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Abstract—Service Oriented Architectures are knowing a wide
success, thanks to the maturity of standards and implementa-
tions. Moreover, the possibility of composing complex systems
starting from simpler services is becoming supported by in-
dustrial tools, although still immature at the standard level.
However, the a-priori verification aspect, i.e. the capability of
determining before executing the system if it exhibits some
particular behaviour, is still matter of an intense research effort.

In this paper we investigate the a-priori verification of bottom-
up build systems from the behavioural viewpoint, where a
choreography is not known at the beginning of the developing
process, but rather it is verified only later. We focus on the
problem of deciding if, given a set of services, there can be
some fruitful interaction among them; if yes, we focus also
on the problem of determining such interaction. Our approach
is based on specifying the services by means of the ConDec
declarative language, and by exploiting its translation to the
SCIFF Framework to automatically perform the verification task.

Index Terms—ConDec Service Modeling, Declarative Lan-
guages, A-priori Verification, Logic Programming.

I. INTRODUCTION

SERVICE ORIENTED COMPUTING emerged recently as
an architectural paradigm for modeling and implement-

ing business collaboration within and across organizational
boundaries. The Web Service technology, currently the most
advanced implementation of Service Oriented Architecture
(SOA) principles, is almost established as the standard tech-
nology for current business implementations, thanks to the
support it has received from the academics as well as from
the industrial partners.

A key aspect in the success of Service Oriented Computing
(SOC) is the possibility of composing different, heteroge-
neous services, yet achieving a complex system starting from
more simple components. Interoperability at the level of data
exchange, as well as at the level of service location and
invocation, has been guaranteed by standards like WSDL [6].

Industrial tools are becoming available to support also the
composition process, too. Although languages for defining
composition rules and models have been proposed, but none
of them has enjoyed the maturity level of the other standards.
Initial proposals like BPMN [15], WS-CDL [7] and BPEL [3]
have been criticized for their intrinsic procedural nature, while
the need for open, declarative approaches has been recognized
only later [4], [14].

Automatic verification of properties regarding the be-
havioural aspects of the composed systems is deemed as a cru-
cial step, but a comprehensive solution is lacking. Currently,
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the task of ensuring that two services can successfully coop-
erate is demanded to the software architect that is designing
the system. Analogously, ensuring that the composed system
will exhibit certain properties is a task that directly burden the
developer. Although such guarantees can be verified by human
users with small systems, there are serious doubts of achieving
such results when the composed systems grow in dimension
and interaction complexity. Hence, the task of automatically
verifying a service composition a-priori (during the designing
phase), is of the fundamental importance to foster the service
composition and the “off-the-shelf” composition model .

Several approaches have been adopted to address the verifi-
cation of service composition. A very common way consist
of checking one service against a global description of a
system, like in [1], [8]. In order to succeed, the following
assumptions are usually made: 1) there is a description of
the whole system, from a global point of view; 2) there is
a description of the service under testing, such description
not necessarily matching with the service internals; and 3) all
services except the one under testing will behave as prescribed
by the global specification (hence the global description can be
used to reason upon the other services behaviour). Given this
setting, the verification task determines if the behaviour of the
service under testing is compatible with the global description
(also named choreography). The choreography is intended as
a sort of “legal, tight contract”, and plays a double role: it
specifies the “boundaries” for the service under testing, and
provides the expected behaviour of the other (unknown) peers.
The obvious advantage of such approach is that the verification
task involves only a service description and a choreography:
the component “certified” as compliant can be then adopted
to play a certain role within the global system, independently
of the other peers.

In this paper we investigate the verification of service com-
position from another viewpoint. We start from the assumption
that, at least in the beginning steps, a global choreography
is not defined (or is not yet available). Beside a “top-down”
developing method, where the developer starts designing the
choreography and proceeds to refine the components in several
steps, there is also a common “bottom-up” projecting style,
where the developer simply starts to build up her application
by putting together the already available components. If this
is the case, the models of all parties (called local models
thereafter) are directly composed, in order to make them
interact and mutually benefit from each other, as in Figure
1a.

