
Multiagent Simulation Model Design Strategies
Franziska Klügl

School of Science and Technology
Örebro University, Örebro, Sweden

Email: franziska.klugl@oru.se

Abstract—Model design is particularly challenging for multi-
agent simulation models as the simulation paradigm does hardly
impose constraints on it. This contribution systematically ana-
lyzes procedures for developing a multi-agent simulation model:
iterative methods derived from principles, such as KISS or KIDS
and methods focussing on the different design elements (agents,
interaction, environment).

I. INTRODUCTION

Methodological questions are more and more in the focus
of research on agent-based simulation. This contribution deals
with the phase in modeling that requires most experience and
creativity from the modeler: model concept and design.

The development of a multi-agent simulation model seems
to be an inherently intuitive way of modeling: Entities observ-
able as active in the real system are captured as active entities
– as agents – in the model. There seems to be no need for
complex aggregation or abstraction necessary for formulating
the model, nor a languages that requires deep mathematical
skills must be used. Features of the model such as variable
structure, heterogeneities, mixed local and global effects, ...,
can just be formulated or generated from more or less simple
agent behavior and interaction – just as observable in the
original system or stated in the original ideas. Due to this
intuitiveness and its general potential, it is often forgotten,
that the development of a multi-agent simulation model leads
to particular problems beyond general simulation engineering:

• Determining the appropriate level of detail is everything
else but trivial. Actually, it is the basic design problem
to determine what behavior shall be included or which
factors ignored.

• Thinking in terms of agents can also be a problem when
the modeler is used to other paradigms, such as process-
oriented or macro modeling. Then an interaction-oriented
model for generating the aggregate behavior instead of
describing it, may be difficult to design.

• The general intuitiveness of the modeling leads to a
tendency of ad-hoc development. This is supported by
visual programming tools such as SeSAm [1]. Modelers
immediately start implementing instead of thinking about
an appropriate design beforehand.

• Necessary effort for understanding and analyzing the
model and its overall behavior is underestimated. As in a
multi-agent simulation the overall behavior is generated
from the interactions and local behavior of agents, special
effort has to be invested for excluding artifacts originating

from minor bugs at the micro-level – in the agents design
as well as implementation.

• A last issue is the difficult control of the included
assumptions – due to the size of the model and the effort
of developing, a systematic control of the assumptions
taken while modeling has to be done. After modeling all
assumptions can hardly be recapitulated and tested when
they are not explicitly collected while modeling.

These are issues mostly in design of a multi-agent model.
Clearly there are others, when considering all phases of
the simulation study. Examples for additional problems are
the need for validation when relevant data is missing, the
difficulties of implementing concurrent processes or technical
problems due to the size of the model and simulation. Never-
theless the design phase of a modeling and simulation study
is the one the requires the most experience. This is the phase
that is often coined as “art” [2].

In this contribution, we are focussing on the issues in model
design and give a systematic view on different procedures. In
the following we will first set the context of our endeavor by
tackling process models for (multi-agent) simulation, as well
as input from agent-oriented software design. Then we will
give procedures for designing a model – one-shot in section
III and iterative in section IV. The contribution ends with a
discussion of the procedures and a short conclusion.

II. METHODOLOGIES AND PROCESSES FOR DEVELOPING
MULTI-AGENT SIMULATION MODELS

A. Simulation Study Life Cycle

Phases of a systematic development of agent-based simula-
tion models have been suggested by several researchers [3],
[4], [5]. While focussing on integration of data or different
roles of participants in the study, their suggestions for pro-
cedures are naturally quite similar to guidelines for general
simulation study development developed by [6], [7] or [2].
The basic phases are initial works such as fixing the objec-
tive, making a profound analysis of the system or gathering
necessary data and information. This is followed by making
a model concept and elaborating it - this is basically model
design. Model implementation and calibration are additional
phases that are accompanied by analysis and validation phases.
When the model is ready, the simulation study is completed by
deployment runs and documentation and interpretation of the
results. Clearly, bugs and deficiencies discovered in one phase
may require re-working in previous phases. Figure 1 depicts



Fig. 1. Phases of an agent-based simulation study. Model design may also be iterative.

these basic phases for agent-based simulation development.
The model design phase is highlighted.

