

Abstract— ABMS (Agent-Based Modeling and Simulation) has

arisen as new approach to effectively support domain experts to
cope with the growing complexity of the problems which they
have to face and solve. To date, few methodologies are available
which can be exploited by domain experts with limited
programming expertise to model and subsequently analyze
complex systems typical of their application domains. The
easyABMS methodology has been proposed to overcome the lack
of integrated methodologies able to seamlessly guide domain
experts from the analysis of the system under consideration to its
modeling and analysis of simulation results. In this paper, the
effectiveness of easyABMS is demonstrated through a case study
in the logistics domain which concerns the analysis of different
policies for managing vehicles used for stacking and moving
containers in a transshipment terminal.

Index Terms— Agent-Based Modeling and Simulation, Agent-
Oriented Methodologies, Container Terminal Management.

I. INTRODUCTION
gent Based Modeling and Simulation (ABMS) is a new
approach for analyzing and modeling complex systems,

an approach which is becoming acknowledged for its efficacy
in several application domains (financial, economic, social,
logistics, physical, chemical, engineering, etc) [17]. ABMS,
allows for the definition of a system model based on
autonomous, goal-driven and interacting entities (agents)
organized into societies which is then simulated so to obtain
significant information on not only the properties of the
system under consideration but also its evolution.

Although several ABMS tools are currently available [10,
11, 19, 20, 24], there are only a few methodologies involving
well- defined processes which are able to cover all the phases
from the analysis of the system under consideration to its
modeling and subsequent analysis of simulation results [7, 8,
17]. As a result, simulation models are often obtained using
the two following approaches: (i) a direct implementation
based on a chosen ABMS tool of the simulation model whose
abstraction level is then too low and platform dependent as a
conceptual modeling phase is not available; (ii) adapting a

A. Garro is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
alfredo.garro@unical.it).

W. Russo is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: w.russo
@unical.it).

given conceptual system model to a specific ABMS tool
which, however, requires additional adaptation, calling for
extra work, the amount of which increases depending on the
gap between the conceptual and the implementation model of
the system. Thus, both approaches lead to simulation models
which are difficult to verify, modify and update.

To address these issues, a new methodology, easyABMS,
has recently been proposed [4,5] which has specifically been
conceived for agent-based modeling and simulation of
complex system, seamlessly covering all the phases from the
analysis of the system under consideration to its modeling and
analysis of simulation results. easyABMS defines an iterative
process which is integrated, model-driven and visual. In
particular, each phase of the process refines the model of the
system which has been produced in the preceding phase and
its work-products are mainly constituted by visual diagrams
based on the UML notation [23]. In addition, according to the
model-driven paradigm [1, 21] the simulation code is
automatically generated from the derived system Simulation
Model. On the basis of the simulation results, a new/modified
and/or refined model of the system can be obtained through a
new process iteration which can involve all or some process
phases.

Currently, easyABMS exploits the advanced features of
visual modeling and of (semi)automatic code generation
provided by the Repast Simphony Toolkit [17,18], a very
popular and open source ABMS platform.

In this paper, the effectiveness of easyABMS in supporting
domain experts to fully exploit the benefits of the ABMS,
while significantly reducing programming and implementation
efforts, is exemplified through a case study in the logistics
domain. Specifically, the case study is focused on the analysis
of different policies for the management of vehicles used for
stacking and moving containers (straddle carriers) in a
container transshipment terminal.

The remainder of this paper is organized as follows: Section
II presents an overview of the easyABMS methodology and
the related process; Section III presents a brief introduction to
the reference application domain (a container transhipment
terminal) and to related management problems; Section IV
shows the application of easyABMS to the agent-based
modeling and simulation of the Straddle Carrier Routing and
Dispatching problem; finally, conclusions are drawn and
future works delineated.

Exploiting the easyABMS methodology in the
logistics domain

Alfredo Garro, Wilma Russo

A

Involves

Involves
is linked to

is
 li

nk
ed

 to

Fig. 1. The reference meta-model of easyABMS.