The first problem we try to address is: given a composition
of services, does exist a successful interaction? If yes, how
is made such interaction? In case of a positive answer to the
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(a) Bottom-Up (b) Top-Down

Fig. 1. Developing complex systems using simpler services.

first question, we say that the models are compatible. Beside
the yes/no answer, we deem as fundamental also knowing
as much as possible about such interactions. E.g., knowing
in advance the supported interaction traces would help in
the analysis of the global system features and properties.
Of course, “compatible” does not mean that a successful
interaction will be effectively achieved at run-time.

A second problem we discuss in this work is about chore-
ographies, intended no more as a tight contract to be respected,
but rather as a set of constraints representing the desired
properties of the system. In this view, choreographies are not
intended as the set of requirements each service should fulfill
to interact, but rather a set of desired features that the global
system will exhibit. Roughly, this problem can be formulated
as follow: given a compatible set of services, does exists
some successful interaction that honors the choreography
constraints? If yes, how is made such interaction? Also in
this case we aim to know not only a yes/no answer, but also
some sort of fully/partially specified interaction trace.

In our approach, services and choreographies are repre-
sented by means of a declarative language, and in particular
using the ConDec language [13]. We agree with the critics
moved to procedural approaches in [4], [14]. In particular,
choreographies (intended as a set of properties or constraints
of the final resulting system) are more naturally represented in
terms of declarative rules/constraints, rather than by sentences
of a procedural language. In this work, we extend the original
ConDec model to the concepts of roles, and provide definition
of service composition compatibility on the resulting ConDec
models.

The ConDec semantics originally proposed by the authors
is given as Linear Temporal Logic (LTL) formulas. Recently,
a further semantics in terms of the SCIFF Framework [2]
has been provided to ConDec [11]. Another contribution of
this work is the definition of a method for automatically
perform the verification tasks, by exploiting the SCIFF-based
semantics, and its proof procedure.

In Section II we briefly introduce the ConDec language,
aimed to declarative describe open processes/services. Then in

Section III and in Section IV we try to better capture the notion
of compatible services (compatible models of services) and of
compliance to a choreography. In Section V we show how such
properties are automatically verified exploiting the ConDec
Language and its translation into the SCIFF Framework [2].
Finally we conclude and discuss future works.

II. MODELING A SERVICE BY MEANS OF THE CONDEC
LANGUAGE

ConDec is a declarative, graphical language proposed by
van der Aalst and Pesic [13] within the research field of
Business Process Management (BPM). It aims to support
specification, enactment and monitoring of Business Process,
by means of constraints among activity executions. Constraints
are declaratively expressed, as the authors claim that the
adoption of a declarative approach fits better with complex, un-
predictable processes, where a good balance between support
and flexibility must be found. Although it has been originally
proposed in the BPM context, it has been applied also in
the far broader field of SOA. Former applications of ConDec
regarded choreographies specification; in this paper, we adopt
it to represent also service local models.

A. The ConDec Language

A ConDec model mainly consists of two parts: a set of
activities, representing atomic units of work, and a set of rela-
tionships which constrain the way activities can be executed,
and are therefore referred to as constraints. Constraints can be
interpreted as policies/business rules, and may reflect different
kinds of knowledge: external regulations and norms, internal
policies and best practices, service/choreography goals, and so
on.

Differently from procedural specifications, in which activi-
ties can be inter-connected only by means of control-flow rela-
tionships (sequence patterns, mixed with constructs supporting
the splitting/merging of control flows), the ConDec language
provides a number of control-independent abstractions to
constrain activities, alongside the more traditional ones. In
ConDec it is possible to insert past-oriented constraints, as
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well as constraints that do not impose any ordering among
activities.

Furthermore, while procedural specifications are closed, i.e.,
all what is not explicitly modeled is forbidden, ConDec models
are open: activities can be freely executed, unless they are
subject to constraints. This choice has two implications. First,
a ConDec model accommodates many different possible exe-
cutions, improving flexibility. Second, the language provides
abstractions to explicitly capture not only what is mandatory,
but also what is forbidden. In this way, the set of possible
executions does not need to be expressed extensionally and
models remain compact.