It is quite unrealistic to assume that model design can be fin-
ished within one cycle. An iterative procedure for developing
the model is appropriate not only for finding the right level of
detail – starting with a initial model that is developed further
until it is run-able and its dynamics analyzable. Based on the
insight from this analysis, the model is further improved. Such
an overall iterative proceeding is indicated in Figure 1.

This process is very abstract and does not use abstractions
and techniques that are particular for agent-based simulation.
This would be necessary for a more specific simulation life
cycle. In contrast to agent-based software, there is no fully
elaborated meta model describing necessary elements of an
agent-based simulation in general (or even for a particular
domain) in sufficiently concrete detail. Thus, a methodology
comparable to the ones suggested for agent-based software
engineering cannot be given yet. First attempts for a formal
meta model for multi-agent simulation models have been
made, such as in [8], but they are not on a level that makes
them usable as a basis for the development of more specific
life cycle models.

Before we will tackle model design and possible iterative
improvement strategies, we will first have a short look on
agent-oriented software engineering where the design of an
agent system is central part of every methodology.

B. Agent-based Software Engineering

For the development of agent-based software, many method-
ologies have been suggested. Clearly, they are based on general
software development phases such as requirements engineer-
ing/analysis, specification/design, etc. These methodologies
rely on appropriate abstractions for representing and analyzing
the agent-based software system. Development then happens
by elaboration of these representations. Many methodologies
have been proposed for guiding the development of agent-
based software based on roles or organizational structures or
focussing on specific agent concepts and architectures, such
as BDI. Good collections can be found for example in [9]or
[10]. Comparisons based on benchmarks [11] or features [12]
aim at supporting the selection of the appropriate methodology
for a particular problem. We would just like to mention
[13] showing how modeling and simulation can be used for
the design of self-organizing agent software. The suggested

procedure has some similarities with the work described in
this paper; yet here the focus lies in simulation applications
with their specific characteristics. Our goal is to deal with a
guideline how to modify the different elements of a model to
finally build a valid simulation model.

Although there are profound differences between agent-
based software and agent-based simulation – such as the
correspondence to an original system ensured by validation
or the inclusion of a simulated environment in addition to the
simulation environment – the abstractions used for designing
the software system may also be useful for designing a
simulation model. This is especially the case when real-world
organizational structures are used or folk psychology-based
agent architectures are appropriate in the simulation model.
In the following we want to tackle strategies for simulation
model design from a simpler point of view:

III. AGENT-BASED SIMULATION MODEL DESIGN

In the following we will introduce and discuss three design
strategies. They are derived systematically from an idea about
elements of multi-agent simulation models: It consists of
three basic components: agents model, environment model and
model of the interactions. Each of them is used as a starting
point or driving force for a design strategy; thus their usage
can be seen as exclusive. However, it might be advisable to use
different approaches one after the other in an iterative setting.

A. Agent-driven Model Design

“Agent-driven model design” is the first strategy. It corre-
sponds to bottom-up design. The focus lies completely on the
agents, their decision making and their behavior. Environmen-
tal and interaction models are added when needed in the agent
design.

1) Basic Strategy: The following procedure can be defined:
1) Agent observation and coarse behavior description: The

modeler observes the real-world agents and derives a
coarse behavior description from its observations. Ob-
servations may be replaced by literature work or opera-
tionalization of hypothesis about agent behavior/decision
making.

2) Categorize agents and determine the location of hetero-
geneity: The coarse behavior descriptions are analyzed
for determining how many classes or types of agents
are necessary for the model and to what level the agents



should be different. The location of heterogeneity may
be on the level of parameter settings, different activities
or even completely different classes.

3) Decide about agent architecture: Based on the coarse
behavior description that treated the agents superficially,
the modeler has to decide about the architecture of the
agent. He may select a behavior-describing approach,
for example perception-action rules with or without
internal state representation or an architecture that is
explicitly grounded on goals and on the configuration
and selection of plans or even using plan generation from
first principles or an elaborated cognitive model. This
selection is depending on the complexity and flexibility
of necessary agent behavior.

4) Formalize agent behavior/goals: The next step consists
of filling in the actual behavior into the agent architec-
ture. This is done by analyzing, elaborating and refining
the coarse behavior description developed in the first
steps.

