
Web Services Synchronization in Composition Scenarios

Hamdi Yahyaoui1, Zakaria Maamar2, Jamal Bentahar3, and Khouloud Boukadi4

1KFUPM, Dhahran, KSA —-2Zayed University, Dubai, U.A.E —–3Concordia University, Montreal, Canada—–
4École des Mines, Saint-Etienne, France

Abstract

This paper discusses Web services synchronization at the
composition level. Synchronization aims at assisting in-
dependent parties coordinate their actions and thus, avoid
conflicts. Our previous work on synchronization primar-
ily focused on the component level and shed the light on
two types of behaviors related to specifying Web services.
The control behavior defines the business logic that under-
pins the functioning of a Web service, and the operational
behavior regulates the execution progress of this control be-
havior by stating the actions to carry out and the constraints
to put on this progress. Control and operational behav-
iors continue to be used to specify composite Web services
with respect to the orchestration schemas that these com-
posite Web services have to comply with whether central-
ized or peer-to-peer. As a result, various types of messages
to achieve synchronization are developed per type of orches-
tration schema. Experiments showing the use of these mes-
sages are reported in this paper as well.
Keywords.Composition, Synchronization, Web service.

1 Introduction

In [8] and [9], we investigated the synchronization issue
of (“isolated”) Web services independently of the composi-
tion scenarios in which these Web services could take part.
This investigation shed the light on two types of behaviors
namelycontrolandoperationalthat were both used to spec-
ify and exhibit the functioning of Web services. The control
behavior illustrates the business logic of the functionality,
e.g.,CarRental , of a Web service, while the operational
behavior frames the progress of executing the business logic
of this Web service at run time.

As the literature review points out [3], it is known that
the “beauty” of Web services resides in their capacity to
be composed into high-level business processes known as
composite Web services. Composition is suitable for users’
requests that cannot be satisfied by any single, available
Web service, whereas a composite Web service obtained
by combining available Web services might be used. Com-

position design and development are bound to a specifica-
tion that describes, at design time, multiple elements such
as execution order of component Web services, data de-
pendencies between component Web services, and correc-
tive strategies in case component Web services raise excep-
tions. At run time, the composition specification is trig-
gered, which means identifying and invoking component
Web services, overseeing their execution, coordinating their
actions, and initiating corrective strategies if needed. Dif-
ferent specifications related to Web services composition
currently exist such as BPEL (de factostandard) and WSCI.

In term of execution, Web services composition can be
structured along two types of orchestration [1]:centralized
or peer-to-peer(P2P) (i.e., decentralized). On the one hand,
centralized orchestration like its name hints relies on a cen-
tralized module (e.g., BPWS4J) that coordinates and tracks
all the execution activities related to component Web ser-
vices in terms of when to invoke them, what to expect out
of their invocation, what data they exchange, how to pass
on these data, just to cite a few. On the other hand, P2P or-
chestration excludes the centralized module and promotes
direct interactions between component Web services. This
makes Web services aware of some of their direct acquain-
tances during composition, which means the necessity of
empowering these Web services with appropriate knowl-
edge and mechanisms in order to support direct interactions.
eFlow [2] is an example of Web services-based systems that
adopts a centralized orchestration, whereas PCAP [10] is an
example of Web services-based systems that adopts a P2P
orchestration.

This paper extends the synchronization initiative we re-
port in [9] by leveraging this time our research findings
and thoughts from the component to the composition lev-
els. In [5], we applied the separation between control and
operational behaviors to model check orchestration-based
composite Web services. The control behavior is used to
extract the desired properties to be checked in the model of
composite Web services captured by the operational behav-
ior. In this paper, our primary objective is to address the fol-
lowing issues per type of orchestration: what synchroniza-
tion mechanisms are required to set up, what messages im-



plement these mechanisms, how these messages are tracked
during synchronization, how synchronization and execution
are interleaved, and how the correctness of these messages
is proved. In this extended work, Web services are no longer
treated as isolated components but as integral components
of composition scenarios. Analyzing the synchronization
of Web services at the composition level offers some di-
rect benefits. First of all, it would be possible to dissociate
the behaviors of Web services at the composite level from
the behaviors of these Web services at the component level.
Second, it would be possible to track the interactions that
occur between the Web services from the component to the
composite levels andvice-versa. Finally, it would be possi-
ble to work out the necessary synchronization mechanisms
per type of composition orchestration whether centralized
or P2P.

Section 2 discusses the commonalities and differences
between the component and composite levels and provides
a running scenario. Section 3 reports on the synchroniza-
tion work that was done at the component level. Section 4
discusses synchronization at the composite level with focus
on the P2P schema. Prior to concluding in Section 6, some
experimental details are given in Section 5.

