
 

  
Abstract— ABMS (Agent-Based Modeling and Simulation) has 

arisen as new approach to effectively support domain experts to 
cope with the growing complexity of the problems which they 
have to face and solve. To date, few methodologies are available 
which can be exploited by domain experts with limited 
programming expertise to model and subsequently analyze 
complex systems typical of their application domains. The 
easyABMS methodology has been proposed to overcome the lack 
of integrated methodologies able to seamlessly guide domain 
experts from the analysis of the system under consideration to its 
modeling and analysis of simulation results. In this paper, the 
effectiveness of easyABMS is demonstrated through a case study 
in the logistics domain which concerns the analysis of different 
policies for managing vehicles used for stacking and moving 
containers in a transshipment terminal. 

  
Index Terms— Agent-Based Modeling and Simulation, Agent-
Oriented Methodologies, Container Terminal Management. 

I. INTRODUCTION 
gent Based Modeling and Simulation (ABMS) is a new 
approach for analyzing and modeling complex systems, 

an approach which is becoming acknowledged for its efficacy 
in several application domains (financial, economic, social, 
logistics, physical, chemical, engineering, etc) [17]. ABMS, 
allows for the definition of a system model based on 
autonomous, goal-driven and interacting entities (agents) 
organized into societies which is then simulated so to obtain 
significant information on not only the properties of the 
system under consideration but also its evolution. 

Although several ABMS tools are currently available [10, 
11, 19, 20, 24], there are only a few methodologies involving 
well- defined processes which are able to cover all the phases 
from the analysis of the system under consideration to its 
modeling and subsequent analysis of simulation results [7, 8, 
17]. As a result, simulation models are often obtained using  
the two following approaches: (i) a direct implementation 
based on a chosen ABMS tool of the simulation model whose 
abstraction level is then too low and platform dependent as a 
conceptual modeling phase is not available; (ii) adapting a 
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given conceptual system model to a specific ABMS tool 
which, however, requires additional adaptation, calling for 
extra work, the amount of which increases depending on the 
gap between the conceptual and the implementation model of 
the system. Thus, both approaches lead to simulation models 
which are difficult to verify, modify and update. 

To address these issues, a new methodology, easyABMS, 
has recently been proposed [4,5] which has specifically been 
conceived for agent-based modeling and simulation of 
complex system, seamlessly covering all the phases from the 
analysis of the system under consideration to its modeling and 
analysis of simulation results. easyABMS defines an iterative 
process which is integrated, model-driven and visual. In 
particular, each phase of the process refines the model of the 
system which has been produced in the preceding phase and 
its work-products are mainly constituted by visual diagrams 
based on the UML notation [23]. In addition, according to the 
model-driven paradigm [1, 21] the simulation code is 
automatically generated from the derived system Simulation 
Model. On the basis of the simulation results, a new/modified 
and/or refined model of the system can be obtained through a 
new process iteration which can involve all or some process 
phases. 

Currently, easyABMS exploits the advanced features of 
visual modeling and of (semi)automatic code generation 
provided by the Repast Simphony Toolkit [17,18], a very 
popular and open source ABMS platform. 

In this paper, the effectiveness of easyABMS in supporting 
domain experts to fully exploit the benefits of the ABMS, 
while significantly reducing programming and implementation 
efforts, is exemplified through a case study in the logistics 
domain. Specifically, the case study is focused on the analysis 
of different policies for the management of vehicles used for 
stacking and moving containers (straddle carriers) in a 
container transshipment terminal.  

The remainder of this paper is organized as follows: Section 
II presents an overview of the easyABMS methodology and 
the related process; Section III presents a brief introduction to 
the reference application domain (a container transhipment 
terminal) and to related management problems; Section IV 
shows the application of easyABMS to the agent-based 
modeling and simulation of the Straddle Carrier Routing and 
Dispatching problem; finally, conclusions are drawn and 
future works delineated. 

Exploiting the easyABMS methodology in the 
logistics domain  
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Fig. 1.  The reference meta-model of easyABMS. 
 

