered part of the agent knowledge, or a hidden
part of the module. The observable part is mapped onto artifact
observable properties, which are then perceived by the agent
observing the artifact as percepts (mapped into beliefs in
cognitive architectures).

As an example, consider the Calculator2 artifact de-
picted in Fig. 2, providing a support for executing a sequence
of operations, keeping track and making it observable the

updated result by means of the result observable property
and providing functionalities to undo the operations. Fig. 2
shows an example of an agent using the calculator, adding
repeatedly a value (3.0) by “pressing the button” add until it
perceives that the result is greater than 10. After that, it restores
the previous result (which is 9, in this case) and prints it on
the console.

This second example shows how the approach supports
the management of observable information of the module on
the one side and information hiding on the one side: inner
structures needed to realise the module functionalities – such
as the list of the partial results, to enable undo and redo in the
example – are implemented by artifact inner data structures,
which are accessed and changed by artifact operations.

D. Modules Wrapping External Actions
In previous examples we considered modules encapsulating

sets of internal actions: besides these ones, modules can
be also devised so as to extend agents with capabilities to
access/interact with external resources (such as data-base),
including resources to communicate with external systems
(such as network channels, GUIs). In that case, the externali-
sation perspective accounts for implementing such modules as
tools wrapping the access and interaction with those external
resources, hiding as much as possible the low-level details
related to the use of the resources and providing the agent a
high-level interface for exploiting the functionalities. Actually
CArtAgO provides – as an auxiliary library – a basic set of
artifact types that can be exploited to this end, including tools
for working with ODBC data-bases, for using socket-based
network channels, and for creating and managing graphical
user interfaces. Examples of this kind of tools can be found
in CArtAgO distribution—not reported here for lack of space.

E. Modules Wrapping Mechanisms for Interaction, Coordina-
tion, Organisation

Agent coordination is a main issue in multi-agent system
programming; direct communication models – including ap-
proaches based on speech-act based conversations – are not al-
ways the most effective solution to achieve agent coordination

MALLOW’009: Turin, Italy, September 7-10, 2009

233

public class Calculator2 extends Artifact {
Stack<Double> results;

@OPERATION void init(){
defineObsProperty("result",0);
results = new Stack<Double>();

}
@OPERATION void add(double x){

double res = getObsProperty("result").doubleValue();
results.push(res);
updateObsProperty("result",res + x);

}
@OPERATION void sub(double x){

double res = getObsProperty("result").doubleValue();
results.push(res);
updateObsProperty("result",res - x);

}
@OPERATION void undo(){

if (!results.isEmpty()){
updateObsProperty("result",results.pop());

} else {
signal("result_stack_empty");

}
}

}

!doComputations.

+!doComputations \
<- ?mytool("tools.Calculator2",Calc);

cartago.focus(Calc);
!doSums(Calc).

+!doSums(Calc): result(X) & X<=10
<- cartago.use(Calc,add(3.0),s0);

cartago.sense(s0,op_exec_completed("add"));
!doSums(Calc).

+!doSums(Calc): result(X) & X>10
<- cartago.use(Calc,undo,s0);

cartago.sense(s0,op_exec_completed("undo"));
cartago.observeProperty(Calc,result(Y));
cartago.use(console,print("Final value: ",Y)).

Fig. 2. (Left) State-full extension of the Calculator, exploiting observable properties. (Right) Jason agent exploiting the calculator.

public class Semaphore extends Artifact {
int count;

@OPERATION void init(int startCount){
count = startCount;

}

@OPERATION(guard="isFree") void acquire(){
count--;

}

@GUARD boolean isFree(){
return count > 0;

}

@OPERATION void release(){
count++;

}
}

!doJob.

+!doJob
<- !locateTool("tools.Semaphore","cs",[1],Tool);

!work(Tool).

+!work(Tool)
<- cartago.use(Tool,acquire);

!doMyCriticalTask(0);
cartago.use(Tool,release);
!work(Tool).

+!doMyCriticalTask(C) : C < 10
<- .println(C); .wait(10); !doMyCriticalTask(C+1).

+!doMyCriticalTask(10).

+!locateTool(Type,Name,Args,Id) : not tool_avail(Name)
<- cartago.lookupArtifact(Name,Id).

-!locateTool(Type,Name,Args,Id) : not tool_avail(Name)
<- +˜tool_avail(ToolName); !locateTool(Type,Name,Args,Id).

+!locateTool(Type,Name,Args,Id) : ˜tool_avail(Name)
<- cartago.makeArtifact(Name,Type,Args,Id).

-!locateTool(Type,Name,Args,Id) : ˜tool_avail(Name)
<- -˜tool_avail(Name); !locateTool(Type,Name,Args,Id).

Fig. 3. (Left) A Semaphore artifact, that can be exploited as a tool for extending agents with basic synchronization capabilities. (Right) Jason agent
exploiting the Semaphore for realising critical sections

and various kinds of interaction-oriented and coordination-
oriented mechanisms can be devised to this end. From an
agent programming language perspective, the implementation
of these mechanisms typically accounts for extending the basic
agent language with a specific set of primitives tailored to
provide some kind of coordination/organisation functionalities.
This strongly reminds coordination languages [7], which are
orthogonal to classical computational languages (such as C,
Java, Prolog) and extend them with basic coordination prim-
itives to enable communication and synchronisation. Linda is
a well-known example of coordination language [6]. Actually,
in the context of multi-agent systems this occurs also for
organisation: languages such as J-MOISE [9], for instance,
extends the basic Jason language with MOISE organisational
primitives.

This case is similar to the previous one, since such primi-
tives can be considered external actions involving some kind
of inter-actions with other agents. By adopting externalisation,

such capabilities can be encapsulated in proper artifacts,
extending agents with coordination capabilities without the
need of extending the agent language. Differently from the
previous cases, these artifacts are meant to be shared by the
agents – as a kind of shared modules – providing operations
enabling and ruling the interaction among the agents exploiting
them.

As a simple example, consider here the problem of extend-
ing an agent with the capability of executing critical sections,
which require the coordination of all the agents running in
the same environment. To this end, we can simply use a
semaphore artifact functioning as a shared lock by the agents,
providing two basic operations: to acquire it – to be used in
the prologue of the critical section – and to release it – to be
used in the epilogue of the section. Fig. 3 shows on the left
the semaphore artifact and on the right an agent using it to
realise a critical section. In this case all agents interact with the
same artifact—called cs in the example. From an agent (and

MALLOW’009: Turin, Italy, September 7-10, 2009

234

usageprot compute_sin {
:function sin(X,Y)
:body {

locateMyTool(ToolId);
freshSensor(S);
use(ToolId,computeSin(X),S);
sense(S,sin(X,Y)).

}
}

!doComputations
<- !setup;

!doTheJob.

+!doTheJob
<- cartago.consultManual("tools.Calculator");

cartago.consultManual("tools.Console").

+!doTheJob
<- !sin(1.57,Y);

!print("The sin value of 1.57 is ",Y).

Fig. 4. (Left) A usage protocol defined in the Calculator manual (Right) Jason agent exploiting the manual to use the Calculator

agent programmer) perspective, this can be seen as a facility
extending the basic agent coordination capabilities, alternative
to the use of communication protocols. The interested reader
can find more complex examples of coordination tools in
CArtAgO distribution: among the other the TupleSpace
artifact, which in the perspective of this paper can be framed
as a module extending agents with the Linda coordination
language.

III. INTERNALIZATION: USING ARTIFACTS AS AGENT
MODULES

Actually, a main problem of externalisation is the level of
abstraction adopted for allowing an agent to access and exploit
the new capabilities provided by the modules: when program-
ming agents exploiting modules externalised into artifacts,
the programmer must specify the details related to artifacts
use and management. We tackle this problem by means of
internalization.

Internalization accounts for introducing a proper abstraction
layer which makes it possible to exploit artifacts functionalities
in terms of agent actions, abstracting as far as possible –
from an agent programmer point of view – from the low-
level mechanics of artifact management and use. This can be
achieved by exploiting artifacts manual. Being a feature of
the basic artifact abstraction, the manual is that document
providing a machine-readable description – written by the
artifact developer – of artifact functionalities and operating
instructions [12], [18]. Such information are meant to be
dynamically read, interpreted and internalized by the agent,
embedding such a knowledge in terms of proper plans about
how to use the artifacts of that type and when.

Here we focus on the operating instructions, as that part
of the manual describing usage protocols, i.e. high-level plans
encapsulating sequences of low-level operations to be executed
in order to exploit artifact functionalities. In current model, a
usage protocol is characterised by a function3, which defines
the functionality to be exploited, a precondition, defining the
condition under which the functionality can be exploited, and
a body, as a sequence of actions. Fig. 4 shows an example
of usage protocol defined in the manual for the calculator,
to exploit the sine function. A simple first-order logic-based
language is used to define the protocols: the complete syntax
and semantics of the language is not reported here for lack

3The term “function” here must be interpreted as “functionality”, so not
related to functional programming languages or mathematical functions

of space, we describe the language informally by means of
concrete examples.

The function is specified by means of :function tag and
is represented by a logic term, possibly containing parameters
detailing input and output (in terms of unbounded variables)
information characterising the function. In the calculator ex-
ample, sin(X,Y) is the function of the usage protocol to
compute the sine function. The function of a usage protocol is
directly linked to agent goals: a usage protocol with a function
func is mapped into agent plan(s) that are triggered to achieve
goals matching func, according to some kind of matching
function that depends on the agent architecture adopted. In
the case of Jason agents, for instance, the usage protocol
is triggered to achieve goals of the type sin(X,Y): in the
example (Fig. 4, on the right) this happens by means of the
!sin(1.57,Y) action.

The precondition can be specified by the :precond tag
and is represented by a logic expression specifying the condi-
tions that must hold concerning either the function parameters
or agent beliefs4 (which typically can include the state of the
observable properties of the artifact). If missing, the default
value of the expression is true. Preconditions are used in the
second example (Fig. 5), showing the manual of the semaphore
artifact described in Subsection II-E, providing high-level
usage protocols to execute critical sections. In particular,
two alternative protocols are specified for entering a critical
section, one to be used when the agent is not already inside
the critical section and the other one in the opposite case. The
belief inside_cs(ToolId) – added by one protocol when
the entering succeeds – is used to distinguish this case.

The body – specified by means of the :body tag – contains
a sequence of actions, including basic CArtAgO actions (use,
sense, focus, etc.), auxiliary actions to locate artifacts and
internal actions for inspecting and updating the belief and goal
base of the agent. From a syntactical point of view, ; is used
as sequence operator, +Bel and -Bel is used to add and
remove beliefs and . to indicate the end of the plan.

On the agent side, two further actions are provided
respectively for consulting and forgetting the content of
a manual, consultManual(ArtifactTypeName) and
forgetManual(ArtifactTypeName)5. By consulting

4The notion of “belief” can be replaced here with “knowledge” for agent
programming languages not having that concept

5the parameter does not refer to the name of a specific existing artifact, but
to the name of an artifact type, which must be available by current workspace

MALLOW’009: Turin, Italy, September 7-10, 2009

235

usageprot enter_critical_section1 {
:function enterCS
:precond not inside_cs(_)
:body {

locateTool("Semaphore","cs",ToolId);
use(ToolId,acquire); +inside_cs(ToolId).

}}

usageprot enter_critical_section2 {
:function enterCS
:precond inside_cs(_)
:body {}}

usageprot exit_critical_section {
:function exitCS
:precond inside_cs(ToolId)
:body {

use(ToolId,release); -inside_cs(ToolId).
}}

!doJob
<- !setup;

!work.

+!setup
<- cartago.consultManual("tools.Semaphore");

cartago.consultManual("tools.Console").

+!work
<- !enterCS;

!doMyCriticalTask(0);
!exitCS;
!work(Tool).

+!doMyCriticalTask(C) : C < 10
<- !println(C);

.wait(10);
!doMyCriticalTask(C+1).

+!doMyCriticalTask(10).

Fig. 5. (Left) Usage protocols defined in the Semaphore manual for doing critical sections (Right) Jason agent executing critical sections exploiting the
usage protocols

the manual, the practical knowledge contained inside is fetched
and translated into agent local plans, which are triggered
by achievement goals which have the same signature of the
function.

The key point here is that the agent programmer has not
to be aware and explicitly code the usage protocol, which is
specified – instead – by artifact developers: s/he must simply
know the interface of the usage protocol, in terms of the
function and beliefs involved. So the approach promotes a
strong separation of concerns and finally more compact agent
programs. This is exemplified by the source code of the Jason
agent in Fig. 5, whose behaviour is analogous to the one in
Subsection II-E but where !enterCS and !exitCS are the
only lines of code that the agent programmer has to write to
let the agent enter and exit a critical section.

IV. RELATED WORKS

Agent modularisation is a main open issue in agent pro-
gramming languages and various solutions have been proposed
in literature.

In [3], the notion of capability has been introduced and
implemented in the JACK commercial Java-based multi-agent
framework. Capabilities represent a cluster of components of
a BDI agent, both encapsulating beliefs, events and plans
and promoting global meta-level reasoning over them. From a
software engineering perspective – which is the main perspec-
tive of this paper – capabilities enable software reuse, being
building blocks that can be reused in different agents. This
notion of capability is further refined and improved in Jadex,
a Java and XML based BDI agent platform [2]. Capabilities
are here generalised and extended so as to support an higher
degree of reusability, devising a mechanism that allows for
designing and implementing BDI agents as a composition of
configurable agent modules (capabilities) which are treated as
black-boxes exporting interfaces in line with object-oriented
engineering principles.

A somewhat different but related idea of modularisation is
discussed in [11], in which a modular BDI agent programming
architecture is proposed, mainly targeted at supporting the de-
sign of specialised programming languages for single agent de-

velopment, and at providing transparent interfaces to existing
mainstream programming languages for easy integration with
external code and legacy software. The proposed architecture
is independent to the internal structure of its components and
agent reasoning model, and uses interaction rules to define
the connections between the design components. This draws a
clear distinction between knowledge representation issues and
their dynamics, and promotes the design and development of
specialized programming languages.

A goal-oriented approach to modularisation for cognitive
agent programming languages is proposed in [17], suggesting
agent goals as the basis of modularisation. The approach is
then discussed providing a formal semantics in the context
of the 3APL agent programming language. A similar notion
has been proposed in the agent language GOAL [8] where a
module is a component within an agent encapsulating policy-
based intentions to be triggered in a particular situation. This
approach combines the knowledge and skills to adequately
pursue the goals of the agent in that situation and is used
to realize a mechanism to control nondeterminism in agent
execution.

A role-based approach to modularisation and reuse has been
proposed in the context of AgentFactory agent platform and
ALPHA programming language. To engender code reuse the
framework makes use of the notion of commitments and role
template [4].

Finally, to authors’ knowledge the most recent approaches
to modularity have been introduced in the 2APL and Jason
agent platforms. In the former, similarly to the other related
works, a module is considered as an encapsulation of cognitive
components. The added value of authors’ approach is the
introduction of set of generic programming constructs that
can be used by an agent programmer to perform a variety of
operations on modules, giving agent programmers full control
in determining how and when modules are used. In that way
modules can be used to implement a variety of agent concepts
such as agent role and agent profile [5]. The latter proposes a
mechanism for modular construction of Jason agents from
functionally encapsulated components – containing beliefs,
goals and plans – so as to improve the support of the language

MALLOW’009: Turin, Italy, September 7-10, 2009

236

for the development of complex multi-agent systems, in an
agent-oriented software engineering perspective [10].

In all these approaches modules are components inside
agents. In this paper we explored a dual perspective, which
allows for implementing modules as components outside the
agents, externalised in proper tools and artifacts that agents
can exploit (and possibly share) for their tasks. This allows
for fruitfully integrated the approach described in this paper
with existing ones, promoting a strong separation of concerns
in programming agents, using – on the one side – agent
language/architecture and related module mechanisms to de-
fine and modularise only those aspects that strictly concern
agent internal aspects (state update and action selection in
general, deliberation and means/ends reasoning in cognitive
architectures); on the other side, artifact-based computational
environments to engineer and modularise all those resources
and tools that agents may exploit to achieve their tasks.

V. CONCLUSION AND FUTURE WORKS

In this paper we discussed a novel perspective to deal
with agent modularisation in multi-agent system programming,
based on the availability of artifact-based computational en-
vironments. The approach is not meant to be alternative to
existing approaches, but rather a complimentary strategy which
aims at improving the level of reusability, maintainability,
extensibility – including dynamic extensibility – of multi-
agent-based software systems.

Starting from this basic idea, now several points need to
be further developed. The basic externalisation model must
be improved so as to manage aspects related to protection:
for instance, devising a strategy to prevent agents to access
personal tools (modules) of other agents. Then, the language
adopted to define the usage protocols, described in Section III,
currently does not tackle some main problems that are im-
portant in the practice: two main ones are the management
of name clashes (between the function and beliefs defined
by the protocol and existing plans/goals/beliefs of the agents
or other usage protocols) and the management of failures
(currently mapped tout-court onto agent plan failure). Also
no formal semantics has been devised yet. These points are
part of future works. Also, the model currently adopted to
describe usage protocols – in terms of function, preconditions,
and a body – can be considered just a first step: some other
further features will be explored, such as the possibility to
define – besides preconditions – also invariant conditions,
stating the conditions that must hold for all the duration of the
usage protocol, and post-conditions, i.e. conditions that must
hold when the protocol has completed. Besides conditions
expressing the correctness of the protocol, tags could be used
to support the reasoning about the tools (modules), such as
an effect tag to specify the expected state of the artifact(s)
and of agent beliefs by successfully executing the protocol,
towards a truly cognitive use of artifacts/modules [13], [18].

Finally, in order to validate the approach, we plan to identify
specific domains/applications to make it clear the advantages

of externalisation/internalization, eventually integrating differ-
ent cognitive agent programming languages/platforms besides
Jason, such as 2APL and Jadex.

REFERENCES

[1] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[2] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the capability
concept for flexible BDI agent modularization. In Programming Multi-
Agent Systems, volume 3862 of LNAI, pages 139–155. Springer, 2005.

[3] P. Busetta, N. Howden, R. R onnquist, and A. Hodgson. Structuring BDI
agents in functional clusters. In N. Jennings and Y. Lespèrance, editors,
Intelligent Agents VI, volume 1757 of LNAI, pages 277–289. Springer,
2000.

[4] R. Collier, R. R. Ross, and G. M. O’Hare. Realising reusable agent
behaviours with ALPHA. In Multiagent System Technologies, volume
3550 of LNCS, pages 210–215. Springer, 2005.

[5] M. Dastani, C. Mol, and B. Steunebrink. Modularity in agent program-
ming languages: An illustration in extended 2APL. In Proceedings of
the 11th Pacific Rim International Conference on Multi-Agent Systems
(PRIMA 2008), volume 5357 of LNCS, pages 139–152. Springer, 2008.

[6] D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, January 1985.

[7] D. Gelernter and N. Carriero. Coordination languages and their signifi-
cance. Commun. ACM, 35(2):96, 1992.

[8] K. Hindriks. Modules as policy-based intentions: Modular agent
programming in GOAL. In Programming Multi-Agent Systems, volume
5357 of LNCS, pages 156–171. Springer, 2008.

[9] R. H ubner, JomiFred Bordini and G. Picard. Jason and MOISE+:
Organisational programming in the agent contest 2008. In Dagstuhl
Seminar on Programming Multi-Agent Systems, volume 08361, 2008.

[10] N. Madden and B. Logan. Modularity and compositionality in Jason.
In Proceedings of International Workshop Programming Multi-Agent
Systems (ProMAS 2009). 2009.

[11] P. Novák and J. Dix. Modular BDI architecture. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1009–1015, New York, NY, USA,
2006. ACM.

[12] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[13] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-directed
interactions in artifact-based MAS: Jadex Agents playing in CArtAgO
environments. In Proceedings of Intelligent Agent Technology 2008 (IAT
’08). IEEE/ACM, 2008.

[14] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hubner, and M. Das-
tani. Integrating artifact-based environments with heterogeneous agent-
programming platforms. In Proceedings of 7th International Conference
on Agents and Multi Agents Systems (AAMAS08), 2008.

[15] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment pro-
gramming in CArtAgO. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Lan-
guages, Platforms and Applications, Vol. 2, pages 259–288. Springer,
2009.

[16] A. Ricci, M. Viroli, and A. Omicini. The A&A programming model &
technology for developing agent environments in MAS. In M. Das-
tani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–
109. Springer, 2007.

[17] M. B. van Riemsdijk, M. Dastani, J.-J. C. Meyer, and F. S. de Boer.
Goal-oriented modularity in agent programming. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1271–1278, New York, NY, USA,
2006. ACM.

[18] M. Viroli, A. Ricci, and A. Omicini. Operating instructions for
intelligent agent coordination. The Knowledge Engineering Review,
21(1):49–69, Mar. 2006.

[19] D. Weyns, A. Omicini, and J. J. Odell. Environment as a first-class
abstraction in multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 14(1):5–30, Feb. 2007. Special Issue on Environments for
Multi-agent Systems.

MALLOW’009: Turin, Italy, September 7-10, 2009

237

1

Call Graph Profiling for Multi Agent Systems
Dinh Doan Van Bien, David Lillis and Rem W. Collier

School of Computer Science and Informatics
University College Dublin

dinh@doanvanbien.com, {david.lillis, rem.collier}@ucd.ie

Abstract—The design, implementation and testing of Multi
Agent Systems is typically a very complex task. While a number
of specialist agent programming languages and toolkits have been
created to aid in the development of such systems, the provision of
associated development tools still lags behind those available for
other programming paradigms. This includes tools such as debug-
gers and profilers to help analyse system behaviour, performance
and efficiency. AgentSpotter is a profiling tool designed specifically
to operate on the concepts of agent-oriented programming. This
paper extends previous work on AgentSpotter by discussing its
Call Graph View, which presents system performance information,
with reference to the communication between the agents in the
system. This is aimed at aiding developers in examining the effect
that agent communication has on the processing requirements of
the system.

I. INTRODUCTION

By its nature, a Multi Agent System (MAS) is a complex
system consisting of loosely-coupled autonomous software
entities that are required to communicate with one another in
order to achieve individual or system objectives. To facilitate
the development of such systems, a number of agent-oriented
programming languages and MAS toolkits have been developed
by a variety of researchers [1]. However, the availability of
ancillary tools to aid with debugging and profiling is limited,
particularly when compared with the available tools for other
programming paradigms and languages.

Previous work introduced AgentSpotter, a profiling tool
designed specifically for MASs [2]. Profiling is a performance
analysis technique that is based on the notion that in a program,
only a few places, called bottlenecks or hot spots, can account
for the majority of the execution time of a program. Hence,
by fixing only these sections of the code, the performance
of a program can be substantially improved. Profiling was
introduced almost 40 years ago by Donald E. Knuth in his
empirical study of FORTRAN programs [3], and has since
been successfully adapted to a variety of different languages,
platforms and software architectures, including large distributed
systems.

The aim of this paper is to continue the mapping of traditional
concepts to those of agent oriented software engineering so as
to facilitate the compilation of useful profiling data, presented in
an intuitive, visual fashion in order to aid multi agent developers
in improving the performance of their systems.

Section II provides a brief discussion of some related tools
that have been developed for debugging and profiling MASs.
In Section III, we give a brief overview of the AgentSpotter
agent profiling application. Following this, in Section IV we

introduce the concept of a call graph, and analyse how the
traditional concept of a call graph can be applied to a MAS.
Section V presents the concrete implementation of an agent
call graph within AgentSpotter profiling tool, followed by a
discussion of the proposed approach in Section VII. Finally,
we conclude and outline ideas for future work in Section VIII.

II. RELATED WORK

The work presented in this paper draws from two principal
research areas. Firstly, in order to provide a profiling tool for
MASs, it is necessary to examine the concepts and features
of existing profiling tools for other programming paradigms,
such as object-oriented programming. It is also necessary to
explore the available programming tools aimed at aiding the
debugging and profiling of MASs.

Initially proposed by Knuth, the key motivating factor behind
profiling tools is his observation that “less than 4% of a program
accounts for more than half of its running time” [3]. By
identifying and improving code that represents a performance
bottleneck, software developers can greatly improve the overall
performance of their programs. An important motivator for
the use of specialist profilers to identify these bottlenecks
is the frequent tendency of developers’ mental map of their
programming not matching the reality of how the program
behaves. Thus, areas of concern that programmers may not
have considered will be identified by the profiler.

In the context of more traditional, non-MAS, programming,
developers generally have access to long-established and
widely-accepted profiling tools such as gprof [4] or performance
analysis APIs such as the Java Virtual Machine Tool Interface
(JVMTI) [5] or ATOM [6]. However, those developing MASs
do not tend to have access to such well-established tools.

One MAS framework that does provide the ability to glean
data about system performance is Cougaar [7]. This provides
access to data on historical performance data, event detection,
monitoring of ACL messages and a number of other services.
The LS/TS agent platform provides an administrator tool that
records some high-level system monitoring information [8]. The
main limitation of these systems is the lack of post-processing
of the raw performance data in order to produce meaningful
synthetic indicators like a profiler would do.

Besides performance analysis, most agent frameworks pro-
vide a debugging tool similar to the Agent Factory Debug-
ger [9], which provides information about the mental state
and communication from the viewpoint of individual agents.
A different type of debugging tool is the Agent Viewer that

MALLOW’009: Turin, Italy, September 7-10, 2009

238

2

is provided in the Brahms toolkit [10], which displays agent
timelines so as to understand when agents’ actions are taken.

As the work in this paper also requires the monitoring of
inter-agent communication (see Section IV), it is also important
to acknowledge the availability of existing communication-
analyis tools for MAS platforms. A number of such tools have
been developed for a variety of agent frameworks and toolkits
to aid developers in understanding the interaction between
agents in their systems. An early example of such a toolkit is
Zeus [11], which contains a “society tool” that visualises the
interaction between agents, so as to help in understanding the
topology of the social contacts within the MAS. This type of
tool also aids in debugging MASs, since developers can ensure
that the expected communication and collaboration between
agents is indeed taking place.

In the JADE agent development framework, a Sniffer Agent
is a FIPA-compliant agent that monitors messages created with
an Agent Communication Language (ACL) passed between
agents and presents these in a simple graphical interface [12].
A more sophisticated tool, called ACLAnalyser, provides more
detailed information on agent communication [13]. Again, the
principal aim of this is to aid in debugging errors in MASs
that relate to coordination or cooperation.

III. AGENTSPOTTER

AgentSpotter is a profiling tool designed specifically for
gathering and displaying profiling information on MASs [2].
Figure 1 illustrates the abstract architecture of the system,
designed to be compatible with any type of agent platform. The
AgentSpotter Service runs within the Run-Time Environment of
an Agent Platform, gathering data about the agents themselves
(actions performed, messages exchanged), along with system
data such as CPU and memory usage. This is the only portion
of the system that must be ported in order to be run on different
agent platforms. The data gathered is logged into a Snapshot
File, which allows it to be accessed and analysed offline, once
the system has finished running.

AgentSpotter Station is a visual application that provides a
number of visualisations on various aspects of system perfor-
mance, in order to help programmers to identify performance
bottlenecks in their code.

Run-Time EnvironmentPro�led Application AgentSpotter Service

Pro�ler

System Monitors

AGENT PLATFORM

AGENTSPOTTER STATION (visualisation application)
Snapshot File (.aspot)

Session Summary Tables

Space-Time Diagram

Call Graph Tree View

Sessions

Agents

Events

Messages

messages

activity

events
events

data

data

queries

QUERY ENGINE

Session summary query

Agent activity query

Messages sent/received query

Call graph query

System activity query

Fig. 1. AgentSpotter Architecture

The outputs utilised in this paper are gleaned from running a
concrete implementation of the AgentSpotter service within the
Agent Factory framework [14]. Agent Factory is a modular and
extensible framework that provides comprehensive support for

the development and deployment of agent-oriented applications.
A more detailed description of this implementation and the
data gathered by AgentSpotter can be found in [2].

Previously, it was shown how AgentSpotter was used to
map traditional profiling concepts onto agent-oriented concepts.
This focused on two types of visualisation:
• Flat Profile: provides data on such things as agent activity,

messages and reasoning/action duration in a tabular form.
• Space-Time Diagram: provides a navigable visualisation

representing the data from the flat profile in a more
intuitive manner.

The focus of this paper is on an agent-oriented call graph.
Whereas a space-time diagram can aid in identifying the timing
and extent of actions executed by agents, a call-graph is
traditionally intended to also indicate the reasons why particular
actions were undertaken at particular times.

IV. CALL GRAPH CONCEPT

A. Traditional Call Graph

The concept of a call graph was introduced in 1982 in the
“gprof” profiling tool [4]. This is an improvement on the popular
“prof” UNIX profiling tool. In additional to summarising the
time spent in different functions, it also recursively presents
all the call stacks annotated with the time spent in the various
functions that are called. Another name for the call graph
is “hierarchical profile”, which conveys the idea that gprof
provides information to aid in understanding the impact of one
function in relation to all the functions that have called it.

Although the textual output of gprof is very dense and
requires some practice to understand, modern profiler user
interfaces have made call graphs more tractable by presenting
them as tree view controls that can be interactively explored.

Fig. 2. Call Graph Tree View of a fictional C program that removes duplicate
lines from a file

Figure 2 shows an example of a typical call graph. This
relates to a fictional C language program that is designed to
remove duplicate lines from a text file. In this tree view, the
root node is the main function, which represents 100% of the
total execution time of the program (including the execution
time of its child nodes). Each node represents a function within

MALLOW’009: Turin, Italy, September 7-10, 2009

239

3

the program, with the child nodes representing functions that
are called within the parent function. The percentages represent
the cumulative proportion of the program’s execution time that
is attributable to a node and its children. In the example, the
main function calls process file, which is then represented
as a sub-tree with leaves representing its own calls to the
bubble sort, load file and remove duplicates functions.

The key benefit of the call graph tree view is the extended
context it gives to performance information. For instance, this
simple example reveals that the program spends 90% of its
time processing a file. The tree shows that one of the top-
level function process file’s callees, the bubble sort operation,
accounts for 80% of its caller time. A flat profile would have
shown the time for these functions separately without explicitly
showing the hierarchical link between them.

B. Agent-Oriented Call Graph Model

When constructing a flat profile for a MAS, it was necessary
to map a number of concepts relating to traditional program-
ming to equivalent concepts in the domain of agent-oriented
programming [2]. A similar mapping must be performed in
order to allow for the development of an agent-oriented call
graph.

The central measure used in the traditional call graph is
the function execution time. Each node represents a function,
which can take the action of calling other functions as part
of its execution. The consequence of this action is that some
amount of time is spent executing the child function. Thus
we can say that the impact of calling a function is that this
additional processing time has been incurred.

In many MASs, agents tend to perform actions as a reaction
to the receipt of ACL messages from other agents in the system.
Thus in the same way the impact of a functional call in a
traditional system is the execution time of that function, within
a MAS, the impact of a message can be related to the additional
processing that must be undertaken in order to react to the
information contained therein, formulate a response or perform
a requested task. Because of this mapping, we introduce, as a
first simplified approach, the agent message impact measure to
be used as an equivalent to the function processing time used
in traditional profiling.

The quantification of such a measure is a difficult task,
given the data typically available from MASs. One potential
measurement for TMα,B , the impact of a message Mα sent
from an agent A to an agent B and received at time stamp
α is to use the total amount of computation time used by the
agent B until agent B receives a message MΩ from another
agent X at time stamp Ω ≥ α. Let b be the duration of an
activity by agent B at time stamp t where α ≤ t ≤ Ω. The
impact of message Mα on agent B, TMα,B , is then given by
the recurrent equation:

TMα,B =
Ω∑
t=α

bt (1)

In Figure 3 we have tried to summarise this concept in
a graphical form. The diagram clearly shows that the three
activity stars that lie between α and Ω make up the total impact

Agent A

Agent B

Agent X

{message M
α
 at time α

time

message M
Ω
 at time Ω

impact of M
α

Legend:

Message event

Agent activity

Agent life line

{impact of M
Ω

α Ωβ

Fig. 3. Agent Message Impact Concept Diagram

of Mα on agent B. Note that the outgoing message at time
stamp β does not break the computation sequence.

It is now easy to determine the total impact Tx,y of all
the messages sent by a given agent x to another agent y. Let
M be the total number of messages sent, 1 ≤ m ≤ M a
single message impact identifier, αm the reception time stamp
of message m from x to y, and Ωm, where αm ≤ Ωm, the
next reception time stamp message coming right after m from
any other source. The total impact Tx,y is then given by the
equation:

Tx,y =
M∑
m=1

Ωm∑
t=αm

bt (2)

By applying the equations recursively, we can compute the
total impact Tx of an agent x on N other agents numbered
1 ≤ a ≤ N as follows:

Tx =
N∑
a=1

Ma∑
m=1

Ωm∑
t=αm

bt (3)

Finally, the total impact TS of all the K agents numbered
1 ≤ k ≤ K of a session S is given by the equation:

TS =
K∑
k=1

Nk∑
a=1

Ma∑
m=1

Ωm∑
t=αm

bt (4)

It must be noted that the total activity time AS of the session
S is given by the equation:

AS = TS +
K∑
k=1

αk0−1∑
t=αS

bt (5)

where αS is the first recorded time stamp in session S and
αk0 the time stamp of the very first message received by agent
k. To put it differently, the total impact for each agent can be
computed only after it has received its first message.

This proposed method of calculating agent message impact
is imperfect, and superior metrics are likely to be developed
in the future. However, it does provide useful information for
the debugging and development of MASs. Both the drawbacks

MALLOW’009: Turin, Italy, September 7-10, 2009

240

4

and benefits of this approach are outlined in more detail in
Section VII.

V. CALL GRAPH VISUALISATION SPECIFICATION

The conceptual model we have presented deals with the
session level, the emitter agent level, the receiver agent
level and the message level. The graphical translation of
the model, outlined In Figure 4, should be a tree view
representing the levels we have previously enumerated plus an
additional level for the FIPA ACL message content. A message
content is defined as a performative plus an expression e.g.
“request:doSomeThing(123)”. This additional level should give
developers necessary contextual information for the messages.
It is important to note that this fixed-depth call graph tree
represents a divergence from traditional call graphs, whose
depth is dictated by the depth of the deepest function call stack.

Fig. 4. Call Graph Tree View levels

The session at the root of the tree should add up to 100%
of all emitter agents’ impact as defined by Equation 4. Then at
each level, each node should recursively total the impact of its
child nodes down to the message leaf nodes. These leaf nodes
simply report their impact as defined by Equation 1. More
precisely, at each level, for each node, the following values
should be displayed:
• Label: informative text associated with the node. The

structure of the label depends on the level as follows:
– session: “capture date, time - duration”;
– emitter agent: “from: agent id”;
– sender agent: “to: agent id”;
– FIPA ACL: “performative: contents”;
– message: “sent: time stamp rec: time stamp”.

• Total impact time: sum of impact times of all the current
node’s children.

• % parent time: percentage of the current node total
impact time divided by the node’s parent total impact
time.

• % session time: percentage of the current node total
impact time divided by the session total impact time.

Ideally, developers should be able to order the intermediary
tree levels differently so as to produce different call graph
interpretations. For example, moving the FIPA level right above
the emitter agent level would list for each FIPA ACL entry
their total impact for all the emitter/receiver pairs.

A. User Interface

Despite having a fixed depth, a call graph tree view could
potentially be very wide at the leaf level for sessions that
produce thousands of messages. Therefore, to help developers

navigate easily through the tree, AgentSpotter Station offers
an advanced tree navigation user interface that expands only
that part of the tree which is currently explored so as to reduce
the visual clutter. The currently explored part of the tree is
highlighted in a different colour to give the developer some
visual feedback.

Moreover, to speed up the retrieval of information on the
system, a search feature allows developers to enter a keyword
(e.g. an agent name or a performative). Doing so has the
effect of highlighting in a special colour all the visible nodes
that contain the specified keyword, significantly improving the
visual retrieval speed of a node.

Finally, developers can zoom and pan around the tree view
to locate items even more quickly.

B. Implementation

A sample screen shot of the visualisation of the call graph
can be seen in Figure 5.

In this figure, the element numbered 1 on the screen shot is
the tree root, i.e. the session level which represents 100% of the
cumulative recorded activity time. The tree root is highlighted
in blue because it is the current tree selection in this specific
example. As such, it determines the branch that is expanded,
as stated in Section V-A, so as to reduce the visual clutter. In
order to provide a sufficient level of detail, all the children
and grandchildren of a selected node are visible. Consequently,
when the tree root is selected, only the first two subsequent
levels are expanded, that is the emitter agent level and the
receiver agent level. Hence, selecting an emitter agent node
should make the FIPA ACL message level visible, and so on.
As an illustration, the call graph numbered 3 shown in Figure 5
screen shot, has an agent receiver node selected; as a result,
this branch is fully expanded down to the message impact
level.

The element numbered 2 is a text area used to enter a
search keyword. The number of nodes matching the keyword
is displayed and all the matching nodes that are visible are
highlighted in pink. For instance, the element numbered 3 is
one of the nine nodes containing the “explorer” keyword and so
is highlighted in the screenshot. In a large expanded tree, this
highlighting greatly adds to the visual effect and consequently
to the navigability of the tree. The bottom-most highlighted
node in the tree represents a message sent from the “botagent3”
agent to the agent named “explorer”. Clicking on this node
would cause the subtree rooted at that node to be expanded so
as to examine the content and timing of that message.

The visualisation is completely interactive and can be con-
trolled using the mouse or the keyboard. Possible interactions
include panning, scrolling, expand tree branches, zooming in
and out.

One other important feature is the ability to alter the
hierarchy of the nodes. Whereas the recursive nature of function
calls means that these are inherently inflexible in the tree
hierarchy they create, the nature of message-passing is a
different situation. The hierarchy above places the sender of
each message in a higher position in the hierarchy than the
recipient. This means that the cumulative performance data

MALLOW’009: Turin, Italy, September 7-10, 2009

241

5

Fig. 5. Call Graph Tree View Screen Shot

for the higher-level nodes represents the overall impact of all
messages sent by a particular agent to other agents. However,
this may not encapsulate the information that a developer
requires at a particular point in time. Changing the hierarchy
to place the recipient agent above the sender changes the
focus of the cumulative performance data. In this case, the
figures represent the contribution to overall running time of a
particular agent, based on the message that it receives from any
and all sources. This may potentially identify entire individual
agents as bottlenecks. This may be because the system’s load
is imbalanced, meaning that one agent may bear an inequitable
share of the processing burden. Alternatively, in a distributed
MAS, an agent may simply reside on a machine with inferior
hardware resources. By exploiting the flexible nature of this
hierarchy, users of the call graph tree view can alter the data
being presented to better fit their needs.

VI. EVALUATION

To demonstrate the effectiveness of the call graph as a
profiling tool, a simple benchmark application was developed.
This consists of two types of agents. Overseer agents request
worker agents to perform small, medium or large tasks. If
a worker agent has recently been overloaded, it may refuse
to execute the required task. Occasionally, overseer agents

will delegate the assignment of tasks to a worker agent, in
which case the worker agent becomes an overseer agent for
a brief period. A flat profile and space-time diagram for this
benchmark system is contained in [2]. Figure 6 shows a portion
of the call graph tree view for a run of this application. Here,
the names of overseer agents begin with “master”, whereas the
names of worker agents begin with “agent”.

The benchmark application profile (displayed in Figure 6
reveals that overseer agents master1 and master2 do not have
the same impact on performance. Intuitively, one would expect
each overseer agent to have an equal impact. However, in
reality, we can see that the impact of messages sent by the
“master2” agent accounts for only 20.4% of the overall session
running time. Studying the call graph in more details helps
in explaining this imbalance, by studying the effects of the
messages with the content “pleaseDoThing(20)” that were sent
by both master1 and master2 to agent001. These are emphasised
in Figure 6 by means of the red rectangles. In each case, the
parameter passed as part of the a “pleaseDoThing” request is
related to the amount of work that the agent is being requested
to perform.

The call graph shows that some requests from master2 have
a 0.0 impact which in practice means they were ignored (no
actions took place as a result of receiving those messages). In

MALLOW’009: Turin, Italy, September 7-10, 2009

242

6

Fig. 6. Benchmark Call Graph Tree View for master1 and master2

other words, when master1 sends a request to an agent, and
immediately afterwards that master2 sends the same request to
the agent, the overloaded agent simply refuses to execute the
request. These “pleaseDoThing(20)” messages sent by master1
are reasonably consistent in terms of their impact, are never
refused and account for a total of 8.8% of the total session
running time. In contrast, only a single such request sent by
master2 was honoured by agent001. This action accounted for
a mere 0.5% of the session running time.

It is important to note that the greater impact of master1’s
messages does not necessarily constitute a bottleneck, merely an
imbalance in the system. This type of analysis would motivate
the use of the space-time diagram to examine the timing of the
messages in question, so as to further find why messages from
master2 are more likely to be ignored by the worker agent.

A bottleneck would be identified by comparing the impact
of different messages being sent (rather than the same message
being sent by different agents). For instance, it is notable
that the session impact percentages for “pleaseDoThing(1)”
messages sent by master1 to agent001 are far lower than for
“pleaseDoThing(20)”. In this simple benchmark application,
this is an unsurprising result, as the increased workload is
explained by the messages themselves, with the latter message
requesting more processing to be undertaken by the former.
However, figures such as these would indicate a bottleneck if
the results are unexpected (i.e. where high-impact messages
are not intended to trigger high-cost actions on the part of the
message recipients) and so would motivate a closer examination
of the longer-running actions to increase efficiency.

It may be possible to make such a deduction from viewing
the underlying agent code itself, however the use of the call
graph makes this far more easily apparent without the need for
detailed examination of the code. This also means that testers
that are not necessarily familiar with the code (or even perhaps
testers who do not understand the programming language
used) can identify bottlenecks and behavioural anomalies for
developers to address.

VII. DISCUSSION

The proposed metric for measuring the agent message impact
outlined in Section IV-B has a number of drawbacks. It operates
on the naive assumption that the actions of an agent are directly
related to the messages received by it. The impact of a message
on an agent is thus taken as the sum of the execution times of
all actions undertaken by the agent between the receipt of that
message and the receipt of the next message.

The principal drawback with such an approach is that there
is no provable causal link between the receipt of messages
and the execution of actions. Agents may decide to act for
reasons other than the receipt of ACL messages. For instance,
a perceptor may have detected changes in the environment that
may require some reaction. Also, when actions are executed as
a direct consequence of the receipt of an ACL communication,
there is no guarantee that all of the relevant actions have been
performed prior to the receipt of the next message. Thus the
agent message impact arising from the receipt of a single
message may not be particularly informative.

MALLOW’009: Turin, Italy, September 7-10, 2009

243

7

Ideally, the best method of measuring the impact of the
receipt of an ACL message would be to track the internal
reasoning process of the agent, so as to identify those actions
that are performed as a direct result of the receipt of a message
and take only these into account when calculating the message
impact. This is, however, a particularly difficult task, as the
reasoning used by agents is extremely platform-dependent and
would require a substantial amount of work to be performed
in order to port AgentSpotter to other agent platforms and
frameworks. This contravenes one of the fundamental aims of
AgentSpotter, which is intended to be as platform-agnostic as
is practicable.

Even if we are to settle for a framework-specific profiling
system, the task of identifying direct causal links between
events is also non-trivial. Whereas some agents may contain
straightforward agent code that reacts to the receipt of a
message by always invoking a particular action, this is unlikely
to always be the case. Receipt of a message may alternatively
lead to a refinement of an agent’s goals, or even more subtly,
an alteration of its current belief state, which in turn may result
in goal refinements. Goals may be adopted based on the entire
belief set, making it difficult to ascertain for certain whether
the belief triggered by the message was a cause of the change
in the agent’s goals or a merely coincidental occurrence. Even
when goals have been adopted, a plan selection algorithm is
typically used to decide upon the best path to take towards
satisfying those goals. Again, this is a potentially difficult
process to trace reliably.

Although the proposed measure does have drawbacks and
is somewhat simplistic, it is also important to highlight the
benefits of such a measure. Whereas a high impact measurement
for a single message may not be indicative of a major
system bottleneck (and may indeed be merely coincidental),
consistently high impact measures for similar types of messages
are far more likely to be a result of a causal link between the
receipt of the message and the processing that follows. It is
this type of analysis that makes the call graph a useful tool in
identifying situations that result in a high processing load and
thus aid in helping developers concentrate on the appropriate
portions of the code base to improve system efficiency.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed a new visualisation, the call graph
tree view, in order to provide detailed information about the
performance impact of agents interactions. After discussing the
concept of call graph in a traditional programming context, we
have then mapped it into an agent-oriented concept based on
the idea that when an agent sends an ACL message to another,
its impact on the amount of processing the recipient perform
can be measured and used to identify system bottlenecks,
load imbalances and efficiency issues. Although the proposed
measure is not optimal, it does provide users with data that is
appropriate and useful in the context of a profiler application.
We have then extended this notion to a tree model with multiple
levels: session, message emitter, message receiver, message.
Finally, we have described the advanced user interface that
allows developers and testers to interact with this model in the
form of a zoomable and searchable tree view.

For further development of the call graph view of the
AgentSpotter application, there are two principal areas for
improvement. Firstly, as we have acknowledged in Section VII,
the current measure for gauging the processing impact of a
message being passed between agents is not an ideal one. We
intend to investigate other possible measures that will include
a stronger causal link between the receipt of a message and the
resulting processing activity. In doing so, the other AgentSpotter
views (flat profile and space-time diagram) will be utilised to
ensure that any proposed measures reflect the reality of the
system’s execution as closely as possible.

The second significant area of future work is in the area
of agent conversation protocols. The work presented in this
paper considers each ACL message to be entirely independent
of all other messages. The reality of agent communication
is somewhat different. In the agent architecture presented
as the benchmark application in Section VI, some overseer
agents request that worker agents perform certain tasks. In our
simple application, this is done by means of a single message
containing the work request being sent to the worker. In reality,
a more complex conversation would be used. The initial request
for a task to be performed may be answered with an acceptance
or rejection of the task being assigned, followed perhaps by
the communication of the result of the task. Clearly, an agent
accepting and performing a task will consume more processing
resources than when it is rejected. However, in the existing
model, both scenarios will be grouped together, under the
initial message requesting action. Such behaviour may mask
inefficiencies in the processing code by including the low-cost
rejection actions in its session percentages. By introducing an
additional conversation level into the tree, these situations can
be separated, meaning that actions will be grouped according
to entire agent transactions rather than single messages.

REFERENCES

[1] R. Bordini, L. Braubach, M. Dastani, A. Seghrouchni, J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, and A. Ricci, “A survey of programming
languages and platforms for multi-agent systems,” Informatica, vol. 30,
no. 1, pp. 33–44, 2006.

[2] D. Doan Van Bien, D. Lillis, and R. Collier, “Space-time diagram gener-
ation for profiling multi agent systems,” in Proceedings of PROMAS’09,
Budapest, Hungary, May 11-12th 2009.

[3] D. E. Knuth, “An empirical study of FORTRAN programs,” j-SPE, vol. 1,
no. 2, pp. 105–133, Apr./Jun. 1971.

[4] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, 1982.

[5] Sun Microsystems, Inc., “JVM Tool Interface (JVMTI), Version
1.0,” Web pages at http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
(accessed August 4th, 2008), 2004. [Online]. Available: http:
//java.sun.com/j2se/1.5.0/docs/guide/jvmti/

[6] A. Srivastava and A. Eustace, “Atom: a system for building customized
program analysis tools,” in PLDI ’94: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation.
New York, NY, USA: ACM, 1994, pp. 196–205.

[7] A. Helsinger, M. Thome, T. Wright, B. Technol, and M. Cambridge,
“Cougaar: a scalable, distributed multi-agent architecture,” in Systems,
Man and Cybernetics, 2004 IEEE International Conference on, vol. 2,
2004.

[8] G. Rimassa, M. Calisti, and M. E. Kernland, Software Agent-Based
Applications, Platforms and Development Kits, ser. Whitestein Series in
Software Agent Technologies and Autonomic Computing. Birkhäuser
Basel, 2005, ch. Living Systems R©Technology Suite, pp. 73–93.

[9] R. Collier, “Debugging Agents in Agent Factory,” Lecture Notes in
Computer Science, vol. 4411, p. 229, 2007.

MALLOW’009: Turin, Italy, September 7-10, 2009

244

8

[10] C. Seah, M. Sierhuis, W. Clancey, and M. Cognition, “Multi-agent
modeling and simulation approach for design and analysis of MER
mission operations,” in Proceedings of 2005 International conference
on human-computer interface advances for modeling and simulation
(SIMCHI’05), 2005, pp. 73–78.

[11] H. Nwana, D. Ndumu, and L. Lee, “ZEUS: An advanced tool-kit for
engineering distributed multi-agent systems,” Applied AI, vol. 13, no. 1,
p. 2, 1998.

[12] F. Bellifemine, G. Caire, D. Greenwood, and E. Corporation, Developing
multi-agent systems with JADE. Springer, 2007.

[13] J. Botıa, J. Hernansaez, and F. Skarmeta, “Towards an Approach for
Debugging MAS Through the Analysis of ACL Messages ,” Computer
Systems Science and Engineering, vol. 20, 2005.

[14] R. Collier, G. O’Hare, T. Lowen, and C. Rooney, “Beyond Prototyping
in the Factory of Agents,” Multi-Agent Systems and Application III:
3rd International Central and Eastern European Conference on Multi-
Agent Systems, Ceemas 2003, Prague, Czech Republic, June 16-18, 2003:
Proceedings, 2003.

MALLOW’009: Turin, Italy, September 7-10, 2009

245

1

ReSeagent: A Refactoring Tool for Plan Level
Refactoring in MAS Development

Ali Murat Tiryaki and Oguz Dikenelli
Ege University, Department Of Computer Engineering

35100 Bornova, Izmir, Turkey
Email: {ali.murat.tiryaki,oguz.dikenelli}@ege.edu.tr

Abstract—The need for XP-like agile approaches that facilitate
flexible evolutionary development has been widely acknowledged
in the AOSE area. Such approaches improve acceptability of
agent-technology by the industry. Evolutionary development of
multi agent systems-MASs can only be applied successfully, if
designs of the MASs being developed are improved throughout
the development process.In our previous work, we have defined a
refactoring approach that makes evolutionary MAS development
possible. In this paper, we mainly aim to identify a development
approach for MAS refactoring tools. In order to discuss this
approach, we developed a refactoring tool called ReSeagent on
the Seagent framework. Although the ReSeagent tool supports
plan level refactoring patterns that are to be manually applied
by the developers, ideas used in the implementation of this tool
are generic ideas that provide a base for different refactoring
types and development artifacts.

I. INTRODUCTION

Based on the experiences on agent-based system devel-
opment, AOSE research community has realized that it is
almost impossible to develop complex systems like multi agent
systems - MAS in a sequential manner [33], [7]. The solution
is the iterative approach which has been accepted as one of
the best practices by software development community and
integrated to all recent software development methodologies
such as Rational Unified Process - RUP [26] and Extreme
Programming - XP [3].

Managing the continuous evolution of software architecture
and related design is one of the key issues in iterative devel-
opment. XP introduces two critical practices to manage the
evolution of software architectures: test driven development
[21] and refactoring [18].

Test driven development produces test code for each class
developed during iterations. This test code provides a pro-
tection shield against the flaws that can occur as a result
of changes made on the working code by guaranteeing the
functional accuracy of this code. The other best practice
refactoring defines a process for improving the structure of
the software system without altering the external behavior.

An iterative and incremental development life-cycle ap-
proach is quite appropriate for developing large scale dis-
tributed and complex systems such as MASs. XP-like agile
processes, that introduce light-weight practices for iterative
and incremental development in a controllable way, are needed
to improve acceptability of the agent-technology by the indus-
try [7], [33]. However, traditional testing and refactoring ap-
proaches and their supporting tools cannot be re-used directly

in MAS development, since MASs are built using different
abstractions and techniques. So we need to re-define these
practices for MAS development.

In [28], we have proposed a refactoring approach that makes
evolutionary MAS development possible. This refactoring ap-
proach follows the route of traditional refactoring and provides
some new refactoring patterns for MAS development. The
proposed approach introduces some common problems called
“bad smells” experienced during the development of MAS
systems (such as duplicated behaviour structure and big plan)
and maintenance strategies called “refactoring patterns” to
overcome these bad smells. Each of the refactoring patterns
defined in this proposed approach focuses on overcoming
one or more than one bad smell(s) encountered during MAS
development.

In this paper, we aim to introduce a basic development
approach to produce MAS refactoring tools Then, we imple-
ment a refactoring tool called as ReSeagent on Seagent MAS
development framework [14], [15] by using the proposed ap-
proach. This tool supports refactoring on agent plans supported
by almost all MAS development methodologies such as Passi
[10], Tropos[5] and MaSe [13]. The tool can be used manually
by developers during MAS development activities. ReSeagent
focuses on refactoring Seagent plans whose meta model is
defined clearly in Seagent. However, software architecture of
the tool is generic and it can be used for other planning
systems whose meta-models are explicitly defined or other
MAS design artifacts such as role, goal and protocols.

II. RELATED WORKS

In the literature, there are some pioneering works which try
to apply agile practices to MAS development.

Knublauch [20] used practices of extreme programming -
XP [3], which is the one of the most known agile development
processes used for MAS development. Although, this work
proves the effectiveness of XP practices in terms of MAS
development, refactoring is not explained in detail. Since the
agent development framework and process meta-model, which
are used during development, are very simple, refactoring
operations on agents seem as very simple processes and
refactoring practice is applied on agents. However, an agent
that is developed by using a realistic development framework
can play many roles in MAS and those roles have many goals,
responsibilities and abilities. So, we believe that agents are not

MALLOW’009: Turin, Italy, September 7-10, 2009

246

2

small; on the contrary they are too big entities for testing and
refactoring.

In another important work has been introduced by Chella
et. al. [8], well known Passi methodology is transformed to
Agile Passi. The testing framework developed by the Agile
Passi research team provides an automated testing approach
for testing multi-agent systems [6], [11]. Agile Passi approach
does not introduce an iterative or evolutionary style for MAS
development. Therefore, a refactoring approach that makes
agile MAS development possible is not introduced in this
work.

In [9], an agile methodology for MAS development is
introduced. This methodology is a generic methodology based
on the practices such as test driven development and refac-
toring that come from the agile approaches. The process of
SADAAM consists of four key phases: design, test driven im-
plementation, release & review and refactor & enhancement,
that are applied iteratively until a finished state is reached.
However, any detailed discussion on how the practices called
test driven development and refactoring are applied during
MAS development. Hence, the proposed methodology is a
generic methodology that does not add too many specific
ideas to the abstract development process proposed by agile
approaches. To concretize how the proposed methodology
is used for MAS development, the agile practices in the
methodology have to be discussed exhaustively.

Another working [30] focuses on to define which and
how traditional refactoring practice can be used for agent
based simulation systems on a multi agent simulation systems
modeling paradigm called MASim. At the end of the working,
a catalog that consists of the refactoring patterns used to
improve the system designs based MASim is introduced.
Moreover, some of the proposed refactoring patterns has been
implemented and integrated to an agent based simulation
platform called SeSam. This working does not introduce a
general refactoring approach and its main characteristics for
MAS development. The proposed refactoring patterns can be
used to only the agent systems that have a specific type. To
define the refactoring patterns that can be used during MAS
development, firstly a general refactoring approach based on
the characteristics of these systems has to be defined.

In [29], an iterative and incremental development approach
called agent oriented test driven development - AOTDD is
proposed to handle the complexity and continuously changing
nature of the requirements in MAS development. In AOTDD,
developers follow the development cycle with adding the new
functionalities to the system between iterations, just like all
other agile & iterative development approaches. Also, the life
cycle of proposed test driven approach and a testing tool that
supports the proposed test driven approach are introduced in
this work. Since this work is focused on the testing part of test
driven development, the refactoring step that is very critical
for iterative and incremental development is not discussed in
detail.

These works neither propose a systematic approach for
MAS refactoring nor introduce a refactoring tool support for
these approaches. In this paper, we focus on these two points.

III. A DEVELOPMENT APPROACH FOR MAS
REFACTORING TOLLS

Refactoring is directly dependent on the executable artifacts
of the developed system. In AOSE area, it is not possible to
define a set of executable artifacts that can be agreed on, since
there are several agent architectures such as BDI, re-active,
self-organized and several development approaches such as
Gaia [32], Tropos [5] and Adelfe [4] that aim to develop
agents based on these agent architectures. Naturely, different
executable artifacts may emerged based on the used agent
architecture and/or development frameworks that support these
architectures. As a conclusion, it is impossible to develop a
refactoring tool that is usable for all kinds of MAS develop-
ment artifacts. Instead of this, we need a generic approach to
develop MAS refactoring tools. This approach can be specified
for different MAS architectures and/or different artifacts to
produce a suitable refactoring tool.

The proposed development approach has three steps listed
as follows:

1) Define the meta-model of the target executable develop-
ment artifacts,

2) Define the bad smells encountered during the develop-
ment of the artifacts specified in the previous step,

3) Define the refactoring patterns that overcome the bad
smells defined for the target development artifact.

To illustrate how the proposed approach can be applied to
refactoring tool development, we chose the agent plans as
the target development artifact. Agent plan abstraction is
one of the most common artifacts in MAS development
methodologies. Almost all of the MAS methodologies use
plan abstraction (it is named with different terms in different
methodologies) to model agents’ internal behaviours. For
example, in the goal oriented development approach, each
agent goal is achieved by one or more agent plan(s). Several
approaches can be used to build plan structures such as HTN
[31], [23] based on the agent infrastructure. Developers have
to specify the planning approach before they apply first step of
the proposed refactoring tool development approach (defining
the meta-model of the target artifacts).

In our case, we aim to develop a refactoring tool for the
Seagent framework that was developed by our research group.
So, our refactoring tool called ReSeagent aims to refactor
agent plans that are directly dependent on the Seagent planning
infrastructure.

The rest of this section explains how the steps of the
proposed approach were applied for the plan artifact in the
Seagent framework.

A. Define the meta-model of the target executable development
artifacts

Performing a refactoring pattern requires a clear understand-
ing of the abstract syntax and semantics of both the source
and target models. Meta-modeling is a common technique for
defining the abstract syntax of models and the interrelation-
ships between model elements. To identify refactoring patterns
and bad smells for an executable design artifact, we have to

MALLOW’009: Turin, Italy, September 7-10, 2009

247

3

know the meta-model used to build structures of this type of
artifacts.

In Seagent framework, the hierarchical task network - HTN
formalism [23], [31] is used to build and store of agent
plans. Hence, the plan level refactoring patterns introduced in
this paper are dependent on the HTN formalism. ReSeagent
refactoring tool supports to apply the mechanics of these
HTN dependent refactoring patterns on HTN plans that are
developed through Seagent. The structure of the HTN meta
model used in the current Seagent version is shown in the
figure 1.

Figure 1. Seagent HTN Meta Model

In HTN formalism, there are two kinds of task; complex
task (we call behaviour) and primitive task (we call action).
Complex tasks hold the structure of its sub-tasks and links
between these tasks. Primitive tasks have directly executable
code. Information requirements of tasks are illustrated as pro-
visions. Outcomes are result states of tasks. Data is transferred
to other tasks through the several kinds of link. An inheritance
link is used to transfer a provision of a parent complex task to a
sub task. Disinheritance links are used to transfer outcomes of
sub-tasks to parent complex task. And finally, the information
flow between outcomes and provisions of the tasks in the same
level is provided by internal provision links. As an addition
of the links come from the HTN formalism, there is one more
type of link called order link in the Seagent behavioural PSM.
Order links do not pass any information between tasks. They
are used only to order the execution of tasks.

B. Define the bad smells encountered during the development
of the artifacts specified in the previous step,

To make decision about applying refactoring patterns on an
arfifact, we need to define the common design problems that
are encountered by developers during the system development
process frequently. Fowler named these common problems
as bed smells in [18] and introduced refactoring patterns to
overcome these bad smells in software design. Each of the
defined refactoring patterns is introduced to overcome one or
many bad smell(s).

Similarly, we have to define bad smells for MAS develop-
ment. Based on our experiences on the MAS development, we
have identified following bad smells for plan level refactoring:
Duplicated behaviour structure, execution decision in a plan,
big behaviour, incoherent behaviour, redundant task group.

Detailed definitions of all defined bad smells are accessible
through the Seagent web side1.

C. Define the refactoring patterns that overcome the defined
bad smells for the target development artifact.

To develop a refactoring tool that can be used during MAS
development, the refactoring patterns that define the order of
the mechanics for each refactoring pattern has to be defined by
a standard way. Each pattern includes pre-defined mechanics in
order to overcome one or more bad smell(s). These mechanics
has to be defined by using a machine understandable semantic.
The tool uses the pre-defined machine understandable pattern
definitions to overcome bad smells.

In ReSeagent, we have defined seven refactoring patterns
for HTN based plan refactoring. These plan level refactoring
patterns that were defined based on our experiences with its
initiator bad smell(s) are shown in table I.

Table I
REFACTORING PATTERNS AND THEIR INITIATOR BAD SMELLS IN THE

PLAN LEVEL

The detailed definitions of all refactoring patterns defined
are accessible on the refactoring patterns part of the Seagent
web side.

IV. A HYBRID APPROACH FOR DEFINITION OF
REFACTORING PATTRENS

To implement a refactoring tool, firstly the refactoring
techniques supported by the tool have to be defined in a
usable form for the tool. We used a hybrid approach based
on the mechanisms used for defining transformation rules in
the Model Driven Enginnering - MDE to define the refactoring
tecniques mentioned in the previous section for our refactoring
tool. MDE is a discipline in software engineering that relies on
models as first class entities and that aims to develop, maintain
and evolve software by performing model transformations
[22], [25]. This section introduces our hybrid approach that is
based on the model transformation techniques [19] and used
to define refactoring techniques in ReSeagent refactoring tool.

1http://etmen.ege.edu.tr/wiki/index.php/refactoring_agent_system

MALLOW’009: Turin, Italy, September 7-10, 2009

248

4

From the MDE perspective, a refactoring operation is a
model transformation between the initial and the improved
models. Model is a structure of design artifacts in the refac-
toring context. Like each model transformation has some
teransformation rules, each refactoring has some mechanics
that achieve main goal of the refactoring by working together.
It is nature to think that the refactoring approaches and tools
can be based on the model transformation approaches and
techniques. To develop a refactoring tool by using the model
transformation techniques, mechanics of refactorings should
be defined as the transformation rules. In this manner, the
refactoring tool operates the refactoring mechanics that are
defined as transformation rules according to the refactoring
pattern in order. This is not a new idea and there are some
works about rule based refactoring in the literature such as [2],
[24]. All of these works aim to define refactoring operations
by rules for their own target development sytle.

Transformation rules are the focal point for model trans-
formation. The techniques and languages that are used to
identify these rules specify the maim characteristics of model
transformation. There are two main approaches to define
trasnformation rules; declerative and imperative approaches
[12]. Declarative approaches (e.g., [1]) are attractive because
particular services such as source model traversal, traceability
management and automatic bidirectionality can be offered by
an underlying reasoning engine. On the other hand, imperative
approaches (e.g., [27]) may be required to implement trans-
formations for which declarative approaches fail to guarantee
their services. Especially when the application order of a set of
transformations needs to be controlled explicitly, an imperative
approach is more appropriate thanks to its built-in notions of
sequence, selection and iteration.

In Seagent framework, plan models are stored in ontologies
that are built by using a description logic based language called
Web Ontology Language - OWL2. Refactoring operations on
these plan models can be considered as model transformations
between initial plan ontologies and improved plan ontologies.
So, a logic based declerative approach looks like appropriate
for building rules on the these models. A refactoring tool
that supports transformation between OWL ontologies using
logic based rules is useful for refactoring Seagent plan mod-
els. However, logic based rules are not enough for defining
refactoring mechanics because of the two handicaps of logic
based declarative approaches listed belove:

1- Almost all of the logic languages such as Prolog have
been developed to extend their target models. By using these
languages, new definitions can be made on the existent ele-
ments in the model. These languages do not support to remove
and change the existent elements in the model. Refactoring
techniques require removing and changing of the existent
elements in the model besides extending of the model.

2- Another handicap of the declerative approach for creating
transformation rules of refactorings is that the mechanics of
refactorings should be operate in sequence, As mentioned
above, such a sequence operation can be controlled explictly
by an imperative approach.

2http://www.w3.org/TR/owl-features/

Because of these handicaps, the declerative approach cannot
be used alone to define refactoring mechanics since their
handicap mentioned above. To define refactoring mechanics
as rules, imperative or hybrid approaches should be used.

ReSeagent uses a hybrid approach that combines the advan-
tages of declarative and imperative rule definition approaches.
The declarative side of this approach is achieved by using
Semantic Web Rule Language - SWRL3. SWRL is a logic
based rule language that supports defining rules on OWL
ontology models. Refactoring mechanics that extend the initial
models are defined as SWRL rules. Refactoring mechanics
defined using the HTN paradigm forms the imperative side of
our hybrid approach[31], [23].

In this hybrid approach, each refactoring pattern is defined
as an agent plan by using the HTN paradigm and each
refactoring mechanic is implemented as an executable action
in refactoring plans. Refactoring mechanics that extend the
initial models are implemented as rule actions. Rule actions
have the responsibility of operating a SWRL rule on the OWL
model of the related Seagent plan. Refactoring mechanics that
change and/or remove the existing element in the initial model
are implemented as normal actions. Normal actions implement
change and remocal activities by means of Java code that
handles the ontology explicitly. All of the actions that are
implemented to realize the mechanics of a refactoring pattern
compose a refactoring plan that achieves the main goal of the
refactoring pattern. Sequential execution of these actions is
controlled by the plan structure.

Many different methods such as finite state machine can
be chosen to implement the imperative side of our hybrid
rule definition approach. However, defining each refactoring
pattern as an agent plan by using the HTN paradigm in
ReSeagent has some advantages listed below:

• Simplicity: In Seagent, HTN paradigm is used for testing
and implementation of plans. Defining refactoring pat-
terns by using the same method simplifies the addition
of new refactoring patterns into the refactoring tool.

• Reusability: HTN paradigm makes it possible to re-
use other pre-defined plan structures in higher level plan
structures. Thanks to this, big refactorings can be simply
implemented by re-using the pre-defined refactoring plans
in a high level refactoring plan.

• Generality: Since the refactoring plans are agent plans
like domain dependent user plans, these refactoring plans
can also be refactored by applying refactoring plan(s) on
these plans.

The software architecture of ReSeagent that executes the refac-
toring patterns defined by our hybrid approach is explained in
the following section.

V. OVERAL SOFTWARE ARCHITECTURE OF RESEAGENT

ReSeagent refactoring tool was implemented as a plug-in on
the Seagent plan editor in the Seagent Development Environ-
ment - SDE like the refactoring support of Eclipse. ReSeagent
gives suport for refactoring the plan models developed using

3http://www.w3.org/Submission/SWRL/

MALLOW’009: Turin, Italy, September 7-10, 2009

249

5

SDE. The tool applies pre-defined refactoring patterns on the
related plan models to fulfill the refactoring requests received
from Seagent plan editor.

ReSeagent focuses on the refactoring of Seagent plans
whose meta-model is clearly defined in Seagent. Additionally,
since the software architecture of the tool is generic and it
can be used for other planning systems whose meta-models
are different or for other MAS design artifacts such as role,
goal and protocols. To add support for the artifacts that have
different meta-models, you have to add new refactoring plans
that work on these meta-models into the refactorer role of
ReSeagent, and make some additions to the initiator module
for initiating these new refactoring plans.

Figure 2. Overal Software Architecture of ReSeagent

SDE has the responsibility of developing executable artifacts
such as plan models and goal models that can be executed by
Seagent. For this purpose, SDE includes a plan and a goal
editor for developing plan and goal models. It includes also a
testing tool called SeaUnit that verifies the functionalities of
these development artifacts [16]. The overall software archi-
tecture of ReSeagent and its dependencies on other modules
in SDE is shown in figure 2.

ReSeagent consist of two sub-packages: refactoring ini-
tiator and refactorer role. Refactoring initiator package was
developed as a plug-in on the Seagent Plan Editor like the
refactoring support of the well known Eclipse environment. It
has the responsibilities of capturing the refactoring requests in
the plan editor, and initiating a refactoring operation for each
of these refactoring requests. On the other hand, refactoring
role holds the refactoring plans that are defined to provide the
mechanics of the refactorings.

A. Refactoring Initiator

Refactoring initiator module of ReSeagent has a simple
structure. This module has the responsibilities of capturing
the refactoring requests from the plan editor and the user
preferences that are needed to fulfill these requests, and
initiating a refactoring operation that is suitable for each of
the captured refactoring requests.

When the developer wants to start a refactoring operation
on a pre-defined plan model by using the refactoring plug-
in of the Seagent plan editor, the initiator initiates an agent
that plays the refactorer role and then passes the refactoring
request with its inputs to this refactorer agent. This agent maps
the received refactoring request to a suitable refactoring plan
situated in the plan library of the refactorer role, passes the
input values to this plan and executes it. During the plan
execution, the input values of the refactoring requests are
passed to the sub-tasks of the plan via the links in the HTN
structure. Then, these subtasks are executed depending on their
order in the HTN structure. At the end of the plan, updated
plan models are returned to the initiator via the outcomes so
that the results can be shown to the plan editor user.

There can be many plans that realize the same refactoring
operation by means of different ways. In such a situation,
refactorer agent decides which refactoring plan has to be
executed, according to inputs of the refactoring request and its
internal state. This ability of the refactorer agent comes from
Goal Mapping Engine in Seagent framework [17]. Thanks to
this engine, Seagent agents can map a request to most suitable
of many plans that achieve same goal in different ways. When
this decision is made, some criteria such as inputs and outputs
of the goal are considered by the Goal Mapping Engine. To
add more than one refactoring plan that can realize the same
refactoring operation to Seagent, it is enough to add correct
mapping definitions to the knowledge base that are used for
goal mapping (called Goal Mapping Ontology in Seagent) by
the refactorer agent .

