
Programming SOA/WS Systems with BDI Agents
and Artifact-Based Environments

Michele Piunti
DEIS, University of Bologna

Cesena, Italy
Email: michele.piunti@unibo.it

Andrea Santi
DEIS, University of Bologna

Cesena, Italy
Email: andrea.santi6@studio.unibo.it

Alessandro Ricci
DEIS, University of Bologna

Cesena, Italy
Email: a.ricci@unibo.it

Abstract—Agents and Multi-Agent Systems are recognized in
the literature as a suitable paradigm for engineering SOA and
Web Service systems: however few works explore how to exploit
agent programming languages – in particular those based on
a strong notion of agency, such as BDI ones – for concretely
developing such a kind of systems. In this paper we discuss
a general-purpose programming model and a related platform
for developing SOA/WS applications exploiting BDI agent tech-
nologies. In particular, in order to enable agents to exploit
and manage web service technologies in a suitable functional
fashion, we investigate the use of Jason agents – based on
AgentSpeak(L) programming language – integrated with artifact-
based environments – based on CArtAgO-WS framework.

I. INTRODUCTION

Agents and Multi-Agent Systems are more and more recog-
nized in the literature as a suitable paradigm for engineering
SOA and Web Service systems, since they provide a con-
ceptual and engineering background that naturally fits many
complexities concerning SOA/WS at a high abstraction level
[13], [14], [10]. Actually this view is also promoted both by
the official service-oriented model described by W3C (http:
//www.w3.org/TR/ws-arch/) and by the OMG initiative about
the definition of an agent meta-model and profile in the SOA
perspective (http://www.omg.org/cgi-bin/doc?ad/2008-09-05).

In this perspective, besides being an effective meta-model
to design SOA, we argue that the agent-oriented program-
ming languages and technologies can be effective tools for
concretely programming SOA and Web Services applications,
in particular for those kinds of service-oriented systems that
need to integrate advanced features such as autonomy, flexi-
bility, reactiveness, asynchronous interaction management [6],
[14]. Accordingly, in this paper we develop this issue by
presenting and discussing an approach which exploits and
integrates existing agent technologies – Jason agent pro-
gramming language [3] and CArtAgO-WS framework [20]
– into a general-purpose platform to program and execute
SOA/WS applications. In particular, the approach allows for
programming and running SOA/WS applications as multi-
agent systems composed by agents based on Belief Desire
Intention (BDI) working together in shared environments.
Besides, agent working environments are instrumented with
specific kinds of tools (namely, artifacts) that agent can use
to interact with existing Web Services (as consumers), to
implement Web Services (as providers) and to exploit higher-

level service-oriented capabilities, such as WS-Coordination.
In the proposed model artifacts are special computational
entities providing the access point to Web Services, they can
be created and configured on the need and are exploitable
in a functional / goal-oriented fashion in order to build and
consume complex SOA applications.

Several frameworks have been presented in the agent area
for the design of SOA. Actually they mainly focus on the
integration of agent platforms – in particular, FIPA-based
platforms, such as JADE – with Web Services technologies
[11], [15], [25]: their design objective is mainly to find a
common specification to describe how to seamlessly inter-
connect FIPA-compliant agent systems with W3C-compliant
Web Services. The proposed solutions usually adopt some
kind of centralized gateway, working as a mediator for agents
who aim to interact with Web Services on the one side
(agents as service consumers) and for Web Service requests
to be served by agents on the other side (agents as service
provider) [11]. Conversely, the approach presented in this work
is based on a dynamic creation and control of customized
artifact-based facilities aimed at supporting agent activities
at an infrastructural level. We argue that this would improve
the modularity, scalability and (dynamic) extensibility of the
systems.

Besides enabling interoperability between agents platforms
and web services, a main objective of this work is to in-
vestigate the use of a strong notion of agency – and in
particular agent programming languages supporting it – ex-
ploiting artifact-based environments to concretely design and
build service-oriented systems. In this view we promote the
integration of both task-oriented/process-oriented behavior –
such in the case of agent based workflows [1] or goal-oriented
business processes [24] – and a reactive (even-driven) behav-
ior, such in the case of Event-Driven Architectures (EDA),
which are meant to be a main aspect of forthcoming SOA.
In this perspective, our work is related to existing approaches
investigating the use of goal-oriented/BDI agent technologies
in the context of Web Services (see, among others [5], [4],
[9], [26]). The specific focus on strong agency is also the main
novelty of this paper with respect our previous work [20], [19],
where a SOA/WS programming model based on A&A and the
related platform have been introduced.

The remainder of the paper is organized as follows: in



ProxyUK

Jason Intepreter

JVM

C4Jason
bridge

Other 
Agent

Platforms
...

AXIS2+Tomcat CArtAgO

Java Platform

CArtAgO-WS WS-* Layer

web-services
workspace

SOAP

SOAP

proxyUS

Jason
Agent

myServicePanel

SOAP

myService 
WSDL

AWSECommerceService 
WSDL

AWSECommerceService 
WSDL

WSPanel WSInterface

WSInterface

Users

Amazon UK
Web Service

Amazon US
Web Service

Fig. 1. CArtAgO-WS platform overview. The figure shows a CArtAgO-WS
node running a Web Service built with a single agent and some artifacts
deployed in the web-services workspace: on the right, two instances of
WSInterface artifact are used by an agent to interact (concurrently) with
two external Web Services; on the left, the agent uses a WSPanel artifact to
provide itself a service, serving the requests coming from external WS users.
In the bottom, the layers and technologies on top of which the application is
built are shown.