II. AN OVERVIEW OF EASYABMS
The easyABMS methodology defines an iterative process

for ABMS composed of seven subsequent phases from the
System Analysis to the Simulation Result Analysis [4, 5]. On
the basis of the simulation results obtained a new iteration of
the process which can involve all or some process phases can
be executed for achieving new simulation objectives or those
which have not yet been obtained. Specifically, the process
phases are the following:
− System Analysis, in which a preliminary understanding of

the system and the main simulation objectives are obtained
(Analysis Statement);

− Conceptual System Modeling, in which a model of the
system is defined in terms of agents, artifacts and societies
(Conceptual System Model);

− Simulation Design, in which a model of the system is
defined in terms of the abstractions offered by the
framework which is exploited for the simulation
(Simulation Model);

− Simulation Code Generation, in which the Simulation Code
for the target simulation environment is automatically
generated starting from the model which is obtained in the
previous phase;

− Simulation Set-up, in which the Simulation Scenarios are
established;

− Simulation Execution and Results Analysis, in which the
simulation results are analyzed with reference to the
objectives of the simulation previously identified in the
System Analysis phase.

Currently, all the simulation related phases are supported by
the Repast Simphony Toolkit [18, 20]. In particular, the
Simulation Design and the Simulation Code Generation
phases are supported by the Repast Simphony Development
Environment [15], while the Simulation Set-up, the Simulation
Execution and the Simulation Results Analysis phases are
supported by the Repast Simphony Runtime Environment [16].

The models of the system generated by each process phase
are produced according to the well-defined reference meta-
model shown in Figure 1 so to facilitate the verification of the
correctness of the models produced. Moreover, the concepts
related to each phase are defined by extending and/or refining
those of the previous phase; this allows for the seamless
integration between the phases as the model produced in each
phase extends and/or refines the model of the system
produced in the previous phase.

The following sub-sections provides a brief description of
each process phase.

A. System Analysis
In the System Analysis phase, the objectives of the

simulation are specified and a preliminary understanding of
the system and its organization is obtained.

This phase is based on the principle of layering, exploiting
the well-known techniques of Decomposition, Abstraction and
Organization [2, 9], and is constituted of a sequence of
analysis steps. In each step a new system representation is
produced by applying the in-out zooming mechanisms [12] to
the entities comprising the system representation which
resulted from the preceding analysis step. In the first analysis
step, a starting level of abstraction for analyzing the system is
chosen and then the system is zoomed-in so to identify its

component entities on the basis of the starting abstraction
level.

According to the reference meta-model of the System
Analysis phase (see Fig. 1), an Entity can be characterized by
autonomous and goal-oriented behavior (pro-active entity),
purely stimulus-response behavior (re-active entity), or can be
passive. In addition, both the rules governing entities and their
evolution, and the relationships among entities are specified.
Specifically, Safety rules determine the acceptable and
representative states of an entity whereas liveness rules
determine which state transitions are feasible during entity
evolution. Relationships can be either intra-entity
relationships (i.e. relationships among the component entities
obtained by the zooming-in of an entity) or inter-entity
relationships.

The System Analysis phase ends when the user obtains a
System Representation in which each component (pro-active,
re-active, passive) entity has been represented at the level of
abstraction which is appropriate for the objectives of the
simulation. This System Representation, along with a synthetic
description of the system being considered, a detailed
description of each identified entity and the objectives of the
simulation, constitutes the work-product of this phase (the
Analysis Statement).

B. Conceptual System Modeling
In the Conceptual System Modeling phase, the Structural

System Model is produced, and in particular, for each entity in
the System Representation:
− the abstraction level suited to specific simulation objectives

is chosen;
− the conceptual representation , in terms of Agent, Artifact or

Society, is derived on the basis of the associations among
the main concepts of the System Analysis and Conceptual
System Modeling phases (see Fig. 1);

− the interactions with the other entities are obtained from the
intra and inter-relationships where the latter cross the
boundaries of societies.

The chosen level of abstraction of an entity can be modified in
successive iterations through which it is then possible to
produce new, modified, and/or refined Structural System
Models.

For each entity in the produced Structural System Model a
specific model is then defined, whose type can be one of the
following depending on the entity type:
− Society Model which describes the entities which compose

a Society, their type (Agent, Artifact, Society), and the rules
governing the Society (safety rules) and its evolution
(liveness rules);

− Agent Model which details the complex goal of an Agent
(Agent Goal Model), its behavior as a set of periodically
scheduled and triggered Activities (i.e. flow of Actions)
which contribute to the achievement of the Agent goals
(Agent Behavioral Model), and its interactions with other
Agents and Artifacts in which the agent is involved (Agent
Interaction Model);

− Artifact Model which describes the behavior of an Artifact
as a set of triggered Activities related to the offered
services (Artifact Behavioral Model), and its interactions
with other Artifacts and Agents (Artifact Interaction
Model).