Another responsibility of the initiator is passing the updated
plan model(s) to the plan editor. Each refactoring plan has
some outcomes that return the plan models that have been
changed during the execution of the refactoring plan. There is
one outcome for each updated plan model. Initiator listens
to the planner of the refactorer agent after it initiates this
agent. When a PlanFinished event is thrown by the planner,
the initiator captures the updated plan models returned by the
outcomes and updates the model(s) in the plan editor. Hereby,
new structures of the refactored plans are shown to the user.

B. The Refactorer Role
Refactorer role is a special role that has refactoring goals

and refactoring plans that achieve these goals. This role can
access plan models and action definitions in the system. This
role has the responsibility of applying plan level refactorings
on plan models during MAS development.

The refactorer role has refactoring goals that aim to apply a
specific refactoring pattern on the Seagent plan models. Each
of these refactoring goals is achieved by one or more than
one refactoring plans. So, the plan library of this role has
to include at least one refactoring plan for each refactoring
pattern supported by ReSeagent tool.

The current version of ReSeagent refactoring tool supports
the following plan level refactoring patterns: Replace Tasks
with a Task, Extract Behaviour, Behaviour to Plan, Extract
Plan.

The detailed definitions of these refactoring plans can be
found on the ReSeagent plans page of the Seagent web site.

MALLOW’009: Turin, Italy, September 7-10, 2009

250

6

Also, the OWL ontologies of the plans and Java codes of the
actions in these plans are downloadable on this page.

To give an inside about the refactoring plans in ReSeagent,
one of the refactoring patterns and the refactoring plan devel-
oped to achieve this refactoring in ReSeagent are explained in
the following section.

Replace Tasks with a Task Refactoring and Its Implementation
in ReSeagent

Replace Tasks with a Task refactoring can be used in such a
case: a functionality achieved by more than one tasks in a plan
structure can be achieved by only one task. This refactoring
removes these tasks from the plan structure and adds the new
task to the plan structure instead of the removed tasks.

When the Redundant Task Group bad smell is realized in a
plan structure, the plan can be made more readable and simpler
by replacing the task group with a task that can achieve same
functionality.

To apply Replace Tasks with a Task refactoring, the new
task has to have all of the provisions and outcomes of the
tasks in the replaced task group that are linked to other tasks
in the plan structure.

Mechanics:
1) Remove the task group from the plan and add the new

task.
2) Find inheritance and provision-outcome links that are

attached to the provisions of the replaced tasks and
attach such links to the suitable provisions of the new
task.

3) Find disinheritance and provision-outcome links that are
attached to the outcomes of the replaced tasks and attach
such links to the suitable outcomes of the new task.

4) Scan the provision-outcome links whose source or target
task(s) is the reference to the replaced tasks. If there are
such links, remove these links from the plan structure.

Replace Tasks with a Task refactoring plan in ReSeagent
refactoring tool is developed to realize the goal of “replacing
a task group with a task that can fulfill same functionality”
which is the aim of Replace Tasks with a Task refactoring
pattern. HTN structure of this refactoring plan that implements
the mechanics of Replace Tasks with a Task refactoring pattern
is shown in figure 3.

Figure 3. HTN structure of the Replace Tasks with a Task refactoring plan
in ReSeagent

The plan takes the name of the plan whose structure is be
refactored, the list of the tasks that are to be removed from
the plan structure and the task that is to be added into the
plan structure as provisions, and transfers these provisions

to its sub-tasks. The plan has four actions. Each of these
actions achieves one of the mechanics of the Replace Tasks
with a Task refactoring pattern. These actions which are called
ProvideProvisions and LinkOutcomes extend the model of the
target plan structure by adding new links. Hence, each of these
actions operates a SWRL rule to fulfill its responsibility. At the
end of the plan execution, updated plan structure is returned
through an outcome.

VI. CASE STUDY

In this section, we introduce a case study that shows the
usage of our refactoring approach and ReSeagent refactoring
tool during the development of an actual MAS application
which is a conference management system that has been
developed by Seagent group.

At the beginning of the development, we did not intervene
the developers and let them to follow a sequential development
process that does not impose evolutionary development. The
developers developed some of the goals such as “building the
program committee”, “sending call for paper” and “initiating
a conference” by applying the activities of their development
process.

After developing a few of the system goals, some bad smells
emerged in the design of the MAS that was developed: some
plan structures were duplicated in many plans. Furthermore,
the developers were disappointed from the unmanageable
structures of the plans developed.

We can give an example for these bad smells on a simple
plan structure from the conference management MAS. This
plan structure achieves the “sending call for paper” goal of the
“organization” role in this system. The initial HTN structure
of this plan that was obtained at the end of the sequential
development process for “sending call for paper” goal is shown
in figure 4.

Figure 4. The initial plan structure of the Send_CFP plan

The simple plan in the figure 4 takes the conference topic as
a provision. This provision is passed to the “create suitable re-
searcher profile” action through an inheritance link. In this ac-
tion, a researcher profile object is created, the interested_topic

MALLOW’009: Turin, Italy, September 7-10, 2009

251

7

field of this profile is set with the topic that is received as a
provision and this researcher profile is returned through the
“OK” outcome. The other action called ”prepare and send
query message to DF” takes the researcher profile, creates a
query message by using this profile and sends this message to
directory facilitator - DF. The “evaluate incoming researchers”
action has an external provision called researcherList. This
provision includes agent descriptions of the researcher agents
that are sent by the DF. In this action, the description of the
researcher agents are filtered according to the preferences and
suitable researchers are selected. The final action called “send
CFP to selected researchers” has the responsibility of sending
call for paper of the conference to selected researchers using
the agent descriptions that are received as a provision.

Some tasks in the plan structure have a common goal
called “finding the suitable researcher agents” that should
be tested independently from the other goals. This goal can
also be part of the other plan structures such as “create
program committee” in the system. This was a bad smell called
Duplicated Behaviour Structure. So, we decided to collect
the actions called CreateResearcherProfile, SendResearcher-
QueryToDFand EvaluateResearcherAgentsinto a new plan
that achieves the common goal by applying Extract Be-
haviourrefactoring on these actions.

To initiate anExtract Behaviourrefactoring operation on
these three actions, we selected these actions and right clicked
the mouse. In the opened menu, we chose the Refactor —
> Extract Behaviour as shown in figure 4. Then, a window
releated with the Extract Behaviourrefactoring appeared on
the screen. This window had three spaces that had to be set
by the input values of the plan. These values were plan name,
tasks list and new task. When we set all of the spaces by values
and then clicked to the start button, the refactoring operation
was initiated. After, a short duration, the improved structure
of the plan appeared in the Seagent plan editor.

Figure 5. Final structure of the Send_CFP plan

At the end of the Extract Behaviour refactoring, we obtained
a new plan called FindResearcherAgents that can be re-used
in the other plan structures. This plan has the responsibility
of finding agent descriptions of the researchers that work on

the conference topic according to the topic provision. The
FindResearcherAgents plan was simply used in some other
plans in conference management system. The plan structure of
our “send CFP” plan after the Extract Behaviour refactoring
is shown in figure 5.

After the refactoring operations on the developed plan struc-
tures, we obtained more readable and manageable plans for
the conference management system. Reusable plan structures
such as FindResearcherAgents obtained during the refactoring
operations simplified to development of other system goals
that include the goals achieved by these plans.

VII. CONCLUSION

In this paper, we define a development approach for refac-
toring tools that can be used during the development of MASs.
To discuss this development approach on a refactoring tool
implementation, a refactoring tool called ReSeagent has been
implemented on the Seagent framework by following the
process proposed by this approach. This tool supports the
manual application of pre-defined refactoring patterns stored
as agent plans on Seagent plan models during the development
activities. So far, ReSeagent refactoring tool was used in the
development of the several MAS applications such as e-barter
and conference management systems developed by the Seagent
group. The experiences we obtained during the development of
these systems show that ReSeagent refactoring tool facilitates
evolutionary MAS development by simplifying the refactoring
process.

REFERENCES

[1] David H. Akehurst and Stuart J. H. Kent. A Relational Approach to
Defining Transformations in a Metamodel. In The Unified Modeling
Language: Model Engineeing, Concepts, and Tools, volume 2460 of
Lecture notes in computer science. Springer, 2002.

[2] Joachim Baumeister and Dietmar Seipel. Verification and refactoring
of ontologies with rules. In Steffen Staab and Vojtech Svatek, editors,
EKAW, volume 4248 of Lecture Notes in Computer Science, pages 82–
95. Springer, 2006.

[3] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Professional, 2004.

[4] Carole Bernon, Valérie Camps, Marie P. Gleizes, and Gauthier Picard.
Engineering Adaptive Multi-Agent Systems: The ADELFE Methodol-
ogy . In Brian H. Sellers and Paolo Giorgini, editors, Agent-Oriented
Methodologies, pages 172–202. Idea Group Pub, NY, USA, juin.

[5] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004.

[6] G. Caire, M. Cossentino, A. Negri, A. Poggi, and P. Turci. Multi-agent
systems implementation and testing. In From Agent Theory to Agent
Implementation, Fourth International Symposium (AT2AI-4), 2004.

[7] L. Cernuzzi, M. Cossentino, and F. Zambonell. Process models for
agent-based development. Journal of Engineering Applications of
Artificial Intelligence, 18 (2), 2005.

[8] A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. From passi
to agile passi: Tailoring a design process to meet new needs. In
IEEE/WIC/ACM International Joint Conference on Intelligent Agent
Technology (IAT-04), 2004.

[9] Neil Clynch and Rem Collier. Sadaam: Software agent development
an agile methodology. In Proceedings of the Workshop of Languages,
methodologies, and Development tools for multi-agent systems, 2007.

[10] Massimo Cossentino, Luca Sabatucci, and Antonio Chella. Patterns
reuse in the passi methodology. In Proceedings of the Fourth Interna-
tional Workshop Engineering Societies in the Agents World (ESAW’03,
pages 29–31. Springer-Verlag, 2003.

MALLOW’009: Turin, Italy, September 7-10, 2009

252

8

[11] Massimo Cossentino and Valeria Seidita. Composition of a new process
to meet agile needs using method engineering. In SELMAS, pages 36–
51, 2004.

[12] Krzysztof Czarnecki and Simon Helsen. Classification of model transfor-
mation approaches. In OOPSLA-03 Workshop on Generative Techniques
in the Context of Model-Driven Architecture, 2003.

[13] DeLoach S. A. Multiagent Systems Engineering A Methodology and
Language for Designing Agent Systems. In Proc. of Agent Oriented
Information Systems, pages 45–57, 1999.

[14] Oguz Dikenelli, R. C. Erdur, O. Gumus, E. E. Ekinci, O. Gurcan,
G. Kardas, Inanc Seylan, and Ali Murat Tiryaki. Seagent: a platform for
developing semantic web based multi agent systems. In AAMAS ’05:
Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pages 1271–1272, New York, NY, USA,
2005. ACM Press.

[15] Oguz Dikenelli, Riza Cenk Erdur, Geylani Kardas, Ozgr Gumus, Inanc
Seylan, Onder Gurcan, Ali Murat Tiryaki, and Erdem Eser Ekinci.
Developing multi agent systems on semantic web environment using
seagent platform. In Engineering Societies in the Agents World VI,
volume 3963 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2006.

[16] Erdem Eser Ekinci, Ali Murat Tiryaki, and Oguz Dikenelli. Goal
oriented agent testing revisited. In Agent Oriented Software Engineering
2008. Springer Verlag, 2008.

[17] Erdem Eser Ekinci, Ali Murat Tiryaki, Onder Gurcan, and Oguz
Dikenelli. A planner infrastructure for semantic web enabled agents. In
OTM Workshops, volume 4805 of Lecture Notes in Computer Science,
pages 95–104, Vilamoura, Algarve, Portugal, 2007. Springer.

[18] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[19] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture–Practice and Promise. Addison-Wesley
Professional, April 2003.

[20] Holger Knublauch. Extreme programming of multi-agent systems. In
AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 704–711, New York,
NY, USA, 2002. ACM Press.

[21] Johannes Link and Peter Frolich. Unit Testing in Java: How Tests Drive
the Code. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[22] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142, March
2006.

[23] Massimo Paolucci, Dirk Kalp, Anandeep S. Pannu, Onn Shehory, and
Katia Sycara. A planning component for retsina agents. In Lecture
Notes in Artificial Intelligence, Intelligent Agents VI, 1999.

[24] Ivan Porres. Rule-based update transformations and their application
to model refactorings. Software and System Modeling, 4(4):368–385,
2005.

[25] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE Software,
20:42–45, 2003.

[26] Rational Software. The rational unified process, 1998.
[27] Jonathan Sprinkle, Aditya Agrawal, Tihamer Levendovszky, Feng Shi,

and Gabor Karsai. Domain model translation using graph transforma-
tions. In ECBS, pages 159–167. IEEE Computer Society, 2003.

[28] Ali Murat Tiryaki, Erdem Eser Ekinci, and Oguz Dikenelli. Refactoring
in multi agent system development. Lecture Notes in Artificial Intelli-
gence, 5244:183–194, 2008.

[29] Ali Murat Tiryaki, Sibel Öztuna, Oguz Dikenelli, and Riza Cenk Erdur.
Sunit: A unit testing framework for test driven development of multi-
agent systems. In AOSE, volume 4405 of Lecture Notes in Computer
Science, pages 156–173. Springer, 2006.

[30] Cornelia Triebig and Franziska Klugl. Refactoring of agent-based
simulation models. In Multikonferenz Wirtschaftsinformatik, 2008.

[31] M. Williamson, K. Decker, and K. Sycara. Unified information and
control flow in hierarchical task networks. In Theories of Action,
Planning, and Robot Control: Bridging the Gap: Proceedings of the
1996 AAAI Workshop, pages 142–150, Menlo Park, California, 1996.
AAAI Press.

[32] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge.
Developing multiagent systems: The gaia methodology. ACM Trans.
Softw. Eng. Methodol., 12(3):317–370, 2003.

[33] Franco Zambonelli and Andrea Omicini. Challenges and research
directions in agent-oriented software engineering. Autonomous Agents
and Multi-Agent Systems, 9(3):253–283, 2004.

MALLOW’009: Turin, Italy, September 7-10, 2009

253

Programming social middlewares through social
interaction types

Juan Manuel Serrano
University Rey Juan Carlos

C/Tulipan S/N
Madrid, Spain

juanmanuel.serrano@urjc.es

Sergio Saugar
University Rey Juan Carlos

C/Tulipan S/N
Madrid, Spain

sergio.saugar@urjc.es

Abstract—This paper describes a type-oriented approach to
the programming of social middlewares. It defines a collection of
metamodeling features which allow programmers to declare the
social interaction and agent types which make up the program of
a multiagent society for some application domain. These features
are identified and formalised taking into account a specification
of social middlewares as programmable, abstract machines.
Thus, the proposed approach results in the type system of an
interaction-oriented programming language. The paper uses the
C+ action language and the CCALC tool as formal devices, so that
metamodeling features are given formal semantics as new social
law abbreviations which complement the causal law abbreviations
of C+. This programming language approach contrasts with
the common modeling approach endorsed by organizational
methodologies, and promotes higher levels of formality and
reusability in the specification of multiagent societies.

I. INTRODUCTION

Social middlewares are the responsible software infrastruc-
tures for the run-time management of software component in-
teractions in computational societies. Unlike traditional object-
oriented, service-based or messaging middleware approaches,
social middlewares (e.g. AMELI [5], S-MOISE+ [11], MadKit
[9], INGENIAS toolkit [8], etc.) provide software components
with high-level communicative and organizational interaction
mechanisms, which build to different extents on normative
concepts such as empowerments, permissions, obligations,
commitments, etc. It is claimed that the increased flexibility
and expressiveness of these interaction mechanisms will result
in a better management of component interactions in large-
scale, multi-organizational, open distributed systems.

However, current social middlewares must overcome a
number of shortcomings in order to achieve their full potential.
Firstly, the set of generic interaction mechanisms which they
are designed to support is not extendable, so that programmers
are constrained to use the pre-defined abstractions (scenes,
teams, groups, etc.) provided by the organizational metamodel
of choice (e.g . ISLANDER [4], AGR [6], Moise+ [10],
INGENIAS [13]). Secondly, applications can not be developed
from generic, reusable modules which are specialised in the
target application domain. Last, the run-time semantics of the
organizational metamodels are not formally specified, which
limits the understandability of the language constructs and the
portability of the social middleware.

To address these limitations, this paper puts forward an
approach to the programming of social middlewares which
can be characterised along the following premises. Firstly, we
build on a primitive and flexible notion of social interaction
which attempts to provide the basic building blocks for the
specification of any kind of communicative or organizational
mechanism. Secondly, the social middleware is regarded as a
programmable machine which is formally specified in techno-
logically neutral terms as an abstract machine. Last, the be-
haviour of the social middleware is programmed through social
interaction types which declare the characteristic structure and
rules that govern the social interactions of the target applica-
tion domain. The first two premises have been addressed in
previous work, namely [15] and, respectively, [16]. The goal
of this paper is to elaborate on the third premise. In particular,
a set of metamodeling features for declaring social interaction
types will be identified and their semantics formalised in terms
of the underlying abstract machine. The chosen technique for
formalising the overall approach is the action language C+ [7]
and its accompanying tool CCALC [1]. In accordance with this
election, metamodeling features will be represented as social
law abbreviations which complement the standard set of causal
laws provided by C+.

The rest of the paper is structured as follows. The next
section briefly recalls the results shown in [16], namely it intro-
duces social middlewares as programmable abstract machines.
This section also describes, albeit briefly, the major features of
the C+ formalisation and the conference management example
used throughout the paper. Then, section 3 describes the
partial set of metamodeling features of social interaction types,
leaving their proper formalisation to the appendix of the paper.
Finally, the paper concludes with a discussion of the major
results with respect to competing paradigms, and a summary
of current and future work.

II. SOCIAL MIDDLEWARE AS AN ABSTRACT MACHINE

The social middleware is in charge of managing the inter-
actions between software components participating in a mul-
tiagent society. For instance, let’s consider the development
of an application to support the management of scientific
conferences. In this setting, the social middleware is in charge
of maintaining and driving the social processes which make up

MALLOW’009: Turin, Italy, September 7-10, 2009

254

the management of conferences (submissions, assignment and
reviewing of papers, etc.). It does not deal with the actual job
of software components that will engage in those processes at
run-time1, but with the management of processes themselves.
This management is performed in accordance with the rules
of conference management as specified by the types of social
interactions that implement them. Before describing in the next
section how to declare these types of interactions, this one
summarizes the general structure of multiagent societies and
the generic behaviour of the social middleware.

A. Social middleware structure

The interaction space of the middleware is shaped in terms
of a tree of nested social interactions, so that the root of this
tree represents the computational society being managed by
the middleware. Besides social interactions, the computational
society is made up of three major kinds of social entities:
agents, resources and social actions. Agents and resources
represent the two kinds of roles that can be played by software
components attached to the social middleware within a partic-
ular social interaction [15]. These software components may
be intelligent BDI components programmed with high-level
languages (e.g. 2APL, Jason, etc.), or plain user interfaces
(e.g. a web browser)2. Resources represent non-autonomous
software components which store information and/or provide
computational services to the society. On the other hand,
agents represent autonomous components which purport to
achieve some goal. The activity of agents within the overall
society can be decomposed into a role-playing tree of further
agents deployed in arbitrary social interaction contexts.

In order to achieve its purpose, the activity of some agent
eventually resolves itself into the performance of social ac-
tions, namely saying something to other agents (i.e. commu-
nicative actions– CAs), calling the services of computational
resources (i.e. invocations) and seeing the state of social
entities (i.e. observations). CAs, invocations and observations
are atomic interaction mechanisms which take place within the
context of social interactions. This paper exclusively focuses
on CAs, particularly on those pre-defined CAs which make
up the standard CA library of the language. This library
includes, amongst others, the declarations SetUp, Close, Join
and Leave. The SetUp CA allows agents to declare that a
new interaction of certain type be initiated by the middleware;
Close is used by agents to force the middleware to finish
some ongoing interaction; last, Join and Leave allow agents
to become members of some interaction and, respectively,
abandon a role currently being played by them.

Figure 1 represents a run-time snapshot of a social mid-
dleware for conference management. The following graphical
conventions are followed: social interactions instances are

1In this application, software components attached to the social middleware
will typically consist of plain user interfaces (e.g. a web browser).

2Thus, the use of agent programming languages for the implementation of
agent components, i.e. components playing some agent role, is not mandatory.
The reader is warned about the particular notion of agents as roles (vs. agent
as components) endorsed by this paper [15, section 2].

Fig. 1. Run-time snapshot of a multiagent society for conference management

represented by round corner rectangles, agents by stick figures
and resources by triangles; last, speech bubbles represent the
performance of communicative actions. A brief explanation
of the different types of social entities involved follows in the
next paragraphs:

• The root of the social interaction hierarchy is the research
community, which is the context within which confer-
ences actually take place. A given conference series is
managed by its steering committee, which is responsible
for the major issues concerning the different conference
editions. The activity within a given edition is structured
around the program committee (PC), local committee,
etc. Within the PC, different submissions (one for each
submitted paper) will take place, which in turn provide
the context for the reviewing team in charge of evaluating
that particular submission.

• The environments of the different interactions is made
up of resources such as: the paper of submissions; the
reviews uploaded within the reviewing team; the calendar
and keywords created within the PC; and so forth.

• Three researcher agent roles and their corresponding role-
playing hierarchies are shown in figure 1. The first one,
r1, plays the role of PC Chair within PC pc1, which
in turn behaves as submittee within the submissions
of the PC. The second researcher, r2, participates in
the PC as author, who in turn plays the submitter role
in two different submissions. The third researcher, r3,
participates in the PC both as PC member and author.
As PC member it plays the role of reviewer in several
submissions (typically, no more than three). Thus, agents
may play several roles of different types within the same

MALLOW’009: Turin, Italy, September 7-10, 2009

255

kind of context, and roles of the same kind in different
contexts of the same type.

• Figure 1 also illustrates the performance of several
communicative actions (in particular, declarations). For
instance, researchers become authors of PCs by joining
those interactions to play a role of that kind. Once they
are authors, they may set up a submission in order to
submit a given paper. PC members may apply for certain
papers in order to express their reviewing preferences.
Papers will be definitely assigned for reviewing by the
PC chairs. Eventually, the PC chair, as submittee of a
submission, may accept the submitted paper, i.e. declare
the paper as part of the conference program.

B. Social middleware dynamics

As far as the dynamics is concerned, two kinds of major
forces which influence the evolution of the society can be
considered: external actions, performed by software com-
ponents over the middleware; and internal triggers, mainly
related to the life-cycle of social entities. With respect to
the latter, the social middleware is responsible for checking
the conditions which signal that some interaction must be
automatically initiated or finished; that some agent must be
played or abandoned; etc. For instance, once a conference
edition is initiated, a program committee is automatically
initiated by the middleware. Similarly, a new reviewer role
within a particular submission is automatically created for a
given PC member when the PC chair assigns this agent the
corresponding paper to review. As these examples illustrate,
the life-cycle management of social entities mostly depends
upon rules declared by its particular types, as the next section
will show.

External actions are the means whereby software compo-
nents may enter the society as an agent to participate in some
interaction; exit the society as the player of some agent, thus
abandoning any further role; or attempt one of its agents to per-
form a given social action. This paper exclusively focuses on
this latter kind of external action. The processing of attempts
by the social middleware is driven by empowerments and
permissions rules. Empowerment rules establish which agents
are institutionally capable of performing some social action.
Permissions, on the other hand, establish the circumstances
in which these powers may be exercised. For instance, any
researcher is empowered to join a PC as author, but this action
is only permitted within the submitting stage of the PC. If
some agent is not empowered to do some action, the corre-
sponding attempt causes no change at all in the institutional
state; if some agent is empowered but not permitted to do the
action, the forbidden attempt is registered accordingly; last,
if the agent is both empowered and permitted, the action is
executed by the middleware. For instance, the attempt of an
author to join a PC in its submission stage causes the internal
action play to execute, which in turn causes the creation of
the corresponding agent role.

C. Formalisation in the action language C+

The specification of the social middleware has been for-
malised using the action language C+. The reader is referred
to [16] for a detailed explanation of the following discus-
sion. The action description which defines the abstract social
middleware infrastructure is structured around a collection of
generic, application-independent sorts, which encapsulate the
common structure and dynamics of social interactions, agents,
resources and social actions. Thus, the generic sort I, whose
specification is partially shown in figure 2, declares the fluents
and action constants which characterise the state and dynamics
of any kind of social interaction. These standard or pre-defined
state parameters include the following fluents: state, which
represents the execution state of the interaction (none-existent,
open or closed); the boolean fluents member, env and sub,
which represent the member agents, environmental resources
and sub-interactions of a given interaction; and the statically
determined fluents context and initiator which represent the
interaction context of the interaction and the agent who set
up the interaction (if it was not automatically initiated by
the middleware). Figure 1 shows the values of some of these
attributes for the submission i1. In particular, this interaction
is open, its context is the PC pc1 and has as member the
submitter agent s1. Moreover, the figure also shows the values
of other non-standard attributes which are characteristic of
submission interactions: the keywords of the submission, its
stage (accepted, in this case) and the submitter agent.

Figure 2 also shows the declaration of the action constants
initiate and finish, together with the laws that define the
preconditions and effects of the latter action. Thus, according
to law 1, the action finish causes an interaction i to be closed;
law 2 establishes that this kind of action can not be executed if
the specified interaction i is not open; and law 3 declares that
this action is not executed by default, leaving the specification
of particular sufficient causes to application-dependent types
(as will be described in the next section).

:- sorts
I; SI .

:- objects
open , closed :: SI .

:- constants
state(I) :: inertialFluent(SI+none);
member(I,A), env(I,R), sub(I, I) :: inertialFluent;
context(I) :: sdFluent(I+none);
initiator(I) :: sdFluent(A+none);
. . .
initiate(I, I), finish(I) :: action.

:- variables
i , ic ,. . . :: I.

/* laws */
. . .
finish(i) causes state(i) = closed . (1)
nonexecutable finish(i) if state(i)6=open . (2)
default ¬finish(i). (3)

Fig. 2. Partial specification of the generic social interaction type I

MALLOW’009: Turin, Italy, September 7-10, 2009

256

III. PROGRAMMING THE SOCIAL MIDDLEWARE

Programming a multiagent society consists of specifying
the social interaction types which model the relevant social
processes of the target application domain. The specification
of social interaction types involves in turn the specification
of their member agent types and environmental resource
types, as well as their characteristic types of CAs. Thus, the
implementation of a multiagent society for conference man-
agement is made up of the types of social entities identified
in figure 1: the social interaction types ConferenceEdition,
ProgramCommittee, Submission, etc., and their accompanied
environmental resource types (Paper, Review, etc.), member
agent types (Researcher, Author, Submitter, etc.) and charac-
teristic communicative action types (Apply, Assign, Submit,
etc.).

In order to identify the metamodeling features which allow
to declare the different types of social entities, it will be
convenient to recall the three major ways in which the social
middleware can be programmed. Firstly, the programmer may
extend the set of standard attributes of social entities to
account for the particular characteristics of the application
domain. Secondly, the programmer may specify the particu-
lar conditions under which the middleware must create and
destroy social entities (i.e. initiate and finish interactions,
play and abandon agents, etc.). Last, the programmer may
declare the empowerment and permission rules which drive
the processing of social action attempts. Consequently, three
classes of metamodeling features will be considered in the
declaration of social entity types: structural, life-cycle and
attempt processing features.

Formally, social entity types are defined using the subsort
mechanism provided by the input language of CCALC [1,
section 3] and the generic C+ sorts which implement the
structure and behaviour of the social middleware [16]. Thus,
the definition of a social interaction type proceeds, firstly, by
declaring a new subsort of the generic interaction sort I (figure
2); then, new fluent constants are declared which extend the
definition of the generic sort; and, finally, new causal laws
are provided which specify the structure and behaviour of
the social middleware with respect to the new kind of social
interaction. In particular, two kinds of causal laws can be
used: those corresponding to the standard set of causal law
abbreviations of the C+ language [7, appendix B]; and those
defined by a new catalogue of social law abbreviations, which
formalise the different metamodeling features of social entity
types (partially listed and formalised in the appendix of this
paper). Due to space limitations, the following subsections
only introduce some of the devised social law abbreviations
for the definition of social interaction and agent types.

A. Social interaction types

The metamodeling features of social interaction types will
be illustrated with the specification of the submission inter-
action type, S, shown in figure 3. To aid readability of the
specification, social and causal laws are listed according to
the life-cycle of interactions: firstly, those related to their

:- sorts
I � S; SST AGE .

:- objects
submitted , accepted , rejected :: SST AGE .

:- constants
/*inputs*/
keyword(S,K) :: inertialFluent;
/*outputs*/
crc(S) :: inertialFluent(P+none);
/*local attributes*/
stage(S,SST AGE) :: inertialFluent;
paper(S) :: inertialFluent(P+none);
/*aliases*/
pc(S) :: sdFluent(PC+none);
submitter(S) :: sdFluent(SUBMIT T ER+none);
submittee(S) :: sdFluent(SUBMIT T EE+none);
reviewingTeam(S) :: sdFluent(REV+none).

:- variables
s:: S.

/* laws */
/*Initiation laws*/
input keyword(s, k). (4)
context s is PC alias pc. (5)
empowered a to setUp(s, pc) if member(a, pc). (6)
permitted a to setUp(s, pc)

if paperRegistration(calendar(pc))=t &
tnow(clock)<t . (7)

/*Life-time laws*/
member s is SUBMIT T ER alias submitter. (8)
member s is SUBMIT T EE alias submittee. (9)
environment s is P alias paper. (10)
subinteraction s is REV alias reviewingTeam. (11)
empowered submitter to submit. (12)
permitted submitter to submit

if paperSubmission(calendar(pc))=t &
tnow(clock)<t . (13)

. . .
/*Finishing laws*/
empowered chair(pc(s)) to close(s). (14)
permitted a to close(s). (15)
finish s if stage(s, rejected) ++

state(submitter(s))=abandoned . (16)
output crc(s). (17)

Fig. 3. Submission interaction type S

initiation; next, those pertaining to their life-time; and, finally,
those concerning their finishing.

a) Structural features: The fluents declared for a new
social entity type (i.e. not only social interactions) can be
classified into four groups: aliases, input, output and local
state parameters. Informally, the first group stands for those
fluents which are introduced as aliases of standard fluents
(e.g. member) to allow for more readable specifications. Input
attributes are state parameters which must be set when the
social entity is created. On the other hand, the meaning of
output fluents directly refers to the destruction conditions of
social entities: for instance, an interaction is automatically
finished by the middleware when its output attributes are
set. As for local fluents, these are normal C+ fluents whose
meaning is established through common causal laws and

MALLOW’009: Turin, Italy, September 7-10, 2009

257

allow to simplify and improve the readability of other laws.
The social law abbreviations input and output allow to
specify newly declared fluent as input and output attributes,
respectively; the context, member, environment and
subinteraction abbreviations stand for the declaration
of aliases pertaining to social interaction types. The formal
definition of these abbreviations can be found in the appendix
of this paper.

Thus, according to figure 3, a submission is modeled as a
kind of process which receives as input a set of keywords (cf.
law 4, which refers to variables s and k of the submission and
keyword types, respectively), and has as goal the generation
of the CRC (Camera Ready Copy) of a research paper (an
output attribute, as declared by law 17). Thus, a submission
can not be initiated without providing one keyword at least,
and, as soon as the CRC of the paper is set the corresponding
submission process will be automatically finished. On the
other hand, the stage of the submission process is a local
state parameter which holds the values submitted, rejected or
accepted, as declared by the auxiliary SST AGE type. As for
aliases, the member agents of a submission can be identified
using the submitter and submittee fluents (besides the standard
member fluent – see figure 2); similarly, the paper and
reviewingTeam fluents stand for the environmental resources
and subinteractions of the corresponding types; last, the pc
fluent stands for the program committee context to which the
submission belongs.

b) Life-cycle features: The specification of the generic
social interaction type I establishes that the execution of
the initiate and finish actions are disabled by default (cf.
law 3). Moreover, sufficient condition for the execution of
these actions are absent from the specification. Therefore,
programmers have to provide these conditions when defining
a particular type of interaction T , unless type T is intended as
an abstract type to be reused later in the definition of more spe-
cific types. Life-cycle conditions can be specified in two non-
exclusive ways: directly, by defining new sufficient conditions
for the initiate and finish actions; and indirectly, through the
empowerment and permissions rules of the SetUp and Close
standard CAs. The former approach allows the middleware to
automatically initiate and finish interactions. The later provides
agents with the possibility to force the execution of these
internal actions. The social law abbreviations initiate
and finish, defined in the appendix of this paper, allow
to declare the social laws which allow the middleware to
automatically govern the life-cycle of interactions.

For instance, submissions are only initiated if some author
sets up an interaction of this kind within the program com-
mittee. Thus, these types of interactions are not automatically
initiated by the middleware. On the contrary, a reviewing inter-
action is not set up by any agent but automatically initiated by
the middleware when the stage of the submission is changed
to submitted. Concerning finishing conditions, the submission
process of some paper is automatically finished when its stage
is set to rejected or the submitter agent is abandoned (law 16).
A submission is also automatically finished when the CRC of

the paper is set by the submitter, as described above (law 17).
Besides these “normal” ways of finishing a submission, the PC
chair is also given extraordinary power to prematurely close a
submission.

c) Attempt processing features: The definition of a new
type of social entity may encompass the definition of new
types of CAs which somehow aim at modifying the overall
state of its instances. For example, the stage of submissions
is set through the execution of particular CAs executed by
the author and PC Chair agents, namely Submit, Accept and
Reject. Besides these domain-dependent CAs, the SetUp and
Close CAs also affect the execution state of social interactions.
The attempts to perform any of these actions is subject to the
their empowerments and permissions rules, which are absent
from the generic specification. Therefore, the programmer is
provided with two new social law abbreviations, empowered
and permitted, which allow to govern the middleware
behaviour with respect to the processing of CAs targeted at
social entities of the new type.

For instance, social laws 6 and 7 declare the empowerment
and permission rules for setting up a new submission process
according to the requirements established above. Similarly
social laws 14 and 15 declare the corresponding rules for
prematurely closing a submission. Concerning the Submit CA,
social laws 12 and 13 establishes (1) that the submitter is the
only agent empowered to submit the paper of the submission;
and (2) that permission to submit the paper is granted if the
deadline for paper submission did not pass.

B. Agent types

Metamodeling features for defining agent types will be
illustrated with the specification of the submitter agent type,
partially represented in figure 4. Due to space limitations,
the formal specification of the new abbreviations for social
laws introduced in this section are skipped in the appendix.
Similarly, the discussion of structural features is omitted.

d) Life-cycle features: The play and abandon social
law abbreviations allow programmers to declare the particular
rules which govern the automatic playing and abandonment
of agents of the defined type. For example, the definition
of the submitter agent type exploit the former abbreviation
in social law 18, which establishes that a submitter agent
is automatically created for a given author if that author
is the initiator of the submission process and no submitter
has already being created; the purpose of this new agent, as
specified by law 19, is to set the CRC of the submission (i.e. to
publish the submitted paper through the conference program).
Concerning automatic abandonment conditions, the submitter
agent type does not introduce any specific rule besides the
ones declared by the generic agent type A [16, section 5].

e) Attempt processing: The specification of empower-
ment and permission rules for new agent types employ the
same abbreviations described in the last subsection for interac-
tion types. The only difference lies in the kind of social actions
pertaining to the specification: in this case the CAs Join and
Leave. In the case of the submitter role, the creation of these

MALLOW’009: Turin, Italy, September 7-10, 2009

258

:- sorts
A � SUBMIT T ER.

:- constants
/*aliases*/
submission(SUBMIT T ER) :: sdFluent(S+none);
author(SUBMIT T ER) :: sdFluent(A+none);
. . .

:- variables
submitter :: SUBMIT T ER.

/* laws */
/*Playing laws*/
play submitter for a within s

if state(s)=open & initiator(s)=a &
¬[

∨
submitter |submitter(s)=submitter]. (18)

purpose submitter
is [

∨
p |crc(submission(submitter))=p]. (19)

. . .
/*Abandonment laws*/
empowered a to leave(submitter). (20)
permitted a to leave(submitter)

if ¬stage(s, accepted). (21)

Fig. 4. Submitter agent type SUBMIT T ER

agents rely on the rules declared for automatic agent playing
described above. Concerning its abandonment, author agents
may prematurely leave one of its submitter roles, thereby
causing the abandonment of the role and the cancellation of the
submission (according to law 20). This power, however, may
only be exercised if the paper has not already being accepted,
as the permission law 21 specifies.

IV. DISCUSSION

This paper has put forward a type-oriented approach to the
programming of social middlewares. Essentially, this approach
is characterised by using types (of social interactions, agents,
resources and CAs) as modules which encapsulate those struc-
tural and behavioural rules of the multiagent society which
pertain to social entities of a certain kind. Moreover, the
identification and formalization of the metamodeling features
used in the declaration of social types strongly builds upon
the specification of the social middleware as an abstract,
programmable machine. The overall approach can be thus
characterised as a programming language approach. We opted
to call the resulting language SPEECH, given the relevance of
CAs in the overall architecture of the language.

This interaction-oriented language contrasts with and com-
plements common component-oriented languages such as
2APL, AgentSpeak, etc., aimed at the development of intel-
ligent BDI agent components. Conversely, SPEECH is closely
aligned with the attempt at designing a programming language
for organizational artifacts reported in [17], [3]. In contrast
with this work, however, we place agent components outside
the realm of the social middleware, which helps to ensure
their full autonomy and heterogeneity. Another significant
difference is related to the nature of roles. In particular, the
SPEECH specification of agent role types is devoid of any
kind of computational feature, so that agent role instances just
represent the public interface of agent components within the
multiagent society. On the contrary, positions in [17] (i.e. agent

role instances) can execute plans to perform tasks delegated
to them by their player agents. In fact, the specification of
roles (i.e. agent role types) resorts to the typical constructs of
BDI agent component languages. In our opinion, this blurs
the distinction between agent components and agent roles,
and undermines the separation of concerns between interaction
and computation which lies at the heart of organizational
programming languages. Last, besides agent roles the SPEECH
language places a strong emphasis on social interaction types
as a modularisation mechanism.

The SPEECH language is also closely related in spirit to
common organizational metamodels for the specification of
multiagent organizations such as ISLANDER [4], MOISE+
[12] and AGR [6]. Several methodological and conceptual
differences, however, can be highlighted. Firstly, the program-
ming language approach of SPEECH favours a higher degree
of formality in the specification of the metamodel. Thus, in
contrast to the common informal meanings of metamodeling
constructs, the metamodeling features presented in this pa-
per are grounded in the social middleware abstract machine
presented in [16], and given formal semantics using the C+
action language. Thus, the proposal of this paper can be
characterised as a first step towards the type system of a
social interaction language, rather than as an organizational
metamodel. Secondly, the SPEECH language places a strong
emphasis on specialisation as a reusability mechanisms. Al-
though some of the above-mentioned metamodels also support
an inheritance relationship, this metamodeling features is at
the core of the SPEECH specification. In fact, the operational
semantics of the language is formalised through generic social
types which are specialised in the specification of application-
dependent types. In particular, the subsort mechanism of the
C+ action language allows the programmer to override default
laws of the super-sort, extend its signature with new fluents and
actions, and/or refine the specification with new constraints.
This strongly promotes the development of libraries of social
types. For instance, an application-independent submission
interaction may be defined, which could then be specialised
for the particular case of paper submission. Similarly, other
social interactions such as invitations, discussion groups, etc.,
may also be part of a generic library of social interactions,
readily available for developers of arbitrary social process
applications.

Current work deals with several extensions to the lan-
guage to deal with obligations and sanctions (e.g. [3]), event
processing, full-fledged communicative actions (e.g. [2]) and
computational resources. Moreover, we aim to exploit the
flexibility of the social interaction mechanism to define com-
mon metamodeling features of organizational metamodels (e.g.
cardinalities and compatibility relations in MOISE+, perfor-
mative structures in ISLANDER, etc.). In a more practical
vein, current work also focuses on the implementation of a
web-based social middleware for the language [14]. In this
regard, the suitability of C+/CCalc for real deployments of
multiagent societies is debatable. However, as a specification
tool, they are of foremost importance to test in a techno-

MALLOW’009: Turin, Italy, September 7-10, 2009

259

logically neutral framework the features of the language.
Moreover, they also provide invaluable help in the devel-
opment of simple application prototypes. In particular, the
conference management specification can be downloaded from
http://zenon.etsii.urjc.es/∼jserrano/speech/apps/c+apps.tgz.

REFERENCES

[1] Varol Akman, Selim T. Erdogan, Joohyung Lee, Vladimir Lifschitz, and
Hudson Turner. Representing the zoo world and the traffic world in the
language of the causal calculator. Artif. Intell, 153(1-2):105–140, 2004.

[2] Guido Boella, Rossana Damiano, Joris Hulstijn, and Leendert van der
Torre. A common ontology of agent communication languages: Mod-
eling mental attitudes and social commitments using roles. Applied
Ontology, 2(3-4):217–265, 2007.

[3] Mehdi Dastani, Nick Tinnemeier, and John-Jules Meyer. A programming
language for normative multi-agent systems. In Virginia Dignum,
editor, Multi-Agent Systems: Semantics and Dynamics of Organizational
Models, chapter 16. IGI Global, 2008.

[4] Marc Esteva, David de la Cruz, and Carles Sierra. ISLANDER: an
electronic institutions editor. In Maria Gini, Toru Ishida, Cristiano
Castelfranchi, and W. Lewis Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), pages 1045–1052. ACM Press, July 2002.

[5] Marc Esteva, Bruno Rosell, Juan A. Rodrı́guez-Aguilar, and Josep Ll.
Arcos. AMELI: An agent-based middleware for electronic institutions.
In Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, volume 1, pages 236–243,
2004.

[6] Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to
organizations: An organizational view of multi-agent systems. In AOSE,
pages 214–230, 2003.

[7] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain,
and Hudson Turner. Nonmonotonic causal theories. Artif. Intell., 153(1-
2):49–104, 2004.

[8] Jorge J. Gómez-Sanz, Rubén Fuentes-Fernández, Juan Pavón, and Iván
Garcı́a-Magariño. Ingenias development kit: a visual multi-agent system
development environment. pages 1675–1676, 2008. May 12-16, 2008,
Estoril Portugal.

[9] Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform
architecture. Lecture Notes in Computer Science, 1887:48–55, 2001.

[10] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Moise+:
towards a structural, functional, and deontic model for mas organization.
In The First International Joint Conference on Autonomous Agents &
Multiagent Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy,
Proceedings, pages 501–502. ACM, 2002.

[11] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. S-
moise+: A middleware for developing organised multi-agent systems.
In Olivier Boissier, Virginia Dignum, Eric Matson, and Jaime Simo
Sichman, editors, Coordination, Organizations, Institutions, and Norms
in Multi-Agent Systems, volume 3913 of LNCS, pages 64–78. Springer,
2006.

[12] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Devel-
oping organised multi-agent systems using the moise+ model: Program-
ming issues at the system and agent levels. IJAOSE, 1(3/4):370–395,
2007.

[13] Juan Pavón and Jorge Gómez-Sanz. Agent oriented software engineering
with ingenias. In V. Marik, J. Muller, and M. Pechoucek, editors,
Proceedings of the 3rd International Central and Eastern European
Conference on Multi-Agent Systems. Springer Verlag, 2003.

[14] Sergio Saugar and Juan Manuel Serrano. A web-based virtual machine
for developing computational societies. In Matthias Klusch, Michal
Pechoucek, and Axel Polleres, editors, Cooperative Information Agents
XII, 12th International Workshop, CIA 2008, Prague, Czech Republic,
September 10-12. Proceedings, volume 5180 of Lecture Notes in Com-
puter Science, pages 162–176. Springer, 2008.

[15] Juan Manuel Serrano and Sergio Saugar. Operational semantics of mul-
tiagent interactions. In Edmund H. Durfee, Makoto Yokoo, Michael N.
Huhns, and Onn Shehory, editors, 6th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2007), Honolulu,
Hawaii, USA, May 14-18, pages 889–896. IFAAMAS, 2007.

[16] Juan Manuel Serrano and Sergio Saugar. Run-time semantics of a
language for programming social processes. In Michael Fisher, Fariba
Sadri, and Michael Thielscher, editors, 9th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA IX), volume 5405
of Lecture Notes in Artificial Intelligence, pages 37–56. Springer, 2009.

[17] Nick Tinnemeier, Mehdi Dastani, and John-Jules Meyer. Roles and
norms for programming agent organizations. In Decker, Sichman, Sierra,
and Castelfranchi, editors, Proc. of 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009), pages 121–128, 2009.

APPENDIX

Abbreviation 1. An expression of the form “input c(i, v) / c(i).”,
where c is a boolean (non-boolean) fluent constant, whose first
argument i is a variable of an interaction sort Id and whose second
argument (result) is of sort V , stands for the following causal law,
where ic and v are variables of the interaction sort I and sort V ,
respectively.

nonexecutable initiate(i , ic) if ¬[
∨

v |c(i, v) / c(i) = v].

Thus, the resulting effect of declaring a new input parameter
is the addition of a domain-dependent precondition to the initiate
internal action (see figure 2).

Abbreviation 2. A set of expressions of the form “output cj(i).”,
where j ∈ {1 . . . n}, i is a variable of an interaction sort Id, and
cj are non-boolean, optional constants of sort Sj , stands for the
following action dynamic law, where vj are variables of sorts Sj

caused finish(i) if state(i)=open ∧ ∧
j∈{1...n} [

∨
vj
|cj(i) = vj].

Thus, a set of expressions “output cj .” implicitly establishes
sufficient conditions for the execution of the finish standard action.

Abbreviation 3. A set of expressions of the form “mem-
ber i is Aj alias fj.”, where j ∈ {1 . . . n}, i is an interaction variable
of sort Id, Aj a collection of agent sorts, and fj a set of boolean
(non-boolean) binary (unary) fluent constants whose first argument is
of sort Id and its second argument (optional) result sort is Aj , stand
for the following set of causal laws, where aj are variables of sort
Aj and a is an agent variable of sort A

constraint member(i , a)→ ∨
j∈{1...n}[

∨
aj
|a = aj].

caused fj(i, aj) / fj(i)=aj if member(i, aj).
caused ¬ fj(i, aj) / fj(i)=none

if ¬ member(i, aj) / ¬ [
∨

aj
|member(i, aj)].

Thus, the introduction of a new alias has also the intended
meaning of constraining the types of agents that can be members
of the interaction. The meaning of context, environment and
subinteraction aliases can be similarly formalised.

Abbreviation 4. Let i be a variable of an interaction sort Id. The
expression “finish i if F.” stands for the action dynamic law:

caused finish(i) if F.

Thus, the expression “finish i if F.” is simply a wrapper of the
corresponding action dynamic law which enacts the execution of
the finish internal action. A similar abbreviation may be defined for
declaring the automatic initiation of interactions.

Abbreviation 5. Let a and α be agent and institutional action
variables. The expression “empowered/permitted a to α if F.” stands
for the static law

caused empowered/permitted(a, α) if F.

Thus, this social law abbreviation is just a wrapper of the static
law which defines the predefined empowered/permitted fluent for the
corresponding social action and agent sorts. The subexpression “if
F” in the proposed abbreviations may be dropped if F is true.

MALLOW’009: Turin, Italy, September 7-10, 2009

260

Temporal Planning in Dynamic Environments for
P-CLAIM Agents

Muhammad Adnan Hashmi
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie
75016 Paris, France

Email: Adnan.Hashmi@lip6.fr

Amal El Fallah Seghrouchni
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie
75016 Paris, France

Email: Amal.Elfallah@lip6.fr

Abstract—Time and uncertainty of the environment are very
important aspects in the development of real world applications.
Another important issue for the real world agents is, the balance
between deliberation and reactivity. But most of the agent
oriented programming languages ignore some or all of these
important aspects. In this paper we try to fill this gap by present-
ing an extension to the architecture of CLAIM agent oriented
programming language to endow the agents with the planning
capability. We remove the assumption that agents’ actions are
instantaneous. We are interested in the temporal planning of on
the fly goals. A coherrent framework is proposed in which agents
are able to generate, monitor and repair their temporal plans.
Our proposed framework creates a balance between reactivity
and deliberation. This work could be considered as a first step
towards a complete temporal planning solution for an AOP
language.

I. INTRODUCTION

Most of the agent oriented programming languages in the
current literature use a PRS like approach to achieve the goals
of agent. Some examples of these programming languages
are Jason[1], 3APL[2], 2APL[3] and JACK[4]. But these
languages lack the ability to incorporate planning. Sometimes
the execution of the actions without planning results in the
unability to achieve the goals. There has been some work to
incorporate planning within such programming languages [5],
[6], [7] but these systems do not take into account the duration
of agent actions, neither do they consider the uncertainty of the
environment. These systems assume that the agents’ actions
are instantaneous and that the effects produced on the environ-
ment are only those which are produced by the agent’s actions.
But these assumptions are unrealistic for the development of
real world applications. There are some systems like ZENO[8],
TGP[9], SAPA[10] which give the ability to plan with durative
tasks and even there are systems which give this ability in
the dynamic environments like IxTeT[11]. But these systems
are separate planning solutions. They are not programming
languages, so they lack the flexibility and control that a
programming language offers to its programmers. Moreover,
these systems are built on a proactive approach but in the
real world applications it is necessary to create a balance
between proactivity and reactivity because it is a dynamic
world and the goals of agents are not necessarily given to
him at the start, new goals arrive and some old goals are

dropped during the life cycle of the agent and some goals
require immediate achievement. In this work, we try to fill
these gaps by incorporating a temporal planner, an executor,
an execution monitor and a plan repairing component to a
CLAIM agent[12]. We call this extension of the language
as P-CLAIM. The main problems dealt with in this work
are 1) Modifications and extensions to the CLAIM agent’s
architecture to include a temporal planning component. 2)
Execution monitoring and plan repairing. 3) Creating a balance
between deliberation and reactivity.

In our proposed framework, we have made use of Hier-
archical Task Network (HTN) planning technique. The main
algorithm used to generate plan for a goal is JSHOP2[13],
which is very efficient HTN planning system and plans for
tasks in the same order that they will later be executed. The
main motivation behind using the HTN planning technique
is the similarities among the BDI model of agency and
the HTN planning technique[14]. Due to these similarities
HTN planning is more suitable and natural candidate for
incorporating planning in a BDI like system.

The remainder of this paper is organized as follows. Section
2 puts some light on the current architecture of CLAIM
language and JSHOP2 planner. In section 3, some important
representations are presented which are helpful in under-
standing the agent architecture in P-CLAIM. Our proposed
architecture of P-CLAIM agent with planning, execution and
plan repairing components is presented in section 4. In section
5, we give an example to describe the working of system.
Section 6 discussed some of the related work. Section 7
concludes the paper and some future directions are discussed.

II. BACKGROUND

In this section, we briefly discuss the architecture of CLAIM
language and JSHOP2 algorithm to generate a plan. A multi-
agent system in CLAIM is a set of distributed hierarchies
of agents deployed on computers connected via a network.
All the computers have a global clock. With respect to the
hierarchical representation, an agent is a node in a hierarchy.
It is an autonomous, intelligent and mobile entity. It has a
parent and contains (optional) sub-agents, running processes
and cognitive elements (e.g. knowledge, goals, capabilities).
An agent can dynamically create another agent, and the newly

MALLOW’009: Turin, Italy, September 7-10, 2009

261

created agent becomes the sub-agent of the creator agent.
In addition, an agent has three mobility primitives, in (enter
another agent), out (leave another agent) and move (move from
one hierarchy to another).

In CLAIM language, an agent can be defined as follows:
defineAgent agentName {

parent=null | agentName ;
knowledge=null | { (knowledge;)*}
goals=null | { (goal;)*}
messages=null | { (message;)*}
capabilities=null | { (capability;)*}
processes=null | { (process |)*}
agents=null | { (agentName;)*}

}
For a more detailed description of CLAIM language, we refer
to [12].

JSHOP2 is an HTN planning algorithm, and it deals with
the procedural goals. Domain description required by JSHOP2
consists of methods and operators. A method indicates how to
decompose a compound task into partially ordered subtasks. A
method has three parts. The task for which the method is to be
used, the condition which must be true in the current state to
apply the method, and subtasks that need to be accomplished
in order to accomplish that task. An operator is similar to the
operators in classical planning and it tells how to perform a
primitive task. It has a condition, a list of add effects and a list
of delete effects. Planning proceeds by using the methods to
decompose tasks recursively into smaller and smaller subtasks,
until the planner reaches primitive tasks that can be performed
directly using the planning operators.

The rationale behind choosing JSHOP2 for our work is
threefold. Firstly, it is an HTN planner and the domain
information from CLAIM can be easily transformed into the
domain information needed by the planner due to the similar-
ities among BDI like systems and HTN planning systems as
discussed in [14]. Secondly, JSHOP2 plans for the actions in
the same order that they will later be executed. So it knows
the current state at every planning step. This property of
the planner can be exploited for interleaving planning with
execution and at every step planner can plan using the current
state of the world. Thirdly, it can call external user defined
functions to check the precondition of a method or an operator
and this property is important for a planning component for
CLAIM agents because in CLAIM language there could be
calls to user defined functions to check the precondition of
capabilities.

III. SOME IMPORTANT REPRESENTATIONS

In this section some important representations are presented
which are helpful in understanding the architecture of an agent
in P-CLAIM.

A. Domain Representation in P-CLAIM

We have modified the domain representation in CLAIM
[12], in order to facilitate the translation to the representation
needed by a planner. Agent’s capabilities have now been

divided into actions and activities. Actions are the primitive
actions that an agent can perform. Some of the actions are
programmer defined while the others are already defined in
the language like mobility primitives in, out, move. Program-
mer can also override the already defined actions to define
his requirements more accurately. An action consists of a
condition, a triggering message, the effects and a duration.
TriggerMessage(Act) returns the triggering message of an
action Act. Each effect of an action has an offset associated
with it. This offset is the time taken by the action to produce
the effect after the start of the action and it could be zero if
this effect is achieved as soon as the action is started or it
could be greater than zero. Offset(Eff) denotes the offset
associated with an effect Eff . Activities are the short plans
(recipes) in the plan library of the agent to achieve different
composite goals.

B. Goal Representation in P-CLAIM

Goals in P-CLAIM are procedural goals. It means the goals
of an agent are the tasks that agent wants to achieve. Some
goals are initially given to the agent, when the multi-agent
system is launched and some goals are given to the agent
during the life of the agent using message passing by other
agents or by user interaction. Goals have priorities associated
with them. The priority of a goal could be Preemptive High,
High or Normal. A goal having Preemptive High priority
means that this goal should be immediately achieved by the
agent, we also call this goal a reactive goal. High priority
means that goal should be achieved before all the Normal
priority goals currently present. Normal priority goals are the
lowest priority goals. Goals with Preemptive High priority are
stored in Global Reactive Goals (GRG) list and all other goals
of agent are stored in a priority queue called Global Proactive
Goals (GPG) list.

C. Messages Format

A message received by an agent in P-CLAIM has five parts.
First part is the identity. Each message is assigned a unique
number as identity. Second part is the sender, which represents
the sender of the message. Thirdly, a message has a priority
associated with it. This field has a value among Preemptive
High, High and Normal. Fourthly, a message has a proposition
which is the actual contents of the message. This proposition
could be a new goal to achieve or it could be an information
given to the agent which was demanded by the agent in an
earlier message. Finally, a message has a ResponseTo field
which is either blank or it contains a number pointing to
the identity of an earlier message to which this message is
responding.

D. Translation of Domain Description

The information needed by JSHOP2 algorithm to generate
the plan includes the initial state information, goals informa-
tion and domain description (methods and operators). In our
formalism, this information is automatically extracted from the
agent. Initial state information is taken from the knowledge of

MALLOW’009: Turin, Italy, September 7-10, 2009

262

the agent and from the hierarchical representation of MAS.
Goal for the Planner is a one to one mapping from agent’s goal
to Planner’s goal. In our framework, only one goal is passed to
the JSHOP2 algorithm at a time. Agent’s actions are mapped
to the operators in JSHOP2. P-CLAIM agent’s activities are
converted into JSHOP2 methods. For each activity of the
agent, an equivalent method is generated with the same name
as that of activity. Activity’s condition is mapped to the
method’s precondition. In JSHOP2, methods have subtasks.
Subtasks may be primitive tasks or other composite tasks.
Equivalently in P-CLAIM, the body of an activity consists
of different processes. So we need to convert these processes
into JSHOP2 methods and operators. To read in detail about
this conversion, we refer to our earlier article[15].

E. Policy File

Each agent maintains a policy file in which it stores the
importance of all other agents in the MAS for him. Importance
of an agent depends on its position in the hierarchy relative
to the position of the agent who is maintaining the policy.
Importance also depends on the services provided by the agent
during the life cycle of the agent. After receiving the message,
the agent analyzes the policy file. Importance of the agent
could be Normal or High.

Fig. 1. A Running P-CLAIM Agent

IV. AGENT ARCHITECTURE

There are concurrently four threads running inside the agent
all the time. In the following subsections, we explain these
threads in detail. Figure 1 is showing the architecture of an
agent.

A. Messages Handler

This thread is always waiting for the messages from other
agents or from the user. It puts the messages into Planner
Messages Queue(PMQ). These messages are either a request
to achieve some goal or they are responses to some earlier sent
message. After putting in the PMQ, these messages are fetched
and analyzed. If the message contains some information de-
manded in an earlier message then this information is added
to the knowledge of the agent along with an acknowledgement
having the identity of the message in which this information
was demanded. Agent’s treatment of a message, which is
a request to achieve some goal, depends on the priority
associated with message and the importance of sender.

The Messages Handler fetches the goal attached with a
message and assigns a priority to the goal based on the priority
associated with message and the importance of sender. A goal
fetched from a message of priority Preemptive High or High
which is assigned by an agent having Normal importance in
the policy file is assigned a High priority. It means that agent
does not preempt his own goals for the goals assigned by an
agent of Normal importance. A goal fetched from a message,
sent by an agent having High importance in the policy file is
assigned the same priority as of the message. After assigning a
priority to the goal, the goal is added to one of the two global
goals lists. A goal of priority Preemptive High is added to
GRG list and a goal of priority High or Normal is added to
GPG list.

There is another messages queue maintained inside the
agent, called Executor Messages Queue(EMQ). Messages
which are sent by the Planner for the execution of actions
are put in the EMQ. These are the triggering messages for the
actions in the plan generated by the Planner. Number of mes-
sages in EMQ are denoted by length(EMQ) and EMQ[i]
denotes the ith message in EMQ. Each triggering message in
EMQ has a time stamp associated with it. TimeStamp(Msg)
denotes the time stamp associated with a triggering message
Msg.

B. Planner

Planner starts when the multi-agent system is launched.
Once started, the Planner procedure runs throughout the life
cycle of the agent. When there are no goals in either of the
goals lists then it sits idle and waits for new goals to arrive
and as soon as a new goal arrives, it starts planning. Before
starting the Planner, the agent goes through an initialization
phase, in which it sets the values of certain global variables.

Three states of the world are maintained in the system,
SP (Act) which denotes the state of the world anticipated by
planner just before the execution of the action Act, secondly
SW is the current actual state of the world and FinalSP

MALLOW’009: Turin, Italy, September 7-10, 2009

263

Algorithm 1 Main Algorithm
1: loop
2: repeat
3: Call Treat Reactive Goal
4: until GRG = φ
5: if GPG 6= φ then
6: Fetch first goal g ∈ GPG
7: PPlan← Compute P lan(FinalSP, g,D)
8: if PPlan 6= Fail then
9: for i = 1 To length(PPlan) do

10: TimeStamp(ExeMessages[i]) ←
T imeStamp(PPlan[i])

11: ExeMessages[i]← TriggerMessage(PPlan[i])
12: end for
13: Send ExeMessages to EMQ
14: end if
15: end if
16: end loop

Algorithm 2 Treat Reactive Goal
1: Fetch first goal g ∈ GRG
2: Suspension Signal← ON
3: Wait until {Execution Signal = OFF}
4: Start T ime← Current system time
5: RPlan← Compute P lan(SW, g,D)
6: if RPlan 6= Fail then
7: for i = 1 To length(RPlan) do
8: T imeStamp(ExeMessages[i])← T imeStamp(RPlan[i])
9: ExeMessages[i]← TriggerMessage(RPlan[i])

10: end for
11: End T ime← Current system time
12: Duration← End T ime - Start T ime
13: for i = 1 To length(EMQ) do
14: T imeStamp(EMQ[i]) ← T imeStamp(EMQ[i]) +

Duration
15: end for
16: Send ExeMessages to EMQ
17: end if
18: Suspension Signal← OFF

denotes the state of the world to which the Planner has
planned till now. More precisely, it is the state of the world
anticipated by planner after the very last action that the Planner
has planned for. In the initialization phase FinalSP is set
equal to the SW . Suspension Signal is set to OFF and
Execution Signal is set to ON .

The Main Algorithm (Algorithm 1) runs in an infinite
loop and ensures that reactive goals are immediately planned
for and achieved. First it looks at the GRG list and if it is
not empty, (Lines 2-4) the control moves to the procedure
Treat Reactive Goal (Algorithm 2). Some of the notations
used inside the Treat Reactive Goal procedure are as fol-
lows. length(RPlan) denotes the number of actions in the
plan RPlan. ExeMessages is an array of triggering mes-
sages for the actions in the plan. TimeStamp(Act) denotes
the time stamp assigned to an action Act for its execution.
Treat Reactive Goal fetches the first reactive goal g and
sets the Suspension Signal to ON to ask the Executor to
suspend the execution and waits for the Execution Signal
to go OFF which indicates that the Executor has suspended
the execution (Lines 1-3) then it calls the Compute P lan
procedure to plan for the reactive goal (Line 5). The current

Algorithm 3 Compute P lan(S,G,D)
1: P ← The Empty Plan
2: I ← S
3: LG← G
4: LG0 ← {g ∈ LG : no goal is constrained to precede g}
5: loop
6: if LG = φ then
7: Plan← Call Temporal Converter(I, P,D)
8: Return Plan
9: end if

10: Non deterministically choose any g ∈ LG0

11: if g = Some Primitive Action then
12: if g = Information Gathering Task then
13: Generate and send message with identity x, for information

retrieval to other agent
14: Put all tasks depending on g in Pending Tasks list and assign

them an identity x
15: Remove g from LG
16: else
17: A← {(a,Θ) : a is a ground instance of an operator in D, Θ

is a substitution that unifies {head(a), g}, and S satisfies a’s
preconditions}

18: if A = φ then
19: Return Fail
20: else
21: Non deterministically choose a pair (a,Θ) ∈ A
22: S ← S +Add(a)−Del(a)
23: Append a to P
24: Modify LG by removing g and applying Θ
25: end if
26: end if
27: LG0 ← {g ∈ LG : no other goal is constrained to precede g}
28: else
29: M ← {(m,Θ) : m is an instance of a method in D, Θ unifies

{head(m), g}, pre(m) is True in S, and m and Θ are as general
as possible}

30: if M = φ then
31: Return Fail
32: end if
33: Non deterministically choose pair (m,Θ) ∈M
34: Modify LG by removing g, adding sub(m), constraining each

goal in sub(m) to precede the goals that g preceded, and applying
Θ

35: if sub(m) 6= φ then
36: LG0 ← {g ∈ sub(m) : no goal in LG precedes g}
37: else
38: LG0 ← {g ∈ LG : no goal in LG precedes g}
39: end if
40: end if
41: if New acknowledgement in knowledge then
42: id← identity of the message whose acknowledgement has arrived
43: Fetch all goals associated with message id from Pending Tasks

list and put in the LG
44: end if
45: if G is a proactive goal then
46: repeat
47: Call Treat Reactive Goal
48: until GRG = φ
49: end if
50: end loop

state of the world SW , the reactive goal just fetched g
and domain description D are passed to Compute P lan
procedure. This procedure call returns a temporal plan RPlan
for the reactive goal. Because every action in P-CLAIM is ex-
ecuted using a triggering message, so an array ExeMessages
is generated containing the triggering messages for all the
actions in the temporal plan RPlan with a TimeStamp
associated with every message (Lines 7-10) and this array of

MALLOW’009: Turin, Italy, September 7-10, 2009

264

Algorithm 4 Temporal Converter(I, P,D)
1: for j = 1 TO no of literals(I) do
2: Production T ime(Literal(I[j]))← 0
3: end for
4: for i = 1 TO length(P) do
5: T imeStamp(P [i]) ← Max {Production T ime(Pre(P [i][j]))

:j = 1 To no of pre(P [i])}
6: Prereq(P [i])← Actions which achieve the preconditions of P [i]
7: SP (P [i])←World state anticipated before the execution of P [i]
8: for j = 1 TO no of effects(P [i]) do
9: Production T ime(Literal(P [i][j])) ← T imeStamp(P [i])

+ Offset(Literal(P [i][j]))
10: end for
11: end for

messages is sent to EMQ (Line 17) from where the Executor
executes the actions triggered by these messages. But before
sending ExeMessages to EMQ, the TimeStamp of all the
messages currently in the EMQ is updated, because due to
the suspension of execution, those triggering messages can
not be executed at their intended time. So every message’s
TimeStamp is increased by the duration of the suspension
(Lines 13-15). Suspension Signal is then set to OFF (Line
18) to allow the Executor to resume execution and control is
passed back to Main Algorithm (Algorithm 1) which looks
for another goal in GRG. The Main Algorithm turns its
attention to the proactive goals only when it finds that there is
no reactive goal (Line 5). Algorithm fetches the first goal from
GPG (Line 6). High priority goals are always fetched before
Normal priority goals. Then Compute P lan procedure is
called with the parameters FinalSP , g and D. A plan PPlan
is returned (Line 7) which is then sent to EMQ in the form
of triggering messages (Lines 9-13). Now we elaborate the
working of Compute P lan procedure (Algorithm 3) (Many
lines of the algorithm are taken from [13]).
Compute P lan procedure is an extension of JSHOP2[13]

algorithm. It takes three parameters S, G and D as input,
where S is initial state, G is a list of goals and D is the agent’s
domain description. Compute P lan procedure has an internal
goals list called Local Goals (LG) list . Algorithm chooses a
goal g ∈ LG which has no predecessors (Line 4). At this point
there could be two cases. The first case is if g is a primitive
task, then procedure finds an operator a that matches g and
whose preconditions are satisfied in S. It applies the action a
to state S and adds it to his plan P (Lines 17,21-23). If no
such operator a exists then procedure returns failure (Lines
18-19). In P-CLAIM a message to other agent is also treated
as primitive action. So, g could be a message to other agent
for information retrieval. If this is the case, then a message for
the retrieval of information is generated with identity x and
is sent to other agent. And all the tasks which depend on this
information are put in the Pending Tasks list (Lines 11-15).
All these tasks are assigned same identity x as of the message
before sending them to Pending Tasks list.

The second case is where g is a compound goal, so a method
needs to be applied for the decomposition of g into its sub-
tasks. In this case the planner nondeterministically chooses a
method instance m matching g, that decomposes g into sub-

goals (Line 29) and applies this method (Lines 33-34). If no
such method m exists then procedure returns failure (Lines
30-32).

At the end of each planning step, the Compute P lan
procedure looks for any newly arrived acknowledgement for
an earlier sent message. If a new acknowledgement for a
message with identity id has been arrived then the procedure
removes all the tasks depending on id, from Pending Tasks list
and puts them in the Local Goals list to process those goals
(Lines 41-44).

While planning for a proactive goal, the Compute P lan
procedure checks GRG for any new goals after each plan-
ning step and whenever it finds a goal in GRG, it sus-
pends planning for the proactive goal and calls the procedure
Treat Reactive Goal , which we have explained earlier
(Lines 45-49). When GRG becomes empty, procedure resumes
planning for the proactive goal from the same state at which
it had suspended the planning. While planning for a reactive
goal, the Compute P lan procedure does not look at GRG,
because a new reactive goal is treated only when all the
previous reactive goals have been treated.

When Compute P lan finds a plan for one goal, it converts
the total order plan into a temporal plan by calling the pro-
cedure Temporal Converter (Algorithm 4). The procedure
takes three parameters I , P and D, where I is the initial
state, P is the total order plan which is to be converted and
D is the domain description file which is needed to extract
the information about the durations of all the actions and
offsets of all the effects. Some notations used in the procedure
are as follows. no of literals(I) denotes the number of
literals in the initial state and Literal(I[j]) points to the
jth literal in initial state. Production T ime(Lit) represents
the time of achievement of a literal Lit. length(P) returns
the number of actions in the plan P . no of pre(Act) and
no of effects(Act) denote the number of preconditions and
number of effects of an action Act respectively while in the
same vein Pre(P [i][j]) and Literal(P [i][j]) denote the jth

precondition and jth effect of ith action in plan P respectively.
We have used a simple and efficient technique to convert a
plan into temporal plan. The procedure starts by setting the
Production T ime of all the literals in the initial state to
0 (Lines 1-3). Then procedure loops through all the actions
starting from the first action, going towards the last one and
sets the TimeStamp of the action to the maximum of the
Production T ime of all its preconditions, because an action
can be executed at least when all of its preconditions have
been achieved (Lines 4-5). After setting the TimeStamp of
an action, the procedure sets the Production T ime of all the
effects of the action. The production time of an effect is the
TimeStamp of the action plus the time at which the effect is
produced by the action, the Offset of the effect (Lines 8-10).

