
An Industry Use Case: testing SOA systems with
MAS simulators

Pier-Giovanni Taranti and
Carlos José Pereira de Lucena

PUC-Rio, Rua M. de São Vicente 225
Rio de Janeiro/RJ, Brazil

pier.taranti@les.inf.puc-rio.br, lucena@inf.puc-rio.br

Ricardo Choren
SE/8 - IME, Pça General Tibúrcio, 80

Rio de Janeiro/RJ, Brazil
choren@ime.eb.br

Abstract—System Test in architectures composed of several
asynchronous subsystems is a hard task. The simulation of ex-
ternal systems is usually performed in a limited way, considering
only test cases provided, one by one. This paper presents a
simulator based on MAS, used to test critical operation software.
The simulator, with simple architecture and construction, has
supported interface and integration testing phases and also is
used to obtain performance metrics to validate non-functional
requirements.

I. INTRODUCTION

Service Oriented Architecture (SOA) is an integrated soft-
ware infrastructure and design approach to deliver business
functions as shared and reusable services. SOA offers more
flexibility and looser coupling being more suitable for internet
computing [1]. SOA is often used both in intra-enterprise-
integration (e.g. Message Oriented Messaging systems) and in
inter-enterprise-integration (e.g. Web services integration) [2].
Indeed, SOA separates functions into distinct units, or services,
which developers make accessible over a network in order that
users can combine and reuse to build different applications [3].
The system provides the user requirements by orchestrating an
activity between two or more services.

SOA systems are often asynchronous thus testing can be
very challenging. The continuously increasing size and distri-
bution of SOA systems make the testing task more complex
and increase the size of test code [4], [5]. Indeed, the dynamic
an adaptive nature of SOA makes most of the existing testing
techniques not directly applicable to test services and service-
orchestrated systems [6].

Testing of such systems therefore, often goes hand in
hand with setting up test systems performing some message
exchanges and to analyse the results [2]. Moreover, testers may
not have access to the source code of the services provided
by the other parties and they may have no control over the
executable code, which may run in any computer over the
internet. Thus SOA testing can be very time consuming and
inefficient, as manual intervention is needed.

Asynchronous supporting systems (simulators) that are able
to act both as a provider and as a consumer of SOA application
services can be used for testing purposes. Simulators can
provide valid and controlled data for running tests, acting as
external actors, to verify the expected behavior of orchestrated

systems. The use of simulators is regarded as an effective
way to verify and validate SOA applications before these are
deployed and executed [7].

To observe the internal behavior of a SOA application, a
simulator should send requests to application, receive answers
from it and verify if the answers are appropriate, according
to pre-defined test cases. Besides, in large SOA applications,
not all services may be implemented before testing activities
begin. Thus a simulator may also be used to fill in for
missing services. Multi-agent distributed simulators provide
the flexibility, modularity and scalability desired for simulating
complex systems [8]. A multi-agent distributed simulator is
a multi-agent system (MAS), i.e. a system composed of
interacting software agents [9]. A software agent is a software
component that is able to perceive its environment and act
according to its design goals [9], [10].

In this paper we present a MAS simulator to perform in-
tegration and performance testing in SOA applications before
they are deployed into production environment. MAS are capa-
ble of simulating systems with large number of heterogeneous
entities behaving differently in dynamic situations [9]. There-
fore MAS are more suitable for evaluating distributed systems
that involve complex interaction between entities, e.g. service
orchestration, human interaction with SOA applications. As
agents can simulate these interactions, it can be used to test
SOA applications since early stages of development, using less
resources.

This paper shows an application of the proposed simulator
in a maritime system testing. This system was developed by
the Brazilian Navy for ship monitoring in international trips in
order to improve safety and security at sea. This system was
developed using SOA because it should be integrated with
the Long Range Information and Tracking (LRIT) system,
which was created by the Fifth Amendment to the International
Convention for the Safety of Life at Sea (SOLAS).

The rest of the paper is organized as follows. In section 2 we
give an overview on testing SOA applications developed using
Web services. The LRIT system, focusing on testing issues, is
presented in section 3. In section 4 we present the proposed
simulator, discussing its use. Section 5 presents some related
word. Finally section 6 presents the concluding remarks and
points out possible future work directions.