Section II we briefly describe the basic concepts and tech-
nology on which the programming model and platform is
based; in Section III a case study is discussed, where pivotal
features of BDI agents as autonomy, flexibility, proactiveness
and reactiveness are emphasized in a web service application
involving the use of WS transactions and protocols.

II. PROGRAMMING MODEL AND CArtAgO-WS PLATFORM

This section provides a global picture of programming
model based on BDI agents and artifacts for implementing
Web Services and SOA. In the next sections CArtAgO-WS
platform is described, along with a simple example showing
the approach in practice.

A. Agent and Artifact Programming Model for Web Services

The proposed programming model for implementing Web
Services relies on A&A (Agents and Artifacts) meta-model,
recently introduced in the context of agent-oriented software
engineering [16]. In A&A perspective, a service – or an appli-
cation using services, that can a be service itself – is organized
in terms of a set of agents – as autonomous, pro-active
entities – that work together inside a shared computational
environment, properly designed to support their activities.

Such computational environment – possibly distributed
across several nodes – is organized in terms of workspaces
containing sets of first-class entities, called artifacts, repre-
senting tools and, more generally, resources that agents share
and use to cooperate and fulfill their tasks. So artifacts are
the basic abstraction that MAS designers and programmers
can exploit to conceive and program agent environments,
encapsulating functionalities that – at runtime – agents can
exploit to externalize tasks and thus achieve their (individual
and collective) objectives.

A detailed description of agents and artifacts programming
model is outside the scope of this work (the interested readers
can find more details in previous papers [21], [22]). Here we

exploit agents and artifacts as means to design and program a
SOA/WS application as a multi-agent system, in particular as
workspaces where goal-oriented agents work together sharing
and exploiting environment-based facilities:

• Agents are meant to encapsulate the logic and control of
tasks, activities and business processes – both in the case
of client applications and service applications;

• Artifacts are used to represent specialized resources and
tools inside the workspaces that agents can exploit, useful
in particular – in this case – to encapsulate and hide low-
level aspects related to WS management.

In what follows, an integrated programming model based on
BDI agents and artifacts is discussed, firstly with respect of en-
vironment setting and then with regard of agent development.
In particular, Jason is adopted as reference programming
platform for BDI agents1. Besides, CArtAgO-WS2 (Common
ARtifact infrastructure for AGent Open environment and Web
Services) is adopted as environment programming platform.

B. Environment Side

CArtAgO-WS has been recently introduced as the refer-
ence technology for implementing SOA working environments
based on the A&A model [20]. The platform integrates dif-
ferent modules supporting, from the one side, agent based
frameworks and, on the other side, a seamless integration with
Web Service technologies. As depicted in Fig. 1 (bottom),
CArtAgO-WS is currently implemented on top of existing
open-source WS technologies as Axis2 (see http://ws.apache.
org/axis2/), in order to conform to the Basic Profile specifica-
tion of Web Service Interoperability Organization (WS-I). The
core technology of CArtAgO-WS is CArtAgO [22], which
provides both a concrete computational/programming model
for developing and running artifact-based environments, and
API to integrate existing agent technologies (and languages,
architectures) with it. This enables the implementation of MAS
populated by agents possibly developed using different agent
languages working together inside the same artifact-based
environment.

In CArtAgO, artifacts are characterised by a usage interface
listing a set of controls that agents can use to trigger and
execute artifact operations, structuring artifact functionalities.
Operation execution can lead to the generation of observable
events that the agent using the artifact and other agents
possibly observing it can perceive.

Basically CArtAgO-WS extends CArtAgO by providing a
predefined workspace called web-services: this workspace is
dynamically instrumented with different kind of specialized
artifacts aimed at working with Web Services:

• Basic artifacts, aimed at enabling basic interactions be-
tween agents and Web Services;

1Jason is an open source platform for programming BDI agents based
on AgentSpeak(L). For brevity, we omit the description of the syntax and
semantic of the language: the interested reader can find more in [2] and http:
//jason.sourceforge.net.

2CArtAgO-WS is an open source platform available at: http://cartago.
sourceforge.net.



• WS-* artifacts, aimed at supporting an enriched set of
interactions, as the ones envisaged by the Web Services
stack protocol;

• Business artifacts, aimed at providing functions for sup-
porting agents in their business activities, as storing
information which is relevant for the ongoing task in
a database, wrap an external resource, control a user
interface etc.

In what follows a description of the artifacts holding on the
first two groups is provided, while an example of artifacts
holding to the third group is given in the application of
Section III.

Artifacts of the basic group allow, on the one side, agents to
work with existing Web Services and, on the other side, allow
the construction and the deployment of new Web Services
controlled by agents. In particular, two configurable artifacts
introduced are WSInterface and WSPanel artifacts (Fig. 1
shows an example of their use). To interact with an existing
Web service, an agent instantiates a WSInterface artifact
specifying its WSDL document which describes the service
to interact with. Optionally it takes in other parameters such
as the specific service name/port type to be used (if the WSDL
includes multiple port types and services), and a local name
representing the endpoint to which the artifact is bound to
receive messages (e.g. replies). Once created, WSInterface
provides basic functionalities to interact with the specified Web
Service, such as sending a message to the service in the context
of an operation (sendWSMsg usage interface control) or getting
the reply to messages previously sent during an operation
(getWSReply). Besides, it includes higher-level operations to
directly support basic MEPs, such as the request-response (in-
out) MEP (requestOp) which sends a request message and
generates an event when the response message arrives.