5) Add interactions and environmental aspects when
needed: Particular elements of the environmental model
or structures of interaction are added when the agent be-
havior needs to include particular perceptions, messages
or contains manipulations of environmental entities. As
these aspects are added in some ad hoc manner, some
re-factoring may be necessary, such as merging different
environmental entity classes. Also some considerations
about necessary heterogeneity are essential.

6) Test whether necessary macro-phenomena are suffi-
ciently reproduced: At any time, model validity has to
be tested when it is testable. We assume that the focus
on the agents will lead to agent behavior near validity.
But, a major effort will be testing wether the interplay
of agents and their environment results in a valid macro-
level behavior.

This procedure is a pure agent-driven bottom-up method
for developing a multi-agent simulation. Aspects that relate
agents to others or the environment are only important in so
far they are influencing the agent behavior. Before we continue
to discuss this procedure, we give a short example how the
application of this method may look like.

2) Example: We used an existing simulation model[14] of
bee recruitment: The basic objective was to find support for
the hypotheses that the environmental structure influences the
success of a recruitment mechanism in social insects.

Using an agent-driven approach, this model is build from
the point of view of a honey bee. Individual bees are to be
observed and literature has to be scanned for description of
behavior and parameter values. In the second step, different
categories of bees are identified: scouts, foragers or bees
waiting/working in the hive. In this particular case these
categories correspond more to activities than to different agent
types as agents may instantaneously switch between activities.
Therefore one may decide for a homogenous agent population
with differences in the currently executed activity.

The following tasks of an agent bee are to be considered:

Fig. 2. Specification of example bee-agent behavior using activity graphs
(adapted from [14]).

scouting, foraging, returning to the nest, unloading, wagggle
dance (recruiting) and waiting. A simple behavior-descriptive
architecture is appropriate. Due to the identified activities, an
approach based on activity graphs representing the relations
between activities is useful.

The next step is the formulation, i.e. specification and
implementation of agent behavior. In figure 2 we depict the
behavior of an agent.

Figure 2 does not indicate, when an interaction with the
environment or other agents has to take place. When elabo-
rating this graph, the modeler concurrently determines that
there is a 2dimensional map for scouting and discovering
resources. There must be resources that provide a nectar of
certain quality. When returning to the hive, there must be some
place to unload and some place to dance for recruitment of
others. The storage area and the dance ground are only dealt
with on a very abstract level. They may only be attributes of
an object of the type “hive”. For switching activities between
waiting and foraging, the actual recruitment has to be modeled.
Information is displayed by the dancer and perceived by
conceptive other ants that based on the received information
decide to scout or not.

This specification has to be implemented and tested as
described above. As aggregate measures, the nectar input may
be available for macro-level validation as well as counts how
many bees are dancing, how many fly out, etc.

3) Discussion: The result of this process is a model that
is fairly process-oriented on the agent level. For the example,
the agent-driven design seems to work quite well. This might
be due to the fact that interaction happens only indirectly via
the environment or by displaying or broadcasting information.
In the example, there is no direct message-based interaction.
In principle the procedure should also work with direct peer-
to-peer interactions. However, the strategy does not contain
any perspective on the system-level containing for example
protocol specifications. Such a bottom-up technique where
the modeler takes over the perspective of an agent can be
appropriately tested using participatory simulations where one
agent is controlled by a human, the others are simulated.

A critical issue occurs when the overall validity is not
reached. Then, this pure bottom-up technique will lead to trial
and error procedures as during the development of the model



no connection between macro- and micro level is established.
Additionally this procedure does not help in finding the
appropriate level of detail. Therefore it needs to be combined
with an iterative procedure.

B. Interaction-driven Model Design

There are simulation domains where a focus on interac-
tions is more appropriate than a purely agent-driven design.
Examples may be models that focus on the performance of
organizational design. In the following we want to introduce
interaction-driven design.

1) Basic Process: One can formulate the following basic
process for interaction-driven model design:

1) Identify actors/entities and interactions among them:
Instead of observing individual real-world agents, the
modeler is taking the birds’ perspective and analyzes
who is interacting and how.

2) Coarse description of protocols and their conditions,
constraints, etc. The identified actors and interactions
are refined to protocols going from general notions
of interaction to atomic exchanges of information and
manipulations of the environment.

3) Derive agent behavior for producing the interaction
elements (messages, signals, actions...) and add envi-
ronmental entities, such as shelter objects, to the model
when needed for interaction. In this step something like
a finite state machine based language can be used to
specify agent interactions as state transitions.