C. Simulation Design
In this phase, starting from the Conceptual System Model a

Simulation Model of the system, in terms of the abstractions
offered by the framework exploited for the simulation, is
produced.

In Figure 1 the basic simulation concepts of the reference
simulation framework (the Repast Simphony Toolkit [18, 20])
are highlighted. Specifically, the central concept is the
(simulation) Context (SContext) which represents an abstract
environment in which (simulation) Agents (SAgents) can act
and is provided with an internal state consisting of simple
values and Data Fields (a n-dimensional field of values). In
addition, an SContext can also support behaviors for the
management of its internal state. SContexts can be organized
hierarchically so to contain sub-SContexts which can have
their own state. SAgents in an SContext can be organized by
using Projections which are structure designed to define and
enforce relationships among the SAgents in the SContext. In
particular, a Network Projection defines the relationships of
both acquaintance and influence between SAgents whereas
Space Projections define (physical or logical) space structures
(Grid, Scalar Fields, Continuous Space, Geography) in which
the agents can be situated.

An SAgent can have multiple behaviors (SBehaviors), each
operating on SAgent Properties and consists of a sequence of
Steps; each Step can be associated with the execution of a
Task or with the control of the flow of the Task execution
(Loop, Join, Decision, End). Each SBehavior can be
characterized by a Scheduled Method which defines a constant
execution schedule, and by a Watch which periodically, on the
basis of some watched parameters and conditions, triggers the
execution of the behavior.

A Repast Simphony simulation model is defined by first
specifying the structure and the characteristics of the root
SContext and of all the possible nested sub-SContexts, in
terms of their components (SAgents, Projections and sub-
SContexts), and, then, specifying for each SAgent its
Properties and SBehaviors, and for each SBehavior the
component Steps, and the associated Scheduled Method and
Watch.

The associations among the above described simulation
concepts of the Repast Simphony Toolkit and the related
concepts of the Conceptual System Model are reported in
Figure 1. The exploitation of these associations makes it
possible to directly obtain, starting from the Conceptual
System Model, the Simulation Model of the System as follows:
− each Society becomes a Repast Simulation Context

(SContext), the System is the root SContext and any
enclosed Society is a (sub)-Context of the corresponding
enclosing Society;

− Artifacts and Agents become Repast Simulation Agents
(SAgents), the Activities which constitutes their behaviors
are easily converted into Repast Simulation Behaviors
(SBehaviors);

− relationships derived from Interactions among Agents and
Artifacts generate Repast Network Projections.

D. The other Simulation related phases
According to the Model Driven paradigm [1, 21], the Repast

Simphony Development Environment [15] is able to
automatically generate a great part of the simulation code
from the derived Simulation Model of the system. The
simulation which can be extended with additional Java and
XML code is then compiled by the Repast Simphony
Development Environment using a Java compiler and then
loaded into the Repast Simphony Runtime Environment.

The simulation executed by the Repast Symphony Runtime
Environment can start after establishing: (i) the simulation
scenario by specifying the values of the simulation parameters

defined in the Simulation Design phase; (ii) the presentation
preferences for the simulation results concerning the system
properties of interest identified during the Simulation Design
phase.

Finally, the obtained simulation results can also be analyzed
by exploiting the analysis tools (Matlab, R, VisAd, iReport,
Jung) which can be directly invoked from the Repast
Simphony Runtime Environment so to verify whether the
objectives of the simulation identified during the System
Analysis phase have been achieved. Where objectives have
not been achieved or where new simulation objectives
emerge, a new iteration of the process can be executed, which
can then involve all or some process phases so that
new/modified and/or refined models of the system can be
produced for achieving the remaining/new simulation
objectives.