ConDec models do not impose a rigid scheduling of activ-
ities; instead, they leave the services free to execute activities
in a flexible way, but respecting at the same time the imposed
constraints. An execution trace, i.e. the set of the executed
activities,we say that it is supported by a ConDec model
if and only if it complies with all its constraints. Finally,
it is important to note that well-defined ConDec models
support only finite execution traces, because it must always
be guaranteed that a BP will eventually terminate.

ConDec has been mapped to two different underlying logic
frameworks, providing two different semantics for the ConDec
constraints. Beside the originally proposed LTL mapping, in
[11] a mapping to the SCIFF Framework has been proposed.
SCIFF allows to define constraints in terms of the happening
of events and expectations about the happening or the non-
happening of other events. Events can be partially specified,
by means of unbound variables. Possibly, such variables can
be further constrained, a la CLP. E.g., it possible to say that if a
certain event happens at time T , then another event is expected
to happen at a time T ′ with the CLP constraint T ′ > T .

A simple ConDec model where activities a and b can be
executed many times, but the execution of one automatically
exclude the execution of the other, can be expressed in
SCIFF by means of two rules (Integrity Constraints, using the
SCIFF terminology): H(a, T ) ⇒ EN(b, T ′) and H(b, T ) ⇒
EN(a, T ′)1. Note that such a simple model, if expressed using
some procedural flow language such as for example Petri Nets,
would lead to additional assumptions and choice points, thus
making the final model pointlessly complicated.

Formally, a ConDec model CM is composed by a set of
activities, which represent atomic units of work (i.e., units of
work associated to single time points, and relations among ac-
tivities, used to specify constraints on their execution. Optional
constraints are also supported, to express preferable ways to
interact, but allowing the possibility to violate them.

Definition 1 (ConDec model CM). A ConDec model is a
triple 〈A, Cm, Co〉, where:
• A is a set of activities, represented as boxes containing

their name;
• Cm is a set of mandatory constraints;
• Co is a set of optional constraints.

Given a ConDec model CM, notations ACM, CCMm and
CCMo respectively denote the set of activities, mandatory and

1The two rules state that if a Happens, then b is Expected Not to happen,
and viceversa.
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Fig. 2. A ConDec model.

optional constraints of CM.

B. A ConDec Example

Figure 2 shows the ConDec specification of a payment
services. Boxes represent instances of activities. Numbers
(e.g., 0; N..M) above the boxes are cardinality constraints
that tell how many instances of the activity have to be done
(e.g., never; between N and M). Edges and arrows represent
relations( constraints) between activities. Double line arrows
indicate alternate execution (after A, B must be done before
A can be done again), while barred arrows and lines indicate
negative relations (doing A disallows doing B). Finally, a
solid circle on one end of an edge indicates which activity
activates the relation associated with the edge. For instance,
the execution of accept advert in Figure 2 does not activate
any relation, because there is no circle on its end (a valid
model could contain an instance of accept advert and nothing
else); activity register instead activates a relation with accept
advert (a model is not valid if it contains only register).
If there is more than one circle, the relation is activated
by each one of the activities that have a circle. Arrows
with multiple sources and/or destinations indicate temporal
relations activated/satisfied by either of the source/destination
activities. The parties involved—a merchant, a customer, and
a banking service to handle the payment—are left implicit.

In our example, the six left-most boxes are customer actions,
payment done/ payment failure model a banking service
notification about the termination status of the payment
action, and send receipt is a merchant action. If register
is done (once or more than once), then also accept advert
must be done (before or after register) at least once. No
temporal ordering is implied by such a relation. Conversely,
the arrow from choose item to close order indicates that,
if close order is done, choose item must be done at least
once before close order. However, due to the barred arrow,
close order cannot be followed by (any instance of) choose
item. The 0..1 cardinality constraints say that close order
and send receipt can be done at most once. 1-click payment
must be preceded by register and by close order, whereas
standard payment needs to be preceded only by close
order (registration is not required). After 1-click or standard
payment, either payment done or payment failure must
follow, and no other payment can be done, before either of
payment done/failure is done. After payment done there
must be at most one instance of send receipt and before send
receipt there must be at least a payment done. Sample valid
models are: the empty model (no activity executed), a model
containing one instance of accept advert and nothing else,
and a model containing 5 instances of choose item followed
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by a close order. A model containing only one instance of
1-click payment instead is not valid.