C. Executor

The Executor is running in parallel with the Planner. It
waits for triggering messages to come in the EMQ, fetches
the messages and executes the actions associated with the

MALLOW’009: Turin, Italy, September 7-10, 2009

265

Algorithm 5 Executor
1: loop
2: if Suspension Signal = ON then
3: Execution Signal← OFF
4: Wait until {Suspension Signal = OFF}
5: Execution Signal← ON
6: end if
7: if EMQ 6= φ then
8: NextActions ← Fetch all next messages C from EMQ having

the earliest T imeStamp from current system time
9: NextT ime← T imeStamp(NextActions)

10: Wait for system time to reach NextT ime
11: for i = 1 TO length(NextActions) do
12: if All the actions in Prereq(NextActions[i]) has not sent

acknowledgement for termination then
13: Wait for all the acknowledgements
14: Duration← Time spent waiting for acknowledgements
15: for i = 1 To length(EMQ) do
16: T imeStamp(EMQ[i])← T imeStamp(EMQ[i]) +

Duration
17: end for
18: end if
19: if SP (NextActions[i]) = SW then
20: Execute NextActions[i] in a separate thread
21: else
22: MPlan← Plan Mender(SW,SP (NextActions[i]))
23: Execute MPlan
24: for i = 1 To length(EMQ) do
25: T imeStamp(EMQ[i])← T imeStamp(EMQ[i]) +

T imeSpan(MPlan)
26: end for
27: Execute NextActions[i] in a separate thread
28: end if
29: end for
30: end if
31: end loop

messages at their planned time stamps. Every running ac-
tion sends an acknowledgement just before its termination
to the Executor. Algorithm 5 is a simplified version of
the Executor. The Executor fetches all the next messages
from EMQ that have the closest TimeStamp to the current
system time. Then the Executor waits for the system time
to reach the TimeStamp of these messages (Lines 10-11).
When system time approaches that time, the Executor checks
whether the prerequisite actions of the actions associated
with these messages have been terminated or not. If they
have not been terminated then it waits for their termination.
And increases the TimeStamp of all the messages in EMQ
by the duration of waiting for their termination (Lines 14-
20). Then it checks for any discrepency among the current
world state and the one anticipated by the Planner for the
execution of these actions. If there is no discrepency then
these actions are executed in a separate thread (Lines 21-22)
and the Executor fetches the next messages from EMQ. But
if there is discrepency among the two world states, then the
Executor calls the Plan Mender to generate a plan from the
current world state to the intended world state and executes
the plan thus returned to remove the discrepency (Lines 24-
25). After executing this plan the Executor is ready to execute
the actions which it had suspended due to discrepency (Line
29). But before executing these actions, it augments their
TimeStamp by the duration of the discrepency removal.

Moreover, after executing each action, the Executor checks
the Suspension Signal. When Suspension Signal is set
to ON , it turns Execution Signl to OFF , suspends the ex-
ecution, and waits for Suspension Signal to go OFF . The
Executor resumes the execution once the Suspension Signal
is turned to OFF . But now the triggering messages for the
plan of reactive goal are at the front of EMQ, so the Executor
first executes the plan for the reactive goal for which it had
suspended the execution and then it resumes the execution of
plan on which it was working before the suspension (Line 29).

Algorithm 6 Plan Mender(I,G)
1: Generate a plan P using SATPLAN from I to G ignoring the duration

of actions
2: TP ← Call Temporal Converter(I, P,D)
3: Return TP

D. Plan Mender

This procedure is responsible for repairing the plan. It takes
as input the current actual world state I and the anticipated
world state G. The Plan Mender generates a temporal plan
for the agent to reach the anticipated world state starting
from the current world state and returns this plan to the
Executor. The Plan mender uses the classical STRIPS style
planning technique to compute its plan because now the goals
for the planner are a state to be reached (declarative goal).
So, the Plan Mender just uses operators from the domain
description file to compute the plan. In this case, the activities
are not helpful in generating the plan which were used by
the Planner component. The basic algorithm used by the Plan
Mender is shown in Algorithm 6. Plan mender computes a
plan without taking into account the durations of the actions
using the SATPLAN planner[16] and then uses the procedure
Temporal Converter to convert the plan to a temporal plan.

Fig. 2. (a).ROCO Activities (b).Plan for Clean Table

V. EXAMPLE

In this example scenario we have one mobile agent ROCO,
which is a home servant. When the MAS is launched then
ROCO has the goal Clean Table. ROCO has activity as-
sociated with this goal Clean Table. All the activities of
ROCO are shown in tree form in Figure 2(a) (A rectangle
is showing a goal and an associated oval is an Activity
associated with the goal, rectangles at the bottom without an

MALLOW’009: Turin, Italy, September 7-10, 2009

266

associated oval are Actions.). Main Algorithm fetches goal
Clean Table from GPG list. And calls Compute P lan to
plan for this goal which generates a plan consisting of the
following actions Move(Room1, Table), ArrangeBooks,
ArrangeCover, Dusting. A short description of the actions
in this plan is shown in Figure 3.

Fig. 3. Description of actions in the temporal plan for Clean Table

The plan is converted to the temporal plan using the
procedure Temporal Converter and the plan returned is
shown in figure 2(b). In this example, all the effects of
all the actions have an offset equal to the duration of the
action. Here we explain the conversion of totally ordered
plan to temporal plan. Procedure starts by assigning the
Production T ime of all the literals in the initial state to 0.
There is only one literal At(ROCO,Room1) in the initial
state so Production T ime(At(ROCO,Room1)) is set to 0.
Now the procedure takes first action Move(Room1, Table)
and sets its TimeStamp to 0, which is the maximum
Production T ime from all of its preconditions. Next,
the procedure sets the Production T ime of the effects
of Move(Room1, Table). This action has only one effect
At(ROCO, Table). Production T ime(At(ROCO, Table))
is assigned the value TimeStamp(Move(Room1)) plus
Offset(At(ROCO, Table)). Putting the values, we
get Production T ime(At(ROCO, Table)) equals 1
minute, because Offset(At(ROCO, Table)) is equal to
the duration of Move(Room1, Table). Now procedure
moves to second goal which is Arrange Books
and sets its TimeStamp to be the maximum of
Production T ime of all of its preconditions. It
has only one precondition At(ROCO, Table) whose
Production T ime has already been calculated to 1 minute.
So TimeStamp(Arrange Books) is assigned 1 munite. In
this way the procedure continues and finds the plan shown in
figure 2(b). Planner sends the messages for each action of the
plan along with their TimeStamp to the EMQ for execution
and Executor starts executing the plan. When the Executor
has executed Move(Room1, Table), ArrangeBooks
and ArrangeCover, it checks that Suspension Signal
is set to ON , because the Planner has just fetched a
reactive goal Bring Water from the GRG. The Executor
suspends the execution, sets the Execution Signal
to OFF and waits for the Suspension Signal to
go to OFF again. It receives the following plan
in the EMQ, Move(Table,Kitchen), TakeGlass,
FillGlassWithWater, Move(Kitchen,OwnerRoom),
Give(Glass,Owner). Now the Executor executes this plan.

After the execution of this plan ROCO is in OwnerRoom.
Now the Executor resumes its suspended plan but before
resuming the suspended plan, it increases the TimeStamp
of all the actions in the suspended plan by the TimeSpan
of the plan for goal Bring Water, then it checks whether
the preconditions of the suspended plan hold in the
current state. The preconditions of its suspended plan are
At(ROCO, Table)∧Arranged(Books)∧Arranged(Cover)
and the current state is Arranged(Books) ∧
Arranged(Cover) ∧ At(ROCO,OwnerRoom). The
Executor calls Plan Mender to generate a plan from current
state of the world to the intended state of the world.
Plan Mender returns a plan consisting of only one action
Move(OwnerRoom, Table). Executor executes this plan, so
ROCO moves to Table. Now again the Executor checks for
any discrepency among the current state and the anticipated
state but now both states are same so the Executor executes
the suspended plan i.e. it executes the Dusting action.

VI. RELATED WORK

In this section, we briefly review some work from the
existing literature which is related to our work. Some of
the research related to ours is CYPRESS[17], RETSINA[18],
DECAF[19] and the systems proposed in [5] and [6].

In our opinion, the system closest to our research is CY-
PRESS system, which also integrates a planning system SIPE-
2[20] with an execution system PRS[21]. It has the ability
to react to the unanticipated changes in the environment by
replanning and also deals with probabilistic planning. Our
approach has the added advantage of handling temporal knowl-
edge. Another aspect differentiating P-CLAIM to CYPRESS
is the mobility of the agents. In P-CLAIM, the agents are
mobile so the context of an agent changes while moving from
one machine to another. The planner component must be able
to deal with the changing context because the planning is
interleaved with execution. An advantage of CYPRESS system
over our proposed system is in the way CYPRESS performs
replanning. We suspend the execution while computing a plan
to remove any discrepencies. While CYPRESS system uses
asynchronous replanning in which the system continues to
execute the unaffected portion of the plan while a planning
module computes a new plan.

Our system has many similarities with RETSINA. Like our
system, RETSINA also interleaves planning with execution
and supports planning for dynamic and real environments.
But one main difference of RETSINA system with our system
is that RESTINA system plans by only reduction of the top
level task and it does not plan among the top level tasks, but
our system uses a HTN planner which also plans among the
top level tasks. So the plan generated is more optimal in our
system than in RETSINA system. Another main difference is
that RETSINA system does not use the existing information
from the BDI system whereas our system proposes a method
to use the existing agent’s and world’s information.

Another framework DECAF[19] which can be seen as an in-
spiration of RETSINA, relates to our system. But, in DECAF,

MALLOW’009: Turin, Italy, September 7-10, 2009

267

the planner only estimates preconditions, select task templates
and instantiates them. It lacks the ability to anticipate future
actions.

Like our system, [5] also provides a way to translate the
information from a JACK[4] agent to the information needed
by JSHOP[22] planner. Main differences of this approach with
our approach are that in [5] it is the responsibility of the
programmer to specify the points where the planner should
be called while our system plans for each goal. Our system
has the ability to deal with the unanticipated changes in the
environment, while [5] has no such ability.

Another framework incorporating planning in a BDI lan-
guage is presented in [6]. It incorporates classical planning
into BDI framework. More precisely it extends the X-BDI[23]
model to use the propositional planning algorithms for per-
formaing means-end reasoning. Our hypothesis is that our
proposed system has the advantage of being more efficient
as the HTN planning technique can find plans more rapidly
with the help of additional domain knowledge provided by
the programmer. Another important aspect is the loss of the
domain knowledge provided by the programmer in [6]. The
advantage of using the HTN planning is that the plans can
be synthesized according to the intentions of the programmer
without loosing the domain knowledge.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an extension to the CLAIM
language to endow the agents with the capability to plan ahead.
This modified and extended language is called P-CLAIM.
Agents are able to create temporal plans. Execution monitoring
and plan repairing components are added. A balance between
deliberation and reactivity has been established and the agents
are able to turn their attention while planning to the newly
arrived reactive goals. This work can be considered as a first
step towards a comprehensive temporal planning solution for
an Agent Oriented Programming language.

After creating the temporal plan for an agent but before its
execution, the plan of an agent should be coordinated with
the plans of those agents with which the plan could be in
conflict or whose plans could be helpful for this agent. Our
next task is to propose a coordination mechanism to coordinate
the temporal plans of different agents. Coordinating the plan
of agent with every other agent in the MAS is very costly, so
another important task to do is to intelligently calculate the
set of those agents whose plan could be in conflict or whose
plans could be helpful for the agent and then the plan should
be coordinated with only those agents.

REFERENCES

[1] R. Bordini, J. Hubner, and R. Vieira, “Jason and the Golden Fleece of
agent-oriented programming,” Multiagent systems artificial societies and
simulated organizations, vol. 15, p. 3, 2005.

[2] M. Dastani, M. van Riemsdijk, and J. Meyer, “Programming multi-agent
systems in 3APL,” Multiagent systems artificial societies and simulated
organizations, vol. 15, p. 39, 2005.

[3] M. Dastani and J. Meyer, “A practical agent programming language,”
Lecture Notes in Computer Science, vol. 4908, p. 107, 2008.

[4] P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents-components for intelligent agents in java,” AgentLink News
Letter, vol. 2, pp. 2–5, 1999.

[5] L. de Silva and L. Padgham, “Planning on demand in BDI systems,”
Proc. of ICAPS-05 (Poster), 2005.

[6] F. Meneguzzi, A. Zorzo, and M. da Costa Mora, “Propositional planning
in BDI agents,” in Proceedings of the 2004 ACM symposium on Applied
computing. ACM New York, NY, USA, 2004, pp. 58–63.

[7] de Silva et al., “First Principles Planning in BDI Systems,” in Proceed-
ings of the 8th international joint conference on Autonomous agents and
multiagent systems, S. Decker, Sichman and C. (.eds), Eds., 2009, pp.
1105–1112.

[8] J. Penberthy and D. Weld, “Temporal planning with continuous change,”
in Proceedings of the national conference on Artificial Intelligence.
John Wiley & Sons Ltd., 1995, pp. 1010–1010.

[9] D. Smith and D. Weld, “Temporal planning with mutual exclusion
reasoning,” in International joint conference on artificial intelligence,
vol. 16. Lawrence Erlbaum Associates Ltd., 1999, pp. 326–337.

[10] M. Do and S. Kambhampati, “Sapa: A domain-independent heuristic
metric temporal planner,” in Proceedings of ECP-01, 2001, pp. 109–
120.

[11] M. Ghallab and H. Laruelle, “Representation and control in IxTeT, a
temporal planner,” in Proc. 2nd Int. Conf. on AI Planning Systems, 1994,
pp. 61–67.

[12] A. El Fallah-Seghrouchni and A. Suna, “An unified framework for
programming autonomous, intelligent and mobile agents,” Lecture notes
in computer science, Springer, pp. 353–362, 2003.

[13] D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, and F. Yaman,
“SHOP2: An HTN planning system,” Journal of Artificial Intelligence
Research, vol. 20, no. 1, pp. 379–404, 2003.

[14] S. Sardina and L. Padgham, “Hierarchical planning in BDI agent
programming languages: A formal approach,” in Proceedings of the fifth
international joint conference on Autonomous agents and multiagent
systems. ACM New York, NY, USA, 2006, pp. 1001–1008.

[15] H. M. Adnan, “A Planning Component for CLAIM Agents,” in To
appear in the Proceedings of International Workshop On Multi-Agent
Systems Technology and Semantics. IEEE Romania, 2009.

[16] H. Kautz, B. Selman, and J. Hoffmann, “Satplan: Planning as satisfia-
bility,” in 5th International Planning Competition. Citeseer, 2006.

[17] D. Myers, L. Wesley, and A. Center, “CYPRESS: Reacting and Planning
under Uncertainty,” in DARPA Proceedings: Rome Laboratory Planning
Initiative. Morgan Kaufmann, 1994, p. 111.

[18] M. Paolucci, O. Shehory, K. Sycara, D. Kalp, and A. Pannu, “A planning
component for RETSINA agents,” Lecture notes in computer science,
Springer, pp. 147–161, 2000.

[19] J. Graham and K. Decker, “Towards a distributed, environment-centered
agent framework,” Lecture notes in computer science, Springer, pp. 290–
304, 2000.

[20] D. Wilkins, “Can AI planners solve practical problems?” Computational
Intelligence, vol. 6, no. 4, pp. 232–246, 1990.

[21] M. Georgeff and A. Lansky, “Procedural knowledge,” Proceedings of
the IEEE, Special Issue on Knowledge Representation, vol. 74, no. 10,
pp. 1383–1398, 1986.

[22] D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila, “SHOP: Simple hier-
archical ordered planner,” in Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence table of contents. Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA, 1999, pp. 968–975.

[23] M. Mora, J. Lopes, R. Viccari, and H. Coelho, “BDI models and systems:
Reducing the gap,” in Proc. of ATAL-98, LNCS, vol. 1555. Springer.

MALLOW’009: Turin, Italy, September 7-10, 2009

268

Agents Secure Interaction in Data driven Languages
Mahdi Zargayouna1

1 INRETS Institute,
Gretia Laboratory,

2, Rue de la Butte Verte
93166 Noisy Le Grand, France

Email: zargayouna@inrets.fr

Flavien Balbo1,2

2 University of Paris-Dauphine,
Lamsade-CNRS Laboratory,

Place du Maréchal de Lattre de Tassigny
75775 Paris, France

Email: balbo@lamsade.dauphine.fr

Serge Haddad3

3 École Normale Supérieure de Cachan,
LSV-CNRS Laboratory,

61, Avenue du Président Wilson
94235 Cachan, France

Email: haddad@lsv.ens-cachan.fr

Abstract—This paper discusses the security issues in data
driven coordination languages. These languages rely on a data
space shared by the agents and used to coordinate their activities.
We extend these languages with a main distinguishing feature,
which is the possibility to define fine-grained security conditions,
associated with every datum in the shared space. Two main ideas
makes it possible: the consideration of an abstraction of agents’
states in the form of data at language level and the introduction of
a richer interaction mechanism than state-of-the-art templates.
This novel security mechanism allows both agents and system
designers to prohibit undesirable interactions.

I. INTRODUCTION

When designing logically distributed applications and open
Multi-Agent Systems (MAS), developing applications without
knowing either the overall structure of the system or the
agents that will be functioning in it is a challenge. Data driven
coordination languages, with the pioneer language Linda [1]
and its extensions, provide a great deal of flexibility and are
a promising approach to meet this challenge. These languages
are based on the notion of a shared data repository composed
of data used by the agents to interact and to synchronize
their activities. Agents communicate by exchanging tuples via
an abstraction of an associative shared memory called the
tuplespace. A tuplespace is a multiset of tuples (tuples dupli-
cation is allowed) and is accessed associatively (by content)
rather than by address, by specifying a template. Every tuple is
a sequence of one or more typed values and every template is a
sequence of one or more typed values or formal fields. Every
tuple field matches with the corresponding template field if
they have the same value or are of the same type.

Relying on a shared space for agent interaction naturally
handles open systems design [2]. The advantage is that they
provide the possibility for new agents to join the system and,
since all the agents have a common interlocutor (the shared
space), they don’t have to manage an up-to-date address book
of the other agents of the system. Nevertheless, the openness
management implies a secure relationship between the agents
and the shared memory. The data driven coordination model
has to deal with the following security threats [3]: 1) threat
on authenticity; 2) threat on confidentiality; 3) threat on
availability. A threat on authenticity occurs when an agent acts
instead of another agent. The data driven coordination model
is designed to promote anonymous interaction, but if the tuples
contain values related to the agents that insert, read or consume

it then the authenticity of these data has to be validated.
For example, in [4] the authors present a messaging service
where the interaction between the agents is mediated by a
broker that is grounded on a tuplespace. In this application,
the authenticity of the agents related to a message exchange
has to be guaranteed. The confidentiality threats are related
to the interception by an agent of another agent’s confidential
information or message. Following the data driven approach,
any agent can read/remove any tuple stored in the tuplespace
simply by exploiting formal fields (variables) [1], which act as
wildcards [5]. Therefore, a template having two wildcard fields
can be used to read or remove any tuple containing two data
fields [4]. The threats on availability concern the consequence
of the deletion and insertion operations on the behavior of the
tuplespace. The deletion of information is a consequence of
the lack of confidentiality and implies that it is not possible to
guarantee the correct behavior of the system. The threat related
to the addition of information concerns malicious agents that
can insert an unbounded number of tuples; in such a way, since
the manager of the space has to handle any tuple’s insertion
operation, a process can generate a denial of service attack
[4].

In data driven coordination languages, security is generally
enforced by using multiple (logical) spaces or by stating
“Interaction Laws”. With multiple spaces (e.g. Klaim [6],
RBAC and TucSon [7], SecSpaces [8] and SecOS [9]), two
agents that wish to exchange confidential data use a space
that is known only by the two of them. However, security
with multiple spaces is defined in a coarse-grained way, since
accessing one space gives the possibility to access all of its
data, and being excluded from one space means not having
access to any of its data. The laws in LGI [10] allow data
to be secured by specifying conditions on the states of the
agents and the content of the data. Tuple-space reactions are
associated with agents’ actions so as to always result in a
coherent configuration. However, agents cannot manage the
security of the data they add, and only the designer can specify
security conditions.

We would like to equip data driven coordination languages
with a security mechanism that allows for the protection of
the exchanged data in a fine-grained way. We want to let
agents specify, when they add a datum to the data space,
the conditions under which it can be read or taken by others.

MALLOW’009: Turin, Italy, September 7-10, 2009

269

We also would like the designer of the system to specify the
conditions under which an agent can or cannot add a certain
datum to the space, following the application logic. To do so,
we perform several modifications of the shared space model,
and propose a new language, called LACIOS (Language for
Agent Contextual Interaction in Open Systems), which is the
linguistic embodiment of the modified model.

In [5], the authors classify secure data driven languages into
entity driven and knowledge driven languages. The idea behind
the knowledge oriented approach is that tuple spaces, tuples
or single data fields are decorated with additional information
and an agent can access the resources only in the case they
prove their knowledge of these information. In the case of
the entity oriented approach, additional information associated
to resources list the entities which are allowed to access the
resources. Our proposal can be classified as an entity oriented
approach. However, instead of listing the agents that can access
a datum, in LACIOS these agents are described symbolically,
i.e. their properties are defined without pointing them namely.

The remainder of this paper is structured as follows. We give
an overview of LACIOS in section II. Section III gives the
basic syntax of our language; Section IV addresses the security
issue, and section V provides the complete specification of
agents’ behaviors. Section VI presents the programming lan-
guage JAVA-LACIOS. The proposal is discussed with respect
to the state of the art in section VII before concluding with
further lines of research.

II. OVERVIEW OF Lacios

A MAS written in LACIOS is defined by a dynamic set of
agents interacting with an environment, which is composed of
a dynamic set of objects. To illustrate the syntax of LACIOS,
an example application is used throughout the paper. In this
example, human travelers are in a train station in which
schedules, booking, payment services and information sources
coexist. Two agent types are considered in here: Traveler
agents represent travelers wishing to make a journey and Train
agents represent trains, and generate information concerning
future departures, arrivals, delays, etc. All these agents interact
by exchanging data via a shared space in the same way as for
all data driven coordination models.

A MAS written in LACIOS is an open system in two ways.
As for every data driven language, agents in LACIOS can
join and leave the system freely. In addition, external - non
modeled - systems and users can interact with the MAS. As
we will define it later, users (e.g. travelers) interact with the
MAS by instantiating the values of certain variables in the
code of the agents that represent them. External systems (e.g.
trains) can interact with the MAS by instantiating variables
with values as well. They can also execute agents that interact
with the MAS Environment directly. The figure 1 illustrates
the MAS architecture. The modeled MAS executes on a host,
where (local) agents add, read and take objects to/from the
MAS environment. Every agent is either independent (like
agent 1), or representing a non-modeled system/user in the
MAS.

The agents that are defined in a LACIOS program are usually
the local agents. The users, external agents and external
systems that are represented by an agent in the MAS are not
modeled, only their actions are observed in the MAS, through
the nondeterministic behavior of the local agent. An agent in
LACIOS is then an entity, that has a state, a local memory
and a nondeterministic behavior. As we will define it later,
the whole behavior of the agent is not defined in LACIOS.
An agent can have a complex behavior, by using additional
operators, besides the standard operations defined in LACIOS.

Fig. 1. LACIOS Architecture

Since agents in LACIOS don’t interact directly, but via the
environment, our definition of an agent is close to the general
definition given by [11]:

Definition 1 (Agent): An agent is a computer system capa-
ble of autonomous action in some environment in order to
meet its design objectives.

From the security point of view, LACIOS has two objectives:
1) to support a global control by the environment of the
insertion by the agents of objects in order to ensure that the
new objects are not fraudulent (authenticity, availability), 2)
to support a local control by the agents that can specify who
can access the object that they add to the environment in
order to ensure their privacy (authenticity, confidentiality and
availability). To do so, agents have to have a state defining
who they are. This is the first modification we perform to
the original model: the consideration of an abstraction of
agents’ states in the form of data at language level. These
states are defined as a set of property←value pairs (e.g.
{identifier ← 10, position ← node1}). Agents’ states in
LACIOS are data representing the state of the agents that are
accessed by the environment only for matching and security
purposes (they are not directly accessible by the other agents).

III. BASIC SYNTAX AND INFORMAL SEMANTICS FOR
Lacios

LACIOS is a data driven language for the design and
implementation of open and secure MAS. For the specification
of agent behavior, four primitives inspired by Linda and a
set of operators borrowed from Milner’s CCS [12] have been
used. An MAS written in LACIOS is defined by a dynamic set
of agents interacting with an environment - denoted ΩENV ,

MALLOW’009: Turin, Italy, September 7-10, 2009

270

which is composed of a dynamic set of objects. Figure 2
illustrates the general principle of LACIOS. Agents are defined
by a behavior (a process), a state (data) and a local memory in
which they store the objects they perceive or retrieve from the
environment. Agents can perceive (read only) and/or retrieve
(read and take) objects from the environment. First the four
primitives of LACIOS will be presented; their parameters will
be defined along with the details of the language.

µ ::= spawn | add | update | look
The primitive spawn launches a new agent and provides

it with an initial state and a behavior. An add action adds
an object to the environment. The update primitive changes
locally the old values of the agent’s state to the new ones.

Unlike traditional retrieval primitives, the look primitive
enables agents for both the perception and retrieval of objects
as will be described below. The primitive looks for objects in
the environment that satisfy the agents’ conditions expressed
as parameters. Agents can use their own states in the parameter
expression of a look, which are accessible by the environment
only, when the parameter expression is evaluated. Note that,
the state of an agent cannot be accessed directly by the other
agents (through a look expression). In order to be observable
to the others, an agent has to add an object representing itself
to the environment autonomously (as in Fig. 2, where the
agent decides not to publish a part of its state). Having data
representing agents in the environment allows the agents of
the system to discover each other by simply interrogating the
environment à la Linda.

Fig. 2. General Schema

A. Data structure

For LACIOS, we define a standard information system data
structure: every item of data in the system has a description,
i.e. a set of property←value pairs, and all the properties of
the language are typed. The notions of type, property and
description are defined as follows.

Definition 2 (Types): The types of the language are defined
as type1, . . . , typenbt. Every typei is a set such that ∀(i, j) ∈
{1, . . . , nbt}2, i 6= j, typei ∩ typej = {nil}

Remark 1: We assume the existence of the boolean type in
the language, i.e. ∃i ∈ {1, . . . , nbt}, typei = {true, false,nil}

Notation 1: We denote the set of values supported by the

language as T =
nbt⋃
i=1

typei.

Definition 3 (Property): N is the property space, and is a
countable set of properties. A property π ∈ N is defined by
a type type(π) ∈ {type1, . . . , typenbt}.

The value nil has a twofold use in the syntax of LACIOS.
First, it represents every semantic error in a program. When
a semantic error is encountered, the corresponding expression
is set at nil. Second, a property whose value is equal to nil is
considered as undefined (as if it is nonexistent), and is usually
omitted.

Notation 2: We note unknownπ a value of the type
type(π) that is defined but doesn’t have a value. For instance,
unknowndestination is a value of the same type as the property
destination, whose value is (temporarily) unknown.

A description is composed of properties and their corre-
sponding values.

Definition 4 (Descriptions): DS is the set of descriptions.
A description is a function that maps properties to values, i.e.
d ≡ {π ← vπ | vπ ∈ type(π)}π∈N . The mapping is omitted
when vπ = nil. We use d(π) in order to access the value vπ .
For each description, the set of properties {π | d(π) 6= nil} is
finite.

In LACIOS, each description is associated with an entity,
which can be an object or an agent. Objects are defined by
their descriptions (O is the set of objects), while each agent
is defined by a description (their state), a behavior and a local
memory (A is the set of agents).

For instance, let o1 be an object representing a trav-
eler, do1 could be defined as follows: {id ← “o1”,
destination ← “London”, origin ← “Paris”}. In this
example, do1(origin) is equal to “Paris”.

Definition 5 (Entities): Ω = A ∪ O is the set of entities
of the MAS. Each entity ω ∈ Ω has a description as defined
above denoted by dω . The value of the property π of the entity
ω is denoted by dω(π).

Remark 2: We assume the existence of the type reference
in LACIOS, a value of the type reference designates an entity
in Ω, i.e. ∃i ∈ {1, . . . , nbt}, typei = Ω ∪ {nil}.
B. Expressions

Expressions are built with values, properties and operators,
and are used by agents to describe the data they handle, either
locally or to interact with the environment.

Definition 6 (Operators): Each operator op of the language
is defined by:
• (i) arity(op) The number of parameters of the operator,
• (ii) par(op) : {1, . . . ,arity(op)} → {1, . . . , nbt},
par(op)(i) gives the index of the type of the ith param-
eter of the operator op,

• (iii) ret(op) ∈ {1, . . . , nbt}, the index of the type of the
value resulting from the evaluation of op.

MALLOW’009: Turin, Italy, September 7-10, 2009

271

For instance, let type1 ≡ boolean. The operator and is
defined as follows:
arity(and) = 2, par(and)(1) = par(and)(2) = 1 and
ret(and) = 1.

Besides basic operators, additional operators can be defined
by the programmer, specifying complex agents’ processes.
LACIOS is then used mainly for coordination purposes, while
the computational model remains non modeled.

An expression may simply be a value, an operator, or a prop-
erty. For instance, destination 6= “Paris” is a (boolean) ex-
pression. If an expression is a property, it refers to a property of
the agent that is evaluating it. For instance, when destination
appears in the behavior of agent a as in the example above,
it designates the destination of a. If a property companion
of agent a is of the type reference, companion.destination
designates the destination of the companion of a.

Definition 7 (Expressions): Exp is the set of expressions.
An expression e ∈ Exp is generated via the grammar found
in Table I.

e ::= nil
| v , with v ∈ T \nil
| π , with π ∈ N
| op(e, . . . , e) , with op an operator of the language,

and nil doesn’t appear in any e
| π.e , with π ∈ N and type(π) = Ω

TABLE I
SYNTAX OF AN EXPRESSION

In a description, an agent can associate an expression
with a property, instead of a value. The result is a symbolic
description which is transformed into a description when its
associated expressions are evaluated.

Definition 8 (Symbolic descriptions): SDS is the set of
symbolic descriptions. A symbolic description sds ∈ SDS
is a description that maps properties π to expressions eπ , i.e.
sds ≡ {π ← eπ | type(eπ) = type(π)}π∈N .

Below is the definition of the add and update primitives,
together with their symbolic descriptions parameters.

µ ::= . . . | add(sds) | update(sds)

In order to add an object, an agent executes add(sds), and
an object whose description is the evaluation of sds is added
to ΩENV . For instance, add({ticketid ← ticket.id, price ←
ticket.price + 20, owner ← id}) adds an object to the
environment whose owner is equal to the id of the calling
agent, ticketid is equal to the property id of an object in
the memory of the calling agent, referred to by the property
ticket, and whose price is 20 more than the price paid
by the agent. The primitive update(sds) updates a set of
properties of the agent with the evaluation of the expressions
in sds. When update(sds) is executed, the value of every
property π in sds becomes equal to the evaluation of the
corresponding expression eπ . For instance, if an agent a
executes update({budget ← budget − 20, destination ←

“Budapest”}), its budget is decreased by 20 and its desti-
nation becomes “Budapest”.

C. Matching

Since we consider a data structure richer than tuples, we
also use a matching mechanism richer than templates. To do
so, the expressions’ syntax is enhanced with variables, which
designate objects not known by the agent, but which will be
discovered during the matching process and will be replaced
by objects from the environment before their evaluation. Below
is the definition of a variable.

Definition 9 (Variables): X is the set of variables. A
variable x ∈ X is defined by its type type(x) ∈
{type1, . . . , typenbt}.

The syntax of an expression becomes:

e ::= . . . | x.e with x ∈ X ∧ type(x) = Ω

For instance, consider the following boolean expression
e: t.destination = “London” ∧ t.price ≤ budget. In
this boolean expression, t designates an object, unknown for
the moment, where the property destination of t has to be
“London” and the price has to be less than the budget of the
agent for the expression to be evaluated to true. In this case,
the agent executing look with e as a parameter will perceive
or retrieve the object.

We can now provide the complete definition of the primitive
look.

µ ::= . . . | look(sdsp, sdsr, e)

We choose to use a single primitive to access the envi-
ronment. The primitive look(sdsp, sdsr, e), with sdsp and
sdsr symbolic descriptions, allows both object perception and
retrieval (perception and removal from ΩENV). It blocks until
a set of objects C becomes present in ΩENV such that the
expression e is evaluated to true. When an agent executes
look(sdsp, sdsr, e), the set of objects of the environment C is
selected for matching with e (each variable is unified with an
object from C). The expression e has to be evaluated to true
with this unification for look to be executed. The objects as-
sociated with the variables in sdsp are perceived and those as-
sociated with the variables in sdsr are retrieved. For instance,
the following instruction: look({train ← tr}, {ticket ←
tk}, tr.destination = “London” ∧ tk.price ≤ budget
∧ tk.train = tr.id) looks for two objects that will be unified
with tk and tr. The object associated with tr will be perceived
while the object associated with tk will be retrieved. After this
instruction has been executed, the two objects will be present
in the local memory of the caller agent, which will have two
additional properties of the type reference: ticket, which refers
to the object associated with the variable tk and train, which
refers to the object associated with tr. The object unified with
tk won’t be present in ΩENV anymore.

MALLOW’009: Turin, Italy, September 7-10, 2009

272

D. Interaction with External Systems/Users

Consider an agent having two properties destination and
budget that are unknown before the execution. The values of
these properties come from an external system (e.g. a Web
server, a GUI, etc). Here is the description of this agent
which properties will be defined during execution resulting
from their instantiation by an external system: {budget ←
b, destination ← d}, where b and d are variables. Only
the action of the external system will be observed, i.e. the
assignment of values to the variables, while the system itself
is not modeled. We enhance the syntax of an expression with
free variables as follows:

e ::= . . . | x with x ∈ X
The introduction of the variables for the interaction with an
external system is interesting insofar as it clearly separates the
coordination aspect - what the MAS does - from the interaction
with an external system aspect - the context in which the
MAS is running. Thus, in the description {budget ← b,
destination ← d}, regardless of which system is instanti-
ating the variables b and d, the definition of the description
and the behavior of the agent remain unchanged.

IV. SECURITY MANAGEMENT

We have decided to maintain global sharing of the data
between all the agents, and not to isolate them in private
environments, thus following the original Linda model. How-
ever, this choice leads to the same security problems. More
precisely, fraudulent data insertion and retrieval could occur
and the agents and the system designer cannot prevent them. In
LACIOS, the agents are responsible of the objects that they put
in the environment. In order to avoid fraudulent use of these
objects, the language supports two control levels, a global level
for the designer of the system to control the insertion of objects
and a local level for the owner of the objects to control how
their object will be used.

A. Global Control

The designer of the system knows the conditions under
which certain insertions of objects are fraudulent and we
provide him/her with a global control of agents insertions
of objects. A threat to authenticity (when an agent tries
to forge a message for example) is an example of such
fraudulent insertions. More generally, objects added to the
environment might corrupt the coherence of the data according
to the application logic (resulting in two agents with the same
position, or with a new bid that is lower than the current one,
etc.).

Let us consider for instance, the following action:
add({from ← companion2.id, to ←

companion1.id, subject← “coalition”})
This action is fraudulent, since the agent tries to send a mes-

sage with a different id than its own. Therefore, this first class
of threats concerns the security rules that have to be checked
when an add is executed. To overcome threats resulting from
the fraudulent adding of objects to the environment, the system

designer identifies the critical situations and specifies each
one using a security rule s (s ∈ S,S ⊆ Exp is the set of
security rules of the system). An expression s in S is a boolean
expression in which the designer specifies the conditions on
the state of the agent executing add and the conditions on
the description of the object that it adds. To do so, we add
a specific key word that in the syntax of an expression to
designate, in a security rule, the object added by the agent.

e ::= . . . | that.e
For instance, here is the expression preventing an agent
from adding an object that has a property from that is
different from its own: s ≡ that.from = id, where id
designates the identifier of the agent executing the add and
that designates the object added by the agent. When an
agent a executes add({from ← companion2.id, to ←
companion1.id, subject ← “coalition”}), the security rule
specified by the designer is evaluated to false, because
d(from) 6= da(id), and the operation is canceled.

B. Local Control

The agents of the system know best the conditions under
which the perception or retrieval of an object they add is
fraudulent, and we provide them with local control to manage
the observability of their own objects. A confidentiality threat
(e.g. the interception by an agent of another’s confidential
information or message), or a threat to availability (e.g. the
deletion of the agent’s information or message by another
agent) are examples of such fraudulent access. We propose to
allow agents to define the observability rules - on perception
and on retrieval - and to let the environment check that these
conditions are respected.

This is done by enabling an agent, when it adds an object,
to manage its observability, i.e. to identify the situations where
the perception or retrieval of the added object is prohibited. To
do so, the syntax of the primitive add is replaced as follows.

µ ::= . . . | add(sds, ep, er)

where ep and er are boolean expressions. The expression ep
specifies the conditions that an agent has to satisfy to have the
right to perceive the object described by sds, and er defines the
conditions that an agent has to satisfy to have the right to re-
trieve it. When an agent executes look(sdsp, sdsr, e), for each
object o ∈ C (the set of objects selected for matching from the
environment) that is unified with a context variable in sdsp,
the expression ep associated to o has to be evaluated to true,
and for each object o unified with a context variable in sdsr,
the expression er associated with o has to be evaluated to true.
Otherwise, the action look cannot be executed with this set of
objects. When the agent doesn’t want to restrain the perception
or the retrieval of the object described by sds, it assigns true
to ep or er respectively. For instance, let agent a (let’s say
that a’s companion.id = 5) wants to prevent the message
it has addressed to its companion to be retrieved by others,
and to be perceived by any agent but itself (the key word
that has the same semantics here, i.e. it designates the added

MALLOW’009: Turin, Italy, September 7-10, 2009

273

object): add({from ← id, to ← companion.id, subject ←
“coalition”}, id = that.from, id = that.to)

Consider an agent b with db(id) = 10 that executes
look({receiver ← r}, {message ← m}, m.to = r.id ∧
r.destination = destination). The agent b is trying to
retrieve a message (object unified with m) and to perceive the
object representing the agent to which m is addressed (object
unified with r), if its destination is equal to its own. Thanks
to the conditions associated with the added object, b won’t be
able to perceive a’s message. Concretely, any matching that
is trying to unify m with a’s message is prohibited by the
environment and is not considered.

Note that, in the development of the security management
defined above, we only take into account the security between
local agents and the environment. By doing so, we make
two assumptions. On the one side, the spawn of an agent
representing an external system, user or agent, has to be
fulfilled following a security protocol to ensure that this is
indeed the agent with the claimed identifier. On the other side,
we assume that local agents don’t try to change their identifiers
with an update throughout the execution of the system, which
is easy to check before the execution of the system. Otherwise,
they could dupe the global control mechanism.

V. SPECIFICATION OF AGENT BEHAVIOR

This section provides the complete definition of an open
MAS written in LACIOS, starting with the complete definition
of the primitives for LACIOS.
µ ::= add(sds) | look(sdsp, sdsr, e) | update(sds) |

spawn(P, sds)
We are now ready to define processes, which define agent

behavior. The primitive spawn(P, sds) launches a new agent
that behaves like the process P and whose description is
the result of the evaluation of sds (its transformation to a
description ds). Below is the definition of a process, which
defines agents’ behaviors.

Definition 10 (Process): Given a set of process identifiers
{Ki}i∈I , a process definition is of the form: ∀i ∈ I,Ki

def
= Pi,

where every Pi is generated via the grammar in Table II.

P ::= 0 (null process)
| µ.P (action prefixing)
| bbP c+ bbP c , where b is a boolean expression (choice)
| P‖P (parallel)
| Kj , for a certain j ∈ I (invocation)
| νX(P) (variables linking)
µ ::= spawn(P, sds) | add(sds) | look(sdsp, sdsr, e) | update(sds)
with e an expression, sds, sdsp and sdsr symbolic
descriptions

TABLE II
PROCESS SYNTAX

Processes, ranged over by P,Q, . . . represent the programs
of the MAS, and the behavior of its agents. A program can be a
terminated process 0 (usually omitted). It can also be a choice
expression between programs bbP c+ bbP c, where each P is
guarded by the evaluation of a boolean expression: when b is

evaluated to true, the program P is executed. A program can
also be a parallel composition of programs P‖Q, i.e. P and
Q are executed in parallel. A program can be an invocation of
another process whose identifier is the constant Kj , and which
behaves like the process defined by Kj . A program may be a
process prefixed by an action µ.P . Actions are the language
primitives, as defined earlier. The operator ν is introduced
to link free variables in P . The process νX(P) introduces
nondeterminism in the agents’ behaviors. Indeed, behaves like
P where every free variable (in X) is nondeterministically
linked with a value in its type.

A coordinated MAS is then defined as follows.
Definition 11 (Coordinated MAS): CS = 〈Ω, d,ΩENV ,S〉
• Ω = A]O is the set of entities, composed of A the set

of agents and O the set of objects,
– A ⊆ Ω is the set of agents.
∗ Ωa is the private memory of agent a, Ωa ⊆
O ∪ {a}, i.e. the agent has access to its own
description,

∗ proc(a) is the process defining the behavior of a.
– O ⊆ Ω is the set of objects.
∗ ep(o) returns the predicate specifying the percep-

tion conditions of o, i.e. which agents can perceive
o.

∗ er(o) returns the predicate specifying the retrieval
conditions of o,

• d : Ω → (N → T) is the description function of the
MAS, each d(ω) is an entity description as described
before (denoted by dω as well),

• ΩENV ⊆ O is the set of objects that are in the environ-
ment,

• S ⊂ Exp is the set of predicates specifying the conditions
that have to be verified, in order for an add to be executed.

VI. THE PROGRAMMING LANGUAGE Java-Lacios

We have defined a language that, following its operational
semantics (cf. [13]), could be implemented in any host lan-
guage. The usual procedure in order to implement a coordi-
nation language is to provide libraries in a host programming
language that can be used by any system wishing to follow
the coordination model (e.g. Klava, which is associated to
Klaim [6]). However, to take full advantage of the language
semantics, it is more useful not to require the programmer
himself/herself to respect the semantics in each system that
he/she implements. This is possible by providing him/her with
a tool allowing to write a program in LACIOS’s syntax, and
to generate a system ready to be executed, with the guarantee
that it respects the language semantics. In particular, we want
to use the operators prefixing, choice and parallel composition
when defining the agents’ behaviors. Java has been chosen as
a target programming language in which a compiled LACIOS
program is translated, because of the relative simplicity of
Thread management, as well as the easy creation of parsers
thanks to the parser generator JavaCC 1.

1http://javacc.dev.java.net/

MALLOW’009: Turin, Italy, September 7-10, 2009

274

A JAVA-LACIOS program is a file where both the behaviors
and the initial state of the coordinated MAS are described.
A coordinated MAS is defined by the set of initial agents,
spawned when the program starts, together with the security
rules S. Programmers write their scripts which are parsed and
compiled, generating a Java program. We have proposed a GUI
for JAVA-LACIOS, which displays the ongoing execution, the
current objects in the environment, the current agents’ behav-
iors that are executed, etc. The Fig. 3 illustrates the execution
with a Dial A Ride system that we have implemented [14]. It
is also possible, before the execution, to visualize the graphs
(labeled transition systems) related to the agents’ behaviors.

Fig. 3. Visualization of agents behaviors

The concurrent access to the environment objects with a
look necessitates a synchronization of the add and look calls.
However, an agent calling add has not to be blocked until
the environment releases the lock. To this end, we define a
buffer to which agents can add objects without blocking, while
emptying the buffer is synchronized with the look calls.

when a look is called, the environment is locked while it is
still looking for a matching, to guarantee that an agent does not
access the environment in an incoherent state, and to be sure
that a same object is not retrieved by more than one agent.
If no matching is found, the calling process of the agent is
blocked. The blocked processes are notified when an object
is added to the environment. In this case, the notified process
looks for a matching with the only newly added objects.

An update modifies the agent’s properties locally, but
it however influences its interaction with the environment.
Indeed, if a look is currently executing, the matching have to
be attempted with the current properties of the agent. When
the properties of an agent change, and when they concern
properties for which an ongoing look has attempted to match,
the execution of the look is executed again, and the pending
look requests are notified since they might be concerned by
the newly changed properties as well.

VII. DISCUSSION AND RELATED WORK

Security is generally enforced by using multiple (logical)
spaces, by stating “Interaction Laws” or by defining roles and
access rights associated to them. With multiple spaces (e.g.
Klaim [6], SecSpaces [8], [4] and SecOS [9]), two agents,

which wish to exchange confidential data use a space that is
known only by the two of them. However, when security is
guaranteed by isolating the data in private spaces, accessing
one space gives the possibility to access all of its data, and
being excluded from one space means not having access to any
of its data. In LACIOS, agents have a state, and an agent can
protect its data in a fine-grained way (at object level) without
knowing the other agents, which allows secure interaction with
complete data sharing. Roles and role access rights (like in
the RBAC model associated to TuCSon [7]) are an additional
layer on top of multiple spaces, and therefore security is also
defined in a coarse-grained way.

In [8], specific cryptographic fields are added to the tuples
to authenticate the producer of an item of data, for instance,
as well as to identify the readers/takers of that item. This
authentication is carried out in LACIOS thanks to agents’ states
and security rules, but it is nevertheless still possible to define
a specific property for cryptographic fields.

The laws in LGI [10] allow data to be secured by specifying
conditions on the states of the agents and the content of the
data. Tuple-space reactions are associated with agents’ actions
so as to always result in a coherent configuration. Nevertheless,
two points differentiate LACIOS from LGI. First laws in LGI
are defined by the system designer only, whereas agents cannot
do this. Second, laws are active rules, which poses the problem
of non-termination of the matching process (action and a chain
of endless reactions). In LACIOS, the rules cancel perceptions
or retrievals but don’t launch any reaction, so the problem of
non-termination does not occur.

Tagged Sets [15] allow fine-grained protection of data added
to the data space. However, neither agents’ states nor powerful
comparison operators are defined for it as in LACIOS.

In [5], the authors point out that “the secure version of
Lime [[16]] is the only one which permits to control output
operations, and SecSpaces [[8]] is the only one which permits
to distinguish between the processes that can consume and the
processes that can read a certain tuple”. LACIOS allows for
both insertions control and the distinction between reading a
datum and taking it.

VIII. CONCLUSION AND PERSPECTIVES

The investigation of security issues in data driven coordi-
nation languages has lead us to propose a modified language
allowing for fine-grained protection of exchanged data via the
shared space. This paper has defined LACIOS, which can be
used to model a large number of applications in which agents
join and leave the system freely, where agents interact with
external systems, and where security is crucial. Using LACIOS
makes it easier for open MAS designers to translate the
concepts manipulated by the agents and their interaction needs
to LACIOS syntactic constructs, ensuring information security
and expressing complex constraints. We have demonstrated
this usefulness for a complex transportation application in our
recent paper [14].

Our proposal is an entity oriented approach, and allows for
the control of objects’ insertion, perception and retrieval. It

MALLOW’009: Turin, Italy, September 7-10, 2009

275

distinguishes between objects’ perception control and objects’
retrieval control. The addition of agents’ states, of property-
value pairs data model, together with operators and variables
lead us to propose a new language instead of building on top of
an existing one. The formal operational semantics of LACIOS
can be found in [13].

Our future works include the consideration of specific cryp-
tographic properties to ensure authenticity. We are also inves-
tigating the addition of time constructs to LACIOS, inspired by
the works of Busi et al. (e.g. [17]) and Linden et al. (e.g. [18]),
to express temporary objects insertion and to define a deadline
for look before termination with no effect. Interaction over
multiple hosts is very challenging, yet with simple spaces,
and with contextual interaction and the security mechanism,
this becomes even more difficult to fulfill. Since we don’t
program mobile agents (as in Klaim [6] or Claim [19]), and
since as a consequence the agents’ locations are transparent at
the language level, the concern of the environment distribution
is to be tackled at the implementation level. Our ongoing re-
search investigates the definition of architectures and strategies
providing guidelines for environment distribution for LACIOS
implementation.

REFERENCES

[1] D. Gelernter, “Generative communication in linda,” ACM Transactions
on Programming Languages and Systems, vol. 7, no. 1, pp. 80–112,
1985.

[2] P. Ciancarini, “Coordination languages for open systems design,” in
Proceedings of the International Conference on Computer Languages
(ICCL’90). New Orleans, LA (USA): IEEE Computer Society, 1990,
pp. 252–260.

[3] C. P. Pfleeger and S. L. Pfleeger, Security in Computing. Prentice Hall
Professional Technical Reference, 2002.

[4] M. Bravetti, N. Busi, R. Gorrieri, R. Lucchi, and G. Zavattaro, “Security
issues in the tuple-space coordination model,” in Formal Aspects in
Security and Trust, T. Dimitrakos and F. Martinelli, Eds. Springer,
2004, pp. 1–12.

[5] R. Focardi, R. Lucchi, and G. Zavattaro, “Secure shared data-space
coordination languages: A process algebraic survey,” Sci. Comput.
Program., vol. 63, no. 1, pp. 3–15, 2006.

[6] R. De Nicola, G. L. Ferrari, and R. Pugliese, “Klaim: A Kernel Language
for Agents Interaction and Mobility,” IEEE Transactions on Software
Engineering, vol. 24, no. 5, pp. 315–330, 1998.

[7] A. Omicini, A. Ricci, and M. Viroli, “RBAC for organisation and
security in an agent coordination infrastructure,” ENTCS, vol. 128,
no. 5, pp. 65–85, 2005, proceedings of the 2nd International Workshop
on Security Issues in Coordination Models, Languages, and Systems
(SecCo 2004).

[8] N. Busi, R. Gorrieri, R. Lucchi, and G. Zavattaro, “Secspaces: a data-
driven coordination model for environments open to untrusted agents,”
Electr. Notes Theor. Comput. Sci., vol. 68, no. 3, 2003.

[9] J. Vitek, C. Bryce, and M. Oriol, “Coordinating processes with secure
spaces,” Sci. Comput. Program., vol. 46, no. 1-2, pp. 163–193, 2003.

[10] N. H. Minsky, Y. Minsky, and V. Ungureanu, “Safe tuplespace-based
coordination in multiagent systems,” Applied Artificial Intelligence,
vol. 15, no. 1, pp. 11–33, 2001.

[11] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152,
1995.

[12] R. Milner, Communication and Concurrency. Prentice-Hall, 1989, 272
pages.

[13] M. Zargayouna, “Coordination model and language for open multiagent
systems. application to the dial-a-ride problem,” PhD Dissertation,
University of Paris-Dauphine, Paris (France), 2007, in french.

[14] M. Zargayouna, F. Balbo, and G. Scmama, “A data-oriented coordination
language for distributed transportation application,” in The third Interna-
tional KES Symposium on Agents and Multi-agent Systems Technologies
and Applications (KES-AMSTA’09), ser. Lecture Notes in Artificial
Intelligence. Uppsala (Sweden): Springer-Verlag, 2009, vol. 5559, pp.
283–292.

[15] M. Oriol and M. Hicks, “Tagged sets: a secure and transparent coor-
dination medium,” in Proceedings of the International Conference on
Coordination Models and Languages (COORDINATION), ser. Lecture
Notes in Computer Science, J.-M. Jacquet and G. P. Picco, Eds., vol.
3454. Springer-Verlag, April 2005, pp. 252–267.

[16] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A coordination
model and middleware supporting mobility of hosts and agents,” ACM
Trans. Softw. Eng. Methodol., vol. 15, no. 3, pp. 279–328, 2006.

[17] N. Busi and G. Zavattaro, “Expired data collection in shared dataspaces,”
Theoretical Computer Science, vol. 298, no. 3, pp. 529–556, 2003.

[18] I. Linden, J.-M. Jacquet, K. D. Bosschere, and A. Brogi, “On the
expressiveness of timed coordination models,” Science of Computer
Programming, vol. 61, no. 2, pp. 152–187, 2006.

[19] A. Suna, “Claim & sympa : An environment for programming intelligent
and mobile agents,” PhD Dissertation, University of Paris VI, 2005, in
french.

MALLOW’009: Turin, Italy, September 7-10, 2009

276

Executing Agent Plans by Reducing to Workflows
Tayfun Gokmen Halac, Övünç Çetin, Erdem Eser Ekinci

Rıza Cenk Erdur, Oguz Dikenelli
Ege University, Department Of Computer Engineering

35100 Bornova, Izmir, Turkey
Email: {tayfunhalac,ovunccetin,erdemeserekinci}@gmail.com

{cenk.erdur,oguz.dikenelli}@ege.edu.tr

Abstract—In this paper, we introduce an agent planner ar-
chitecture that can reduce the basic artifacts of agent planning
paradigms, semantic services and business process languages into
a common workflow model. These artifacts are then executed by
means of a workflow component that the architecture includes.
By having a workflow component in an agent infrastructure, var-
ious agent programming paradigms including different planning
approaches as well as different workflow definition languages
can be executed on the same agent platform. To illustrate our
ideas, we focus on the reduction of plans to the workflow model.
To explicate the reduction mechanism, we have preferred to use
HTN which is a widely known planning approach in multi-agent
domain. Based on the semantics that we have defined for our
workflow and HTN models, we have given an algorithm for
transformation from HTN to workflow model.

I. INTRODUCTION

Agents can execute various task structures in order to
achieve their goals. These task structures may be components
of a plan (e.g. actions), services including semantically defined
web services, or workflows which are represented using an
appropriate formalism such as BPEL[1], XPDL[2]. An agent
may execute each of these task structures in a way that is
independent of others as it is the case for an agent that can
execute only plans, only OWL-S service definitions or only
workflows.

On the other hand, it is usually a desired property for an
agent to execute several task structures in a combined manner.
For example, one or more actions of a hierarchical task
network (HTN)[3], [4] plan may need to call a web service
or execute a pre-defined workflow. In addition, in open and
collaborative multi-agent organizations where task structures
can be distributed within the environment, it is required to
discover, access, compose (if needed), and execute them at
run-time. To support various task execution semantics both at
design time and run-time, what is needed is a special agent
planner architecture that should ideally provide a unique and
common basis for the execution of different task structures in
a both independent and combined manner.

There are three basic requirements to support various task
execution semantics in an agent architecture. First, meta-
models for the representation of various task semantics are
needed. OWL-S, which is a standard for defining web services
semantically, and workflow definition formalisms such as
BPEL are examples for such meta-models. As another exam-
ple, agent plans can be represented using OWL ontologies at

the meta-level. Second, a common model that will form a com-
mon execution basis for the tasks that have different semantics
is needed. Based on the fact that a plan can be represented as a
directed graph which can be executed as a workflow, defining a
generic workflow graph model will satisfy the requirement for
a common model. Finally, algorithms for the transformations
from the meta-models into the common representation model
should be developed.

In this paper, we introduce a planner architecture that fulfills
the requirements given above. The introduced architecture
includes a generic workflow graph model into which various
task semantics can be transformed. This generic workflow
graph model has been defined based on the abstract definition
given in [5]. Within the planner architecture, we have also
implemented an executor component which is used to execute
the instances of the generic workflow graph model.

In literature, there are studies that aim to execute web ser-
vices or workflows within a planner or an agent architecture.
[6] describes how SHOP2 HTN planning system can be used
to execute OWL-S descriptions. The SHOP2 planner takes the
composite process defined using OWL-S as input and executes
this composite process. WADE[7] is a software platform which
is built on top of the well-known agent framework JADE[8].
WADE uses a directly executable simple workflow structure
based on java class instead semantically described planning
paradigms. Our study differs from these works, since our
proposed planner architecture can support combinations of
various task semantics both at design-time and run-time by
providing a common execution layer for all of them. Neither
[6] nor [7] aims to support more than one task execution
semantics at the same time. Another point that needs attention
is that the workflow graph model which constitutes the core of
our common execution model is not related with the concept
of executing a workflow within an agent. The workflow graph
model is a directed graph structure into which various task
semantics are transformed before execution.

We have implemented the planner architecture within
SEAGENT[9], which is a semantic web enabled multi-agent
system framework developed by our research group[10]. The
planner can reduce the plans defined using OWL ontologies
and OWL-S service definitions into the common workflow
graph model, and then execute them. To illustrate the reduction
process, we just focus on the transformation of HTN semantics
into the common workflow graph model in this paper. We have
chosen HTN because HTN planning is a well-known approach

MALLOW’009: Turin, Italy, September 7-10, 2009

277

that has affected the agent domain most, and has been di-
rectly used in several agent development frameworks[11], [12].
SEAGENT also incorporates HTN as its planning paradigm.

Remaining parts are organized as follows: Before giving
the details of the reduction mechanism, we introduce current
architecture of SEAGENT planner in Section II. In section
III, details of our planner’s internal workflow structure, to
which HTN plans and other process definition languages are
reduced, are given. Soon after, we define our enhanced HTN
semantics in section IV. In section V, the algorithm that
achieves the reduction from HTN to Workflow model is given,
and correctness of the reduction mechanism is discussed.
Section VI includes a working example and Section VII the
conclusion.

II. THE ARCHITECTURE OF THE PLANNER

The implementation of the proposed planner architecture is
presented in Figure-1. As indicated in the figure, two vertical
layers compose the overall architecture. The front layer, called
Semantic Web Layer, uses ontological descriptions to represent
the artifacts of the planning process. These ontology descrip-
tions are: Goal, Role, HTN1 and OWL-S. The goal ontology
defines the objectives which the agent intends to reach within
the organization. It specifies abstract definitions for agent
behaviors. The role ontology, on the other hand, puts the
related goal definitions together within a role description. In
addition, it also defines some constraints about the considered
role. Roles and goals take in charge during planning process,
and then the output plan is reduced to the workflow model. Our
main interest is on reduction of plans, not on this plan decision
process. The HTN ontology is used to describe the agent
plans using HTN planning technique. Finally, OWL-S (Web
Ontology Language for Services) is a part of our proposed
architecture to support semantic services. As is seen in the
figure, the planner, which composes the Execution Layer,
consists of four modules: WorkflowElements, WorkflowEngine,
Matchers, Reducers.

The WorkflowElements module contains building blocks of
our graph structure which is used to represent the agent acts
as a workflow at execution time. The graph structure is based
on tasks, coordinators and flows, all of which are discussed in
detail in Section III.

The WorkflowEngine module is responsible for perform-
ing a workflow instance and coordinating its execution. It
consists of three submodules: ExecutionToken, LazyBinder,
and GraphVerifier. The ExecutionToken is the major com-
ponent for the execution which traverses the nodes of the
workflow instance and executes tasks of workflow instance.
The LazyBinder module was developed to support dynamic
graph binding. It has a special abstract graph node called
LazyTask which loads the concrete graph at runtime. This
dynamic binding capability makes our workflow dynamically
extendable. Thus, at run-time new goals and tasks can be
appended based on the state of the environment and/or agent’s
knowledge. Finally, the GraphVerifier module is responsible
for verification of a workflow instance before it is given to the

1http://etmen.ege.edu.tr/etmen/ontologies/HTNOntology-2.1.4.owl

execution. It verifies the syntactical structure of the workflow
and data flow over this workflow instance.

Reducers, Matchers, and JENA2 form a bridge connecting
the execution layer to the Semantic Web layer. The ontological
definitions of the agent’s actions from the Semantic Web layer
are read here, and converted to the corresponding workflows.
The Reducers sub-package contains the graph reducer compo-
nents (GoalReducer, HTNReducer, OWLSReducer) that parse
Goal, HTN and OWL-S definitions and reduce them into the
workflow. The other module, called Matchers, contains three
submodules: RoleMatcher, GoalMatcher and ActMatcher. Role
and goal matchers collaborate to find an appropriate goal
description for an objective which the agent must fulfill. If a
goal is matched with an objective, the description of the goal
is given to the GoalReducer to reduce it into a goal workflow.
During the execution of the goal workflow, an ActMatcher is
invoked for each sub-goal to find an appropriate act (HTN
plan or OWLS service) that accomplishes the sub-goal. After
the ActMatcher returns the corresponding act description, a
reducer (HTNReducer, or OWLSReducer) is selected to reduce
the act description to the workflow.

In this paper, we only focus on the reduction of HTN plans
to workflows. To specify our reducing process, workflow and
HTN semantics are formally defined in the following sections.
Next, reducer algorithm is illustrated in the section V.

III. SEMANTICS OF SEAGENT WORKFLOW GRAPH

As mentioned in the introduction, workflow technology has
been extensively researched in the academy and as a result of
these efforts this technology has reached to a high degree of
maturity. Widely acceptance of workflows in industrial settings
and standardization of workflow definition languages such as
BPEL, XPDL are the signs of this maturity degree. On the
other hand, from the execution perspective, several approaches
have raised up such as executing the workflows on Petri-
Nets[13] and on conceptual directed graphs[5].

Sadiq and Orlowska abstractly introduced the basic building
blocks of a workflow process using the graphical terms such as
nodes and flows in [5]. They also defined the basic workflow
constructs such as sequence, choice, concurrency and iteration.
Besides the modeling workflows, they touch on reliability of
the workflow model in [14], [15]. For this purpose, some struc-
tural conflicts as deadlock, lack of synchronization, live-lock
are determined. Our workflow model is built by deriving the
abstract definitions of Sadiq et al. and extended by constraints
to avoid structural conflicts articulated in [14].

In this section, we semantically declare the concepts and
their constraints of our workflow implemetation. Before giving
semantics of our workflow model, we evoke to the reader that a
workflow is also a kind of directed graph[16], [17]. So, we start
to explain semantics of our model by giving the formalism of
the directed graph with the following definition.

Definition 1: Given directed graph is a tuple of g = 〈V,E〉,
V = {v0, v1, . . . , vn} and E = {〈vs, vt〉 : vs, vt ∈ V }.

2We use JENA (http://jena.sourceforge.net/) to read and manipulate the
ontology documents in the knowledge-base and over the Internet.

MALLOW’009: Turin, Italy, September 7-10, 2009

278

Figure 1. SEAGENT Planner Architecture

The directed graph represented with g consists of vertices
V and directed edges E. A vertex, v ∈ V , specifies a
node in the graph. The words, node and vertex, will be used
interchangeably. A directed edge, e ∈ E, shows a directed link
between two vertices of the graph. In the definition, vertex
”vs” represents the source vertex of the edge and vertex ”vt”
is for the target. We define a function, path, that helps to gather
the directed ways between two given vertices:
• path (vi, vk) = (e0, . . . , en) where vi ∈ V and vk ∈ V

represents the first and the last vertex of the path. path
defines one of the directed ways between vertices vi
and vk. The first term of the finite sequence of edges
is e0 where source (e0) = vi and the last term is
en where target (en) = vk. For all terms of the se-
quence, target node of an edge equals to source node
of the next term, (target (e0) = source (e1)) ∧ . . . ∧
(target (en−1) = source (en)).

• paths (vi, vk) = {path1 (vi, vk) , path2 (vi, vk) , . . .}
represents all different ways between the given two nodes.

This definition uses two functions for each edge e ∈ E:
source (e) = vm where vm ∈ V represents the source vertex
of e and target (e) = vn where vn ∈ V represents the target
vertex of e.

Semantics of the workflow graph model, which extends the
directed graph represented formally above, is defined below
by giving details of the model’s building blocks.

Definition 2: wfg, which is a tuple 〈T,C,CF, DF,ICwfg,
OCwfg,TN〉, expresses a workflow graph that consists of
set of tasks T, set of flows CF and DF which represent
control flow and data flow sets respectively, input and output
containers ICwfg and OCwfg , set of coordinators C, and set
of terminal nodes TN .
The workflow graph as mentioned previously is derived from
the directed graph. So, when looked through the directed graph
perspective, some entities of workflow graph, such as tasks,
coordinators and terminal nodes, are sub-sets of the vertex set:
T,C, TN ⊂ V . Also, CF and DF are specialized entities of
workflow that are sub-sets of directed edge set: CF,DF ⊂ E.

Definition 3: An element of task set is formally defined as

τi = 〈nτi , ICτi , OCτi〉 ∈ T . In detail, nτi is the identifier of
the task, while ICτi and OCτi correspond to input and output
containers respectively.
• A data container, κ, is the set of data items which are

needed to execute a task or generated by the task, κ
= {d1, d2, . . . , di}. IC and OC are sub types of data
container, IC,OC ⊂ κ.

• A data item, di = 〈ndi , typedi〉, stands for data which is
held by input and output containers. di is identified by
its name (ndi) within the container and typedi property
specifies the data-type of di.

The required coordination of tasks of workflow and data
sharing between tasks are provided by special components
called flows. There are two types of flows in our model: control
flows and data flows. The details of the flows are determined
with the following definitions.

Definition 4: A data flow, dfi = 〈τsrc, dsrc, τtrg, dtrg〉 ∈
DF where τsrc, τtrg ∈ T , dsrc ∈ OCτsrc , dtrg ∈ ICτtrg , is
a type of flow that is used for data migration between two
tasks. It transmits the value of the source task(τsrc)’s output
item (dsrc) to the target task(τtrg)’s input item (dtrg) after
the source task performed.
Data flows are important to supply inputs to the tasks. So,
to supply the inputs safely, we define some constraints on
data flows. Before declaring these constraints, we define two
supportive functions, inData and outData, as below:
outData (dsrc) = {df : df ∈ DF ∧ sourceItem (df) =

dsrc} where dsrc is a data item, returns the set of data flows
whose source data item is dsrc.
inData (dtrg) = {df : df ∈ DF ∧ targetItem (df) = dtrg}

where dtrg is a data item. It returns the set of data flows
whose target is dtrg .
sourceItem and targetItem functions are similar to

source and target functions, but they are used to retrieve
the data items bound by the specified data flow.

Now, we can describe the constraints on data flows using
these functions:
• (C) There should not be more than one

data flow between any two data items:
∀dsrc, dtrg (|outData (dsrc) ∩ inData (dtrg)| ≤ 1)

MALLOW’009: Turin, Italy, September 7-10, 2009

279

• (C) Data type of the target task’s input item must be
equal or subsume the type of the source task’s output
item: ∀df ∈ DF (typedsrc ⊆ typedtrg)

As we mentioned above, a data flow expresses the direction
of the data item migration. Differently from the data flow, on
the other hand, a control flow is used to specify the execution
sequence of task nodes in a workflow graph.

Definition 5: A control flow is a tuple, cfi = 〈vsrc, vtrg〉 ∈
CF , consisting of source vertex (vsrc) and target vertex (vtrg).
Control flows are more decisive than data flows on process
of workflows. To avoid inconsistencies, control flows must
be constructed according to some defined constraints. Before
declaring these constraints on our workflow model, we de-
scribe two supportive functions, inControl and outControl,
to make the constraints more understandable:
inControl(n) = {cf : cf ∈ CF ∧ target (cf) = n} where n
∈ V , acquires the set of control flows whose target node is n.
outConrol(n) = {cf : cf ∈ CF ∧ source (cf) = n} where
n ∈ V , returns the set of control flows whose source is n.

Now, we can specify the constraints using these functions:
• (C) All flows must have two different nodes connected

to their two sides. ∀f ∈ E (source (f) 6= target (f))
• (C) A task have to be source or target of only one control

flow. ∀τ ∈ T (|inControl(τ)| = 1 ∧ |outControl(τ)| =
1∧inControl (τ) 6=outControl (τ))

• (C) There should not be more than one direct con-
trol flow between any two nodes. ∀vm ∈ V,∀vn ∈
V (|outControl (vn) ∩ inControl (vm)| ≯ 1)

• (C) The source node of a control flow must be
ahead of the target node in the order of execution.
∀vm,∀vn ((path(vm, vn) 6= ∅) → (outControl (vn)∩
inControl(vm) = ∅)). As an exception, in an iteration
structure, one of the outgoing flows of a choice node
goes to the preceding merge node.

Although the constraints on control and data flows help to
build consistent work flows, they are not enough. Control and
data flows also must be compatible with each other in terms
of workflow direction.
• (C) Since a data flow transmits the data from the source

node to the target node, the source node must be finished
before the target node starts. Therefore, the source node
must always precede the target node within the workflow
in terms of execution sequence.
∀τm,∀τn ((path (τm, τn) 6= ∅) → outData (τn) ∩ (in−
Data (τm) = ∅))
∀τm,∀τn ((outData (τm) ∩ inData (τn) 6= ∅) → (path
(τm, τn) 6= ∅))
inData(τ) = {df : df ∈ DF ∧ target(df) = τ} where
τ ∈ T , returns the set of data flows whose target is τ .
outData(τ) = {df : df ∈ DF ∧ source(df) = τ}
where τ ∈ T , returns the set of data flows whose source
is the given task.

Data migration on the workflow and execution ordering of
the tasks can be provided easily via flows. But they are not
sufficient when some complex structures, which come from
the nature of the workflow, such as concurrency, alternation
and iteration, are considered. We need some special nodes for

the purpose of implementing these structures. These special
nodes named as coordinator nodes, will be defined next.

Definition 6: Here, we define all sub-sets of coordinators,
C, together. There are four types of coordinator nodes; choice,
merge, fork, synchronizer; CH,MR,FR, SY ⊂ C ⊂ V .
• A choice node, chi = 〈nch, dcond〉 ∈ CH , has more than

one outgoing flows and contains a condition input dcond
to select a branch.

• A merge node, mri ∈MR, has more than one incoming
branches and it is used to join the mutually exclusive
paths which are split by a choice node.

• A fork node, fri ∈ FR, has more than one outgoing
flows and enables all of them at the same time.

• A synchronizer node, syi ∈ SY , has more than one
incoming flows, which are activated concurrently by a
fork node, and waits all to be finished. In other words,
it synchronizes the concurrent execution paths within a
workflow.

The coordinator nodes are used in pairs to construct exclusive
choice and parallel split workflow patterns[18]. The exclusive
choice pattern creates a divergence point into two or more
branches such that only one of which is selected for the exe-
cution. The parallel split pattern, on the other hand, provides
concurrent execution paths which are activated simultaneously.
An exclusive choice is constructed with a 〈chi,mri〉 pair,
while a 〈fri, syi〉 pair composes a parallel split.

As is clearly stated, the coordinator nodes are required to
build workflows including complex patterns. But misusage of
the coordinators may result in defected workflows. Therefore,
the following constraints should be defined on the coordinator
nodes to provide a consistent workflow.
• (C) Since the aforementioned workflow patterns are con-

structed using coordinator pairs, there must exist a merge
node for each choice node, and a synchronizer node for
each fork node. These two constraints could be expressed
by f : CH →MR and g : FR→ SY functions, which
are one-to-one and onto, respectively.