2 Background

2.1 Component vs. composition levels

In a composition scenario, we classify interactions that
involve composite and component Web services into ver-
tical (from composite Web service to component Web ser-
vice) and horizontal (from component Web service to an-
other component Web service). By establishing an interac-
tion session, the initiator of a message aims at making the
recipient of this message behave and take actions according
to the content of this message. In the following, we identify
the acceptable actions that a message initiator can execute
over a potential recipient during vertical and horizontal in-
teractions. The objective of identifying these actions is to
facilitate the definition of the relevant synchronization mes-
sages that would be suitable per type of interaction.

In vertical interactions, a centralized orchestration of
Web services composition is implemented. Here, a com-
posite Web service through the centralized module has the
authority to carry out the following actions over a compo-
nent Web service:

“ Invite” action makes the composite Web service request
the participation of the component Web service in its com-
position scenario1;

“Ping” action makes the composite Web service check
the liveness of the component Web service that accepted

1Component Web services invitation is discussed in [6].

its invitation of participation; there is no guarantee that the
component Web service is still part of a composition sce-
nario at time of invocation;

“Trigger” action makes the composite Web service initi-
ate the execution of the component Web service;

“Audit” action makes the composite Web service monitor
the performance of the component Web service for assess-
ment purposes; service level agreements motivate the audit
exercise;

And, “retract&invite” action makes the composite Web
service withdraw the component Web service from its com-
position due to poor performance for example. This yields
into searching for another replacement Web service that will
be added to this composition.

In horizontal interactions, a P2P orchestration of Web
services is implemented. Here, a component Web service
has the authority to carry out the following actions over a
peer:

“ Invite” action makes the component Web service re-
quest the participation of the peer in the current composition
scenario;

“Ping” action makes the component Web service check
the liveness of the peer that accepted its invitation of partic-
ipation; there is no guarantee that the peer is still part of a
composition scenario at time of invocation;

And, “trigger” action makes the component Web service
initiate the execution of the peer.

Compared to the vertical interactions in the centralized
orchestration, “audit” and “retract” actions are excluded
from the horizontal interactions in the P2P orchestration.
Essentially, this is due to the challenges that are posed when
tracking the performance of Web services and replacing
them if needed. Not all providers would like to have their
Web services audited by the Web services of other providers
for reasons that could be related to security, privacy, com-
petitiveness, etc. In a centralized orchestration, providers
do not mutually interact with each other and might not even
know that they are parts of the same composition scenario.
The absence of “audit” and “retract” actions in a P2P or-
chestration sheds the light on the necessity of developing
appropriate mechanisms that should take into account con-
cerns like privacy and competitiveness. However, these
mechanisms do not fall into the scope of this paper.

2.2 Running scenario

Our running scenario concerns a university student who
is in the process of organizing a cookout party to celebrate
his recent graduation. We identify hereafter the Web ser-
vices along with their activities that will implement this
party’s logistics.

CateringWS: searches for and contacts catering compa-
nies according to some criteria like allocated budget, num-

2



ber of expected guests, type of cuisine, etc.
GuestWS: sends invitees invitations, keeps track of

confirmed invitations, reminds late invitees for confirma-
tion, etc.

PlaceBookingWS: looks for a place to host the cookout
party, books the place, completes the necessary paperwork
like payment, etc.

WeatherWS: checks weather forecast for the day of the
cookout party. In case of bad weather, the party takes place
at the student’s place.

In our initial synchronization project [9],state charts
were selected to specify component Web services indepen-
dently of any composition scenario (Fig. 2 (a)). For the
sake of compliance, we continue doing so when modeling
the specification of composition scenarios. However states
correspond this time to Web services taking part in these
scenarios (Fig. 1).

Guest
confirmationPlaceBookingWS Confirmation

booking GuestWSWeatherWS Nice
weather CateringWS

Bad weather

Figure 1. Specification of the cookout party

3 Specification of Web services

3.1 Control and operational behaviors

The control behaviorshows the business logic that un-
derpins the functioning of a Web service with respect to
its functionality. A business logic is domain-application
dependent (e.g., healthcare) and changes from one case
study to another according to various requirements such as
user (e.g., minimum age to submit an application), security
(e.g., type of encryption algorithm), etc.

Theoperational behaviorguides the execution progress
of the business logic of a Web service. To this end,
this behavior relies on a specific number of states, which
are activated , not-activated , done , aborted ,
suspended , and compensated . These states are re-
ported in the field of transactional Web services [11] and
common to a certain extent to all Web services (and to any
software application) regardless of their functionalities, ori-
gins, and locations.

As mentioned in Section 1, the control and operational
behaviors of a Web service are modeled using state charts.
This exercise of modeling is hereafter interleaved with some
formal definitions and illustrative examples.
Definition 1 (Web Service Behavior). The behavior of a
Web service is a 5-tupleB = 〈S,L, T , s0,F〉 where: S
is a finite set of state names;s0 ∈ S is the initial state;
F ⊆ S is a set of final states;L is a set of labels; and
T ⊆ S × L × S is the transition relation. Each transition
t = (ssrc, l, stgt) consists of a source statessrc ∈ S, a tar-
get statestgt ∈ S, and a transition labell ∈ L. From now

on, we qualify transitions in the behavior of a Web service
asintra-behavior. ¤

The control and operational behaviors of a Web ser-
vice are defined as instances of the behavior of this
Web service (Definition 1). These two behaviors are
denoted byBco = 〈Sco,Lco, Tco, s

0
co,Fco〉 and Bop =

〈Sop,Lop, Top, s
0
op,Fop〉, respectively.