TABLE I
MANAGEMENT PROBLEMS IN CONTAINER TRANSHIPMENT TERMINALS

PHASE PROBLEM DESCRIPTION
Arrival of the containership QUAY CRANE ASSIGNMENT PROBLEM (QCAP) Determining the number of quay cranes to assign

to an incoming vessel.
BERTH ALLOCATION PROBLEM (BAP); Assigning incoming ships to berths, by taking

into account constraints in both spatial and
temporal dimensions so to minimize the time
each ship spends in port (turnaround time).

Unloading and Loading of the ship QUAY CRANE SCHEDULING PROBLEM (QCSP) Determining a sequence of unloading and
loading movements for cranes assigned to a
vessel in order to minimize the vessel
completion time as well as the crane idle time.

Transport of containers from the ship to
the yard and vice versa

YARD MANAGEMENT Allocating and reallocating the containers in the
yard in order to reduce the amount of time
required to handle of each vessel.

STRADDLE CARRIER ROUTING AND
DISPATCHING (SCRD)

Determining the operation to be performed by
the straddle carries to maximize the productivity
of each crane.

III. MANAGEMENT OF A CONTAINER TRANSHIPMENT
TERMINAL

Due to the continuous growth in the volume of goods
exchanged around world, further boosted by the rising
Chinese and Indian economies, maritime transportation is
becoming a crucial asset in global economy as it allows for
large economies of scale in the transport sector. Specifically,
the current maritime transportation system is based on a hub
and spoke model [22] whereby ultra-large containerships
operate between a limited number of mayor
(mega)transhipment terminals (hubs), and smaller vessels
(feeders) which link the hubs with other minor ports (spokes).

In this scenario, a hub terminal must maintain a high level
of efficiency, not only to avoid traffic congestion but also to
increase its competiveness as some main characteristics
(geographical, structural and technological) which also
determine the competitiveness of a container terminal can be
modified only on a long term perspective.

It thus becomes crucial to increase hub efficiency,

rendering it more competitive through the optimal
management of terminal resources and optimizing tactical and
operational logistics.

In the next sub-section, the organization of a maritime
container terminal and some primary management issues are
briefly discussed; a more complete description can be found in
[13].

A. Organization of a Container Transhipment Terminal
Each ship approaching a maritime terminal enters in a

harbour and waits to moor at an assigned berth position along
the terminal quay which is equipped with giant cranes (quay
cranes) for loading and unloading containers. These
containers, in a DTS (Direct Transfer System) terminal, are
transferred to and from the terminal yard by a fleet of vehicles
(straddle carrier) which are able to stack containers in the
yard. In contrast, in an ITS (Indirect Transfer System)
terminal, containers are moved by trucks and trailers from the
quay to the yard and vice-versa and staked by yard cranes.

In this context, the main logistic processes and related
management problems can be grouped in relation to the flow

of containers in the terminal as shown and briefly described in
Table 1; other issues are related to inter-terminal
transportation and to possibly link with other transportation
modes. Moreover, a transversal issue is related to the human
resources management [13].

These very fundamental issues are not only reciprocally
related, but the large-scale nature of hub management makes
the use of standard exact solution algorithms impractical. In
fact, the management of such large and intricately complex
systems require new modeling methods which must also
generate proof-of-concept simulations.

In the following Section, the effectiveness of the ABMS
approach and the easyABMS methodology is shown focusing
on the Straddle Carrier Routing and Dispatching Problem
(SCRDP) [14]; with reference to the different management
problems in a Container Transhipment Terminal (see Table
1), a more complete and domain specific agent-based
simulator has been proposed in [6].

IV. MODELING AND SIMULATING STRADDLE CARRIER
ROUTING AND DISPATCHING THROUGH EASYABMS

A. System Analysis
The main indicator of optimal performance in a container

transhipment terminal is the average ship-turn-around time
which is the average time-lapse between a ship’s arrival and
its departure, starting from the amount of time the ship waits
for a berth (berth waiting time) and the duration for which the
ship is docked for unloading and loading operations (handling
time). In the following, the focus is set on the handling time
given to fact that this time is highly dependent on the
productivity of the Quay Cranes (QCs) and, as a consequence,
on the management policies of the Straddle Carriers (SCs).