II. TESTING SOA SYSTEMS

In a SOA system, services may be developed by different
teams, from different organizations, and the complete applica-
tion can be orchestrated later. Testing a SOA system presents
many issues, including [11]:

• lack of software artifacts (code and structure)
• dealing with incomplete systems (services bind at run

time)
• lack of control over components
• lack of trust in information provided by components
• cost of testing
An integration test technique aims at effective observations

of the interfaces between parts of software systems through the
development and use of executable test scripts. These scripts,
implemented using drivers, hard-code the variables and the
expected results for each case. This approach helps to detect a
considerable amount of faults, but it is not feasible to test all
the possible service interdependencies. Changes in a service
source code and interface may require changes in the test
script. This is not always a simple task since very often there
is no stable test environment. Besides, a service may have to
rely on other services to properly perform its functionality.
Thus adequate testing may have to be postponed to when all
service binding actually happens.

When working with SOA, it would be desirable for a test
driver to continuously and actively perform case tests, i.e. the
driver should be able to keep generating requests to the SOA
application. The driver should also be able to process large
volume of data to test non-functional requirements such as

availability and performance. To automate the execution of
these drivers, service consumers are usually instantiated and
executed in application servers. This can be extremely resource
and time consuming, and error-prone.

A possible alternative to testing SOA applications is the
use of a multi-agent-based simulation system. The pro-active
nature of agents can be used to verify the interactions between
entities. The agents can generate requests to the existing ser-
vices and check if their response are appropriate. An agent can
also simulate human interaction by generating user-interface
related data.

Another advantage of using the agent paradigm to test SOA
applications is that an agent can simulate a whole service.
For inter-interprise integration SOA applications, this is very
important. Agents can be used to ”‘replace”’ services that are
under development by other organizations, thus simulating the
behavior of the whole application, even without all services.
The MAS approach has other advantages: the simulator can be
evolved along the project in order to support all project phases;
agents can be used to perform non-functional requirements
testing, and; agents can be used to generate reports.

III. TESTING THE LRIT DATA CENTER

In 2006, the Maritime Safety Committee created the LRIT
system to allow the long-range identification and tracking
of ships. Tracking of any applicable ship begins with LRIT
information being transmitted from the shipborne equipment.
The LRIT information transmitted includes the ship’s position,
time and identification. The LRIT system consists of the
following components (fig. 1) [12]:

Fig. 1. The LRIT system architecture



Application Service Provider (ASP): the ASP receives the
LRIT information from the ship, adds additional information
to the LRIT message and passes along the expanded message
to its associated Data Center. It provides the functionality re-
quired for the programming and communicating of commands
to the shipborne equipment.

Data Center (DC): the DC should store all incoming LRIT
information from ships instructed by their administrations to
transmit LRIT information to that DC. DCs disseminate LRIT
information to LRIT data users according to the LRIT Data
Distribution Plan (DDP). The DCs process all LRIT messages
to and from the International Data Exchange. A DC can
provide services to one or more contracting governments.

Data Distribution Plan Server (DDP Server): the DDP
contains the information required by the DCs for determining
how LRIT information is distributed to the various contracting
governments. The DDP contains information such as standing
orders from contracting governments and geographical poly-
gons relating to contracting governments’ coastal waters.

International Data Exchange (IDE): the IDE routes the
message to the appropriate DC based upon the address in the
message and the URL/URI in the DDP server. The IDE neither
processes nor stores the information contained within LRIT
messages.

The Brazilian DC is under development by the Brazilian
Navy as a SOA application. To enable the adequate testing
of the Brazilian DC services, MAS simulators were used. It
is important to mention that the Brazilian DC services were
developed independently (and without any coordination) from
other LRIT components. Initially, interface simulators were
built. They were passive and were used to simulate requests
whose results were evaluated manually.

After the first few months of development, a large amount
of data needed to be handled at runtime to allow business
rules’ testing. Business rules’ testing involved querying ships
that were sailing in real time, changing the frequency of
information for individual ships and requests for archived data
and all these actions, when performed, needs to consider the
data distribution plan for the time when the information was
generated. These tests required more advanced functionalities.
More specifically, the simulator needed to simulate ships with
sailing behavior in given maritime areas and to respond to
requests from the Brazilian DC (tested SOA application),
following the LRIT rules. Some of these ships needed to
have erroneous behavior to verify the data validation of the
application.

Thus, the simulator should have an active behavior to
simulate the ships that were interacting with the application
(e.g. DCs). These ships could change their behavior at runtime,
following the communication protocol used by real ships.

IV. THE AGENT-ORIENTED TESTING SIMULATOR

The software agent abstraction is appropriate to handle the
problems above agents can represent mobile objects in a geo-
referenced system. The ShipSim simulator was developed us-
ing the maritime domain knowledge acquired when developing

the Dominium [13]. The ShipSim design uses agents to carry
all the active behavior expected for an ASP and ships in the
system. DC and SimShip interact exchanging SOAP messages,
as described bellow:

SimShip receives SOAP messages from the DC through the
ASPSim, which is a passive component that persists incoming
SOAP messages in a table of the georeferenced database, used
as a blackboard. An AspGateway agent was created to collect
the requests sent to ASP from DC. This agent checks the data
in blackboard, translates it to ACL [14], and sends it to the
agent that simulates the requested ship in the MAS.