Example 1: Fig. 2 (a) is a state chart of the
control behavior of WeatherWS. Several states like
city-located (initial state), report-delivered
(final state), and search-canceled , and several
transitions like (city-located , unavailable ,
search-canceled ) are included in this state chart.
In this transition example, city-located and
search-canceled are the source and target states,
respectively, andunavailable is the transition’s label.

Example 2: Fig. 2 (b) is another state chart that
illustrates this time the operational behavior of Weath-
erWS. Similar to the control behavior, several states like
not-activated and suspended , and transitions like
(compensated , rolling-back , not-activated )
and (activated , failure , aborted ) are identified
in this state chart.

In Fig. 2, the control and operational behaviors of a
Web service include different finite sequences that connect
states and transitions together. We refer to these sequences
aspathsand define them as follows:

Definition 2 (Path in Web Service Behavior). A pathpi→j

in the behaviorB of a Web service is a finite sequence
of states and transitions starting from statesi and ending

at statesj and is denoted as follows:pi→j = si li−→
si+1 li+1

−→ si+2 . . . sj−1 lj−1

−→ sj such that∀k ∈ {i, j − 1} :
(sk, lk, sk+1) ∈ T (exponents in state names are here given
for notational purposes only). ¤

Example 3: Let l1 (resp. l2) = start (resp.

commitment ) in Fig. 2 (b). not-activated
l1−→

activated
l2−→ done is a path in the operational be-

havior of WeatherWS.

3.2 Both behaviors in interaction

We pointed out that the operational behavior guides
the performance of the control behavior of a Web ser-
vice. This guidance requires bringing both behaviors to-
gether. For instance,done state that a Web service takes
on in the operational behavior will in return make this

3



Refinement

Submission

City located
Unavailable

Avail
ab

le

Access

Weather
collected

Access
failed

Search
canceled

Report
delivered

Connection
closed

Completion

Abortion after
failed retrials

Compensation after failed retrials

Commitment
Done

StartNot
activated

Activated

Rolling back
Compensated

E
xception

R
et

ri
al



Suspended Aborted

Failure

Compensation
after commitment

(a) Control behavior (b) Operational behavior

Figure 2. WeatherWS’s control and operational behaviors

Commitment

SubmissionCity located
Available Weather

collected
Report

delivered

StartNot
activated

Activated Done

Connection
closed

Legend Conversation session

O
pe

ra
tio

na
l

be
ha

vi
or


C

on
tr

ol


be
ha

vi
or



C
om

po
ne

nt
 le

ve
l

Figure 3. Example of operational and control behaviors mapping in WeatherWS

Web service take on other appropriate counterpart states
like weather-collected and report-delivered
in the control behavior.

The process of connecting operational and control
behaviors together results in establishingconversation
sessionsbetween the respective states of these two be-
haviors (Fig. 3). To complete this connection process, a
mapping function is defined as follows:

Definition 3 (Mapping Function). Let Pco be the set of
all paths in the control behavior of a Web service starting
from any state in this behavior. Connecting the operational
behavior to the control behavior andvice-versaoccurs us-
ing the following mapping function:Map : Sop → 2Pco ,
where2Pco is the power set ofPco. ¤

What the he mapping functionMap does is to associate
each state in the operational behavior with a set (possibly
empty) of possible paths in the control behavior.

Example 4: Fig. 3 is an example of the use of the
mapping function in WeatherWS whereactivated state
in the operational behavior is associated with multi-
ple paths in the control behavior. One of these paths

is: city-located
l1−→ weather-collected

l2−→
report-delivered wherel1 = available andl2 =
submission . A second path foractivated state is
given in Fig. 4 (b) as well.

On top of the mapping function Map, interactions

between control and operational behaviors require a
specification operation that indicates which state in the
operational behavior is associated with which set of
possible paths in the control behavior along with the “new”
transitions that will implement these interactions. The next
state to take on in the operational behavior is determined
by the executed path in the control behavior and whether
this execution was a success or failure. In other words, the
specification operation lets the control behavior indicate to
the operational behavior what needs to be done next. We
define the specification operation as follows:

Definition 4 (Specification Operation). LetLS be the set of
labels associated with the “new” transitions between oper-
ational and control behaviors. The specification operation
uses the following two functions:
Spec : Sop → 2LS×Pco×LS andNext : Sop × Pco →
Lop × Sop. ¤

The specification functionSpec associates each statesop

in the operational behavior with a (possibly empty) set of
triples. A triple contains (i) the label of the transition
fromsop to the first state in the control behavior of a mapped
path, (ii) the mapped path itselfpi→j , and (iii) the label
of the transition from the last state in the control behavior
of the mapped path back tosop in the operational behav-
ior. We qualify the “new” transitions that connect states in
independent state charts asinter-behavior(note that intra-
behavior transition was used in Definition 1). The partial
function Next associates both a given state in the opera-

4



tional behavior and the mapped path in the control behavior
with both the next state to take on in the operational behav-
ior and the associated transition label.

