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Abstract—This paper describes a multi-agent based simulation
(MABS) framework to construct an artificial electric power mar-
ket populated with learning agents. The artificial market, named
TEMMAS (The Electricity Market Multi-Agent Simulator), ex-
plores the integration of two design constructs: i) the specification
of the environmental physical market properties, and ii) the
specification of the decision-making (deliberative) and reactive
agents. TEMMAS is materialized in an experimental setup
involving distinct power generator companies which operate
in the market and search for the trading strategies that best
exploit their generating units’ resources. The experimental results
show a coherent market behavior that emerges from the overall
simulated environment.

I. INTRODUCTION

The start-up of nation-wide electric markets, along with
its recent expansion to intercountry markets, aims at pro-
viding competitive electricity service to consumers. The new
market-based power industry calls for human decision-making
in order to settle the energy assets’ trading strategies. The
interactions and influences among the market participants are
usually described by game theoretic approaches which are
based on the determination of equilibrium points to which
compare the actual market performance [1], [2]. However,
those approaches find it difficult to incorporate the ability
of market participants to repeatedly probe markets and adapt
their strategies. Usually, the problem of finding the equilibria
strategies is relaxed (simplified) both in terms of: i) the human
agents’ bidding policies, and ii) the technical and economical
operation of the power system.

As an alternative to the equilibrium approaches, the multi-
-agent based simulation (MABS) comes forth as being par-
ticulary well fitted to analyze dynamic and adaptive systems
with complex interactions among constituents [3], [4].

In this paper we describe a MABS modeling frame-
work that provides constructs for the (human) designer to
specify a dynamic environment, its resources, observable
properties and its inhabitant decision-making agents. We
used the framework to capture the behavior of the elec-
tricity market and to build a simulator, named TEMMAS
(The Electricity Market Multi-Agent Simulator), which incor-
porates the operation of several generator company (GenCo)
operators, each with distinct power generating units (GenUnit),
and a market operator (Pool) which computes the hourly
market price (driven by the electricity demand).

TEMMAS agents exhibit bounded rationality, i.e., they
make decisions based on local information (partial knowledge)
of the system and of other agents while learning and adapting
their strategies during a simulation. The TEMMAS purpose
is not to explicitly search for equilibrium points, but rather
to reveal and assist to understand the complex and aggregate
system behaviors that emerge from the interactions of the
market agents.

II. THE MABS MODELING FRAMEWORK

We describe the structural MABS constituents by means
of two concepts: i) the environmental entity, which owns a
distinct existence in the real environment, e.g. a resource such
as an electricity producer, or a decision-making agent such as
a market bidder generator company, and ii) the environmental
property, which is a measurable aspect of the real environment,
e.g. the price of a bid or the demand for electricity. Hence,
we define the environmental entity set, ET = { e1, . . . , en },
and the environmental property set, EY = { p1, . . . , pm }. The
whole environment is the union of its entities and properties:
E = ET ∪ EY .

The environmental entities, ET , are often clustered in diffe-
rent classes, or types, thus partitioning ET into a set, PET , of
disjoints subsets, Pi

ET , each containing entities that belong to
the same class. Formally, PET =

{
P1
ET , . . . ,Pk

ET
}

defines
a full partition of ET , such that Pi

ET ⊆ ET and PET =
∪i=1...k Pi

ET and Pi
ET ∩ Pj

ET = ∅ ∀i 6= j. The partitioning
may be used to distinguish between decision-making agents
and available resources, e.g. a company that decides the biding
strategy to pursue or a plant that provides the demanded power.

The environmental properties, EY , can also be clustered, in
a similar way as for the environmental entities, thus grouping
properties that are related. The partitioning may be used to ex-
press distinct categories, e.g. economical, electrical, ecological
or social aspects. Another, more technical usage, is to separate
constant parameters from dynamic state variables.