Each shipAgent performs the control of compliance with
the LRIT communications protocol, responding as expected
(or not, if required by a case test). The agent that is simulating
a ship starts executing the expected behavior upon receiving a
request. The main requests for a ship in the LRIT system are:
poll position; change of frequency rate for sending position,
and; requests to stop or restart the transmission of positions.
Agents simulating ships can be updated to consider the ship’s
course and speed (fig. 2).

Fig. 2. Ship simulation in the ShipSim

These agents are also capable to control the start/stop and
frequency to sending messages for all requestors countries
(requests arrives through DC). To send a message to the DC,
shipAgents connect directly a DC Web service. This archi-
tecture was designed to avoid an ACL to SOAP translation
bottleneck. To test if this bottleneck was really overcome,
it was necessary to perform tests like maximum number
of responded requests per second and number of requests
persisted per minute. After the test, the set of reports was used
to estimate the maximum merchant fleet that can be supported
by the Brazilian DC in the LRIT System. Some designed
features for the ShipSim were not implemented at first, like
reports and spreadsheets to be used in analyses. However, all
features were developed and tested in later iterations.

The architecture used to run the tests is presented in fig. 3.
The MAS simulator is the ShipSim, DC is the tested SOA
application and the other components are passive interface



Fig. 3. The testing environment

simulators, implemented using EJB3, running in an application
server. These passive simulators basically perform the XML
schema validation and allow the exchange of messages using
SOAP to the DC (the message is edited in an external appli-
cation). Since October 2008, IMO had established a complete
testing environment, with DCs, IDE and DDP server, however
it is not possible test a DC without data from ships, so the
ShipSim is still used to support test activities.

A. Desing and Implementation Details

The methodology presented in Nikraz et al. [15] was used
for the testing simulator analyses and design. In this approach
agent responsibilities and acquaintances are identified and later
mapped to behaviors and communications. ASP and ship ser-
vices were mapped as responsibilities and acquaintances in the
early modeling, and after agent refinement only two types of
agent were maintained: the ShipAgent and the ASPAgentGW.

The ASPAgentGW is a transducer agent, who monitors
and performs queries on a SQL database, and translate the
information to ShipAgent in ACL messages. The ShipAgent
aggregate all other test functions: each agent instance simulate
an individual ship and is responsible for maintaining a list of
all received requests (one for each country) and for answering
these requests in correct frequency, informing the current
position. The position is calculated using the course and speed
of the simulated ship, and those are altered when needed to
avoid the exit of a limited area. When sending information,
some data is collected, like successful delivery or fail, time to
delivery and the sent information.

The testing simulator and the Brazilian DC SOA applica-
tion were implemented using open source software. Besides,
all LRIT standards are open. The simulator was originally
developed over the SUSE enterprise version 10.2 operational
system, and it is now migrating to version 11.1. The hardware
used as runtime environment for the simulator was similar to
the LRIT system production environment used by DC: HP
servers with two processors quad core and 8 GB of RAM
memory.

The ShipSim implementation was done using Java 6, JADE
framework [16] , Eclipse platform, Java Topology Suite
Library (JTS) [17], GIS database (PostgreSQL + PostGIS
[18]). The Web services connection was created with the JEE
eclipse plug-in, which uses Axis, and supports the SOAP 1.2
protocol. The simulator was modified along the testing to use
cryptography with mutual certification over SSL.

The Brazilian DC SOA application was developed with
a three layer architecture: the interface layer (for humans
and external systems), based in Apache web servers; the
application layer, using JEE2 technologies, deployed in a
cluster of application servers, and; the persistence layer, using
the Hibernate framework. To allow the test execution, the
following variables were parameterized:

• square area where agents are created (defined by longi-
tude and latitude limits);

• number of agents (i.e. ships) in simulation;
• time interval between two agents creation (milliseconds);
• interval for each agent sending messages;
• identifiers for agents (i.e an unique identifier);
• logical port to be used for each build of the simulator (this

variable allows the initialization of several simulators
simultaneously in the same machine);

• IP address for the tested DC (the project has more than
one test environment);

• switch to off/on the cryptography (TSL 1.1 protocol with
mutual authentication).