Example 5: Fig. 4 shows the synchronization of Weath-
erWS’s operational and control behaviors where two types
of transitions exist: intra-behavior fromTco ∪ Top (plain
lines) and inter-behavior (dashed lines, Labels1,2,3).
Fig. 4 contains Spec(activated )={(label1,
path1, label2),(label1, path2, label3)},
Next(activated ,path1)=(commitment ,done ),

where path1 = city-located
l1−→

weather-collected
l2−→ report-delivered

and Next(activated ,path2)=( failure ,aborted )

wherepath2= city-located
l3−→ access-failed

l4−→ connection-closed .
In Fig. 4, the initiation ofWeatherWSis shown in the

operational behavior withactivated state. WeatherWS
takes on this state following receipt of a user’s request. Be-
cause of (activated , label 1, city-located ) inter-
behavior transitions, the execution ofWeatherWSbegins by
using a dedicated database to search for the requested city.
This makesWeatherWStake oncity-located state in
the control behavior. Afterwards, two cases are identified.

Case a. Everything goes fine and a 5-day weather-
forecast report is delivered back to the user. Because
of (report-delivered , label 2, activated ) inter-
behavior transition, this makesWeatherWScomplete its op-
eration with success by transiting fromactivated to
done states in the operational behavior, i.e., (activated ,
commitment , done ) intra-behavior transition.

Case b. The access to the database fails (not like in
case a) as the control behavior ofWeatherWSindicates
with access-failed and connection-closed
states. Because of (connection-closed , label 3,
activated ) inter-behavior transition, this makesWeath-
erWSterminate its operation with failure by transiting from
activated to aborted states in the operational be-
havior, i.e., (activated , failure , aborted ) intra-
behavior transition.

To wrap-up this section, the formal definitions of inter-
behavior and conversation session are provided. Needless
to propose a formal definition for intra-behavior transition,
which is a regular transition in a state chart (Definition 1).

Definition 5 (Inter-Behavior Transition). The set of all
inter-behavior transitions that connect the operational and
control behaviors of a Web service is denoted byIT
whereIT = IT op→co ∪ IT co→op such that:IT op→co ⊆
SIT (op)×Lop→co×SIT (co) is the inter-behavior transition
relation starting from the operational behavior and ending
at the control behavior;IT co→op ⊆ SIT (co) × Lco→op ×

SIT (op) is the inter-behavior transition relation starting from
the control behavior and ending at the operational behav-
ior; SIT (op) ⊆ Sop is a finite set of state names in the
operational behavior that take part in inter-behavior tran-
sitions;SIT (co) ⊆ Sco is a finite set of state names in the
control behavior that take part in inter-behavior transitions;
andLop→co is a set of inter-transitions’ labels from the op-
erational to the control behaviors, andLco→op is a set of
inter-transitions’ labels from the control to the operational
behaviors(Lco→op ∪ Lop→co = LS (Definition 4)). ¤

Before we define Web service conversation session,
we introduce another function known asLab. This
function returns the label of an inter-behavior transition:
Lab : IT → LS .

Definition 6 (Web Service Conversation Session).
A conversation session between the operational
and control behaviors of a Web service is a 4-
tuple 〈sop, itop→co, pco, itco→op〉 such that: sop ∈
Sop, itop→co ∈ IT op→co, itco→op ∈ IT co→op, pco ∈
Pco; and (Lab(itop→co), pco, Lab(itco→op)) ∈
Spec(sop). ¤

4 Synchronization woven into composition

Synchronization is a mechanism by which independent
entities coordinate their next actions by agreeing on how,
where, and when to carry out these actions. In the rest of
this paper, entities correspond to Web services that could be
either component or composite. We look into synchroniza-
tion from two perspectives:Intra, which means how the op-
erational and control behaviors in a component/composite
Web service are coordinated (Section 4.1), andInter, which
means how the operational and control behaviors in separate
component Web services are coordinated within the context
of the same composite Web service (Section 4.2). Because
composition could have either a centralized or a P2P or-
chestration schema, inter Web-services synchronization is
examined from these two types.

4.1 Intra Web-services synchronization

Case of component Web services.The synchronization
of component Web services was the main object of our re-
search project in [9], so further details are provided in this
reference. Table 1 contains some synchronization messages
we developed in order to allow the operational and control
behaviors interact with each other.