III. COMPATIBILITY AND LEGAL COMPOSITION

In this section we address the problem of establishing if
some local models are compatible [12], i.e. if there exists an
interaction trace allowed by the composed system. We first
try to establish if a single model does indeed support at least
one interaction trace (i.e., it is conflict-free, and then we extend
the notion to the composed system. Note that all the following
definitions are based on the idea of execution traces, i.e. on a
set of events (ground facts), happened at certain time point.

First of all, we introduce the notion of ∃-entailment: the aim
is to define somehow when a model guarantees a property.
To do so, we look at the traces allowed by the local ConDec
model, and verify such property directly on the allowed traces.
Once we move to verify a property on a trace, the semantic of
the entailment symbol could be referred to the SCIFF semantic
(as we do), as well as to the LTL semantics.

Definition 2 (∃-entailment). A property Ψ is ∃-entailed by a
ConDec model CM (CM |=∃ Ψ) if at least one execution
trace supported by CM entails the property as well. If that is
the case, then one of the supported execution traces can be
interpreted as an example which proves the entailment.

Definition 3 (Conflict-free model [12]). A ConDec model
CM is conflict-free iff it supports at least one possible ex-
ecution trace, i.e., iff

CM |=∃ true

A conflicting model is an over-constrained model: it is
impossible to satisfy all its mandatory constraints at the same
time.

Then we generalize the idea of conflict-freedom to the
composed model:

Definition 4 (Composite model [12]). Given n ConDec mod-
els CMi = 〈Ai, Ci

m, Ci
o〉 , the composite model obtained by

combining CM1, . . . , CMn is defined as :

COMP
(
CM1, . . . , CMn

)
, 〈

n⋃
i=1

Ai,

n⋃
i=1

Ci
m,

n⋃
i=1

Ci
o〉

Definition 5 (Compatibility). Two ConDec models CM1 and
CM2 are compatible if their composition is conflict-free, i.e.,
iff:

COMP
(
CM1, CM2

)
|=∃ true

Obviously, the notion of compatibility can be generalized to
the case of n local models. The detection of incompatibility
means that a sub-set of the n local models leads to a conflict.
note that checking compatibility could not be enough, as
pointed out by the following example:

Example 1 (Trivial compatibility). Two local models

CM1 = a •−−I• b

CM2 = a •−−−•‖ b

have been composed. The two models are compatible, because
they both support the empty execution trace; therefore, by
carrying out solely a compatibility check would seem that a
composition can be actually built. However, as soon as an
activity is executed, CM1 and CM2 are contradictory: both
activity a and activity b can not be executed in the composite
model. In the general case, if none of the local models contains
constraints which impose the execution of a certain activity
(i.e., existenceN, exactlyN and choice constraints),
compatibility always returns a positive answer, because the
empty execution trace is supported.

A. From Openness to Semi-Openness

Since a ConDec model is open, it implicitly allows the exe-
cution of activities not explicitly contained in the model itself.
The following example clarifies the point. This characteristic
could cause undesired compositions to be evaluated as correct,
as in the following example.

Example 2 (Composition and openness issues). A customer
wants to find a seller to interact with. The customer comes
with a ConDec model representing its own desired constraints
and requirements. In particular, they express that:
• the customer wants to receive a good from a seller;
• if the customer pays for a good, then she expects that the

seller will deliver it;
• before paying, the customer wants the seller to provide a

guarantee that the payment method is secure.
Figure 3 shows the ConDec graphical models (CMC) of the
customer and of three candidate sellers. The three sellers differ
for what concerns the possibility of emitting a guarantee upon
request:

1) the seller depicted in Figure 3(b) (CM1
S) explicitly states

that it does not provide any guarantee upon request;
2) the seller depicted in Figure 3(c) (CM2

S) explicitly
supports the possibility of providing a guarantee;

3) the seller depicted in Figure 3(d) (CM3
S) does not

mention provide guarantee among its activities.
Following Definition 5 checking compatibility between CMC

and the three candidate sellers would state that CMC is not
compatible with CM1

S , but it is compatible with CM2
S and

CM3
S . In particular, the two compositions CMC ∪ CM2

S

and CMC ∪ CM3
S produce exactly the same global model.