The factored state space representation. The state of the
simulated environment is implicitly defined by the state of all
its environmental entities and properties. We follow a factored
representation, that describes the state space as a set, V , of
discrete state variables [5]. Each state variable, vi ∈ V , takes
on values in its domain D( vi ) and the global (i.e., over E)
state space, S ⊆ ×vi∈VD( vi ), is a subset of the Cartesian
product of the state variable domains. A state s ∈ S is an



assignment of values to the set of state variables V . We define
fC , C ⊆ V , as a projection such that if s is an assignment to
V , fC( s ) is the assignment of s to C; we define a context c as
an assignment to the subset C ⊆ V; the initial state variables
of each entity and property are defined, respectively, by the
functions initET : ET → C and initEY : EY → C.

From environmental entities to resources and agents. The
embodiment is central in describing the relation between the
entities and the environment [6]. Each environmental entity can
be seen as a body, possibly with the capability to influence the
environmental properties. Based on this idea of embodiment,
two higher-level concepts (decoupled from the environment,
E , characterization) are introduced: i) agent, owing reasoning
and decision-making capabilities, and ii) resource, without any
reasoning capability. Thus, given a set of agents, Υ, we define
an association function embody : Υ → ET , which connects
an agent to its physical entity. In a similar way, given a set
of resources, Φ, we define the mapping function identity :
Φ → EY . We consider that |E| = |Υ|+ |Φ|, thus each entity is
either mapped to an agent or to a resource; there is no third
category.

The decision-making approach. Each agent perceives (the
market) and acts (sells or buys) and there are two main
approaches to develop the reasoning and decision-making
capabilities: i) the qualitative mental-state based reasoning,
such as the belief-desire-intention (BDI) architecture [7],
which is founded on logic theories, and ii) the quantita-
tive, decision-theoretic, evaluation of causal effects, such as
the Markov decision process (MDP) support for sequential
decision-making in stochastic environments. There are also
hybrid approaches that combine the qualitative and quantitative
formulations [8], [9].

The qualitative mental-state approaches capture the relation
between high level components (e.g. beliefs, desires, inten-
tions) and tend to follow heuristic (or rule-based) decision-
-making strategies, thus being better fitted to tackle large-scale
problems and worst fitted to deal with stochastic environments.

The quantitative decision-theoretic approaches deal with low
level components (e.g., primitive actions and immediate re-
wards) and searches for long-term policies that maximize some
utility function, thus being worst fitted to tackle large-scale
problems and better fitted to deal with stochastic environments.

The electric power market is a stochastic environment and
we currently formulate medium-scale problems that can fit a
decision-theoretic agent model. Therefore, TEMMAS adaptive
agents (e.g., market bidders) follow a MDP based approach
and resort to experience (sampled sequences of states, actions
and rewards from simulated interaction) to search for optimal,
or near-optimal, policies using reinforcement learning methods
such as Q-learning [10] or SARSA [11].

III. TEMMAS DESIGN

Within the current design model of TEMMAS the electricity
asset is traded through a spot market (no bilateral agreements),
which is operated via a Pool institutional power entity. Each

generator company, GenCo, submits (to Pool) how much
energy, each of its generating unit, GenUnitGenCo, is willing
to produce and at what price. Thus, we have: i) the power
supply system comprises a set, EGenCo, of generator companies,
ii) each generator company, GenCo, contains its own set,
EGenUnitGenCo , of generating units, iii) each generating unit,
GenUnitGenCo, of a GenCo, has constant marginal costs, and
iv) the market operator, Pool, trades all the GenCos’ submitted
energy.

The bidding procedure conforms to the so-called “block
bids” approach [12], where a block represents a quantity of
energy being bided for a certain price; also, GenCos are not
allowed to bid higher than a predefined price ceiling. Thus,
the market supply essential measurable aspects are the energy
price, quantity and production cost. The consumer side of
the market is mainly described by the quantity of demanded
energy; we assume that there is no price elasticity of demand
(i.e., no demand-side market bidding).