II. AN OVERVIEW OF EASYABMS 
The easyABMS methodology defines an iterative process 

for ABMS composed of seven subsequent phases from the 
System Analysis to the Simulation Result Analysis [4, 5]. On 
the basis of the simulation results obtained a new iteration of 
the process which can involve all or some process phases can 
be executed for achieving new simulation objectives or those 
which have not yet been obtained. Specifically, the process 
phases are the following:     
− System Analysis, in which a preliminary understanding of 

the system and the main simulation objectives are obtained 
(Analysis Statement); 

− Conceptual System Modeling, in which a model of the 
system is defined in terms of agents, artifacts and societies 
(Conceptual System Model); 

− Simulation Design, in which a model of the system is 
defined in terms of the abstractions offered by the 
framework which is exploited for the simulation 
(Simulation Model);  

− Simulation Code Generation, in which the Simulation Code 
for the target simulation environment is automatically 
generated starting from the model which is obtained in the 
previous phase; 

− Simulation Set-up, in which the Simulation Scenarios are 
established; 

− Simulation Execution and Results Analysis, in which the 
simulation results are analyzed with reference to the 
objectives of the simulation previously identified in the 
System Analysis phase. 

Currently, all the simulation related phases are supported by 
the Repast Simphony Toolkit [18, 20]. In particular,  the 
Simulation Design and the Simulation Code Generation 
phases are supported by the Repast Simphony Development 
Environment [15], while the Simulation Set-up, the Simulation 
Execution and the Simulation Results Analysis phases are 
supported by the Repast Simphony Runtime Environment [16].  

The models of the system generated by each process phase 
are produced according to the well-defined reference meta-
model shown in Figure 1 so to facilitate the verification of the 
correctness of the models produced. Moreover, the concepts 
related to each phase are defined by extending and/or refining 
those of the previous phase; this allows for the seamless 
integration between the phases as the model produced in each 
phase extends and/or refines the model of the system 
produced in the previous phase. 

The following sub-sections provides a brief description of 
each process phase. 

A. System Analysis  
In the System Analysis phase, the objectives of the 

simulation are specified and a preliminary understanding of 
the system and its organization is obtained.  

This phase is based on the principle of layering, exploiting 
the well-known techniques of Decomposition, Abstraction and 
Organization [2, 9], and is constituted of a sequence of 
analysis steps. In each step a new system representation is 
produced by applying the in-out zooming mechanisms [12] to 
the entities comprising the system representation which 
resulted from the preceding analysis step. In the first analysis 
step, a starting level of abstraction for analyzing the system is 
chosen and then the system  is  zoomed-in so to identify its 



 

component entities on the basis of the starting abstraction 
level. 

According to the reference meta-model of the System 
Analysis phase (see Fig. 1), an Entity can be characterized by 
autonomous and goal-oriented behavior (pro-active entity), 
purely stimulus-response behavior (re-active entity), or can be 
passive. In addition, both the rules governing entities and their 
evolution, and the relationships among entities are specified. 
Specifically, Safety rules determine the acceptable and 
representative states of an entity whereas liveness rules 
determine which state transitions are feasible during entity 
evolution. Relationships can be either intra-entity 
relationships (i.e. relationships among the component entities 
obtained by the zooming-in of an entity) or inter-entity 
relationships. 

The System Analysis phase ends when the user obtains a 
System Representation in which each component (pro-active, 
re-active, passive) entity has been represented at the level of 
abstraction which is appropriate for the objectives of the 
simulation. This System Representation, along with a synthetic 
description of the system being considered, a detailed 
description of each identified entity and the objectives of the 
simulation, constitutes the work-product of this phase (the 
Analysis Statement). 

B. Conceptual System Modeling 
In the Conceptual System Modeling phase, the Structural 

System Model is produced, and in particular, for each entity in 
the System Representation:  
− the abstraction level suited to specific simulation objectives 

is chosen;  
− the conceptual representation , in terms of Agent, Artifact or 

Society, is derived on the basis of the associations among 
the main concepts of the System Analysis and Conceptual 
System Modeling phases (see Fig. 1); 

− the interactions with the other entities are obtained from the 
intra and inter-relationships where the latter cross the 
boundaries of societies.  

The chosen level of abstraction of an entity can be modified in 
successive iterations through which it is then possible to 
produce new, modified, and/or refined Structural System 
Models. 

For each entity in the produced Structural System Model a 
specific model is then defined, whose type can be one of the 
following depending on the entity type:  
− Society Model which describes the entities which compose 

a Society, their type (Agent, Artifact, Society), and the rules 
governing the Society (safety rules) and its evolution 
(liveness rules); 

− Agent Model which details the complex goal of an Agent 
(Agent Goal Model), its behavior  as a set of periodically 
scheduled and triggered Activities (i.e. flow of Actions) 
which contribute to the achievement of the Agent goals 
(Agent Behavioral Model), and its interactions with other 
Agents and Artifacts in which the agent is involved (Agent 
Interaction Model); 

− Artifact Model which describes the behavior of an Artifact  
as a set of triggered  Activities  related to the offered 
services (Artifact Behavioral Model), and its interactions 
with other Artifacts and Agents (Artifact Interaction 
Model). 