Case of composite Web services.The synchronization
of composite Web services is differently handled from
the synchronization of component Web services. This is
due to the characteristics of composite Web services that
need now to be highlighted through their operational and

5



Operational behavior Control behavior

label 1

label 2

com
m

itm
ent

Activated

Done

City located DB

Weather
collected

Report
delivered

WeatherWSUsers

Operational behavior Control behavior

label 1

label 3

failure

Activated

Aborted

City located DB

Access failed

Connection
closed

WeatherWS Users

(a) Success case (b) Failure case
Legend

Intra-behavior  transitionInter-behavior transition

Figure 4. Synchronization of WeatherWS’s control and operational behaviors

Table 1. Messages during intra (component) Web-service synchronization

# Message name Description
1. sync Originates from an operational state and targets a control state. The purpose is to trigger the execution of the control states (including the targeted control

state) in a conversation session.syncis a blocking message, which makes the operational state wait for a notification back from the last control state to
execute in this conversation session.

2. success Originates from a control state and targets the operational state that submittedsync. The purpose is to inform this operational state of the successful
execution of the control states in a conversation session and to return the execution thread back to this operational state as well.successis coupled with
sync.

control behaviors. These characteristics are as follows.
Firstly, the control behavior represents the business logic
of a composition scenario and no longer the business logic
of a certain component Web service. Secondly, the current
definition of the operational behavior (Definition 1) does
not tell much about the execution outcome of a composition
scenario and if this execution either succeeded or failed.
This current definition through states likeactivated and
suspended is geared towards the needs of the component
level, only (Fig. 2 (b)).

Definition 7 (Composite Web Service Control Behavior).
The control behavior of a composite Web service is a 5-
tupleBcws

co = 〈WSco,Lco, Tco,WS0
co,Fco〉 whereWSco is

a finite set of states that correspond to Web services’ names;
WS0

co ⊂ WSco is the set of initial states that correspond to
initial Web services;Fco ⊆ WSco is the set of final states
that correspond to final Web services;Lco is a set of la-
bels; andTco ⊆ WSco × Lco × WSco is the transition
relation. Each transitiont = (wssrc, l, wstgt) consists of a
source Web servicewssrc ∈ WSco, a target Web service
wstgt ∈ WSco, and a transition labell ∈ Lco. ¤

Example 6: Fig. 1 is a state chart of the control
behavior of the CookoutParty composite Web service.
Several states likeWeatherWS (initial state) and
CateringWS (final state) and several transitions like

(WeatherWS, NiceWeather , PlaceBookingWS )
are included. In this transition example,WeatherWS
and PlaceBookingWS are the source and target states,
respectively, andNiceWeather is the transition’s label.

Definition 8 (Composite Web Service Operational Be-
havior). The operational behavior of a composite Web
service is defined as an instance of the behavior of a
Web service (Definition 1) and is denoted byBcws

op =
〈Sop,Lop, Top, s

0
op,Fop〉. ¤

The purpose of the operational behavior of a composite
Web service is (i) to initiate the execution of its specifica-
tion, which is in fact the control behavior of this composite
Web service and (ii) to report on the success or failure of
the execution of this specification. As a result, the opera-
tional behavior of a composite Web service is a subset of
the operational behavior of a component Web service.

Example 7: Fig. 5 is another state chart that illustrates
this time the operational behavior of the CookoutParty
composite Web service. In this state chart, the number
of states is limited to four, namelynot-activated ,
activated , done , and aborted , and the num-
ber of transitions is limited to three, namelystart ,
commitment , andfailure .

Compared to the six states in the operational behavior of
a component Web service (Fig. 2 (b)), the four states in the

6



Commitment Done
StartNot

activated
Activated

Aborted
Failure

Figure 5. Operational behavior of a compos-
ite Web service

operational behavior of a composite Web service (Fig. 5)
puts some restrictions on the authorized synchronization
messages (like those suggested in Table 1) that can be con-
sidered between this operational behavior and its counter-
part control behavior. These restrictions are hereafter listed:

1. There is one conversation session between the opera-
tional and control behaviors. This session includes the
activated state in the operational behavior and all
the states (i.e.,WSco) in the control behavior.

2. Interaction message of typesync to come out of the
activated state in the operational behavior has one
recipient, which is the initial state(s) (i.e., Web service)
in the control behavior (i.e.,WS0

co).

3. Any state (i.e., component Web service) in the con-
trol behavior can only submit an interaction message
of type fail back to theactivated state in the oper-
ational behavior. This restriction is waived for the final
state(s) in the control behavior (i.e.,Fco) that can sub-
mit on top offail message another message of typesuc-
cessback to theactivated state in the operational
behavior.