Therefore, we have: ET = {Pool } ∪ EGenCo ∪g∈EGenCo

EGenUnitg where EY = { quantity, price, productionCost }.
The quantity refers both to the supply and demand sides of
the market. The price referes both to the supply bided values
and to the market settled (by Pool) value.

The EGenCo contains the decision-making agents. The Pool
is a reactive agent that always applies the same predefined
auction rules in order to determine the market price and
hence the block bids that clear the market. Each EGenUnitGenCo

represents the GenCo’s set of available resources.
The resources’ specification. Each generating unit,

GenUnitGenCo, defines its marginal costs and constructs the
block bids according to the strategy indicated by its generator
company, GenCo. Each GenUnitGenCo calculates its marginal
costs according to, either the “WithHeatRate” [13]) or the
“WithCO2” [14] formulation.

The “WithHeatRate” formulation estimates the marginal
cost, MC, by combining the variable operations and mainte-
nance costs, vO&M, the number of heat rate intervals, nPat,
each interval’s capacity, capi and the corresponding heat rate
value, hri, and the price of the fuel, fPrice, being used; the
marginal cost for a given i ∈ [1, nPat] interval is given by,

MCi+1 = vO&M+
(capi+1 × hri+1)− (capi × hri)

blockCapi+1
×fPrice

(1)
where each block’s capacity is given by: blockCapi+1 =
capi+1 − capi.

The “WithCO2” marginal cost, MC, combines the variable
operations and maintenance costs, vO&M, the price of the
fuel, fPrice, the CO2 cost, CO2cost, and the unit’s produc-
tivity, η, through the expression,

MC =
fPrice

η
×K + CO2cost + vO&M (2)

where K is a fuel-dependent constant factor, and CO2cost
is given by,

CO2cost = CO2price× CO2emit

η
×K (3)



where CO2emit is the CO2 fuel’s emissions. Here all
blocks have the same capacity; given a unit’s maximum
capacity, maxCap, and a number of blocks, nBlocks, to sell,
each block’s capacity is given by: blockCap = maxCap

nBlocks .
The decision-making strategies. Each generator company

defines the bidding strategy for each of its generating units.
We designed two types of strategies: a) the basic-adjustment,
that chooses among a set of basic rigid options, and b)
the heuristic-adjustment, that selects and follows a prede-
fined well-known heuristic. There are several basic-adjustment
strategies already defined in TEMMAS. Here we outline seven
of those strategies, sttgi where i ∈ { 1, . . . , 7 }, available for
a GenCo to apply: i) sttg1, bid according to the marginal
production cost of each GenUnitGenCo (follow heat rate curves,
e.g., cf. tables II and III), ii) sttg2, make a “small” in-
crement in the prices of all the previous-day’s block bids,
iii) sttg3, similar to sttg2, but makes a “large” increment,
iv) sttg4, make a “small” decrement in the prices of all
the previous-day’s block bids, v) sttg5, similar to sttg4, but
makes a “large” decrement, vi) sttg6, hold the prices of all
previous-day’s block bids, vii) sttg7 set the price to zero.
There are two heuristic-adjustment defined strategies: a) the
“Fixed Increment Price Probing” (FIPP) that uses a percentage
to increment the price of last day’s transacted energy blocks
and to decrement the non-transacted blocks, and b) “Physical
Withholding based on System Reserve” (PWSR) that reduces
the block’s capacity, as to decrement the next day’s estimated
system reserve (difference between total capacity and total
demand), and then bids the remaining energy at the maximum
market price.

The agents’ decision process. The above strategies
correspond to the GenCo agent’s primary actions. The
GenCo has a set, EGenUnitGenCo , of generating units and, at
each decision-epoch, it decides the strategy to apply to
each generating unit, thus choosing a vector of strate-
gies,

−−→
sttg, where the ith vector’s component refers to the

GenUnit i
GenCo generating unit; thus, its action space is given

by: A = ×|EGenUnitGenCo |
i=1 { sttg1, . . . , sttg7 }i ∪ {FIPP, PWSR }.