For simpler tests, simulations were executed directly from
the Eclipse platform. Whenever it was necessary to place ships
in different areas from around the world, a new instance of the
simulator (with the specific set of ships) was instantiated. The
DC non-functional requirements included information about
performance.

The simulator was deployed in different servers, with quad
core processors an 8GB of RAM memory. At this environment
the simulation was executed with 20.000 agents simultane-
ously. The simulation RAM consume rate at this situation was
5.6GB. It is important to mention that the initial development
effort for the ShipSim required 40 hours of a medium skilled
developer, but with experience using JADE and theoretical
knowledge about GIS and MAS. This developer has expertise
in the LRIT system business rules and maritime environment.

The ShipSim had been modified many times during the
LRIT system testing phase. These modifications included sim-
ple tasks, mainly because of the JADE architecture. Currently,
the ShipSim is used by the Brazilian DC test group, who is
responsible for its maintenance. The current ShipSim have
four packages: agents; behaviors, objects and support. The
simulation is started by the SimulationStarter class, responsible
for to charge the jade container and all agents.

B. Sample Testing

This section exemplifies the use of the ShipSim, to show the
provided test coverage. At late stages in the development of
the LRIT system, seven DCs were incorporated to the system
prototype. To allow the Brazilian DC test with them, five



simulators were instantiated to create virtual ships in the South
Korea, USA, Canada, Bahamas and Liberia areas (following
the polygons published in DDP server).

These simulators generated positions to mobile ships and
sent them to the Brazilian DC to verify if the DC could
handle a number of messages bigger than the specified in its
requirements. All messages were forwarded to the proper DC,
and these could make any requests to the ships, because they
were active, i.e. they were simulating all behaviors expected
for a real ship in the system. Therefore, almost all case tests
provided in the IMO Testing Protocol were performed using
the ShipSim support.

Some important metrics were obtained from the ShipSim,
such as the maximum number of requests the system is capable
to receive and persist in a queue per second; the maximum
number of requests processed per second; the time the system
was unavailable (denial of service), and; the maximum number
of ships that the DC can safely support. It is important to stress
that all these metrics can be obtained using testing frameworks,
but the confidence level is different: using the simulators these
metrics can be obtained in a condition near to observed by the
real integrated SOA architecture. Figure 4 presents an example
of testing simulation with 8000 ships flowing information in
the LRIT System.

Fig. 4. 8000 ships simulation

V. RELATED WORKS

Canfora and Di Penta [11] present a survey on SOA testing.
This work stressed the importance of this activity and it points
out some key problems for test execution in SOA applications,
especially when a service relies on other services to perform
its functionality (late binding between components). None of
the works cited in [11] presents a solution for testing a service
with well-known interface (WSDL file) had interdependencies
with other external (developed by other service providers)
services. The proposed simulator approach deals with testing
of incomplete systems, using MAS simulation to compose the
overall system and then providing a reliable environment for
system testing.

Frantzen et al. [19] present a Web services testing technique,
using a Model-based testing approach. In this approach, Web
services are tested as black-box components. This work points
out the need for WSDL descriptions improvement since a

WSDL file only describe the service interface, just like a
method signature in Java. The work presents the Symbolic
Transition System (STS - a state machine variant) for describ-
ing not only the interfaces, but also the executing sequence
of a service in order to aid the testing activity. However, the
technique focus on Web service testing, i.e. unit testing. It
does not consider the specifics of service composition such
as late binding, asynchronous communication, unexpected
service usage and overall non-functional requirements testing.
The proposed simulator approach deals with these issues. The
internal logics of the testing stubs are implemented in the
agents that can pro-actively interact with the SOA application,
thus it does not require a more rigid state machine representa-
tion. Testing specifics such as asynchronous communication
and unexpected service usage are treated by the simulator
agents.

The work presented in [20] shows a discussion about the
role of testing and monitoring SOA applications. Testing
is considered a preventive activity, to be performed before
application delivery (or before using the services). The work
states that testing should go beyond monitoring - checking
the correctness of the regular service usage - which will be
done after the service has been executed. The monitoring could
verify Service Level Agreements (SLA) or a specified Quality
of Service (QoS). The work considers the need of using both
testing and runtime monitoring to improve the confidence in
developed SOA applications.