C. Simulation Design 
In this phase, starting from the Conceptual System Model a 

Simulation Model of the system, in terms of the abstractions 
offered by the framework exploited for the simulation, is 
produced. 

In Figure 1 the basic simulation concepts of the reference 
simulation framework (the Repast Simphony Toolkit [18, 20]) 
are highlighted. Specifically, the central concept is the 
(simulation) Context (SContext) which represents an abstract 
environment in which (simulation) Agents (SAgents) can act 
and is provided with an internal state consisting of simple 
values and Data Fields (a n-dimensional field of values). In 
addition, an SContext can also support behaviors for the 
management of its internal state. SContexts can be organized 
hierarchically so to contain sub-SContexts which can have 
their own state. SAgents in an SContext can be organized by 
using Projections which are structure designed to define and 
enforce relationships among the SAgents in the SContext. In 
particular, a Network Projection defines the relationships of 
both acquaintance and influence between SAgents whereas 
Space Projections define (physical or logical) space structures 
(Grid, Scalar Fields, Continuous Space, Geography) in which 
the agents can be situated.   

An SAgent can have multiple behaviors (SBehaviors), each 
operating on SAgent Properties and consists of a sequence of 
Steps; each Step can be associated with the execution of a 
Task or with the control of the flow of the Task execution 
(Loop, Join, Decision, End). Each SBehavior can be 
characterized by a Scheduled Method which defines a constant 
execution schedule, and by a Watch which periodically, on the 
basis of some watched parameters and conditions, triggers the 
execution of the behavior.  

A Repast Simphony simulation model is defined by first 
specifying the structure and the characteristics of the root 
SContext and of all the possible nested sub-SContexts, in 
terms of their components (SAgents, Projections and sub-
SContexts), and, then, specifying for each SAgent its 
Properties and SBehaviors, and for each SBehavior the 
component Steps, and the associated Scheduled Method and 
Watch. 

The associations among the above described simulation 
concepts of the Repast Simphony Toolkit and the related 
concepts of the Conceptual System Model are reported in 
Figure 1. The exploitation of these associations makes it 
possible to directly obtain, starting from the Conceptual 
System Model, the Simulation Model of the System as follows:  
− each Society becomes a Repast Simulation Context 

(SContext), the System is the root SContext and any 
enclosed Society is a (sub)-Context of the corresponding 
enclosing Society; 



 

− Artifacts and Agents become Repast Simulation Agents 
(SAgents), the Activities which constitutes their behaviors 
are easily converted into Repast Simulation Behaviors 
(SBehaviors);  

− relationships derived from Interactions among Agents and 
Artifacts generate Repast Network Projections. 

D. The other Simulation related phases 
According to the Model Driven paradigm [1, 21], the Repast 

Simphony Development Environment [15] is able to 
automatically generate a great part of the simulation code 
from the derived Simulation Model of the system. The 
simulation which can be extended with additional Java and 
XML code is then compiled by the Repast Simphony 
Development Environment using a Java compiler and then 
loaded into the Repast Simphony Runtime Environment.  

The simulation executed by the Repast Symphony Runtime 
Environment can start after establishing: (i) the simulation 
scenario by specifying the values of the simulation parameters 

defined in the Simulation Design phase; (ii) the presentation 
preferences for the simulation results concerning the system 
properties of interest identified during the Simulation Design 
phase. 

Finally, the obtained simulation results can also be analyzed  
by exploiting the analysis tools (Matlab, R, VisAd, iReport, 
Jung) which can be directly invoked from the Repast 
Simphony Runtime Environment so to verify whether the 
objectives of the simulation identified during the System 
Analysis phase have been achieved. Where objectives have 
not been achieved or where new simulation objectives 
emerge, a new iteration of the process can be executed, which 
can then involve all or some process phases so that 
new/modified and/or refined models of the system can be 
produced for achieving  the remaining/new simulation 
objectives. 