Specifically, to maximize the productivity of the QCs in a
DTS container terminal, the SCs should operate so that the
buffer of each crane, which has a limited capacity of only a
few containers, is not full /not empty if the crane is
performing the discharging/loading phase. Specifically, there
are two main policies for organizing the work of SCs:

- dedicated modality: a given number of SCs are allocated
to each QC to follow its working phases;

- shared modality (or pooling): a group of SCs is shared by
two or more QCs which work on the same ship or on adjacent
berthed ships and, possibly, frequently swapping between the
tasks of loading and discharging containers.

The shared modality presents several benefits with respect
to the dedicated mode: (i) reduction in the number of empty
trips done by the SCs (i.e. travels without carrying any
container), as the SCs can fruitfully alternate between trips
carrying containers from the yard to the cranes which are
loading outgoing cargo and trips back to the yard, carrying
discharged cargo; (ii) more constant value of productivity of
both QCs and SCs as, when a crane is not working, the SC of
a pool can speed up operations of the other QCs.

A quantitative evaluation of the aforementioned benefits is
not easy to obtain through traditional analytical models.

Moreover, classical dispatching models [14] often fail to
provide dynamic assignment of container moves to SCs of a
pool in order to speed up the loading/discharging operations
(the Straddle Carriers Pooling Problem - SCPP). To overcome
these shortcomings, an agent-based model can be defined and
simulated with the following main objectives:

(i) quantifying the benefits of the pooling modality with
reference to system productivity (vessels handling time) and
cost reduction (numbers of exploited SCs and total distance
covered);

(ii) obtaining an effective solution for the dynamic
assignment of container moves to the SCs of a pool which can
be used for automatically drive the coordinated behavior of
the SCs in a real container terminal.

The System Representation obtained on the basis of the
identified simulation objectives is reported in Figure 2. All the
entities represented in Figure 2 are further described, along
with their relationships and their safety and liveness rules, in a
textual format enriched by tables and diagrams which are not
reported due to space limitations.

<<Pro-Active>>

Quay Crane

Container Terminal

<<Passive>>
Vessel

<<Passive>>
Deck

<<Passive>>
Hold

intra-entity relantionship
inter-entity relantionship

<<Passive>>

Buffer

<<Pro-Active>>

Straddle Carrier

<<Passive>>

Yard

<<Re-Active>>

Movement Task Assigner

Fig. 2. System Representation

<<Artifact>>
<<Resource Manager>>

Vessel

<<Agent>>

Quay Crane

<<Society>>
Container Terminal

<<Artifact>>
<<Resource Manager>>

Buffer

<<Agent>>

Straddle Carrier

<<Artifact>>
<<Resource Manager>>

Yard

<<Artifact>>

Movement Task Assigner

Fig. 3. Structural System Model

B. Conceptual System Modeling
The Structural System Model derived from the System

Representation is reported in Figure 3; in particular, as the
simulation objectives concern management policies of SCs,
the level of representation chosen for the Vessel is more
abstract with respect to the level resulting from the Analysis
phase.

For each entity in the Structural System Model the
corresponding Society, Agent or Artifact Model is defined (see
Section II.B). Due to space limitations, the following sub-
sections report only the Society Model for the Container

Terminal Society, the Agent Model for the Straddle Carrier
Agent and the Artifact Model for the Movement Task Assigner
Artifact.

1) The Container Terminal Society Model
The Society Model of the Container Terminal Society is
shown in Figure 4 which reports the different entities which
compose the Society, the safety and liveness rules which
govern it and its dynamics.

Entity Type

Vessel
Artifact

(Resource
Manager)

Quay Crane
(QC) Agent

Buffer
Artifact

(Resource
Manager)

Straddle
Carrier (SC) Agent

Movement
Task

Assigner
Artifact

Yard
Artifact

(Resource
Manager)

Safety rules
S_CTerm1. NCvi (t) = NCvi(t0) – NCDvi(t)
 + NCLvi(t);

where NCi(t) is the number of containers
on the Vessel i at time t; NCDvi(t) is the
number of containers that have been
discharged from the Vessel i up to time t;
NCLvi(t) is the number of containers that
have been loaded onto the Vessel i up to
time t.

S_Term2. ...

Liveness rules
L_CTerm1. A Quay Crane cannot download

a container on its buffer if the buffer is
full.

L_CTerm2. …

Fig. 4. The Society Model of the Container Terminal Society.