• (C) All choice and fork nodes have one incoming
and more than one outgoing flows. ∀n ∈ FR ∪
CH ((|inControl(n)| = 1) ∧ (|outControl(n)| > 1))

• (C) All synchronizer and merge nodes have at least two
incoming flows and only one outgoing flow. ∀n ∈ SY ∪
MR ((|inControl(n)| > 1)∧(|outControl(n)| = 1))

The node definitions made so far specify the intermediate
nodes. In other words, we did not give any definition of
nodes which represents the end points of the workflow up
to now. The following definition, on the other hand, explains
the terminal nodes, TN = {vi, vf}, used for this purpose.

Definition 7: Initial node, vi ∈ V , represents the beginning
of the workflow, while the final node, vf ∈ V , represents the
end, wfgn = (vi, {τ1, τ2, . . . , τn} , {c1, c2, . . . , cn} , vf).
• (C) vi is the first node of the wfgn, it has

no incoming but only one outgoing control flow:
∀vi ((inControl (vi) = ∅) ∧ (|outControl (vi)| = 1))

• (C) vf is the last node of the wfgn, it has
only one incoming but no outgoing control flow:
∀vf ((inControl (vf) = 1) ∧ (outControl (vf) = ∅))

MALLOW’009: Turin, Italy, September 7-10, 2009

280

• (C) Each workflow graph contains exactly one initial and
one final node.
∀wfg (wfg ∈WFG→ wfg 3 vi ∧ wfg 3 vf)

IV. SEMANTICS OF SEAGENT HTN

Previously, we gave semantics of our workflow model. Our
approach, as mentioned in the introduction, is to design and
implement a planner architecture that enables to execute dif-
ferent planning paradigms and workflow definition languages
in the same agent architecture. Due to this purpose, we choose
HTN paradigm, mostly used planning paradigm in the agent
literature.

Semantics of HTN is firstly articulated by Kutluhan et al.
in [3]. In his model, HTN is closer to AI problem solving.
For the purpose of using HTN in web agent programming,
Sycara et al. reformed it in [4]. They contributed the link
concept to provide a unified information and control flow
within plans. Although that contribution makes HTN plans
more tractable, it allows designing error-prone plans. Our HTN
model is a detailed revision of Sycara et al.’s that is extended
by exhaustive link definitions and constraints that permit to
avoid designing erroneous plans. Base concept of our HTN
model is task;

Definition 8: An HTN task, θi = 〈nθi , Pθi , Oθi〉 ∈ Θ, is
generalization of the primitive task (action) and the compound
task (behavior), A ⊂ Θ, B ⊂ Θ.
A task encapsulates the common properties of behaviors and
actions, such as provisions, outcomes, and name. But they are
distinguished by other properties explained below.

Definition 9: A behavior, βi = 〈nβi , Pβi , Oβi , STβi ,Γβi〉
∈ B, represents a compound task which encloses other tasks.
A behavior (βi) corresponds to a workflow graph (wfg)
that has sub nodes which may be primitive actions or other
behaviors. In the definition, a behavior consists of name,
provisions, outcomes, subtasks, and subtask links respectively.
nβi is a label that distinguishes the behavior from the others.
Since a behavior is a compound task, it cannot be performed
directly. It must be decomposed to its primitive actions whose
executions contribute toward accomplishment of the behavior.

Definition 10: An action, αi = 〈nαi , Pαi , Oαi , λαi〉 ∈ A,
is a primitive task that is executed directly. It corresponds an
indecomposable workflow task node.
An action consists of name, provisions, outcomes, and a
function. nαi is a label that distinguishes the action from the
others. Because actions are executable entities within a plan,
they must implement a function, λαi , which fulfills the actual
work of the action.

Definition 11: A parameter, πi = 〈nπi , typeπi〉 ∈ Π,
stands for data which is needed or produced by tasks. A
parameter πi consists of name (nπi) and type (typeπi).
The parameter is an abstract concept that cannot be seen in
an HTN plan. Parameter is generalization of provision and
outcome, P ⊂ Π , O ⊂ Π. The definitions of these concepts
are given below.

Definition 12: A provision, pi = 〈npi , typepi , valuepi〉 ∈
P , represents the data which is needed for execution of task.

Within a workflow, P corresponds an input container and each
data item in it represents a provision. Therefore, it provides
the data which is required for starting the task’s execution and
whose value can be obtained from an outcome of the preceding
task or from an external resource.

Definition 13: An outcome, oi = 〈noi , typeoi , valueoi〉 ∈
O, represents the data which is produced during execution.
Some tasks gather information, which is represented by out-
comes, during execution. They can be passed to needer tasks.
O corresponds the output container, which consists of data
items that represents outcomes, of a task within a workflow.

Definition 14: A state (or outcome state), si ∈ S, is a label
on a link specifying that the branch will be executed in which
condition.
State instances are used to construct branching or concurrency
structures within plans. In detail, outgoing links with distinct
outcome state results in an exclusive choice pattern, while the
same outcome states form a parallel split.

Definition 15: ST = {θ1, θ2, . . . , θi} indicates the set of
subtasks of a behavior.
A constraint on subtasks is revealed below.
• (C) A task can be child of exactly one behavior (except

the root behavior which represents the HTN plan). In
other words, a task can be included by only one ST .
∀θ ∈ Θ (θ ∈ STβm → θ /∈ STβn)

Up till now, we have mentioned about the HTN actions,
behaviors and relation between a behavior and its subtasks.
For the rest of this section, link definitions, which forms
control and information flows between tasks, will be given.
For that purpose, we define the link set, Γ, that is the super
set of provision, order, inheritance and disinheritance links,
PL,OL, IL,DL ⊂ Γ.
• (C) An important constraint on links: The source and

the target task of a link must be different: ∀l ∈
Γ (source (l) 6= target (l))

Here we define two functions that are used in determining the
details of links: For ∀θ ∈ Θ
inLink (θ) = {link : (link ∈ Γ) ∧ (target(link) = θ)}
outLink (θ) = {link : (link ∈ Γ) ∧ (source(link) = θ)}
As mentioned, there are four types of link: provision link,

order link, inheritance link and disinheritance link. While
provision links coincide with both data and control flows,
order links correspond to control flows only. Inheritance and
disinheritance links are data flows between a behavior and
its subtasks. Here, the formal definitions of links and their
constraints are given with necessary logical functions.

Definition 16: An order link, oLinki = 〈θsrc, θtrg, s〉 ∈
OL, represents a control flow between two tasks and it
designates the execution order.
Order links consist of source task, target task, and state. By
using order links and states together, we can create plans
including conditional branching and parallel execution paths.
• (C) Source and target tasks of an order link must be

included in the same subtask list. In other words, an order
link can connect two tasks if both are the subtask of the
same behavior. ∀link ∈ OL(source(link) ∈ STβn ↔
target(link) ∈ STβn)

MALLOW’009: Turin, Italy, September 7-10, 2009

281

• (C) At most one order link can be con-
structed between two tasks. ∀θsrc,∀θtrg
(|(outLink (θsrc) ∈ OL) ∩ (inLink (θtrg) ∈ OL)| ≤ 1)

We define a generalized concept, parameter link (πL),where
PL,DL, IL ⊂ ΠL, for the rest of link types: inheri-
tance, disinheritance and provision links. All these links
constructs data flows between the tasks by mapping the
source and the target parameter of these tasks. A significant
point about the parameter mapping is compatibility of the
parameter types: ∀πL ∈ ΠL (type (sourceParam (πL)) ⊆
type (targetParam (πL))) where sourceParam and target-
Param functions are used to retrieve the source and the target
parameter of the parameter link respectively.

Two definitions below specify two supportive functions that
are used to get incoming and outgoing parameter links which
are used to bind the given parameter. These functions will help
to describe the later definitions.
inLink (π) = {πL : (πL ∈ ΠL) ∧ (targetParam(πL) =

π)} where ∀π ∈ Π.
outLink (π) = {πL : (πL ∈ ΠL)∧(sourceParam(πL) =

π)} where ∀π ∈ Π.
Definition 17: A provision link, pLinki = 〈θsrc,θtrg,os,

pt,s〉 ∈ PL, represents a data and a control flow between
two tasks.
A provision link binds an outcome of the source task and a
provision of the target task. If a conditional branching occurs
after the source task, the outcome state of the link (s) maps
a particular branching condition to the target task.
• (C) Source and target tasks of a provision link must

be the child of the same behavior. ∀pLink ∈ PL
(source (pLink) ∈ STβn ↔ target (pLink) ∈ STβn)

• (C) Source parameter of a provision link must be an out-
come and target parameter must be a provision. ∀pl ∈ PL
((sourceParam(pl) ∈ O) ∧ (targetParam(pl) ∈ P))

• (C) At most one provision link can be constructed
between the same outcome-provision pair. ∀osrc,∀ptrg
(| (outLink (osrc) ∩ PL) ∩ (inLink (ptrg) ∩ PL) | ≤ 1)

• (C) Either an order link or a provision link can be
constructed between two tasks.

∀θsrc,∀θtrg ((outLink (θsrc) ∩ inLink (θtrg) ∩OL 6= ∅)→
(outLink (θsrc) ∩ inLink (θtrg) ∩ PL = ∅))

∀θsrc,∀θtrg ((outLink (θsrc) ∩ inLink (θtrg) ∩ PL 6= ∅)→
(outLink (θsrc) ∩ inLink (θtrg) ∩OL = ∅))

Definition 18: An inheritance link, iLinki = 〈βsrc, θtrg,
ps, pt〉 ∈ IL, represents a parameter link between a behavior
and one of its subtasks. It corresponds to a data flow from the
initial node of a workflow to a subtask.
Inheritance link consists of source behavior, target task, a
provision of source behavior, and a provision of target sub
task. βsrc ∈ B and θtrg ∈ STbsrc .
• (C) Source and target parameter of an

inheritance link must be a provision. ∀il ∈ IL
((sourceParam (il) ∈ P) ∧ (targetParam (il) ∈ P))

• (C) At most one inheritance link can be con-
structed between the same provision pairs. ∀psrc,∀ptrg
(|outLink (psrc) ∩ inLink (ptrg) ∩ IL| ≤ 1)

• (C) Each provision of the root behavior must be
bound with at least one inheritance link. ∀p ∈ Pβroot
(|(outLink (p) ∩ IL)| > 0) where βroot ∈ B.

Definition 19: A disinheritance link, dLinki = 〈θsrc, βtrg,
os, ot〉 ∈ DL, represents a parameter transfer from a task to
parent behavior. It corresponds to a data flow from a subtask
to the final node of a workflow.
Disinheritance link consists of source task, target behavior,
an outcome of source sub task, and an outcome of target
behavior. Source task of a disinheritance is child of the target
task, βtrg ∈ B and θsrc ∈ STβtrg .
• (C) Source and target parameter of a disinheri-

tance link must be an outcome. ∀dl ∈ DL
((sourceParam(dl) ∈ O) ∧ (targetParam(dl) ∈ O))

• (C) At most one disinheritance link can be con-
structed between the same outcome pairs. ∀osrc,∀otrg
(|outLink (osrc) ∩ inLink (otrg) ∩DL| ≤ 1)

• (C) A disinheritance link must be provided for each
outcome of a behavior to collect all outcomes from the
sub-tasks. If there is an exclusive choice structure, a
disinheritance link must be constructed for all exclusive
paths to fulfill all outcomes of the behavior. ∀βi ∈ B (∀on
∈ Oβi (|inLink (on) ∩DL| > 1))

V. TRANSFORMATION OF HTN INTO WORKFLOW

To implement our approach about executing different plan-
ning paradigms and workflow definition languages in the same
agent architecture, HTNReducer, which is a component of the
Reducers submodule as mentioned in Section II, is used to
transform an HTN definition into a workflow before execution.
In this section, this transformation process is introduced within
the scope of our workflow-based HTN planner.

Algorithm 1 Reduction of an HTN behavior to a workflow
Input: an HTN behavior β.
Output: a workflow wfg.

1) Initiate a workflow graph wfg corresponding to β.
2) Create the nodes corresponding to the subtasks of β.

a) If subtask is an HTN behavior, then apply the
same process from step 1 and create a complete
subworkflow for the subbehavior.

b) For an HTN action, otherwise, create a primitive
workflow task node.

3) Construct flows between workflow tasks in wfg.
4) Put required coordinator nodes to junction points.

A. Reduction Algorithm

Based on the formal definitions in Section III and Section
IV, we have developed an algorithm shown in Algorithm-1 for
reducing a behavior description to the corresponding workflow.
For this purpose, the HTN reduction algorithm constructs a
part of the graph in a few steps. It begins the process with
creating an empty graph, which consists of initial and final
nodes, and the data containers only, for the behavior. Then, it
creates workflow task nodes for the subtasks of the behavior

MALLOW’009: Turin, Italy, September 7-10, 2009

282

and adds them into the empty graph. After the subtask nodes
are added to the graph model, the next step is constructing
the flows between these nodes. Finally, the last step of the
reduction process, which follows the flow construction, is
placing the coordinator nodes to the required locations within
the graph. The steps of the algorithm are elaborated below.

In step 2, a node is created for each subtask of the given
behavior according to its type. If the subtask is an HTN
action, a primitive task node is constructed together its data
containers. Otherwise, for an HTN behavior, the reduction
process is achieved for this behavior and a graph model is
created. The point to take into consideration is recursion while
creating subnodes of workflow. By means of this recursion a
sub-behavior is reduced prior to its parent.

As previously mentioned, the next step following the sub-
task creation is connecting the flows between these nodes. To
do this, appropriate flow(s) for each link that is defined by the
behavior description is constructed. The link type specifies the
flow type and end nodes of the flow. For an inheritance link,
a data flow from the initial node of the graph (iwfg) to the
target task of the link is constructed. A disinheritance link
corresponds to a data flow between the source task of the link
and the final node of the graph (fwfg). For order links and
provision links, on the other hand, a control flow is constructed
for each. In addition to the control flow, a data flow is also
constructed for a provision link.

After the flow construction phase, we obtain a raw graph
model that consists of only task nodes and flows between them.
There is no coordination component in this model. The last
step of the algorithm, in line 4, overcomes this lack by placing
the coordinators to the appropriate locations within the graph.
To do this, the divergence and convergence points are marked
with special nodes and then these special nodes are replaced
with suitable coordinator nodes.

As a result, at the end of the reduction process, we obtain
a complete workflow graph corresponding to the given HTN
behavior. The graph contains task nodes that are connected
with the flow objects, and the coordinator nodes that determine
the flow of execution.

The outputs of our algorithm for primitive HTN patterns
are represented in Figure-2. These patterns are composed of
behaviors which have only primitive subtasks and other build-
ing blocks of HTN. Since plans, which have only primitive
subtasks, can be defined by assembling these patterns, adding
new actions to them and constructing new links between
actions, they can be transformed into workflows.

To understand the reduction process better, we explain it by
demonstrating one of primitive patterns. (see Figure-2(F)) The
input behavior can be represented as β1 = 〈′BH1′, {pβ1} ,
{oβ1} , {α1, α2, α3} , {pLink1, pLink2}〉 where α1 =
〈′AC1′,{pα1} ,{oα1} ,λα1〉, α2 = 〈′AC2′,{pα2} ,{oα2} ,λα2〉,
α3 =〈′AC3′,{pα3} ,{oα3} ,λα3〉 and pLink1 =〈α1,α2,oα1 ,
pα2 ,

′S′1〉, pLink2 = 〈α1, α3, oα1 , pα3 ,
′ S′1〉.

• At the start, an empty workflow wf1 = 〈∅, ∅, {〈iwf1 ,
fwf1〉}, ∅, ∅, ∅, {iwf1 , fwf1}〉 is created, in line 1.

• In the next step, in line 2, the actions are con-
verted to primitive workflow tasks and these tasks are
inserted to task set: Twf1 = {〈′T1′, {pτ1} , {oτ1}〉,

Figure 2. Reduction of Primitive HTN Patterns

〈′T2′, {pτ2} , {oτ2}〉 , 〈′T3′, {pτ3} , {oτ3}〉}
• The control flow, CFwf1 = {〈iwf1 , τ1〉 , 〈τ1, τ2〉 ,
〈τ1, τ3〉 , 〈τ2, fwf1〉 , 〈τ3, fwf1〉}, and data flow DFwf1 =
{
〈
iwf1 , dinwf1

, τ1, dinτ1

〉
, 〈τ1, doutτ1 , τ2, dinτ2 〉, 〈τ1,

doutτ1 , τ3, dinτ3 〉, 〈τ2, doutτ2 , fwf1 , doutwf1 〉, 〈τ3, doutτ3 ,
fwf1 , doutwf1 〉} sets are filled in line 3.

• Finally, a fork-synchronizer node pair is inserted
to required points, in line 4. This operation fills
the coordinator node set Cwf2 = {fr1, sy1} and
updates the control flow set CFwf1 = {〈iwf1 ,
τ1〉, 〈τ1, fr1〉 , 〈fr1, τ2〉 , 〈fr1, τ3〉 , 〈τ2,mr1〉 , 〈τ3,mr1〉 ,
〈mr1, fwf1〉}.

B. Correctness of Reduction

Theorem 1: Let β is a behavior defined with HTN seman-
tics. REDUCE (β) terminates and returns a workflow wf .

Proof: A behavior represents a tree, and is reduced
completely after all subtasks are reduced. So, from the line
2a of algorithm, the algorithm is executed over again for
subbehaviors until reaching to the leaf actions. Finally, after

MALLOW’009: Turin, Italy, September 7-10, 2009

283

the leaves are transformed in line 2b, algorithm proceeds and
bottom-up construction of root behavior is achieved.

Theorem 2: Let B = {β1, β2, . . . , βn} be a collection of
HTN behaviors that conforms our constraints and β be one of
these. Let wfg = REDUCE (β), then wfg is the workflow
which corresponds to behavior β.

Proof: The proof of the theorem is by induction:
Hypothesis For an HTN behavior β, there exists a workflow

graph wf = 〈Twf , Cwf , CFwf , DFwf , ICwf , OCwf , TNwf 〉
where Twf contanins the workflow tasks corresponds to sub
tasks of β, CFwf and DFwf contains the flows corresponds
to links of HTN, and ICwf and OCwf contains inputs and
outputs which corresponds to provisions and outcomes of β.

Base Case Suppose β is a behavior with only one action
α1 as sub task. The reduction of β ends up with a workflow
wf = 〈Twf , ∅, CFwf , ∅, ∅, ∅, TNwf 〉 where Twf = {τ1} and
CFwf = {〈iwf , τ1〉 , 〈τ1, fwf 〉}. As is seen in line 2b, after
workflow is created in line 1, τ1 is constructed for α1 and
then it is connected with iwf and fwf in line 3. (see Figure-
2(A))

Inductive Step Besides the sequence structure in HTN,
there exists a few structures such as nesting, conditional
branching and parallelism. We will analyze each of the struc-
tures case by case to show that results of our translation are
correct.

Case 1: While HTN plans can only be extended breadth-
wise with primitive subtasks, expansion in depth is provided
with subbehaviors. (see Figure-3)

Figure 3. Reduction of nested behavior

Suppose β is a behavior with a subbehavior βsub. From our
hypothesis we know that there exists a workflow wfsub for
subbehavior βsub. The reduction of β leads to a workflow
wf = 〈Twf , ∅, CFwf , ∅, ∅, ∅, TNwf 〉 where Twf = {wfsub}
and CFwf = {〈iwf , wfsub〉 , 〈τ1, wfsub〉}.

Case 2: Suppose β = 〈′BH1′, ∅, ∅, {θ1, θ2, θ3} ,Γβ1〉,
where Γβ1 = {〈θ1, θ2,′ S′1〉 , 〈θ1, θ3,′ S′2〉}, is a behavior with
a conditional branching structure. (similar to Figure-2(E))
From our hypothesis we assume that we have valid
workflow tasks τ1, τ2, τ3 which correspond to the
HTN tasks θ1, θ2, θ3. The behavior β is reduced to a
workflow wf = 〈Twf , Cwf , CFwf , ∅, ∅, ∅, TNwf 〉 where
Twf = {τ1, τ2, τ3}, Cwf = {ch1,mr1} and CFwf =
{〈iwf , τ1〉 , 〈τ1, ch1〉 , 〈ch1, τ2〉 , 〈ch1, τ3〉 , 〈τ2,mr1〉 , 〈τ3,mr1〉 ,
〈mr1, fwf 〉}. After raw graph is obtained, choice and merge
nodes are inserted to the beginning and the end of the
exclusive choice structure in line 4.

Case 3: Suppose β = 〈′BH1′, ∅, ∅, {θ1, θ2, θ3} ,Γβ1〉,
where Γβ1 = {〈θ1, θ2,′ S′1〉 , 〈θ1, θ3,′ S′1〉}, is a behavior with
a parallelism structure. (similar to Figure-2(F))

From our hypothesis we know that we have
corresponding workflow tasks τ1, τ2, τ3 of the HTN
tasks θ1, θ2, θ3. The behavior β is reduced to a
workflow wf = 〈Twf , Cwf , CFwf , ∅, ∅, ∅, TNwf 〉 where
Twf = {τ1, τ2, τ3}, Cwf = {fr1, sy1} and CFwf =
{〈iwf , τ1〉 , 〈τ1, fr1〉 , 〈fr1, τ2〉 , 〈fr1, τ3〉 , 〈τ2, sy1〉 , 〈τ3, sy1〉 ,
〈sy1, fwf 〉}. In line 4, fork and synchronizer nodes are inserted
to the beginning and the end of the parallel split structure in
the raw workflow.
We proved that our reduction mechanism transforms the HTN
plan into the workflow model correclty. In our proof, we
showed the correspondence of the result workflow to the input
plan.

VI. CASE STUDY

To illustrate the reduction of plans to workflows, a tourism
application is implemented as a case study with SEAGENT
Framework. In this application an agent which plays tourism
agency role is responsible for making a vacation plan. A plan
ontology (BHPlanVacation) which is the implementation of
planning a vacation goal (PlanVacation) is provided in the
knowledgebase of this agent.

Ontology3 individual of BHPlanVacation is depicted in
Figure-5(B). BHPlanVacation behavior has three subtasks, and
it needs location information (location provision) and vacation
budget (budget provision) to make plan. After the execution of
the behavior is completed, it gathers the remainder of budget
(remainder outcome). Firstly, a hotel room is booked in spec-
ified holiday resort (ACBookHotelRoom), and remainder from
budget is passed to the next task. After reservation operation,
a travel ticket is bought according to the customer request
(BHBuyTravelTicket). Finally, a car is rented to go to the hotel
from the airport or terminal (ACRentCar), and the remainder
value is passed to the parent behavior. Representation of the
plan which is designed according to our HTN definitions in
SEAGENT HTN Editor4 is shown in Figure-5(A).

Figure 4. WFPlanVacation workflow

When agent determines to execute the PlanVacation goal,
it gives the goal description to the planner. After the plan-
ner ascertains that the goal is atomic, it searches for the
appropriate act in the knowledgebase via the ActMatcher. The
ActMatcher finds the BHPlanVacation HTN description and

3Full version: http://www.seagent.ege.edu.tr/etmen/LADS009CaseStudy.zip
4HTN Editor is a part of the SEAGENT Development Environment that is

used to build up HTN ontologies easily.

MALLOW’009: Turin, Italy, September 7-10, 2009

284

Figure 5. BHPlanVacation A) HTN Representation B) Ontology Individual

transmits it to the HTNReducer to reduce it to workflow. After
the HTNReducer completes reduction, the generated workflow
is the executable form of the plan description. The workflow
which is constructed by HTNReducer is shown in Figure-4.

As is seen in the Figure-4, the workflow tasks are created
for all actions of plan and the subbehavior is converted to
subworkflow. After the workflow that corresponds to BHPlan-
Vacation is constructed, the planner starts to proceed on the
workflow via the ExecutionToken. Tasks are performed when
the token visits them. Execution of a task means execution of
the java class that is attached to the corresponding HTN action.
Java reflection API is used to create and execute action class
instances.

VII. CONCLUSION

This paper briefly depicts the architecture of SEAGENT
agent development framework’s planner. The main character-
istic of the proposed architecture is its being based on the
workflow technology and its ability to process the artifacts of
agent programming paradigms such as plans, services, goals,
and roles by executing these artifacts after reducing them to
workflows.

To implement the ideas behind the proposed architecture, we
described an HTN ontology to define agent plans, developed a
workflow component using Java, and focused on the reduction
of agent plans to workflows. We used this planner architecture
in industrial and academical projects. The last version of the
SEAGENT can be downloaded5 as an open source project.

SEAGENT planner has been designed with the idea that
different plan definition languages other than HTN can also
be reduced to the generic workflow model. In addition, busi-
ness process definition languages such as BPEL, OWL-S can
also be reduced to the generic workflow model. Moreover,
these business process definition languages can be used in
connection with different plan definition languages providing
the interoperability of them. These features show the way
of incorporating different languages into agent programming
paradigms as well as offering a high degree of flexibility in
developing agent systems.

5SEAGENT Semantic Web Enabled Framework, http://seagent.ege.edu.tr/

REFERENCES

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovicand, and S. Weer-
awarana, “Business process execution language for web services v-1.1,”
W3C, Candidate Recommendation, 2003.

[2] WfMC, “Workflow management coalition workflow standard: Workflow
process definition interface - xml process definition language (xpdl)
(wfmc-tc-1025),” Workflow Management Coalition, Lighthouse Point
(FL), Tech. Rep., 2002.

[3] K. Erol, J. Hendler, and D. S. Nau, “Semantics for hierarchical task-
network planning,” College Park, MD, USA, Tech. Rep., 1994.

[4] K. Sycara, M. Williamson, and K. Decker, “Unified information and
control flow in hierarchical task networks,” in Working Notes of the
AAAI-96 workshop ’Theories of Action, Planning, and Control’, 1996.

[5] W. Sadiq and M. Orlowska, “Modeling and verification of workflow
graphs,” in Technical Report No. 386, Department of Computer Science.
The University of Queensland, Australia, 1996.

[6] E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau, “Htn planning
for web service composition using shop2,” J. Web Sem., vol. 1, no. 4,
pp. 377–396, 2004.

[7] G. Caire, D. Gotta, and M. Banzi, “Wade: a software platform to
develop mission critical applications exploiting agents and workflows,”
in AAMAS (Industry Track), 2008, pp. 29–36.

[8] A. P. F. Bellifemine and G. Rimassa, “JADE - a FIPA-compliant agent
framework,” in Proceedings of the Practical Applications of Intelligent
Agents, 1999.

[9] E. E. Ekinci, A. M. Tiryaki, Ö. Gürcan, and O. Dikenelli, “A planner
infrastructure for semantic web enabled agents,” in OTM Workshops,
2007, pp. 95–104.

[10] O. Dikenelli, “Seagent mas platform development environment,” in
AAMAS (Demos), 2008, pp. 1671–1672.

[11] J. R. Graham, K. Decker, and M. Mersic, “Decaf - a flexible multi agent
system architecture.” Autonomous Agents and Multi-Agent Systems,
vol. 7, no. 1-2, pp. 7–27, 2003.

[12] K. P. Sycara, M. Paolucci, M. V. Velsen, and J. A. Giampapa, “The
retsina mas infrastructure,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 7, no. 1-2, pp. 29–48, 2003.

[13] W. M. P. van der Aalst, “The application of petri nets to workflow
management,” Journal of Circuits, Systems, and Computers, vol. 8, no. 1,
pp. 21–66, 1998.

[14] S. W. Sadiq, M. E. Orlowska, W. Sadiq, and C. Foulger, “Data flow and
validation in workflow modelling,” in ADC, 2004, pp. 207–214.

[15] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph
reduction techniques,” Inf. Syst., vol. 25, no. 2, pp. 117–134, 2000.

[16] J. Davis, W. Du, and M.-C. Shan, “Openpm: An enterprise process
management system,” IEEE Data Eng. Bull., vol. 18, no. 1, pp. 27–
32, 1995.

[17] W. Du, J. Davis, and M. C. Shan, “Flexible specification of workflow
compensation scopes,” in GROUP ’97: Proceedings of the international
ACM SIGGROUP conference on Supporting group work. New York,
USA: ACM, 1997, pp. 309–316.

[18] B. K. W.M.P van der Aalst, A.H.M. ter Hofstede and A. Barros,
“Workflow patterns,” in Distributed and Parallel Databases, July 2003,
pp. 5–51.

MALLOW’009: Turin, Italy, September 7-10, 2009

285

The ARTS Real-Time Agent Architecture
Konstantin Vikhorev

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK
Email: kxv@cs.nott.ac.uk

Natasha Alechina
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

Email: nza@cs.nott.ac.uk

Brian Logan
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

Email: bsl@cs.nott.ac.uk

Abstract—We present a new approach to providing soft real-
time guarantees for Belief-Desire-Intention (BDI) agents. We
define what it means for BDI agents to operate in real time,
or to satisfy real-time guarantees. We then develop a model
of real-time performance which takes into account the time by
which a task should be performed and the relative priority of
tasks, and identify the key stages in a BDI architecture which
must be bounded for real-time performance. As an illustration
of our approach we introduce a new BDI architecture, ARTS,
which allows the development of agents that guarantee (soft)
real-time performance. ARTS extends ideas from PRS and JAM
to include goals and plans which have deadlines and priorities,
and schedules intentions so as to achieve the largest number of
high priority intentions by their deadlines.

Index Terms—BDI Agents, Real-time guarantees, Task
Scheduling, Priority, Deadline, ARTS.

I. INTRODUCTION

The design of an agent system which can operate effectively
in a real-time dynamic environment is a major challenge for
multiagent research. The main difficulty in building real-time
agent systems is how to specify real-time constraints and
how to ensure that the agent system meets these constraints.
As with other computational systems, agents are resource
bounded because their processors have limited speed and
memory. Traditionally, agents have been developed without
much attention to resource limitations. However such lim-
itations become important when an agent system operates
in a dynamic environment. The reasoning processes implicit
in many agent architectures may require significant time to
execute (in some cases exponential time), with the result that
the environment may change while the agent makes a decision
about which activity to pursue. Thus a decision made by
the agent may be wrong (incorrect, sub-optimal, or simply
irrelevant) if it is not made in a timely manner.

A number of agent architectures and platforms have been
proposed for the development of agent systems which must
operate in highly dynamic environments. For example, the
Procedural Reasoning System (PRS) [1] and PRS-like systems,
e.g., PRS-CL [2], JAM [3], SPARK [4] have features such as
metalevel reasoning which facilitate the development of agents
for real time environments. However, to provide real time
guarantees, these systems have to be programmed for each
particular task environment—there are no general methods
or tools which allow the agent developer to specify that a
particular goal should be achieved by a specified time or that

an action should be performed within a particular interval
of an event occurring. Rather each application has to be
individually tuned by the developer. There are also a number
of hybrid agent architectures such as ROACS [5] and SIMBA
[6]. A hybrid architecture consists of an AI subsystem and
a low-level control subsystem connected by communication
interface. Such systems attempt to improve responsiveness by
separating the ‘real-time’ aspects of the architecture from the
high-level control. However while such systems can simplify
the development of agents for real-time environments, they
provide limited high-level support for managing the timely
execution of tasks.

In this paper we present a new approach to Belief-Desire-
Intention (BDI) architectures for real-time agents. We develop
a model of real time performance which takes into account
the time by which a task should be performed and the
relative priority of tasks, and identify the key stages in a BDI
architecture which must be bounded for real time performance.
As an illustration of our approach we introduce a new BDI
architecture, ARTS, which allows the development of agents
that guarantee (soft) real time performance. ARTS extends
ideas from PRS and JAM to include goals and plans which
have deadlines and priorities, and schedules intentions so as
to achieve the largest number of high priority intentions by
their deadlines.

The remainder of the paper is organised as follows. In
section 2 we develop a notion of ‘real-time’ appropriate to
agent-based systems. In section 3 we present our method for
any BDI architecture. In section 4 to illustrate our approach
the new real-time agent architecture ARTS is introduced. In
section 5 we compare our methods with related approaches.
And, finally, in section 6 we conclude and outlined directions
for future research. discussion.

II. REAL-TIME GUARANTEES

In real-time programming a distinction is made between
hard real-time and soft real-time systems. In the context
of agent systems, hard real-time means that the agent must
process its inputs (i.e., facts and goals) and produce a response
within a specified time. For an agent system which provides
hard real-time guarantees there is therefore a strict upper
bound on the time to process incoming information and pro-
duce a response. In soft real-time, the agent may not produce a
response within the specified time in all cases, i.e. timeliness

MALLOW’009: Turin, Italy, September 7-10, 2009

286

constraints may be violated under load and fault conditions
without critical consequences.1 For BDI agents, we would
argue that the relevant notion of ‘response’ is the achievement
of a high level goal. However, for agents in open environments,
providing hard real-time guarantees for anything other than the
internal operations of the agent is typically not possible, unless
we make strong assumptions about the characteristics of the
agent’s environment. In this paper we therefore focus on soft
real-time guarantees for achieving the agent’s top level goals.

We assume that each of the agent’s top level achievement
goals is associated with a (possibly infinite) deadline which
specifies the time by which the goal should be achieved. A set
of goals which can all be achieved by the deadlines is termed
feasible. Which sets of goals are feasible will depend on the
speed at which the environment changes, the capabilities of
the agent etc. In general, it may not be possible to achieve
all of an agent’s goals by their deadlines. For example, goals
produced by users or other agents, or autonomously generated
in response to an event in the agent’s environment, may result
in a previously feasible set of goals becoming infeasible, if
there is insufficient time to achieve each goal, or an agent may
have no plan to achieve a particular goal. In such situations,
it is frequently more important to achieve some goals than
others. For example, the goal of submitting a conference paper
on time may be more important than a goal to get coffee before
the coffee shop closes. We therefore assume that each goal is
associated with a priority which specifies the importance of
achieving the goal. Priorities define a total preorder, �, over
goals. A set of goals g is said to be maximal if it is feasible
and there is no other set of goals g′ such that g′ � g for some
suitable lifting of � to sets of goals. We define a real-time BDI
agent as an agent which achieves a maximal set of goals, i.e.,
the largest number of high priority goals by their deadlines.

III. CHANGES TO THE BDI ARCHITECTURE

In this section we outline the changes necessary to a BDI
architecture to implement a real-time BDI agent. We assume
a simple generic BDI architecture in which an agent has
beliefs and goals, and selects plans (sequences of subgoals and
primitive actions) in order to achieve its goals or in response
to new beliefs. Once the agent has adopted a plan it becomes
an intention, and at each cycle the agent executes a single
step of one of its current intentions. To implement real-time
BDI agents within such an architecture, two main changes are
required: we must add additional information about goals and
plans to support real time guarantees, and we need to change
the BDI execution cycle to ensure that the agent’s cycle time
is bounded and that the maximum number of high priority

1Some computer systems (for example, real-time video) utilise a stricter
notion of real-time guarantees, where the precise time at which a response
is produced matters [7], [8]. Hard real-time for this type of system requires
a response at an exact time rather than before a deadline, and soft real-time
means that the response time lies within a defined uncertainty range around
the required time. However we would argue that, in agent based systems,
this stricter sense of real time guarantee is less appropriate; for many task
environments, the key requirement is that a goal is achieved before a deadline
rather than exactly at a specific time.

goals are achieved by their deadlines. We consider each of
these changes in turn below.

A. Additional Information

As discussed above, in order to provide real-time guaran-
tees, each top-level goal must be associated with a deadline
which specifies the time by which the goal should be achieved.
We assume that the deadline for a goal is specified when the
goal is generated by a user (or another agent), and is expressed
as a real time value in some appropriate units (milliseconds,
minutes, hours etc.). By default, the plan selected to achieve
a top-level goal (and its subgoals and subplans) inherit the
deadline of the top-level goal. However we allow the deadline
of the intention associated with the top-level goal to be
advanced by a plan, if the execution context of the plan is
such as to suggest that an earlier deadline should be adopted
for the goal. For example, a subgoal in a plan may be to
buy an item; if the store which sells the the item is about to
close, the deadline of the of the intention may be advanced
for the duration of the ‘buy an item’ subgoal so that it is
achieved while the store is open. For intentions associated
with fact-invoked plans (i.e., plans triggered by the agent’s
beliefs), the default deadline is infinity, as no a priori deadline
can be associated with a fact independent of a belief context.
However, as with top-level goals, we allow the deadline of
intentions associated with fact-invoked plans to be advanced
by the invoked plan, if if the execution context of the plan is
such as to suggest that the response to the new fact warrants
an earlier deadline.2

Each top-level goal is also associated with a priority (e.g., a
non-negative integer value, with larger values taken to indicate
higher priority) which specifies the relative importance of
achieving the goal. Each plan also has a plan priority which
specifies the relative utility of the plan for the triggering goal
or belief. We assume that the agent always intends plans
with the highest priority and that goal and plan priorities are
commensurable (i.e., that the order over intention priorities is
independent of the belief context). For intentions associated
with fact-invoked plans, the priority is the plan priority of the
invoked plan.

Each plan is also associated with a duration, an estimate of
the real time necessary to execute the plan. In order to define
durations, we assume that each primitive action has a timeout
(specified by the agent developer) which defines the maximum
amount of real time required to perform the action. Actions
which do not complete by their timeout are assumed to have
failed. To the duration of an action we add the upper bound
on the deliberation cycle (see section III-B below) to give the
maximum amount of time necessary to select and execute the
action. The duration of a non-primitive activity within a plan
is the sum of the durations of its subplans (i.e., the duration
of a top-level plan is the sum of the durations of all subplans
intended for the goal). Assuming the plan library is of fixed
size, we compute the durations of subplans as follows.

2For how deadlines are (re)computed in the ARTS architecture, see section
IV-C.

MALLOW’009: Turin, Italy, September 7-10, 2009

287

1) For every agent’s plan, we compute all possible variants
of an intention, leading by this plan. This can be
represented as a tree structure. For the moment, we
assume that there are no loops or recursion within plans.

2) Leaf plans do not contain calls to other plans and include
only the addition and deletion of goals and primitive
actions, and their duration can be easily calculated from
the time required for basic agent actions (see below) and
the timeouts on primitive actions.

3) Starting from leaf plans we can estimate the duration of
each intention variant. The maximum and the minimum
duration are the upper and the lower bound of the plan
duration.

In case of plans with loops with undefined number of repe-
titions or recursion within the plan, the minimum duration is
the shortest path through the tree structure and the maximum
duration is infinity. In most cases, especially in a complex
system, we will not able to provide the exact upper bound
estimation of duration.

B. Changes to the BDI Execution Cycle

We assume that the internal operations of the agent—adding
or deleting a belief or goal, selecting a plan, adopting an
intention, selecting an intention to execute and executing a
single step of the intention—require time bounded by the size
of the agent’s program and its beliefs and goals. Adding or
deleting a belief or goal, adopting an intention, and executing
a single step of an intention can be assumed to take constant
time. However selecting a plan and intention to execute
are intractable in the general case, and it is necessary to
approximate the choices of an unbounded agent to limit the
agent’s cycle time.

To bound the time necessary to select a plan, we assume
that goals and plans are processed in order of priority. That
is, for each goal in priority order, the highest priority plan
for that goal is checked to see if it is both executable in the
current belief context and feasible (has a duration less than
the deadline of the triggering goal). If the plan is executable
and feasible, the agent immediately commits to the plan and
processing moves to the next goal. If the plan is not executable
or feasible matching continues for the current goal with the
next plan in priority order. Plan selection stops when all goals
have an executable feasible plan or a user definable plan
selection timeout is reached. At this point the agent has zero
or more executable, feasible plans, which are merged into the
intention structure, either as new top-level intentions (for plans
triggered by new top-level goals or facts), or by adding them
to existing intentions.

To bound the time necessary to select an intention to execute
at the current cycle, we utilise a deadline monotonic schedul-
ing algorithm which, while not optimal, gives preference to
urgent, high-priority intentions:

1) find the highest priority feasible intention, i.e., where
the remaining execution time is less than the deadline;

2) find the next most important intention which is feasible
for the existing schedule and assuming that tasks are

executed in deadline order, earliest deadline first;
3) repeat 2 until no more intentions can be scheduled;
4) execute the next step of the first intention in the sched-

ule.
An intention is feasible if it can be inserted in the schedule
in deadline order while meeting its own and all currently
scheduled deadlines. If all intentions in the schedule had the
same priority, then the resulting schedule must be feasible if
any schedule is, i.e., if a system is unschedulable with deadline
monotonic ordering then it is unschedulable with all other
orderings [9]. This algorithm has a worst case complexity of
O(n), where n is the number of the agent’s intentions.

There are two possible scheduling scenarios: pessimistic,
which is based on the maximum duration of a plan and opti-
mistic, which is based on the minimum duration. Pessimistic
scheduling has limited applicability, as in most cases the maxi-
mum duration is equal to infinity. In many cases, it is therefore
more reasonable to implement an optimistic scheduler as this
places no restrictions on the structure of plans. With optimistic
scheduling, even if the maximum duration of a plan is infinite,
it may still be scheduled, but can be descheduled if it becomes
infeasible (i.e., if the minimum duration of the plan is greater
than the deadline of the triggering goal given the currently
scheduled plans).

IV. ARTS: AGENT REAL-TIME SYSTEM

In this section ARTS, an implementation of the real-
time BDI agent architecture described above. ARTS is an
agent programming framework for agents with soft real-time
guarantees; an ARTS agent will attempt to achieve as many
high priority tasks by their specified deadlines as possible.
The syntax and execution semantics of ARTS is based that
of PRS-CL [2] and JAM [3], augmented with information
about deadlines, priorities, and durations, and changes to the
interpreter to implement time bounded priority driven plan
selection and deadline monotonic intention scheduling. ARTS
is implemented in Java, and the current prototype imple-
mentation includes the core language described below, and
implementations of some basic primitive actions. Additional
user-defined primitive actions can be added using a Java API.
In the interests of brevity, we have omitted the meta-level
features of ARTS.

An ARTS agent consists of five main components: a
database, a goal stack, a plan library, an intention structure, and
an interpreter. The database contains the agent’s current beliefs
(facts). The goal stack is a set of goals to be realised. The plan
library contains a set of plans which can be used to achieve
agent’s goals or react to particular situations. The intention
structure contains plans that have been chosen to achieve goals
or respond to facts. The interpreter is the main component
of the agent. It manipulates the agent’s database, goal stack,
plan library and intention structure and reasons about which
plan to select based on the agent’s beliefs and goals to create
and execute intentions. Changes to the agent’s environment or
posting of new goals invokes reasoning to search for plans that
might be applied to the current situation. The ARTS interpreter

MALLOW’009: Turin, Italy, September 7-10, 2009

288

Fig. 1. The execution cycle of ARTS agent

selects one plan from the list of applicable plans, intends and
schedules it, and executes the next step of first intention in the
computed schedule.

A. Facts

The database of an ARTS agent contains facts (beliefs) that
represent the state of the agent and its environment. Facts
may represent information about state variables, sensory input,
derived information or information about other agents, etc.

fact ::= wff
wff ::= pred name term exp∗ | (NOT wff)

| (AND wff +) | (OR wff +)
term exp ::= value | variable | function
value ::= integer | float | string
variable ::= “$”var name
function ::= (fun name term exp+)

where pred name, fun name and var name name predicated,
functions and variables respectively.

B. Goals

ARTS distinguishes two categories of goals: top-level goals
and subgoals. ARTS supports two top-level goal operators:
ACHIEVE and CONCLUDE. An ACHIEVE goal specifies
that the agent desires to achieve a particular goal state. A
CONCLUDE goal inserts a certain fact into the database and
possibly invokes a fact-invoked plan. The form of top-level

goals is given by:
goal exp ::= achieve | conclude
achieve ::= “ACHIEVE” wff [pr] [dl]

{[by] | [not by]}“;”
conclude ::= “CONCLUDE” wff {[by] | [not by]} “;”
pr ::= “:PRIORITY” ground term
dl ::= “:DEADLINE” ground term
by ::= “:BY” plan name+

not by ::= “:NOT_BY” plan name+

where plan name is the name of a plan. The :PRIORITY
field of an :ACHIEVE top-level goal is optional and allows
the specification of either a constant priority or an expression
which allows the calculation of the plan priority as function
of plan variables (see below). The default priority of a top-
level goal is zero. The :DEADLINE field is also optional and
allows the specification of the deadline of the goal. By default
the deadline is equal to infinity. CONCLUDE goals have zero
priority and an infinite deadline.

The developer can specify one or more top-level goals for
the agent as part of the agent’s program using the keyword
“GOALS:”. For example:
GOALS:

ACHIEVE PrepareLecture agents101 : PRIORITY 9 :DEADLINE 50;
ACHIEVE HaveLunch :PRIORITY 7 :DEADLINE 40;
ACHIEVE BorrowBook R&N :PRIORITY 2 :DEADLINE 30;

Subgoals are goals generated within plans. ARTS has the
following subgoals operators:
ACHIEVE C achieve condition C
CONCLUDE F add fact F to the database
TEST C test for the condition C
RETRACT F retract fact F from database
WAIT C wait until condition C is true

In contrast to top-level goals, the deadline and priority of

MALLOW’009: Turin, Italy, September 7-10, 2009

289

ACHIEVE subgoals are not specified but inherited from the
plan containing the subgoal.

C. Plans

Plans define a procedural specification for achieving a
goal. In specifying plans we distinguish between plan trigger
variables and plan body variables. Plan trigger variables are
free variables appearing in the cue, precondition and context
fields, while plan body variables are variables appearing in
the body of the plan. Plan trigger variables must be ground
when the plan is selected, while binding of plan body variables
can be deferred to the execution of the corresponding plan
step. The agent’s plan library is introduced by the keyword
“PLANS:” followed by a list of plans of the form:

Name is an unique symbolic identifier of the Plan.
Documentation is an optional field which used to store a

descriptive text string.
Cue specifies the purpose of the Plan and is used to select

the plan for possible execution. The Cue field can contain
either an ACHIEVE or CONCLUDE goal. A ACHIEVE goal
in the Cue field means that the Plan may be used to achieve
some condition, while a CONCLUDE goal means that the Plan
may be chosen for possible execution when a fact is added to
the database.

Precondition specifies conditions that must be satisfied
for Plan to be applicable. This field is optional and can contain
both ACHIEVE and TEST goal expressions. An ACHIEVE G
precondition means that the system must currently have G as
a goal in order for the Plan to be applicable, while a TEST
C precondition means that C must be true for the Plan to be
applicable.

Context defines additional conditions (i.e. ACHIEVE and
TEST goal expressions) on plan execution. This field is
optional and has similar functionality to the Precondition
field, but in contrast to the precondition it must be satisfied
before and during Plan execution. As in JAM, this significantly
increases the reactivity of the agent.

Body defines a sequence of simple activities (i.e. primitive
actions, addition and deletion of goals and facts), and com-
plex constructs (e.g. loops, (non)deterministic choice, etc, see
below).

Priority specifies the relative utility of the Plan. The plan
priority is used to choose between the applicable plans for
a particular goal. The priority field is optional and allows
the specification of either a constant priority or an expression
which allows the calculation of the plan priority as function
of variables appearing in the plan trigger. The default priority
value is 0.

Deadline specifies a deadline for the plan. The deadline
field is optional and allows programmer to advance the dead-
line inherited from the triggering goal. The deadline can be
specified as a constant value or an expression which allows
the calculation of the plan deadline as function of variables
appearing in the plan trigger. If the specified plan deadline
is earlier than the deadline for this intention it becomes the
deadline for the intention during the execution of the plan (i.e.,

plan ::= “PLAN: {”p name [p doc] p cue [p precond] [p cont]
p body [p pr] [p dl] [p attr] “}”

p name ::= “NAME:” string“;”
p doc ::= “DOCUMENTATION:” [string]“;”
p cue ::= “CUE:” p goal exp “;”
p precond ::= “PRECONDITION:” p cond∗ “;”
p cont ::= “CONTEXT:” p cond∗ ”;”
p body ::= “BODY:” body elem∗
p pr ::= “PRIORITY”:” term exp “;”
p dl ::= “DEADLINE”:” term exp “;”
body seq ::= “{” body elem∗ “}”
body elem ::= activity | b and | b or | b parallel | b do all

| b do any | b do while | b while | b when
activity ::= prim act | misc act | subgoal “;”
b and ::= “AND:” body seq+“;”
b or ::= “OR:” body seq+“;”
b parallel ::= “PARALLEL:” body seq+“;”
b do all ::= “DO_ALL:” body seq +“;”
b do any ::= “DO_ANY:” body seq+“;”
b do while ::= “DO:” body seq “WHILE:” p cond“;”
b while ::= “WHILE:” p cond body seq “;”
b when ::= “WHEN:” p cond body seq“;”
p goal exp ::= “ACHIEVE” wff | “CONCLUDE” wff
p cond ::= “ACHIEVE” wff | “TEST” wff
subgoal ::= subgoal op wff ”;”
subgoal op ::= “ACHIEVE” | “CONCLUDE” | “TEST” | “RETRACT”

| “WAIT”
prim act ::= “EXECUTE:” function [“:TIMEOUT” ground term]
misc act ::= “ASSIGN:” term exp term exp

TABLE I
PLAN BNF

it effectively advances the deadline for this intention during the
execution of the plan). If the specified deadline is later than
the deadline for the intention, the plan deadline is ignored.

ARTS, like JAM, supports standard programming constructs
such as DO . . .WHILE (loop with postcondition) and WHILE
construct (loop with precondition), choice constructs specified
by OR (do any in order), AND (do all in order), DO_ALL (do
all randomly), DO_ANY (do any randomly), WHEN (conditional
execution), and ASSIGN (assignment to plan body variables).
The BNF for plans is given in table I.

D. Primitive Actions

The subgoal operators are implemented directly by the
ARTS interpreter. Other primitive actions are implemented
as Java methods. Each primitive action referenced in a plan
body must have Java code which implements the neces-
sary functionality. ARTS supports two mechanisms for defin-
ing primitive actions: writing a class which implements the
PrimitiveAction interface, and direct invocation of meth-
ods in existing legacy Java code. Primitive actions are executed
by using an EXECUTE action.

In contrast to PRS-CL and JAM, ARTS allows the agent
programmer to specify a timeout for each primitive action
by using the TIMEOUT keyword. The timeout specifies the
maximum amount of real time required to perform the action.
Actions which do not complete by their timeout are assumed
to have failed. For example:

EXECUTE move to $x $y :TIMEOUT 50

MALLOW’009: Turin, Italy, September 7-10, 2009

290

E. Interpreter

The ARTS interpreter repeatedly executes the set of activi-
ties shown in Figure 1.

1) New goals are added to the goal stack and facts corre-
sponding to CONCLUDE goals and external events are
added to the database.

2) The precondition and context expressions of plans with
a cue matching a goal on the goal stack are evaluated
against the database to determine if the plan is applicable
in the current situation. Goals and plans are matched
in priority order as described in section III-B. For
ACHIEVE goals, the interpreter checks to see whether
the goal has already been accomplished before trying to
invoke a plan.

3) The resulting set of applicable plans are placed on the
intention structure.

4) Intentions are scheduled according to their deadline and
priority value as described in section III-B. Intentions
which are not schedulable, i.e., their minimum remain-
ing execution time is greater than the time remaining to
their deadline, are either dropped or have their priority
reduced to zero.3

5) Finally, the interpreter selects the first intention from
the computed schedule and executes the one step of
that intention. The result of the execution can be (5a)
execution of a primitive action or (5b) the posting of a
new subgoal or the conclusion of some new fact.

F. Example

In this section sketch as simple example ARTS agent
and show how it allows the specification of soft real-time
requirements. The agent has three goals: preparing a lecture,
having lunch and picking up a book from the library. Each
task has a different priority and deadline. For simplicity, we
assume that actions never fail and that the unit of time is the
minute.

The algorithm for estimating the duration of a plan is
executed when the agent is initialised. Plans have following
maximum and minimum durations: d1 = 35min, d2 = 12min,
d3 = 2min, d4 = 20min. Once the durations of plans have
been estimated, the agent begins the reasoning cycle. The
interpreter parses the initial top-level goals. It then attempts to
match them against the plan library in order to invoke suitable
plans. As a result Plan 1, Plan 2 and Plan 4 are added to
the intention structure. As explained above, plans inherit their
deadline and priority values from the triggering goal. This
means that the intention related to the prepare lecture goal
has the highest priority (9), the intention which corresponds
to the goal to have lunch has medium priority (7), and the
last intention related to the goal to pickup a book from the
library has the lowest priority (2). The scheduling algorithm
checks feasibility of each intention before adding them to the
schedule. The first most important intention is inserted into
schedule, because it is currently empty. Then the feasibility

3This choice is currently determined by a global flag, rather than per goal.

GOALS:
ACHIEVE PrepareLecture agents101 :PRIORITY 9 :DEADLINE 50;
ACHIEVE HaveLunch :PRIORITY 7 :DEADLINE 40;
ACHIEVE BorrowBook R&N :PRIORITY 2 :DEADLINE 30;

CONCLUDE LectureNotes agents101 myNotes;

PLAN: {
NAME: “Plan 1”;
DOCUMENTATION: “Prepare for lecture”;
CUE: ACHIEVE PrepareLecture $x;
PRECONDITION: TEST LectureNotes $x, $y;
BODY:
EXECUTE revise-lecture $y :TIMEOUT 35;

}

PLAN: {
NAME: “Plan 2”;
DOCUMENTATION: “Pickup a book from the library”;
CUE: ACHIEVE BorrowBook $x;
BODY:
EXECUTE goto library :TIMEOUT 10;
ACHIEVE Pickup $x;

}

PLAN: {
NAME: “Plan 3”;
DOCUMENTATION: “Pick up something”;
CUE: ACHIEVE Pickup $x;
BODY:
EXECUTE pickup $x :TIMEOUT 2;

}

PLAN: {
NAME: “Plan 4”;
DOCUMENTATION: “Have lunch”;
CUE: ACHIEVE HaveLunch;
BODY:
EXECUTE eat-sandwich :TIMEOUT 20;

}
EXAMPLE ARTS AGENT

of the HaveLunch intention is checked. It is obvious that
the intention is infeasible, because it can’t be inserted to the
schedule in deadline order together with first intention and it
will be dropped. On the other hand the low priority intention
is feasible and can be scheduled in deadline order together
with the first one. It is important to note that the low priority
task will be executed first, because it has an earlier deadline.
Once the schedule has been computed, the interpreter executes
one step of the first task, i.e., goto primitive action, and starts
a new cycle.

At the second cycle the interpreter executes next step, i.e.
the ACHIEVE Pickup goal. The goal invokes Plan 3 which
inherits the deadline of 30 and priority of 2 from the top-
level goal and extends the existing intention. The interpreter
then performs one step of the plan 3. In the same way it
performs action to revise the notes for the lecture from the
next intention.

V. RELATED WORK

The scheduling of intentions is key to realisation of real-
time agents and a variety of intention scheduling approaches
have been explored in the literature. For example, AgentS-
peak(XL) [10] and the Soft Real-Time Agent Architecture

MALLOW’009: Turin, Italy, September 7-10, 2009

291

[11] use the TÆMS (Task Analysis, Environment Modelling,
and Simulation) domain-independent framework [12] together
with Design-To-Criteria scheduling[13]. The TÆMS frame-
work assumes a worth-oriented environment, in which goals
are associated with a degree of achievement (i.e., a goal
may be not fully achievable or not achievable at all). The
TÆMS framework allows modelling tasks with deadlines. The
problem of using DTC for scheduling agent intentions is that
an agent which implements DTC will not perform tasks in
some fixed order and is unable to compute a set of feasible
tasks because the decision about which task (intention) will
be executed is based on some rating (real value between 0
and 1), which changes from cycle to cycle. Astefanoaei et al.
[14] extend the programming language BUpL to allow agents
to synchronise their actions by providing each agent with a
set of clock variables. The clock value is used as a condition
for executing an action (or waiting). It is not related to the
agent’s deliberation cycle nor is it used for scheduling of a set
of possible actions.

There has been considerable work on approaches to the
development of reasoning systems which must operate in
highly dynamic environments, e.g., [15], [16], [2], [3], [4].
Much of this work has focused on deliberation and reasoning
strategies involving metalevel plans and facts for reasoning
about applicable plans, the failure to achieve a goal, changing
the intention structure according to user specified criteria, etc.
While metalevel reasoning provides great flexibility to the
agent developer, it can be complex and has to be programmed
for each particular application. In contrast, ARTS has its
own well defined real-time reasoning mechanism for tasks
with different priorities and deadlines, which does not require
utilisation of metalevel capabilities.

VI. CONCLUSION

The main contributions of this paper are an analysis of
the meaning of real-time guarantees for a BDI agent, and
a proposal for a new BDI agent architecture, ARTS, for the
development of real-time BDI agents. ARTS is influenced by
the PRS family architectures, such as PRS-CL and JAM. How-
ever, unlike previous PRS-like architectures, ARTS includes a
duration estimation algorithm, priority driven plan selection
and a deadline monotonic intention scheduling algorithm.
These features enable an ARTS agent to produce an intention
schedule which achieves the greatest number of high priority
goals by their deadlines. While the resulting schedule is not
necessarily optimal, it is computable in bounded time, and
we believe that the kind of “optimistic bounded rationality”
implemented by the ARTS architecture provides a simple,
predictable framework for agent developers, facilitating the
development of agents which can perform tasks of different
complexity and scale while providing timely responses to
events in highly dynamic environments.

The current ARTS implementation has a number of limi-
tations. For example, the architecture currently assumes that
the agent must wait for the completion of each plan step
before recomputing the intention structure, i.e., the agent

can’t execute intentions in parallel. For plans containing asyn-
chronous primitive actions or WAIT goals, this is clearly not
the case. In future work, we plan to extend the scheduler to
handle asynchronous execution of intentions. Other directions
for future work include improved algorithms for duration
estimation and improvements to the basic BDI interpreter to
reduce the overall cycle time. It would also be interesting
to explore probabilistic scheduling based on the most likely
execution time of a plan as opposed to simply the lower and
upper bound.

REFERENCES

[1] M. P. Georgeff and A. L. Lansky, “Procedural knowledge,” in IEEE,
vol. 74, no. 10. IEEE Press, 1987, pp. 1383–1398.

[2] K. L. Myers, PRS-CL: A Procedural Reasoning System. User’s Guide.,
SRI International, Center, Menlo Park, CA, March 2001.

[3] M. J. Huber, “JAM: A BDI-theoretic mobile agent architecture,” in
Proceedings of The Third International Conference on Autonomous
Agents, Seattle, WA, 1999, pp. 236–243.

[4] D. Morley and K. Myers, “The spark agent framework,” in Proc. of the
Third Int. Joint Conf. on Autonomous Agents and Multi Agent Systems
(AAMAS-04), New York, NY, July 2004, pp. 712–719.

[5] J. S. Gu and C. W. de Silva, “Development and implementation of a
real-time open-architecture control system for industrial robot systems,”
Engineering Applications of Artificial Intelligence, vol. 17, no. 5, pp.
469 – 483, 2004.

[6] C. Carrascosa, J. Bajo, V. Julian, J. M. Corchado, and V. Botti, “Hybrid
multi-agent architecture as a real-time problem-solving model,” Expert
Systems Applications, vol. 34, no. 1, pp. 2–17, 2008.

[7] J. Chakareski, J. Apostolopoulos, and B. Girod, “Low-complexity rate-
distortion optimized video streaming,” in Proceedings of the Interna-
tional Conference on Image Processing (ICIP), vol. 3, Oct. 2004, pp.
2055–2058.

[8] S. G. Deshpande, “High quality video streaming using content-
awareadaptive frame scheduling with explicit deadlineadjustment,” in
MM ’08: Proceeding of the 16th ACM international conference on
Multimedia. New York, NY, USA: ACM, 2008, pp. 777–780.

[9] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard real-time environment,” JACM, vol. 20, no. 1, pp. 46–61, 1973.

[10] R. Bordini, A. Bazzan, R. de, O. Jannone, D. Basso, R. Vicari, and
V. Lesser, “Agentspeak(XL): efficient intention selection in BDI agents
via decision-theoretic task scheduling,” in In Proc. of AAMAS’02, 2002,
pp. 1294–1302.

[11] R. Vincent, B. Horling, V. Lesser, and T. Wagner, “Implementing soft
real-time agent control,” in AGENTS ’01: Proceedings of the fifth
international conference on Autonomous agents. New York, NY, USA:
ACM, 2001, pp. 355–362.

[12] K. S. Decker and V. R. Lesser, “Quantitative modeling of complex en-
vironments,” International Journal of Intelligent Systems in Accounting,
Finance and Management, vol. 2, p. 215234, 1993.

[13] T. Wagner, A. Garvey, and V. Lesser, “Criteria-directed heuristic task
scheduling,” International Journal of Approximate Reasoning, vol. 19,
pp. 91–118, Jyly 1998.

[14] L. Astefanoaei, F. S. de Boer, and M. Dastani, “On coordination, au-
tonomy and time,” in Proceedings of 8th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2009), vol. 2,
Budapest, Hungary, 2009, pp. 1357–1358.

[15] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,” in
Proceedings of the Sixth National Conference on Artificial Intelligence,
AAAI-87, 1987, pp. 677–682.

[16] M. P. Georgeff and F. F. Ingrand, “Managing Deliberation and Reasoning
in Real-Time Systems,” in In Proceedings of the DARPA Workshop on
Innovative Approaches to Planning, San Diego, California, 1990.

MALLOW’009: Turin, Italy, September 7-10, 2009

292

The 3rd International Workshop on Multi-Agent
Systems and Simulation (MAS&S): Towards an

Integration of Agent-Oriented Software Engineering
and Simulation, MALLOW-MAS&S’09

(Introductory Essay of the Workshop)

Giancarlo Fortino∗, Massimo Cossentino†, Juan Pavón‡, and Marie-Pierre Gleizes§
∗Department of Electronics, Informatics and Systems (DEIS)

Universitá della Calabria
Via P. Bucci cubo 41C, 87036 Arcavacata di Rende (CS), Italy

Email: g.fortino@unical.it
†ICAR/CNR

Viale delle Scienze, Ed. 11. 90128 Palermo, Italy
Email: cossentino@pa.icar.cnr.it

‡Dep. Ingenierı́a del Software e Inteligencia Artificial
Universidad Complutense Madrid (Spain)

Ciudad Universitaria s/n, 28040 Madrid, Spain
Email: jpavon@fdi.ucm.es

§IRIT, Université Paul Sabatier (France)
118, route de narbonne, 31062 TOULOUSE Cedex 09, France

Email: Marie-Pierre.Gleizes@irit.fr

Abstract

Multi-agent systems (MASs) provide powerful models for representing real-world applications with an appro-
priate degree of complexity and dynamism. Several industrial experiences have already shown that the use of MAS
offers advantages in many different areas such as manufacturing processes, e-Commerce, network management,
etc. As MASs in such contexts need to be tested before their deployment and execution, methodologies that
support validation through simulation (e.g. discrete-event simulation, agent-based simulation, etc.) of the MAS
under development are highly required. In fact, simulation of a MAS cannot only demonstrate that a MAS correctly
behaves according to its specifications but can also support the analysis of emergent properties of the MAS under-
test. In this context, MAS&S’09 aims at providing a forum for discussing recent advances about the integration of
Agent-Based Simulation (ABS) and Agent Oriented Software Engineering (AOSE) methodologies and techniques
for the analysis, design, validation and implementation of MASs.

I. INTRODUCTION

MAS&S’09 is at its third edition. The first edition has been jointly held with EUROSIS ISC 2006
(Industrial Simulation Conference), June 5-7, 2006, Palermo, Italy [1]. The second edition has been
contextualized in EUROSIS ESM 2007 (European Simulation and Modelling Conference), October 22-24,
2007, St. Julian’s, Malta [2]. The best papers of the first edition have also been selected and their extended
and revised version published in International Journal of Agent Oriented Software Engineering, 2(1),
Inderscience, 2008. MAS&S was conceived for stimulating discussion among researchers and practitioners
working on ABS and AOSE, to enable the identification and the definition of methodologies and techniques
for integrating them.

MALLOW’009: Turin, Italy, September 7-10, 2009

293

Simulation-based agent-oriented methodologies can offer new opportunities to develop more robust and
well-tested multi-agent systems as the design of the multi-agent system could be validated, from func-
tional and performance perspectives, before its implementation and sunsequently deployment. MAS&S’09
attempts to provide a discussion forum for collecting and comparing diverse experiences on the use and
integration of ABS and AOSE with the aim of fostering cross fertilization.

MAS&S’09 is being held as part of MALLOW’09, the second edition of Multi-Agent Logics, Lan-
guages, and Organisations (Federated Workshops), 7-11 Sept. Torino, Italy.

This volume contains the ten papers that have been selected by the Program Committee for presentation
at the workshop. Each paper received at least two reviews in order to supply the authors with a rich
feedback. The paper contributions cover hot topics in the fields of methodologies for ABS, integration
of ABS and AOSE methodologies, ABS techniques for testing service oriented systems, and ABS for
self-organizing systems.

The best papers will be invited to the open special issue on ”Simulation-based Design and Evaluation of
Multi-Agent Systems” to be published in Journal of Simulation Modelling Practice and Theory, Elsevier,
to appear in 2010.

We would like to thank all authors for their contributions and the members of the Program Committee
for the excellent work during the reviewing phase.

Giancarlo Fortino
Massimo Cossentino

Juan Pavón
Marie-Pierre Gleizes

August 7, 2009

II. WORKSHOP COMMITTEES

A. Workshop Organizers

Giancarlo Fortino Università della Calabria, Italy
Massimo Cossentino ICAR/CNR, Italy
Juan Pavon Universidad Complutense Madrid, Spain
Marie-Pierre Gleizes IRIT - Université Paul Sabatier, France

B. Programme Commitee

Jean-Paul Arcangeli Université Paul Sabatier, France
Carol Bernon Université Paul Sabatier, France
Paul Davidson Blekinge Institute of Technology, Sweden
Giuseppe Di Fatta University of Reading, UK
Alfredo Garro Università della Calabria, Italy
Paolo Giorgini Università di Trento, Italy
Samer Hassan Universidad Complutense Madrid, Spain
Vincent Hilaire Université de Belfort-MontBéliard, France
Franziska Klügl University of Würzburg, Germany
Victor Lesser University of Massachusetts, Amherst, USA
Adolfo López Paredes University of Valladolid, Spain
Muaz Niazi Foundation University, Pakistan
Michael J. North Argonne National Laboratory, USA
Andrea Omicini Università di Bologna, Italy
Paolo Petta OFAI, Austria

MALLOW’009: Turin, Italy, September 7-10, 2009

294

Luca Sabatucci ITC-irst, FBK, Italy
Valeria Seidita Università degli Studi di Palermo, Italy
Wilma Russo Università della Calabria, Italy
Pietro Terna Università di Torino, Italy
Erwan Tranvouez LSIS, France
Adelinde Uhrmacher University of Rostock, Germany
Giuseppe Vizzari Università di Milano Bicocca, Italy

III. LIST OF PAPERS

• An Industry Use Case: testing SOA systems with MAS simulators
by Pier-Giovanni Taranti, Carlos Jose Pereira de Lucena and Ricardo Choren

• Electricity Market (Virtual) Agents
by Paulo Trigo, Paulo Marques and Helder Coelho

• Users’ Collaboration as a Driver for Reputation System Effectiveness: a Simulation Study
by Guido Boella, Marco Remondino and Gianluca Tornese

• Exploiting the easyABMS methodology in the logistics domain
by Alfredo Garro and Wilma Russo

• Engineering Development of Agents using the Cooperative Behaviour of their Components
by Noélie Bonjean, Carole Bernon and Pierre Glize

• Simulation of Alternative Self-Organization Models for an Adaptive Environment
by Stefania Bandini, Andrea Bonomi, Giuseppe Vizzari and Vito Acconci

• Verification & Validation of Agent Based Simulations using the VOMAS (Virtual Overlay Multi-
agent System) approach
by Muaz Niazi, Amir Hussain and Mario Kolberg

• Agent based modeling and simulation of multi-project scheduling
by José Alberto Araúzo, Juan Pavón, Adolfo López Paredes and Javier Pajares

• Quick Prototyping and Simulation with the INGENIAS Agent Framework
by Jorge Gomez-Sanz, Carlos Rodrı́guez-Fernández and Juan Pavón

• Multiagent Simulation Model Design Strategies
by Franziska Klügl

IV. SPONSORING INSTITUTIONS

Giancarlo Fortino has partially been funded by the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Italy.

Juan Pavon has partially been funded by the the project Agent-based Modelling and Simulation of Complex
Social Systems (SiCoSSys), supported by Spanish Council for Science and Innovation, with grant TIN2008-
06464-C03-01, and by the Programa de Creación y Consolidación de Grupos de Investigación UCM-BSCH
GR58/08.

V. ACKNOWLEDGMENT

The workshop organizers would like to thank the MALLOW organizers (Matteo Baldoni, Cristina
Baroglio, and Guido Boella) for their endless support in making possible the organization of the 3rd
edition of MAS&S in MALLOW and the chair sponsorships for financial funding.

MALLOW’009: Turin, Italy, September 7-10, 2009

295

REFERENCES

[1] Alessandro Genco, Antonio Gentile and Salvatore Sorce, editors. Proceedings of the Industrial Simulation Conference (ISC 2006), June
5-7, 2006, University of Palermo, Palermo, Italy, 535 pages, ISBN 90-77381-26-0.

[2] Jaroslav Sklenar, Cyrille Bertelle and Giancarlo Fortino. Proceedings of the European Simulation and Modeling Conference (ESM 2007),
October 22-24, 2007, University of Malta, St Julians, Malta, 615 pages, ISBN 978-90-77381-36-6.