4. Interaction message of typesyncreq is not allowed
from the control to the operational behaviors.

4.2 Inter Web-services synchronization

Centralized orchestration is well “embraced” in Web ser-
vices composition projects. But, a few projects look into
the changes that need to be made in Web services stan-
dards/specifications like BPEL to smooth the design and de-
velopment of P2P orchestration. Gowri Nanda et al. note
that because performance and throughput are major con-
cerns in enterprise applications, removing the inefficien-
cies that a centralized control introduces, is required [4]. A
BPEL program could be partitioned into independent sub-
programs that interact with each other without any cen-
tralized control. Gowri Nanda et al. propose a technique
to partition a composite Web service written as a single
BPEL program into an equivalent set of decentralized pro-
cesses. This technique minimizes communication costs and
maximizes the throughput of multiple instances of the input
program.

In this paper, we look at inter Web-services synchroniza-
tion from two perspectives: centralized andP2P (focus of
this paper). This synchronization aims at initiating the de-
velopment of composition scenarios and overseeing the exe-
cution progress of this development at run-time. As a result,
this raises the necessity of enhancing Web services with ad-
ditional mechanisms based on the needs and requirements
of these composition scenarios. For instance, a Web ser-
vice has now to decide if it would or not take part in a
composition scenario subject to carrying out some sort of
self-assessment [6]. That was not the case in the intra Web-
services synchronization (Section 4.1) where the focus was
on how to specify the execution of “isolated” Web services.

We identify the additional mechanisms that should em-
body Web services along four cases, which we denote by
invitation, execution, verification, andreplacement. These
four cases abstract the different types of actions that com-
ponent and composite Web services carry out during verti-
cal and horizontal interactions. For example, a Web service
should submit its performance details to a composite Web
service as part of the verification exercise that this com-
posite Web service carries out. In addition, a Web service
should not leave its ongoing operations pending in case a
composite Web service decides to substitute it as part of the
replacement exercise. These additional mechanisms need
to be woven into the business logic that underpins the func-
tionality of a Web service. In [7], we elaborate on how this
weaving should place in compliance with some design prin-
ciples like separation of concern and aspect-oriented pro-
gramming. To keep the paper self-contained on synchro-
nization, enriching Web services with additional mecha-
nisms is excluded.

Case of P2P orchestration.The synchronization of in-
ter Web-services in a P2P orchestration reinforces the exis-
tence of the component level, only. Each component Web
service that takes part in a composition scenario is associ-
ated with an operational and a control behaviors (Fig. 6).
The previously proposed definitions for these two behav-
iors continue to be used (Definition 1). However, new def-
initions are deemed appropriate for first, the inter-behavior
transitions between component Web services and second,
the conversation sessions that result out of setting-up these
inter-behavior transitions. These new definitions have to
be inline with the authorized actions to carry out in a P2P
orchestration. These actions are “invite”, “trigger”, and
“ping”.

In Fig. 6, the double-arrowed lines (plain and dashed)
illustrate where the synchronization of inter Web-services
should take place in a P2P orchestration. Numbers asso-
ciated with these lines represent message chronology. In
the P2P orchestration we hereafter adopt, sequential execu-
tion of the component Web services is assumed even though
concurrent execution could be handled without any substan-

7



Operational
behavior

Control
behavior

1
2

Component Web service i

Legend

Inter-behavior transition within component Web service

Inter-behavior transition between component Web services

i): Chronology of synchornization messages

Operational
behavior

Control
behavior

Component Web service j

4
5

7
3 68

Figure 6. Synchronization of behaviors at the composition level – P2P orchestration

tial changes in the new or existing definitions. Plain lines in
Fig. 6 represent inter-behavior transitions within the same
component Web service (Section 4.1). What is now needed,
which is the focus of this part of the paper, is to define
the inter-behavior transitions between component Web ser-
vices. These inter-behavior transitions are represented with
dashed lines (3, 6, 7, 8) in Fig. 6.

In a P2P orchestration, the absence of a centralized coor-
dination that would “spread the word” to other component
Web services about the execution outcomes of their peers
requires some changes in the way these component Web ser-
vices should behave. For instance, component Web services
cannot announce their immediate successful execution un-
til they receive positive feedbacks from their peers in a re-
verse order. In case of negative feedbacks, these component
Web services have to cancel or compensate their execution
outcomes and notify their predecessors about the cancela-
tion or compensation actions they have taken, as well. An-
nouncement delay and backward notification have to be re-
flected on the operational levels of the different component
Web services. Like in a centralized orchestration we split
done state into two states (Fig. 7):partial done and
final done .

• Partial done in a component Web service allows
to pass on the execution thread to the next peer(s)
(Fig. 6, dashed lines 3 and 6).

• Final done in a component Web service permits to
confirm its successful execution (final completion) fol-
lowing receipt of a positive notification from a succes-
sor peer (Fig. 6, dashed lines 7 and 8).

Definition 9 (Completion Status of Component Web Service
in Peer-to-Peer Orchestration). Let assume a composition
scenario ofn component Web services. The completion
status of a component Web service WSi in term of either
success or failure is dependent on the notification message
that WSi receives from its direct successor component Web
service WSi+1.