The proposed approach uses software agents to allow SOA
application testing and monitoring. Agents can be used to test:
a single service; the orchestration of services (i.e. perform
integration testing) even when not all services are developed
(i.e. an agent acting as a service stub, which is particularly
important in inter-enterprise integration applications), and;
other qualities (non-functional requirements). In the Brazilian
DC system, for instance, the simulators were used to perform
quality testing, such as the maximum number of connections,
Server Application setting, memory management and code
optimizations. This information is usually monitored during
system execution, but the agents can verify them during
the application development. In this sense, the confidence
that the SOA application delivers its functionalities does not
rely on post-deployment monitoring, but rather on application
verification.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented an approach for SOA application
testing using software agents. The work shows the results
of a research on SOA testing that is ongoing for an year.
The presented approach intends to allow testing during SOA
application development through the use of MAS simulators.
The approach deals with some SOA testing issues such as:
lack of access to the source code of the parts to be integrated;
lack of means of observation on system behavior (mainly due
to system incompleteness); lack of control over the services
implementation, and; the increasing difficulty and cost of SOA
testing.



This paper also presented an experiment that describes a
real project. The LRIT system is a distributed system and its
components are being developed by different teams. The agent
simulators were used to test the overall functionalities and
qualities of the Brazilian DC (a LRIT sub-system, developed
using the Web service technology by the Brazilian Navy).

The next steps in our work include the specification of a
methodology to support agent-based simulator development
for SOA application testing. We are seeking to develop a
framework to aid the instantiation of simulators. Addition-
ally, we are researching how agent capabilities, such as pro-
activeness, can help continuous integration activities.

REFERENCES

[1] C. Lau and A. Ryman, “Developing xml web services with websphere
studio application developer,” IBM Systems Journal, vol. 41, no. 2, pp.
178–197, 2002.

[2] S. Dustdar and S. Haslinger, “Testing of service oriented architectures:
A practical approach,” in Proceedings of 5th Annual International Con-
ference on Object-Oriented and Internet-Based Technologies, Concepts,
and Applications for a Networked World (LNCS 3263), 2004.

[3] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[4] J. Tian, Software quality engineering: testing, quality assurance, and
quantifiable improvement. Wiley, 2005.

[5] J. Z. Gao, H.-S. J. Tsao, and Y. Wu, Testing and quality assurance for
component-based software. Artech House, 2003.

[6] G. Canfora and M. Di Penta, “Testing services and service-centric
systems: Challenges and opportunities,” IT Professional, vol. 8, pp. 10–
17, 2006.

[7] W. T. Tsai, Z. Cao, X. Wei, P. Ray, Q. Huang, and X. Sun, “Modeling
and simulation in service-oriented software development,” Simulation,
vol. 83, no. 1, pp. 7–32, 2007.

[8] S. Karnouskos and M. M. J. Tariq, “An agent-based simulation of soa-
ready devices,” in Computer Modeling and Simulation, 2008. UKSIM
2008. Tenth International Conference on. Cambridge, UK: IEEE, 2008,
pp. 330–335.

[9] M. J. Wooldridge, An Introduction to MultiAgent Systems. John Wiley
& Sons, Inc., 2002.

[10] M. Wooldridge and N. Jennings, “Intelligent Agents: Theory and Prac-
tice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152,
1995.

[11] G. Canfora and M. Di Penta, “Service-oriented architectures testing: A
survey,” in International Summer Schools, ISSSE 2006-2008, Revised
Tutorial Lectures (LNCS 5413), ser. Software Engineering. Springer
Berlin / Heidelberg, 2009, pp. 78–105.

[12] IMO, “Long range identification and tracking system: Technical docu-
mentation (part i),” International Maritime Organization (IMO), Decem-
ber 2008.

[13] P. Taranti and R. Choren, “Dominium: an approach to regulate agent
societies in dynamic environments,” in Proceedings of the First Inter-
national Workshop on Agent supported Cooperative Work (ACW) at
ICDIM’07, vol. 2. IEEE, 2007, pp. 811–816.

[14] FIPA, “Foundation for intelligent physical agents,” http://www.fipa.org/,
2009.

[15] M. Nikraz, G. Caire, and P. A. Bahria, “A methodology for the analysis
and design of multi-agent systems using jade,” International Journal of
Computer Systems Science and Engineering, vol. 21, no. 2, 2006.

[16] JADE, “Java agent development framework,” http://jade.tilab.com, 2009.
[17] JTS, “Topology suite,” http://www.vividsolutions.com/jts/jtshome.htm,

2009.
[18] PostGIS, http://postgis.refractions.net/, 2009.
[19] L. Frantzen, J. Tretmans, and R. de Vries, “Towards model-based testing

ofweb services,” in Proceedings of the International Workshop on Web
Services - Modeling and Testing (WS-MaTe 2006), 2006.

[20] G. Canfora and M. Di Penta, “Soa: Testing and self-cheking,” in
Proceedings of the International Workshop on Web Services ? Modeling
and Testing (WS-MaTe 2006), 2006.