However, while the answer given for the first two compositions
is in accordance with the intuitive notion of compatibility,
the third one is not. In fact, when CMC is composed with
CM2

S , the behaviour of the seller is modified in that also the
constraints of the customer must be respected. Contrariwise,
when the composition between CMC and CM3

S is established,
the local model of the customer has the effect of changing the
local model of the seller, augmenting it with a new provide
guarantee activity. During the execution, the customer would
expect to receive a guarantee before paying, but this capability
has not been mentioned by the seller in its local model, and
therefore there could be the case that it is not supported.

The example clearly shows that the openness assumption
must be properly revised when dealing with the composition
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Fig. 3. Local models of a customer and of three candidate sellers.

problem. To ensure that a composition can be established,
the obtained global model must obey to the following semi-
openness requirement: for each involved party, the activities
under the responsibility of that party must also explicitly
appear in its local model.

B. Augmenting ConDec Models with Roles and Participants

In order to ensure the semi-openness assumption, each
activity must be associated to its corresponding originator or
role. The following definition extends the basic definition of
a ConDec model with such a relationship.

Definition 6 (Augmented ConDec model). An augmented
ConDec model is a 4-tuple 〈AO,AR, Cm, Co〉, where:
• AO is a set of (A, O) pairs where A is an activity and

O is its originator;
• AR is a set of (A, R) pairs where A is an activity and

R represents the role of its originator;
• Cm is a set of mandatory constraints over AO and AR;
• Co is a set of optional constraints over AO and AR.

If AR = ∅, the model is completely grounded. Contrariwise,
if AO = ∅ the model is abstract.

In this respect, a ConDec local model is defined as an aug-
mented model containing also an indication about the identifier
of the local model, and where an activity is associated either
to such an identifier, or to an abstract role.

Definition 7 (Local augmented model). A ConDec local
augmented model is a 5-tuple 〈ID,AO,AR, Cm, Co〉, where:
• ID is the identifier of the participant executing the local

model;
• the other elements retain the meaning of Definition 6;
• AO is a set containing only elements of the type (A, ID).

A role identifies a class of originators; in the composition
process, abstract roles employed in each local model are
mutually grounded to concrete local models which participate
to the composition.

Definition 8 (Grounding of a model). Given an augmented
model CMaug = 〈AO,AR, Cm, Co〉 and a function plays
mapping roles to concrete identifiers (i.e., stating that a certain
identifier “plays” a given role), the grounding of CMaug
on plays is obtained by substituting each role Ri with the
corresponding concrete participant identifier plays(Ri):

• AO ↓plays, AO ∪ {(A,plays(Ri)) | Ri ∈
dom(plays) ∧ (A, Ri) ∈ AR};

• AR ↓plays, AR/{(A, Ri) |Ri ∈ dom(plays)};
• Cm ↓plays and Co ↓plays are updated accordingly.

If AR ↓plays= ∅, each role has been substituted by a
concrete identifier and the model becomes ground. A legal
composite ConDec can be now characterized as an augmented
model obtained by composing a set of local models, each
one grounded by taking into account the other ones, s.t. the
composition is ground.

Definition 9 (Augmented composite model). Given a set of
augmented local models Li = 〈IDi,AOi,ARi, Ci

m, Ci
o〉 (i =

1, . . . , n) and a function plays mapping roles to identifiers,
the composition of the local models w.r.t. plays is defined
as

COMP(L1, . . . ,Ln)plays =
n⋃

i=1

Li ↓plays

where the union of two augmented models is a shortcut
representing the union of each corresponding element . A
composition is legal iff COMP(L1, . . . ,Ln)plays is ground (see
Definition 6).

It is now possible to revise the notion of compatibility
reflecting also the semi-openness assumption.