2) The Straddle Carrier Agent Model
Part of the Agent Model of the Straddle Carrier Agent is
shown in Figure 5. In particular:
- Figure 5.a shows the Straddle Carrier Goal Model in

which, as the two goals (Movement of containers from
Buffer to Yard and Movement of containers from Yard to
Buffer) can be achieved independently, no achievement
relationship is present;

- Figures 5.b illustrates a part of the Straddle Carrier
Behavioral Model; in particular, the Straddle Carrier
Activity Table specifies the activities (Container
Movement Activity) which the Straddle Carrier Agent
executes for achieving its goals, along with the pre and
post conditions and the execution schedule (periodical).
Moreover, as the definition of an Agent Behavioral Model
requires that each activity in the Agent Activity Table
must be further described by an UML [23] Activity
Diagram, the diagram for the Container Movement
Activity is also shown. The UML Activity Diagram must
be further enriched with an Activity Action Table (not
shown in figure due to space limitations) which reports,
for each single component action, a synthetic description
of the action along with its pre and post conditions, the
capabilities required for carrying out the action and its
type (computation or interaction).

- Figure 5.c reports the Straddle Carrier Interaction Model
which specifies, for each action of the interaction type
(Task Assignment Request, Assigner Response) of the
Container Movement Activity, the initiator, the partners
of the interaction and the exchanged information.

(sub)goal

SC_sg1 SC_sg2

SC_sg1: Movement of
containers from Buffer to Yard

SC_sg2: Movement of
containers from Yard to Buffer

(a) The Straddle Carrier Goal Model
- Vendor Activity Table -

Activity Goal Pre
conditions

Post
conditions

Execution
Schedule

Container
Movement

SC_sg1
SC_sg2

- The container
handled during the
task must be put

down in the yard or
in the buffer

depending on the
task type

Periodical

- UML Activity Diagram for the Container Movement Activity -

[Vessel Handling not completed]

[Movement in progress]

[No Movement in progress]

Legenda

Time Signal

Send Signal

Accept Signal

Action

Decision

Final node

Flow/edge

Assigner
Response

Task
Assignment
Request

[Vessel Handling completed]

[Yard to Buffer Task]

Move
Container

From the Yard
to the Buffer

[Buffer to Yard Task]
Move

Container
From the Buf fer

to the Yard

(b) A part of the Straddle Carrier Behavioral Model

Interaction Activity Initiator Partners Exchanged
Information

Task
Assignment
Request

Container
Movement

Straddle Carrier Movement
Task Assigner

Task Request

Assigner
Response

Container
Movement

Movement Task
Assigner

Straddle
Carrier

Task
Description

(c) The Straddle Carrier Interaction Model
Fig. 5. Part of the Agent Model of the Straddle Carrier Agent.

- Movement Task Assigner Activity Table -
Activity Service Pre

conditions
Post

conditions
Execution
Schedule

Task
Assignment

Movement
Task

Assignment

A movement task must
be available unless the

Vessel handling is
completed

If available, a new
movement task

must be assigned to
the SC

Triggered

- UML Activity Diagram for the Task Assignment Activity -

[Vessel Handling not completed]

Task Assignment
Request

Task
Assignment
Response

[Vessel Handling completed]

Assign a move
to the

requesting SC

Evaluate
next moves for
the other SCs

in the pool

Fig. 6. Part of the Movement Task Assigner Behavioral Model.

3) The Movement Task Assigner Artifact Model
Figure 6 presents part of the Artifact Model of the

Movement Task Assigner Artifact, and, in particular, the part
of the Movement Task Assigner Behavioral Model which
describes the Task Assignment Activity triggered by an SC
requesting a new container movement to be performed. In
particular, at the completion of its container movement the SC
requests the next assignment from the Movement Task
Assigner (see Figure 5.c). The Movement Task Assigner must

then decide, from available moves, the next best move for the
requesting SC taking into account also subsequent moves
which could be assigned to the other SCs in the pool
(Lookahead Policy). Such planning could be dynamically
revised at the next task assignment request.

(a) The Simulation Context

(b) The Container Movement SBehavior of the Straddle

Carrier SAgent
Fig. 7. Part of the Simulation Model.