Status(WSi) =
{

Notify(WSi+1) i = 1, · · · , n− 1

success | failure i = n

It is worth to mention thatsuccessandfailure are conver-
sational messages between component Web services. These
messages are specified in Table 2.

Fig. 7 illustrates the different conversation sessions that
need to be set-up in a P2P orchestration. The focus is
on conversation session #2; conversation session #1 is al-
ready discussed in Section 4.1. The identification of the
inter-behavior transitions that should be included in con-
versation scenario #2 takes advantage of the set of accept-
able actions (e.g., “invite” and “ping”) that can be car-
ried out between component Web services. These ac-
tions are now woven into the synchronization messages
to occur between the respective operational behaviors of
the component Web services. The following comments
are made on the new operational behavior of a compo-
nent Web service: (i)partial done andfinal done
states are added and connected, (ii)partial done and
aborted states are connected, and (iii)partial done
andcompensated states are connected as well.

Table 2 summarizes some messages that can be ex-
changed in a P2P orchestration during inter Web-services
synchronization. This table is built upon the messages of
Table 1. The description of each message type shows (i) the
direction of the bidirectional flow between the operational
behaviors of the component Web services, and (ii) the case
that corresponds to the actions to perform during horizon-
tal interactions. Interesting to discuss messages #9 and #10,
i.e.,confirmandcancel, respectively in Table 2. Both mes-
sages are used by component Web services to notify other
component Web services that they could either confirm or
cancel their execution.
Definition 10 (Inter-Behavior Transition in Peer-to-Peer
Orchestration). The set of all inter-behavior transitions
that connect the operational behaviors of component Web
services together in a P2P-orchestration mode (conver-
sation session #2 in Fig. 7) is denoted byIT (wsi,wsj)

whereIT (wsi,wsj) = IT (wsi,wsj)
op→op ∪IT (wsj ,wsi)

op→op such that:

8



2

1

1

O
pe

ra
tio

na
l

be
ha

vi
or


C

on
tr

ol


be
ha

vi
or



C
om

po
ne

nt
 le

ve
l

(W
ea

th
er

W
S)

 StartNot
activated

Activated

O
pe

ra
tio

na
l

be
ha

vi
or


C

on
tr

ol


be
ha

vi
or



C
om

po
ne

nt
 le

ve
l

(C
at

er
in

gW
S)


City located

Report
delivered

Not
activated

Activated CommitmentStart

Menu items
Catering
delivered

Legend Conversation session

Partial
done

Commitment Partial
done

Final done

Aborted

Compensated

Commitment

Failure

Compensation ...

Cancellation

Figure 7. Operational and control behaviors mapping in CookoutParty- P2P orchestration

IT (wsi,wsj)
op→op ⊆ SIT (op)×L(wsi,wsj)

op→op ×SIT (op) is the inter-
behavior transition relation starting from the operational be-
havior of a component Web service (WSi) and ending at
the operational behavior of another component Web ser-
vice (WSj). Same definition applies toIT (wsj ,wsi)

op→op ⊆
SIT (op) × L(wsj ,wsi)

op→op × SIT (op); SIT (op) ⊆ Sop is a finite
set of state names in the operational behavior of a com-
ponent Web service that take part in inter-behavior tran-
sitions; andL(wsi,wsj)

op→op is a set of inter-transitions’ labels
from the operational behavior of a component Web ser-
vice (WSi) to the operational behavior of another compo-
nent Web service (WSj), andL(wsj ,wsi)

op→op is the opposite

(L(wsi,wsj)
op→op ∪ L(wsj ,wsi)

op→op = LS). ¤

5 Implementation

To test the viability of the proposed approach, a proto-
type system was implemented in Java and integrated under
Eclipse 3.3 by extending the Web service development
platform we developed previously [9]. The prototype
consists of four modules:
ControlBehaviorModeler ,
OperationalBehaviorModeler ,
ConversationModeler and
SimulationController .
The ControlBehaviorModeler and the
OperationalBehaviorModeler assist engi-
neers specify the control and operational behaviors of
a component or a composite Web service, respectively.
In particular, we developed a visual interface for edit-
ing Web services’ behaviors using state charts. The
ConversationModeler takes the behavior specifica-
tions of a Web service as an input to produce conversation
specifications (i.e., inter-transitions and message se-

quences). It implements functions to support conversations
between operational and control behaviors. Specifically, it
provides methods for managing conversation instances and
triggering transitions. When dealing with a peer to peer
synchronization, theConversationModeler manages
first, the inter-behavior transitions between component
Web services and second, the conversation sessions that
result out of setting-up these inter-behavior transitions.
Finally, the SimulationController tracks and
analyzes (if necessary) the execution of a composite or
a component Web service according to its conversation
definition (e.g., whether the messages are received and sent
in an appropriate order).