Definition 10 (Strong compatibility). n local models
Li = 〈IDi,AOi,ARi, Ci

m, Ci
o〉 (i = 1, . . . , n) are strong

compatible under plays iff their augmented composition
COMP(L1, . . . ,Ln)plays = 〈AO∪,AR∪, C∪m, C∪o 〉 satisfies the
following properties:
• COMP(L1, . . . ,Ln)plays is legal;
• COMP(L1, . . . ,Ln)plays is conflict-free;
• for each (a, IDi) which belongs to AO∪ but does not

belong to AOi, it must hold that:

COMP(L1, . . . ,Ln)plays |=∀ absence((a, IDi))

The third point states that if a certain activity a has been
associated to a participant IDi, but IDi has not explicitly
mentioned a in its specification, then the composition must
always ensure that a cannot be executed.

Example 3. Let us re-examine the compatibility between the
local models of the customer and the second seller shown in
Figure 3, supposing that their identifiers are respectively alice
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and hutter, and customer and seller represent their roles. In
the composition, alice plays the role of customer, and hutter
plays the role of seller. Hence, plays(alice) = customer
and plays(hutter) = seller.

By adopting the definition of augmented models, the Con-
Dec diagram of alice is:

Lalice = 〈{(pay, alice)},
{(send good, seller), (provide guarantee, seller)},
{existenceN(1, (send good, seller)), . . .},
∅〉

The grounding of alice w.r.t. the plays function is
Lalice ↓plays=

〈{(pay, alice), (send good, hutter), (provide guarantee, hutter)},
∅,
{existenceN(1, (send good, hutter)), . . .},
∅〉

The grounding of hutter is obtained in a similar way.
When the two local models are composed, the grounding of

alice causes (provide guarantee, hutter) to belong to the set
AO∪ of the composition. Since the execution trace provide
guarantee → pay → send good is compliant with the
composition but (provide guarantee, hutter) 6∈ AOhutter,
the two local models are not strong compatible.

IV. CONFORMANCE TO A CHOREOGRAPHY

Once a global model has been obtained through the compo-
sition step, and after a strong compatibility property has been
verified, the application developer can move to further analise
the resulting system, trying to understand if it entails some
desired properties.

We represent a choreography as an augmented abstract
ConDec model (i.e., an augmented model associating all
the activities to roles and not to concrete participants – see
Definition 6). When realizing a choreography with a set of
concrete local models, different possible errors may arise:
• Conflicting composition: independently from the chore-

ography, the chosen local models are not compatible.
• Local non-conformance: a concrete local model is not

able to correctly play, within the choreography, the role
it has been assigned to.

• Global non-conformance: even if each single local model
is able to correctly play the role it has been assigned to,
it could be the case that the global obtained model does
not conforms the choreography anymore.

It could be also the case that a participant would not be able to
play the role it has been assigned to, but it would anyway be
able to take part to a conforming composition. Such a situation
may arise because when the constraints of each local model
are joint with the ones of the others, the constraints of the
participant could be correctly “completed”.

As a consequence it is necessary to first check that the
composition is conflict-free, and then verify the whole compo-
sition against the choreography. To verify that a composition
conforms to a desired choreography, two approaches can be
followed. The weak approach states that the composition must
be consistent with the choreography constraints in at least one

supported execution, while the strong approach requires to
guarantee that any execution supported by the composition
respects the choreography.

Definition 11 (Weak conformance). A composition of local
models COMP(L1, . . . ,Ln)plays is weak conformant with a
choreography Chor iff:
• L1, . . . ,Ln are strong compatible w.r.t. plays (see Def-

inition 10);
• COMP(L1, . . . ,Ln)plays |=∃ Chor ↓plays.

Definition 12 (Strong conformance). A composition of local
models COMP(L1, . . . ,Ln)plays is strong conformant with a
choreography Chor iff:
• L1, . . . ,Ln are strong compatible w.r.t. plays (see Def-

inition 10);
• COMP(L1, . . . ,Ln)plays |=∀ Chor ↓plays.

Example 4 (Weak and strong conformance). Let us consider
a simple (fragment of a) choreography involving two roles –
a customer and a seller. The choreography states that:

1) two possible payment methods are available to the
customer (payment by credit card and payment by cash);

2) the customer can pay only after having closed the order;
3) if the customer pays, then the seller is entitled to send

the ordered good and, conversely, a good is sent to the
customer only if a payment has been previously done.