Current implementation makes use of SOAP messages for
executing operations and to get the replies sent back by the
service, according to the message exchange patterns defined
in the WSDL and to the quality of service specified by
the service policies (in particular, security and reliability). In
future implementation of this artifact we plan to support also
resource-oriented interaction with services, as promoted by the
REST architectural style [8].

To use multiple Web Services, multiple WSInterface

artifacts must be created, one for each service: agents can then
use such artifacts to interact with the services concurrently.
Different agents can also use the same WSInterface artifact
to interact with the same service.

For creating, configuring and controlling a new Web Ser-
vice, a WSPanel artifact is provided. Analogously to the
previous case, WSPanel can be instantiated specifying a
WSDL document. Once created, WSPanel provides basic
functionalities to manage SOAP requests, including receiving
and sending messages according to the specific MEP as de-
scribed in the WSDL, and basic controls to configure security
and reliability policies. Also in the case of WSPanel, the
usage interface includes a set of general purpose operations
enabling the interaction according to the wide spectrum of

possible WS messaging patterns. Operations are available to
retrieve or be notified about requests/messages arrived to the
Web Service possibly specifying filters to select messages on
the basis of their content/meta-data (getWSMsg, getWSMsgs

and subscribeWSMsgs) and to send replies accordingly
(sendWSReply).

It is worth remarking that agents can dynamically create,
quit and re-create both WSPanel and WSInterface once
they have joined a web-services workspace hosted in a
CArtAgO-WS node: this allows to dynamically deploy and
re-configure Web Services not by human intervention but by
agents activities, thus promoting an automated management of
services. Accordingly, it is possible to instantiate or interact
with multiple Web Services at the same time, i.e. by creat-
ing multiple WSPanel/WSInterface artifacts, one for each
service.

Besides the basic interactions promoted by the above men-
tioned artifacts CArtAgO-WS introduces an additional group
of artifacts. This group is included in the WS-* layer of the
platform (see Fig. 1) and is aimed at supporting an extensible
set of WS specifications, in particular those appearing in
the WSIT (Web Services Interoperability Technologies) set
(see http://wsit.dev.java.net). For doing this, the WS-* layer
is instrumented with two kinds of specialized artifacts: the
WSRequestMediator and the Wallet.

The WSRequestMediator (RM) artifact is meant to be
used by agents to retrieve (or create) those dynamic in-
formation required by complex specification such as WS-
Coordination (WS-C). RM’s provides a general purpose usage
interface so that multiple RM can be instantiated to conform to
multiple protocols. For instance, suppose that an agent aims
at creating a new WS-AtomicTransaction (WS-AT): to this
end, an agent can use a RM to (create and) retrieve a specific
coordination context, which has been previously configured
following WS-Coordination and WS-AT standards.

Besides RM, a Wallet artifact is introduced as “personal
artifact” that agents interacting with Web Services can exploit
to support the management of profile/context information
eventually needed by WS specification. The Wallet works in
synergy with RM artifacts and its function is to dynamically
store a portfolio of various policies which are required to
conform messages to WS-* protocols. This information can
range from security tokens (as required by WS-Security) to
dynamic coordination contexts (as used in WS-C). In so doing
a user agent can completely externalize on the wallet the
management of the required policies. In a typical scenario, a
agent using a Web Service first gets profile information from
the Wallet and then uses it to configure the WSInterface.

So in the overall the WS-* layer allows MAS programmers
to build articulated WS applications abstracting as much as
possible from low-level details that concern WS-* specific
protocols management (e.g. the management of the coordi-
nation contexts in WS-C), and to focus on the high-level
functionalities (e.g. transactions) that agents may need to
setup/exploit.



C. Agent Side

As mentioned in Subsection II-A, in our approach agents
are the computational entities to specify and program the
business logic of services (or applications using services).
In particular, in this paper we argue that the use of a BDI
agent based specification improves the abstraction by which
a programmer can specify a complex task (i.e. a business
process) in terms of structured agents’ behavior. As agents
programmable according to a BDI style can be specified by
goal-oriented languages – in this paper we will use Jason,
in particular, but analogous considerations hold by consid-
ering other agent programming languages/platforms such as
2APL [7], Jadex [18], etc. – the programming style for
specifying business processes conceived as a complex chain of
interleaved tasks can be natively conceived in a goal-oriented
format, and thus expressed in terms of agent’s plans. Then,
as agents execution model is typically based on practical
reasoning, BDI agents are highly adaptive in suitably finding
a proper course of actions to achieve a given goal in the
situated context conditions. In so doing, a main concern for
programmers is to simply specify a set of behaviors realizing
agent’s tasks in terms of goals and plans.

Besides practical reasoning, an additional remarkable as-
pects is the interaction model defining interaction between
agents and artifacts. From an agent point of view, artifact
computational model allows two kind of interaction, as they
are based on the notions of use and perception. Given this,
as agents exploit artifacts to provide or use services, their
programs can be expressed in native terms, i.e. by the mean of
primitives for actions and perceptions. An additional remark-
able aspect is related to the perceptive abilities carried out by
agents with respect to artifact observable events. Indeed, due to
the computational model provided by CArtAgO-WS, agents
can be highly sensitive towards a rich series of events occur-
ring upon a focused artifacts. Due to the fact that BDI model
of agency typically provides constructs to explicitly handle
noticeable events and react accordingly, a clear definition of
events in terms of agent percepts allows a situated reactiveness
of agents, mainly addressed towards the perception of relevant
changes affecting the work environment, (where for relevant
we refer to those information which is assumed to support the
ongoing plans, as goal supporting beliefs).