The GenCo’s perceived market share, mShare, is used to
characterize the agent internal memory so its state space
is given by mShare ∈ [ 0..100 ]. Each GenCo is a MDP
decision-making agent such that the decision process period
represents a daily market. At each decision-epoch each agent
computes its daily profit (that is regarded as an internal reward
function) and the Pool agent receives all the GenCos’s block
bids for the 24 daily hours and settles the hourly market price
by matching offers in a classic supply and demand equilibrium
price (we assume a hourly constant demand).

TEMMAS architecture and construction. The TEMMAS
agents along with the major inter-agent communication paths
are represented in the bottom region of Figure 1; the top
region represents the user interface that enables to specify the
each of the resources’ and agents’ configurable parameters.
The implementation of the TEMMAS architecture followed
the INGENIAS [15] methodology and used its supporting

development platform. Figure 2 presents the general “agent’s
perspective”, where the tasks and the goals are clustered into
individual and social perspectives. Figure 3 gives additional
detail on the construction of tasks and goals using INGENIAS.
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IV. TEMMAS ILLUSTRATIVE SETUP

We used TEMMAS to build a specific electric market
simulation model. We picked the inspiration from the Iberian
Electricity Market (MIBEL – “Mercado Ibérico de Electrici-
dade”) with Portuguese (e.g., EDP - “Electrividade de Portu-
gal”, “Turbogás”, “Tejo Energia”) and Spanish (e.g., “Endesa”,
“Iberdrola”, “Union Fenosa”, “Hidro Cantábrico”, “Viesgo”,
“Bas Natural”, “Elcogás”) generator companies. Regarding the
total electricity capacity installed the Iberian market is com-
posed of a major player (Spain) and a minor player (Portugal).
Our experiments exploit the combined market behavior of a
major and a minor electricity market players.

We abstracted intra-nation market details and modeled each
country as a single generator company (with several generating
units). Figure 4 uses INGENIAS notation to depict the hierar-
chical structure of the electricity market; the Pool (OMEL –
“Operador do Mercado Ibérico de Electricidade”) settles the
market price (and coupled bids) after the bids submitted by
each GenCo (PT – “Portugal” and ES – “Spain”) according
to a strategy that depends on the marginal production costs of
each GenUnit.

Fig. 4. An illustrative TEMMAS formulation (using INGENIAS notation).

We considered three types of generating units: i) one base
load coal plant, CO, ii) one combined cycle plant, CC, to cover
intermediate load, and iii) one gas turbine, GT, peaking unit.
Table I shows the essential properties of each plant type and
tables II and III shows the heat rate curves used to define
the bidding blocks. The marginal cost was computed using
expression ( 1 ); the bidding block’s quantity is the capacity
increment, e.g. for CO, the 11.9 marginal cost bidding block’s
quantity is 350− 250 = 100 MW (cf. Table II, CO, top lines
2 and 1).

V. EXPERIMENTS AND RESULTS

Our experiments have two main purposes: i) illustrate the
TEMMAS functionality, and ii) analyze the agents’ resulting
behavior, e.g. the learnt bidding policies, in light of the market
specific dynamics.

We designed three experimental scenarios and Table IV
shows the GenCo’s name along with its production capacity,

TABLE I
PROPERTIES OF GENERATING UNITS; THE UNITS’ TYPES ARE COAL (CO),
COMBINED CYCLE (CC) AND GAS TURBINE (GT); THE O&M INDICATES

“OPERATION AND MAINTENANCE” COST.

Type of generating unit
Property unit CO CC GT

Fuel — Coal (BIT) Nat. Gas Nat. Gas

Capacity MW 500 250 125

Fuel price C/MMBtu 1.5 5 5

Variable O&M C/MWh 1.75 2.8 8

TABLE II
CO AND CC UNIT’S CAPACITY BLOCK (MW) AND HEAT RATE

(BTU/KWH) AND THE CORRESPONDING MARGINAL COST (C/MWH).