4) Implement agent behavior and test whether the intended
interactions and their outcome on the macro level are
actually produced by the overall system. It must be also
tested whether the agent level behavior is plausible or
valid – depending on the available data.

In the interaction-driven approach, agents are basically seen
as black boxes for producing the appropriate messages, infor-
mation, etc. The general procedure may be further developed
into some form organization-driven model design inspired by
similar methods and methodologies from agent-oriented soft-
ware engineering. Then, analysis of organizational structures
forms the starting point for all system analysis as it forms the
structural backbone of interactions.

2) Example: We use the same example as above for il-
lustrating the approach and its differences to the agent-driven
procedure.

As given above, we start by identifying the actors and
their interactions. Again we have to tackle the problem of
the location of necessary heterogeneity. Are the actors to be
found on the level of scouts or foragers or as bees on a
more homogeneous level? In our particular case we took bees
as agents. Table I shows the basic interaction between the
different types of entities.

The next step is the elaboration of the protocols. We suggest
to use UML-based interaction diagrams for the initial descrip-
tion. In figure 3 we show the description of the recruitment
protocol together with an (still) informal text about its context
of appearance.

Fig. 3. First specification of recruitment protocol together with context
description. .

Formulating this interaction is not trivial as it is more like
a broadcast (or stigmergic interaction). The message is send –
respectively the information is displayed in the dance – to all
agents that want to listen or observe it.

The next step would be to derive agent-behavior from the
interaction diagrams. We suggested to transfer the interaction
diagram into some finite state machine like representation. If
we do that for every interaction the agents are participating
in, a collection of finite state machines is generated. These
single simple graphs have to be combined into a complete
behavior description. This is done by first identifying similar
states as interfaces which’s unification merges the single state
machines into some larger one. This larger one is probably too
large as every interaction aspect is modeled explicitly. It might
be possible to simplify some parts. Therefore, a refactoring
might be necessary for bringing the overall state graph into
some well-structured and minimal form.

Figure 4 shows the straight forward combination of a
number of single-interaction state charts. For connecting we
identified two times similar nodes – end nodes of one interac-
tions, starting nodes of the other. In the graph such nodes are
depicted as black nodes with second ring.

During the development of this behavior graph, we had to
add state machines for interaction partners that are not given
in figure 4. These interaction partners are the bee hive sending
information that is used for the evaluation of the value of the
load when the bee-agent is returning to the hive. Additionally,
we omitted the interaction with the overall environment where
the agent is requesting and receiving perception information
and with resources with that it interacts while harvesting the
nectar of this resource.

As a next step, it has to be determined what happens within
the different states. This is straight forward, often consisting
of waiting for incoming messages.

3) Discussion: Despite of the birds’ eye perspective, this
procedure did not result in an abstract and minimal behavior
description. Nevertheless, the interaction and dependency of



Interactions Bees Resources Nectar Storage
Bees Recruitment Harvest Unloading
Resources Localization - -
Nectar Storage Status Information - -

TABLE I
INTERACTION TABLE FOR BEES AS AGENTS.

Fig. 4. Putting together single interaction state machines into a complete
agent-level graph that describes all interactions of an agent. The black nodes
were the initial start and end nodes of the two graphs. They are basically the
interfaces between the two state machines .

behavior on information and material provided by others
is treated explicitly, much more than in the agent-driven
approach. This is actually an advantage of this procedure.

However, one can foresee problems when actual pro-active
behavior has to be formulated. That means behavioral dy-
namics that are not triggered by external messages. Another
drawback is, that also resources and other entities that are
basically are no agents, have to be treated as agents as every
interaction is formulated based on protocols. Although these
are then just “passive” agents, they have to be practically
tackled as agents for specifying the interactions.

Due to its focus on direct interaction, other forms of inter-
action may be hard to model, such as stigmergic interaction
in form of broadcasted messages that are persistent in the
environment decoupling sender and receiver. However, for
simulated multi-agent systems with interaction that relies on
message-based communication this design strategy seems to
be appropriate.

C. Environment-driven Model Design

The third strategy we want to analyze is driven by a focus
on the environment.

1) Basic Process: In analogy to the previously discussed
design strategies, the starting point of the environment-driven
design is an analysis of the environmental structure. Based
on this, the agent interface and its behavior definition are
determined. The steps are in particular:

1) Identify relevant aspects (global status, global dynamics/
local entities) of the part of the model that represents the
environment.