To provide a concrete taste of the programming approach,
the structure of a simple application is showed in Fig. 1,
accounting for a service finding the best price of items – books
in the specific case – by interacting with two existing web
services (two Amazon Web Services, one for UK and one for
US)3. The service is implemented by a single Jason agent,
using a WSPanel artifact to retrieve service requests (and send
responses) and two WSInterface artifacts to interact with the
two existing Web Services.

A cutout of the agent source code is shown in TABLE I,

3The complete source code of the examples as well as the WSDL of the
implemented services are available at CArtAgO-WS web site: http://cartago.
sourceforge.net.

01 !find_best_price_service.
02
03 +!find_best_price_service
04 <- cartago.joinWorkspace("web-services","localhost");
05 !setupTools;
06 !cartago.use(wsPanel,subscribeWSMsgs("GetBestPrice")).
07
08 +ws_msg(Msg)
09 <- !extractMsgId(Msg,ReqId);
10 !extractItem(Msg,Item);
11 +pending_request(ReqId,Item,Msg).
12
13 +pending_request(ReqId,Item,Msg)
14 <- !prepareItemReqWs(Item, MsgReq);
15 cartago.use(awsUS,requestOp("ItemSearch", MsgReq));
16 cartago.use(awsUK,requestOp("ItemSearch", MsgReq)).
17
18 +ws_reply(ReplyMsg,ReqId)[source(From)] :
19 pending_request(ReqId,Item,Msg)
20 <- !extractPrice(ReplyMsg,Price);
21 +price(ReqId,Item,From,Price).
22
23 +price(ReqId,Item,_,_) : price(ReqId,Item,"awsUK",_) &
24 price(ReqId,Item,"awsUS",_)
25 <- !prepareAndSendResponse(ReqId).
26
27 +!prepareAndSendResponse(ReqId)
28 <- !computeBestPrice(ReqId,Price,From);
29 !prepareAmazonWSReply(Price,From,ReplyMsg);
30 cartago.use(wsPanel,sendWSReply(Msg, ReplyMsg));
31 -pending_request(ReqId,_,_);
32 -price(ReqId,_,"awsUK",_);
33 -price(ReqId,_,"awsUS",_).
34
35 +!setupTools
36 <- cartago.makeArtifact(wsPanel,"alice.cartagows.WSPanel",
37 ["./data/BestPriceService.wsdl"]);
38 cartago.makeArtifact(awsUS,"alice.cartagows.WSInterface",
39 [".../AWSECommerceService.wsdl"]);
40 cartago.makeArtifact(awsUK,"alice.cartagows.WSInterface",
41 [".../UK/AWSECommerceService.wsdl"]).

TABLE I
CUTOUT OF THE JASON AGENT SHOWED IN FIG. 1

which is briefly described in the following. The agent has
a single initial goal (find_best_price_service, specified
at line 01) and a set of plans that describe how to achieve
this goal and related sub-goals. The first plan (line 03–06)
is triggered as soon as the goal is instantiated, and accounts
for setting up the tools needed to do the job (sub-goal
setupTools, which triggers the execution of a plan (lines
35–41) creating the service panel, referenced by the atom
wsPanel, and of the two WS interface artifacts, referenced
as awsUK and awsUS) and subscribing the panel (operation
subscribeWSMsgs) to receive all the message requests arriv-
ing to the service concerning the GetBestPrice operation.

As soon as a new WS request arrives to the panel, it
generates an observable event ws_msg(Msg). The agent reacts
to the perception of that event (plan at lines 08–11) by
extracting information about the message identifier and item
to search (sub-goals extractMsgId and extractItem at
line 09-10, not reported here for simplicity) and creating
a pending_request belief containing information about
the new request to process (line 11). The addition of new
pending_request beliefs triggers the execution of a specific
plan to process the requests (line 13–16). The plan accounts
for using the awsUK and awsUS artifacts (lines 15 and 16)
to request information about the item. The two services will
answer asynchronously, with messages that are translated by
the WSInterface in +ws_reply(Resp,MsgId) percepts. As



soon as replies arrive, the agent creates new price beliefs
carrying information about the price of the item sold by the
specific sources (plan at line 18–21).

As soon as both the price information from the UK ser-
vice and US service are available for a specific request,
the agent can prepare and send the response (sub-goal
prepareAndSendResponse, line 25). This is done by the
plan listed at lines 27–33, in which the best price is computed
by the sub-goal computeBestPrice (not showed) exploiting
the information stored in price beliefs and a reply message
(related to the original message request) with the answer is sent
back through the service panel (line 30). Finally, information
about the specific request identifier and related prices are
removed from the belief base (line 31–33).

Despite its simplicity, the example is meant to show how
the approach allows for structuring quite naturally the business
logic of the service in terms of agent plans, both to react
to events occurring in artifacts populating the workspace (a
WSPanel and the two WSInterface in the example) and to
pro-actively execute sub-tasks on which the service business
process is decomposed. By properly externalizing functionali-
ties in artifacts, the approach makes it possible on the one side
to keep agent behaviour relatively clean, purely focussed on
the specification of the service logic, and, on the other side, to
fruitfully exploit concurrency – artifacts execute operations in
separated threads of controls – without dealing (for the agent
programmer) with low-level synchronization issues. Finally,
the approach promotes modularity and scalability. In the
example a single agent is used to process and serve all requests
arriving to the service: alternatively, a pool of agents can be
used for this purpose, sharing the panel to get the requests.