CO generating unit CC generating unit
Cap. Heat rate Marg. cost Cap. Heat rate Marg. cost

250 12000 — 100 9000 —
350 10500 11.9 150 7800 29.8
400 10080 12.5 200 7200 29.8
450 9770 12.7 225 7010 30.3
500 9550 13.1 250 6880 31.4

TABLE III
GT UNIT’S CAPACITY BLOCK (MW) AND HEAT RATE (BTU/KWH) AND

THE CORRESPONDING MARGINAL COST (C/MWH) .

GT generating unit
Cap. Heat rate Marg. cost

50 14000 —
100 10600 44.0
110 10330 46.2
120 10150 48.9
125 10100 52.5

computed according to the respective GenUnits (cf. Table I).
The “active” suffix (cf. Table IV, name column) means that
the GenCo searches for its GenUnits best bidding strategies;
i.e. “active” is a policy learning agent.

TABLE IV
THE EXPERIMENT’S GenCoS AND GenUnitS.

GenCo
Exp. name Prod. Capac. GenUnits

#1 GenCo active 875 CO & CC & GT

#2
GenCo major 2000 2×CO & 4×CC

GenCo minor&active 875 3×CC & 1×GT

#3
GenCo major&active 2000 2×CO & 4×CC
GenCo minor&active 875 3×CC & 1×GT

Experiment #1. The experiment sets a constant, 600
MW, hourly demand for electricity. Figure 5 shows the
GenCo active process of learning the bidding policy that gives
the highest long-term profit. We used Q-learning, with an
ε-greedy exploration strategy, which picks a random action
with probability ε and behaves greedily otherwise (i.e., picks



the action with the highest estimated action value); we defined
ε = 0.2. The learning factor rate of Q-learning was defined
as α = 0.01 and the discount factor (which measures the
present value of future rewards) was set to γ = 0.5. Figure
6 shows the bid blocks that cleared the market (at the first
hour of last simulated day). As there is no market competition
the cheapest, CO, bids zero, the GT sets the market price (to
its ceiling) and the most expensive 200 MW are distributed
among the most expensive GenUnits (CC, GT). Therefore, the
GenCo active agent found, for each perceived market share,
mShare, the best strategy,

−−→
sttg, to bid its GenUnits’ energy

blocks.
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Experiment #2. The experiment sets a constant, 2000 MW,
hourly demand for electricity. Figure 7 shows the market share
evolution while GenCo minor&active learns to play in the
market with GenCo major, which is a larger company with a
fixed strategy: “bid each block 5C higher than its marginal
cost”. We see that GenCo minor&active gets around 18%
(75− 57) of market from GenCo major. To earn that market
the GenCo minor&active learnt to lower its prices in order to
exploit the “5C space” offered by GenCo major fixed strategy.

Experiment #3. In this experiment both GenCos are “ac-
tive”; the remaining is the same as in experiment #2. Figure
8 shows the market share oscillation while each company
reacts to the other’s strategy to win the market. Despite the
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Fig. 7. Market share evolution induced by GenCo minor&active. [Exp. #2]

competition each company learns to secure its own fringe of
the market.
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VI. CONCLUSIONS AND FUTURE WORK

This paper describes our preliminary work in the cons-
truction of a MABS framework to analyze the macro-scale
dynamics of the electric power market. Although both research
fields (MABS and market simulation) achieved considerable
progress there is a lack of cross-cutting approaches. We used
the proposed MABS framework to support our preliminary
work in the construction of the TEMMAS agent-based elec-
tricity market simulator.

Hence, our contribution is two folded: i) a comprehensive
formulation of MABS, including the simulated environment
and the inhabiting decision-making and learning agents, and ii)
a simulation model (TEMMAS) of the electric power market
framed in the proposed formulation.

Our initial results reveal an emerging and coherent market
behavior, thus inciting us to further extend the experimental
setup with additional bidding strategies and to incorporate
specific market rules, such as congestion management and
pricing regulation mechanisms.
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