 

TABLE I 
MANAGEMENT PROBLEMS IN CONTAINER TRANSHIPMENT TERMINALS 

PHASE PROBLEM DESCRIPTION 
Arrival of the containership QUAY CRANE ASSIGNMENT PROBLEM (QCAP) Determining the number of quay cranes to assign 

to an incoming vessel.  
BERTH ALLOCATION PROBLEM (BAP); Assigning incoming ships to berths, by taking 

into account constraints in both spatial and 
temporal dimensions so to minimize the time 
each ship spends in port (turnaround time).  

Unloading and Loading of the ship QUAY CRANE SCHEDULING PROBLEM (QCSP) Determining a sequence of unloading and 
loading movements for cranes assigned to a 
vessel in order to minimize the vessel 
completion time as well as the crane idle time. 

Transport of containers from the ship to 
the yard and vice versa 

YARD MANAGEMENT Allocating and reallocating the containers in the 
yard in order to reduce the amount of time 
required to handle of each vessel. 

STRADDLE CARRIER ROUTING AND 
DISPATCHING  (SCRD) 

Determining  the operation to be performed by 
the straddle carries to maximize the productivity 
of each crane. 

 
 

III. MANAGEMENT OF A CONTAINER TRANSHIPMENT 
TERMINAL 

Due to the continuous growth in the volume of goods 
exchanged around world, further boosted by the rising 
Chinese and Indian economies, maritime transportation is 
becoming a crucial asset in global economy as it allows for 
large economies of scale in the transport sector. Specifically, 
the current maritime transportation system is based on a hub 
and spoke model [22] whereby ultra-large containerships 
operate between a limited number of mayor 
(mega)transhipment terminals (hubs), and smaller vessels 
(feeders) which link the hubs with other minor ports (spokes). 

In this scenario, a hub terminal must maintain a high level 
of efficiency, not only to avoid traffic congestion but also to 
increase its competiveness as some main characteristics 
(geographical, structural and technological) which also 
determine the competitiveness of a container terminal can be 
modified only on a long term perspective.   

It thus becomes crucial to increase hub efficiency, 

rendering it more competitive through the optimal 
management of terminal resources and optimizing tactical and 
operational logistics.   

In the next sub-section, the organization of a maritime 
container terminal and some primary management issues are 
briefly discussed; a more complete description can be found in 
[13]. 

A. Organization of a Container Transhipment Terminal 
Each ship approaching a maritime terminal enters in a 

harbour and waits to moor at an assigned berth position along 
the terminal quay which is equipped with giant cranes (quay 
cranes) for loading and unloading containers. These 
containers, in a DTS (Direct Transfer System ) terminal, are 
transferred to and from the terminal yard by a fleet of vehicles 
(straddle carrier) which are able to stack containers in the 
yard. In contrast, in an ITS (Indirect Transfer System) 
terminal, containers are moved by trucks and trailers from the 
quay to the yard and vice-versa and staked by yard cranes. 

In this context, the main logistic processes and related 
management problems can be grouped in relation to the flow 



 

of containers in the terminal as shown and briefly described in 
Table 1; other issues are related to inter-terminal 
transportation and to possibly link with other transportation 
modes. Moreover, a transversal issue is related to the human 
resources management [13].  

These very fundamental issues are not only reciprocally 
related, but the large-scale nature of hub management makes 
the use of standard exact solution algorithms impractical.  In 
fact, the management of such large and intricately complex 
systems require new modeling methods which must also 
generate proof-of-concept simulations. 

In the following Section, the effectiveness of the ABMS 
approach and the easyABMS methodology is shown focusing 
on the Straddle Carrier Routing and Dispatching Problem 
(SCRDP) [14]; with reference to the different management 
problems in a  Container Transhipment Terminal (see Table 
1), a more complete and domain specific agent-based 
simulator has been proposed in [6].  

IV. MODELING AND SIMULATING STRADDLE CARRIER 
ROUTING AND DISPATCHING THROUGH EASYABMS 

A. System Analysis  
The main indicator of optimal performance in a container 

transhipment terminal is the average ship-turn-around time 
which is the average time-lapse between a ship’s arrival and 
its departure, starting from the amount of time the ship waits 
for a berth (berth waiting time) and the duration for which the 
ship is docked for unloading and loading operations (handling 
time). In the following, the focus is set on the handling time 
given to fact that this time is highly dependent on the 
productivity of the Quay Cranes (QCs) and, as a consequence, 
on the management policies of the Straddle Carriers (SCs).  