III. PROGRAMMING COMPLEX WEB SERVICES USING BDI
AGENTS AND ARTIFACT-BASED ENVIRONMENTS

The benefits of adopting a BDI model of agency along
with artifact-based environments are evident in particular when
the design and development of complex service applications
are of concerns. In what follows, Subsection III-A introduces
an example application involving some of the motivating
elements at the basis of the proposed approach, while Subsec-
tion III-B discuss an implementation based on CArtAgO-WS
and Jason.

A. A Case Study: Book an Holiday Scenario

The described scenario is inspired by a typical example
used in SOA/WS contexts: a client agent wants to book an
holiday for a given date by exploiting a series of web services
providing the required resources as hotel reservation, transport
facilities, payment and so on. As an additional element of
the scenario, we imagine for the client the possibility to be
further notified whether a selected range of date has become
available for additional reservations. This allows clients to
express an interest for a given date, and thus to re-try the
booking activity whether the provider signals a last minute
availability (i.e. due to some reservation cancelation performed

00 +!start_booking
01 <- !setupTools;
02 !retrieveDate;
03 !book_an_holiday.
04
05 +!setupTools : true
06 <- !locate_artifacts;
07 // Use the RM to request a new WS-AT and
08 // add the related ATContext into the Wallet
09 cartago.use(Wallet, addInfo(ATContext));
10 !makeInterface(proxyHM,
11 "http://webservices.hotel.com/.../BookingManager.wsdl");
12 ?artifact_id(proxyHM, ProxyID);
13 cartago.use(ProxyID, configure(ATContext)).
14
15 /* Top Level Goal */
16 +!book_an_holiday
17 : date(Dates)
18 <- !book_hotel(Dates, Res_H);
19 !book_accessories(Dates, Res_A);
20 !finalize(Res_H, Res_A).
21
22 +!book_hotel(Dates, Res_A)
23 : artifact_id(proxyHM, ProxyID)
24 <- !createBookingMessage(hotelBooking, Dates, MsgBookHotel);
25 cartago.doRequestResponse(ProxyID,
26 bookingOperation(MsgBookHotel), HotelResponse);
27 !inspect_h_response(HotelResponse, Res_H);
28 Res_H == "available". // fail if not available
29
30 +!book_accessories(Dates, Res_H)
31 : artifact_id(proxyTransport, TranID) & artifact_id(proxyPayment, PayID)
32 & hPrice(HotelPrice) & tPrice(TransportPrice) & bank_account_id(BankID)
33 <- !createBookingMessage(transportBooking, Dates, MsgTransport);
34 cartago.doRequestResponse(TranID,
35 bookingOperation(MsgTransport), ResponseTransport);
36 !createPayMessage(BankID, (HotelPrice+TransportPrice), MsgPay);
37 cartago.doRequestResponse(PayID,
38 payOperation(MsgPay), ResponsePayment);
39 !inspect_acc_responses(TransportResponse, PaymentResponse, Res_A);
40 Res_A == "available". // fail if not available
41
42 /* Fail Event Handling */
43 -!book_an_holiday
44 : artifact_id(proxyHM, ProxyID) & dates(Dates)
45 <- !createSubscribeMessage(Dates, MsgSubscription);
46 cartago.focus(ProxyID);
47 cartago.use(ProxyID, subscribeOperation(MsgSubscription));
48 !finalize("not_available", "").
49
50 /* Notification from HM */
51 +dateNotMoreFull(Dates) [source(proxyHM)]
52 : artifact_id(proxyHM, ProxyID) & dates(Dates)
53 <- cartago.stopFocusing(ProxyID);
54 !book_an_holiday;
55
56 /* Finalize */
57 +!finalize(Res_H, Res_A)
58 : Res_H == "available" & Res_H == "available"
59 & wallet_entry(wsatcontext, ATContext) & artifact_id(wsProxyCoord, CoordID)
60 <- !createCommitMessage(WS-AT-Context, MsgCommit);
61 cartago.doOneWay(CoordID, commitOperation(MsgCommit));
62
63 +!finalize(Res_H, Res_A)
64 : (Res_H =/= "available" | Res_A =/= "available")
65 & wallet_entry(wsatcontext, ATContext) & artifact_id(wsProxyCoord, CoordID)
66 <- createRollbackMessage(ATContext, MsgRollback);
67 cartago.doOneWay(CoordID, rollbackOperation(MsgRollback)).

TABLE II
Jason CUTOUT OF THE BOOKING REQUESTOR AGENT SHOWED IN FIG. 2

by other clients). On these basis, the involved services need
to shape their activities based on situated conditions:

• A given transaction can have success, or not, given the
resources which are actually available.

• The same transaction can be retried, based on changed
contexts for which, at the moment of the first attempt,
the provider could not finalize the task.

To achieve such a flexibility, service behavior can be straight-
forwardly expressed in terms of goal-oriented agents, where
goals are expressed in terms of specific task to achieve (i.e. to
book an holiday, to provide reservations, etc.). To achieve their
goals agents can organize their workflow in terms of situated
plans, involving the interaction with heterogeneous resources
(such as internal resources as databases, coordination and
transaction facilities, other web services, etc.). Accordingly,
we will design and program the involved services based on
BDI (goal-oriented) agents programmed in Jason exploiting
a CArtAgO-WS web-services workspace.



proxyPayment

Hotel Basic
Agent

HOTEL MANAGER SERVICE
(HM)