2) Determine the primitive actions of the agent and the
reaction of the environmental entities to these.

3) Determine what information from the environment must
be given to an agent so that it can appropriately select
and perform its actions.

4) Decide on an agent architecture that is apt to connect
perceptions and actions of the agent appropriately for
actually producing the agents behavior. Concurrently, the
elements of the internal agent status are settled.

5) Use a learning mechanism for determining the actual
agent behavior. A reward function for providing feed-
back to the agents actions has to be found. The reward
schema also tackles questions such as when and how
often to provide feedback to the agents, whether all
agents learn based on a shared reward or individual
reward is given to the agents.

6) Implement the environmental model including reward
function if needed.

7) Specify and implement the agents behavior program or
agent interfaces in combination with the chosen learning
mechanism.

8) Test and analyze the overall simulation results and
individual trajectories carefully for preventing artifacts
that come from an improper environmental model or
weak interfaces (perceivable situations and effects of
primitive actions).

2) Example: For an illustration of this model design strat-
egy we again use the recruitment scenario although the envi-
ronmental complexity is not high enough to actually require
such a procedure.

The start is made by formulating the environmental model.
In this simple case the environment consists of a global world
entity managing a 2-dimensional map, a central hive entity
that is basically a container for the storage and a number of
resource entities randomly distributed over the map, each with
an individual nectar supply.

The initial environmental configuration in this case is the
following: the hive is positioned in the center of the map.
Each resource is located at a random position. Every resource
object has an attribute called “nectar supply” that is initially
set according to a normal distribution.

The next step is to design the perception capabilities and
possible primitive actions – the interfaces of the bee agents.
Without particular regard on what is actually needed in the
behavior definitions, we can list the following perceptions:



• perceive nearby resource, its position respectively (if nearby)
• perceive existence of resource (from a certain distance)
• perceive capacity of resource (if nearby)
• perceive hive storage (if nearby)
• perceive position display (if at hive)
• perceive current nectar load

... and actions:
• Perform random search
• Fly towards perceived resource
• Fly towards hive
• Load nectar
• Unload nectar
• Display resource information
• Memorize perceived position

One can notice that with defining this interface, the modeler
also determines the abstraction level of the behavior definition
– the environmental model alone did not fully determine the
level of abstraction.

The next step is to connect perceptions and action to
produce actual agent behavior. In our case this could be done
using a rule-based approach with rules defined by the modeler.
The simple interface that already indicates that a rule-based
approach – including some stochasticity in agents decisions for
some very abstract treatment of internal motivation – might be
sufficient.

We may suggest the following rules determining the agent
behavior:

1) if hive-storage < A then perform random search (with probability
pA)

2) if not at hive and not perception of resource then perform random
search

3) if perception of resource then fly towards perceived resource
4) if at resource then memorize resource information
5) if at resource then load nectar with rate load
6) if nectar load > B then fly towards hive
7) if at hive and nectar load > B then unload nectar with rate unload
8) if at hive and resource information memorized then display re-

source information
9) if not at hive and not perception of resource then fly to hive

(with probability pcancel

This set of rules is quite small, but sufficient. There are
some probabilities and thresholds to be set ideally based on
available data.

While not necessary in the example, using a learning
mechanism might be an appropriate solution for generating
the behavior program based on the perceivable situations and
primitive actions of the agents. A learning approach, e.g. based
on classifier systems seems to be feasible at least in this
application example.

The major question in this application example is when
to give feedback as an information to the agent about its
performance: Giving feedback after each step does not make
sense: the random search without information is intentional.
The agents shall not learn where the resources are positioned.
Ideally, positive feedback shall be only given when the agent
has accomplished to recruit other bees to a good resource
or even more delayed, the reward to all agents could be
proportional to the current influx to the overall hive storage.

3) Discussion: Again one can find potential problems con-
sidering the agents internal motivations for generating true
pro-active behavior without external triggers. Such elements of

complex agent-based simulation models are not well integrated
into this design procedure.

Involving learning mechanisms forms a basis for research
questions with evolutionary background. However, integrating
agent learning into the model design makes the model suscep-
tible for artifacts coming from incomplete, imprecise or not
fully elaborated reward or fitness functions. Agents that adapt
to an environmental model with flaws can never reliably re-
produce an original system independent how good the learning
mechanism or the rest of the model is. Nevertheless, it is not
trivial to find appropriate feedback functions characterizing the
goal of the agents’ development.