Figure 4 shows the ConDec model of the resulting choreog-
raphy, and three possible local models which can be composed
to realize such a choreography. In particular, alice can play
the role of Customer, while hutter and lewis can play the
role of Seller.

Let us first consider the composition obtained by combining
the model of alice with the one of lewis. The composition is
strong conformant with the choreography:
• The choreography allows an open choice on the payment

modality, and both local models only deal with payment
by credit card.

• The combination of the constraints which relate the
payment with the delivery of the good in the two
local models leads to obtain the following constraint

cc payment •−−I• send good , which is a
“specialization” of the choreography one (no choice is
present).

• alice states that before paying, she wants to close the
order, and that between two payments at least one close
order must be executed; such a constraint is a special-
ization of the simple precedence constraint contained
in the choreography.

The composition obtained by combining the model of alice
with the one of hutter is instead not strong conformant. In
fact, hutter does not impose any temporal ordering between
the payment and the delivery of the good. Therefore, it could
be possible that the good is sent twice: one time before the
payment of alice, and another time afterwards. I.e., the follow-
ing execution trace is supported by the composition: close
order → send good → cc payment → send good. The
first execution of the send good activity is not preceded by
a payment, thus violating a prescription of the choreography.
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Fig. 4. A simple choreography and three candidate local models (one customer and two sellers).

However, the composition is weak conformant, because it
supports different possible executions which comply with the
choreography.

V. VERIFICATION THROUGH SCIFF

The SCIFF framework has been originally developed for
the declarative specification and run-time verification of inter-
action protocols in the context of open Multi-Agent Systems
[2]. It features:
• A rule-based language for modeling all the constraints

that must be respected by the events characterizing the
executions of the system under study. These rules relate
the concepts of event occurrence with the one of ex-
pected/forbidden event, to model the (un)desired courses
of interaction when a given situation is reached during
the interaction. Events are modeled as logic programming
terms (possibly containing variables), and are associated
to an explicit execution/expected time; times and vari-
ables can be constrained by means of CLP constraints
and Prolog predicates.

• A clear declarative semantics characterizing the execution
traces compliant with the modeled rules.

• A corresponding proof procedure, sound and complete
w.r.t. the declarative semantics, which is able to dynami-
cally acquire the events occurring during a specific execu-
tion of the system, and check on-the-fly their compliance
with the modeled rules.

In the last years, the framework has been applied in other
contexts, such as clinical guidelines, business contracts and
processes, service choreographies [9]. In particular, a complete
mapping of all the ConDec constraints in terms of SCIFF rules
has been provided, proving its soundness w.r.t. the original
ConDec semantics (specified by means of LTL formulae) and
discussing its impact on the verification techniques.

The SCIFF proof procedure has been then extended to deal
also with the static verification of interaction protocols. g-
SCIFF is the generative variant of SCIFF devoted to this
task: instead of checking if a given (partial or complete)
execution trace is compliant with the modeled rules, it is
able to generate compliant execution traces or to return a
negative answer if none exists [10]. In this way, g-SCIFF can
be suitably exploited to effectively prove whether a ConDec
model (translated to SCIFF) |=∃ or |=∀ a given property [9].
In particular, a ConDec model |=∃ a given property if and
only if the g-SCIFF proof procedure is able to generate at

least one execution trace compliant with the model and the
property; such an execution trace can be considered as an
example proving the existential entailment of the property.
The case of |=∀ is reduced, similarly to model checking, to
the |=∃ of the complemented property; the generation of an
execution trace compliant with the model and the completed
property can be considered as a counter-example showing that
the original property is not entailed by the model in all its
supported executions.