MALLOW’009: Turin, Italy, September 7-10, 2009

296

An Industry Use Case: testing SOA systems with
MAS simulators

Pier-Giovanni Taranti and
Carlos José Pereira de Lucena

PUC-Rio, Rua M. de São Vicente 225
Rio de Janeiro/RJ, Brazil

pier.taranti@les.inf.puc-rio.br, lucena@inf.puc-rio.br

Ricardo Choren
SE/8 - IME, Pça General Tibúrcio, 80

Rio de Janeiro/RJ, Brazil
choren@ime.eb.br

Abstract—System Test in architectures composed of several
asynchronous subsystems is a hard task. The simulation of ex-
ternal systems is usually performed in a limited way, considering
only test cases provided, one by one. This paper presents a
simulator based on MAS, used to test critical operation software.
The simulator, with simple architecture and construction, has
supported interface and integration testing phases and also is
used to obtain performance metrics to validate non-functional
requirements.

I. INTRODUCTION

Service Oriented Architecture (SOA) is an integrated soft-
ware infrastructure and design approach to deliver business
functions as shared and reusable services. SOA offers more
flexibility and looser coupling being more suitable for internet
computing [1]. SOA is often used both in intra-enterprise-
integration (e.g. Message Oriented Messaging systems) and in
inter-enterprise-integration (e.g. Web services integration) [2].
Indeed, SOA separates functions into distinct units, or services,
which developers make accessible over a network in order that
users can combine and reuse to build different applications [3].
The system provides the user requirements by orchestrating an
activity between two or more services.

SOA systems are often asynchronous thus testing can be
very challenging. The continuously increasing size and distri-
bution of SOA systems make the testing task more complex
and increase the size of test code [4], [5]. Indeed, the dynamic
an adaptive nature of SOA makes most of the existing testing
techniques not directly applicable to test services and service-
orchestrated systems [6].

Testing of such systems therefore, often goes hand in
hand with setting up test systems performing some message
exchanges and to analyse the results [2]. Moreover, testers may
not have access to the source code of the services provided
by the other parties and they may have no control over the
executable code, which may run in any computer over the
internet. Thus SOA testing can be very time consuming and
inefficient, as manual intervention is needed.

Asynchronous supporting systems (simulators) that are able
to act both as a provider and as a consumer of SOA application
services can be used for testing purposes. Simulators can
provide valid and controlled data for running tests, acting as
external actors, to verify the expected behavior of orchestrated

systems. The use of simulators is regarded as an effective
way to verify and validate SOA applications before these are
deployed and executed [7].

To observe the internal behavior of a SOA application, a
simulator should send requests to application, receive answers
from it and verify if the answers are appropriate, according
to pre-defined test cases. Besides, in large SOA applications,
not all services may be implemented before testing activities
begin. Thus a simulator may also be used to fill in for
missing services. Multi-agent distributed simulators provide
the flexibility, modularity and scalability desired for simulating
complex systems [8]. A multi-agent distributed simulator is
a multi-agent system (MAS), i.e. a system composed of
interacting software agents [9]. A software agent is a software
component that is able to perceive its environment and act
according to its design goals [9], [10].

In this paper we present a MAS simulator to perform in-
tegration and performance testing in SOA applications before
they are deployed into production environment. MAS are capa-
ble of simulating systems with large number of heterogeneous
entities behaving differently in dynamic situations [9]. There-
fore MAS are more suitable for evaluating distributed systems
that involve complex interaction between entities, e.g. service
orchestration, human interaction with SOA applications. As
agents can simulate these interactions, it can be used to test
SOA applications since early stages of development, using less
resources.

This paper shows an application of the proposed simulator
in a maritime system testing. This system was developed by
the Brazilian Navy for ship monitoring in international trips in
order to improve safety and security at sea. This system was
developed using SOA because it should be integrated with
the Long Range Information and Tracking (LRIT) system,
which was created by the Fifth Amendment to the International
Convention for the Safety of Life at Sea (SOLAS).

The rest of the paper is organized as follows. In section 2 we
give an overview on testing SOA applications developed using
Web services. The LRIT system, focusing on testing issues, is
presented in section 3. In section 4 we present the proposed
simulator, discussing its use. Section 5 presents some related
word. Finally section 6 presents the concluding remarks and
points out possible future work directions.

MALLOW’009: Turin, Italy, September 7-10, 2009

297

II. TESTING SOA SYSTEMS

In a SOA system, services may be developed by different
teams, from different organizations, and the complete applica-
tion can be orchestrated later. Testing a SOA system presents
many issues, including [11]:

• lack of software artifacts (code and structure)
• dealing with incomplete systems (services bind at run

time)
• lack of control over components
• lack of trust in information provided by components
• cost of testing
An integration test technique aims at effective observations

of the interfaces between parts of software systems through the
development and use of executable test scripts. These scripts,
implemented using drivers, hard-code the variables and the
expected results for each case. This approach helps to detect a
considerable amount of faults, but it is not feasible to test all
the possible service interdependencies. Changes in a service
source code and interface may require changes in the test
script. This is not always a simple task since very often there
is no stable test environment. Besides, a service may have to
rely on other services to properly perform its functionality.
Thus adequate testing may have to be postponed to when all
service binding actually happens.

When working with SOA, it would be desirable for a test
driver to continuously and actively perform case tests, i.e. the
driver should be able to keep generating requests to the SOA
application. The driver should also be able to process large
volume of data to test non-functional requirements such as

availability and performance. To automate the execution of
these drivers, service consumers are usually instantiated and
executed in application servers. This can be extremely resource
and time consuming, and error-prone.

A possible alternative to testing SOA applications is the
use of a multi-agent-based simulation system. The pro-active
nature of agents can be used to verify the interactions between
entities. The agents can generate requests to the existing ser-
vices and check if their response are appropriate. An agent can
also simulate human interaction by generating user-interface
related data.

Another advantage of using the agent paradigm to test SOA
applications is that an agent can simulate a whole service.
For inter-interprise integration SOA applications, this is very
important. Agents can be used to ”‘replace”’ services that are
under development by other organizations, thus simulating the
behavior of the whole application, even without all services.
The MAS approach has other advantages: the simulator can be
evolved along the project in order to support all project phases;
agents can be used to perform non-functional requirements
testing, and; agents can be used to generate reports.

III. TESTING THE LRIT DATA CENTER

In 2006, the Maritime Safety Committee created the LRIT
system to allow the long-range identification and tracking
of ships. Tracking of any applicable ship begins with LRIT
information being transmitted from the shipborne equipment.
The LRIT information transmitted includes the ship’s position,
time and identification. The LRIT system consists of the
following components (fig. 1) [12]:

Fig. 1. The LRIT system architecture

MALLOW’009: Turin, Italy, September 7-10, 2009

298

Application Service Provider (ASP): the ASP receives the
LRIT information from the ship, adds additional information
to the LRIT message and passes along the expanded message
to its associated Data Center. It provides the functionality re-
quired for the programming and communicating of commands
to the shipborne equipment.

Data Center (DC): the DC should store all incoming LRIT
information from ships instructed by their administrations to
transmit LRIT information to that DC. DCs disseminate LRIT
information to LRIT data users according to the LRIT Data
Distribution Plan (DDP). The DCs process all LRIT messages
to and from the International Data Exchange. A DC can
provide services to one or more contracting governments.

Data Distribution Plan Server (DDP Server): the DDP
contains the information required by the DCs for determining
how LRIT information is distributed to the various contracting
governments. The DDP contains information such as standing
orders from contracting governments and geographical poly-
gons relating to contracting governments’ coastal waters.

International Data Exchange (IDE): the IDE routes the
message to the appropriate DC based upon the address in the
message and the URL/URI in the DDP server. The IDE neither
processes nor stores the information contained within LRIT
messages.

The Brazilian DC is under development by the Brazilian
Navy as a SOA application. To enable the adequate testing
of the Brazilian DC services, MAS simulators were used. It
is important to mention that the Brazilian DC services were
developed independently (and without any coordination) from
other LRIT components. Initially, interface simulators were
built. They were passive and were used to simulate requests
whose results were evaluated manually.

After the first few months of development, a large amount
of data needed to be handled at runtime to allow business
rules’ testing. Business rules’ testing involved querying ships
that were sailing in real time, changing the frequency of
information for individual ships and requests for archived data
and all these actions, when performed, needs to consider the
data distribution plan for the time when the information was
generated. These tests required more advanced functionalities.
More specifically, the simulator needed to simulate ships with
sailing behavior in given maritime areas and to respond to
requests from the Brazilian DC (tested SOA application),
following the LRIT rules. Some of these ships needed to
have erroneous behavior to verify the data validation of the
application.

Thus, the simulator should have an active behavior to
simulate the ships that were interacting with the application
(e.g. DCs). These ships could change their behavior at runtime,
following the communication protocol used by real ships.

IV. THE AGENT-ORIENTED TESTING SIMULATOR

The software agent abstraction is appropriate to handle the
problems above agents can represent mobile objects in a geo-
referenced system. The ShipSim simulator was developed us-
ing the maritime domain knowledge acquired when developing

the Dominium [13]. The ShipSim design uses agents to carry
all the active behavior expected for an ASP and ships in the
system. DC and SimShip interact exchanging SOAP messages,
as described bellow:

SimShip receives SOAP messages from the DC through the
ASPSim, which is a passive component that persists incoming
SOAP messages in a table of the georeferenced database, used
as a blackboard. An AspGateway agent was created to collect
the requests sent to ASP from DC. This agent checks the data
in blackboard, translates it to ACL [14], and sends it to the
agent that simulates the requested ship in the MAS.

Each shipAgent performs the control of compliance with
the LRIT communications protocol, responding as expected
(or not, if required by a case test). The agent that is simulating
a ship starts executing the expected behavior upon receiving a
request. The main requests for a ship in the LRIT system are:
poll position; change of frequency rate for sending position,
and; requests to stop or restart the transmission of positions.
Agents simulating ships can be updated to consider the ship’s
course and speed (fig. 2).

Fig. 2. Ship simulation in the ShipSim

These agents are also capable to control the start/stop and
frequency to sending messages for all requestors countries
(requests arrives through DC). To send a message to the DC,
shipAgents connect directly a DC Web service. This archi-
tecture was designed to avoid an ACL to SOAP translation
bottleneck. To test if this bottleneck was really overcome,
it was necessary to perform tests like maximum number
of responded requests per second and number of requests
persisted per minute. After the test, the set of reports was used
to estimate the maximum merchant fleet that can be supported
by the Brazilian DC in the LRIT System. Some designed
features for the ShipSim were not implemented at first, like
reports and spreadsheets to be used in analyses. However, all
features were developed and tested in later iterations.

The architecture used to run the tests is presented in fig. 3.
The MAS simulator is the ShipSim, DC is the tested SOA
application and the other components are passive interface

MALLOW’009: Turin, Italy, September 7-10, 2009

299

Fig. 3. The testing environment

simulators, implemented using EJB3, running in an application
server. These passive simulators basically perform the XML
schema validation and allow the exchange of messages using
SOAP to the DC (the message is edited in an external appli-
cation). Since October 2008, IMO had established a complete
testing environment, with DCs, IDE and DDP server, however
it is not possible test a DC without data from ships, so the
ShipSim is still used to support test activities.

A. Desing and Implementation Details

The methodology presented in Nikraz et al. [15] was used
for the testing simulator analyses and design. In this approach
agent responsibilities and acquaintances are identified and later
mapped to behaviors and communications. ASP and ship ser-
vices were mapped as responsibilities and acquaintances in the
early modeling, and after agent refinement only two types of
agent were maintained: the ShipAgent and the ASPAgentGW.

The ASPAgentGW is a transducer agent, who monitors
and performs queries on a SQL database, and translate the
information to ShipAgent in ACL messages. The ShipAgent
aggregate all other test functions: each agent instance simulate
an individual ship and is responsible for maintaining a list of
all received requests (one for each country) and for answering
these requests in correct frequency, informing the current
position. The position is calculated using the course and speed
of the simulated ship, and those are altered when needed to
avoid the exit of a limited area. When sending information,
some data is collected, like successful delivery or fail, time to
delivery and the sent information.

The testing simulator and the Brazilian DC SOA applica-
tion were implemented using open source software. Besides,
all LRIT standards are open. The simulator was originally
developed over the SUSE enterprise version 10.2 operational
system, and it is now migrating to version 11.1. The hardware
used as runtime environment for the simulator was similar to
the LRIT system production environment used by DC: HP
servers with two processors quad core and 8 GB of RAM
memory.

The ShipSim implementation was done using Java 6, JADE
framework [16] , Eclipse platform, Java Topology Suite
Library (JTS) [17], GIS database (PostgreSQL + PostGIS
[18]). The Web services connection was created with the JEE
eclipse plug-in, which uses Axis, and supports the SOAP 1.2
protocol. The simulator was modified along the testing to use
cryptography with mutual certification over SSL.

The Brazilian DC SOA application was developed with
a three layer architecture: the interface layer (for humans
and external systems), based in Apache web servers; the
application layer, using JEE2 technologies, deployed in a
cluster of application servers, and; the persistence layer, using
the Hibernate framework. To allow the test execution, the
following variables were parameterized:

• square area where agents are created (defined by longi-
tude and latitude limits);

• number of agents (i.e. ships) in simulation;
• time interval between two agents creation (milliseconds);
• interval for each agent sending messages;
• identifiers for agents (i.e an unique identifier);
• logical port to be used for each build of the simulator (this

variable allows the initialization of several simulators
simultaneously in the same machine);

• IP address for the tested DC (the project has more than
one test environment);

• switch to off/on the cryptography (TSL 1.1 protocol with
mutual authentication).

For simpler tests, simulations were executed directly from
the Eclipse platform. Whenever it was necessary to place ships
in different areas from around the world, a new instance of the
simulator (with the specific set of ships) was instantiated. The
DC non-functional requirements included information about
performance.

The simulator was deployed in different servers, with quad
core processors an 8GB of RAM memory. At this environment
the simulation was executed with 20.000 agents simultane-
ously. The simulation RAM consume rate at this situation was
5.6GB. It is important to mention that the initial development
effort for the ShipSim required 40 hours of a medium skilled
developer, but with experience using JADE and theoretical
knowledge about GIS and MAS. This developer has expertise
in the LRIT system business rules and maritime environment.

The ShipSim had been modified many times during the
LRIT system testing phase. These modifications included sim-
ple tasks, mainly because of the JADE architecture. Currently,
the ShipSim is used by the Brazilian DC test group, who is
responsible for its maintenance. The current ShipSim have
four packages: agents; behaviors, objects and support. The
simulation is started by the SimulationStarter class, responsible
for to charge the jade container and all agents.

B. Sample Testing

This section exemplifies the use of the ShipSim, to show the
provided test coverage. At late stages in the development of
the LRIT system, seven DCs were incorporated to the system
prototype. To allow the Brazilian DC test with them, five

MALLOW’009: Turin, Italy, September 7-10, 2009

300

simulators were instantiated to create virtual ships in the South
Korea, USA, Canada, Bahamas and Liberia areas (following
the polygons published in DDP server).

These simulators generated positions to mobile ships and
sent them to the Brazilian DC to verify if the DC could
handle a number of messages bigger than the specified in its
requirements. All messages were forwarded to the proper DC,
and these could make any requests to the ships, because they
were active, i.e. they were simulating all behaviors expected
for a real ship in the system. Therefore, almost all case tests
provided in the IMO Testing Protocol were performed using
the ShipSim support.

Some important metrics were obtained from the ShipSim,
such as the maximum number of requests the system is capable
to receive and persist in a queue per second; the maximum
number of requests processed per second; the time the system
was unavailable (denial of service), and; the maximum number
of ships that the DC can safely support. It is important to stress
that all these metrics can be obtained using testing frameworks,
but the confidence level is different: using the simulators these
metrics can be obtained in a condition near to observed by the
real integrated SOA architecture. Figure 4 presents an example
of testing simulation with 8000 ships flowing information in
the LRIT System.

Fig. 4. 8000 ships simulation

V. RELATED WORKS

Canfora and Di Penta [11] present a survey on SOA testing.
This work stressed the importance of this activity and it points
out some key problems for test execution in SOA applications,
especially when a service relies on other services to perform
its functionality (late binding between components). None of
the works cited in [11] presents a solution for testing a service
with well-known interface (WSDL file) had interdependencies
with other external (developed by other service providers)
services. The proposed simulator approach deals with testing
of incomplete systems, using MAS simulation to compose the
overall system and then providing a reliable environment for
system testing.

Frantzen et al. [19] present a Web services testing technique,
using a Model-based testing approach. In this approach, Web
services are tested as black-box components. This work points
out the need for WSDL descriptions improvement since a

WSDL file only describe the service interface, just like a
method signature in Java. The work presents the Symbolic
Transition System (STS - a state machine variant) for describ-
ing not only the interfaces, but also the executing sequence
of a service in order to aid the testing activity. However, the
technique focus on Web service testing, i.e. unit testing. It
does not consider the specifics of service composition such
as late binding, asynchronous communication, unexpected
service usage and overall non-functional requirements testing.
The proposed simulator approach deals with these issues. The
internal logics of the testing stubs are implemented in the
agents that can pro-actively interact with the SOA application,
thus it does not require a more rigid state machine representa-
tion. Testing specifics such as asynchronous communication
and unexpected service usage are treated by the simulator
agents.

The work presented in [20] shows a discussion about the
role of testing and monitoring SOA applications. Testing
is considered a preventive activity, to be performed before
application delivery (or before using the services). The work
states that testing should go beyond monitoring - checking
the correctness of the regular service usage - which will be
done after the service has been executed. The monitoring could
verify Service Level Agreements (SLA) or a specified Quality
of Service (QoS). The work considers the need of using both
testing and runtime monitoring to improve the confidence in
developed SOA applications.

The proposed approach uses software agents to allow SOA
application testing and monitoring. Agents can be used to test:
a single service; the orchestration of services (i.e. perform
integration testing) even when not all services are developed
(i.e. an agent acting as a service stub, which is particularly
important in inter-enterprise integration applications), and;
other qualities (non-functional requirements). In the Brazilian
DC system, for instance, the simulators were used to perform
quality testing, such as the maximum number of connections,
Server Application setting, memory management and code
optimizations. This information is usually monitored during
system execution, but the agents can verify them during
the application development. In this sense, the confidence
that the SOA application delivers its functionalities does not
rely on post-deployment monitoring, but rather on application
verification.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented an approach for SOA application
testing using software agents. The work shows the results
of a research on SOA testing that is ongoing for an year.
The presented approach intends to allow testing during SOA
application development through the use of MAS simulators.
The approach deals with some SOA testing issues such as:
lack of access to the source code of the parts to be integrated;
lack of means of observation on system behavior (mainly due
to system incompleteness); lack of control over the services
implementation, and; the increasing difficulty and cost of SOA
testing.

MALLOW’009: Turin, Italy, September 7-10, 2009

301

This paper also presented an experiment that describes a
real project. The LRIT system is a distributed system and its
components are being developed by different teams. The agent
simulators were used to test the overall functionalities and
qualities of the Brazilian DC (a LRIT sub-system, developed
using the Web service technology by the Brazilian Navy).

The next steps in our work include the specification of a
methodology to support agent-based simulator development
for SOA application testing. We are seeking to develop a
framework to aid the instantiation of simulators. Addition-
ally, we are researching how agent capabilities, such as pro-
activeness, can help continuous integration activities.

REFERENCES

[1] C. Lau and A. Ryman, “Developing xml web services with websphere
studio application developer,” IBM Systems Journal, vol. 41, no. 2, pp.
178–197, 2002.

[2] S. Dustdar and S. Haslinger, “Testing of service oriented architectures:
A practical approach,” in Proceedings of 5th Annual International Con-
ference on Object-Oriented and Internet-Based Technologies, Concepts,
and Applications for a Networked World (LNCS 3263), 2004.

[3] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[4] J. Tian, Software quality engineering: testing, quality assurance, and
quantifiable improvement. Wiley, 2005.

[5] J. Z. Gao, H.-S. J. Tsao, and Y. Wu, Testing and quality assurance for
component-based software. Artech House, 2003.

[6] G. Canfora and M. Di Penta, “Testing services and service-centric
systems: Challenges and opportunities,” IT Professional, vol. 8, pp. 10–
17, 2006.

[7] W. T. Tsai, Z. Cao, X. Wei, P. Ray, Q. Huang, and X. Sun, “Modeling
and simulation in service-oriented software development,” Simulation,
vol. 83, no. 1, pp. 7–32, 2007.

[8] S. Karnouskos and M. M. J. Tariq, “An agent-based simulation of soa-
ready devices,” in Computer Modeling and Simulation, 2008. UKSIM
2008. Tenth International Conference on. Cambridge, UK: IEEE, 2008,
pp. 330–335.

[9] M. J. Wooldridge, An Introduction to MultiAgent Systems. John Wiley
& Sons, Inc., 2002.

[10] M. Wooldridge and N. Jennings, “Intelligent Agents: Theory and Prac-
tice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152,
1995.

[11] G. Canfora and M. Di Penta, “Service-oriented architectures testing: A
survey,” in International Summer Schools, ISSSE 2006-2008, Revised
Tutorial Lectures (LNCS 5413), ser. Software Engineering. Springer
Berlin / Heidelberg, 2009, pp. 78–105.

[12] IMO, “Long range identification and tracking system: Technical docu-
mentation (part i),” International Maritime Organization (IMO), Decem-
ber 2008.

[13] P. Taranti and R. Choren, “Dominium: an approach to regulate agent
societies in dynamic environments,” in Proceedings of the First Inter-
national Workshop on Agent supported Cooperative Work (ACW) at
ICDIM’07, vol. 2. IEEE, 2007, pp. 811–816.

[14] FIPA, “Foundation for intelligent physical agents,” http://www.fipa.org/,
2009.

[15] M. Nikraz, G. Caire, and P. A. Bahria, “A methodology for the analysis
and design of multi-agent systems using jade,” International Journal of
Computer Systems Science and Engineering, vol. 21, no. 2, 2006.

[16] JADE, “Java agent development framework,” http://jade.tilab.com, 2009.
[17] JTS, “Topology suite,” http://www.vividsolutions.com/jts/jtshome.htm,

2009.
[18] PostGIS, http://postgis.refractions.net/, 2009.
[19] L. Frantzen, J. Tretmans, and R. de Vries, “Towards model-based testing

ofweb services,” in Proceedings of the International Workshop on Web
Services - Modeling and Testing (WS-MaTe 2006), 2006.

[20] G. Canfora and M. Di Penta, “Soa: Testing and self-cheking,” in
Proceedings of the International Workshop on Web Services ? Modeling
and Testing (WS-MaTe 2006), 2006.

MALLOW’009: Turin, Italy, September 7-10, 2009

302

Electricity Market (Virtual) Agents
Paulo Trigo

LabMAg, GuIAA; DEETC, ISEL
Instituto Superior de Eng. de Lisboa

Portugal
Email: ptrigo@deetc.isel.ipl.pt

Paulo Marques
GuIAA; DEETC, ISEL

Instituto Superior de Eng. de Lisboa
Portugal

Email: 28562@alunos.isel.ipl.pt

Helder Coelho
LabMAg; DI, FCUL

Faculdade de Ciências da Univ. de Lisboa
Portugal

Email: hcoelho@di.fc.ul.pt

Abstract—This paper describes a multi-agent based simulation
(MABS) framework to construct an artificial electric power mar-
ket populated with learning agents. The artificial market, named
TEMMAS (The Electricity Market Multi-Agent Simulator), ex-
plores the integration of two design constructs: i) the specification
of the environmental physical market properties, and ii) the
specification of the decision-making (deliberative) and reactive
agents. TEMMAS is materialized in an experimental setup
involving distinct power generator companies which operate
in the market and search for the trading strategies that best
exploit their generating units’ resources. The experimental results
show a coherent market behavior that emerges from the overall
simulated environment.

I. INTRODUCTION

The start-up of nation-wide electric markets, along with
its recent expansion to intercountry markets, aims at pro-
viding competitive electricity service to consumers. The new
market-based power industry calls for human decision-making
in order to settle the energy assets’ trading strategies. The
interactions and influences among the market participants are
usually described by game theoretic approaches which are
based on the determination of equilibrium points to which
compare the actual market performance [1], [2]. However,
those approaches find it difficult to incorporate the ability
of market participants to repeatedly probe markets and adapt
their strategies. Usually, the problem of finding the equilibria
strategies is relaxed (simplified) both in terms of: i) the human
agents’ bidding policies, and ii) the technical and economical
operation of the power system.

As an alternative to the equilibrium approaches, the multi-
-agent based simulation (MABS) comes forth as being par-
ticulary well fitted to analyze dynamic and adaptive systems
with complex interactions among constituents [3], [4].

In this paper we describe a MABS modeling frame-
work that provides constructs for the (human) designer to
specify a dynamic environment, its resources, observable
properties and its inhabitant decision-making agents. We
used the framework to capture the behavior of the elec-
tricity market and to build a simulator, named TEMMAS
(The Electricity Market Multi-Agent Simulator), which incor-
porates the operation of several generator company (GenCo)
operators, each with distinct power generating units (GenUnit),
and a market operator (Pool) which computes the hourly
market price (driven by the electricity demand).

TEMMAS agents exhibit bounded rationality, i.e., they
make decisions based on local information (partial knowledge)
of the system and of other agents while learning and adapting
their strategies during a simulation. The TEMMAS purpose
is not to explicitly search for equilibrium points, but rather
to reveal and assist to understand the complex and aggregate
system behaviors that emerge from the interactions of the
market agents.

II. THE MABS MODELING FRAMEWORK

We describe the structural MABS constituents by means
of two concepts: i) the environmental entity, which owns a
distinct existence in the real environment, e.g. a resource such
as an electricity producer, or a decision-making agent such as
a market bidder generator company, and ii) the environmental
property, which is a measurable aspect of the real environment,
e.g. the price of a bid or the demand for electricity. Hence,
we define the environmental entity set, ET = { e1, . . . , en },
and the environmental property set, EY = { p1, . . . , pm }. The
whole environment is the union of its entities and properties:
E = ET ∪ EY .

The environmental entities, ET , are often clustered in diffe-
rent classes, or types, thus partitioning ET into a set, PET , of
disjoints subsets, PiET , each containing entities that belong to
the same class. Formally, PET =

{P1
ET , . . . ,PkET

}
defines

a full partition of ET , such that PiET ⊆ ET and PET =
∪i=1...k PiET and PiET ∩ PjET = ∅ ∀i 6= j. The partitioning
may be used to distinguish between decision-making agents
and available resources, e.g. a company that decides the biding
strategy to pursue or a plant that provides the demanded power.

The environmental properties, EY , can also be clustered, in
a similar way as for the environmental entities, thus grouping
properties that are related. The partitioning may be used to ex-
press distinct categories, e.g. economical, electrical, ecological
or social aspects. Another, more technical usage, is to separate
constant parameters from dynamic state variables.

The factored state space representation. The state of the
simulated environment is implicitly defined by the state of all
its environmental entities and properties. We follow a factored
representation, that describes the state space as a set, V , of
discrete state variables [5]. Each state variable, vi ∈ V , takes
on values in its domain D(vi) and the global (i.e., over E)
state space, S ⊆ ×vi∈VD(vi), is a subset of the Cartesian
product of the state variable domains. A state s ∈ S is an

MALLOW’009: Turin, Italy, September 7-10, 2009

303

assignment of values to the set of state variables V . We define
fC , C ⊆ V , as a projection such that if s is an assignment to
V , fC(s) is the assignment of s to C; we define a context c as
an assignment to the subset C ⊆ V; the initial state variables
of each entity and property are defined, respectively, by the
functions initET : ET → C and initEY : EY → C.

From environmental entities to resources and agents. The
embodiment is central in describing the relation between the
entities and the environment [6]. Each environmental entity can
be seen as a body, possibly with the capability to influence the
environmental properties. Based on this idea of embodiment,
two higher-level concepts (decoupled from the environment,
E , characterization) are introduced: i) agent, owing reasoning
and decision-making capabilities, and ii) resource, without any
reasoning capability. Thus, given a set of agents, Υ, we define
an association function embody : Υ → ET , which connects
an agent to its physical entity. In a similar way, given a set
of resources, Φ, we define the mapping function identity :
Φ→ EY . We consider that |E| = |Υ|+ |Φ|, thus each entity is
either mapped to an agent or to a resource; there is no third
category.

The decision-making approach. Each agent perceives (the
market) and acts (sells or buys) and there are two main
approaches to develop the reasoning and decision-making
capabilities: i) the qualitative mental-state based reasoning,
such as the belief-desire-intention (BDI) architecture [7],
which is founded on logic theories, and ii) the quantita-
tive, decision-theoretic, evaluation of causal effects, such as
the Markov decision process (MDP) support for sequential
decision-making in stochastic environments. There are also
hybrid approaches that combine the qualitative and quantitative
formulations [8], [9].

The qualitative mental-state approaches capture the relation
between high level components (e.g. beliefs, desires, inten-
tions) and tend to follow heuristic (or rule-based) decision-
-making strategies, thus being better fitted to tackle large-scale
problems and worst fitted to deal with stochastic environments.

The quantitative decision-theoretic approaches deal with low
level components (e.g., primitive actions and immediate re-
wards) and searches for long-term policies that maximize some
utility function, thus being worst fitted to tackle large-scale
problems and better fitted to deal with stochastic environments.

The electric power market is a stochastic environment and
we currently formulate medium-scale problems that can fit a
decision-theoretic agent model. Therefore, TEMMAS adaptive
agents (e.g., market bidders) follow a MDP based approach
and resort to experience (sampled sequences of states, actions
and rewards from simulated interaction) to search for optimal,
or near-optimal, policies using reinforcement learning methods
such as Q-learning [10] or SARSA [11].

III. TEMMAS DESIGN

Within the current design model of TEMMAS the electricity
asset is traded through a spot market (no bilateral agreements),
which is operated via a Pool institutional power entity. Each

generator company, GenCo, submits (to Pool) how much
energy, each of its generating unit, GenUnitGenCo, is willing
to produce and at what price. Thus, we have: i) the power
supply system comprises a set, EGenCo, of generator companies,
ii) each generator company, GenCo, contains its own set,
EGenUnitGenCo , of generating units, iii) each generating unit,
GenUnitGenCo, of a GenCo, has constant marginal costs, and
iv) the market operator, Pool, trades all the GenCos’ submitted
energy.

The bidding procedure conforms to the so-called “block
bids” approach [12], where a block represents a quantity of
energy being bided for a certain price; also, GenCos are not
allowed to bid higher than a predefined price ceiling. Thus,
the market supply essential measurable aspects are the energy
price, quantity and production cost. The consumer side of
the market is mainly described by the quantity of demanded
energy; we assume that there is no price elasticity of demand
(i.e., no demand-side market bidding).

Therefore, we have: ET = {Pool } ∪ EGenCo ∪g∈EGenCo

EGenUnitg where EY = { quantity, price, productionCost }.
The quantity refers both to the supply and demand sides of
the market. The price referes both to the supply bided values
and to the market settled (by Pool) value.

The EGenCo contains the decision-making agents. The Pool
is a reactive agent that always applies the same predefined
auction rules in order to determine the market price and
hence the block bids that clear the market. Each EGenUnitGenCo

represents the GenCo’s set of available resources.
The resources’ specification. Each generating unit,

GenUnitGenCo, defines its marginal costs and constructs the
block bids according to the strategy indicated by its generator
company, GenCo. Each GenUnitGenCo calculates its marginal
costs according to, either the “WithHeatRate” [13]) or the
“WithCO2” [14] formulation.

The “WithHeatRate” formulation estimates the marginal
cost, MC, by combining the variable operations and mainte-
nance costs, vO&M, the number of heat rate intervals, nPat,
each interval’s capacity, capi and the corresponding heat rate
value, hri, and the price of the fuel, fPrice, being used; the
marginal cost for a given i ∈ [1, nPat] interval is given by,

MCi+1 = vO&M+
(capi+1 × hri+1)− (capi × hri)

blockCapi+1
×fPrice

(1)
where each block’s capacity is given by: blockCapi+1 =
capi+1 − capi.

The “WithCO2” marginal cost, MC, combines the variable
operations and maintenance costs, vO&M, the price of the
fuel, fPrice, the CO2 cost, CO2cost, and the unit’s produc-
tivity, η, through the expression,

MC =
fPrice

η
×K + CO2cost+ vO&M (2)

where K is a fuel-dependent constant factor, and CO2cost
is given by,

CO2cost = CO2price× CO2emit

η
×K (3)

MALLOW’009: Turin, Italy, September 7-10, 2009

304

where CO2emit is the CO2 fuel’s emissions. Here all
blocks have the same capacity; given a unit’s maximum
capacity, maxCap, and a number of blocks, nBlocks, to sell,
each block’s capacity is given by: blockCap = maxCap

nBlocks .
The decision-making strategies. Each generator company

defines the bidding strategy for each of its generating units.
We designed two types of strategies: a) the basic-adjustment,
that chooses among a set of basic rigid options, and b)
the heuristic-adjustment, that selects and follows a prede-
fined well-known heuristic. There are several basic-adjustment
strategies already defined in TEMMAS. Here we outline seven
of those strategies, sttgi where i ∈ { 1, . . . , 7 }, available for
a GenCo to apply: i) sttg1, bid according to the marginal
production cost of each GenUnitGenCo (follow heat rate curves,
e.g., cf. tables II and III), ii) sttg2, make a “small” in-
crement in the prices of all the previous-day’s block bids,
iii) sttg3, similar to sttg2, but makes a “large” increment,
iv) sttg4, make a “small” decrement in the prices of all
the previous-day’s block bids, v) sttg5, similar to sttg4, but
makes a “large” decrement, vi) sttg6, hold the prices of all
previous-day’s block bids, vii) sttg7 set the price to zero.
There are two heuristic-adjustment defined strategies: a) the
“Fixed Increment Price Probing” (FIPP) that uses a percentage
to increment the price of last day’s transacted energy blocks
and to decrement the non-transacted blocks, and b) “Physical
Withholding based on System Reserve” (PWSR) that reduces
the block’s capacity, as to decrement the next day’s estimated
system reserve (difference between total capacity and total
demand), and then bids the remaining energy at the maximum
market price.

The agents’ decision process. The above strategies
correspond to the GenCo agent’s primary actions. The
GenCo has a set, EGenUnitGenCo , of generating units and, at
each decision-epoch, it decides the strategy to apply to
each generating unit, thus choosing a vector of strate-
gies,

−−→
sttg, where the ith vector’s component refers to the

GenUnit iGenCo generating unit; thus, its action space is given

by: A = ×|EGenUnitGenCo |
i=1 { sttg1, . . . , sttg7 }i ∪ {FIPP,PWSR }.

The GenCo’s perceived market share, mShare, is used to
characterize the agent internal memory so its state space
is given by mShare ∈ [0..100]. Each GenCo is a MDP
decision-making agent such that the decision process period
represents a daily market. At each decision-epoch each agent
computes its daily profit (that is regarded as an internal reward
function) and the Pool agent receives all the GenCos’s block
bids for the 24 daily hours and settles the hourly market price
by matching offers in a classic supply and demand equilibrium
price (we assume a hourly constant demand).

TEMMAS architecture and construction. The TEMMAS
agents along with the major inter-agent communication paths
are represented in the bottom region of Figure 1; the top
region represents the user interface that enables to specify the
each of the resources’ and agents’ configurable parameters.
The implementation of the TEMMAS architecture followed
the INGENIAS [15] methodology and used its supporting

development platform. Figure 2 presents the general “agent’s
perspective”, where the tasks and the goals are clustered into
individual and social perspectives. Figure 3 gives additional
detail on the construction of tasks and goals using INGENIAS.

Legend

Marginal Cost

Sale Offers

Buying Offers

Market Results

User Interface

Agents

Generating

Unit

Generating

Unit

Generator

Company

Generator

Company

Market

Operator

(Pool)
Buyer

Fig. 1. The TEMMAS architecture and the configurable parameters.

social

perspective

individual

perspective

Fig. 2. TEMMAS agent’s view using INGENIAS framework.

satisfies

usesconsumes

satisfies

consumes
uses

Fig. 3. TEMMAS tasks and goals specification using INGENIAS framework.

MALLOW’009: Turin, Italy, September 7-10, 2009

305

IV. TEMMAS ILLUSTRATIVE SETUP

We used TEMMAS to build a specific electric market
simulation model. We picked the inspiration from the Iberian
Electricity Market (MIBEL – “Mercado Ibérico de Electrici-
dade”) with Portuguese (e.g., EDP - “Electrividade de Portu-
gal”, “Turbogás”, “Tejo Energia”) and Spanish (e.g., “Endesa”,
“Iberdrola”, “Union Fenosa”, “Hidro Cantábrico”, “Viesgo”,
“Bas Natural”, “Elcogás”) generator companies. Regarding the
total electricity capacity installed the Iberian market is com-
posed of a major player (Spain) and a minor player (Portugal).
Our experiments exploit the combined market behavior of a
major and a minor electricity market players.

We abstracted intra-nation market details and modeled each
country as a single generator company (with several generating
units). Figure 4 uses INGENIAS notation to depict the hierar-
chical structure of the electricity market; the Pool (OMEL –
“Operador do Mercado Ibérico de Electricidade”) settles the
market price (and coupled bids) after the bids submitted by
each GenCo (PT – “Portugal” and ES – “Spain”) according
to a strategy that depends on the marginal production costs of
each GenUnit.

Fig. 4. An illustrative TEMMAS formulation (using INGENIAS notation).

We considered three types of generating units: i) one base
load coal plant, CO, ii) one combined cycle plant, CC, to cover
intermediate load, and iii) one gas turbine, GT, peaking unit.
Table I shows the essential properties of each plant type and
tables II and III shows the heat rate curves used to define
the bidding blocks. The marginal cost was computed using
expression (1); the bidding block’s quantity is the capacity
increment, e.g. for CO, the 11.9 marginal cost bidding block’s
quantity is 350− 250 = 100 MW (cf. Table II, CO, top lines
2 and 1).

V. EXPERIMENTS AND RESULTS

Our experiments have two main purposes: i) illustrate the
TEMMAS functionality, and ii) analyze the agents’ resulting
behavior, e.g. the learnt bidding policies, in light of the market
specific dynamics.

We designed three experimental scenarios and Table IV
shows the GenCo’s name along with its production capacity,

TABLE I
PROPERTIES OF GENERATING UNITS; THE UNITS’ TYPES ARE COAL (CO),
COMBINED CYCLE (CC) AND GAS TURBINE (GT); THE O&M INDICATES

“OPERATION AND MAINTENANCE” COST.

Type of generating unit
Property unit CO CC GT

Fuel — Coal (BIT) Nat. Gas Nat. Gas

Capacity MW 500 250 125

Fuel price C/MMBtu 1.5 5 5

Variable O&M C/MWh 1.75 2.8 8

TABLE II
CO AND CC UNIT’S CAPACITY BLOCK (MW) AND HEAT RATE

(BTU/KWH) AND THE CORRESPONDING MARGINAL COST (C/MWH).

CO generating unit CC generating unit
Cap. Heat rate Marg. cost Cap. Heat rate Marg. cost

250 12000 — 100 9000 —
350 10500 11.9 150 7800 29.8
400 10080 12.5 200 7200 29.8
450 9770 12.7 225 7010 30.3
500 9550 13.1 250 6880 31.4

TABLE III
GT UNIT’S CAPACITY BLOCK (MW) AND HEAT RATE (BTU/KWH) AND

THE CORRESPONDING MARGINAL COST (C/MWH) .

GT generating unit
Cap. Heat rate Marg. cost

50 14000 —
100 10600 44.0
110 10330 46.2
120 10150 48.9
125 10100 52.5

computed according to the respective GenUnits (cf. Table I).
The “active” suffix (cf. Table IV, name column) means that
the GenCo searches for its GenUnits best bidding strategies;
i.e. “active” is a policy learning agent.

TABLE IV
THE EXPERIMENT’S GenCoS AND GenUnitS.

GenCo
Exp. name Prod. Capac. GenUnits

#1 GenCo active 875 CO & CC & GT

#2
GenCo major 2000 2×CO & 4×CC

GenCo minor&active 875 3×CC & 1×GT

#3
GenCo major&active 2000 2×CO & 4×CC
GenCo minor&active 875 3×CC & 1×GT

Experiment #1. The experiment sets a constant, 600
MW, hourly demand for electricity. Figure 5 shows the
GenCo active process of learning the bidding policy that gives
the highest long-term profit. We used Q-learning, with an
ε-greedy exploration strategy, which picks a random action
with probability ε and behaves greedily otherwise (i.e., picks

MALLOW’009: Turin, Italy, September 7-10, 2009

306

the action with the highest estimated action value); we defined
ε = 0.2. The learning factor rate of Q-learning was defined
as α = 0.01 and the discount factor (which measures the
present value of future rewards) was set to γ = 0.5. Figure
6 shows the bid blocks that cleared the market (at the first
hour of last simulated day). As there is no market competition
the cheapest, CO, bids zero, the GT sets the market price (to
its ceiling) and the most expensive 200 MW are distributed
among the most expensive GenUnits (CC, GT). Therefore, the
GenCo active agent found, for each perceived market share,
mShare, the best strategy,

−−→
sttg, to bid its GenUnits’ energy

blocks.

Profit of GenCo _active

-0.5

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Simulation Cycle (1 Day; 24 Hours)

P
ro

fi
t
(
M

€
)

Fig. 5. The process of learning a bid policy to maximize profit. [Exp. #1]

GenCo _active Coupled Block Bids (Day=2500; Hour=1)

0

30

60

90

120

150

180

0 50 100 150 200 250 300 350 400 450 500 550 600
Capacity (MW)

P
ri
ce
 (
€
/M

W
h
)

Base Coal (CO) Comb. Cycle (CC) Gas Turbine (GT)

Fig. 6. The bid policy that maximizes profit (price ceiling is 180). [Exp. #1]

Experiment #2. The experiment sets a constant, 2000 MW,
hourly demand for electricity. Figure 7 shows the market share
evolution while GenCo minor&active learns to play in the
market with GenCo major, which is a larger company with a
fixed strategy: “bid each block 5C higher than its marginal
cost”. We see that GenCo minor&active gets around 18%
(75− 57) of market from GenCo major. To earn that market
the GenCo minor&active learnt to lower its prices in order to
exploit the “5C space” offered by GenCo major fixed strategy.

Experiment #3. In this experiment both GenCos are “ac-
tive”; the remaining is the same as in experiment #2. Figure
8 shows the market share oscillation while each company
reacts to the other’s strategy to win the market. Despite the

GenCos' Market Share

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Simulation Cycle (1 Day; 24 Hours)

M
ar

k
et

 S
h
ar

e
(
%

)

GenCo _major

GenCo _minor&active

Fig. 7. Market share evolution induced by GenCo minor&active. [Exp. #2]

competition each company learns to secure its own fringe of
the market.

GenCos' Market Share

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Simulation Cycle (1 Day; 24 Hours)

M
ar

k
et

 S
h
ar

e
(
%

)

GenCo_major&active

GenCo_minor&active

Fig. 8. Market share evolution induced by both GenCos. [Exp. #3]

VI. CONCLUSIONS AND FUTURE WORK

This paper describes our preliminary work in the cons-
truction of a MABS framework to analyze the macro-scale
dynamics of the electric power market. Although both research
fields (MABS and market simulation) achieved considerable
progress there is a lack of cross-cutting approaches. We used
the proposed MABS framework to support our preliminary
work in the construction of the TEMMAS agent-based elec-
tricity market simulator.

Hence, our contribution is two folded: i) a comprehensive
formulation of MABS, including the simulated environment
and the inhabiting decision-making and learning agents, and ii)
a simulation model (TEMMAS) of the electric power market
framed in the proposed formulation.

Our initial results reveal an emerging and coherent market
behavior, thus inciting us to further extend the experimental
setup with additional bidding strategies and to incorporate
specific market rules, such as congestion management and
pricing regulation mechanisms.

REFERENCES

[1] Berry, C., Hobbs, B., Meroney, W., O’Neill, R., Jr, W.S.: Understanding
how market power can arise in network competition: a game theoretic
approach. Utilities Policy 8(3) (September 1999) 139–158

MALLOW’009: Turin, Italy, September 7-10, 2009

307

[2] Gabriel, S., Zhuang, J., Kiet, S.: A Nash-Cournot model for the
north american natural gas market. In: Proceedings of the 6th IAEE
European Conference: Modelling in Energy Economics and Policy. (2–
3 September 2004)

[3] Schuster, S., Gilbert, N.: Simulating online business models. In:
Proceedings of the 5th Workshop on Agent-Based Simulation (ABS-
04). (May 3–5 2004) 55–61

[4] Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling
dynamic environments in multi-agent simulation. JAAMAS 14(1) (2007)
87–116

[5] Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy
construction. In: Proceedings of the IJCAI-95. (1995) 1104–1111

[6] Clark, A.: Being there: putting brain, body, and world together again.
MIT (1998)

[7] Rao, A., Georgeff, M.: BDI agents: From theory to practice. In: Pro-
ceedings of the First International Conference on Multiagent Systems,
S (1995) 312–319

[8] Simari, G., Parsons, S.: On the relationship between MDPs and the
BDI architecture. In: Proceedings of the AAMAS-06. (May 8–12 2006)
1041–1048

[9] Trigo, P., Coelho, H.: Decision making with hybrid models: the case of
collective and individual motivations. International Journal of Reasoning
Based Intelligent Systems (IJRIS); Inderscience Publishers (2009)

[10] Watkins, C., Dayan, P.: Q-learning. Mach. Learning 8 (1992) 279–292
[11] Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT

P. (1998)
[12] : OMIP - The Iberian Electricity Market Operator. online: ‘http://www.

omip.pt’
[13] Botterud, A., Thimmapuram, P., Yamakado, M.: Simulating GenCo

bidding strategies in electricity markets with an agent-based model.
In: Proceedings of the 7th Annual IAEE European Energy Conference
(IAEE-05). (August 28–30 2005)

[14] Sousa, J., Lagarto, J.: How market players aadjusted their strategic
behaviour taking into account the CO2 emission costs - an application
to the spanish electricity market. In: Proceedings of the 4th International
Conference on the European Electricity Market (EEM-07), Cracow,
Poland (May 23–27 2007)

[15] Gómez-Sanz, J., Fuentes-Fernández, R., Pavón, J., Garcı́a-Magariño, I.:
INGENIAS development kit: a visual multi-agent system development
environment (BEST ACADEMIC DEMO OF AAMAS’08). In: Pro-
ceedings of the Seventh AAMAS, Estoril, Portugal (May 12-16 2008)
1675–1676

MALLOW’009: Turin, Italy, September 7-10, 2009

308

Users’ Collaboration as a Driver for Reputation System Effectiveness: a

Simulation Study

Guido Boella and Marco Remondino

Department of Computer Science, University of Turin

boella@di.unito.it , remond@di.unito.it

Gianluca Tornese (for the implementation)

gianluca.tornese@libero.it

Abstract

Reputation management is about evaluating an

agent's actions and other agents' opinions about those

actions, reporting on those actions and opinions, and

reacting to that report thus creating a feedback loop.

This social mechanism has been successfully used,

through Reputation Management Systems (RMSs) to

classify agents within normative systems. Most RMSs

rely on the feedbacks given by the member of the social

network in which the RMS itself operates. In this way,

the reputation index can be seen as an endogenous and

self produced indicator, created by the users for the

users' benefit. This implies that users’ participation

and collaboration is a key factor for the effectiveness a

RMS. In this work the above factor is explored by

means of an agent based simulation, and is tested on a

P2P network for file sharing.

1. Introduction

In everyday's life, when a choice subject to limited

resources (like for instance money, time, and so on)

must be done, due to the overwhelming number of

possibilities that people have to choose from,

something is needed to help them make choices.

People often follow the advice of others when it comes

to which products to by, which movies to watch, which

music to listen, which websites to visit, and so on. This

is a social attitude that uses others’ experience They

base their judgments of whether or not to follow this

advice partially upon the other person's reputation in

helping to find reliable and useful information, even

with all the noise.

Using and building upon early collaboration

filtering techniques, reputation management software

gather ratings for people, companies, and information

sources. Since this is a distributed way of computing

reputation, it is implicitly founded on two main

assumptions:

1) The correctness of shared information

2) The participation of users to the system

While the negation of the first could be considered

as an attack to the system itself, performed by users

trying to crash it, and its occurrence is quite rare, the

second factor is often underestimated, when designing

a collaborative RMS. Users without a vision of the

macro level often use the system, but simply forget to

collaborate, since this seems to cause a waste of time.

The purpose of the present work is to give a

qualitative and, when possible, quantitative evaluation

of the collaborative factor in RMSs, by means of an

empirical analysis conducted via an agent based

simulation. Thus, the main research question is: what’s

the effectiveness of a RMS, when changing the

collaboration rate coming from the involved users?

In order to answer this question, in the paper an

agent based model is introduced, representing a peer-

to-peer (P2P) network for file sharing. A basic RMS is

applied to the system, in order to help users to choose

the best peers to download from. In fact, some of the

peers are malicious, and they try to exploit the way in

which the P2P system rewards users for sharing files,

by uploading inauthentic resources when they do not

own the real ones. The model is described in detail and

the results are evaluated through a multi-run coeteris

paribus technique, in which only one setting is

changed at a time. In particular, the most important

parameters which will be compared, to evaluate the

effectiveness of the RMS are: verification of the files,

performed by the users and negative payoff, given in

case a resource is reported as being inauthentic. The

verification of the files, i.e. users’ the collaboration, is

an exogenous factor for the RMS, while the negative

MALLOW’009: Turin, Italy, September 7-10, 2009

309

payoff is an endogenous and thus directly controllable

factor, from the point of view of a RMS’s designer.

The P2P framework has been chosen since there are

many works focusing on the reputation as a system to

overcome the issue of inauthentic files, but, when

evaluating the effectiveness of the system, the authors

[1] usually refer to idealized situations, in which users

always verify the files for authenticity, as soon as they

start a download. This is obviously not the case in the

real world: first of all, most resources require to be at

least partially owned, in order to be checked. Besides,

some users could simply decide not to check them for

long time. Even worse, other users could simply forget

about a downloaded resource and never check it. Last

but not least, other users might verify it, but simply not

report anything, if it’s not authentic.

2. Reputation and P2P Systems

Since uploading bandwidth is a limited resource and

the download priority queues are based on a uploading-

credit system to reward the most collaborative peers on

the network, some malicious users create inauthentic

files, just to have something to share, thus obtaining

credits, without being penalized for their behavior. To

balance this, RMSs have been introduced, which

dynamically assign to the users a reputation value,

considered in the decision to download files from them

or not. RMSs are proven, via simulation, to make P2P

networks safe from attacks by malicious peers, even

when forming coalitions. In networks of millions of

peers attacks are less frequent, but users still have a

benefit from sharing inauthentic files. It’s not clear if

RMSs can be effective against this selfish widespread

misbehavior, since they make several ideal

assumptions about the behavior of peers who have to

verify files to discover inauthentic ones. This operation

is assumed to be automatic and with no costs.

Moreover, since the files are usually shared before

downloading is completed, peers downloading

inauthentic files unwillingly spread them if they are not

cooperative enough to verify their download as soon as

possible. In the present work, the creation and

spreading of inauthentic files is not considered as an

attack, but as a way in which some agents try to raise

their credits, while not possessing the real resource

that's being searched by others. A basic RMSs is

introduced, acting as a positive or negative reward for

the users and human factor behind the RMSs is

considered, in the form of costs and benefits of

verifying files. Most approaches, most notably

EigenTrust [2], assume that verification is made

automatically upon the start of download of the file. By

looking as we do at the collaboration factor in dealing

with RMSs, we can question their real applicability, an

issue which remains unanswered in the simulation

based tests made by the authors. To provide an answer

to this question it is necessary to build a simulation

tool which aims at a more accurate modeling of the

users’ behavior rather than at modeling the reputation

system in detail.

3. Model Framework

We assume a simple idealized model of reputation,

since the objective is not to prove the effectiveness of a

particular algorithm but to study the effect of users’

behavior on a reputation system. We use a centralized

system which assumes the correctness of information

provided by users, e.g., it is not possible to give an

evaluation of a user with whom there was no

interaction. When verifying a file, the agents give a

negative payoff to the agent uploading it, in case it’s

inauthentic. In turn, the system will spread it to the

agents (if any) who uploaded it to the sender. There are

two reputation thresholds: the first and higher one,

under which it’s impossible to ask for resources to

other agents, the second, lower than the other, which

makes it impossible even to share the owned files. This

guarantees that an agents that falls under the first one

(because she shared too many inauthentic files), can

still regain credits by sharing authentic ones and come

back over the first threshold. On the contrary, if she

continues sharing inauthentic files, she will fall also

under the second threshold, being de facto excluded

from the network, still being a working link from and

to other agents. The agents are randomly connected on

a graph and feature the following parameters: Unique

ID, Reputation value, set of neighbors, set of owned

resources, set of goals (resources), set of resources

being downloaded, set of suppliers (by resource). At

each time step, agents reply to requests for download,

perform requests (according to their goals) or verify

files. While an upload is performed – if possible - each

time another agent makes a request, requesting a

resource and verification are performed in alternative.

Verification ratio is a parameter for the simulation and

acts stochastically on agents’ behavior. All agents

belong to two disjoint classes: malicious agents and

loyal ones. They have different behaviors concerning

uploading, while feature the same behavior about

downloading and verification: malicious agents are

simply agents who exploit for selfishness the

weaknesses of the system, by always uploading

inauthentic files if they don’t own the authentic ones.

Loyal agents, on the contrary, only upload a resource if

they own it. A number of resources are introduced in

the system at the beginning of the simulation,

MALLOW’009: Turin, Italy, September 7-10, 2009

310

representing both the owned objects and the agents'

goals. For coherence, an owned resource can't be a

goal, for the same agent. The distribution of the

resource is stochastic. During the simulation, other

resources (and corresponding goals) are stochastically

distributed among the agents. Each agent

(metaphorically, the P2P client) keeps track of the

providers, and this information is preserved also after

the download is finished.

 To test the limits and effectiveness of a reputation

mechanism under different user behaviors an agent

based simulation of a P2P network is used as

methodology, employing reactive agents to model the

users; these have a deterministic behavior based on the

class they belong to (malicious or loyal) and a

stochastic idealized behavior about verifying policy.

Their use shows how the system works at an aggregate

level. However, reactive agents can also be regarded as

a limit for our approach, since real users have a flexible

behavior and adapt themselves to what they observe.

We built a model which is less idealized about the

verifying factor, but it’s still rigid when considering

the agents’ behavior about sending out inauthentic

files. That’s why we envision the necessity to employ

cognitive agents based on reinforcement learning

techniques. Though, reactive agents can also be a key

point, in the sense that they allow the results to be

easily readable and comparable among them, while the

use of cognitive agents would have moved the focus

from the evaluation of collaborative factor to that of

real users’ behavior when facing a RMS, which is very

interesting, but beyond the purpose of the present

work. In future works, this paradigm for agents will be

considered.

The model is written in pure Java and does not

make use of any agent development environment.

4. Model Specifications and Parameters

The P2P network is modeled as an undirected and

non-reflexive graph. Each node is an agent,

representing a P2P user. Agents are reactive: their

behavior is thus determined a priori, and the strategies

are the result of the stimuli coming from the

environment and of the condition-action rules. Their

behavior is illustrated in next section. Formally the

multi agent system is defined as MAS = <Ag; Rel>,

with Ag set of nodes and Rel set of edges. Each edge

among two nodes is a link among the agents and is

indicated by the tuple < ai; aj > with ai and aj

belonging to Ag. Each agent features the following

internal parameters:

– Unique ID (identifier),

– Reputation value (or credits) N(ai),

– Set of agent’s neighbors RP(ai),

– Set of owned resources RO(ai),

– Set of goals (resource identifiers) RD(ai),

– Set of resources being downloaded P(ai),

– Set of pairs < supplier; resource >.

A resource is a tuple <Name, Authenticity>, where

Name is the resource identifier and Authenticity is a

Boolean attribute indicating whether the resource is

authentic or not. The agent owning the resource,

however, does not have access to this attribute unless

he verifies the file.

The resources represent the object being shared on

the P2P network. A number of resources are introduced

in the system at the beginning of the simulation; they

represent both the owned objects and the agents' goals.

For coherence, an owned resource can't be a goal, for

the same agent. The distribution of the resource is

stochastic. During the simulation, other resources are

stochastically introduced. In this way, each agent in the

system has the same probabilities to own a resource,

independently from her inner nature (malicious or

loyal). In the same way also the corresponding new

goals are distributed to the agents; the difference is that

the distribution probability is constrained by its being

possessed by an agent. Formally R be the set of all the

resources in the system. We have that:

RD�ai� � R, RO�ai� � R and RD�ai� RO�ai� � Ø.

Each agent in the system features a set of neighbors

N(ai), containing all the agents to which she is directly

linked in the graph: N�ai� � �aj � Ag | � ��; �� ��

 ��Rel�. This information characterizes the information of

each agent about the environment. The implemented

protocol is a totally distributed one, so looking for the

resource is heavily based on the set of neighbors.

In the real word the shared resources often have big

dimensions; after finding the resource, a lot of time is

usually required for the complete download. In order to

simulate this the set of the "resources being

downloaded" (Ris) introduced. These are described as

Ris = <resource ID, completion, check status>, where

ID is the resource identifier, completion is the

percentage already downloaded and "check status"

indicates whether the resource has been checked for

authenticity or not. In particular, it can be not yet

verified, verified and authentic and verified and

inauthentic:

check status � �NOT CHECKED; AUTH;� �INAUTH�
Another information is ID of the provider of a certain

resource, identified by P(ai). Each agent keeps track of

those which are uploading to him, and this information

is preserved also after the download is finished. The

real P2P systems allow the same resource to be

download in parallel from many providers, to improve

MALLOW’009: Turin, Italy, September 7-10, 2009

311

the performance and to split the bandwidth load. This

simplification should not affect the aggregate result of

the simulation, since the negative payoff would reach

more agents instead of just one (so the case with

multiple provider is a sub-case of that with a single

provider).

4.1. The Reputation Model

In this work we assume a simple idealized model of

reputation, since the objective is not to prove the

effectiveness of a particular reputation algorithm but to

study the effect of users' behavior on a reputation

system. We use a centralized system which assumes

the correctness of information provided by users, e.g.,

it is not possible to give an evaluation of a user with

whom there was no interaction. The reason is that we

focus on the behavior of common agents and not on

hackers who attack the system by manipulating the

code of the peer application. In the system there are

two reputation thresholds: the first and higher one,

under which it’s impossible to ask for resources to

other agents, the second, lower than the other, which

makes it impossible even to share the owned files. This

guarantees that an agents that falls under the first one

(because she shared too many inauthentic files), can

still regain credits by sharing authentic ones and come

back over the first threshold. On the contrary, if she

continues sharing inauthentic files, she will fall also

under the second threshold, being de facto excluded

from the network, still being a working link from and

to other agents.

4.2. The User Model

Peers are reactive agents replying to requests,

performing requests or verifying files. While upload is

performed each time another agent makes a request,

requesting a file and verification are performed (in

alternative) when it is the turn of the agent in the

simulation. All agents belong to two disjoint classes:

malicious agents and loyal agents. The classes have

different behaviors concerning uploading, while they

have the same behavior concerning downloading and

verification: malicious agents are just common agents

who exploit for selfishness the weaknesses of the

system. When it is the turn of another peer, and he

requests a file to the agent, he has to decide whether to

comply with the request and to decide how to comply

with it.

- The decision to upload a file is based on the

reputation of the requester: if it is below the "replying

threshold", the requestee denies the upload (even if the

requestee is a malicious agent).

 - The "replyTo" method refers to the reply each

agent gives when asked for a resource. When the agent

is faced with a request he cannot comply but the

requester's reputation is above the "replying threshold",

if he belongs to the malicious class, he has to decide

whether to create and upload an inauthentic file by

copying and renaming one of his other resources. The

decision is based depending on a parameter. If the

resource is owned, she sends it to the requesting agent,

after verifying if her reputation is higher than the

"replying threshold". Each agent performs at each

round of simulation two steps:

 1) Performing the downloads in progress. For each

resource being downloaded, the agents check if the

download is finished. If not, the system checks if the

resource is still present in the provider's "sharing pool".

In case it's no longer there, the download is stopped

and is removed from the list of the "owned resources".

Each file is formed by n units; when 2/n of the file has

been downloaded, then the file gets automatically

owned and shared also by the agent that is

downloading it.

2) Making new requests to other peers or verifying

the authenticity of a file downloaded or in

downloading, but not both:

a) When searching for a resource all the

agents within a depth of 3 from the requesting

one are considered. The list is ordered by

reputation. A method is invoked on every agent

with a reputation higher than the "requests

threshold", until the resource is found or the list

reaches the ending point. If the resource is found,

it's put in the "downloading list", the goal is

cancelled, the supplier is recorded and linked with

that specific download in progress and her

reputation is increased according to the value

defined in the simulation parameters. If no

resource is found, the goal is given up.

b) Verification means that a file is

previewed and if the content does not correspond

to its description or filename, this fact is notified

to the reputation system. Verification phase

requires that at least one file must be in progress

and it must be beyond the 2/n threshold described

above. An agent has a given probability to verify

instead of looking for a new file. In case the agent

verifies, a random resource is selected among

those “in download” and not checked. If

authentic, the turn is over. Otherwise, a

"punishment" method is invoked, the resource

deleted from the "downloading" and from the

MALLOW’009: Turin, Italy, September 7-10, 2009

312

"owned " lists and put among the "goals" once

again.

The RMS is based on the "punishment" method

which lowers the supplier's reputation, deletes her from

the "providers" list in order to avoid cyclic punishment

chains, and recursively invokes the "punishment"

method on the punished provider. A punishment chain

is thus created, reaching the creator of the inauthentic

file, and all the aware or unaware agents that

contributed in spreading it.

5. Results

The simulation goes on until at least one goal exists

and/or a download is still in progress.

In the following table a summary of the most

important parameters for the experiments are given:

Table 1 – the main parameters

In all the experiments, the other relevant parameters

are fixed, while the following ones change:

Table 2 – the scenarios

A crucial index, defining the wellbeing of the P2P

system, is the ratio among the number of inauthentic

resources and the total number of files on the network.

The total number is increasing more and more over

time, since new resources are introduced iteratively.

Another measure collected is the average reputation of

loyal and malicious agents at the end of the simulation;

in an ideal world, we expect malicious ones to be

penalized for their behavior, and loyal ones to be

rewarded. The results were obtained by a batch

execution mode for the simulation. This executes 50

times the simulation with the same parameters,

sampling the inauthentic/total ratio every 50 steps.

This is to overcome the sampling effect; many

variables in the simulation are stochastic, so this

technique gives an high level of confidence for the

produced results. In 2000 turns, we have a total of 40

samples. After all the executions are over, the average

for each time step is calculated, and represented in a

chart. In the same way, the grand average of the

average reputations for loyal and malicious agents is

calculated, and represented in a bar chart. In figure 1,

the chart with the trend of inauthentic/total resources is

represented for the results coming from experiments 1,

2, 3, 5 and 6. The results of experiment 4 is discussed

later.

Figure 1 – inauthentic/total ratio

Experiment 5 depicts the worst case: no negative

payoff is given: this is the case of a P2P network

without a RMS behind it. The ratio initially grows and,

at a certain point, it gets constant over time, since new

resources are stochastically distributed among all the

agents with the same probability. In this way also

malicious agents have new resources to share, and they

will send out inauthentic files only for those resources

they do not own. In the idealized world modeled in this

simulation, since agents are 50 malicious and 50 loyal,

and since the ones with higher reputation are preferred

when asking for a file, it’s straightforward that

malicious agents’ reputation fly away, and that an high

percentage of files in the system are inauthentic (about

63%). Experiment 1 shows how a simple RMS, with

quite a light punishing factor (3) is already sufficient to

lower the percentage of inauthentic files in the network

over time. We can see a positive trend, reaching about

28% after 2000 time steps, which is an over 100%

improvement compared to the situation in which there

was no punishment for inauthentic files. In this

experiment the verification percentage is at 30%. This

is quite low, since it means that 70% of the files remain

unchecked forever (downloaded, but never used). In

MALLOW’009: Turin, Italy, September 7-10, 2009

313

order to show how much the human factor can

influence the way in which a RMS works, in

experiment 2 the verification percentage has been

increased up to 40%, leaving the negative payoff still

at 3. The result is surprisingly good: the

inauthentic/total ratio is dramatically lowered after few

turns (less than 10% after 200), reaching less than 1%

after 2000 steps. Since 40% of files checked is quite a

realistic percentage for a P2P user, this empirically

proves that even the simple RMS proposed here

dramatically helps in reducing the number of

inauthentic files. In order to assign a quantitative

weight to the human factor, in experiment 3, the

negative payoff is moved from 3 to 4, while bringing

back the verification percentage to 30%. Even with a

higher punishing factor, the ratio is worse than in

experiment 2, meaning that it’s preferable to have a

higher verification rate, compared to a higher negative

payoff. Experiment 6 shows the opposite trend: the

negative payoff is lighter (2), but the verification rate is

again at 40%, as in experiment 2. The trend is very

similar – just a bit worse - to that of experiment 3. In

particular, the ratio of inauthentic files, after 2000

turns, is about 16%. At this point, it gets quite

interesting to find the “break even point” among the

punishing factor and the verification rate. After some

empirical simulations, we have that, compared with

40% of verification and 3 negative payoff, if now

verification is just at 30%, the negative payoff must be

set to a whopping value of 8, in order to get a

comparable trend in the ratio. This is done in

experiment 4 (figure 2): after 2000 turns, there’s 1% of

inauthentic files with a negative payoff of 3 and a

verification percentage of 40%, and about 0.7 with 8

and 30% respectively.

Figure 2 – weighting the collaboration factor

 This clearly indicates that collaboration factor (the

files verification) is crucial for a RMS to work

correctly and give the desired aggregate results (few

inauthentic files over a P2P network). In particular, a

slightly higher verification rate (from 30% to 40%)

weights about the same of a heavy upgrade of the

punishing factor (from 3 to 8). This can be considered

as a quantitative result, comparing the exogenous

factor (resource verification performed by the users) to

the endogenous one (negative payoff).

Besides considering the ratio of inauthentic files

moving on a P2P network, it’s also crucial to verify

that the proposed RMS algorithm could punish the

agents that maliciously share inauthentic files, without

involving too much unwilling accomplices, which are

loyal users that unconsciously spread the files created

by the former ones. This is considered by looking at

the average reputations, at the end of simulation steps

(figure 3).

Figure 3 – final average reputations

 In the worst case scenario, the malicious agents,

that are not punished for producing inauthentic files,

always upload the file they are asked for (be it

authentic or not). In this way, they soon gain credits,

topping the loyal ones. Since in the model the users

with a higher reputation are preferred when asking

files, this phenomenon soon triggers an explosive

effects: loyal agents are marginalized, and never get

asked for files. This results in a very low average

reputation for loyal agents (around 70 after 2000 turns)

and a very high average value for malicious agents

(more than 2800) at the same time. In experiment 1 the

basic RMS presented here, changes this result; even

with a low negative payoff (3) the average reputations

after 2000 turns, the results are clear: about 700 for

loyal agents and slightly more than 200 for malicious

ones. The algorithm preserves loyal agents, while

punishing malicious ones. In experiment 2, with a

higher verification percentage (human factor), we see a

tremendous improvement for the effectiveness of the

RMS algorithm. The average reputation for loyal

agents, after 2000 steps, reaches almost 1400, while all

the malicious agents go under the lower threshold (they

can’t either download or share resources), with an

average reputation of less than 9 points. Experiment 3

MALLOW’009: Turin, Italy, September 7-10, 2009

314

explores the scenario in which the users just check

30% of the files they download, but the negative

payoff is raised from 3 to 4. The final figure about

average reputations is again very good. Loyal agents,

after 2000 steps, averagely reach a reputation of over

1200, while malicious ones stay down at about 40.

This again proves the proposed RMS system to be

quite effective, though, with a low verification rate, not

all the malicious agents get under the lower threshold,

even if the negative payoff is 4. In experiment 6 the

verification percentage is again at the more realistic

40%, while negative payoff is reduced to 2. Even with

this low negative payoff, the results are good: most

malicious agents fall under the lowest threshold, so

they can’t share files and they get an average

reputation of about 100. Loyal agents behave very well

and reach an average reputation of more than 900.

Experiment 4 is the one in which we wanted to harshly

penalize inauthentic file sharing (negative payoff is set

at 8), while leaving an high laxity in the verification

percentage (30%). Unlikely what it could have been

expected, this setup does not punish too much loyal

agents that, unwillingly, spread unchecked inauthentic

files. After 2000 turns, all the malicious agents fall

under the lowest threshold, and feature an average

reputation of less than 7 points, while loyal agents fly

at an average of almost 1300 points. The fact that no

loyal agent falls under the “point of no return” (the

lowest threshold) is probably due to the fact that they

do not systematically share inauthentic files, while

malicious agents do. Loyal ones just share the

inauthentic resources they never check. Malicious

agents, on the other side, always send out inauthentic

files when asked for a resource they do not own, thus

being hardly punished by the RMS, when the negative

payoff is more than 3.

6. Whitewashing

A "whitewashing" mode is implemented and

selectable before the simulation starts, in order to

simulate the real behavior of some P2P users who,

realizing that they cannot download anymore (since

they have low credits or, in this case, bad reputation),

disconnect their client, and then connect again, so to

start from the initial pool of credits/reputation. When

this mode is active, at the beginning of each turn all the

agents that are under a given threshold reset it to the

initial value, metaphorically representing the

disconnection and reconnection. In experiments 7, 8

and 9 this is tested to see if it affects previous results.

In figure 4, the ratio among inauthentic and total

resources is depicted, and in figure 5 the final average

reputation for agents, when whitewashing mode is

active.

Even with CBM activated, the results are very

similar to those in which this mode is off. They are

actually a bit worse when the negative payoff is low

(3) and so is the verification percentage (30%): the

ratio of inauthentic files in the network is quite high, at

about 41% after 2000 turns versus the 27% observed in

experiment 1, which had the same parameters, but no

CBM. When the verification percentage is increased to

40%, though, things get quite better. Now the ratio of

inauthentic files has the same levels as in experiment 2

(less than 1% after 2000 steps). Also with a lower

verification percentage (again at 30%), but leaving the

negative payoff at 4, the figure is almost identical to

the one with the same parameters, but without a CBM.