Another risk of this environment-driven approach consists
in the selection of the learning mechanism. It could easily
happen that no appropriate learning mechanism exists that
can be used without further research. It is not so difficult to
reach the boundaries of what is possible using current state-of-
art learning: involving co-adaptation, true multi-agent learning
with more than a couple of agents, non-Markov settings, etc.
Then the learning problem may be too hard for finding a
mechanism that converges within a feasible time.

IV. STRATEGIES FOR ITERATIVE MODEL DEVELOPMENT

The strategies introduced above are for designing an agent-
based simulation model in one step. Especially for identifying
the appropriate level of detail iterative procedures may be
combined with these strategies.

A. KISS: “Keep It Simple, Stupid”

The well known KISS principle for simulation modeling
means that the modeler should avoid unnecessary complex
models, but keep the model as simple as possible for gen-
erating the appropriate behavior. Simple models contain less
sophisticated assumptions, can be easier explained and under-
stood. Simplicity also refers to the modeling and simulation
paradigm used formulating and simulating the model.

The starting point of this procedure is the identification and
description of phenomena of the original system that should
be contained, respectively reproduced by the final model.
Grimm and Railsback [15] call these basic modules of system
data characteristics “pattern”. Examples for such pattern are a
certain statistical distribution of tree sizes in a forest, another
pattern is then the spatial distribution of large trees.

1) Identify and describe the set of observable
properties (statements)
about the real system S.

2) Define a model M0 that is apparently too
simple for reproducing the system
with all its properties

3) By calibration, determine the set SM of
properties, that are reproduced
by M0.

4) M ←M0

5) Repeat Until SM = S

a) M ← modify model M for producing more
elements in S than in the last
iteration.

b) Calibrate M and determine SM as the set
of properties reproduced by M.



When this algorithm stops, the result should be the simplest
model that captures all phenomena identified at the beginning
of the process.

However, it remains open how to modify and enlarge the
model for producing the next model from the previous one.
Sometimes also side-steps might be necessary removing one
model component and adding an alternative one. Finally, it is
not trivial to see how to modify a model best for producing
any additional phenomena. In worst case, this might result in
a try-and-error procedure. Nevertheless the documentation of
every single model shall be elaborated that especially contains
a list of taken assumptions.

B. KIDS: “Keep it Descriptive, Stupid”

In 2004, B. Edmonds and S. Moss published a plea against
in their eyes over-simplified models in social science (see
[16]); Their major argument was: “The point is that it is
simply not appropriate to make simplifications before one
knows what is relevant and what not.” (italics in the original).
They therefore suggest to initially construct a model with agent
behavior that is understandable and directly deducible from the
observed behavior, but not necessary simple.

The iterative algorithm based on this KIDS-principle based
strategy can formulated as in the following.

1) Repeat until a valid model Ms is constructed

a) Define a model M that contains all
apparently relevant aspects of agent
behavior.

b) Identify all assumptions and make explicit
all parameter in Mi.

c) Execute a sensitivity analysis for all
parameter of M and eliminate all blocks
of behavior that are controlled by a
parameter without effect on
the overall outcome. Ms is the model M
after sensitivity analysis

d) Test Ms for credibility and validity

At first sight, this procedure basically resembles the usual
try-and-error strategy. It does not give any hint what to do if
the model is not sufficiently valid in terms of aspects that are
not reproduced; As it is less systematic than the KISS strategy,
the KIDS strategy is more apt for experienced modelers that
know with what model to begin and how to operate if the
outputs are not as intended.

C. TAPAS: “Take a previous model, add something”

A third strategy for model design is pragmatic and focusses
on reuse of models. In the agent-based simulation area, it has
been coined by [17] without further discussing the term. It is
related to the KIDS-based strategy but takes an existing model
as starting point.

Reuse of models becomes the more inevitable the more
expensive investments have been already made to produce
the model. As construction and testing of an agent-based
simulation is more expensive than for traditional analytical or
simpler microscopic models, reusing a fully validated model
should be especially interesting for agent-based simulations.

Put into a more pseudo-code way of presentation, the TAPAS
strategy might look like the following procedure.