C. Simulation Design

Figures 7.a-b show a portion of the Simulation Model
produced by adopting the Repast Simphony Toolkit [18, 20] as
the reference simulation framework. Figure 7.a shows the
organization of the Simulation Context (SContext) whereas
Figure 7.b shows a Simulation Behavior (SBehavior) of the
SAgent representing a Straddle Carrier. In particular, the
Container Movement SBehavior in figure 7.b corresponds to
the Container Movement Activity reported in figure 5.b. The
seamless transition between the two models is highlighted by
the comparison between these two figures which clearly
demonstrates that the behavior of an Agent/Artifact, defined
during the Conceptual Modeling phase in terms of Activities

expressed by using the UML notation, can be directly mapped
onto that of an SAgent, defined during the Simulation Design
phase in terms of SBehaviors.

D. Simulation Execution and Results Analysis
Starting from the Simulation Model a great part of the

simulation code is automatically generated by the Repast
Simphony Development Environment [15], compiled by using
a Java compiler and then loaded into the Repast Simphony
Runtime Environment for the Simulation Set-up and
Execution.

According to the simulation objectives, the execution of the
resulting Simulation Model made it possible to compare and
quantify the benefits of both dedicated and pooling
modalities. In particular, several simulations have been
executed for different scenarios in order to evaluate: the Quay
Crane Idle Time (QCIT), the Straddle Carrier Covered
Distance (SCCD), and the Straddle Carrier Idle Time (SCIT).
As an example, Figures 8.a-b illustrate the QCIT and the
SCCD, in the two different modalities, with reference to a
simulation scenario based on real-life organizational topology
and equipment typologies of the Gioa Tauro Container
Terminal [3]. In this simulation scenario one Vessel is handled
by two QCs for the loading and discharging of 50 containers
respectively. The results shown in Figure 8, which are results
averaged from 30 simulation runs, made it possible to quantify
the significant advantage of the pooling modality in terms of
vessel handling time and cost reduction.

(a) Quay Crane Idle Time(QCIT)

(b) Average Distance Covered by the Straddle Carriers

Fig. 8. Some Simulation Results.

V. CONCLUSION
Several tools for ABMS are now available as well as

methodologies for the development of agent-based systems
which are mainly proposed in the context of Agent-Oriented
Software Engineering (AOSE). Nonetheless, only a few
results are available which integrate the methodological

features coming from the AOSE with the modeling and
simulation features of modern ABMS tools. As a
consequence, scarce support in the whole process which goes
from the system analysis to the analysis of simulation results
is provided to domain experts with limited programming
expertise. To address these issues, easyABMS, a recently
proposed and full-fledged methodology for agent-based
modeling and simulation of complex systems, fruitfully
exploits both AOSE modeling techniques and simulation tools
specifically conceived for ABMS.

In this paper, the effectiveness of easyABMS has been
demonstrated using a case study in the logistics domain which
concerns the analysis of different policies for managing
Straddle Carriers in a Container Transshipment Terminal. In
particular, overcoming the main limitations when using only
classical analytical models, a quantitative assessment of two
primary Straddle Carrier management policies and an
effective solution in guiding the dynamic assignment of
container moves have been easily provided. The exploitation
of easyABMS allowed to demonstrate how this new
methodology can seamlessly guide domain experts from the
analysis of the system under consideration to its modeling and
simulation, as the phases which compose the easyABMS
process, the work-products of each phase, and the (seamless)
transitions among the phases are fully specified. In addition,
easyABMS focuses on system modeling and simulation
analysis rather than details related to programming and
implementation as it exploits the Model Driven paradigm,
making it possible the automatic code generation from a set of
(visual) models of the system.

Future research efforts will be devoted to: (i) extend the
Repast Simphony Toolkit so to obtain an integrated ABMS
environment which fully supports all the process phases also
comprising the System Analysis and Conceptual System
Modeling phases; (ii) extensively experiment easyABMS in
case studies of social, financial, economic, and logistic
relevance; (iii) adopting a meta-simulation framework for the
Simulation Design phase so to obtain a platform-independent
simulation model which can then be translated into different
platform-dependent simulation models.

REFERENCES
[1] C. Atkinson and T. Kühne. Model-driven development: A metamodeling

foundation. IEEE Software, 20(5):36-41, 2003.
[2] G. Booch. Object-Oriented Analysis and Design with Applications.