After 2000 turns, the inauthentic files ratio is about

12%.

Figure 4 – inauthentic/total ratio in whitewashing mode

The experiments show that malicious agents, even

resetting their own reputation after going below the

lowest threshold, can’t overcome this basic RMS, if

they always produce inauthentic files. This happens

because, even if they reset their reputation to the initial

value, it’s still low compared to the one reached by

loyal agents; if they shared authentic files, this value

would go up in few turns, but since they again start

spreading inauthentic files, they almost immediately

fall under the thresholds again.

MALLOW’009: Turin, Italy, September 7-10, 2009

315

Figure 5 – final average reputations in whitewashing mode

7. Conclusion and Outlook

The main purpose of the work was to show, by

means of an empirical analysis based on simulation,

how the collaboration coming from the agents in a

social system can be a crucial driver for the

effectiveness of a RMS.

As a test-bed we considered a P2P network for file

sharing and, by an agent based simulation, we show

how a basic RMS can be effective to reduce

inauthentic files circulating on the network. In order to

enhance its performance, though, the collaboration

factor, in the form of verifying policy, is crucial: a 33%

more in verification results in about thirty times less

inauthentic files on the network. While a qualitative

analysis of this factor is straightforward for the

presented model, we added a quantitative result, trying

to weight the exogenous factor (the verification rate)

by comparing it to the endogenous one (the negative

payoff). We showed that a 33% increase in verification

percentage leads to similar results obtained by

increasing the negative payoff of 66%. Again, the

collaboration factor proves to be crucial for the RMS to

work efficiently.

While the provided results are encouraging, the

model is not yet realistic under certain aspects. The

weakest part is not the simplicity of the RMS

algorithm or of the representation of the P2P network,

rather the deterministic (reactive) behavior of the

agents: the agents involved are too naive to represent

real users. In particular, potentially malicious users try

to exploit the weaker points of the system, by changing

their behavior according to what they observe, like

satisfaction of their own goals. It’s very unlikely that

users, when realizing not to download at the same rate

as before, would go on sending out inauthentic files in

the same way as before. Real users are flexible, and

adapt themselves to different situations. If they see that

many inauthentic files are moving on the network since

informal norms regulating the P2P are not respected, it

is likely that they would also start producing them, in

order to gain credits, by an imitative behavior. While

the use of reactive agents keeps the results more

readable and easy comparable, in future works we’ll

implement cognitive ones, in order to explore their

behavior under a RMS; they feature a policy which is

dynamically created through trial and error, and

progressive reinforcement learning. Two are the

dimensions of learning that should be considered: one

regarding the long term satisfaction of goals (related to

the action of sending out an inauthentic file or not) and

the other about the convenience in verifying a file (thus

potentially losing a turn) related to the risk of being

punished as an unwilling accomplice in spreading

inauthentic files.

Besides, the threshold study now carried on at an

aggregate level will be made also from the point of

view of the individual agent: when does it become too

costly to "cheat" for an agent so that it ceases to be

beneficial? Such study will be made at a higher scale,

referring to the number of agents and resources.

Also, if control through user collaboration has been

studied, rewarding control should be considered as an

individual incentive to control (with possible biases

from malicious agent) and thus relate more to the

collaboration objective of the study. This will also be

studied in future works.

8. Acknowledgements

This work has been partially funded by the project

ICT4LAW, financed by Regione Piemonte.

9. References

[1] A. Josang, R. Ismail, and C. Boyd. A survey of trust and

reputation systems for online service provision. Decis.

Support Syst., 43(2):618–644, March 2007.

[2] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.

The eigentrust algorithm for reputation

management in p2p networks. In WWW ’03: Proceedings of

the 12th international conference

on World Wide Web, pages 640–651, New York, NY, USA,

2003. ACM Press.

MALLOW’009: Turin, Italy, September 7-10, 2009

316

Abstract— ABMS (Agent-Based Modeling and Simulation) has

arisen as new approach to effectively support domain experts to
cope with the growing complexity of the problems which they
have to face and solve. To date, few methodologies are available
which can be exploited by domain experts with limited
programming expertise to model and subsequently analyze
complex systems typical of their application domains. The
easyABMS methodology has been proposed to overcome the lack
of integrated methodologies able to seamlessly guide domain
experts from the analysis of the system under consideration to its
modeling and analysis of simulation results. In this paper, the
effectiveness of easyABMS is demonstrated through a case study
in the logistics domain which concerns the analysis of different
policies for managing vehicles used for stacking and moving
containers in a transshipment terminal.

Index Terms— Agent-Based Modeling and Simulation, Agent-
Oriented Methodologies, Container Terminal Management.

I. INTRODUCTION
gent Based Modeling and Simulation (ABMS) is a new
approach for analyzing and modeling complex systems,

an approach which is becoming acknowledged for its efficacy
in several application domains (financial, economic, social,
logistics, physical, chemical, engineering, etc) [17]. ABMS,
allows for the definition of a system model based on
autonomous, goal-driven and interacting entities (agents)
organized into societies which is then simulated so to obtain
significant information on not only the properties of the
system under consideration but also its evolution.

Although several ABMS tools are currently available [10,
11, 19, 20, 24], there are only a few methodologies involving
well- defined processes which are able to cover all the phases
from the analysis of the system under consideration to its
modeling and subsequent analysis of simulation results [7, 8,
17]. As a result, simulation models are often obtained using
the two following approaches: (i) a direct implementation
based on a chosen ABMS tool of the simulation model whose
abstraction level is then too low and platform dependent as a
conceptual modeling phase is not available; (ii) adapting a

A. Garro is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
alfredo.garro@unical.it).

W. Russo is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: w.russo
@unical.it).

given conceptual system model to a specific ABMS tool
which, however, requires additional adaptation, calling for
extra work, the amount of which increases depending on the
gap between the conceptual and the implementation model of
the system. Thus, both approaches lead to simulation models
which are difficult to verify, modify and update.

To address these issues, a new methodology, easyABMS,
has recently been proposed [4,5] which has specifically been
conceived for agent-based modeling and simulation of
complex system, seamlessly covering all the phases from the
analysis of the system under consideration to its modeling and
analysis of simulation results. easyABMS defines an iterative
process which is integrated, model-driven and visual. In
particular, each phase of the process refines the model of the
system which has been produced in the preceding phase and
its work-products are mainly constituted by visual diagrams
based on the UML notation [23]. In addition, according to the
model-driven paradigm [1, 21] the simulation code is
automatically generated from the derived system Simulation
Model. On the basis of the simulation results, a new/modified
and/or refined model of the system can be obtained through a
new process iteration which can involve all or some process
phases.

Currently, easyABMS exploits the advanced features of
visual modeling and of (semi)automatic code generation
provided by the Repast Simphony Toolkit [17,18], a very
popular and open source ABMS platform.

In this paper, the effectiveness of easyABMS in supporting
domain experts to fully exploit the benefits of the ABMS,
while significantly reducing programming and implementation
efforts, is exemplified through a case study in the logistics
domain. Specifically, the case study is focused on the analysis
of different policies for the management of vehicles used for
stacking and moving containers (straddle carriers) in a
container transshipment terminal.

The remainder of this paper is organized as follows: Section
II presents an overview of the easyABMS methodology and
the related process; Section III presents a brief introduction to
the reference application domain (a container transhipment
terminal) and to related management problems; Section IV
shows the application of easyABMS to the agent-based
modeling and simulation of the Straddle Carrier Routing and
Dispatching problem; finally, conclusions are drawn and
future works delineated.

Exploiting the easyABMS methodology in the
logistics domain

Alfredo Garro, Wilma Russo

A

MALLOW’009: Turin, Italy, September 7-10, 2009

317

Involves

Involves
is linked to

is
 li

nk
ed

 to

Fig. 1. The reference meta-model of easyABMS.

II. AN OVERVIEW OF EASYABMS
The easyABMS methodology defines an iterative process

for ABMS composed of seven subsequent phases from the
System Analysis to the Simulation Result Analysis [4, 5]. On
the basis of the simulation results obtained a new iteration of
the process which can involve all or some process phases can
be executed for achieving new simulation objectives or those
which have not yet been obtained. Specifically, the process
phases are the following:
− System Analysis, in which a preliminary understanding of

the system and the main simulation objectives are obtained
(Analysis Statement);

− Conceptual System Modeling, in which a model of the
system is defined in terms of agents, artifacts and societies
(Conceptual System Model);

− Simulation Design, in which a model of the system is
defined in terms of the abstractions offered by the
framework which is exploited for the simulation
(Simulation Model);

− Simulation Code Generation, in which the Simulation Code
for the target simulation environment is automatically
generated starting from the model which is obtained in the
previous phase;

− Simulation Set-up, in which the Simulation Scenarios are
established;

− Simulation Execution and Results Analysis, in which the
simulation results are analyzed with reference to the
objectives of the simulation previously identified in the
System Analysis phase.

Currently, all the simulation related phases are supported by
the Repast Simphony Toolkit [18, 20]. In particular, the
Simulation Design and the Simulation Code Generation
phases are supported by the Repast Simphony Development
Environment [15], while the Simulation Set-up, the Simulation
Execution and the Simulation Results Analysis phases are
supported by the Repast Simphony Runtime Environment [16].

The models of the system generated by each process phase
are produced according to the well-defined reference meta-
model shown in Figure 1 so to facilitate the verification of the
correctness of the models produced. Moreover, the concepts
related to each phase are defined by extending and/or refining
those of the previous phase; this allows for the seamless
integration between the phases as the model produced in each
phase extends and/or refines the model of the system
produced in the previous phase.

The following sub-sections provides a brief description of
each process phase.

A. System Analysis
In the System Analysis phase, the objectives of the

simulation are specified and a preliminary understanding of
the system and its organization is obtained.

This phase is based on the principle of layering, exploiting
the well-known techniques of Decomposition, Abstraction and
Organization [2, 9], and is constituted of a sequence of
analysis steps. In each step a new system representation is
produced by applying the in-out zooming mechanisms [12] to
the entities comprising the system representation which
resulted from the preceding analysis step. In the first analysis
step, a starting level of abstraction for analyzing the system is
chosen and then the system is zoomed-in so to identify its

MALLOW’009: Turin, Italy, September 7-10, 2009

318

component entities on the basis of the starting abstraction
level.

According to the reference meta-model of the System
Analysis phase (see Fig. 1), an Entity can be characterized by
autonomous and goal-oriented behavior (pro-active entity),
purely stimulus-response behavior (re-active entity), or can be
passive. In addition, both the rules governing entities and their
evolution, and the relationships among entities are specified.
Specifically, Safety rules determine the acceptable and
representative states of an entity whereas liveness rules
determine which state transitions are feasible during entity
evolution. Relationships can be either intra-entity
relationships (i.e. relationships among the component entities
obtained by the zooming-in of an entity) or inter-entity
relationships.

The System Analysis phase ends when the user obtains a
System Representation in which each component (pro-active,
re-active, passive) entity has been represented at the level of
abstraction which is appropriate for the objectives of the
simulation. This System Representation, along with a synthetic
description of the system being considered, a detailed
description of each identified entity and the objectives of the
simulation, constitutes the work-product of this phase (the
Analysis Statement).

B. Conceptual System Modeling
In the Conceptual System Modeling phase, the Structural

System Model is produced, and in particular, for each entity in
the System Representation:
− the abstraction level suited to specific simulation objectives

is chosen;
− the conceptual representation , in terms of Agent, Artifact or

Society, is derived on the basis of the associations among
the main concepts of the System Analysis and Conceptual
System Modeling phases (see Fig. 1);

− the interactions with the other entities are obtained from the
intra and inter-relationships where the latter cross the
boundaries of societies.

The chosen level of abstraction of an entity can be modified in
successive iterations through which it is then possible to
produce new, modified, and/or refined Structural System
Models.

For each entity in the produced Structural System Model a
specific model is then defined, whose type can be one of the
following depending on the entity type:
− Society Model which describes the entities which compose

a Society, their type (Agent, Artifact, Society), and the rules
governing the Society (safety rules) and its evolution
(liveness rules);

− Agent Model which details the complex goal of an Agent
(Agent Goal Model), its behavior as a set of periodically
scheduled and triggered Activities (i.e. flow of Actions)
which contribute to the achievement of the Agent goals
(Agent Behavioral Model), and its interactions with other
Agents and Artifacts in which the agent is involved (Agent
Interaction Model);

− Artifact Model which describes the behavior of an Artifact
as a set of triggered Activities related to the offered
services (Artifact Behavioral Model), and its interactions
with other Artifacts and Agents (Artifact Interaction
Model).

C. Simulation Design
In this phase, starting from the Conceptual System Model a

Simulation Model of the system, in terms of the abstractions
offered by the framework exploited for the simulation, is
produced.

In Figure 1 the basic simulation concepts of the reference
simulation framework (the Repast Simphony Toolkit [18, 20])
are highlighted. Specifically, the central concept is the
(simulation) Context (SContext) which represents an abstract
environment in which (simulation) Agents (SAgents) can act
and is provided with an internal state consisting of simple
values and Data Fields (a n-dimensional field of values). In
addition, an SContext can also support behaviors for the
management of its internal state. SContexts can be organized
hierarchically so to contain sub-SContexts which can have
their own state. SAgents in an SContext can be organized by
using Projections which are structure designed to define and
enforce relationships among the SAgents in the SContext. In
particular, a Network Projection defines the relationships of
both acquaintance and influence between SAgents whereas
Space Projections define (physical or logical) space structures
(Grid, Scalar Fields, Continuous Space, Geography) in which
the agents can be situated.

An SAgent can have multiple behaviors (SBehaviors), each
operating on SAgent Properties and consists of a sequence of
Steps; each Step can be associated with the execution of a
Task or with the control of the flow of the Task execution
(Loop, Join, Decision, End). Each SBehavior can be
characterized by a Scheduled Method which defines a constant
execution schedule, and by a Watch which periodically, on the
basis of some watched parameters and conditions, triggers the
execution of the behavior.

A Repast Simphony simulation model is defined by first
specifying the structure and the characteristics of the root
SContext and of all the possible nested sub-SContexts, in
terms of their components (SAgents, Projections and sub-
SContexts), and, then, specifying for each SAgent its
Properties and SBehaviors, and for each SBehavior the
component Steps, and the associated Scheduled Method and
Watch.

The associations among the above described simulation
concepts of the Repast Simphony Toolkit and the related
concepts of the Conceptual System Model are reported in
Figure 1. The exploitation of these associations makes it
possible to directly obtain, starting from the Conceptual
System Model, the Simulation Model of the System as follows:
− each Society becomes a Repast Simulation Context

(SContext), the System is the root SContext and any
enclosed Society is a (sub)-Context of the corresponding
enclosing Society;

MALLOW’009: Turin, Italy, September 7-10, 2009

319

− Artifacts and Agents become Repast Simulation Agents
(SAgents), the Activities which constitutes their behaviors
are easily converted into Repast Simulation Behaviors
(SBehaviors);

− relationships derived from Interactions among Agents and
Artifacts generate Repast Network Projections.

D. The other Simulation related phases
According to the Model Driven paradigm [1, 21], the Repast

Simphony Development Environment [15] is able to
automatically generate a great part of the simulation code
from the derived Simulation Model of the system. The
simulation which can be extended with additional Java and
XML code is then compiled by the Repast Simphony
Development Environment using a Java compiler and then
loaded into the Repast Simphony Runtime Environment.

The simulation executed by the Repast Symphony Runtime
Environment can start after establishing: (i) the simulation
scenario by specifying the values of the simulation parameters

defined in the Simulation Design phase; (ii) the presentation
preferences for the simulation results concerning the system
properties of interest identified during the Simulation Design
phase.

Finally, the obtained simulation results can also be analyzed
by exploiting the analysis tools (Matlab, R, VisAd, iReport,
Jung) which can be directly invoked from the Repast
Simphony Runtime Environment so to verify whether the
objectives of the simulation identified during the System
Analysis phase have been achieved. Where objectives have
not been achieved or where new simulation objectives
emerge, a new iteration of the process can be executed, which
can then involve all or some process phases so that
new/modified and/or refined models of the system can be
produced for achieving the remaining/new simulation
objectives.

TABLE I
MANAGEMENT PROBLEMS IN CONTAINER TRANSHIPMENT TERMINALS

PHASE PROBLEM DESCRIPTION
Arrival of the containership QUAY CRANE ASSIGNMENT PROBLEM (QCAP) Determining the number of quay cranes to assign

to an incoming vessel.
BERTH ALLOCATION PROBLEM (BAP); Assigning incoming ships to berths, by taking

into account constraints in both spatial and
temporal dimensions so to minimize the time
each ship spends in port (turnaround time).

Unloading and Loading of the ship QUAY CRANE SCHEDULING PROBLEM (QCSP) Determining a sequence of unloading and
loading movements for cranes assigned to a
vessel in order to minimize the vessel
completion time as well as the crane idle time.

Transport of containers from the ship to
the yard and vice versa

YARD MANAGEMENT Allocating and reallocating the containers in the
yard in order to reduce the amount of time
required to handle of each vessel.

STRADDLE CARRIER ROUTING AND
DISPATCHING (SCRD)

Determining the operation to be performed by
the straddle carries to maximize the productivity
of each crane.

III. MANAGEMENT OF A CONTAINER TRANSHIPMENT
TERMINAL

Due to the continuous growth in the volume of goods
exchanged around world, further boosted by the rising
Chinese and Indian economies, maritime transportation is
becoming a crucial asset in global economy as it allows for
large economies of scale in the transport sector. Specifically,
the current maritime transportation system is based on a hub
and spoke model [22] whereby ultra-large containerships
operate between a limited number of mayor
(mega)transhipment terminals (hubs), and smaller vessels
(feeders) which link the hubs with other minor ports (spokes).

In this scenario, a hub terminal must maintain a high level
of efficiency, not only to avoid traffic congestion but also to
increase its competiveness as some main characteristics
(geographical, structural and technological) which also
determine the competitiveness of a container terminal can be
modified only on a long term perspective.

It thus becomes crucial to increase hub efficiency,

rendering it more competitive through the optimal
management of terminal resources and optimizing tactical and
operational logistics.

In the next sub-section, the organization of a maritime
container terminal and some primary management issues are
briefly discussed; a more complete description can be found in
[13].

A. Organization of a Container Transhipment Terminal
Each ship approaching a maritime terminal enters in a

harbour and waits to moor at an assigned berth position along
the terminal quay which is equipped with giant cranes (quay
cranes) for loading and unloading containers. These
containers, in a DTS (Direct Transfer System) terminal, are
transferred to and from the terminal yard by a fleet of vehicles
(straddle carrier) which are able to stack containers in the
yard. In contrast, in an ITS (Indirect Transfer System)
terminal, containers are moved by trucks and trailers from the
quay to the yard and vice-versa and staked by yard cranes.

In this context, the main logistic processes and related
management problems can be grouped in relation to the flow

MALLOW’009: Turin, Italy, September 7-10, 2009

320

of containers in the terminal as shown and briefly described in
Table 1; other issues are related to inter-terminal
transportation and to possibly link with other transportation
modes. Moreover, a transversal issue is related to the human
resources management [13].

These very fundamental issues are not only reciprocally
related, but the large-scale nature of hub management makes
the use of standard exact solution algorithms impractical. In
fact, the management of such large and intricately complex
systems require new modeling methods which must also
generate proof-of-concept simulations.

In the following Section, the effectiveness of the ABMS
approach and the easyABMS methodology is shown focusing
on the Straddle Carrier Routing and Dispatching Problem
(SCRDP) [14]; with reference to the different management
problems in a Container Transhipment Terminal (see Table
1), a more complete and domain specific agent-based
simulator has been proposed in [6].

IV. MODELING AND SIMULATING STRADDLE CARRIER
ROUTING AND DISPATCHING THROUGH EASYABMS

A. System Analysis
The main indicator of optimal performance in a container

transhipment terminal is the average ship-turn-around time
which is the average time-lapse between a ship’s arrival and
its departure, starting from the amount of time the ship waits
for a berth (berth waiting time) and the duration for which the
ship is docked for unloading and loading operations (handling
time). In the following, the focus is set on the handling time
given to fact that this time is highly dependent on the
productivity of the Quay Cranes (QCs) and, as a consequence,
on the management policies of the Straddle Carriers (SCs).

Specifically, to maximize the productivity of the QCs in a
DTS container terminal, the SCs should operate so that the
buffer of each crane, which has a limited capacity of only a
few containers, is not full /not empty if the crane is
performing the discharging/loading phase. Specifically, there
are two main policies for organizing the work of SCs:

- dedicated modality: a given number of SCs are allocated
to each QC to follow its working phases;

- shared modality (or pooling): a group of SCs is shared by
two or more QCs which work on the same ship or on adjacent
berthed ships and, possibly, frequently swapping between the
tasks of loading and discharging containers.

The shared modality presents several benefits with respect
to the dedicated mode: (i) reduction in the number of empty
trips done by the SCs (i.e. travels without carrying any
container), as the SCs can fruitfully alternate between trips
carrying containers from the yard to the cranes which are
loading outgoing cargo and trips back to the yard, carrying
discharged cargo; (ii) more constant value of productivity of
both QCs and SCs as, when a crane is not working, the SC of
a pool can speed up operations of the other QCs.

A quantitative evaluation of the aforementioned benefits is
not easy to obtain through traditional analytical models.

Moreover, classical dispatching models [14] often fail to
provide dynamic assignment of container moves to SCs of a
pool in order to speed up the loading/discharging operations
(the Straddle Carriers Pooling Problem - SCPP). To overcome
these shortcomings, an agent-based model can be defined and
simulated with the following main objectives:

(i) quantifying the benefits of the pooling modality with
reference to system productivity (vessels handling time) and
cost reduction (numbers of exploited SCs and total distance
covered);

(ii) obtaining an effective solution for the dynamic
assignment of container moves to the SCs of a pool which can
be used for automatically drive the coordinated behavior of
the SCs in a real container terminal.

The System Representation obtained on the basis of the
identified simulation objectives is reported in Figure 2. All the
entities represented in Figure 2 are further described, along
with their relationships and their safety and liveness rules, in a
textual format enriched by tables and diagrams which are not
reported due to space limitations.

<<Pro-Active>>

Quay Crane

Container Terminal

<<Passive>>
Vessel

<<Passive>>
Deck

<<Passive>>
Hold

intra-entity relantionship
inter-entity relantionship

<<Passive>>

Buffer

<<Pro-Active>>

Straddle Carrier

<<Passive>>

Yard

<<Re-Active>>

Movement Task Assigner

Fig. 2. System Representation

<<Artifact>>
<<Resource Manager>>

Vessel

<<Agent>>

Quay Crane

<<Society>>
Container Terminal

<<Artifact>>
<<Resource Manager>>

Buffer

<<Agent>>

Straddle Carrier

<<Artifact>>
<<Resource Manager>>

Yard

<<Artifact>>

Movement Task Assigner

Fig. 3. Structural System Model

B. Conceptual System Modeling
The Structural System Model derived from the System

Representation is reported in Figure 3; in particular, as the
simulation objectives concern management policies of SCs,
the level of representation chosen for the Vessel is more
abstract with respect to the level resulting from the Analysis
phase.

For each entity in the Structural System Model the
corresponding Society, Agent or Artifact Model is defined (see
Section II.B). Due to space limitations, the following sub-
sections report only the Society Model for the Container

MALLOW’009: Turin, Italy, September 7-10, 2009

321

Terminal Society, the Agent Model for the Straddle Carrier
Agent and the Artifact Model for the Movement Task Assigner
Artifact.

1) The Container Terminal Society Model
The Society Model of the Container Terminal Society is
shown in Figure 4 which reports the different entities which
compose the Society, the safety and liveness rules which
govern it and its dynamics.

Entity Type

Vessel
Artifact

(Resource
Manager)

Quay Crane
(QC) Agent

Buffer
Artifact

(Resource
Manager)

Straddle
Carrier (SC) Agent

Movement
Task

Assigner
Artifact

Yard
Artifact

(Resource
Manager)

Safety rules
S_CTerm1. NCvi (t) = NCvi(t0) – NCDvi(t)
 + NCLvi(t);

where NCi(t) is the number of containers
on the Vessel i at time t; NCDvi(t) is the
number of containers that have been
discharged from the Vessel i up to time t;
NCLvi(t) is the number of containers that
have been loaded onto the Vessel i up to
time t.

S_Term2. ...

Liveness rules
L_CTerm1. A Quay Crane cannot download

a container on its buffer if the buffer is
full.

L_CTerm2. …

Fig. 4. The Society Model of the Container Terminal Society.

2) The Straddle Carrier Agent Model
Part of the Agent Model of the Straddle Carrier Agent is
shown in Figure 5. In particular:
- Figure 5.a shows the Straddle Carrier Goal Model in

which, as the two goals (Movement of containers from
Buffer to Yard and Movement of containers from Yard to
Buffer) can be achieved independently, no achievement
relationship is present;

- Figures 5.b illustrates a part of the Straddle Carrier
Behavioral Model; in particular, the Straddle Carrier
Activity Table specifies the activities (Container
Movement Activity) which the Straddle Carrier Agent
executes for achieving its goals, along with the pre and
post conditions and the execution schedule (periodical).
Moreover, as the definition of an Agent Behavioral Model
requires that each activity in the Agent Activity Table
must be further described by an UML [23] Activity
Diagram, the diagram for the Container Movement
Activity is also shown. The UML Activity Diagram must
be further enriched with an Activity Action Table (not
shown in figure due to space limitations) which reports,
for each single component action, a synthetic description
of the action along with its pre and post conditions, the
capabilities required for carrying out the action and its
type (computation or interaction).

- Figure 5.c reports the Straddle Carrier Interaction Model
which specifies, for each action of the interaction type
(Task Assignment Request, Assigner Response) of the
Container Movement Activity, the initiator, the partners
of the interaction and the exchanged information.

(sub)goal

SC_sg1 SC_sg2

SC_sg1: Movement of
containers from Buffer to Yard

SC_sg2: Movement of
containers from Yard to Buffer

(a) The Straddle Carrier Goal Model
- Vendor Activity Table -

Activity Goal Pre
conditions

Post
conditions

Execution
Schedule

Container
Movement

SC_sg1
SC_sg2

- The container
handled during the
task must be put

down in the yard or
in the buffer

depending on the
task type

Periodical

- UML Activity Diagram for the Container Movement Activity -

[Vessel Handling not completed]

[Movement in progress]

[No Movement in progress]

Legenda

Time Signal

Send Signal

Accept Signal

Action

Decision

Final node

Flow/edge

Assigner
Response

Task
Assignment
Request

[Vessel Handling completed]

[Yard to Buffer Task]

Move
Container

From the Yard
to the Buffer

[Buffer to Yard Task]
Move

Container
From the Buf fer

to the Yard

(b) A part of the Straddle Carrier Behavioral Model

Interaction Activity Initiator Partners Exchanged
Information

Task
Assignment
Request

Container
Movement

Straddle Carrier Movement
Task Assigner

Task Request

Assigner
Response

Container
Movement

Movement Task
Assigner

Straddle
Carrier

Task
Description

(c) The Straddle Carrier Interaction Model
Fig. 5. Part of the Agent Model of the Straddle Carrier Agent.

- Movement Task Assigner Activity Table -
Activity Service Pre

conditions
Post

conditions
Execution
Schedule

Task
Assignment

Movement
Task

Assignment

A movement task must
be available unless the

Vessel handling is
completed

If available, a new
movement task

must be assigned to
the SC

Triggered

- UML Activity Diagram for the Task Assignment Activity -

[Vessel Handling not completed]

Task Assignment
Request

Task
Assignment
Response

[Vessel Handling completed]

Assign a move
to the

requesting SC

Evaluate
next moves for
the other SCs

in the pool

Fig. 6. Part of the Movement Task Assigner Behavioral Model.

3) The Movement Task Assigner Artifact Model
Figure 6 presents part of the Artifact Model of the

Movement Task Assigner Artifact, and, in particular, the part
of the Movement Task Assigner Behavioral Model which
describes the Task Assignment Activity triggered by an SC
requesting a new container movement to be performed. In
particular, at the completion of its container movement the SC
requests the next assignment from the Movement Task
Assigner (see Figure 5.c). The Movement Task Assigner must

MALLOW’009: Turin, Italy, September 7-10, 2009

322

then decide, from available moves, the next best move for the
requesting SC taking into account also subsequent moves
which could be assigned to the other SCs in the pool
(Lookahead Policy). Such planning could be dynamically
revised at the next task assignment request.

(a) The Simulation Context

(b) The Container Movement SBehavior of the Straddle

Carrier SAgent
Fig. 7. Part of the Simulation Model.

C. Simulation Design

Figures 7.a-b show a portion of the Simulation Model
produced by adopting the Repast Simphony Toolkit [18, 20] as
the reference simulation framework. Figure 7.a shows the
organization of the Simulation Context (SContext) whereas
Figure 7.b shows a Simulation Behavior (SBehavior) of the
SAgent representing a Straddle Carrier. In particular, the
Container Movement SBehavior in figure 7.b corresponds to
the Container Movement Activity reported in figure 5.b. The
seamless transition between the two models is highlighted by
the comparison between these two figures which clearly
demonstrates that the behavior of an Agent/Artifact, defined
during the Conceptual Modeling phase in terms of Activities

expressed by using the UML notation, can be directly mapped
onto that of an SAgent, defined during the Simulation Design
phase in terms of SBehaviors.

D. Simulation Execution and Results Analysis
Starting from the Simulation Model a great part of the

simulation code is automatically generated by the Repast
Simphony Development Environment [15], compiled by using
a Java compiler and then loaded into the Repast Simphony
Runtime Environment for the Simulation Set-up and
Execution.

According to the simulation objectives, the execution of the
resulting Simulation Model made it possible to compare and
quantify the benefits of both dedicated and pooling
modalities. In particular, several simulations have been
executed for different scenarios in order to evaluate: the Quay
Crane Idle Time (QCIT), the Straddle Carrier Covered
Distance (SCCD), and the Straddle Carrier Idle Time (SCIT).
As an example, Figures 8.a-b illustrate the QCIT and the
SCCD, in the two different modalities, with reference to a
simulation scenario based on real-life organizational topology
and equipment typologies of the Gioa Tauro Container
Terminal [3]. In this simulation scenario one Vessel is handled
by two QCs for the loading and discharging of 50 containers
respectively. The results shown in Figure 8, which are results
averaged from 30 simulation runs, made it possible to quantify
the significant advantage of the pooling modality in terms of
vessel handling time and cost reduction.

(a) Quay Crane Idle Time(QCIT)

(b) Average Distance Covered by the Straddle Carriers

Fig. 8. Some Simulation Results.

V. CONCLUSION
Several tools for ABMS are now available as well as

methodologies for the development of agent-based systems
which are mainly proposed in the context of Agent-Oriented
Software Engineering (AOSE). Nonetheless, only a few
results are available which integrate the methodological

MALLOW’009: Turin, Italy, September 7-10, 2009

323

features coming from the AOSE with the modeling and
simulation features of modern ABMS tools. As a
consequence, scarce support in the whole process which goes
from the system analysis to the analysis of simulation results
is provided to domain experts with limited programming
expertise. To address these issues, easyABMS, a recently
proposed and full-fledged methodology for agent-based
modeling and simulation of complex systems, fruitfully
exploits both AOSE modeling techniques and simulation tools
specifically conceived for ABMS.

In this paper, the effectiveness of easyABMS has been
demonstrated using a case study in the logistics domain which
concerns the analysis of different policies for managing
Straddle Carriers in a Container Transshipment Terminal. In
particular, overcoming the main limitations when using only
classical analytical models, a quantitative assessment of two
primary Straddle Carrier management policies and an
effective solution in guiding the dynamic assignment of
container moves have been easily provided. The exploitation
of easyABMS allowed to demonstrate how this new
methodology can seamlessly guide domain experts from the
analysis of the system under consideration to its modeling and
simulation, as the phases which compose the easyABMS
process, the work-products of each phase, and the (seamless)
transitions among the phases are fully specified. In addition,
easyABMS focuses on system modeling and simulation
analysis rather than details related to programming and
implementation as it exploits the Model Driven paradigm,
making it possible the automatic code generation from a set of
(visual) models of the system.

Future research efforts will be devoted to: (i) extend the
Repast Simphony Toolkit so to obtain an integrated ABMS
environment which fully supports all the process phases also
comprising the System Analysis and Conceptual System
Modeling phases; (ii) extensively experiment easyABMS in
case studies of social, financial, economic, and logistic
relevance; (iii) adopting a meta-simulation framework for the
Simulation Design phase so to obtain a platform-independent
simulation model which can then be translated into different
platform-dependent simulation models.

REFERENCES
[1] C. Atkinson and T. Kühne. Model-driven development: A metamodeling

foundation. IEEE Software, 20(5):36-41, 2003.
[2] G. Booch. Object-Oriented Analysis and Design with Applications.

Addison-Wesley, 1994.
[3] J.-F. Cordeau, M. Gaudioso, G. Laporte, and L. Moccia. The service

allocation problem at the Gioia Tauro maritime terminal. European
Journal of Operational Research, 176:1167–1184, 2007.

[4] A. Garro, W. Russo. An integrated agent-based process for the
simulation of complex systems. Proceedings of the International

Conference on Economic Science with Heterogeneous Interacting
Agents (ESHIA), Warsaw, Poland, 19-21 June, 2008.

[5] A. Garro, W. Russo. An integrated and iterative process for agent-based
modeling and simulation. Proceedings of the 5th International
Conference of the European Social Simulation Association (ESSA),
Brescia, Italy, 1-5 September, 2008.

[6] L. Henesey, P. Davidsson, and J. A. Persson. An agent-based approach
for building complex software systems. Autonomous Agents and Multi-
Agent Systems, 18(2):220-238, 2009.

[7] T. Iba and N. Aoyama. Understanding Social Complex Systems with
PlatBox Simulator. In Proc. of the 5th International Conference on
Computational Intelligence in Economics and Finance (CIEF2006),
pages 64-67, Taiwan, October 2006.

[8] T. Iba, Y. Matsuzawa, and N. Aoyama. From Conceptual Models to
Simulation Models: Model Driven Development of Agent-Based
Simulations. In Proc. of the 9th Workshop on Economics and
Heterogeneous Interacting Agents. Kyoto, Japan, 2004.

[9] N. R. Jennings. An agent-based approach for building complex software
systems. Communications of the ACM, 44(4):35-41, 2001.

[10] MASON Home Page. George Mason University, Fairfax, VA, available
at http://cs.gmu.edu/~eclab/projects/mason/.

[11] N. Minar, R. Burkhart, C. LAngton, and M. Askenazi. The Swarm
Simulation System: A Toolkit for Building Multi-Agent Simulations.
Working Paper 96-06-042. Santa Fe Institute, 1996.

[12] A. Molesini, A. Omicini, A. Ricci, E. Denti. Zooming multi-agent
systems. In Proc of the 6th International Workshop on Agent-Oriented
Software Engineering (AOSE 2005), AAMAS 2005, Utrecht, The
Netherlands, 2005.

[13] M. F. Monaco, L. Moccia, and M. Sammarra. Operations Research for
the management of a transhipment container terminal. The Gioia Tauro
case. Maritime Economics and Logistics, 2009, Vol. 11, n. 1, pp. 7-35.

[14] M. F. Monaco, and M. Sammarra. Scheduling and dispatching models
for routing straddle carriers at a container terminal. Proceedings of the
XXXVIII Annual Conference of the Italian Operations Research
Society, Genova, Italy, Sept. 5-8, 2007.

[15] M. J. North, T.R. Howe, N.T. Collier, and J.R. Vos. The Repast
Simphony Development Environment. In Proc. of the Agent 2005
Conference on Generative Social Processes, Models, and Mechanisms,
Chicago, IL , October 2005.

[16] M. J. North, T.R. Howe, N.T. Collier, and J.R. Vos. Repast Simphony
Runtime System. In Proc. of the Agent 2005 Conference on Generative
Social Processes, Models, and Mechanisms, Chicago, IL, October 2005.

[17] M. J. North, C. M. Macal. Managing Business Complexity: Discovering
Strategic Solutions with Agent-Based Modeling and Simulation. Oxford
University Press, 2007.

[18] M.J. North, E. Tatara, N.T. Collier, and J. Ozik. Visual Agent-Based
Model Development with Repast Simphony. In Proc. of the Agent 2007
Conference on Complex Interaction and Social Emergence.
Northwestern University, Evanston, IL, November2007.

[19] M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Mi-croworlds. MIT Press, Cambridge, Mass., 1997.

[20] ROAD (Repast Organization for Architecture and Design). Repast Home
Page, Chicago, IL, available as http://repast.sourceforge.net/.

[21] D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):41-
47, 2006.

[22] UNCTAD (2006). United Nations Conference on Trade and
Development - Review of Maritime Transportation.

[23] Unified Modeling Language (UML) Specification. Version 2.1.2. Object
Management Group Inc., 2007.

[24] U. Wilensky. NetLogo. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL, 1999.

MALLOW’009: Turin, Italy, September 7-10, 2009

324

Engineering Development of Agents using the
Cooperative Behaviour of their Components

Noélie Bonjean, Carole Bernon, Pierre Glize
Institut de Recherche en Informatique de Toulouse

University of Toulouse III
118 route de Narbonne, 31062 Toulouse cedex 9, France

Email: Firstname.Name@irit.fr

Abstract—The objective of the work undertaken here is to
endow an agent-oriented methodology (such as ADELFE) with
a semi-automatic tool for helping designers when drawing up
the agents composing an adaptive multi-agent system (AMAS).
This tool acts as a guide for enabling designers to influence the
emergent global behaviour of an AMAS by acting on the local
behaviour of its cooperative agents. The preliminary approach
proposed in this article can be seen as a feasibility study aiming
at developing a textual guide by considering the principles of
the AMAS theory. Simulation of the behaviour of healthy and
cancerous cells is used as a base for this study.

I. INTRODUCTION

Multi-Agent Systems (MAS) are a recognised paradigm
for designing and implementing complex applications and
several agent-oriented methodologies were proposed to guide
engineers in such a task [1] [2]. However when complexity
prevents designers from discovering an a priori algorithm,
designing MAS may also be a complex problem and new
approaches may be adopted, such as bottom-up ones. Agents
composing a MAS are identified, their behaviour and inter-
actions defined to let them build the actual organisation of
this MAS and let the global collective behaviour emerge from
these interactions. This approach is adopted when building
Adaptive Multi-Agent Systems (AMAS) in which every agent
has a cooperative attitude [3]. However this emergence at the
macro-level does not prevent engineers from having difficulties
for finding the right micro-level cooperative behaviours and
helping them is still an issue. ADELFE1 was proposed as a
guide dedicated for designing AMAS, but it has still some
lacks. Therefore, additional guidelines and tools have to be
provided for enriching it.

The objective of the work undertaken here is then to endow
ADELFE with a semi-automatic tool for helping engineers
when drawing up the agents composing an AMAS. This
tool acts as a guide for enabling designers to influence the
emerging global behaviour of an AMAS by acting on the local
behaviour of its cooperative agents. The approach proposed
in this article is still a preliminary one. It can be seen as
a feasibility study aiming at developing a textual guide to
facilitate designing agents. This textual guide is developed by
studying an application related to the biological domain and
simulating the behaviour of healthy and cancerous cells.

1Atelier de Développement de Logiciels à Fonctionnalité Emergente

Section II presents the context for this study and Section
III positions it according to existing works. The simulation
adopted as a base for the proposed approach is presented in
Section IV. This enables expounding how developing such a
simulation may be guided in Section V before concluding with
some prospects.

II. CONTEXT

The aim of this study is to facilitate the design of agents
composing a specific type of MAS, adaptive ones. This section
introduces the concepts to which this study is related.

A. AMAS Theory and Cooperative Agents

Adaptive multi-agent systems at the heart of this study apply
self-organisation principles according to the AMAS theory
detailed in [3]. According to it, for designing a system whose
functionality is adequate with what is expected by the designer,
it is sufficient to drawing this system up with parts which have
a cooperative attitude. This cooperative attitude means always
trying to avoid, otherwise repair, situations that are judged,
from the own point of view of an agent, as non cooperative. An
agent does this by changing its relationships with other agents.
This also changes the internal organisation of the multi-agent
system it belongs to and as a result transforms the collective
function the system is performing, making it adaptive.

A behavioural model of a cooperative agent was proposed
and used during the microMega2 project which aim was to
model and simulate the behaviour of a unicellular microor-
ganism [4]. Adopting such a model has firstly simplified the
visualisation of the different parts composing the behaviour of
a cooperative agent (see Fig. 1). Indeed, this model separates
the nominal behaviour of a cooperative agent from its adaptive
(or cooperative) one, this latter being itself broken into tuning,
reorganisation and evolution behaviours. A designer may then
work on each part of the agent’s behaviour almost indepen-
dently and implement and test them in a gradual way. These
behaviours may be described as follows:
• the nominal behaviour represents the basic behaviour of

an agent, what it does for achieving its local function
without necessarily coping with Non Cooperative Situa-
tions (NCS),

2National ANR-funded project, 2005-2008

MALLOW’009: Turin, Italy, September 7-10, 2009

325

Fig. 1: Behavioural model of a cooperative agent.

• the adaptive behaviour, added on top of the nominal one,
aims at dealing with these cooperative failures in three
different ways:

– by trying to adjust the values of the parameters used
during the nominal behaviour (tuning behaviour),

– by changing its relationships with others for trying
to solve dead-ends (reorganisation behaviour),

– and finally by self-removing or creating other agents
if NCS still remain (evolution behaviour).

B. ADELFE and Living Design

For assisting engineers when designing AMAS, ADELFE
was proposed. During the design phase, a specific activity is
provided as a guide for designing agents: every non coop-
erative situation has to be identified and every preventing or
repair action has also to be defined. This textual guide is still
insufficient because currently, nothing in ADELFE guarantees
that this identification is the proper and complete one. It is
therefore necessary to enrich ADELFE with a better tool.

Ideally this automatic (or semi-automatic) tool would enable
to develop the adequate behaviour for a cooperative agent, the
very one that would allow achieving the functional adequacy
of the AMAS this agent belongs to. This tool should also
take into account the benefits brought by the behavioural
model presented in the previous section by enabling designers
to separately act on the different parts composing such a
behaviour.

The following section presents this issue and gives insight
into existing works that have links with this one.

III. THE PROBLEM

Considering the model given in Fig. 1, each part of the
behaviour of an agent has an action on the other one. A NCS
occurring during the nominal behaviour may trigger a repair
action that will be performed during the adaptive behaviour.
Depending on the designer’s degree of familiarity with the
AMAS concepts, the behaviour of an agent may be devised
in two ways:
• The designer succeeds in identifying non cooperative

situations. He certainly designs the nominal behaviour

of agents by including some actions that enable an agent
to prevent or repair non cooperative situations it will en-
counter. Furthermore, he is also capable of separating the
nominal behaviour from the adaptive one and implements
an agent according to the behavioural model presented
above.

• In the second case, this designer does not really know
how to identify non cooperative situations for the agent
he is designing, or this identification is incomplete. Fur-
thermore, he does not know how to define the actions this
agent has to perform for staying in a cooperative state.
The nominal behaviour he designs essentially consists in
the basic behaviour of this agent and does not concern
the aspects related to its cooperative attitude. Such a de-
signer encounters difficulties for finding the behavioural
dichotomy the model lays down.

In both cases finding every non cooperative situation an agent
may encounter is not guaranteed, let alone defining every
action required for removing such situations. Theoretically this
would result in the inability of agents to collectively achieve a
functionally adequate global function: what emerges from their
interactions will not suit the designer’s expectations. Ideally
ADELFE should help designers for verifying these points
and/or complete the agent design they made.

A. Simulating for Designing?

In 2002, using simulation for AOSE and designing agents
was a challenge as underlined in [5]. For a few years now,
steps are made in this direction with several research works
using simulation in the AOSE domain [6]–[8].

Some works were made in this sense for enriching ADELFE
as mentioned above. Simulation has been used for automat-
ically detecting NCS in an AMAS prototype [9]. Simulation
has also be used for making agents self-adjust their be-
haviour by making their behavioural rules self-reorganise [10].
Although both approaches had conclusive results for rather
simple applications, they nevertheless have some drawbacks.
The kind of agents that was taken into account (which are
situated in an environment and communicate in an indirect
manner through this environment) and the underlying use of
the SeSAm platform [11] (need to become familiar with it,
performance problems when a great number of rather complex
agents are simulated) may be considered as limitations. Fur-
thermore enabling a designer to make a prototype of his system
before really implementing it is interesting; however, our main
aim is rather to make a first step towards enriching ADELFE
with a “good practice guide” before (semi-)automating this
guide through an appropriate tool.

B. The Adopted Approach

The issue here is therefore to study how general principles
may be extracted from the features of AMAS, and more
especially those of cooperative agents, in order to deliver this
guide.

An AMAS simulating a behaviour is used as the base for
this study. A designer of MAS, who is considered as being

MALLOW’009: Turin, Italy, September 7-10, 2009

326

unfamiliar with the way of implementing AMAS, follows
ADELFE and designs agents for achieving a first functional
version of this system. This version, probably only based
on the nominal part of agents, will likely not be the proper
one. Therefore, the second step is to try and improve this
implementation by acting on the different parts of the adaptive
behaviour an agent may have.

IV. CASE STUDY: SIMULATING CELLS

To stay in line with the application domain of microMega,
and because biological phenomena are complex and dynamic,
a simulation inspired from the biological world was chosen.
Actually, simulation and modelling in biology are a very
active field of research, notably when cells are involved [12].
Mathematical models, based on differential equations e.g., may
be used [13] or less classical tools such as Petri nets [14],
cellular automata [15] or neural networks. For a few years
now, MAS are also contributing to this effort, mainly because
they are able to scale and to model specific properties in a more
comprehensible way than mathematical models [16]. Among
these works, some are more precisely interested in simulating
the behaviour of microorganisms or cells [17]–[19].

This section therefore describes the features of the target
application and how it was implemented.

A. Description of the Simulation

In a living organism, mitosis enables division of a eukaryotic
cell into two daughter cells and apoptosis makes such a
healthy cell degrade and die. Mutations may also occur (due
to radiations, viruses, genetic predispositions, etc.) by copying
errors of genetic material during division. Most of the time,
mutations are not harmful for the cell or are repaired by
internal mechanisms. However, some changes may lead to
malignant cells leading to cancer. Among other properties, a
cancerous cell is not able to repair DNA anymore, divides
in an unchecked way and does not die. Cells “communicate”
with their environment by endocytosis, which enables them
to absorb material from outside, or exocytosis, by secreting
material to the extracellular environment. Molecules which
may be released are moving through the interstitial tissue.
Some of them play a role in the paracrine signalling by
carrying information from a cell to another one [20]. Some
molecules also supply cells with energy. In both cases, moving
make them degrade with time.

According to this simplified biological context, the aim
of the considered application is to simulate the behaviour
of healthy and cancerous cells. The development process of
ADELFE was applied for analysing the requirements, verify-
ing the AMAS adequacy and identifying the agents involved in
this MAS, and designing their nominal behaviour with respect
to the basic biological knowledge previously presented. Due
to lack of space and because the objective of the paper is not
to focus on it, only some details are given.

Because cells are autonomous, have a local goal (survive for
healthy ones and proliferate for malignant ones), have only a
partial view of their environment, two types of agents were

Fig. 2: Ratio of cancerous cells over time.

identified : healthy cells and cancerous ones. Molecules are
moving in an autonomous way, have also a limited perception
of their environment but they do not have a local goal and
are not considered as agents. Message passing simulates the
absorption of a paracrine molecule by a cell and the related
communication. Healthy cells may divide, mutate, die, signal
molecules, or detect and absorb molecules. Cancerous cells do
not mutate and die.

B. Collective Nominal Behaviour Obtained

The designer of this application is regarded as being able to
deal with only the nominal behaviour of agents. As a result, the
nominal behaviour of cells was implemented and the adaptive
behaviour is what the guide has to help finding.

To see how the collective behaviour obtained for this MAS
fits a user’s needs, the ratio R of cancerous cells was studied.
R = C

C+H where C is the number of cancerous cells and
H , the number of healthy ones. The curve obtained for R is
shown on the right part of Fig. 2.

A healthy cell has a given probability of mutation and
proliferates only if some free space is near it. On the contrary,
a cancerous cell tries to push healthy ones if it does not have
available space around it and divides itself if it succeeds. As a
result, a slow increase of the number of cancerous cells can be
seen on the curve at the beginning of the simulation because
few mutations occur yet. However, once several malignant
cells appear, they proliferate in a faster way than healthy ones,
also because they do not die, and invade the tissue with time.

Let us suppose now that this collective behaviour is not the
one expected by the end-user of this simulated system, e.g., a
biologist. This user would like to obtain a curve with another
shape; for instance, one that would express a more regular
appearance of cancerous cells which is shown on the left part
of Fig. 2. This shape has no biological reality and was chosen
only for studying how the engineer could be guided to adapt
the local behaviour of cells in order to obtain the new expected
collective behaviour.

V. GUIDING THE SIMULATION

Actually, changing the behaviour of an agent may be
done by changing the basic function it performs, its nominal
behaviour. However, this choice is contrary to the hypothesis

MALLOW’009: Turin, Italy, September 7-10, 2009

327

we previously made; only the adaptive behaviour has to be
built or modified. This means modifying one or all the parts
of this behaviour: tuning, reorganisation and evolution. Since
this study is a first step towards our goal, only the tuning part
will be reviewed.

A. Act on the Tuning Behaviour of Agents

In general, the tuning behaviour of an agent has to be
modified in order to get the expected global behaviour (the
expected shape for the studied curve, e.g.). Modifying the
value of the parameters that are used by an agent is going
to modify how the nominal behaviour, which uses these very
parameters, performs and therefore is going to influence the
global behaviour of its collective. The issue lies in identifying
the right parameters that have to be calibrated in order to get
the proper behaviour.

The approach proposed is to study first how the parameters
of an agent may promote its possible actions. Which actions
have to be influenced (fostered or encouraged) in order to get
the expected behaviour is then determined. Since a parame-
ter may influence one or several actions, these relationships
have to be gradually propagated for determining the proper
parameter to change in order to modify the actions previously
identified.

B. Relate Parameters and Actions of Agents

By leaning on the application domain knowledge, the de-
signer has to establish a table relating the actions agents may
perform and the parameters these agents use. Actually, this
table should be done before beginning implementation, it is
also a means to see how agents behave and to reflect on what
they perform according to what they have to do.

Such tables were built for healthy cell agents (see Table
I) and cancerous ones (see Table II). In this application, 18
parameters may influence the 7 actions of healthy cells:
• A1 - Proliferate,
• A2 - Mutate,
• A3 - Die,
• A4 - Absorb a paracrine molecule,
• A5 - Signal a paracrine molecule,
• A6 - Absorb a “simple” molecule,
• A7 - Signal a “simple” molecule.

or the 5 ones of cancerous cells (A1’, A4’, A5’, A6’ and A7’).
Due to lack of space, out of the 18 parameters, 12 parameters
are considered in the tables built, those that are only required
for the coming reasoning:
• P1 - Lifetime of a cell: lifetime in the means case,
• P2 - Energy of a cell: internal energy a cell has for living,
• P3 - Molecule concentration in the environment: number

of molecules a cell may perceive,
• P4 - Environmental conditions: occupied spaces sur-

rounding a healthy cell and free ones for a cancerous
one,

• P5 - Proliferation speed: expressed in simulation steps,
• P6 - Energy cost for proliferating: energy required for

this action,

TABLE I: Influence table for healthy cell-agents.

Param/Action A1 A2 A3 A4 A5 A6 A7
P1 + - -
P2 +++ ++ ++ ++ -
P3 + +++ - - - - +++
P4 - - +++ +++
P5 ++ -
P6 - ++
P7 + -
P8 + -
P9 + -
P10 ++
P11 + +++
P12 +++
. . .

• P7 - Energy cost for signalling a paracrine molecule,
• P8 - Energy cost for absorbing a molecule of any type,
• P9 - Energy cost for signalling a “simple” molecule,
• P10 - Apoptosis signals: signals which tend to influence

death when overpopulation occurs,
• P11 - Sensitivity threshold to paracrine: expresses the

ability of a cell to react to paracrine molecules,
• P12 - Mutation rate: number of cells that may mutate

during a lifecycle.
For each (parameter, action) pair, two criteria are repre-

sented in these influence tables:
• In which direction (increase/decrease) the given parame-

ter may vary for promoting the action. This is expressed
by + or −.

• The influence of the given parameter on the action. This
is expressed by the number of symbols + or − used.

For example, the parameter P1-Energy of a cell has to
increase for promoting the action A1-Proliferate of a healthy
cell and this influence on A1 is high because three + are used.
P1 has also an impact on the action A7-Signal a “simple”
molecule. In order to encourage a healthy cell to make this
action, P1 has to be decreased and this influence is low because
only one − is used.

Once these tables designed, a reasoning has to be done in
order to modify the behaviour of cell-agents.

C. Propagate Influences

A parameter may influence several actions (P1 influencing
A1 and A7, e.g.), and by modifying it, the related actions will
also be promoted or discouraged, depending on the impact
of this parameter. Therefore before modifying a parameter,
studying how its influences are propagated from an action to
another one is required. The influence tables previously built
will be a help for this study.

For trying to obtain a more linear curve for R, starting from
Fig. 2, R has to increase when R is below the straight line
which represents its expected value and it has to decrease when
it is above this line.

MALLOW’009: Turin, Italy, September 7-10, 2009

328

TABLE II: Influence table for cancerous cell-agents.

Parameter/Action A1’ A4’ A5’ A6’ A7’
P1
P2 +++ ++ ++ -
P3 + +++ - - - - +++
P4 ++
P5 ++
P6 -
P7 -
P8 -
P9 -
P11 +++
. . .

In a first step, R is going to be increased. Since R is
a fraction, it increases when its numerator does and/or its
denominator decreases. Since C cannot decrease, C has to
increase or S has to decrease. To make C increase and S
decrease, the action A1-Proliferate has to be promoted for
cancerous cells, A1’-Proliferate has to be repressed for healthy
ones and A2-Mutate as well as A3-Die have to be promoted
for healthy cells.

Each action has to be analysed depending on the rela-
tionships it has with the parameters and how this influence
propagates.

1) Promote “A1’-Proliferate” for Cancerous Cells: Pro-
liferation of cancerous or healthy cells are promoted by
the same parameters except P4-Environmental conditions.
Therefore, promoting A1’ by playing on P1, P2, P3, P5
or P6 will also promote A1, and A1 has to be deserved.
These parameters cannot be modified. The P4 parameter
represents the available space around a cell and is calculated
by (NCC +NHC + AS) − (NCC +NHC) where NCC
is the number of neighbouring cancerous cells, NHC is the
number of neighbouring healthy cells and AS is the number
of available spaces around the cell. This formula should give
the highest possible result for promoting A1’.

2) Promote “A1-Proliferate” for Healthy Cells: As above,
some parameters cannot be changed. However other parame-
ters have an impact on A1 and do not influence A1’:
• P1-Lifetime of a cell has a low influence on A1. Deserving

it should be obtained by decreasing P1 and this would
strongly promote A3-Die which is the expected effect.

• P4-Environmental conditions has a high influence on
A1. It represents the occupied spaces around an healthy
cell. P4 is increased by promoting A1/A1’ for each kind
of cells or by deserving A3. The former alternative is
contrary to the expected effect for healthy cells and
redundant for what was done above for cancerous ones.
The latter alternative is the opposite of the expected
effect. Another solution would be to compute the value
of P4 in a different way. The current formula is (NCC+
NHC)/(NHC+NCC+AS). By adding the respective
coefficients a, b and c to NCC, NHC and AS in order

to reflect their importance, a new formula may be used:
(a×NCC+b×NHC)/(a×NCC+b×NHC+c×AS).
Furthermore, increasing this parameter would also pro-
mote, with the same importance, the actions A2-Mutate
and A3-Die and this goes in the right direction.

3) Promote “A3-Die” for Healthy Cells: This action is
influenced by P1-Lifetime of a cell and P4-Environmental
conditions which were studied before. Some other parameters
are also involved (from P5 to P10). P10-Apoptosis signals
influence solely this action and acting on them may be
easy. Energy costs (from P6 to P9) could be increased for
promoting A3-Die. However, by studying propagation, these
costs have also an impact on other actions such as absorption
and signalling of molecules, and this could modify A2-Mutate;
on the other hand, A1-Proliferate could also be deserved, and
so on. Not modifying these parameters seems to be a good
choice to try and avoid a too great influence on the system.

4) Promote “A2-Mutate” for Healthy Cells: Among the
parameters that were not examined before, P12-Mutation rate
has no influence on any other actions than A2, therefore it may
be modified as needed. Adjusting P11-Sensitivity threshold
would be propagated on A4-Absorb paracrine without any
harmful effect on the system.

Once this propagation studied, some parameters may vary
while others cannot. According to these new conditions, mod-
ification of some of the potential modifiable parameters has
then to be done.

D. Tune Parameters
Table III shows the parameters that may vary (in bold font)

or not (normal font) for promoting (+ before the name of an
action) or deserving (−) actions of healthy or cancerous cells
(their specific parameters or actions are distinguished from
those of healthy cells by a ’ following their name).

Parameters for which propagation is not opposite to the
expected result are first modified. P1, P4, P11 and P12 are
chosen, especially because they have the highest influence.
The formula related to P4 is thus modified for making can-
cerous cells have a higher impact and becomes (2×NCC +
NHC)/(2×NHC +NCC +AS).

E. Verify the Impact of Tuning
Once the above reasoning done and parameters modified in

the simulation code, a new kind of curve for R was obtained
(see Fig. 3). The first part of this curve is more linear than
previously and gets closer to a straight line. However, its
second part (from step 800) does not properly fit expectations.

Therefore, the same reasoning has to be done in order to
make the top curve as linear as possible by decreasing R
without cancelling the work done previously. An opposite op-
eration has to be done: deserve A1’-Proliferate for cancerous
cells, A2-Mutate and A3-Die for healthy ones, and promote A1-
Proliferate for healthy cells. Since the benefits brought by the
previous adjustment have to remain, the parameters that may
be modified are those that were still untouched. In this case,
only P4’ was not modified and the value of environmental
conditions for cancerous cells is then turned down.

MALLOW’009: Turin, Italy, September 7-10, 2009

329

TABLE III: Influence table for making R increase.

Parameter/Action − A1 + A2 + A3 + A1’
P1 - - - -
P2 - - - ++ +++
P3 - +
P4 +++ +++ +++
P4’ ++
P5 - - - ++
P6 + + -
P7 +
P8 +
P9 +

P10 ++
P11 +
P12 +++

F. Observe the Collective Behaviour Obtained

After these two adjustments, a typical final curve obtained
is shown in Fig. 4. It is more linear and looks like the one
end-users expected. Therefore the collective behaviour of the
cells is more in line with the expected one. As expected, the
shape of the curve shows that cell-agents have modified their
behaviour in the right direction.

It is also worth observing that the collective behaviour
before and after modifications made on the tuning behaviour of
cells does not give the same spatial distribution for cancerous
cells, as shown in Fig. 5. In this figure, healthy cells are empty
hexagons, cancerous ones are black hexagons and paracrine
molecules are dots between cells. To simulate an “infinite”
tissue, cells on opposite borders are neighbours. These snap-
shots were taken when around 10 cancerous cells appeared.
They show that cancerous cells tend to be more scattered in
the simulated tissue when only the nominal behaviour was
concerned. After tuning, they tend to form clusters because
these cancerous cells can mainly be created at the frontiers of
clusters, and this prevents their exponential development. Of
course as time goes by, the number of cancerous cells increases
and their distribution tends to be more dense in both cases.
However the initial disparity is consistent with the results and
the aim of obtaining a straight curve.

Furthermore, this disparity and clusterisation was obtained
without reasoning on this macro-level; only by studying re-
lationships between parameters and actions inside the agents.
Here also, there is emergence of a phenomenon at the macro-
level which was controlled by cooperation at the micro-level.
More precisely, there are three levels:

1) The macro-level which corresponds to the cell tissue.
It is used to observe the global behaviour and to enter
feedbacks according to the end-user wishes.

2) The meso-level constituted by the individual cells, where
ad hoc feedbacks arrive according to their type (cancer-
ous or not).

3) The micro-level corresponding to the cell components,
where cooperative “negotiations” (as the “good practice

Fig. 3: New ratio obtained after the first tuning.

Fig. 4: Final ratio obtained.

Fig. 5: Example of distribution obtained before (left) and after
(right) tuning.

guide” will explain in ADELFE) allows the determina-
tion of the relevant adjustments to do.

VI. CONCLUSION

In this article a first step was made towards integrating
a methodological guide into ADELFE for helping engineers
when designing the behaviour of cooperative agents. This
preliminary textual guide may be summed up as follows. The
designer has first to devise the nominal behaviour of agents
involved in the AMAS he has to engineer. Depending on
the feedbacks given by end-users, he has then to act on the
adaptive behaviour of these agents to improve the collective
behaviour of this AMAS. For the time being, only the tuning
part of this adaptive behaviour was studied. The designer has
then to establish relationships between parameters involved in
the AMAS and actions agents may do (and this may be done

MALLOW’009: Turin, Italy, September 7-10, 2009

330

before, as a help for finding the nominal behaviour also). Then,
these relationships have to be quantified and studied, especially
by propagating effects a parameter may have on different
actions (promote or deserve them). This enables finding which
and how some parameters have to be changed for positively
influencing the collective behaviour towards what is expected
by end-users.

A MAS simulating cancerous cell proliferation in a tissue
was used for grounding this demonstration. Although it cannot
be considered as having a strong biological reality, it accounts
for an interesting complex use case, at least for tuning,
because it has several interrelated actions and parameters. The
proposed approach was applied on this cell simulation for
playing on the evolution of the ratio of cancerous cells over
time and trying to influence the shape of the related curve.
By changing some parameters used by healthy and cancerous
cells, this curve was actually changed in the right direction.
As a consequence the distribution of cells in the tissue was
also modified which shows that emergence of a phenomenon
at the global level may be influenced by changes in the local
behaviours.

However, a lot of work has to be done yet. First, it
is necessary to study how reorganisation and evolution be-
haviours could be used for guiding the engineer, then enriching
ADELFE with this (still textual) guide could be done, once
formalised. The last step would be to automate this guide by
implementing the related tool as an AMAS. Indeed, discover-
ing the parameters and actions to adjust in a complex adaptive
system clearly corresponds to a specific agentification level,
not directly required by the end-user problem. In this tool,
for at least the tuning part, actions and parameters would be
considered as cooperative agents. Their collective goal would
be to find the right parameters to modify depending on the
feedbacks given by end-users which would be considered as
NCS that these agents should avoid and solve. Furthermore,
all the results observable by an end-user would have to be
agentified (e.g. the curve shown on Fig. 2 would be an
agent in order to reason cooperatively on function R when
an external feedback occurs). Consequently, engineering semi-
automatically the development of a complex adaptive system
must be AMAS-compliant, even when this complex system
itself is not AMAS-designed.

Consequently this tool is not ADELFE-dependent and could
be included in any methodology devoted to the development
of complex adaptive systems. Nevertheless, a lot of work
and tests are required before considering such a kind of
deployment.

REFERENCES

[1] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Methodologies and
Software Engineering for Agent Systems. Kluwer Publishing, 2004.

[2] B. Henderson-Sellers and P. Giorgini, Agent-Oriented Methodologies.
Idea Group Pub, June 2005.

[3] D. Capera, J.-P. Georgé, M.-P. Gleizes, and P. Glize, “The AMAS Theory
for Complex Problem Solving Based on Self-organizing Cooperative
Agents,” in 12th IEEE International Workshops on Enabling Technolo-
gies, Infrastructure for Collaborative Enterprises, Linz, Austria. IEEE
Computer Society, June 2003, pp. 383–388.

[4] C. Bernon, D. Capera, and J.-P. Mano, “Engineering Self-Modeling
Systems: Application to Biology,” in International Workshop on Engi-
neering Societies in the Agents World, ser. LNCS, A. Artikis, G. Picard,
and L. Vercouter, Eds., no. 5485. Springer, 2009, pp. 236–251.

[5] A. Uhrmacher, “Simulation for Agent-Oriented Software Engineering,”
in First International Conference on Grand Challenges for Modelling
and Simulation, San Antonio, Texas, W. Lunceford and E. Page, Eds.
San Diego: SCS, 2002.

[6] G. Fortino, A. Garro, W. Russo, R. Caico, M. Cossentino, and F. Ter-
mine, “Simulation-Driven Development of Multi-Agent Systems,” in
Workshop on Multi-Agent Systems and Simulation, Palermo, Italia, 2006.

[7] M. Cossentino, G. Fortino, A. Garro, S. Mascillaro, and W. Russo,
“PASSIM : A Simulation-based Process for the Development of Multi-
Agent Systems,” Int. Journal of Agent-Oriented Software Engineering,
vol. 2, no. 2, pp. 132–170, 2008.

[8] L. Gardelli, M. Viroli, M. Casadei, and A. Omicini, “Designing Self-
organising Environments with Agents and Artefacts: A Simulation-
driven Approach,” Int. J. Agent-Oriented Softw. Eng., vol. 2, no. 2, pp.
171–195, 2008.

[9] C. Bernon, M.-P. Gleizes, and G. Picard, “Enhancing Self-Organising
Emergent Systems Design with Simulation,” in International Workshop
on Engineering Societies in the Agents World (ESAW), Dublin, ser.
LNCS, G. O’Hare, M. O’Grady, A. Ricci, and O. Dikenelli, Eds., vol.
4457. Springer-Verlag, September 2007, pp. 284–299.

[10] S. Lemouzy, C. Bernon, and M.-P. Gleizes, “Living Design: Simulation
for Self-Designing Agents,” in European Simulation and Modelling
Conference (ESM), Malte, J. Sklenar, A. Tanguy, C. Bertelle, and
G. Fortino, Eds. Eurosis, October 2007, pp. 432–436.

[11] F. Klügl, R. Herrler, and O. Oechslein, “From Simulated to Real
Environments: How to use SeSAm for Software Development,” in
Multiagent System Technologies - 1st German Conference MATES, ser.
LNAI, M. Schillo, Ed., vol. 2831. Springer-Verlag, 2003, pp. 13–24.

[12] T. Fisher and T. Henziger, “Executable Cell Biology,” Nature Biotech-
nology, vol. 25, no. 11, pp. 1239–1249, November 2007.

[13] P. Mendes, “GEPASI: A Software Package for Modelling the Dynamics,
Steady States and Control of Biochemical and other Systems,” Computer
App. in the Biosciences, vol. 9, no. 5, pp. 563–571, October 1993.

[14] C. Li, Q. W. Ge, M. Nakata, H. Matsuno, and S. Miyano, “Modelling
and Simulation of Signal Transductions in an Apoptosis Pathway by
using Timed Petri Nets,” J. Biosci., vol. 32, pp. 113–127, 2007.

[15] H. Silva and M. Martins, “A Cellular Automata Model for Cell Differ-
entiation,” Physica A, no. 322, pp. 555–566, 2003.

[16] E. Merelli, G. Armano, N. Cannata, F. Corradini, M. d’Inverno,
A. Doms, P. Lord, A. Martin, L. Milanesi, S. Moller, M. Schroeder,
and M. Luck, “Agents in bioinformatics, Computational and Systems
Biology,” Briefings in Bioinformatics, vol. 8, no. 1, pp. 45–59, 2006.

[17] M. d’Inverno and R. Saunders, “Agent-Based Modelling of Stem
Cell Self-organisation in a Niche,” in Engineering Self-Organising
Systems: Methodologies and Applications, ser. LNCS, S. Brueckner,
G. Di Marzo Serugendo, A. Karageorgos, and R. Nagpal, Eds., vol.
3464. Springer, 2004, pp. 52–68.

[18] L. Dib, N. Bonnet, Z. Guessoum, and M. Laskri, “Multi-agent System
Simulating Tumoral Cells Migration,” in 18th Australian Joint Confer-
ence on Artificial Intelligence. Springer Verlag, December 2005, pp.
624–632.

[19] K. Webb and T. White, “Cell Modeling with Reusable Agent-based
Formalisms,” Applied Intelligence, vol. 24, no. 2, pp. 169–181, April
2006.

[20] T. J. Weber, R. W. Siegel, L. M. Markillie, W. B. Chrisler, X. C. Lei, and
N. H. Colburn, “A Paracrine Signal Mediates the Cell Transformation
Response to Low Dose Gamma Radiation in JB6 Cells,” Molecular
Carcinogenesis, no. 43, pp. 31–37, 2005.

MALLOW’009: Turin, Italy, September 7-10, 2009

331

Simulation of Alternative Self-Organization Models
for an Adaptive Environment

Stefania Bandini, Andrea Bonomi, Giuseppe Vizzari
Complex Systems and Artificial Intelligence research centre

University of Milano–Bicocca
Viale Sarca 336, U14 Building, 20126 Milano, Italy
{bandini, bonomi, vizzari}@disco.unimib.it

Vito Acconci
Acconci Studio

20 Jay St., Suite #215, Brooklyn, NY 11201
studio@acconci.com

Abstract—The ambient intelligence scenario depicts electronic
environments that are sensitive and responsive to the presence
of people. The paper deals with a particular kind of system
whose aim is to enhance the everyday experience of people
moving inside the related physical environment according to the
narrative description of a designer’s desiderata. In this kind
of situation computer simulation represents a useful way to
envision the behaviour of the responsive environments modeled
and implemented, without actually bringing them into existence
in the real world, in order to evaluate their adherence to the
designer’s specification. This paper describes the simulation of
an adaptive illumination facility, a physical environment endowed
with a set of sensors that perceive the presence of humans (or
other entities such as dogs, bicycles, cars) and interact with a
set of actuators (lights) that coordinate their state to adapt the
ambient illumination to the presence and behaviours of its users.
The simulation system is used to compare two different self-
organization models managing the adaptive illumination system.