Fig. 8 shows the execution of a component Web ser-
vice in the case of a peer to peer orchestration. Upon
the reception of a user’s request, the operational level of
the first component Web service (WeatherWSin this case)
moves from not-activated state to activated state (red color
is used to show the execution path). This latter state, sub-
mits aSync message toCitylocated state in the con-
trol behavior to trigger its execution. In a success case,
Reportdelivered state returns aSuccess message
back to the activated state in the operational behavior. Based
on this information, the operational behavior moves from
activated state to partial done state. This latter state sends a
trigger message to invoke the next component Web service
(CateringWS ).

6 Conclusion

We presented in this paper a framework for establishing
synchronization between Web services engaged in compo-
sition scenarios. Synchronization assists independent par-
ties coordinate their actions and thus, avoid conflicts. This
framework extends the research work we carried out on iso-

9



Table 2. Messages during inter Web-services synchronization - P2P orchestration
# Message Description

name From To In reply to Case
1. invite Component WSi (Bop) Component WSj (Bop) null Invitation
2. trigger Component WSi (Bop) Component WSj (Bop) null Execution
3. ping Component WSi (Bop) Component WSj (Bop) null Verification
4. ... ... ... ... ...
9. confirm Component WSi (Bws

op ) 1[Component WSj (Bop)](i-1) success Execution
10. cancel Component WSi (Bws

op ) 1[Component WSj (Bop)](i-1) failure Execution

Figure 8. An execution of a component Web service in a P2P orchestration

lated Web services (not engaged in any composition) and
leverages two types of behaviors related to specifying such
Web services. The control behavior defines the business
logic that underpins the functioning of a Web service, and
the operational behavior regulates the execution progress of
this control behavior by stating the actions to carry out and
the constraints to put on this progress. Synchronizing Web
services through their respective behaviors has revealed that
the orchestration schemas, whether centralized or P2P, af-
fect the mechanisms to develop in response to the needs
and requirements of the composition scenario that is under
consideration. The use of some of these mechanisms per or-
chestration schema was demonstrated through a prototype.
In term of future work, we plan to study the value-add of
model checking to the early-detection of design inconsis-
tencies and errors.

References

[1] Benatallah. B., Q. Z. Sheng, Ngu A. H. H., and M. Dumas.
Declarative Composition and Peer-to-Peer Provisioning of
Dynamic Web Services. InProceedings of the 18th Interna-
tional Conference on Data Engineering (ICDE’2002), San
Jose, CA, US, 2002.

[2] F. Casati and M. C. Shan. Dynamic and Adaptive Composi-
tion of E-Services.Information Systems, 26(3), 2001.

[3] F. Daniel and B. Pernici. Insights into Web Service Or-
chestration and Choreography.International Journal of E-
Business Research, The Idea Group Inc., 1(2), 2005.

[4] M. Gowri Nanda, S. Chandra, and V. Sarkar. Decentral-
izing Execution of Composite Web Services. InProceed-
ings of 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’2004), Vancouver, British Columbia, Canada, 2004.

[5] M. Kovas, J. Bentahar, Z. Maamar, and H. Yahyaoui. For-
mal Verification of Conversations in Composite Web Ser-
vices using NuSMV. InProceedings of the 8th Interna-
tional Conference on Software Methodologies, Tools and
Techniques (SoMeT09), IOS Press, Prague, Czech Republic,
2009.

[6] Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. To-
wards an Agent-based and Context-oriented Approach for
Web Services Composition.IEEE Transactions on Knowl-
edge and Data Engineering, 17(5), May 2005.

[7] Z. Maamar, M. Sheng, D. Benslimane, and H. Yahyaoui.
Web Services Interactions: Analysis, Modeling, and Man-
agement. International Journal on Software Engineering
and Knowledge Engineering, World Scientific Publishing
Co., 18(2), March 2008.

10



[8] Z. Maamar, M. Sheng, H. Yahyaoui, J. Bentahar, and
K. Boukadi. A New Approach to Model Web Services’ Be-
haviors based on Synchronization. InProceedings of the
23rd IEEE International Conference on Advanced Informa-
tion Networking and Applications, Symposium on Frontiers
of Information Systems and Network Applications, Bradford,
UK, 2009.

[9] Z. Maamar, M. Sheng, H. Yahyaoui, J. Bentahar, and
K. Boukadi. Conversation-Oriented Engineering of Web Ser-
vices. Technical report, College of Information Technology,
Zayed University, September 2007.

[10] Q. Z. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and
A. H. H. Ngu. Enabling Personalized Composition and
Adaptive Provisioning of Web Services. InProceedings of
the 16th International Conference on Advanced Information
Systems (CAiSE’2004), Riga, Latvia, 2004.

[11] W. Yang and S. Tang. A Solution for Web Services Transac-
tion. In Proceedings of The 2006 International Conference
on Hybrid Information Technology (ICHIT’2006), Cheju Is-
land, Korea, 2006.

11