1) Select an appropriate existing model M
2) if M is not implemented, implement it and

validate it using model alignment
with respect to published data about M.

3) Add new, additional aspects to produce Madd

4) Test and Validate Madd,
if sufficient, ready, else go back to 3 or - if
necessary to 1.

Step 3 and 4 are similar to the KIDS methodology. The
critical step is the selection (and existence) of the reusable
model. A sufficient documentation of the original model is
essential and can be seen as a major prerequisite for reuse
[18].

There are also some perils: it is not known a priori whether
the model with modification is minimal, valid, or possesses
the intended properties. The advantages of having a starting
point have to be traded off the effort that it means to adapt
the given model to the new ideas. This is very risky when the
model for reuse is not fully understood by people that want
to reuse it.

Given appropriate tool support, also partial models, that
means single agents, groups of agents or the complete en-
vironmental structure, may be used as a starting point for new
model development.

D. Candidate-based Modeling

In his book about biological modeling in general Haefner
[19] suggests a procedure for modeling and simulation in
research. Basically, it consists of the construction of a set of
alternative models. They might differ in parameter settings, but
may also use different architectures, etc. Each of the model
candidates is calibrated and evaluated by validation. The “best”
model is selected and used as a basis for future research.
This procedure is hardly about iterative changes, but involves
the treatment of several models which has to be done when
for example conflicting hypotheses have to be evaluated for
possible rejection. The candidate-based strategy is generally
applicable, but does not state how one may come to one
candidate or from one candidate to another.

E. Discussion

In this section we surveyed iterative model design strategies.
We did not tackle particular design strategies for one model,
but general procedures how to proceed from a first prototype
to the model ready for deployment. Which of these strategy
is appropriate for a particular simulation study is depending
on the personal style of the modeler, on his experience, on
the application domain, on the available data, etc. The table II
sums up and contrasts properties of these strategies. First, the
appropriateness of the strategies for different types of multi-
agent simulation models is estimated. A second block refers
to directed-ness of the model and minimality of the outcome
of the modeling process. The third block of rows compares
aspects of necessary data availability and other properties of
the modeling process - for example how well this procedure



Strategy KISS KIDS TAPAS Cand.-
based

Apt for linear models high high high high
Apt for emergent phenomena low high mid high
for shared-environment actors mid high mid high

Objective-orientedness high mid mid mid
Resulting minimality high mid low mid
Share of try & error low mid high high

Empirical data requirement mid mid low high
Integration of knowledge mid high high mid
Communication support mid high mid mid

Modeling overhead mid mid low high
Expertise in macro models high low low low
Expertise in micro models high high low high

Required tool knowledge high mid mid high

TABLE II
COMPARISON OF ITERATIVE MODELING PROCEDURES

supports the communication of the current model status. The
last block refers to whether the modeler needs expertise,
whether he has also to tackle macroscopic relations within the
model – usually expressed in complex formulas, or whether
this iterative procedure is also apt for beginners in agent-based
modeling. We assumed that tools are available that support
each of the strategies.

Using table II a modeler may select a specific iterative
strategy for finding the best model in accordance with features
of the simulation problem. Selection may also rely on common
sense heuristics: if a good previous model is accessible, then
it is a good idea to reuse that model. If the modeler knows
the system that has to be simulated very well, then the KIDS
approach should be used, whereas large holes in the system
knowledge advise more candidate-based or KISS modeling.
All these iterative procedures may be combined with the
particular design strategies identified above.

V. CONCLUSION

Model design is the phase in the development of a simula-
tion model, that requires most experience and skills[2]. This
is true for all forms of simulation modeling, in particular
for the development of multi-agent simulation models. In
this contribution we have identified and discussed different
strategies for model design – one shot or iterative. The latter
can be combined with the former for really developing a
well designed model. Even, if the resulting model is not
significantly “better” than a model developed without these
strategies, their application has the great advantage that they
support a systematic development and at least partially guide
the development. Nevertheless, the different strategies have to
be further tested and elaborated in various simulation studies
with different degrees of necessary model complexity.

The vision behind our research is developing a methodology
for successful development of multi-agent simulation studies.
The idea is to develop a methodology similar to System
Dynamics [20] that allows the development of difference
equation models starting from causal loop graphs to systems of
formulas in a guided and systematic way. In agent-based sim-
ulation, systematic model design has to be accompanied with

equally thoughtful implementation, calibration, documentation
and especially validation. We already tackled these phases
in an insolated way that leaves a lot of research open for
combining the different solutions. This – and the application
and test of the identified design strategies – form the next steps
in the future.