I. INTRODUCTION

The ambient intelligence scenario [16] describes future
human environments as dynamic places, endowed with a
large number of wirelessly interconnected electronic devices
that sense the nearby conditions and react to the perceived
signals. The aims of these facilities can be very different, from
explicitly providing electronic services to humans present in
the environment through some form of computational device
(such as personal computer or PDA), to simply realizing
some type of ambient adaptation to the users’ presence (or
deliberate acts like voice emission or gestures). Ambient
intelligence comprises thus those systems that are designed
to autonomously adapt the environment to the people living
or simply passing by in it in order to improve their everyday
experience.

Sometimes the requirements and the specification of this
form of adaptation are clear, unambiguous and even already
formalized (e.g. in the wintertime keep the internal tempera-
ture of each room between 19 C and 22 C); on the other hand,
sometimes the idea and specification of the desired adaptation
is given in a visual or narrative form by a designer or even by
an artist (in case of artistic installations). In this case, while
the desired overall effect of adaptation could be clear it may
be very complex to fill the gap between this form of high level
specification and a computational system.

In this second situation computer simulation can play a
crucial role in supporting the design and realization of adap-
tive, self-organizing ambient intelligence systems. In fact,
traditional design and modeling instruments can provide a
suitable support for evaluating static properties of this kind
of environment (e.g. through the construction of 3D models
representing a mock-up, proof of concept of the desired
appearance or also adaptation effect but in a single specific
situation), but they are not designed to provide abstractions
and mechanisms for the definition and simulation of reactive
environments and their behaviours. Through the definition of
specific models and their implementation in simulators it is
possible to obtain an envisioning of the static features of the
ambient intelligence system as well as its dynamic response to
the behaviour of humans and other relevant entities situated
in it. This allows performing a face validation [14] of the
adaptation mechanisms and also to perform a tuning of the
relevant parameters.

This paper describes the application of a modeling and
simulation approach to support the design of an adaptive
illumination facility that is being designed and realized by the
Acconci Studio1 in Indianapolis. In particular, the designed
system should be able to locally enhance the overall illu-
mination of a tunnel in order to highlight the position and
close surrounding area of pedestrians (as well as other entities
such as dogs, bicycles, cars). In this case, the simulation
offers both a support to the decisions about the number and
positioning of lights and, more important, it encapsulates the
self-organization mechanisms guiding the adaptive behaviour
of lights reacting the the presence of pedestrians and other
relevant entities in the environment. By providing the current
state of the environment, in terms of simulated outputs of
sensors detecting the presence of pedestrians, as an input
to the self-organization model it is possible to obtain its
simulated response, and the current state of lights. A schema
of the overall simulation system is shown in Figure 1: it
must be noted that the self-organization model adopted for
the simulator could be effectively used to manage the actual
system, simply providing actual inputs from field sensors and
employing its outputs to manage actual lights rather that a

1http://www.acconci.com

MALLOW’009: Turin, Italy, September 7-10, 2009

332

Computational model
for adaptive
illumination

Pedestrian simulation Visualization system

Actual sensors
(motion or presence)

Simulated
data

Field data
Computational model

for adaptive
illumination

Actuators'
states

Actual actuators
(lights)

Actuators'
states

Design
support
configuration

System
management
configuration

Parameters

Parameters

Fig. 1. A schema describing the components of the simulation system.

virtual visualization of the actual environment.
Besides the specific aims of the ambient intelligent sys-

tem, there is an increasing interest and number of research
efforts on approaches, models and mechanisms supporting
forms of self-organization and management of the components
(both hardware and software) of such systems. The latter are
growingly viewed in terms of autonomous entities, managing
internal resources and interacting with surrounding ones so
as to obtain the desired overall system behaviour as a result
of local actions and interactions among system components.
Examples of this kind of approach can be found in both in
relatively traditional pervasive computing applications (see,
e.g., [10]), but also in a new wave of systems developed in the
vein of amorphous computing [2] such as the one on paintable
computers described in [9]. In this rather extreme application
a whole display architecture is composed of autonomous and
interacting graphic systems, each devoted to a single pixel,
that must thus interact and coordinate their behaviours even
to display a simple character. There is however a significant
number of heterogeneous approaches to the definition of mod-
els supporting forms of self-organization in artificial systems
and their application involves several important modeling and
engineering choices.

It must be stressed that in the Indianapoli tunnel renovation
scenario the designer had a precise idea of the desired overall
adaptive illumination effect, combining a functional overall
illumination of the tunnel – allowing pedestrians and drivers
to effectively have a sufficient visibility of the environment
but also emphasizing their presence and passage through
the tunnel – but the choice of the computational model to
achieve this effect was definitely not obvious. For instance, the
rationale of the desired adaptive illumination pattern (that will
be more throughly described in Section II) is to manage lights
as if they were animated and able to follow the movement
of pedestrians. This was tecnically impossible in the specific
scenario and the effect had to be achieved by turning on and
off in a coordinated way a set of lights characterized by a fixed

position in the environment. However, the metaphor adopted
by the designer could lead to consider specific computational
models whose first class concepts are moving entities, like
Boids [15], whose presence in the portion of the environment
associated to a light indicates the need to turn a specific light
on. On the other hand, a different approach, based on Cellular
Automata [17], would lead to consider the physical structure
of the environment, that is, a discrete and finite grid whose
nodes could be either sensors or actuators, and the effective
nature of the kind of action that must be managed, that is a
change of state of the actuators.

The aims of the paper are thus twofold: on one hand it
describes a concrete experience in which computer simulation
was adopted to fill the gap between an abstract specification of
the desired behaviour of an adaptive self-organizing environ-
ment; on the other hand the paper discusses the adequacy and
feasibility of the adoption of two alternative computational
models to generate the desired adaptation effect and to be
effectively deployed in the real infrastructure.

The following section will introduce more in details the
specific scenario in which this research effort is set, describing
the requirements for the adaptive illumination system and
the environment adaptation model. Section III introduces the
pedestrian modeling approach, while the self-organization
models that were experimented to guide the adaptive illumi-
nation facility are described in Section IV. A description of
the developed environment supporting designers will follow,
then conclusions and future works will end the paper.

II. THE SCENARIO

The Acconci Studio, partner of the described research effort,
has recently been involved in a project for the renovation
of a tunnel in the Viginia Avenue Garage in Indianapolis.
The tunnel is currently mostly devoted to cars, with relatively
limited space on the sidewalks and its illumination is strictly
functional. The planned renovation for the tunnel includes a
set of interventions, and in particular two main effects of

MALLOW’009: Turin, Italy, September 7-10, 2009

333

Fig. 2. A visual elaboration of the desired adaptive illumination facility (the
image appears courtesy of the Acconci Studio).

illumination, also depicted in a graphical elaboration of the
desired visual effect shown in Figure 2: an overall effect of
uniformly coloring the environment through a background,
ambient light that can change through time, but slowly with
respect to the movements and immediate perceptions of people
passing in the tunnel; a local effect of illumination reacting to
the presence of pedestrians, bicycles, cars and other physical
entities.

The rationale of this local and dynamic adaptive illumi-
nation effect is better explained by the following narrative
description of the desired effect:

The passage through the building should be a volume
of color, a solid of color. It’s a world of its own, a
world in itself, separate from the streets outside at
either end. Walking, cycling, through the building
should be like walking through a solid, it should be
like being fixed in color.
The color might change during the day, according to
the time of day: pink in the morning, for example,
becomes purple at noon becomes blue, or blue-
green, at night. This world-in-itself keeps its own
time, shows its own time in its own way.
The color is there to make a heaviness, a thickness,
only so that the thickness can be broken. The thick-
ness is pierced through with something, there’s a
sparkle, it’s you that sparkles, walking or cycling
though the passage, this tunnel of color. Well no,
not really, it’s not you: but it’s you that sets off the
sparkle – a sparkle here, sparkle there, then another
sparkle in-between – one sparkle affects the other,
pulls the other, like a magnet – a point of sparkle is
stretched out into a line of sparkles is stretched out
into a network of sparkles.
These sparkles are above you, below you, they
spread out in front of you, they light your way
through the tunnel. The sparkles multiply: it’s you

Motion
Sensor

Neighbor
Controlled

area

Controller
Communication

line

Controlled
area

Light

Neighbor

Fig. 3. A schema of the CA model for the adaptive illumination facility.

who sets them off, only you, but – when another
person comes toward you in the opposite direction,
when another person passes you, when a car passes
by – some of these sparkles, some of these fire-flies,
have found a new attractor, they go off in a different
direction.

The first type of effect can be achieved in a relatively simple
and centralized way, requiring in fact a uniform type of illu-
mination that has a slow dynamic. The second point requires a
different view on the illumination facility. In particular, it must
be able to perceive the presence of pedestrians and other phys-
ical entities passing in it, in other words it must be endowed
with sensors (detecting either the presence or the movement
of relatively big objects). Moreover, it must be able to exhibit
local changes as a reaction to the outputs of the aforemetioned
sensors, providing thus for a non uniform component to the
overall illumination. The overall environment must be thus
split into parts, cells that represent proper subsystems: Figure 3
shows a schema of the approach we adopted to subdivide the
physical environment into autonomous units, provided with
motion/presence sensors (able to detect the arrival/presence of
relevant entities) and lights (to adapt the ambient illumination,
highlighting the presence of pedestrians).

However, the effect of the presence of a pedestrian in a
portion of space should extend beyond the borders of the
occupied cell. In fact, the illumination effect should “light
the way” of a pedestrian through the tunnel. Cells must thus
be able to interact, in order to influence neighboring ones
whenever a pedestrian is detected, to trigger a (maybe less
intense) illumination.

III. PEDESTRIAN SIMULATION MODEL

The adopted pedestrian model is based on the Situated
Cellular Agent model, a specific class of Multilayered Multi-
Agent Situated System (MMASS) [6] providing a single
layered spatial structure for agents environment. A thorough
description of the model is out of the scope of this paper,
but we briefly introduce it to give some basic notion of

MALLOW’009: Turin, Italy, September 7-10, 2009

334

the elements that are necessary to describe the SCA crowd
modeling approach.

A. Situated Cellular Agents

A Situated Cellular Agent system is defined by the triple〈
Space, F,A

〉
where Space models the environment where the

set A of agents is situated, acts autonomously and interacts
through the propagation of the set F of fields and through
reaction operations. Space consists of a set P of sites arranged
in a network (i.e. an undirected graph of sites). The structure of
the space can be represented as a neighborhood function, N :
P → 2P so that N(p) ⊆ P is the set of sites adjacent to p ∈
P ; the previously introduced Space element is thus the pair〈
P,N

〉
. Focusing instead on the single basic environmental

elements, a site p ∈ P can contain at most one agent and is
defined by the 3–tuple

〈
ap, Fp, Pp

〉
where:

• ap ∈ A ∪ {⊥} is the agent situated in p (ap = ⊥ when
no agent is situated in p that is, p is empty);

• Fp ⊂ F is the set of fields active in p (Fp = ∅ when no
field is active in p);

• Pp ⊂ P is the set of sites adjacent to p (i.e. N(p)).
A SCA agent is defined by the 3–tuple < s, p, τ > where

τ is the agent type, s ∈ Στ denotes the agent state and can
assume one of the values specified by its type (see below
for Στ definition), and p ∈ P is the site of the Space
where the agent is situated. As previously stated, agent type
is a specification of agent state, perceptive capabilities and
behaviour. In fact an agent type τ is defined by the 3–tuple〈
Στ , P erceptionτ , Actionτ

〉
. Στ defines the set of states

that agents of type τ can assume. Perceptionτ : Στ →
[N ×Wf1] . . . [N ×Wf|F |] is a function associating to each
agent state a vector of pairs representing the receptiveness
coefficient and sensitivity thresholds for that kind of field.
Actionτ represents instead the behavioural specification for
agents of type τ . Agent behaviour can be specified using a
language that defines the following primitives:
• emit(s, f, p): the emit primitive allows an agent to start

the diffusion of field f on p, that is the site it is placed
on;

• react(s, ap1 , ap2 , . . . , apn
, s′): this kind of primitive al-

lows the specification of a coordinated change of state
among adjacent agents. In order to preserve agents’
autonomy, a compatible primitive must be included in
the behavioural specification of all the involved agents;
moreover when this coordination process takes place, ev-
ery involved agents may dynamically decide to effectively
agree to perform this operation;

• transport(p, q): the transport primitive allows to define
agent movement from site p to site q (that must be
adjacent and vacant);

• trigger(s, s′): this primitive specifies that an agent must
change its state when it senses a particular condition in
its local context (i.e. its own site and the adjacent ones);
this operation has the same effect of a reaction, but does
not require a coordination with other agents.

For every primitive included in the behavioural specification
of an agent type specific preconditions must be specified;
moreover specific parameters must also be given (e.g. the
specific field to be emitted in an emit primitive, or the
conditions to identify the destination site in a transport) to
precisely define the effect of the action, which was previously
briefly described in general terms.

Each SCA agent is thus provided with a set of sensors
that allows its interaction with the environment and other
agents. At the same time, agents can constitute the source
of given fields acting within a SCA space (e.g. noise emitted
by a talking agent). Formally, a field type t is defined by〈
Wt,Diffusiont, Comparet, Composet

〉
where Wt denotes

the set of values that fields of type t can assume; Diffusiont :
P × Wf × P → (Wt)+ is the diffusion function of the
field computing the value of a field on a given space site
taking into account in which site (P is the set of sites
that constitutes the SCA space) and with which value it has
been generated. It must be noted that fields diffuse along the
spatial structure of the environment, and more precisely a field
diffuses from a source site to the ones that can be reached
through arcs as long as its intensity is not voided by the
diffusion function. Composet : (Wt)+ → Wt expresses how
fields of the same type have to be combined (for instance, in
order to obtain the unique value of field type t at a site), and
Comparet : Wt ×Wt → {True, False} is the function that
compares values of the same field type. This function is used
in order to verify whether an agent can perceive a field value
by comparing it with the sensitivity threshold after it has been
modulated by the receptiveness coefficient.

B. SCA Based Pedestrian Model

The above introduced SCA model has beed applied to
represent a very simple tunnel with two ends and some
columns in it; pedestrians enter the tunnel from one end and
they move towards the other end, avoiding obstacles either
immobile (i.e. columns), and mobile (i.e. other pedestrians
moving in the opposite direction).

The SCA Space is the same cellular space defined for the
D-MAN described in Section IV. To support agent navigation
in this space, in each end of the tunnel we positioned an addi-
tional site in which a “beacon” agent (a static agent emitting
a simple presence field) is situated. In the environment, thus,
only two types of field are present.

To exploit this environmental specification in order to obtain
the above overall system behaviour, we defined two types
of agent, respectively interpreting the one type of field as
attractive and ignoring the other one. This can be achieve
through a simple transport primitive, specifying that the
agent should move towards the free adjacent site in which
the intensity of the field considered attractive is maximum.
The behavioural specification of these agents is completed
by an obstacle avoidance rule (another transport that moves
the agent towards a random different lane whenever the best
possible destination is occupied by an obstacle). Finally, agents
reaching their destination, that is, one of the tunnel ends, are

MALLOW’009: Turin, Italy, September 7-10, 2009

335

removed from the environment and they are positioned at the
other end, so they start over their crossing of the tunnel.

IV. ADAPTIVE ILLUMINATION MODEL

A. CA Based Approach

We employed a Cellular Automata model to realize the
local effect of illumination as a self-organized reaction to
the presence of pedestrians. CA cells, related to a portion
of the physical environment, comprise sensors and actua-
tors, as schematized in Figure 3. The former can trigger
the behaviours of the latter, both through the interaction of
elements enclosed in the same cell and by means of the local
interaction among adjacent cells. The transition rule models
mechanisms of reaction and diffusion, and it was derived by
previous applications to reproduce natural phenomena such as
percolation processes of pesticides in the soil, in percolation
beds for the coffee industry and for the experimentation of
elasticity properties of batches for tires [5]. In this specific
application the rule manages the interactions of cells arranged
through a multilayered architecture based on the Multilayered
Automata Network model [8], schematized in Figure 3.

Multilayered Automata Network have been defined as a
generalization of Automata Networks [11]. The main feature
of the Multilayered Automata Network is the explicit intro-
duction of a hierarchical structure based on nested graphs, that
are graphs whose vertexes can be in turn be a nested graph
of lower level. A Multilayered Automata Network is directly
obtained from the nested graph structure by introducing states
and a transition function.

The irregular nature of the cellular space is not the only
difference between the adopted approach and the traditional
CA models. In fact, CAs are in general closed and synchronous
systems, in which cells update their state in parallel triggered
by a global clock. Dissipative Cellular Automata (DCA) [18]
differ from the basic CAs mainly for two characteristics:
while CA are synchronous and closed systems, DCA are
open and asynchronous. DCA cells are characterized by a
thread of control of their own, autonomously managing the
elaboration of the local cell state transition rule. DCA can
thus be considered as an open agent system [13], in which the
cells update their state independently of each other and they
are directly influenced by the environment.

The model we defined and adopted, Dissipative Multilay-
ered Automata Network (D-MAN), takes thus the advan-
tages of both the Multilayered Automata Network and the
Dissipative Cellular Automata. An informal definition this
model describes D-MAN as Multilayered Automata Network
in which the cells update their state in an asynchronous way
and they are open to influences by the external environment.

The multilayered cellular structure of the D-MAN is com-
posed of three layers:
• the first layer is related to the basic discretization of the

physical environment into cells, corresponding to a local
controller. Each of these cells effectively comprises the
two additional layers;

Level 2
Inter-controller
communication

Level 1
Intra-controller
communication

Level 0
Actuators Layer

Level 0
Sensors Layer

Fig. 4. The proposed automata network for the D-MAN.

• the perception and actuation layers, respectively compris-
ing the sensors and actuators (lights).

This structure is schematized in Figure 4. The rationale
of keeping separated these cells is to be able to specify and
configure specific functions describing (i) how to compute the
overall internal activation state of a cell given the status of
the internal sensor(s) and the current state of activation of
neighbours and (ii) how to translate this state of activation
into a state of actuation for that specific layer (in other words,
how to translate into a lighting effect the state of the cell).

Specific transition rules must thus be defined to manage
different interactions and influences that take place in this
structure, and mainly (i) the direct influence of a sensor that
detected a pedestrian to the actuators in the same cell, and
(ii) the influence of a high level cell to the neighboring ones
(given the internal structure of each cell, due to the presence of
a specific level of actuators inside it, this interaction effectively
affects a part of a neighboring cell). Moreover, the effect of
external stimuli must gradually vanish, and lights must fade in
absence of pedestrians: while an active state of the sensor and
high activation states of neighbours cause an increase of the
cell activation state, it decreases in absence of these triggering
conditions. More details about the formal definition of the
model can be found in [4].

The adaptive illumination model is thus characterized by
several features that make it difficult to predict how it will
react to particular stimuli (i.e. patterns of pedestrian movement
in the related environment), from the number and positioning
of sensors and actuators, to the parameters of the transition
rule. The transition rule per se is characterized by several
parameters whose configuration can actually deeply alter the
achieved illumination effect, to the point that we developed an
ad hoc UI to show its behaviour when triggered trough mouse
clicks [3]. To couple this model with a pedestrian simula-
tion model sharing the discrete representation of the spatial
aspect of the environment allows to simulate the behaviour
of the adaptive illumination facility as a response to specific
patterns of usage of the environment by pedestrians was thus
considered an effective way to envision the performance of
the adaptive illumination facility in plausible situations.

MALLOW’009: Turin, Italy, September 7-10, 2009

336

(A) (B)

(C)

Fig. 5. A diagram schematizing the three basic steering behaviours of a
boid: (A) cohesion, (B) separation and (C) alignment.

B. Boids Based Approach

The narrative description of the desired adaptive illumina-
tion effect by the designer explicitly mentioned “fire-flies”,
insects forming a swarm. This description effectively leads to
consider the possibility to adopt for the self-organization of
the illumination facility computational models developed to
generate collective behaviours of insects (but also flocks, herds
and schools) such as the boids model. This particular model
is very effective in generating coordinated animal motion,
with a relatively simple computation essentially based on the
mutual local perception of individuals situated in a physical
environment. In our system, lights cannot actually move, but
boids can represent the fact that a light is active in a predefined
environment structure representing a discrete and finite set of
allowed positions. The movement of boids represents thus the
dynamic update of lights’ statuses in the illumination facility.

The basic model comprises three simple steering behaviors,
describing how an individual boid maneuvers basing on the po-
sitions and velocities its nearby flockmates. These behaviours,
also schematized in Figure 5, are:

• cohesion: steer to move toward the average position (the
centroid) of local flockmates;

• separation: steer to avoid crowding (i.e. in the opposite
direction of the the centroid of local flockmates);

• alignment: steer towards the average heading of local
flockmates.

The notion of locality mentioned in these rules is essentially
related to the possibility of boids to detect others of their kind
situated within a certain range from their current position.
These three steering behaviours produce vector representing
a contribution to the overall action of the single boid, that
is thus obtained as the vectorial sum of these contributions
multiplied for specific scalar constants. These constants must

be properly calibrated to avoid excessive dispersion and cohe-
sion of the boids. Moreover, in this specific application, boids
must also be attracted by people situated in the environment:
a fourth contribution to the overall boid behaviour must thus
be introduced, otherwise the boids wander in a realistic way
(from the point of view of simulating a collective behaviour)
but completely ignoring the presence of humans in the envi-
ronment.

Before introducing an additional contribution to the be-
havioural specification of a boid to tackle this issue, we
first considered that the basic boid model is conceived for
a continuous environmental spatial representation, that is not
suited to this situation. The adopted approach was to translate
the cohesion and separation contributions of the model into
elements of the aforementioned SCA model, mainly for two
reasons: (i) this model is by definition discrete and (ii) it was
already adopted to model pedestrians and the environment
they are situated in. Alignment was not considered since SCA
agents are not characterized by a direction or heading in space,
but just by their position (i.e. a node in a graph structure).

To realize a model featuring the main characteristics of
boids using SCAs we decided to provide each boid with a
form of presence field, diffusing a sign indicating its position
in nearby sites. Presence fields’ diffusion function decreases
by a constant value the intensity of a field for each node
the site crosses in the course of the diffusion operation until
the value is void, while the composition function simply
adds up the value of all presence fields in a given site. In
this way, presence field in a given site represents a measure
of its crowdedness and it can be used by boids to select
sites that represent a good compromise between cohesion
and separation. The behavioural specification of SCA boids
comprises thus essentially two basic actions, a field emission
and a trasnport action interpreting the value of the presence
field as sort of social force [12]. In addition, we model the
presence of pedestrians as another presence fields that is
generated by the pedestrian agents present in the coordinated
model simulating the behaviours of people moving in the
tunnel. Boids agents’ transport action favors thus as a preferred
destination those sites characterized by an average intensity
of the boids presence field and a high intensity for pedestrian
presence field. Also in this case, the model is characterized by
a number of parameters having a serious impact on the overall
adaptive illumination effect.

C. Discussion

The above introduced models were adopted and tested in
the Indianapolis tunnel scenario; both of them proved their
adequacy to effectively represent a formal, computational,
non ambiguous and executable specification of the designer’s
narration. They undergone a successful face validation, that
followed several iterations to define a good value for the
models’ parameters to achieve the desired results. However,
the models have specific features that can have an impact on
some of the non-functional properties they exhibit.

MALLOW’009: Turin, Italy, September 7-10, 2009

337

Fig. 6. Screenshot of the simulation environment: the central window shows a three-dimensional view of the tunnel (the actual 3D model of the tunnel was
adopted), while the top panel shows a bi-dimensional view highlighting the position of pedestrians and the state of lights.

It must be stressed that even if the designer used the term
“fire-flies” in the narrative description of the desired effect, the
idea to follow the metaphor and to employ one of the most
commonly adopted model for this kind of collective behaviour
does not necessarily imply a smooth and simple definition of
a model achieving the desired effect. First of all the boids
model is based on a continuous spatial representation and
thus it must be adapted to the discrete spatial structure of the
illumination facility. Then a modification to the basic model
must be introduced to achieve a “goal driven” behaviour (i.e.
the tendency of boids to move towards people, preserving the
swarm behaviour). Finally it must be noted that this modeling
approach does not take into account the effective infrastructure
that will be effectively employed to realize the illumination
facility.

The CA based approach is based on the idea of viewing the
environment itself as an assembly of autonomous units able to
interact with their neighbours. The adaptive illumination effect
is achieved as a reaction of these units to an external stimulus
generated by sensors and as a results of their interaction.
As a result it is much simpler to conceive a direct effective
implementation of this approach in a concrete system made
up of a set of micro-controllers responsible for the monitoring
of a certain part of the environment and for the control of

the lights it includes. On the other hand, there is no simple
way to distribute the boids model in a distributed control
system: the simple fact that boids can perceive the presence of
other individuals of their kind in a potentially distant position,
according to their range of perception, leads to consider that
in case of distribution of this form of computation to different
autonomous units would lead to higher costs in terms of
network communication, that is instead essentially constant
in the CA based case.

V. CONCLUSIONS AND FUTURE WORKS

The paper introduced a simulation approach to supporting
the design of an ambient intelligence infrastructure aimed at
improving the everyday experience of pedestrians and people
passing through the related environment. A specific scenario
related to the definition and development of an adaptive
illumination facility was introduced, and two different compu-
tational models model specifying its dynamic behaviour was
defined. An agent-based pedestrian model simulating inputs
and stimuli to the adaptation module was also introduced.
The models described in the previous Sections are part of a
prototype supporting the design and definition of the overall
illumination facility through the simulation and envisioning
of its dynamic behaviour according to specific values for the
relevant parameters (e.g. parameters of the transition rule of

MALLOW’009: Turin, Italy, September 7-10, 2009

338

the CA, but also the number of lights and sensors, and so on);
a screenshot of the system is shown in Figure 6: the central
window shows a three-dimensional view of the tunnel, while
the top panel shows a bi-dimensional view highlighting the
position of pedestrians and the state of lights. The simula-
tion takes place in the actual 3D model of the tunnel, that
was adopted to achieve in a semi-automatic way a discrete
representation of the environment that was adopted both for
enabling the pedestrian simulation and for the positioning
of lights. Part of the simulator, based on an platform for
agent–based simulation [7], generates patterns of movement
of pedestrians simulating inputs for the CA and another part
of the system generates a visualization of the system dynamics,
interpreting the states of the CA.

The renovation project is currently under development on
the architectural and engineering side, whereas the introduced
models have shown their adequacy to the problem specifica-
tion, both in order to provide a formal specification of the
behaviour for the system components and possibly as a control
mechanism. The realized prototype explored the possibility of
realizing an ad hoc tool that can integrate the traditional CAD
systems for supporting designers in simulating and envisioning
the dynamic behaviour of complex, self-organizating instal-
lations. It has been used to understand the adequacy of the
modeling approach in reproducing the desired self-organized
adaptive behaviour of the environment to the presence of
pedestrians. We are currently improving the prototype, on one
hand, to provide a better support for the Indianapolis project
and, on the other, to realize a more general framework for
supporting designers of dynamic self-organizing environments.

ACKNOWLEDGEMENTS

The authors wish to thank some collaborators at the Acconci
Studio and in particular Nathan DeGraaf, Jono Podborseck
and James Clar for their collaboration to the present work and
research effort.

REFERENCES

[1] Proceedings of the First International Conference on Self-Adaptive and
Self-Organizing Systems, SASO 2007, Boston, MA, USA, July 9-11, 2007.
IEEE Computer Society, 2007.

[2] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. K.
Jr., R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous
computing. Commun. ACM, 43(5):74–82, 2000.

[3] S. Bandini, A. Bonomi, G. Vizzari, and V. Acconci. An Asynchronous
Cellular Automata–based Adaptive Illumination Facility. In Proceed-
ings of the Ninth Conference of the Italian Association for Artificial
Intelligence, page (to appear), 2009.

[4] S. Bandini, A. Bonomi, G. Vizzari, V. Acconci, N. DeGraaf, J. Pod-
borseck, and J. Clar. A CA-Based Approach to Self-Organized Adaptive
Environments: The Case of an Illumination Facility. In Self-Adaptive and
Self-Organizing Systems Workshops, 2008. SASOW 2008. Second IEEE
International Conference on, pages 1–6, Oct. 2008.

[5] S. Bandini, G. Erbacci, and G. Mauri. Implementing Cellular Automata
Based Models on Parallel Architectures: The CAPP Project. In V. E.
Malyshkin, editor, PaCT, volume 1662 of Lecture Notes in Computer
Science, pages 167–179. Springer, 1999.

[6] S. Bandini, S. Manzoni, and C. Simone. Dealing with space in multi-
agent systems: a model for situated MAS. In Proceedings of the first
international joint conference on Autonomous agents and multiagent
systems, pages 1183–1190. ACM Press, 2002.

[7] S. Bandini, S. Manzoni, and G. Vizzari. Towards a Platform for
Multilayered Multi Agent Situated System Based Simulations: Focusing
on Field Diffusion. Applied Artificial Intelligence, 20(4–5):327–351,
2006.

[8] S. Bandini and G. Mauri. Multilayered Cellular Automata. Theor.
Comput. Sci., 217(1):99–113, 1999.

[9] W. Butera. Text display and graphics control on a paintable computer.
In SASO [1], pages 45–54.

[10] A. E. S. Filho, E. C. Lupu, N. Dulay, S. L. Keoh, K. P. Twidle,
M. Sloman, S. Heeps, S. Strowes, and J. Sventek. Towards supporting
interactions between self-managed cells. In SASO [1], pages 224–236.

[11] E. Goles and S. Martinez. Neural and Automata Networks: Dynamical
Behavior and Applications. Kluwer Academic Publishers, 1990. ISBN
0-792-30632-5.

[12] D. Helbing and P. Molnár. Social force model for pedestrian dynamics.
Phys. Rev. E, 51(5):4282–4286, May 1995.

[13] N. R. Jennings. On agent-based software engineering. Artif. Intell.,
117(2):277–296, 2000.

[14] F. Klügl. A Validation Methodology for Agent-Based Simulations. In
R. Menezes and M. Viroli, editors, Symposium on Applied Computing,
pages 39–43. ACM Press, 2008.

[15] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, pages 25–34, New
York, NY, USA, 1987. ACM.

[16] N. Shadbolt. Ambient Intelligence. IEEE Intelligent Systems, 18(4):2–3,
2003.

[17] J. von Neumann. Theory of Self-Reproducting Automata. University of
Illinois Press, 1966.

[18] F. Zambonelli, M. Mamei, and A. Roli. What can cellular automata tell
us about the behavior of large multi-agent systems? In A. F. Garcia,
C. J. P. de Lucena, F. Zambonelli, A. Omicini, and J. Castro, editors,
SELMAS, volume 2603 of Lecture Notes in Computer Science, pages
216–231. Springer, 2002.

MALLOW’009: Turin, Italy, September 7-10, 2009

339

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Agent Based Models are very popular in a number

of different areas. For example, they have been used in a range of
domains ranging from modeling of tumor growth, immune
systems, molecules to models of social networks, crowds and
computer and mobile self-organizing networks. One reason for
their success is their intuitiveness and similarity to human
cognition. However, with this power of abstraction, in spite of
being easily applicable to such a wide number of domains, it is
hard to validate agent-based models. In addition, building valid
and credible simulations is not just a challenging task but also a
crucial exercise to ensure that what we are modeling is, at some
level of abstraction, a model of our conceptual system; the system
that we have in mind. In this paper, we address this important
area of validation of agent based models by presenting a novel
technique which has broad applicability and can be applied to all
kinds of agent-based models. We present a framework, where a
virtual overlay multi-agent system can be used to validate
simulation models. In addition, since agent-based models have
been typically growing, in parallel, in multiple domains, to cater
for all of these, we present a new single validation technique
applicable to all agent based models. Our technique, which
allows for the validation of agent based simulations uses
VOMAS: a Virtual Overlay Multi-agent System. This overlay
multi-agent system can comprise various types of agents, which
form an overlay on top of the agent based simulation model that
needs to be validated. Other than being able to watch and log,
each of these agents contains clearly defined constraints, which, if
violated, can be logged in real time. To demonstrate its
effectiveness, we show its broad applicability in a wide variety of
simulation models ranging from social sciences to computer
networks in spatial and non-spatial conceptual models.

Index Terms—Agent-based Modeling and Simulation,
Multiagent System, Verification, Validation, Agent Oriented
Software Engineering

I. INTRODUCTION
ALIDATION of any simulation model is a crucial task[1,
2]. Simulations, however well-designed, are always only
an approximation of the system and if it was so easy to

build the actual system, the simulation approach would never

Manuscript received.
M. A. Niazi, A. Hussain and M. Kolberg are with the Department of

Computing Science and Mathematics, University of Stirling, Scotland, UK.
(Tel: +92-321-5310906; e-mail: {man, ahu, mko}@ cs.stir.ac.uk).

have been used [3]. Of all the simulation models, agent-based
modeling and simulation paradigm has recently gained a lot of
popularity by being applied to a very wide range of domains
such as [4-9]. Validation of models typically requires experts
to look at data or animation as errors and un-wanted artifacts
can appear in the development of agent-based models [10].
However, because of the complex nature of agent-based
models comprising of multiple interacting entities and the
strong dynamics and frequent emergence patterns in the
system, it can be hard to validate agent-based models in the
same way as traditional simulation models.

 In the case of agent-based simulations, it is even easier to
fall into the trap of tweaking the variables, especially since
occasionally, the inputs can tend to be quite numerous [11].
Because of the complex nature of agent based models and
resulting emergence as shown in [12-14], coupled with an
enormous variation possibility of the variables, the results of
the simulation study can vary considerably by changing the
range or even the step size of just one or two variables. Thus,
it is vitally important to be able to validate the agent-based
simulation. The problem however, comes from the grounds up
since validation is not to be an after-thought; it needs to be
initiated alongside at the start of the simulation study. Now,
validation of agent based models can be quite a challenging
task [15, 16]. One problem lies in the fact that validation
typically requires SME (Subject Matter Experts) to analyze
[3] the simulation data or animation for comparison with
another system or model. However, because of appearance of
complex phenomenon such as emergence of behavior, where
one plus one is not necessarily two as it depends more on the
two “ones” and the behavior of the addition operation as is the
norm in complex systems as compared to complicated systems
[17]. Thus it can be very difficult to be sure if the behavior
that we are observing is truly representative of the actual
system[18]. Also, it is important to note here that even
models, which cannot be validated might have merit and use
such as bookkeeping devices or as an aid in selling ideas or as
a training aid or even as part of an automatic management
system. In the social sciences literature and ACE (Agents in
Computation Economics), empirical validation of agent-based
models has been described in [19]. Alternate approaches to
empirical validation are discussed in [20]. Replication of
agent-based models has been considered very important by
some authors and has been discussed in [21]. An approach of
validation based on philosophical truth theories in simulations

Verification &Validation of Agent Based
Simulations using the VOMAS (Virtual Overlay

Multi-agent System) approach
Muaz A. Niazi, Amir Hussain and Mario Kolberg

V

MALLOW’009: Turin, Italy, September 7-10, 2009

340

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

has been discussed in [22]. Another approach called
"companion modeling" is an iterative participatory approach
where multidisciplinary researchers and stakeholders work
together continuously throughout a four-stage cycle: field
study and data analysis; role-playing games; agent-based
model design and implementation; and intensive
computational experiments [23]. Agent-based social
simulation has also been used for validation and calibration
[24].

 In the past, although agent-based simulation has been
shown to be useful in the validation of multi-agent
systems[25, 26], multi-agent systems have not been used to
validate agent-based models. On the other hand, simulations
have been used in conjunction with software engineering for a
long time[27]. Our work can be considered as pertaining to
the last two stages of “Companion Modeling” i.e. Agent-
Based Model Design/Implementation as well as Intensive
Computational Experiments. Specifically, in this paper, we
present the following innovations:

• We show how to develop a VOMAS (Virtual Overlay
Multi-Agent System), which can be used for the
validation of agent based simulation models.

• We thus further develop social science based
validation techniques that can be applicable to both
social science as well as other relevant domains.

• We present an object-oriented software engineering
based methodology for validation of agent-base
models, which provides for both logging as well as
animation based validation approaches in addition to
test-case/invariant based approaches.

The rest of the paper is structured as following: First we
give an overview of the terms “Verification”, “Validation”
and “Credibility” as discussed in the literature. We also
discuss how these terms have been considered traditionally in
simulation models. Next, we give an overview of performing
Validation using VOMAS. We show the design of VO
(Virtual Overlay) and Logger agents. Next, we show an
example of developing a VOMAS for an existing model from
Agent-Based Modeling literature, and demonstrate its
usefulness, and ease in validation. Finally we conclude the
paper.

II. VERIFICATION, VALIDATION AND CREDIBILITY

Researchers transform real-world systems to models by
applying abstraction. This transformation requires propagating
concepts from the real world to useful computational models.
These, in turn, are used to develop simulations. Simulation
models, in essence end up giving back results which can be
useful for the real world. As such, the more effective the
abstraction mechanism, the better would be the expected real
world benefits.

A. Peculiarities of Agent-Based Models
In case of agent-based models, the simulation comprises of
one or more agents. These agents can work independently or

else interact with each other. These computational entities,
which are typically, simplifications of real-world counter-
parts, need to have some meaningful semantics which can
include anywhere from simple behaviors as well as variables
for storing different items, such as states, to complex
representations such as artificial neural networks, artificial
immune systems, cognitive models etc.

B. Definitions of the terms:
Validation is the process by which we can determine if the
model is a representation of the system.[3]. This is always
performed while keeping the specific abstraction by the
designer in mind. Verification is basically the debugging of
the system where we ensure that the model that we build is
working correctly. Credibility is achieved when the decision-
makers and other key project personnel accept the model as
well as its results as “correct”.

C. Correlation with VOMAS?
VOMAS approach has been designed to cater for all kind of
agent-based models. As such, it has capability to monitor
spatial as well as non-spatial concepts in agent-based models.

Fig. 1 VOMAS relation with an Agent Based Model

D. Verification & Validation of agent-based models
One sure way to establish the validity of agent-based model is
to have Subject Matter Experts, who give the specification as
well as examine the results and logs of simulation runs.
VOMAS approach allows experts to be involved in the design
of the agent-based model as well as the custom-built VOMAS
from scratch. By involving SMEs from the start of the project,
which are essentially equivalent to clients in the software
engineering domain, VOMAS approach allows the simulation
study to be a stronger candidate for success.

MALLOW’009: Turin, Italy, September 7-10, 2009

341

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

III. VALIDATION USING VOMAS

A. Validation in agent based simulations
To understand VOMAS, let us examine figure 1. The Virtual
Overlay Multi-agent System is created for each simulation
model separately by a discussion between the simulation
specialist as well as the SMEs (Subject Matter Expert). When
the actual simulation is executed, the VOMAS agents perform
monitoring as well as logging tasks and can even validate
constraints given by the system designer at design time.

B. A Taxonomy of Agent-Based Validation techniques
using VOMAS

Now, let us examine how agent-based models are structured.
Since agent based models have one or more agents, what these
agents really mean in the real-world is entirely up to the
designer of the simulation. These elements can be spatial in
nature, where distance between agents in the simulation is
important or else non-spatial, where there is no concept of
distance in the simulation as shown in Fig. 2. In case of spatial
models, it is also entirely possible that the exact distance may
not be important, but the links between agents could be
important. An example of this is HIV based models, where
interaction between agents can be shown as links.
A detailed description of each of these follows.

Fig. 2 A Taxonomy of Agent Based Validation techniques

1. Visual Validation:
Visual validation is a face validation technique based
on an animation based validation technique where the

SME can examine the animation to see if the
behavior appears to be similar to that expected in the
actual domain.

2. Validation using VOMAS:
In case of VOMAS, we can validate both spatially as
well as non-spatially.

3. Spatial Validation:
In spatial validation, the placement of agents in the
simulation is important. This includes the placement
of some of the VOMAS agents, which interact with
the actual agent based simulation.

4. Non-Spatial Validation:
In non-spatial validation, the actual distance is not
important. These could be used to validate for
aggregate data and constraints/invariants etc.

5. Networked or Link-Based Validation
In spatial validation, it is possible that the actual
placement is less important than the links between
them. In case of social simulation, the example could
be links to show social network friendships. In case
of computer science based networks, these could
represent e.g. Connectivity of Peer-to-Peer overlay
networks.

6. Proximity Based Validation
In this case, the actual proximity of agents to each
other and especially to VOMAS agents is important.
An example of this is pred-prey models where

VOMAS agents can verify certain characteristics of
agents passing by them at a certain time.

7. Log based validation:

MALLOW’009: Turin, Italy, September 7-10, 2009

342

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In log based validation, the SME can specify what
things to be watched and logged so that they can be
examined after the fact and see how e.g. the
populations evolved over time, or else how wireless
sensor networks lost their power over time etc.

8. Constraint-based validation or Invariant Based
Validation:
It is entirely possible that the SME says that there

are certain constraints, which should never be
violated in a certain simulation experiment. If these
were ever to be violated, then the simulation system
should notify the user via some console or else log
the event as a

Fig. 3 Use case model of simulation model design and V&V

special case. E.g. Wolves must never all die in a wolf-sheep
predation. If all of the wolves die, then the simulation needs
to be stopped etc. as further data collection exercise might
not be useful.

C. Analysis of VOMAS

The analysis of VOMAS has been conducted based on a
scenario-modeling approach. In figure 3, we see the use cases,
some of which are described below. The rest should be self-
explanatory and we are not listing them for shortage of space:

1) Verify the Model

The SME verifies the model by means of execution
of the simulations by the Simulation Specialist. The
detailed verification (debugging) is checked by the
simulation specialist but in case of any ambiguity, the
SME can be referred.

2) Validate the Model
This validation is done in three ways

a. Validation using animations:
This validation is face validation by the
SME by means of analyzing the animations.

b. Validation using Logs
In this case, logs are generated based on

watches specified by the SME. These logs

show after the fact, the entire scenarios like
black boxes from airplanes.

c. Validation using Invariants
These can be cases where the SME wants
either immediate feedback even while
running large scale parameter sweeps. So, if
the invariants or constraints are ever
violated, the user can be notified. Or at least,
this is definitely logged in the simulation
log.

MALLOW’009: Turin, Italy, September 7-10, 2009

343

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

3) Design and Develop Models

Fig. 4 Class diagram of agents in a VOMAS

This use case is to be conducted by the simulation
specialist in conjunction with the SME.

D. Design of VOMAS
1) Motivation

One of the most popular approaches in Validation is the three
step approach given in [28] . The approach has the following
steps:

a) Build a model that has high face validity.

b) Validate model assumptions

c) Compare the model input-out transformations to
corresponding input-output transformations for the
real system.

VOMAS has been designed to cater for both face validity as
well as model assumptions and io-transformations. Model
assumptions are ensured by the use of invariants. Face
validation is ensured by means of various techniques based on
spatial and non-spatial validation and animation-based
validation. IO-transformations are ensured by means of
essential logging components. Thus, in other words VOMAS
provides the complete validation package.

2) Description of Class Diagram
In figure 4, we see the class diagram of the VOMAS agents
and how they interact with the agents in the simulation. The
description of each of these agents is given below:

a) VO Manager
VO manager agent is the key agent handling the interaction of
all of the other agents.

b) Virtual Console

Virtual Console agent is an agent, which can be used to
dynamically display various messages at run-time.

c) Invariant
Invariant is any condition, which the designer of the VOMAS
and the agent-based simulation, feels that must not be violated
during the execution of the simulation. If the Invariant is
violated, the violation is logged.

d) Logger Agent
The logging capability is provided by the Logger Agent.

e) Watch
If the designer of the system wants some value to be observed,

it can be made a watch.

f) Watch Log Entry
Each watch can also be logged as a logged entry.

g) Invariant Violation
Invariant violations can be logged at run-time to the Console
Virtual agent or else the log as a log entry.

h) Log Entry
The base class of all log entries.

i) Sim Agent
This is an agent which is part of the agent based simulation
model.

MALLOW’009: Turin, Italy, September 7-10, 2009

344

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

j) VO Agent
These are agents which can be located spatially or non-
spatially to monitor the entire simulation.

IV. CASE STUDY
Here, we present application of a VOMAS to an agent-based
simulation mode of the “Simulation of the research process”.
Recently an agent-based simulation model of researchers
attempting to present research in International publication
venues was presented in [5]. We demonstrate how to develop
and use the associated VOMAS on this model.

A. The Publishing Researchers’ model
In the publishing researcher model, the abstraction is that
researchers are modeled as agents in the simulation. The
higher the publications of an agent, the higher the agent goes.
Thus space in this simulation model is essentially used to
show the capability of the researcher. A screenshot of the
simulation model is shown in fig 5. For more details, the
interested reader is advised to consult the original article. The
model has been developed using NetLogo [29]. So, let us
formally define some of the entities involved:
SME: An Expert Researcher with experience of publishing in
various venues.

Objective of Simulation Study: To examine how the policies of
researchers in selection of publication venues impacts an
overall organization.

Example Invariant:
Basis: In a particular simulation experiment, enough time of
simulation run should be given to ensure that journal
preferring researchers publish at least ten times during the
simulation.
Invariant: If simulation stops before each journal preferring
researcher is able to publish at least ten times, note an
invariant violation in the console and/or the log.

Example watches:
Measure the total number of researchers with the best policy.
Measure the number of researchers above a certain threshold.
Measure the number of overall publications.

Fig. 5 Screenshot of the researchers’ model [5] showing researchers
according to their publication count. (Lime = Conference preferring, Red =
Journal Preferring, Cyan = No Preference)

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel framework for the
validation of agent based simulation models. We have given a
description of how VOMAS agents can be constructed for
validation. As a case study, we have shown its application on
an existing published model. In the future, we shall apply
VOMAS on various types of simulation models and
demonstrate how it can be effective in validation. Some of the
models we intend to explore VOMAS application on, include
pred-prey models, tumor growth models, Peer-to-Peer
unstructured overlay network models.

REFERENCES

[1] O. Balci, "Verification, validation, and accreditation," in

Proceedings of the 30th conference on Winter simulation
Washington, D.C., United States: IEEE Computer Society Press,
1998.

[2] J. Banks, J. S. C. II, B. L. Nelson, and D. M. Nicol, Discrete-Event
System Simulation, Fourth ed.: Peason Education, 2005.

[3] A. M. Law, "How to build valid and credible simulation models,"
in Simulation Conference, 2008. WSC 2008. Winter, 2008, pp. 39-
47.

[4] M. Niazi and A. Hussain, " Agent based Tools for Modeling and
Simulation of Self-Organization in Peer-to-Peer, Ad-Hoc and other
Complex Networks," IEEE Communications Magazine, vol. 47,
No. 3, pp. 163 - 173., March 2009.

[5] M. Niazi, A. Hussain, A. R. Baig, and S. Bhatti, "Simulation of the
research process," in Winter Simulation Conference, Miami, FL,
2008, pp. 1326-1334.

[6] M. Niazi, "Self-organized customized content delivery architecture
for ambient assisted environments," in Proceedings of the third
international workshop on Use of P2P, grid and agents for the
development of content networks, Boston, MA, USA, 2008, pp. 45-
54.

MALLOW’009: Turin, Italy, September 7-10, 2009

345

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

[7] N. Gilbert and K. G. Troitzsch, Simulation for the social Scientist,
Second ed.: McGraw Hill Education, 2005.

[8] C. M. Macal and M. J. North, "Agent-based modeling and
simulation: desktop ABMS," in Proceedings of the 39th
conference on Winter simulation: 40 years! The best is yet to come
Washington D.C.: IEEE Press, 2007.

[9] A. Siddiqa, M. Niazi, F. Mustafa, H. Bokhari, A. Hussain, Noreen
Akram, S. Shaheen, F. Ahmed, and S. Iqbal, " A New Hybrid
Agent-Based Modeling & Simulation Decision Support System for
Breast Cancer Data Analysis " in ICICT Karachi, Pakistan: IEEE
Press, 2009.

[10] J. M. Galán, L. R. Izquierdo, S. S. Izquierdo, J. I. Santos, R. d.
Olmo, A. López-Paredes, and B. Edmonds, "Errors and Artefacts
in Agent-Based Modelling," Journal of Artificial Societies and
Social Simulation, vol. 12, no. 11, 2009.

[11] T. W. Lucas, S. M. Sanchez, F. Martinez, L. R. Sickinger, and J.
W. Roginski, "Defense and homeland security applications of
multi-agent simulations," in Proceedings of the 39th conference on
Winter simulation: 40 years! The best is yet to come Washington
D.C.: IEEE Press, 2007.

[12] A. Ilachinski, "Exploring self-organized emergence in an agent-
based synthetic warfare lab," Kybernetes, vol. 32, pp. 38 - 76,
2003.

[13] M. Chli and P. De Wilde, "The Emergence of Knowledge
Exchange: An Agent-Based Model of a Software Market,"
Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol. 38, pp. 1056-1067, 2008.

[14] M. Cartier, "An Agent-Based Model of Innovation Emergence in
Organizations: Renault and Ford Through the Lens of
Evolutionism," Comput. Math. Organ. Theory, vol. 10, pp. 147-
153, 2004.

[15] C. Bianchi, P. Cirillo, M. Gallegati, and P. A. Vagliasindi,
"Validating and Calibrating Agent-Based Models: A Case Study,"
Comput. Econ., vol. 30, pp. 245-264, 2007.

[16] C. Bianchi, P. Cirillo, M. Gallegati, and P. Vagliasindi, "Validating
and Calibrating Agent-Based Models: A Case Study,"
Computational Economics.

[17] J. H. Miller and S. E. Page, Complex Adaptive Systems: An
Introduction to Computational Models of Social Life: Princeton
University Press, 2007.

[18] J. S. Hodges and J. A. Dewar, "Is It You or Your Model Talking?
A Framework for Model Validation," RAND Corporation, Santa
Monica, California.

[19] G. Fagiolo, C. Birchenhall, and P. Windrum, "Empirical Validation
in Agent-based Models: Introduction to the Special Issue "
Computational Economics, vol. 30, pp. 189-194, October, 2007
2007.

[20] S. Moss, "Alternative Approaches to the Empirical Validation of
Agent-Based Models," Journal of Artificial Societies and Social
Simulation, vol. 11, no. 15, 2008.

[21] U. Wilensky and W. Rand, "Making Models Match: Replicating an
Agent-Based Model," Journal of Artificial Societies and Social
Simulation, vol. 10, p. 2, 10/31 2007.

[22] A. Schmid, "What is the Truth of Simulation?," Journal of
Artificial Societies and Social Simulation, vol. 8, p. 5, 10/31 2005.

[23] O. Barreteau and e. al., "Our Companion Modelling Approach "
Journal of Artificial Societies and Social Simulation, vol. 6, 2003.

[24] M. Makowsky, "An Agent-Based Model of Mortality Shocks,
Intergenerational Effects, and Urban Crime," Journal of Artificial
Societies and Social Simulation, vol. 9, No. 2, 2006.

[25] M. Cossentino, G. Fortino, A. Garro, S. Mascillaro, and W. Russo,
"PASSIM; a simulation-based process for the development of
multi-agent systems," Int. J. Agent-Oriented Softw. Eng., vol. 2, pp.
132-170, 2008.

[26] G. Fortino, A. Garro, and W. Russo, "From Modeling to
Simulation of Multi-Agent Systems: An Integrated Approach and a
Case Study," in Multiagent System Technologies, LNAI 3187:
Springer-Verlag, 2004, pp. 213-227

[27] R. S. Pressman, Software Engineering, A Practitioner's Approach,

Sixth ed.: McGraw Hill, 2005.

[28] T. H. Naylor and J. M. Finger, "Verification of Computer
Simulation Models," Management Science, vol. 2, pp. B92-B101,
1967.

[29] U. Wilensky, "NetLogo," Evanston, IL, 1999: Center for
Connected Learning Comp.-Based Modeling, Northwestern
University, 1999.

MALLOW’009: Turin, Italy, September 7-10, 2009

346

Agent-based modeling and simulation of multi-
project scheduling

José Alberto Araúzo, Javier Pajares, Adolfo Lopez-
Paredes

Social Systems Engineering Centre (INSISOC)
University of Valladolid

Valladolid (Spain)
{arauzo,pajares,adolfo}insisoc.es

Juan Pavón
Facultad de Informática

Universidad Complutense de Madrid
Madrid (Spain)

jpavon@fdi.ucm.es

Abstract—There are no analytical solutions for the problem of
dynamic scheduling of resources for multiple projects in real-
time. Mathematical approaches, like integer programming or
network based techniques, cannot describe complexity of real
problems (multi-projects environments have many interrelated
elements), and have difficulties to adapt the analysis to dynamics
changes. However, this complex problem can be modeled as a
multi-agent system, where agents negotiate resources through an
auction inspired mechanism. Agents can be used to represent
projects and resources. Projects demand resources for fulfilling
their scheduled planned work, whereas resources offer their
capabilities and workforce. An auction inspired mechanism is
used to allocate resources to projects and the price of resources
emerges and changes over time depending on supply and demand
levels in each time slot. By means of this multi-agent system, it is
possible to overcome most of the problems faced in multi-project
scheduling such as changes in resources capabilities, allocation
flexibility, changes in project strategic importance, etc.

Keywords—agent-based modelling; agent-based simulation;
multi-project environments; auction based resources allocation;
project scheduling.

I. INTRODUCTION

The problem of allocating resources for multiple concurrent
projects appears in large cases of service and manufacturing
organizations. A paradigmatic example can be an engineering
projects office. This organization makes different kinds of
projects that are proposed at any time, which must be handled
in a given time frame. Each project consists of a number of
activities (calculations, design, checks, budgeting, etc.) that are
performed by workers and with some precedence relationships.
The workers can perform one or several activities according to
their skills. Decision makers have to reject inadvisable projects
and decide which resources will be allocated to which projects
and when.

Previous decisions have high impact in the office’s profit.
In order to achieve strategic goals it is important to give
priority to projects, and to allocate activities to the most
efficient workers at the appropriate time. Because of this,
before executing projects it is advisable to make a schedule that
optimizes the allocation of resources.

Classical methods are based on mathematical programming
and can solve this problem when the complexity is low. And
there are some heuristics and meta-heuristics that are able to
provide good schedules for more complex problems [9]. The
traditional scheduling and control systems propose hierarchical
and centralized architectures, where a classical scheduler
system that has a global model of the multi-project
environment makes schedules according to the current state of
the system. Hans et al. [4] review existing literature in
hierarchical approaches and propose a generic project planning
and control framework for helping management to choose
between planning methods, depending on organisational issues.

But these techniques are not flexible or robust enough, and
have difficulties to consider many real factors. In addition, real
environments undergo frequent changes (new resources, new
technologies) that force to modify the scheduling system. The
traditional scheduling and control systems, which are based on
hierarchical and centralized architectures, have not enough
flexibility to adapt themselves to the dynamism and complexity
of multi-project environments.

These issues have motivated, in last years, successive
proposals are appearing to improve the scheduling and control
in a multi-project environment. The paradigm of Multi-agent
Systems (MAS) can help to find solutions, especially in cases
where some social behaviour emerges. This paper shows an
agent-based approach for online dynamic scheduling and
control in multi-project environments that takes advantage of
the ability of agents to negotiate and adapt to changing
conditions. The MAS has basically two types of agents:
projects managers and resources managers.

Projects have scheduled work to be done by different
resources. Resources are endowed with some capabilities
(knowledge, work force, etc.) that are needed to do the work.
Projects demand resources over time and resources offer their
capabilities and time availability. There is an auction process,
and the price of resource-time slots emerges endogenously as a
result of supply and demand. The design of the auction process
uses a technique that has been proposed for distributed
scheduling in the literature [8], [14], [11].

This agent-based approach has two distinctive aspects with
respect to other works: the integration of strategic decisions

MALLOW’009: Turin, Italy, September 7-10, 2009

347

(accept or reject new projects) and operative aspects (resource
allocation), and the ability to manage resource flexibility. This
allows mangers to study the advisability of increasing the
flexibility of resources.

The next section introduces the role of agent-based
modeling and simulation in project scheduling. Section 3
presents the MAS for the real-time scheduling problem, which
has been specified with an agent-oriented modeling language,
INGENIAS [10]. This has been the basis for implementing a
simulation, which is described in section 4, and whose results
are discussed in section 5. Finally, section 6 presents main
conclusions of using this agent-based modeling and simulation
approach.

II. AGENT ORIENTED MODELING AND SIMULATION FOR

REAL-TIME SCHEDULING OF MULTIPLE PROJECTS

Multi-projects environments are complex and dynamic
systems. They include many components and dependencies,
and many changes may occur in the execution of projects.
Moreover, projects are inherently distributed; each task may be
completed by different resources or in different geographical
locations and each project manager may be in different places.

MAS have been shown to deal with problems of
complexity, openness (components of the system are not known
in advance, can change over time, and are highly
heterogeneous, dynamic in project management terms), with
dynamical and unknown environments changing over time
(uncertainty) and ubiquity (the activity is distributed over the
complete structure) [5] [12].

In the particular case of multi-project systems, the agents
can be abstracted as tasks, resources, project managers, etc.
This design enables to distribute the management system in
elemental components directly identifiable in the target system,
and hence giving the opportunity to create systems easier to
design, to adapt and to maintain. Moreover, since the system is
distributed according to its structure, any change in the
structure can be easily translated to the management system.

This decentralized approach facilitates the design of market
mechanisms to solve the scheduling problem by means of
distributed approximations [2]. Recently, Lee, Kumara and
Chatterjee [7] have proposed an agent-based dynamic resource
scheduling for multiple distributed projects using market
mechanisms. Following the same research line, Confessore et
al. propose in [3] another iterative combinatorial auction
mechanism. Other examples of agent-based approaches in
project management can be found in the works of Kim and
colleagues [6], Wu and Kotak [13], and Cabac [1].

III. A MAS MODEL FOR MULTIPLE PROJECT SCHEDULING

The system can be modeled with two types of agents
representing project and resource managers. Agents have the
ability to interact with each other. In this case, it is important to
define an auction protocol for project agents to compete for the
use of resources. Resource Manager Agents interact with
project agents to inform on the status, capabilities and cost at
each specific time. A third type of agent is included in the

system to create new agents and monitoring the global
behavior.

A. Project Manager Agents

Each project is associated to a Project Manager Agent. The
system is considered dynamic: while some projects are being
developed other projects can be included or rejected in real-
time, which implies the creation and deletion of the
corresponding agents.

At any instant t there are I projects in the system, each one
denoted by i. Each one is characterized by a value Vi, that can
be interpreted as the revenue obtained for the project, a weight
wi representing the strategic importance given to the specific
project, a desirable delivery date Di, a limit delivery date Di

*,
which cannot be exceeded, an arrival date of the project to the
system, Bi , and a limit answer date Ri that represents the latest
date to decide whether to accept or reject the project.

Each project i consists of Ji activities, each one denoted by
ij, where i∈{1, 2,…, I} and j∈{1, 2,…, Ji}. Every activity j of a
project i is associated with a competence h(i,j). Any activity ij
with a given competence h(i,j) can be performed by a resource
m just if m is endowed with the competence h(i,j). The duration
of the activity ij depends on the resource assigned to perform it.
The duration of activity ij in resource m is denoted as dijm. It is
calculated according to dijm=dij/em,h(ij), where dij is the standard
duration of activity j of project i and em,h(ij) is the efficiency of
resource m to perform the competence h(i,j).

This first simplified model assumes that the activities of
any project should be performed sequentially in the order
defined by j and only one resource can be assigned to an
activity. There is also the assumption that once some resource
has begun a task, the activity cannot be interrupted; the
resource needs to finish it to be assigned to any other activity.

Figure 1. MAS organization model (with INGENIAS notation [10]). The
diagram shows an organization (Engineering Company), which has several
departments (Projects Office and Production Unit). The Projects Office has

one Monitor Agent and several Project Manager Agents. The Production Unit
has Resource Managers that take care of the use of Resources.

MALLOW’009: Turin, Italy, September 7-10, 2009

348

B. Resource Manager Agents

A resource is modelled as a Resource Manager Agent.
There are M resources, which can be assigned simultaneously
to one activity. Each resource is endowed with a given cost rate
per unit of time, cm (m ∈{1, 2, 3…M}), and a subset Hm of
competences that can be performed (H={h1, h2, ... hK} is the set
of competences that are necessary to complete the projects).

Each resource has a certain grade or ability to perform a
competence. Therefore, the work capacity of resources can be
symbolized by means of a vector of abilities per resource
em=(em1, em2,…,emk), where emf ≥ 0 shows the ability degree of
resource m to perform the competence hf. If emf = 0 then the
resource m has not the competence hf, if 0 <emf < 1 the resource
is able to perform inefficiently the competence hf, if emf = 1 it
has standard efficiency to perform the competence, and if emf >
1 it will do it efficiently.

C. Monitoring Agent

A Monitoring Agent has the responsibility to visualize the
current state of the system to the user. Moreover, this agent
allows the user to create new Project Manager Agentsm, as
shown in Figure 1.

IV. AGENT WORKFLOWS AND INTERACTIONS

The agent workflows and interactions must be designed in
order to maximize the global efficiency of the system, which
will be evaluated by the average benefit obtained in a certain
time interval T according to:

(())i

iT

V Cost i
B

Efficiency
T T

−
= =

∑
 (1)

for all projects i that are finished in T, Cost(i) is the cost to
complete the project i. This cost has two components, the direct
resource cost and the delay cost:

 2
m(j)

ijm

() C ()
e

ij
i i i

j

d
Cost i w D F= ⋅ + ⋅ −∑ (2)

The first addend corresponds to the direct resource cost to
finish each activity j. ()m j denotes the resource selected to
comply with activity j. The second addend is the delay cost
associated with the project, where Fi is the real delivery date.

The problem considers the decision to reject projects. This
could happen in any of the following cases:

• The revenue obtained from the project does not
compensate the costs.

• The scheduling exceeds the Di
* of the project.

• The impact on the scheduling of the rest of the projects
is not acceptable. This may happen for two causes.
First, if the new project obliges to delay a committed

project beyond Di
*, it will be rejected. If not, but the

inclusion of the new project increases the delay costs
of the other projects more than the direct benefit
obtained for the project, it will also be rejected.

A. Auction Interactions

At any time, the system has as many Project Manager
Agents as projects are ordered. Each one represents a particular
project characterized by its tasks, precedence relationships, due
date, value, local programs and their execution state. Their goal
is to look for contracts with resources that can perform the
required activities and hence completing successfully the
project. In order to achieve their goal, Project Manager Agents
make plans that take into account only their own activities
(local schedule).

The decision-making process is decentralized as it emerges
from interactions among the agents in an auction process. Each
project manager creates its own schedule (local schedule) by
taking into account its own project goals and its own
knowledge. This procedure can bring incompatible local
schedules (several projects try to use the same resource at the
same moment). Moreover, the local schedules can be globally
inefficient (profitable projects are rejected; most important
projects have delays; etc). These difficulties that arise from the
autonomy of each agent are solved with a market mechanism
that ensures that local schedules are nearly compatible and
globally efficient according to the expression (1). This auction
based multi-project scheduling approach is founded on
Lagrangian Relaxation [8][11][14], a decomposition technique
for mathematical programming problems.

In order to apply the market metaphor, the periods when
resources are available are subdivided in a set of small time
intervals or time slots. Each time slot on each resource is
modelled as a good that can be sold in an auction, where each
resource acts as a seller. Thus, a local schedule will be a bundle
of time slots that has been allocated to a project.

The number of sellers is equal to the number of resources in
the system. Each resource proposes a price for the time slots
from the current time to the end of the scheduling horizon. The
scheduling horizon changes dynamically by coinciding with
the latest time slot that some project has asked at any moment.

Each project agent plays the role of a bidder that
participates in auctions by asking the Resource Manager
Agents for the set time slots that it requires to execute its
pending tasks at the current time. It will try to find a set of time
slots (Zi) through the resource pool while incurring the
minimum possible local cost (LCi). This cost has two
components, the sum of the price of the selected time slots and
the delay cost (expression 3):

2)(iii

Zmt
mti FDwpLC

i

−⋅+= ∑
∈

 (3)

where pmt is the price of the time slot (t) of the resource
(m).

MALLOW’009: Turin, Italy, September 7-10, 2009

349

To select the set of time slots (Zi) that minimizes their local
cost, Project Manager Agents use a dynamical programming
algorithm where all possible combinations of time slots and
resources are considered [13]. In their decision, they take into
account that only those resources endowed with the necessary
competences can carry out a certain activity. Moreover, the
number of time slots necessary to complete a task (duration)
are determined according to the ability degree of the resource
in the competence. Each project agent will regard as scheduling
horizon the time slot that goes from the current time to the limit
delivery date (Di

*). If some project agent cannot find a set of
time slots in such a manner that it allows to schedule tasks
before Di

*, with a smaller cost than its value (Vi), then it will
not ask for any set of time slots. This implies that the project is
unprofitable at the correspondent round of bidding and must be
rejected.

Each Resource Manager Agent determines the price
charged for the time slots with the purpose of reducing
resource conflicts and maximizing their revenue. In order to get
this goal a subgradient optimization algorithm is used to adjust
prices at each round of bidding. By means of this algorithm the
Resource Manager Agents increase the price of the time slots
where there is conflict (more than one project manager has
asked for this time slot) and reduce the price of the time slots
that have not been demanded. The process of price adjustment
and bid calculation continues indefinitely. At each round of
bidding the resource conflicts will be reduced.

At the first round of bidding, the time slots prices for the
resource (m) are equal to the resource cost rate (cm). At the rest
of bidding round, the prices will be updated by means of the
expression 4. αn is calculated according to [8].

 { }n
mt

nn
mtm

n
mt gpcp ⋅+=+ α,max1 (4)

Where:

•
1+n

mtp is the price of the time slot (t) of resource

(m) at the round (n+1)

•
n

mtp is the price of the time slot (t) of resource (m)

at the round (n)

• nα is the step at the round (n). It decreases when (n)
increases.

• And (1−= n
mt

n
mt ag) is the subgradient, where nmta

is the demand of slot (t) of resource (m)

B. Contract Interactions

By means of the auction mechanism described above,
project agents build compatible and globally efficient local
schedules for their pending activities. Moreover, at the same
time, agents interact through a complementary process to make
firm agreements based on the local schedules that have been
created by means of the auction process. These agreements
determine fixed programs for earliest scheduled tasks. When

these agreements are obtained, project agents will never
consider the tasks included as firm contracts as pending.

The global efficiency and the compatibility of local
schedules depend on the degree of convergence of market
prices to the equilibrium prices. If the prices get closer to the
equilibrium price, they will be representative of the system
state; they will have information about any system feature and
local schedules will be compatible and globally efficient. If
agents are making firm contracts when prices are not
representative of the system state, then incompatibilities could
take part. In these cases, the agents resolve incompatibilities by
means of local schedule based heuristics rules. More exactly,
when several activities use the same resource at the same
moment, the activity that has been earliest programmed in local
schedule will have priority to be contracted in firm agreements.
Although this heuristic does not ensure global efficiency, it will
achieve perfect compatibility in final decisions.

V. SIMULATION AND RESULTS

The system has been implemented and simulated with
different scenarios. Here the analysis focuses on the role of
resource capabilities and the option of project rejection. The
first scenario shows a simple case to illustrate the main features
of the system, in the next subsection. This is followed by a
dynamic scenario in order to evaluate the system performance
in evolving complex environments.

A. Simple Case Study

Consider three different resources (R1, R2 and R3),
endowed with the competences C1, C2 and C3 respectively.
TABLE I. shows a portfolio of five projects, and the tasks
needed to complete each project. Each task is defined by means
of the pertaining competence and expected standard time to be
completed.

TABLE I. SIMPLE CASE STUDY

The arrival date is the date when the project is included in
the system. Projects can start-up in the starting date; otherwise,
they should have been rejected before this date. Due Date 1
(DD1) is the most desirable duration whereas Due Date 2
(DD2) is the maximum allowed. All the projects have a weight
of 1.

Figures 2 and 3 show the system state at a given time
(current time). In the upper area of the figures the relative
duality gap evolution is presented. The prices of time slots are
the solution of the dual problem and the duality gap is a

Tasks Proj.
Task

1
Task

2
Task

3

Arrival
date

Starting
Date

DD1 DD2 Value

P1 C1 50 C2 25 C3 30 0 0 120 180 10000

P2 C3 40 C1 45 C3 10 0 0 180 240 12000

P3 C2 35 C1 40 C2 25 0 0 120 180 30000

P4 C3 30 C1 50 C2 10 50 90 150 270 15000

P5 C1 45 C3 20 C1 50 50 90 150 270 30000

MALLOW’009: Turin, Italy, September 7-10, 2009

350

measure of the difference between the primal and dual
objective function, so it quantifies the quality of the solution
[8]. The relative duality gap is calculated as the duality gap
divided by the dual solution. A small relative duality gap
means that the prices are representative of the system state,
thus, a good solution is achieved. The lower part of the figures
present charts of resources. These charts show the tasks that
each resource has performed until the current time (lower area
of the resource charts) and the time slot prices (upper area of
the resource chart). The time slots prices previous to current
time are the prices when agents were doing firm agreements for
those time slots. The prices later than current time are the
estimated prices in the current round of the auction.

Figure 2. shows the system state at the moment 45, just
before projects P4 and P5 arrive at the system. When the first
projects (P1, P2 and P3) are included in the system, the duality
gap is high, indication of a bad solution. But then, the price
formation mechanism makes the prices to stabilise, and the gap
becomes smaller. This means that prices are close to
equilibrium.

Figure 2. System state at the moment 45

Figure 3. shows the evolution of the tasks performed by
each resource and the prices of the time slots after finishing the
simulation. This figure shows how the duality gap increases
when the projects P4 and P5 arrive to the system. At this
moment previous prices did not reflect the new system state
(new projects are in the system). After some time, the prices
change to adapt themselves to the new system conditions, and
the gap decreases again. It can be observed that the new prices
are very different from previous prices. This happens especially
in resource R1 where prices are very high.

Figure 3. Tasks performed by resources. Tij denotes Task j of project Pi.