Addison-Wesley, 1994.
[3] J.-F. Cordeau, M. Gaudioso, G. Laporte, and L. Moccia. The service

allocation problem at the Gioia Tauro maritime terminal. European
Journal of Operational Research, 176:1167–1184, 2007.

[4] A. Garro, W. Russo. An integrated agent-based process for the
simulation of complex systems. Proceedings of the International

Conference on Economic Science with Heterogeneous Interacting
Agents (ESHIA), Warsaw, Poland, 19-21 June, 2008.

[5] A. Garro, W. Russo. An integrated and iterative process for agent-based
modeling and simulation. Proceedings of the 5th International
Conference of the European Social Simulation Association (ESSA),
Brescia, Italy, 1-5 September, 2008.

[6] L. Henesey, P. Davidsson, and J. A. Persson. An agent-based approach
for building complex software systems. Autonomous Agents and Multi-
Agent Systems, 18(2):220-238, 2009.

[7] T. Iba and N. Aoyama. Understanding Social Complex Systems with
PlatBox Simulator. In Proc. of the 5th International Conference on
Computational Intelligence in Economics and Finance (CIEF2006),
pages 64-67, Taiwan, October 2006.

[8] T. Iba, Y. Matsuzawa, and N. Aoyama. From Conceptual Models to
Simulation Models: Model Driven Development of Agent-Based
Simulations. In Proc. of the 9th Workshop on Economics and
Heterogeneous Interacting Agents. Kyoto, Japan, 2004.

[9] N. R. Jennings. An agent-based approach for building complex software
systems. Communications of the ACM, 44(4):35-41, 2001.

[10] MASON Home Page. George Mason University, Fairfax, VA, available
at http://cs.gmu.edu/~eclab/projects/mason/.

[11] N. Minar, R. Burkhart, C. LAngton, and M. Askenazi. The Swarm
Simulation System: A Toolkit for Building Multi-Agent Simulations.
Working Paper 96-06-042. Santa Fe Institute, 1996.

[12] A. Molesini, A. Omicini, A. Ricci, E. Denti. Zooming multi-agent
systems. In Proc of the 6th International Workshop on Agent-Oriented
Software Engineering (AOSE 2005), AAMAS 2005, Utrecht, The
Netherlands, 2005.

[13] M. F. Monaco, L. Moccia, and M. Sammarra. Operations Research for
the management of a transhipment container terminal. The Gioia Tauro
case. Maritime Economics and Logistics, 2009, Vol. 11, n. 1, pp. 7-35.

[14] M. F. Monaco, and M. Sammarra. Scheduling and dispatching models
for routing straddle carriers at a container terminal. Proceedings of the
XXXVIII Annual Conference of the Italian Operations Research
Society, Genova, Italy, Sept. 5-8, 2007.

[15] M. J. North, T.R. Howe, N.T. Collier, and J.R. Vos. The Repast
Simphony Development Environment. In Proc. of the Agent 2005
Conference on Generative Social Processes, Models, and Mechanisms,
Chicago, IL , October 2005.

[16] M. J. North, T.R. Howe, N.T. Collier, and J.R. Vos. Repast Simphony
Runtime System. In Proc. of the Agent 2005 Conference on Generative
Social Processes, Models, and Mechanisms, Chicago, IL, October 2005.

[17] M. J. North, C. M. Macal. Managing Business Complexity: Discovering
Strategic Solutions with Agent-Based Modeling and Simulation. Oxford
University Press, 2007.

[18] M.J. North, E. Tatara, N.T. Collier, and J. Ozik. Visual Agent-Based
Model Development with Repast Simphony. In Proc. of the Agent 2007
Conference on Complex Interaction and Social Emergence.
Northwestern University, Evanston, IL, November2007.

[19] M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Mi-croworlds. MIT Press, Cambridge, Mass., 1997.

[20] ROAD (Repast Organization for Architecture and Design). Repast Home
Page, Chicago, IL, available as http://repast.sourceforge.net/.

[21] D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):41-
47, 2006.

[22] UNCTAD (2006). United Nations Conference on Trade and
Development - Review of Maritime Transportation.

[23] Unified Modeling Language (UML) Specification. Version 2.1.2. Object
Management Group Inc., 2007.

[24] U. Wilensky. NetLogo. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL, 1999.