WS/SOAP 
messages

Hotel Notifier
Agent

BookingManager 
WSDL

subscribeWSMsgs
sendWSReply

getWSMsgWithFilter

WSPanel

Subscribers 
Map

addSubscriber
removeSubscriber
getSubscribers

Booking Requestor
Agent (BRA)

proxyHM

WSInterface

BookingManager 
WSDL

bookingOperation
subscribeOperation
unscribeOperation

proxyTransport

bookingOperation

WSInterface

TransportManager 
WSDL

WS-* LAYER

USE
PERCEPTION

SENSE

WS/SOAP
MESSAGES

payOperation

WSInterface

PaymentManager 
WSDL

wsProxyCoord

WSInterface

WSAtomicTransaction 
WSDL

commitOperation
rollbackOperation

addNewRequest

getRequestResult

WSRequestMediator

getNextRequest
addInfo
resumeInfo

Wallet

HotelBooking
Registry

bookingCheck

finalizeBooking
unlockDates

bookingCancellation

WS-* LAYER

addInfo
resumeInfo

Wallet

addNewRequest

getRequestResult

WSRequestMediator

getNextRequest

BOOKING SERVICE
(BS)

Fig. 2. Structural architecture showing the services involved in the Book an Holiday scenario. On the left side, the Booking Service is controlled by a Booking
Requestor Agent managing WSInterface artifacts wrapping services as Transport Manager, Payment Manager, Hotel Manager and WSAtomicTransaction. On
the right side, the Hotel Manager Service uses two agents (Hotel Notifier and Hotel Basic) and two artifacts (Subscribers Map and HotelBooking Registry)
in order to provide the booking service and the notification events exploitable by the users. The two services make use of an additional layer (on the bottom
in figure) in which specialized agents and artifacts coordinate the transactions according to WS-* protocols.

As showed in Fig. 2, the application is centered on two
main services: Booking Service and Hotel Manager. The Hotel
Manager (HM) service manages the booking tasks and also
provides notification functionalities to subscribers. HM has
been designed using two specialized agents, the Hotel Basic
Agent and Hotel Notifier Agent, sharing and exploiting an
instance of WSPanel to expose the service (see Fig. 2 right).

To support their tasks, the agents providing the HM
service use additional artifacts. In particular, in order to
manage the requests related to bookings and cancelations
Hotel Basic Agent exploits the functionalities provided
by an HotelBookingRegistry artifact. Besides, in or-
der to manage the HM’s notification services Hotel No-
tifier Agent uses a SubscribersMap artifact. It is as-
sumed to keep track of the subscriptions requested and
monitor the HotelBookingRegistry so as to notify inter-
ested subscribers as soon as changes regarding date avail-
abilities are observed. Notice that SubscribersMap and
HotelBookingRegistry represent the external resources
needed by agents to achieve their goals in the context of this
specific application (i.e. business artifacts)

On the user side, the Booking Service (BS) realizes the task
related to a client agent who wants to organize an holiday. The
service is built around the role played by a Booking Requestor
Agent (BRA), whose final goal is to plan the required reserva-
tion related to an holiday for a given date. To achieve this goal,
BRA is assumed to compose several resources, in this case
related to the use of artifacts embedding external web services
(see Fig. 2 left): In this case, the Hotel Manager service (HM)
is used to (i) check the availability of hotel rooms for the
specified period, (ii) subscribe for possible notifications (in
case of missed availability) and (iii) finalize the reservation.

Besides HM, the Booking Service uses additional services to
accomplish its goal. In particular, a TransportManager service
(TM) is needed to manage the booking for the transports used
for arriving to (and leaving from) the specified destination.
A PaymentManager service (PM) is used to manage bank
accounts and to finalize the payment. As showed in Fig. 2, in
order to externalize the computational load required to manage
complex messaging, the Booking Requestor Agent in this case
exploits the support provided by the WS-* layer (i.e., Wallet
and WSRequestMediator artifacts). In addition, BRA main
task is further managed through an atomic transaction (WS-
AT) involving the overall set of services realizing the booking
application. A dedicated proxy is then used to involve an
external coordination service.

B. Agents and Web Services Implementation

Part of the implementation of the Book an Holiday Scenario
is her described through the specification, in Jason, of the
BRA agent (TABLE II shows a relevant code fragment).
Agent’s specification is provided in a goal-oriented format,
assuming different plans addressed to a precise step in the
business task to achieve.

The initial goal for BRA is to initiate a a booking ac-
tivity (+!start_booking, line 00 in TABLE II). In so
doing, BRA launch a series of sub-level goals. An initial
+!setupTools (line 05) is executed to retrieve or create
the needed artifacts (which identifiers are stored as beliefs
in the form artifact_id(a_name, a_id)). The WS-AT
context for managing the booking is then retrieved from
RequestMediator artifact residing in the WS-* layer, and
then stored into the Wallet as an ATContext info (line
09). A WSInterface artifact is also created (line 10) for



interacting with the HM. Its artifact identifier is then stored
as a belief (artifact_id(proxyHM, ProxyID)) and the
context related to the ongoing WS-AT is used to configure
it (line 13). For simplicity, a series of agent’s sub-goals are
here not fully specified and concerns low level computation
performed for instance to manage data and to interact with
additional resources. Among others, for instance, the plan
retrieveDate (line 02) is executed to retrieve the informa-
tion provided – for instance – by a human user, and to store
it in form of agent’s belief date(Date).