Note that project P5 has been rejected although it has a high
value, because its value was not available at time 0, when
projects P1, P2, P3 were waiting to start-up. The calculus of the
payment that projects have done for time slots (TABLE II.)
shows that the same projects do a payment higher than their
values. When projects P4 and P5 arrive at the system the prices
of time slots of the resource R1 grow because P5 is able to pay
higher prices to be performed. Although P5 accepts higher
prices than other projects, P1, P2 and P3 cannot be rejected and
finally they must pay the market prices. The final total value
(BT=total values of performed projects minus total delay cost)
is 55700.

TABLE II. PAYMENT FOR TIME SLOTS PER PROJECT

Project Value Total payment
P1 10000 12719
P2 12000 11414
P3 30000 8298
P4 15000 6887
P5 0 0

The simulation not only gives the dynamic schedule and the
refused projects, but the value of each resource as well. For
instance, in Figure 3. the prices of resource R1 are very high
during all time slots. This means that the resource competence
is very valuable (bottleneck), so if the firm is going to be
engaged in similar projects in the nearby future, it would be
useful to include more resources with the same competences.
On the other hand, prices of resources R2 and R3 are small,
although they are working on different tasks during the
simulation.

So, the possibility of enhancing the range of capabilities of
resources R2 and R3 should be considered; for instance, in the
case of human resources, this can be done by means of
training.

Figure 4. Tasks performed by resources (competences of resource R2

increased).

Figure 4. shows the evolution of the system when the
resource R2 is also endowed with the competence C1 with
efficiency 0.8. Compared with the previous case, now the price
range is lower for resource R1 and higher for R2. Although the
duration of task T22 of project P2 is smaller in resource R1
than in R2, now the system have to reallocate in real-time this
activity to R2. So, R1 can perform in time the task T51 of the
project P5. In this experiment, the project P5 is accepted and
executed, and the total value has been increased from 55700 to

MALLOW’009: Turin, Italy, September 7-10, 2009

351

69369. This shows that the system is capable to use the
flexibility of resource R2 to improve in real-time the global
performance.

B. Complex Dynamic Scenario

In order to check the system performance in very dynamic
environments, consider 12 projects (table 3) that arrive at the
system every 20 units of time (first P1, second P2, …, and
finally P12). In TABLE III. DD1 and DD2 are relating to
starting date. Resources and competences are similar to the
previous case study.

TABLE III. DYNAMIC PORTFOLIO OF PROJECTS (COMPLEX SCENARIO)

We have done several simulations by changing two types of
parameters: the response period and the set of competences of
resources. The response period is the time interval between the
arrival date and the starting date. During this period, projects
wait in the system for rejection or acceptance decision. If this
period is long, more projects are waiting for decision
simultaneously, so decisions will be more efficient.

We have simulated three competence distribution cases:
case A (R1 has the competence C1, R2 the C2, R3 the C3),
case B (R1 C1, R2 C1 and C2, R3 C3), and case C (R1 C1, R2
C1 and C2, R3 C2 and C3).

Figure 5. shows the total values obtained in different
experiments. Each curve represents the value variation for
cases (A, B and C) when the response period increases. Note
that the system efficiency is higher when the response period
increases and when the resources are more flexible (they have
more competences). This shows that in this scenario the system
performance is suitable; the software is able to manage
complexity to improve the global efficiency.

Figure 5. Total value in complex experiments

VI. CONCLUSIONS

Although project management literature has been mainly
concerned with managing individual projects, in practice firms
usually work in dynamic and complex multi-project
environments.

We propose a multi-agent system and an auction
mechanism for online dynamic scheduling in multi-project
environments. Projects have tasks to be completed, so they
compete for the resources endowed with the capabilities
required to do some pieces of work. The prices of resources
emerge endogenously by means of an auction process.

We show some of the possibilities of this multi-agent
approach to deal with some of the decisions that managers need
to take within multi-project environments. The system allocates
dynamically resources to projects, and decides what projects to
accept or reject taking into account project value, profitability
and (feedback) operational information. We also show how it is
possible to discover which resources are the most valuable, so
they should be added to the firm.

This approach contributes to fill the gap between the
literature in portfolio project management (usually focused on
corporate strategy and finance) with the work in multi-project
management (mainly concerned with operational issues,
scheduling and resource allocation).

ACKNOWLEDGMENTS

This work has been done in the context of the following
projects: (1) “Agent-based Modelling and Simulation of
Complex Social Systems (SiCoSSys)”, supported by Spanish
Council for Science and Innovation, with grants TIN2008-
06464-C03-01 and TIN2008-06464-C03-02; (2) “ABACO
VA006A09”, (3) the Programa de Creación y Consolidación de
Grupos de Investigación UCM-BSCH GR58-08, and (4)
GR251/09 supported by the “Junta de Castilla y Leon”.

Tasks Proj.
Task 1 Task 2 Task 3

DD1 DD2 Value

P1 C1 50 C2 25 C3 30 60 150 10000

P2 C3 40 C1 45 C3 10 60 120 15000

P3 C2 35 C1 40 C2 25 60 120 6000

P4 C3 30 C1 50 C2 10 90 120 7000

P5 C1 45 C3 20 C1 50 60 120 8000

P6 C3 10 C2 45 C1 20 120 150 7000

P7 C1 20 C2 10 C3 30 60 150 15000

P8 C3 40 C1 45 C3 50 90 120 10000

P9 C2 35 C1 10 C2 45 60 120 15000

P10 C3 30 C1 15 C2 10 60 120 10000

P11 C1 15 C3 50 C1 10 90 150 7000

P12 C3 35 C2 50 C1 20 60 120 12000

MALLOW’009: Turin, Italy, September 7-10, 2009

352

REFERENCES
[1] Cabac, L. “Multi-agent system: A guiding metaphor for the organization

of software development projects”. In: Carbonell, J.G. & Siekman, J.,
Multiagent System Technologies. Lecture Notes in Artificial
Intelligence 4687. Springer: Berlin / Heidelberg, pp 1-12, 2007

[2] Clearwater, S. “Market-Based Control: A Paradigm for Distributed
Resource Allocation”. World Scientific, 1996.

[3] Confessore, G., Giordani, S. & Rismondo, S. “A market-based multi-
agent system model for decentralized multi-project scheduling”. Annals
of Operations Research, 150, pp 115-135, 2007

[4] Hans EW, Herroelen W, Leus R and Wullink G. “A hierarchical
approach to multi-project planning under uncertainty”. Omega 35, pp
:563-577, 2007.

[5] Jennings, N.R. & Wooldridge, M.J. Applying agent technology. Applied
Artificial Intelligence, 9, pp 357-369, 1995.

[6] Kim, K. & Paulson, J. “Multi-agent distributed coordination of project
schedule changes”. Computer-Aided Civil and Infrastructure
Engineering, 18, pp 412-425, 2003.

[7] Lee, Y.H., Kumara, S.R.T. & Chatterjee, K. “Multiagent based dynamic
resource scheduling for distributed multiple projects using a market
mechanism”. Journal of Intelligent Manufacturing, 14, pp 471-484, 2003

[8] Luh, P.B. & D. J. Hoitomt. “Scheduling of Manufacturing Systems
Using the Lagrangian Relaxation Technique”. IFAC Work Shop on

Discrete Event System Theory and Applications in Manufacturing and
Social Phenomena, Shenyang, China, 1991.

[9] Newman K, Schwindt C., Zemmermann J. Book review of Project
Scheduling with Time Windows and Scarce Resources: Temporal and
Resource-Constrained Project Scheduling with Regular and Non-regular
Objective Functions. 2nd Edition, Springer-Verlag, 2003

[10] Pavón, J., Gómez-Sanz, J.:“Agent Oriented Software Engineering with
INGENIAS”. In: Marik, V., Müller, J., Pechoucek, M. (eds). Multi-
Agent Systems and Applications III, 3rd International Central and
Eastern European Conference on Multi-Agent Systems, CEEMAS 2003.
Lecture Notes in Artificial Intelligence 2691. Springer-Verlag, Berlin
Heidelberg, pp 394-403, 2003.

[11] Wang, J., Luh, P.B., Zhao, X. and Jinlin Wang. “An Optimization-Based
Algorithm for Job Shop Scheduling”. Sadhana, a Journal of Indian
Academy of Sciences, Vol. 22, Part 2, pp. 241-256, 1997

[12] Wooldridge, M.J. An Introduction to Multiagent Systems. John Wiley &
Sons Ltd: New York, 2002.

[13] Wu, S. & Kotak, D. “Agent-based collaborative project management
system for distributed manufacturing”. Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pp 1223-
1228, 2003

[14] Zhao, P. B. Luh, J Wang. “Surrogate Gradient Algorithm for Lagrangian
Relaxation”. Journal of Optimization Theory and Applications, Vol.
100, Nº 3, pp 699-712, 1999

MALLOW’009: Turin, Italy, September 7-10, 2009

353

Quick Prototyping and Simulation with the
INGENIAS Agent Framework

Jorge J. Gomez-Sanz
Facultad de Informática

Universidad Complutense
Madrid, Spain

Email: jjgomez@sip.ucm.es

Carlos Rodrı́guez Fernández
Facultad de Informática

Universidad Complutense
Madrid, Spain

Email: carlosrodriguez@computer.org

Juan Pavón
Facultad de Informática

Universidad Complutense
Madrid, Spain

Email: jpavon@fdi.ucm.es

Abstract—A major nightmare of software developers is having
clients claiming the delivered software is not what they expected.
Developers make an extensive use of prototypes to prevent such
situations to occur. However, the role of simulations have not
been studied enough. If an agent based simulation is intended,
not all existing agent oriented methodologies are capable of it.
It requires code generation capabilities, round-trip features, and
components with predefined behaviors. This work introduces the
ability of the INGENIAS Agent Framework to simulate MAS
specifications and how this can be useful for for agile development
of agent-based applications.

I. INTRODUCTION

A software development needs to verify the system under
construction satisfies a client needs. Requirements engineering
has contributed strongly to the solution by guaranteing the
requirements are properly captured and processed. Software
development processes have been modified to include the
ideas of incremental development (segmenting the system
functionality into coherent pieces and ordering them so that
their sequential/paralell realisation leads to the final system),
iterations (miniprojects focusing on the development of a
concrete piece of functionality of the application). Expected
products from this development process include several types
of documents aiming to communicate with the client and tell
them what is being done; and acceptance tests, to ensure the
behavior of the application is the one expected. Despite these
avances, prototyping seems to be a recurrent option.

Prototypes [1] have been extensively used as a effective
mean of showing results to the client and for experimenting
with part of the functionality the client demanded. However,
the development of a prototype is incomplete without a proper
environment that resembles the platform where the software
will be deployed. Hence, essaying with different software
architectures or showing a client how the software is expected
to behave is expensive.

In this scenario, agent technology has been recognised
as an affordable mean for producing prototypes and define
simulations [2]. Nevertheless, actual prototyping and simula-
tors are built ad-hoc. The facilities needed to facilitate rapid
application development where a simulation is required are
not present in most agent oriented methodologies. Remarkable
exceptions are ADELFE [3] and PASSIM [4], which integrate

simulations into their development cycles. However, as dis-
cussed in section VIII, more effective code generation and
specification-code synchronization facilities are needed.

In this aspect, INGENIAS [5] can improve existing pro-
posals. INGENIAS is an agent oriented software engineering
methodology which follows the model driven development
paradigm [6]. As a result, it considers the MAS specifica-
tion as the main product of the development and provides
tools to transform this specification into executable code.
INGENIAS takes advantage of the INGENIAS Development
Kit for producing fully functional systems [7]. Within this
kit, there is a distinguished module, the INGENIAS Agent
Framework which determines how to interprete the MAS
specification using as target platform JADE. This module is
complemented with the Code Uploader and the AppLinker
modules that provide round-trip engineering features, i.e., they
upload changes made in the code back into the specification.

This paper discusses how INGENIAS can make use of the
simulation concept in order to develop a software system. The
discussion bases in the features provided by the INGENIAS
Agent Framework, which is introduced in section II. The way
this software can be used to simulate is introduced in section
III. The introduction of the case study concerns to section IV.
The INGENIAS solution to the case study is made in section
V. The simulation made in this case study itself is introduced
in section VI and evaluated in section VII. The related works
are presented in section VIII. Finally, section IX introduces
the conclusions.

II. THE INGENIAS AGENT FRAMEWORK

IAF stands for the INGENIAS Agent Framework. It is a
framework developed along several years that enables a full
model driven development. This means that a developer can
focus most of its effort in specifying the system, converting a
great deal of the implementation in a matter of transforming
automatically the specification into code. This IAF permits
to combine the classic approach for coding applications with
modern techniques of automatic code generation. The resulting
system is almost fully operational, reducing the amount of
work of the developer in an relevant degree. Each produced
MAS works over the JADE platform. Hence, additional tools
existing for this framework can be applied as well.

MALLOW’009: Turin, Italy, September 7-10, 2009

354

A MAS in the IAF is constructed over the JADE platform.
The MAS can be distributed along one or several containers
in one or many computers. To enable this feature, the IAF has
means of declaring different deployment configurations.

The running MAS will be connected to several non-agent
applications providing the basic services. Hence, if the MAS
has to interact with a user, there will be GUIs producing
events according to user actions, and defining actuators for
agents. These GUIs will be specified as applications at the
specification level.

An important feature of the IAF is the relevance of in-
teractions, which are considered first class citizens during
specification and coding. An interaction in runtime is called
a conversation. The interactions according to the IAF have
the main purpose of transferrring information from one agent
to another. This information transfer is ruled by timeouts
and initiation/colaboration conditions. Also, interactions can
be aborted due to failures in the communication or simply
because an agent did not answer within the timeout. Finally,
the software code realising interactions consider cases where
there may be several actors of the same time, i.e., supports the
deliver of information to several recipients and the reception
of the answer from several agents at the task level.

Tasks are important as well. An agent chooses to schedule
a task for execution because the agent wants to attain a
pursued goal. The tasks influence in the mental state by re-
moving/adding information, starting conversations with other
agents, or modify already existing conversations. Tasks support
cardinality attributes associated to the inputs, so a task can use
as input all instances of a certain information type or just a
few.

Custom deployments permit the developer to define which
types of agents will be used and what individual mental state
will have during the start-up. This feature allows the developer
to define different configurations of the system so that the
developer can observe the behavior of the MAS under such
conditions.

Testing is a recent addition to the IAF. A developer can
define at the specification level what tests will be performed
and to what configuration of MAS will be applied. The
detailed definition of the test has to be handcrafted, though
there are some software libraries that make this work easier.

III. BUILDING A SIMULATION WITH THE INGENIAS
AGENT FRAMEWORK

In general, there are two approaches for simulation using
the IAF: simulating the environment or simulating the envi-
ronment and the application. In the first, MAS infrastructure is
provided in order to represent different elements of the target
runtime environment. Therefore, there is external software (the
one recently developed and whose behavior is to be verified)
and the environment built with a MAS. The external software
would be docked to the MAS based environment by means
of application entities. In the second, not only the elements
of the application environment are provided, but parts of

the system-to-be are included as well, reusing directly pre-
dedefined behaviors from the IAF.

A. Simulating the internals of the application

The IAF provides built-in predefined behaviors which can
be used to simulate parts of the application. They are intro-
duced following:

• Task Raw simulation. The developer defines no specific
code for tasks, assuming the default behavior of tasks
in the IAF. This behavior consists in consuming/reading
the information declared as input and producing all the
outputs declared in the specification. All produced in-
stances of information entities are empty. This means that
if an information entity has attributes, its instances will
see these attributes exist, though they have empty values.
Also, when a task creates an instance of an interaction,
i.e., a conversation, the collaborators will be chosen
randomly among existing valid ones (a valid agent type or
a valid agent role according to the interaction definition).
If one collaborator is defined as having cardinality greater
than one, then multiple agents satisfying the requirements
from the concrete interaction specification are chosen and
incorporated automatically.

• Application Raw simulation. The applications are wrap-
pers for non-agent software. The default code produced
for such instances of applications does nothing. Neverthe-
less, if the specification declared a certain event has to be
produced from the application, then the IAF generates a
GUI from which the user can trigger the generation of an
instance of the expected event. This new instance would
be incorporated automatically into the mental state of the
agent owning the application. If the specification declares
an application type is owned by certain agent type, then
an instance of an application can be accesible only to an
instance of the agent type or to multiple instances of the
agent type (this is implemented by means of a singleton
pattern [8]). This is useful to represent shared resources
and communication through the environment. In the later
case, one agent performs an action over the application
that triggers an event which is passed to all agents owning
the application.

• Interaction Raw simulation. For each agent capable of
initiating a conversation, the IAF generates a basic
GUI that can trigger this conversation without having
a task launching it. The conversation may not progress
if the corresponding information that should be deliv-
ered/received does not exist. Therefore, a simulation of
the interactions must be accompanied with a specialized
deployment where the initial mental state of involed
agents satisfies the requirements of the interaction at the
specification level.

Using these pre-defined behaviors, the developer models the
internals of the application using an agent oriented method-
ology, like INGENIAS, and proceeds to observe how the
resulting MAS behave.

MALLOW’009: Turin, Italy, September 7-10, 2009

355

The simulation can get closer to the actual intended software
by customizing more the behavior of the elements:

• Adding custom code to the tasks in the MAS. Instead
of the default behavior (consuming input entities and
creating new ones in the output), a developer can code
more concrete behavior, like using existing APIs from ap-
plications to perform actions or detail which collaborators
a conversation will have. This new code is inserted into
a code component entity and used to replace the code in
the generated task. These changes are maintable throught
he use of the code uploader module of the INGENIAS
Development Kit, which migrates changes made to tasks
into existing code components in the specification.

• Adding initialization/shutdown code for applications.
This code permits to properly construct/shutdown the ap-
plication knowing during creation/shutdown time which
agent will be assigned to it. This way, an application
acquires a reference to its agent or agents.

• Modifying the API of the application code and providing
a body to the methods. An application can be coded ad-
hoc for a concrete development or act as mediator [8] to
some external software (e.g. a database or some existing
GUI). The API is synchronized with the specification
by means of the AppLinker module of the IDK. This
module analyzes the generated code of already generated
applications looking for changes in the API with respect
to the API stored in the specification. Differences are
merged automatically so that the API in the specification
is the same. This way, a developer can either modify the
specification and let the system regenerate the code, or
modify the API in the code and upload the new methods
to the specification.

The degree of customization is a decision of the developer.
The resulting MAS can become the intented system or remain
as a proof that the MAS specification is valid for the problem.
In the first, case, the specification and the customization of
the generated code would progress towards the final system.
In the second case, the developers would decide to realize the
specification into a different agent platform or just reuse the
acquired knowledge to be used within another methodology
(agent oriented or not).

The IAF recognises automatically generated code, manually
maintained code, and a hybrid mixture of both. All of them
exist into separated folders. Hence, a developer can work
safely in the src folder, creating clasess regularly; delete safely
the content of gensrc folder knowing that it can be completely
generated from the specification; or customize the content
of permsrc folder knowing that changes made will not be
overwritten by sucessive code generation requests.

B. Simulating the environment

Once key elements to be simulated are identified, a de-
veloper can represent them as agents or as applications. It
is an agent when its behavior of the simulated entity can
be captured with goals and tasks and the execution of the
corresponding tasks corresponds to the achievement of goals.

It is an application in other case. Being an application means
an API is offered and that this API can be used within the tasks
of the agent. Optionally, the application is expected to produce
events in order to notify agents of changes. As explained in the
previous section, these events can be asserted within a single
or multiple owners.

The external software (software which already exists before
the current MAS is developed) is wrapped into applications.
Generated code for applications will act as a mediator [8]
between the generated MAS and the external software. The
initialization code for applications will be used to connect the
mediator with the external software, while the shutdown code
will do the opposite. These appliciations should offer the same
API the external software does. If there are multiple APIs,
a developer can choose to merge all of them into a single
application or creating multiple applications holding each one
separately.

Most likely, there will be agents representing the different
types of users in the system, which could be humans or not.
A developer will define a certain role capturing the generic
behavior expected from that user. This behavior is supposed
to be assumed by a agent or specialised by another role.
Assuming there is a role with a task X having as input an
entity type Y, the specialization can happen as follows. First,
an agent can define a task XX having as input the entity Y.
This will cause tasks XX will be executed instead of tasks X.
Second, a new role extending the original role can be defined.
This new role, can define a task XXX having as input the
entity Y. This will cause tasks XXX are executed before the
task X. In both cases, when task XX or XXX is executed, they,
probably, will remove entity Y from the mental state, aborting
this way any possible execution of previously scheduled X
tasks.

With these two ways of capturing behaviors, a developer
can create populations of users with varying behaviors. The
resulting agents will perform actions over the existing appli-
cations, which are supposed to be connected to the software
system currently under execution.

C. Analysing a simulation run

Once the MAS is defined, it is time to perform different
runs of the system. The user can inspect visually the results by
means of the IAF default GUI. Nevertheless, it is convenient
to make use of a more exhaustive and objective analysis by
means of studying the system logs. The INGENIAS Agent
Framework produces logs with the produced events in a system
run, so that they can be inspected and accounted later on.
Registered events are:

• A task has been scheduled. The id and type of the task,
as well as the id of the agent, are provided

• A new piece of information is added/removed to/from the
agent mental state. The id and type of the entity as well
as the id of the agent are provided.

• A task has been executed. The id and type of the task,
as well as the id of the agent, are provided

MALLOW’009: Turin, Italy, September 7-10, 2009

356

• A task has been aborted. The id and type of the task, the
expected inputs that were missing, as well as the id of
the agent, are provided

• A conversation has been started. The id of the conversa-
tion, the interaction type, collaborators, and the id of the
launcher agent, are provided

• An agent decides to participate into an requested con-
versation. The id of the conversation, the interaction
type, collaborators, and the id of the launcher agent, are
provided

• A message has been delivered. The id of the message, its
content, sender and receivers are provided

Each event is marked with a timestamp (24 hour format and
milliseconds format) obtained from the same hardware clock.
Therefore, this timestamp should not be used as a reference
to compare logs produced into different physical machines.

By properly interpreting each task, the developer can pro-
duce graphics similar to those frequently found in conventional
simulations. For example, a task Y is designed to peform a
payment through paypal in ebay after a succesfull auction.
By accounting the times this task was executed, and using
timestaps, it can be generated a graphic of the number of
finished auctions through a determined period of time.

IV. THE CASE STUDY

Technological advances are increasing with time. The vol-
ume of scientic publications patents, research projects, tech-
nology news and related international standards of tech-
nology is in continuous increase. This makes available to
researchers, R+D organizations, and industry in general, a
huge amount of information to analyze for their projects
and strategies. Technology Watch Systems are involved in
processing of all information tech- nology environment to
extract knowledge, such as identifying trends and changes.
This case study focuses on the management of quality of
information sources within a Technology Watch System.

Technological watch is a tool used wihtin Competitive
Intelligence. Competitive Intelligence is the legal obtention,
analysis, distribution of information about a competitive envi-
ronment, including strong and weak points as well as the inten-
tions of competitors [9]. Technological watch is an organized,
selective and permanent process for information gathering
scientific and technological information coming from in and
out the organization; selecting it; analyzing it; distributing it;
and commnunicating it; to convert it into knowldge supporting
decision making activities with lower risk and being able to
anticipate changes [10].

In an organization dedicated to R+D, clients of a Techno-
logical Watch are research groups. These researchers, gener-
ally, have already located relevant information sources to be
watched. Therefore, researchers are a potential suppliers of
information sources. If the system was feeded with bad quality
information sources, the system would supply results with
noise causing the analyses to be inadequate or wrong. This
problem suggests the system should not accept all suggested
information sources. In fact, giving more relevance to those

researchers investing effort in providing good information
sources would potentially increase the quality of the produced
results. Similarly, controlling more bad suggestors allows to
keep the quality degree.

The development of Technological Watch system follows
recommendations from the UNE 166006:2006 EX [10]. This
normative provides a set of requirements, but no APIs or
formal definitions. One of the recommendations consists in
qualifying information sources with some attributes, which
are are highly related to the reputation and trust models well
known in the agent literature. These attributes are supposed
to be managed by humans, what means necessarily increasing
the amount of work of operators.

Therefore, this case study to what extent reputation and trust
models can be integrated in a Technological Watch System.
The question is how such functionality can be integrated, i.e.,
are new components needed? is it enough with modifying the
responsibilities of existing components?

This evaluation has required building a prototype dealing
with three basic scenarios corresponding to the use case
Manage quality of information sources by means of reputation
and trust models:

• A low quality information source proposal made by a
collaborator with low reputation in general

• A high quality information source proposal made by a
collaborator with high reputation in general

• A low quality information source proposal made by a
collaborator agent subject of bad reputation on behalf a
supervisor agent which has witnessed past requests from
the same agent.

The development made focuses in the first scenario.

V. DEFINING WITH INGENIAS
In the long term, the developed MAS aims to discover what

kind of agents are required in order to have a population
representative of a real scenario. Also, As it is now, it serves to
experiment with the necessary protocols for integrating a trust
model in the information sources management mechanisms.

As figure 1 shows, there are four groups of agents in the
organization responsible of technological watch services.

• Collaborators. They are agents which propose new in-
formation sources. These agents can be a human operator
representative or, directly, an agent that does not require
a human operator.

• Supervisors. They are resposible of deciding how to
evaluate proposals from the collaborators.The evaluation
itself is performed by agents belonging to the Test Team.

• Test Team. They assign a quality value to an information
source prior to its incorporation into the system. They do
this by pretending the source is already incorporated and
starting to use it with some predefined queries. Also they
can request human expert evaluations.

• Operations Team. They watch accepted information
sources and other technological watch services. There
are agents within this group who are in charge of in-
specting accepted information sources. They maintain

MALLOW’009: Turin, Italy, September 7-10, 2009

357

Fig. 1. Organization responsible of Technological Watch

updated information about the quality of the sources. This
evaluation is used later to compute the trust degree of
collaborators.

The MAS developed uses the REGRET trust model [11],
making two simplifications. All supvervisors have a credibility
of 1 and only reputation information from witness will be
taken into account.

Focusing on a SupervisorRole, this role has as goal keeping
the system with high quality information sources. The capa-
bilities of this role are expressed as tasks (fig. 2):

• ProcessReceivedProposalTask. The agent can process
proposal from collaborators.

• AddSourceIntoSystemTask. The agent can add accepted
information source into the system. This task also in-
cludes the request of quality inspection for the accepted
information source.

• RequestAlphaQualityInspectionTask. The agent can re-
quest alpha quality inspection to inspectors. “Alpha qual-
ity inspection” means making a quality inspection without
adding the information source into the system to be
watched.

• ProcessAlphaQualityInspectionResultTask. The agent
can process the results of alpha quality inspections.

• ProcessQualityInspectionResultTask. The agent can
process the results of quality inspections.

Fig. 2. Tasks assigned to a Supervisor

Fig. 3. Description of the task which process an information source proposed

Fig. 4. Definition of the deployment for the test

Task ProcessReceivedProposalTask (fig. 3) is activated
when the fact SourceProposed is found. The SourceProposed
fact comes in the proposal message of the PerformProposal
conversation. This task makes decisions about what filters
apply to the proposal as follows:

• Reject the proposal because the collaborator has at-
tempted too much to add information sources with low
quality. The task produces the RejectedProposal fact to
be sent as response in the reject-proposal speaking
act of the PerformProposal conversation.

• Request an alpha quality inspection for the information
source in order to obtain quality information in some
criterias. It is because the supervisor doesn’t trust in
the collaborator about the quality (in some criterias)
of information sources which he usually proposes. The
objetive behind is to apply the selected filters, that is, If
the information source has the quality value (in a specific
criteria) less than the minimum quality value permited (in

MALLOW’009: Turin, Italy, September 7-10, 2009

358

Fig. 6. Information source acceptance/rejection ratio

the specific criteria), then reject the proposal. Otherwise,
accept the proposal. The task produces the SourceTo-
Prove fact to indicate the request.

• Request the adding of the information source into the
system to be watched. The proposal is accepted because
the supervisor trust in the collaborator. The task produces
the SourceToProcess fact to indicate the request.

The TrustInformations fact has the information about trust-
ing of all collaborators who have made proposal to the
supervisor.

VI. SIMULATING

Figure 5 shows the GUI of the developed system where
different actions can be triggered to run the basic scenarios.
The log corresponds to these sequence of actions. First, the
Collaborator makes a proposal of a information source with
regular quality.The Supervisor #0 applies the filter, it’s mean,
request an alpha quality inspection to the Alpha Inspector.
Also, The Supervisor #0 requests reputation information to the
Supervisor #1, and the later response with the reputation infor-
mation which has a high reliability. The Supervisor #0 accepts
the proposal. Second, the Collaborator makes a new proposal
with low quality. The Supervisor #0 doesn’t trust (trust degree
information with high reliability) in the Collaborator, then the
agent decides to apply the filter to the proposal, and finds that
the proposal has low quality and must be rejected.

The simulation of the system leads to a log of several
megabytes of information. By filtering the content, and fo-
cusing in the production of AcceptedProposal entities, Reject-
edProposal entities, and SourceProposal, it is straightforward
to obtain a list of events which tell when such entities are
incorporated into each individual agent mental state. These en-
tities are representative of a rejection, acceptance, and proposal
of new information sources. Hence, accounting occurrences,
one can determine the performance of the system. As figure
6 indicates, there are rejected sources and accepted sources.
Hence, the rejection mechanisms are used. Nevertheless, it
would be necessary to determine if the rejections should
actually happen, something not accounted here.

VII. EVALUATION

After developing this prototype, a greater knowledge of
the problem has been acquired. Using INGENIAS, generic
information exchanges were depicted, detailing the informa-
tion exchanged and having some wired code dealing with its
transformation.

The development time was reduced to a minimum, one
person for one weeks at full time (eight hours a day). Taking
into account that the actual Technological Watch system has
been developed for two years, this seems a reasonable price
for having an accurate specification of the problem. Also,
incorporating the produced system as an add on to the real
system remains a possibility.

The simulation of the environment was straightforward to
produce. Since the protocols were already established, it was
known what information the system was expecting from the
users. So, defining GUI agents interfacing with real human
operators or agents pretending to act directly with the system
was easy. From here, deciding the kind of agents to deploy and
their specific features, was a matter of depicting an ingenias
deployment entity.

The degree of reusability is not known yet. The model was
concluded recently and it is currently under the evaluation
of other partners in the project. Should the specification be
accepted, the ideas woud be incorporated into production,
modifying the current Technological Watch system being used.

VIII. RELATED WORK

The current state of art of agent oriented software engineer-
ing methodologies shows only a little number of methodolo-
gies permitting to produce directly code and perform the kind
of simulations made with INGENIAS. Methodologies like
MaSE [12] or Prometheus [13] are capable of code generation.
Nevertheless, they intend to produce fully functional systems
everytime and do not conceive the use of simulations as
part of the development. In the case of Prometheus, code
generation is a recent incorporation so its effective use to
produce MAS automatically is still under study (there is a
plugin but the documentation for its use has not been update
as of today). In the case of MaSE, code generation has
been integrated since the methodology was born. Systems are
specified almost completely from the tool. Nevertheless, the
customization of the produced code is not as effective as in
INGENIAS. A developer in INGENIAS will find several tools
to synchronize the produced code with the specification. In
MaSE, this possibility does not exist.

ADELFE [3] bases on several simulation platforms, one
of the most recent is SeSAm. The behavior of agents within
SeSAm is made by means of activity diagrams, permitting the
developer to express a variety of possible agents. Nevertheless,
the production of a SeSAm specification is achieved manually
using ADELFE concepts. This complicates the synchroniza-
tion of both the problem specification and the simulation,
something that does not occur with INGENIAS and the IAF.
Besides, the effort for defining an agent is lower in INGE-

MALLOW’009: Turin, Italy, September 7-10, 2009

359

Fig. 5. Agent learns not to trust in another agent by direct experience and reputation

NIAS. Doing the same in SeSAm implies manually modifying
the SeSAm agent template to incorporate the activities.

PASSIM [4] uses state-chart based simulation to validate
and produce protypes. The formalism used to describe the
system to simulate is Distilled StateCharts. The translation
between design concepts and simulation concepts is semi-
automatic. There is a first stage which produces the skeleton
and a second stage that requires human intervention to refine
the code. Simulation in PASSIM concerns the whole system.
In the work introduced in this paper, the simulation generation
is automatic and its content can concern the whole application
or only its environment. Also, INGENIAS provides means to
integrate with external applications, where PASSIM does not.
INGENIAS simulation agents base on the BDI paradigm and
are coded that way. In PASSIM, the coding corresponds to the
statechart formalism. Like in SeSAm.

IX. CONCLUSION

Prototyping and simulations are two ways of clarifying
system requirements and experimenting with different ap-
proaches in a domain problem. Prototypes are expendable and
simulations, depending on the support tool, are expendable
as well. A simulation performed with SeSAm, for instance,
cannot be used as a final product to be delivered to end
users. Hence, an approach permitting prototyping, creating
simulations, and reduce costs in producing both, would be
welcome.

INGENIAS can provide such services. In INGENIAS,
with the aid of the INGENIAS Development Kit and the
INGENIAS Agent Framework, it is possible to experiment
different configurations of a MAS investing little effort. Also,
it is possible to create artificial environments where there are
simulated human operators or external agents interacting with
the developed system. The result of the experimentation is a
MAS specification capturing the requirements of the client,
whose interpretation can be inspected visually by the client;
and a MAS obtained automatically from the specification,
which can be used as prototype or as final system, depending
on the needs of the development.

ACKNOWLEDGMENT

We acknowledge support from the project Agent-based
Modelling and Simulation of Complex Social Systems
(SiCoSSys), supported by Spanish Council for Science and
Innovation, with grant TIN2008-06464-C03-01. Also, we ac-
knowledge the funding from the Programa de Creación y Con-
solidación de Grupos de Investigación UCM-Banco Santander
for the group number 921354 (GRASIA group).

REFERENCES

[1] M. Schrage, “Cultures of prototyping,” pp. 191–213, 1996.
[2] M. Luck, P. McBurney, and C. Preist, “A manifesto for agent technology:

Towards next generation computing,” Autonomous Agents and Multi-
Agent Systems, vol. 9, no. 3, pp. 203–252, 2004.

[3] C. Bernon, M. P. Gleizes, and G. Picard, “Enhancing self-organising
emergent systems design with simulation,” in ESAW, ser. Lecture Notes
in Computer Science, G. M. P. O’Hare, A. Ricci, M. J. O’Grady, and
O. Dikenelli, Eds., vol. 4457. Springer, 2006, pp. 284–299.

[4] M. Cossentino, G. Fortino, A. Garro, S. Mascillaro, and W. Russo,
“Passim: a simulation-based process for the development of multi-agent
systems,” IJAOSE, vol. 2, no. 2, pp. 132–170, 2008.

[5] J. Pavón and J. J. Gómez-Sanz, “Agent oriented software engineering
with ingenias,” in CEEMAS, ser. Lecture Notes in Computer Science,
V. Marı́k, J. P. Müller, and M. Pechoucek, Eds., vol. 2691. Springer,
2003, pp. 394–403.

[6] J. Pavón, J. J. Gómez-Sanz, and R. Fuentes, “Model driven development
of multi-agent systems,” in ECMDA-FA, ser. Lecture Notes in Computer
Science, A. Rensink and J. Warmer, Eds., vol. 4066. Springer, 2006,
pp. 284–298.

[7] J. J. Gómez-Sanz, R. Fuentes, J. Pavón, and I. Garcı́a-Magariño,
“Ingenias development kit: a visual multi-agent system development
environment,” in AAMAS (Demos). IFAAMAS, 2008, pp. 1675–1676.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, January 1995.

[9] K. Conttrill, “Turnin Competitive Intelligence into Business Knowl-
edge,” Journal of Business Strategy, vol. 19, Julio/Agosto 1998.

[10] AENOR, “UNE 166006:2006 EX: Gestin de la I+D+i: Sistema de
Vigilancia Tecnolgica,” UNE, Final, 2006.

[11] J. Sabater, “Trust and Reputation for agent societies,” PhD Thesis,
Universitat Autnoma de Barcelona, 2003.

[12] J. C. Garcia-Ojeda, S. A. DeLoach, and Robby, “agenttool iii: From
process definition to code generation,” in Proceedings of the 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems,
2009, pp. 1393–1394.

[13] L. Padgham, J. Thangarajah, and M. Winikoff, “Auml protocols and code
generation in the prometheus design tool,” in AAMAS, E. H. Durfee,
M. Yokoo, M. N. Huhns, and O. Shehory, Eds. IFAAMAS, 2007, p.
270.

MALLOW’009: Turin, Italy, September 7-10, 2009

360

Multiagent Simulation Model Design Strategies
Franziska Klügl

School of Science and Technology
Örebro University, Örebro, Sweden

Email: franziska.klugl@oru.se

Abstract—Model design is particularly challenging for multi-
agent simulation models as the simulation paradigm does hardly
impose constraints on it. This contribution systematically ana-
lyzes procedures for developing a multi-agent simulation model:
iterative methods derived from principles, such as KISS or KIDS
and methods focussing on the different design elements (agents,
interaction, environment).

I. INTRODUCTION

Methodological questions are more and more in the focus
of research on agent-based simulation. This contribution deals
with the phase in modeling that requires most experience and
creativity from the modeler: model concept and design.

The development of a multi-agent simulation model seems
to be an inherently intuitive way of modeling: Entities observ-
able as active in the real system are captured as active entities
– as agents – in the model. There seems to be no need for
complex aggregation or abstraction necessary for formulating
the model, nor a languages that requires deep mathematical
skills must be used. Features of the model such as variable
structure, heterogeneities, mixed local and global effects, ...,
can just be formulated or generated from more or less simple
agent behavior and interaction – just as observable in the
original system or stated in the original ideas. Due to this
intuitiveness and its general potential, it is often forgotten,
that the development of a multi-agent simulation model leads
to particular problems beyond general simulation engineering:

• Determining the appropriate level of detail is everything
else but trivial. Actually, it is the basic design problem
to determine what behavior shall be included or which
factors ignored.

• Thinking in terms of agents can also be a problem when
the modeler is used to other paradigms, such as process-
oriented or macro modeling. Then an interaction-oriented
model for generating the aggregate behavior instead of
describing it, may be difficult to design.

• The general intuitiveness of the modeling leads to a
tendency of ad-hoc development. This is supported by
visual programming tools such as SeSAm [1]. Modelers
immediately start implementing instead of thinking about
an appropriate design beforehand.

• Necessary effort for understanding and analyzing the
model and its overall behavior is underestimated. As in a
multi-agent simulation the overall behavior is generated
from the interactions and local behavior of agents, special
effort has to be invested for excluding artifacts originating

from minor bugs at the micro-level – in the agents design
as well as implementation.

• A last issue is the difficult control of the included
assumptions – due to the size of the model and the effort
of developing, a systematic control of the assumptions
taken while modeling has to be done. After modeling all
assumptions can hardly be recapitulated and tested when
they are not explicitly collected while modeling.

These are issues mostly in design of a multi-agent model.
Clearly there are others, when considering all phases of
the simulation study. Examples for additional problems are
the need for validation when relevant data is missing, the
difficulties of implementing concurrent processes or technical
problems due to the size of the model and simulation. Never-
theless the design phase of a modeling and simulation study
is the one the requires the most experience. This is the phase
that is often coined as “art” [2].

In this contribution, we are focussing on the issues in model
design and give a systematic view on different procedures. In
the following we will first set the context of our endeavor by
tackling process models for (multi-agent) simulation, as well
as input from agent-oriented software design. Then we will
give procedures for designing a model – one-shot in section
III and iterative in section IV. The contribution ends with a
discussion of the procedures and a short conclusion.

II. METHODOLOGIES AND PROCESSES FOR DEVELOPING
MULTI-AGENT SIMULATION MODELS

A. Simulation Study Life Cycle

Phases of a systematic development of agent-based simula-
tion models have been suggested by several researchers [3],
[4], [5]. While focussing on integration of data or different
roles of participants in the study, their suggestions for pro-
cedures are naturally quite similar to guidelines for general
simulation study development developed by [6], [7] or [2].
The basic phases are initial works such as fixing the objec-
tive, making a profound analysis of the system or gathering
necessary data and information. This is followed by making
a model concept and elaborating it - this is basically model
design. Model implementation and calibration are additional
phases that are accompanied by analysis and validation phases.
When the model is ready, the simulation study is completed by
deployment runs and documentation and interpretation of the
results. Clearly, bugs and deficiencies discovered in one phase
may require re-working in previous phases. Figure 1 depicts

MALLOW’009: Turin, Italy, September 7-10, 2009

361

Fig. 1. Phases of an agent-based simulation study. Model design may also be iterative.

these basic phases for agent-based simulation development.
The model design phase is highlighted.

It is quite unrealistic to assume that model design can be fin-
ished within one cycle. An iterative procedure for developing
the model is appropriate not only for finding the right level of
detail – starting with a initial model that is developed further
until it is run-able and its dynamics analyzable. Based on the
insight from this analysis, the model is further improved. Such
an overall iterative proceeding is indicated in Figure 1.

This process is very abstract and does not use abstractions
and techniques that are particular for agent-based simulation.
This would be necessary for a more specific simulation life
cycle. In contrast to agent-based software, there is no fully
elaborated meta model describing necessary elements of an
agent-based simulation in general (or even for a particular
domain) in sufficiently concrete detail. Thus, a methodology
comparable to the ones suggested for agent-based software
engineering cannot be given yet. First attempts for a formal
meta model for multi-agent simulation models have been
made, such as in [8], but they are not on a level that makes
them usable as a basis for the development of more specific
life cycle models.

Before we will tackle model design and possible iterative
improvement strategies, we will first have a short look on
agent-oriented software engineering where the design of an
agent system is central part of every methodology.

B. Agent-based Software Engineering

For the development of agent-based software, many method-
ologies have been suggested. Clearly, they are based on general
software development phases such as requirements engineer-
ing/analysis, specification/design, etc. These methodologies
rely on appropriate abstractions for representing and analyzing
the agent-based software system. Development then happens
by elaboration of these representations. Many methodologies
have been proposed for guiding the development of agent-
based software based on roles or organizational structures or
focussing on specific agent concepts and architectures, such
as BDI. Good collections can be found for example in [9]or
[10]. Comparisons based on benchmarks [11] or features [12]
aim at supporting the selection of the appropriate methodology
for a particular problem. We would just like to mention
[13] showing how modeling and simulation can be used for
the design of self-organizing agent software. The suggested

procedure has some similarities with the work described in
this paper; yet here the focus lies in simulation applications
with their specific characteristics. Our goal is to deal with a
guideline how to modify the different elements of a model to
finally build a valid simulation model.

Although there are profound differences between agent-
based software and agent-based simulation – such as the
correspondence to an original system ensured by validation
or the inclusion of a simulated environment in addition to the
simulation environment – the abstractions used for designing
the software system may also be useful for designing a
simulation model. This is especially the case when real-world
organizational structures are used or folk psychology-based
agent architectures are appropriate in the simulation model.
In the following we want to tackle strategies for simulation
model design from a simpler point of view:

III. AGENT-BASED SIMULATION MODEL DESIGN

In the following we will introduce and discuss three design
strategies. They are derived systematically from an idea about
elements of multi-agent simulation models: It consists of
three basic components: agents model, environment model and
model of the interactions. Each of them is used as a starting
point or driving force for a design strategy; thus their usage
can be seen as exclusive. However, it might be advisable to use
different approaches one after the other in an iterative setting.

A. Agent-driven Model Design

“Agent-driven model design” is the first strategy. It corre-
sponds to bottom-up design. The focus lies completely on the
agents, their decision making and their behavior. Environmen-
tal and interaction models are added when needed in the agent
design.

1) Basic Strategy: The following procedure can be defined:
1) Agent observation and coarse behavior description: The

modeler observes the real-world agents and derives a
coarse behavior description from its observations. Ob-
servations may be replaced by literature work or opera-
tionalization of hypothesis about agent behavior/decision
making.

2) Categorize agents and determine the location of hetero-
geneity: The coarse behavior descriptions are analyzed
for determining how many classes or types of agents
are necessary for the model and to what level the agents

MALLOW’009: Turin, Italy, September 7-10, 2009

362

should be different. The location of heterogeneity may
be on the level of parameter settings, different activities
or even completely different classes.

3) Decide about agent architecture: Based on the coarse
behavior description that treated the agents superficially,
the modeler has to decide about the architecture of the
agent. He may select a behavior-describing approach,
for example perception-action rules with or without
internal state representation or an architecture that is
explicitly grounded on goals and on the configuration
and selection of plans or even using plan generation from
first principles or an elaborated cognitive model. This
selection is depending on the complexity and flexibility
of necessary agent behavior.

4) Formalize agent behavior/goals: The next step consists
of filling in the actual behavior into the agent architec-
ture. This is done by analyzing, elaborating and refining
the coarse behavior description developed in the first
steps.

5) Add interactions and environmental aspects when
needed: Particular elements of the environmental model
or structures of interaction are added when the agent be-
havior needs to include particular perceptions, messages
or contains manipulations of environmental entities. As
these aspects are added in some ad hoc manner, some
re-factoring may be necessary, such as merging different
environmental entity classes. Also some considerations
about necessary heterogeneity are essential.

6) Test whether necessary macro-phenomena are suffi-
ciently reproduced: At any time, model validity has to
be tested when it is testable. We assume that the focus
on the agents will lead to agent behavior near validity.
But, a major effort will be testing wether the interplay
of agents and their environment results in a valid macro-
level behavior.

This procedure is a pure agent-driven bottom-up method
for developing a multi-agent simulation. Aspects that relate
agents to others or the environment are only important in so
far they are influencing the agent behavior. Before we continue
to discuss this procedure, we give a short example how the
application of this method may look like.

2) Example: We used an existing simulation model[14] of
bee recruitment: The basic objective was to find support for
the hypotheses that the environmental structure influences the
success of a recruitment mechanism in social insects.

Using an agent-driven approach, this model is build from
the point of view of a honey bee. Individual bees are to be
observed and literature has to be scanned for description of
behavior and parameter values. In the second step, different
categories of bees are identified: scouts, foragers or bees
waiting/working in the hive. In this particular case these
categories correspond more to activities than to different agent
types as agents may instantaneously switch between activities.
Therefore one may decide for a homogenous agent population
with differences in the currently executed activity.

The following tasks of an agent bee are to be considered:

Fig. 2. Specification of example bee-agent behavior using activity graphs
(adapted from [14]).

scouting, foraging, returning to the nest, unloading, wagggle
dance (recruiting) and waiting. A simple behavior-descriptive
architecture is appropriate. Due to the identified activities, an
approach based on activity graphs representing the relations
between activities is useful.

The next step is the formulation, i.e. specification and
implementation of agent behavior. In figure 2 we depict the
behavior of an agent.

Figure 2 does not indicate, when an interaction with the
environment or other agents has to take place. When elabo-
rating this graph, the modeler concurrently determines that
there is a 2dimensional map for scouting and discovering
resources. There must be resources that provide a nectar of
certain quality. When returning to the hive, there must be some
place to unload and some place to dance for recruitment of
others. The storage area and the dance ground are only dealt
with on a very abstract level. They may only be attributes of
an object of the type “hive”. For switching activities between
waiting and foraging, the actual recruitment has to be modeled.
Information is displayed by the dancer and perceived by
conceptive other ants that based on the received information
decide to scout or not.

This specification has to be implemented and tested as
described above. As aggregate measures, the nectar input may
be available for macro-level validation as well as counts how
many bees are dancing, how many fly out, etc.

3) Discussion: The result of this process is a model that
is fairly process-oriented on the agent level. For the example,
the agent-driven design seems to work quite well. This might
be due to the fact that interaction happens only indirectly via
the environment or by displaying or broadcasting information.
In the example, there is no direct message-based interaction.
In principle the procedure should also work with direct peer-
to-peer interactions. However, the strategy does not contain
any perspective on the system-level containing for example
protocol specifications. Such a bottom-up technique where
the modeler takes over the perspective of an agent can be
appropriately tested using participatory simulations where one
agent is controlled by a human, the others are simulated.

A critical issue occurs when the overall validity is not
reached. Then, this pure bottom-up technique will lead to trial
and error procedures as during the development of the model

MALLOW’009: Turin, Italy, September 7-10, 2009

363

no connection between macro- and micro level is established.
Additionally this procedure does not help in finding the
appropriate level of detail. Therefore it needs to be combined
with an iterative procedure.

B. Interaction-driven Model Design

There are simulation domains where a focus on interac-
tions is more appropriate than a purely agent-driven design.
Examples may be models that focus on the performance of
organizational design. In the following we want to introduce
interaction-driven design.

1) Basic Process: One can formulate the following basic
process for interaction-driven model design:

1) Identify actors/entities and interactions among them:
Instead of observing individual real-world agents, the
modeler is taking the birds’ perspective and analyzes
who is interacting and how.

2) Coarse description of protocols and their conditions,
constraints, etc. The identified actors and interactions
are refined to protocols going from general notions
of interaction to atomic exchanges of information and
manipulations of the environment.

3) Derive agent behavior for producing the interaction
elements (messages, signals, actions...) and add envi-
ronmental entities, such as shelter objects, to the model
when needed for interaction. In this step something like
a finite state machine based language can be used to
specify agent interactions as state transitions.

4) Implement agent behavior and test whether the intended
interactions and their outcome on the macro level are
actually produced by the overall system. It must be also
tested whether the agent level behavior is plausible or
valid – depending on the available data.

In the interaction-driven approach, agents are basically seen
as black boxes for producing the appropriate messages, infor-
mation, etc. The general procedure may be further developed
into some form organization-driven model design inspired by
similar methods and methodologies from agent-oriented soft-
ware engineering. Then, analysis of organizational structures
forms the starting point for all system analysis as it forms the
structural backbone of interactions.

2) Example: We use the same example as above for il-
lustrating the approach and its differences to the agent-driven
procedure.

As given above, we start by identifying the actors and
their interactions. Again we have to tackle the problem of
the location of necessary heterogeneity. Are the actors to be
found on the level of scouts or foragers or as bees on a
more homogeneous level? In our particular case we took bees
as agents. Table I shows the basic interaction between the
different types of entities.

The next step is the elaboration of the protocols. We suggest
to use UML-based interaction diagrams for the initial descrip-
tion. In figure 3 we show the description of the recruitment
protocol together with an (still) informal text about its context
of appearance.

Fig. 3. First specification of recruitment protocol together with context
description. .

Formulating this interaction is not trivial as it is more like
a broadcast (or stigmergic interaction). The message is send –
respectively the information is displayed in the dance – to all
agents that want to listen or observe it.

The next step would be to derive agent-behavior from the
interaction diagrams. We suggested to transfer the interaction
diagram into some finite state machine like representation. If
we do that for every interaction the agents are participating
in, a collection of finite state machines is generated. These
single simple graphs have to be combined into a complete
behavior description. This is done by first identifying similar
states as interfaces which’s unification merges the single state
machines into some larger one. This larger one is probably too
large as every interaction aspect is modeled explicitly. It might
be possible to simplify some parts. Therefore, a refactoring
might be necessary for bringing the overall state graph into
some well-structured and minimal form.

Figure 4 shows the straight forward combination of a
number of single-interaction state charts. For connecting we
identified two times similar nodes – end nodes of one interac-
tions, starting nodes of the other. In the graph such nodes are
depicted as black nodes with second ring.

During the development of this behavior graph, we had to
add state machines for interaction partners that are not given
in figure 4. These interaction partners are the bee hive sending
information that is used for the evaluation of the value of the
load when the bee-agent is returning to the hive. Additionally,
we omitted the interaction with the overall environment where
the agent is requesting and receiving perception information
and with resources with that it interacts while harvesting the
nectar of this resource.

As a next step, it has to be determined what happens within
the different states. This is straight forward, often consisting
of waiting for incoming messages.

3) Discussion: Despite of the birds’ eye perspective, this
procedure did not result in an abstract and minimal behavior
description. Nevertheless, the interaction and dependency of

MALLOW’009: Turin, Italy, September 7-10, 2009

364

Interactions Bees Resources Nectar Storage
Bees Recruitment Harvest Unloading
Resources Localization - -
Nectar Storage Status Information - -

TABLE I
INTERACTION TABLE FOR BEES AS AGENTS.

Fig. 4. Putting together single interaction state machines into a complete
agent-level graph that describes all interactions of an agent. The black nodes
were the initial start and end nodes of the two graphs. They are basically the
interfaces between the two state machines .

behavior on information and material provided by others
is treated explicitly, much more than in the agent-driven
approach. This is actually an advantage of this procedure.

However, one can foresee problems when actual pro-active
behavior has to be formulated. That means behavioral dy-
namics that are not triggered by external messages. Another
drawback is, that also resources and other entities that are
basically are no agents, have to be treated as agents as every
interaction is formulated based on protocols. Although these
are then just “passive” agents, they have to be practically
tackled as agents for specifying the interactions.

Due to its focus on direct interaction, other forms of inter-
action may be hard to model, such as stigmergic interaction
in form of broadcasted messages that are persistent in the
environment decoupling sender and receiver. However, for
simulated multi-agent systems with interaction that relies on
message-based communication this design strategy seems to
be appropriate.

C. Environment-driven Model Design

The third strategy we want to analyze is driven by a focus
on the environment.

1) Basic Process: In analogy to the previously discussed
design strategies, the starting point of the environment-driven
design is an analysis of the environmental structure. Based
on this, the agent interface and its behavior definition are
determined. The steps are in particular:

1) Identify relevant aspects (global status, global dynamics/
local entities) of the part of the model that represents the
environment.

2) Determine the primitive actions of the agent and the
reaction of the environmental entities to these.

3) Determine what information from the environment must
be given to an agent so that it can appropriately select
and perform its actions.

4) Decide on an agent architecture that is apt to connect
perceptions and actions of the agent appropriately for
actually producing the agents behavior. Concurrently, the
elements of the internal agent status are settled.

5) Use a learning mechanism for determining the actual
agent behavior. A reward function for providing feed-
back to the agents actions has to be found. The reward
schema also tackles questions such as when and how
often to provide feedback to the agents, whether all
agents learn based on a shared reward or individual
reward is given to the agents.

6) Implement the environmental model including reward
function if needed.

7) Specify and implement the agents behavior program or
agent interfaces in combination with the chosen learning
mechanism.

8) Test and analyze the overall simulation results and
individual trajectories carefully for preventing artifacts
that come from an improper environmental model or
weak interfaces (perceivable situations and effects of
primitive actions).

2) Example: For an illustration of this model design strat-
egy we again use the recruitment scenario although the envi-
ronmental complexity is not high enough to actually require
such a procedure.

The start is made by formulating the environmental model.
In this simple case the environment consists of a global world
entity managing a 2-dimensional map, a central hive entity
that is basically a container for the storage and a number of
resource entities randomly distributed over the map, each with
an individual nectar supply.

The initial environmental configuration in this case is the
following: the hive is positioned in the center of the map.
Each resource is located at a random position. Every resource
object has an attribute called “nectar supply” that is initially
set according to a normal distribution.

The next step is to design the perception capabilities and
possible primitive actions – the interfaces of the bee agents.
Without particular regard on what is actually needed in the
behavior definitions, we can list the following perceptions:

MALLOW’009: Turin, Italy, September 7-10, 2009

365

• perceive nearby resource, its position respectively (if nearby)
• perceive existence of resource (from a certain distance)
• perceive capacity of resource (if nearby)
• perceive hive storage (if nearby)
• perceive position display (if at hive)
• perceive current nectar load

... and actions:
• Perform random search
• Fly towards perceived resource
• Fly towards hive
• Load nectar
• Unload nectar
• Display resource information
• Memorize perceived position

One can notice that with defining this interface, the modeler
also determines the abstraction level of the behavior definition
– the environmental model alone did not fully determine the
level of abstraction.

The next step is to connect perceptions and action to
produce actual agent behavior. In our case this could be done
using a rule-based approach with rules defined by the modeler.
The simple interface that already indicates that a rule-based
approach – including some stochasticity in agents decisions for
some very abstract treatment of internal motivation – might be
sufficient.

We may suggest the following rules determining the agent
behavior:

1) if hive-storage < A then perform random search (with probability
pA)

2) if not at hive and not perception of resource then perform random
search

3) if perception of resource then fly towards perceived resource
4) if at resource then memorize resource information
5) if at resource then load nectar with rate load
6) if nectar load > B then fly towards hive
7) if at hive and nectar load > B then unload nectar with rate unload
8) if at hive and resource information memorized then display re-

source information
9) if not at hive and not perception of resource then fly to hive

(with probability pcancel

This set of rules is quite small, but sufficient. There are
some probabilities and thresholds to be set ideally based on
available data.

While not necessary in the example, using a learning
mechanism might be an appropriate solution for generating
the behavior program based on the perceivable situations and
primitive actions of the agents. A learning approach, e.g. based
on classifier systems seems to be feasible at least in this
application example.

The major question in this application example is when
to give feedback as an information to the agent about its
performance: Giving feedback after each step does not make
sense: the random search without information is intentional.
The agents shall not learn where the resources are positioned.
Ideally, positive feedback shall be only given when the agent
has accomplished to recruit other bees to a good resource
or even more delayed, the reward to all agents could be
proportional to the current influx to the overall hive storage.

3) Discussion: Again one can find potential problems con-
sidering the agents internal motivations for generating true
pro-active behavior without external triggers. Such elements of

complex agent-based simulation models are not well integrated
into this design procedure.

Involving learning mechanisms forms a basis for research
questions with evolutionary background. However, integrating
agent learning into the model design makes the model suscep-
tible for artifacts coming from incomplete, imprecise or not
fully elaborated reward or fitness functions. Agents that adapt
to an environmental model with flaws can never reliably re-
produce an original system independent how good the learning
mechanism or the rest of the model is. Nevertheless, it is not
trivial to find appropriate feedback functions characterizing the
goal of the agents’ development.

Another risk of this environment-driven approach consists
in the selection of the learning mechanism. It could easily
happen that no appropriate learning mechanism exists that
can be used without further research. It is not so difficult to
reach the boundaries of what is possible using current state-of-
art learning: involving co-adaptation, true multi-agent learning
with more than a couple of agents, non-Markov settings, etc.
Then the learning problem may be too hard for finding a
mechanism that converges within a feasible time.

IV. STRATEGIES FOR ITERATIVE MODEL DEVELOPMENT

The strategies introduced above are for designing an agent-
based simulation model in one step. Especially for identifying
the appropriate level of detail iterative procedures may be
combined with these strategies.

A. KISS: “Keep It Simple, Stupid”

The well known KISS principle for simulation modeling
means that the modeler should avoid unnecessary complex
models, but keep the model as simple as possible for gen-
erating the appropriate behavior. Simple models contain less
sophisticated assumptions, can be easier explained and under-
stood. Simplicity also refers to the modeling and simulation
paradigm used formulating and simulating the model.

The starting point of this procedure is the identification and
description of phenomena of the original system that should
be contained, respectively reproduced by the final model.
Grimm and Railsback [15] call these basic modules of system
data characteristics “pattern”. Examples for such pattern are a
certain statistical distribution of tree sizes in a forest, another
pattern is then the spatial distribution of large trees.

1) Identify and describe the set of observable
properties (statements)
about the real system S.

2) Define a model M0 that is apparently too
simple for reproducing the system
with all its properties

3) By calibration, determine the set SM of
properties, that are reproduced
by M0.

4) M ←M0

5) Repeat Until SM = S

a) M ← modify model M for producing more
elements in S than in the last
iteration.

b) Calibrate M and determine SM as the set
of properties reproduced by M.

MALLOW’009: Turin, Italy, September 7-10, 2009

366

When this algorithm stops, the result should be the simplest
model that captures all phenomena identified at the beginning
of the process.

However, it remains open how to modify and enlarge the
model for producing the next model from the previous one.
Sometimes also side-steps might be necessary removing one
model component and adding an alternative one. Finally, it is
not trivial to see how to modify a model best for producing
any additional phenomena. In worst case, this might result in
a try-and-error procedure. Nevertheless the documentation of
every single model shall be elaborated that especially contains
a list of taken assumptions.

B. KIDS: “Keep it Descriptive, Stupid”

In 2004, B. Edmonds and S. Moss published a plea against
in their eyes over-simplified models in social science (see
[16]); Their major argument was: “The point is that it is
simply not appropriate to make simplifications before one
knows what is relevant and what not.” (italics in the original).
They therefore suggest to initially construct a model with agent
behavior that is understandable and directly deducible from the
observed behavior, but not necessary simple.

The iterative algorithm based on this KIDS-principle based
strategy can formulated as in the following.

1) Repeat until a valid model Ms is constructed

a) Define a model M that contains all
apparently relevant aspects of agent
behavior.

b) Identify all assumptions and make explicit
all parameter in Mi.

c) Execute a sensitivity analysis for all
parameter of M and eliminate all blocks
of behavior that are controlled by a
parameter without effect on
the overall outcome. Ms is the model M
after sensitivity analysis

d) Test Ms for credibility and validity

At first sight, this procedure basically resembles the usual
try-and-error strategy. It does not give any hint what to do if
the model is not sufficiently valid in terms of aspects that are
not reproduced; As it is less systematic than the KISS strategy,
the KIDS strategy is more apt for experienced modelers that
know with what model to begin and how to operate if the
outputs are not as intended.

C. TAPAS: “Take a previous model, add something”

A third strategy for model design is pragmatic and focusses
on reuse of models. In the agent-based simulation area, it has
been coined by [17] without further discussing the term. It is
related to the KIDS-based strategy but takes an existing model
as starting point.

Reuse of models becomes the more inevitable the more
expensive investments have been already made to produce
the model. As construction and testing of an agent-based
simulation is more expensive than for traditional analytical or
simpler microscopic models, reusing a fully validated model
should be especially interesting for agent-based simulations.

Put into a more pseudo-code way of presentation, the TAPAS
strategy might look like the following procedure.

1) Select an appropriate existing model M
2) if M is not implemented, implement it and

validate it using model alignment
with respect to published data about M.

3) Add new, additional aspects to produce Madd

4) Test and Validate Madd,
if sufficient, ready, else go back to 3 or - if
necessary to 1.

Step 3 and 4 are similar to the KIDS methodology. The
critical step is the selection (and existence) of the reusable
model. A sufficient documentation of the original model is
essential and can be seen as a major prerequisite for reuse
[18].

There are also some perils: it is not known a priori whether
the model with modification is minimal, valid, or possesses
the intended properties. The advantages of having a starting
point have to be traded off the effort that it means to adapt
the given model to the new ideas. This is very risky when the
model for reuse is not fully understood by people that want
to reuse it.

Given appropriate tool support, also partial models, that
means single agents, groups of agents or the complete en-
vironmental structure, may be used as a starting point for new
model development.

D. Candidate-based Modeling

In his book about biological modeling in general Haefner
[19] suggests a procedure for modeling and simulation in
research. Basically, it consists of the construction of a set of
alternative models. They might differ in parameter settings, but
may also use different architectures, etc. Each of the model
candidates is calibrated and evaluated by validation. The “best”
model is selected and used as a basis for future research.
This procedure is hardly about iterative changes, but involves
the treatment of several models which has to be done when
for example conflicting hypotheses have to be evaluated for
possible rejection. The candidate-based strategy is generally
applicable, but does not state how one may come to one
candidate or from one candidate to another.

E. Discussion

In this section we surveyed iterative model design strategies.
We did not tackle particular design strategies for one model,
but general procedures how to proceed from a first prototype
to the model ready for deployment. Which of these strategy
is appropriate for a particular simulation study is depending
on the personal style of the modeler, on his experience, on
the application domain, on the available data, etc. The table II
sums up and contrasts properties of these strategies. First, the
appropriateness of the strategies for different types of multi-
agent simulation models is estimated. A second block refers
to directed-ness of the model and minimality of the outcome
of the modeling process. The third block of rows compares
aspects of necessary data availability and other properties of
the modeling process - for example how well this procedure

MALLOW’009: Turin, Italy, September 7-10, 2009

367

Strategy KISS KIDS TAPAS Cand.-
based

Apt for linear models high high high high
Apt for emergent phenomena low high mid high
for shared-environment actors mid high mid high

Objective-orientedness high mid mid mid
Resulting minimality high mid low mid
Share of try & error low mid high high

Empirical data requirement mid mid low high
Integration of knowledge mid high high mid
Communication support mid high mid mid

Modeling overhead mid mid low high
Expertise in macro models high low low low
Expertise in micro models high high low high

Required tool knowledge high mid mid high

TABLE II
COMPARISON OF ITERATIVE MODELING PROCEDURES

supports the communication of the current model status. The
last block refers to whether the modeler needs expertise,
whether he has also to tackle macroscopic relations within the
model – usually expressed in complex formulas, or whether
this iterative procedure is also apt for beginners in agent-based
modeling. We assumed that tools are available that support
each of the strategies.

Using table II a modeler may select a specific iterative
strategy for finding the best model in accordance with features
of the simulation problem. Selection may also rely on common
sense heuristics: if a good previous model is accessible, then
it is a good idea to reuse that model. If the modeler knows
the system that has to be simulated very well, then the KIDS
approach should be used, whereas large holes in the system
knowledge advise more candidate-based or KISS modeling.
All these iterative procedures may be combined with the
particular design strategies identified above.

V. CONCLUSION

Model design is the phase in the development of a simula-
tion model, that requires most experience and skills[2]. This
is true for all forms of simulation modeling, in particular
for the development of multi-agent simulation models. In
this contribution we have identified and discussed different
strategies for model design – one shot or iterative. The latter
can be combined with the former for really developing a
well designed model. Even, if the resulting model is not
significantly “better” than a model developed without these
strategies, their application has the great advantage that they
support a systematic development and at least partially guide
the development. Nevertheless, the different strategies have to
be further tested and elaborated in various simulation studies
with different degrees of necessary model complexity.

The vision behind our research is developing a methodology
for successful development of multi-agent simulation studies.
The idea is to develop a methodology similar to System
Dynamics [20] that allows the development of difference
equation models starting from causal loop graphs to systems of
formulas in a guided and systematic way. In agent-based sim-
ulation, systematic model design has to be accompanied with

equally thoughtful implementation, calibration, documentation
and especially validation. We already tackled these phases
in an insolated way that leaves a lot of research open for
combining the different solutions. This – and the application
and test of the identified design strategies – form the next steps
in the future.

REFERENCES

[1] F. Klügl, “Sesam: Visual programming and participatory simulation for
agent-based models,” in Multi-Agent Systems: Simulation and Applica-
tions, A. M. Uhrmacher and D. Weyns, Eds. Taylor & Francis, 2009.

[2] R. E. Shannon, “Introduction to the art and science of simulation,” in
Winter Simulation Conference 1998, 1998, pp. 7–14.

[3] N. Gilberg and K. G. Troitzsch, Simulation for the social scientist,
2nd ed. Open University Press, 2005.

[4] A. Drogoul, D. Vanbergue, and T. Meurisse, “Multi-agent based simu-
lation: Where are the agents?” in MABS 2002, 2002, pp. 1–15.

[5] M. Richiardi, R. Leombruni, N. Saam, and M. Sonnessa, “A common
protocol for agent-based social simulation,” Journal of Artificial Soci-
eties and Social Simulation, vol. 9, no. 1, 2006.

[6] A. M. Law, Simulation Modeling and Analysis, 4th ed. McGraw-Hill,
2007.

[7] O. Balci, “Validation, verification and testing techniques troughout the
life cycle of a simulation study,” Annals of Operations Research, vol. 53,
pp. 121–173, 1994.

[8] F. Klügl, “Towards a formal framework for multi-agent simulation
models,” Institut für Informatik, Universität Würzburg, Tech. Rep. 412,
2007.

[9] B. Henderson-Sellers and P. Giorgini, Eds., Agent-Oriented Methodolo-
gies. IDEA Group Publishing, 2005.

[10] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Eds., Methodologies and
Software Engineering for Agent Ssytems: The Agent-oriented Software
Engineering Handbook, ser. Multiagent Systems, Artificial Societies and
Simulated Organizations. Boston, London: Springer, 2004.

[11] G. Weiss and R. Jakob, Eds., Agentenorientierte Softwareentwicklung.
Springer, 2004.

[12] Q.-N. N. Tran and G. C. Low, “Comparison of ten agent-oriented
methodologies,” in Agent-Oriented Methodologies, B. Henderson-Sellers
and P. Giorgini, Eds. IDEA Group Publishing, 2005, ch. XII, pp. 341–
367.

[13] C. Bernon, M.-P. Gleizes, and G. Picard, “Enhancing self-organising
emergent systems design with simulation,” in Engineering Societies in
the Agents World VII, 7th International Workshop, ESAW 2006, Dublin,
Ireland, September 6-8, 2006 Revised Selected and Invited Papers, ser.
Lecture Notes in Computer Science, G. M. P. O’Hare, A. Ricci, M. J.
O’Grady, and O. Dikenelli, Eds., vol. 4457. Springer, 2007, pp. 284–
299.

[14] A. Dornhaus, F. Klügl, C. Oechslein, F. Puppe, and L. Chittka, “Benefits
of recruitment in honey bees: effects of ecology and colony size in an
individual-based model,” Behavioral Ecology, vol. 17, no. 3, pp. 334–
344, 2006.

[15] V. Grimm and S. F. Railsback, Individual-Based Modeling and Ecology.
Princeton University Press, 2005.

[16] B. Edmonds and S. Moss, “From kiss to kids - an ’anti-simplistic’
modelling approach,” in Multi-Agent Based Simulation, ser. LNAI, P. D.
et al., Ed., no. 3415. Springer, 2004, pp. 130–144.

[17] A. Pyka and G. Fagiolo, “Agent-based modelling: A methodol-
ogy for neo-schumpeterian economics,” Universität Augsburg, Volk-
swirtschaftliche Diskussionsreihe, Tech. Rep. 272, 2005.

[18] C. Triebig and F. Klügl, “Elements of a documentation framework for
agent-based simulation models,” Cybernetics and Men, accepted 2009.

[19] J. W. Haefner, Modeling Biological Systems – Principles and Applica-
tions, 2nd ed. New York: Springer, 2005.

[20] J. D. Sterman, Business Dynamics: Systems Thinking and Modeling for
a Complex World. Boston: McGraw Hill, 2000.

MALLOW’009: Turin, Italy, September 7-10, 2009

368