A. Compatibility Verification with g-SCIFF

Let us briefly describe how g-SCIFF carries out the com-
patibility verification between the customer’s model shown
in Figure 3(a) and each one of the three sellers modeled
in Figures 3(b)-(d). As we have seen, the constraints of a
composite model are obtained by joining all the constraints
of the local models. Let us denote the composition of the
customer’s model with each seller’s model with respectively
CMs1

c , CMs2
c and CMs3

c . The first step, according to Defi-
nition 10, is to verify whether the composite model is legal;
this is a syntactic test which can be trivially proven for all the
three composite models: the role of Customer is grounded on
c, and the role of Seller is respectively grounded on s1, s2 and
s3. The second and third step require instead the presence of a
verifier able to prove conflict-freedom (|=∃) and to check if the
composite model meet the semi-openness requirement (|=∀).
When verifying the conflict-freedom of CMs2

c and CMs3
c , g-

SCIFF operates as follows:
• it starts from the 1..∗ constraint on send good, generat-

ing an occurrence of the event;
• this generated occurrence triggers the precedence (−−−I•)

constraint involving send good and pay, leading to
generate a previous payment;

• the generated payment, in turn, triggers the precedence
(−−−I•) constraint involving pay and provide guar-
antee, leading to generate a previous emission of a
guarantee.

At the end of the verification process, the following sample
execution trace is therefore produced by g-SCIFF: provide
guarantee → pay → send good 2. When verifying the
compatibility of CMs1

c , instead, after the third step g-SCIFF
realizes that the execution of provide guarantee clashes with

2The temporal relationships imposing the orderings between the three
generated events are represented with CLP constraints
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the 0 cardinality constraint (absence constraint) imposed by
s1, and returns a negative answer attesting the incompatibility
of the local models.

The last requirement to be verified is that for each (a, IDi)
which belongs to CMs2

c /CMs3
c but does not belong to the

corresponding local model, it must hold that the absence of
a is |=∀ by the composite model. In the case of CMs2

c , no
such activity actually exists, and therefore the requirement
is directly met, attesting that the two local models are in-
deed compatible. Contrariwise, CMs3

c contains the activity
(provide guarantee, s3) which is however not contained in
the local model of s3. Therefore, g-SCIFF must prove whether
all execution traces compliant with the composite model do not
contain the execution of the provide guarantee activity. As
already pointed out, |=∀ is reduced to |=∃ by complementing
the property; in this specific case, the verification reduces to
check whether at least one execution trace compliant with the
composite model exists s.t. at least one execution of provide
guarantee is contained in the trace. The execution trace pro-
vide guarantee→ pay→ send good, produced by g-SCIFF
when checking the conflict-freedom of CMs3

c , does satisfy the
complemented property, and can be therefore considered as a
counter-example showing that the semi-openness requirement
is not met by the composite model, i.e., that c and s3 are not
compatible.

Finally, note that the conformance verification of a com-
posite model with a choreography is carried out by g-SCIFF
similarly to the case of compatibility. In the case of strong
conformance, each constraint involved in the choreography is
complemented and then separately checked w.r.t. |=∃. If at
least one complemented property is |=∃, then the composition
is not strong conforming with the choreography.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have address some issues related to the pro-
cess of composing complex system by using existing compo-
nents, in the context of the Service Oriented Architectures. Our
approach hypothesizes a bottom-up process in composing the
global system, where the components are put together in order
to achieve some interaction, and choreography constraints are
taken into account only at a second stage. Peculiarities of our
solution are 1) the use of a open, declarative, logic based
language to represent models of the services and also the
choreographies; 2) the exploit of the SCIFF Proof Procedure,
and in particular of the g-SCIFF proof, to automatically
perform all the verification tasks; and 3) beside a yes/no
answer, our approach provides as output also some interaction
trace that can be used to reason upon and analyse the global
system.

This work is still in its preliminary stage, although some
successful experimental results have been already obtained.
Future works will be devoted to better assess the theory behind
the solution, and to provide a better comparison with other
approaches available in the literature, like [5], [8]. In particular,
on the theme of the a-priori verification there is a huge research
literature, as well as on the topic of reasoning on choreogra-
phies and roles. A further issue we intend to investigate is

related to the possibility of introducing “soft” ConDec con-
straints: currently, constraints are considered as hard, and not
respecting one constraint leads to an incompatibility response.
We are hypothesizing situations where behavioural interface
specifications can also comprehend compensations actions and
explicit management of violations.
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