As showed in Fig. 3, BRA’s terminal goal is managed by
a workflow of purposive activities, realized by specific plans,
as they are specified by the +!book_an_holiday goal (line
16). The first activity consists in booking the hotel for the
given dates (line 16): after having specified the context, thus
retrieving the belief related to the proxyHM, a message for
the WS request is prepared (line 24) and the HM is used by
the mean of a request-response protocol (lines 25-26). We
may assume that the hotel has already reached the maximum
amount of reservations for (some of) the dates in the requested
period (the information about date availability is stored in
the HM service by the HotelBookingRegistry, that is an
artifact implemented at the application level). In that case, the
HM service replies to BS with a message notifying the inabil-
ity to finalize the reservation: this message is then analyzed
by a special inspect_h_response plan that can provide an
available or not available result. The returned literal is then
matched to verify the success of the booking operation (lines
27). In so doing, a fail event will occur whether the booking
operation has failed and the Res_H is not_available (line
28). Thanks to the Jason execution model, this fail event
causes the root plan to fail too. Hence, the failure can be
suddenly handled by a -!book_an_holiday plan (line 43
and Fig. 3), by which the agent can subscribe to the HM
with the aim to be notified whether some new availability is
signalled. So far, in the hope that some client will cancel a
reservation for the desired date, the agent focuses the HM
proxy (WSInterface) and uses it for subscribing itself for
the notification of possibly further availability (lines 43-47),
then waits for a possible HM’s notification. In this case (line
61-65) a +!finalize plan is assumed to manage a rollback
of the service transaction. The WS-AT is coordinated through a
Coordinator Service which is installed in a programmable
infrastructure (WS-* layer) together with the set of the services
required by WS-Coordination specification.

Each BRA’s subscription is handled within the HM service
by the Hotel Notifier Agent, which stores the request in the
SubscribersMap business artifact (the structural description
of the HM service is in Fig. 2, right). If, in the meanwhile,
some other agent interacting with the HM cancels its reserva-
tion for the subscribed date, such a change is signalled – within
the HM side – to the HotelBookingRegistry artifact, which
stores the data related to the various reservations. In this case,
the Hotel Notifier Agent is supposed to receive a percept
from the registry: as soon as a +data status changed signal
is perceived, the Hotel Notifier Agent creates a new sub-

book_an_holiday

book_hotel book_accessories finalize

+dateNotMoreFull-!book_hotel

Booking Requestor Agent 
(BRA)terminal goal

perceptfailure 
event

HOTEL MANAGER SERVICE (HM)

subgoal(s)

subscribeOperation dateNotMoreFull

proxyHMWSInterface

WS/SOAP

Fig. 3. Goal Decomposition Tree for Booking Requestor Agent (BRA)
shows the structure of the various plans related to each sub-activity needed to
achieve the terminal goal. Notice the interaction with proxyHM artifacts,
in particular for the subscribe operation, performed after a failure in the
book_hotel plan, and the execution of a new book_an_holiday
plan, once a new availability is signalled by the HM.

goal to process such information, by retrieving the subscribers
matching the given date, and by sending back a notification
message to the BS who subscribed. Once a new availabil-
ity occurs, the message coming from the HM arrives to
the BS, and it is automatically translated by WSInterface

and then it is signalled to the BRA agent. Also in this
case, the event is received in form of percept and it suc-
ceeds to awaken the focusing BRA: the arriving percept
+dateNotMoreFull(Dates)[source(proxyHM)] contains
a date identifier (Dates) by which the agent can match the
event and thus recognize it as a meaningful one, with respect
to its goals (lines 36-37). In so doing, the BRA can now
adopt a new instance of the book an holiday goal (line 39
and Fig. 3), by which the activities needed to achieve the goal
are replanned from scratch. Differently from what happened in
the first attempt, the BRA now finds the resources to succeed
to book the hotel for the requested dates (HM response is, in
this case, available).

Given this, BRA can now proceed with the following activ-
ity (+!book_accessories, line 30). It contacts the transport
service and the payment manager, and, after having received
the responses (line 33-38), it can control the results and, in
so doing, achieve the terminal goal. Finally, the last activities
+!finalize(Res_H, Res_A), line 63) now commits the
transaction upon the WS Coordination.

Some additional aspects are worth to emphasize in the
described example. First, all mechanisms holding BRA to its
idle state, during which it simply waits for a notification,
as well as the mechanisms needed for its awaken, are here
simply managed at a system level, both by CArtAgO-WS
and Jason platforms. Once a message coming from the
HM services arrives indicating an availability, the agent is
suddenly and asynchronously awaken by the percept produced
by the WSInterface. In so doing, the developer only needs
to specify under which context the events coming from a
given WSPanel/WSInterface artifact should be exploited to
reactivate the agent practical reasoning. At the same time the
programming model allows to automatically handle noticeable



events as failures (as in the case of missing availability in
the booking task). In this case the programmer can suitably
specify a purposive activity to recover the ongoing plans. The
presented scenario also enlightens the support provided by the
artifact based infrastructure for agent business activities. In this
case the BRA only need to locate a WSRequestMediator and
update a personal Wallet in order to automatically face the
computational load related to the managing of the additional
services needed by the protocol.

IV. CONCLUSION AND FUTURE WORKS

More and more agent technologies are recognized as a
main actor in the engineering of service-oriented systems.
Despite of this fact, few works have explored in literature
the use of agent-oriented programming languages – and in
particular those based on a strong notion of agency, such
as BDI ones – to this end. In that perspective, we de-
scribed a general-purpose programming model and platform
for developing Web Services and SOA applications The ap-
proach promotes the adoption of BDI agents programmed with
proper agent languages/platforms (Jason is used in the paper)
working together in artifact-based environments (constructed
with CArtAgO technology). Agents work environments are
instrumented, in particular, with artifacts specialized to provide
functionalities useful for exploiting (and hiding) WS protocols
and related technologies (CArtAgO-WS extension).