REFERENCES

[1] F. Klügl, “Sesam: Visual programming and participatory simulation for
agent-based models,” in Multi-Agent Systems: Simulation and Applica-
tions, A. M. Uhrmacher and D. Weyns, Eds. Taylor & Francis, 2009.

[2] R. E. Shannon, “Introduction to the art and science of simulation,” in
Winter Simulation Conference 1998, 1998, pp. 7–14.

[3] N. Gilberg and K. G. Troitzsch, Simulation for the social scientist,
2nd ed. Open University Press, 2005.

[4] A. Drogoul, D. Vanbergue, and T. Meurisse, “Multi-agent based simu-
lation: Where are the agents?” in MABS 2002, 2002, pp. 1–15.

[5] M. Richiardi, R. Leombruni, N. Saam, and M. Sonnessa, “A common
protocol for agent-based social simulation,” Journal of Artificial Soci-
eties and Social Simulation, vol. 9, no. 1, 2006.

[6] A. M. Law, Simulation Modeling and Analysis, 4th ed. McGraw-Hill,
2007.

[7] O. Balci, “Validation, verification and testing techniques troughout the
life cycle of a simulation study,” Annals of Operations Research, vol. 53,
pp. 121–173, 1994.

[8] F. Klügl, “Towards a formal framework for multi-agent simulation
models,” Institut für Informatik, Universität Würzburg, Tech. Rep. 412,
2007.

[9] B. Henderson-Sellers and P. Giorgini, Eds., Agent-Oriented Methodolo-
gies. IDEA Group Publishing, 2005.

[10] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Eds., Methodologies and
Software Engineering for Agent Ssytems: The Agent-oriented Software
Engineering Handbook, ser. Multiagent Systems, Artificial Societies and
Simulated Organizations. Boston, London: Springer, 2004.

[11] G. Weiss and R. Jakob, Eds., Agentenorientierte Softwareentwicklung.
Springer, 2004.

[12] Q.-N. N. Tran and G. C. Low, “Comparison of ten agent-oriented
methodologies,” in Agent-Oriented Methodologies, B. Henderson-Sellers
and P. Giorgini, Eds. IDEA Group Publishing, 2005, ch. XII, pp. 341–
367.

[13] C. Bernon, M.-P. Gleizes, and G. Picard, “Enhancing self-organising
emergent systems design with simulation,” in Engineering Societies in
the Agents World VII, 7th International Workshop, ESAW 2006, Dublin,
Ireland, September 6-8, 2006 Revised Selected and Invited Papers, ser.
Lecture Notes in Computer Science, G. M. P. O’Hare, A. Ricci, M. J.
O’Grady, and O. Dikenelli, Eds., vol. 4457. Springer, 2007, pp. 284–
299.

[14] A. Dornhaus, F. Klügl, C. Oechslein, F. Puppe, and L. Chittka, “Benefits
of recruitment in honey bees: effects of ecology and colony size in an
individual-based model,” Behavioral Ecology, vol. 17, no. 3, pp. 334–
344, 2006.

[15] V. Grimm and S. F. Railsback, Individual-Based Modeling and Ecology.
Princeton University Press, 2005.

[16] B. Edmonds and S. Moss, “From kiss to kids - an ’anti-simplistic’
modelling approach,” in Multi-Agent Based Simulation, ser. LNAI, P. D.
et al., Ed., no. 3415. Springer, 2004, pp. 130–144.

[17] A. Pyka and G. Fagiolo, “Agent-based modelling: A methodol-
ogy for neo-schumpeterian economics,” Universität Augsburg, Volk-
swirtschaftliche Diskussionsreihe, Tech. Rep. 272, 2005.

[18] C. Triebig and F. Klügl, “Elements of a documentation framework for
agent-based simulation models,” Cybernetics and Men, accepted 2009.

[19] J. W. Haefner, Modeling Biological Systems – Principles and Applica-
tions, 2nd ed. New York: Springer, 2005.

[20] J. D. Sterman, Business Dynamics: Systems Thinking and Modeling for
a Complex World. Boston: McGraw Hill, 2000.