In conclusion, a couple of aspects are worth to emphasize.
First, the programming model promotes a uniform approach
to design complex service/application business logic in terms
of structured goal-oriented activities. Indeed, agents’ practical
reasoning allows, for instance, to handle complex course of
events and manage failures in a situated way, promoting
coordination, adaptiveness, cooperation and so forth. Second,
the use of an extensible artifact-based layer makes it possible
to transparently manage the computational load required for
agents to conform to WS-* protocols.

Besides improving the support to WS-* technologies, a
major objective of future works will be the use of the platform
to investigate the synergy between goal-oriented and artifact-
based technologies for the construction of complex SOA/WS
systems, with aspects concerning, for instance, goal-oriented
orchestration [9], [26], goal-oriented business process manage-
ment [5] and autonomic SOA/WS [12].

REFERENCES

[1] M. Banzi, G. Caire, and D. Gotta. Wade: A software platform to
develop mission critical. applications exploiting agents and workflows.
In AAMAS Industry Track, 2008.

[2] R. Bordini and J. Hübner. BDI agent programming in AgentSpeak using
Jason. In F. Toni and P. Torroni, editors, CLIMA VI, volume 3900 of
LNAI, pages 143–164. Springer, Mar. 2006.

[3] R. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[4] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta. COOWS: Adaptive
BDI agents meet service-oriented computing (extended version). In
European Workshop on Multi-Agent Systems (EUMAS 2005), 2005.

[5] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. BDI-Agents for
Agile Goal-Oriented Business Processes. In Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Industry
and Application Track., 2008.

[6] F. Curbera, D. F. Ferguson, M. Nally, and M. L. Stockton. Toward a
programming model for service-oriented computing. In Third Interna-
tional Conference on Service-Oriented Computing (ICSOC-05), volume
3826 of Lecture Notes in Computer Science. Springer, 2005.

[7] M. Dastani. 2APL: a Practical Agent Programming Language. Au-
tonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[8] R. T. Fielding and R. N. Taylor. Principled Design of the ModernWeb
Architecture. ACM Transactions on Internet Technology, 2:115–150,
2002.

[9] M. Georgeff. Service Orchestration: The Next Big Thing. DM Review,
2006.

[10] D. Greenwood and M. Calisti. Engineering web service-agent integra-
tion. In Proc. of IEEE Conf. on Systems, Man and Cybernetics, 2004.

[11] D. Greenwood, M. Lyell, A. Mallya, and H. Suguri. The IEEE FIPA
approach to integrating software agents and web services. In Proc. of
Autonomous agents and multiagent systems (AAMAS-07), 2007.

[12] S. A. Gurguis and A. Zeid. Towards autonomic web services: achieving
self-healing using web services. SIGSOFT Softw. Eng. Notes, 30(4):1–5,
2005.

[13] M. N. Hunhs. A research agenda for agent-based Service-Oriented
Architectures. In M. Klusch, M. Rovatsos, and T. Payne, editors,
CIA 2006, volume 4149 of LNA, pages 8–22. Springer-Verlag Berlin
Heidelberg, 2006.

[14] M. N. Huhns, M. P. Singh, and M. e. a. Burstein. Research directions for
service-oriented multiagent systems. IEEE Internet Computing, 9(6):69–
70, Nov. 2005.

[15] X. T. Nguyen and R. Kowalczyk. WS2JADE: Integrating web service
with jade agents. In Service-Oriented Computing: Agents, Semantics,
and Engineering, vol. 4507 LNCS. Springer, 2007.

[16] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[17] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-Directed
Interactions in Artifact-Based MAS: Jadex Agents Playing in CArtAgO
Environments. In Proc. of Web Intelligence and Intelligent Agent
Technology (WI-IAT ’08), Sydney, 2008. IEEE/WIC/ACM.

[18] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning
engine. In R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni,
editors, Multi-Agent Programming. Kluwer, 2005.

[19] A. Ricci and E. Denti. simpA-WS: A Simple Agent-Oriented Program-
ming Model & Technology for Developing SOA & Web Services. In
Proceedings of AI*IA/TABOO Joint Workshop From objects to Agents
(WOA 2007), 2007.

[20] A. Ricci, E. Denti, and M. Piunti. A Platform for Developing SOA/WS
Applications as Open and Heterogeneous Multi-Agent Systems. Milti
Agent and Gris Systems, (to appear).

[21] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Dastani.
Integrating Artifact-Based Environments with Heterogeneous Agent-
Programming Platforms. In Proc. of the Seventh International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’08),
pages 225–232, 2008.

[22] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Multi-Agent Program-
ming: Languages, Tools and Applications. (Eds.) 2009, Springer. ISBN:
978-0-387-89298-6, chapter Environment Programming in CArtAgO,
pages 259–288. Springer, 2009.

[23] A. Ricci and M. Viroli. simpA: An agent-oriented approach for
prototyping concurrent applications on top of Java. In Proc of Principles
and Practice of Programming in Java (PPPJ-07), 2007.

[24] G. Rimassa, M. E. Kernland, and R. Ghizzioli. Ls/abpm - an agent-
powered suite for goal-oriented autonomic bpm. In Demo Session in
AAMAS 2008, 2008.

[25] A. A. Shafiq, H. F. Ahmad, and H. Suguri. AgentWeb Gateway - a
middleware for dynamic integration of multi agent system and web
services framework. In IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise, 2005.

[26] M. B. van Riemsdijk and M. Wirsing. Using goals for flexible service
orchestration - a first step. In Service-Oriented Computing: Agents,
Semantics, and Engineering (SOCASE’07), vol. 4504 LNCS. Springer,
2007.