Specifically, to maximize the productivity of the QCs in a 
DTS container terminal, the SCs should operate so that the 
buffer of each crane, which has a limited capacity of only a 
few containers, is not full /not empty if the crane is 
performing the discharging/loading phase. Specifically, there 
are two main policies for organizing the work of SCs: 

- dedicated modality: a given number of SCs are allocated 
to each QC to follow its working phases;  

- shared modality (or pooling): a group of SCs is shared by 
two or more QCs which work on the same ship or on adjacent 
berthed ships and, possibly, frequently swapping between the 
tasks of loading and discharging containers.  

The shared modality presents several benefits with respect 
to the dedicated mode: (i) reduction in the number of empty 
trips done by the SCs (i.e. travels without carrying any 
container), as the SCs can fruitfully alternate between trips 
carrying containers from the yard to the cranes which are 
loading outgoing cargo and trips back to the yard, carrying 
discharged cargo; (ii) more constant value of productivity of 
both QCs and SCs as, when a crane is not working, the SC of 
a pool can speed up operations of the other QCs.  

A quantitative evaluation of the aforementioned benefits is 
not easy to obtain through traditional analytical models. 

Moreover, classical dispatching models [14] often fail to 
provide dynamic assignment of container moves to SCs of a 
pool in order to speed up the loading/discharging operations 
(the Straddle Carriers Pooling Problem - SCPP). To overcome 
these shortcomings, an  agent-based model can be defined and 
simulated with the following main objectives:  

(i) quantifying the benefits of the pooling modality with 
reference to system productivity (vessels handling time) and 
cost reduction (numbers of exploited SCs and total distance 
covered); 

(ii) obtaining an effective solution for the dynamic 
assignment of container moves to the SCs of a pool which can 
be used for automatically drive the coordinated behavior of 
the SCs in a real container terminal.       

The System Representation obtained on the basis of the 
identified simulation objectives is reported in Figure 2. All the 
entities represented in Figure 2 are further described, along 
with their relationships and their safety and liveness rules, in a 
textual format enriched by tables and diagrams which are not 
reported due to space limitations. 

<<Pro-Active>>

Quay Crane

Container Terminal

<<Passive>>
Vessel

<<Passive>>
Deck

<<Passive>>
Hold

intra-entity relantionship
inter-entity relantionship

<<Passive>>

Buffer

<<Pro-Active>>

Straddle Carrier

<<Passive>>

Yard

<<Re-Active>>

Movement Task Assigner

 
Fig. 2. System Representation  
 

<<Artifact>>
<<Resource Manager>>

Vessel

<<Agent>>

Quay Crane

<<Society>>
Container Terminal

<<Artifact>>
<<Resource Manager>>

Buffer

<<Agent>>

Straddle Carrier

<<Artifact>>
<<Resource Manager>>

Yard

<<Artifact>>

Movement Task Assigner

Fig. 3. Structural System Model 

B. Conceptual System Modeling 
The Structural System Model derived from the System 

Representation is reported in Figure 3; in particular, as the 
simulation objectives concern management policies of  SCs, 
the level of representation chosen for the Vessel is more 
abstract with respect to the level resulting from the Analysis 
phase. 

For each entity in the Structural System Model the 
corresponding Society, Agent or Artifact Model is defined (see 
Section II.B). Due to space limitations, the following sub-
sections report only the Society Model for the Container 



 

Terminal Society, the Agent Model for the Straddle Carrier 
Agent and the Artifact Model for the Movement Task Assigner 
Artifact. 

1) The Container Terminal Society Model 
The Society Model of the Container Terminal Society is 
shown in Figure 4 which reports  the different entities which 
compose the Society, the safety and liveness rules which 
govern it and its dynamics. 

Entity Type 

Vessel 
Artifact 

(Resource 
Manager) 

Quay Crane 
(QC) Agent 

Buffer 
Artifact 

(Resource 
Manager) 

Straddle 
Carrier (SC) Agent 

Movement 
Task 

Assigner 
Artifact 

Yard 
Artifact 

(Resource 
Manager) 

 

Safety rules 
S_CTerm1. NCvi (t) = NCvi(t0) – NCDvi(t) 
                                    + NCLvi(t); 

where NCi(t) is the number of containers 
on the Vessel i at time t; NCDvi(t) is the 
number of containers that have been 
discharged from the Vessel i up to time t;  
NCLvi(t) is the number of containers that 
have been loaded onto the Vessel i up to 
time t.  

S_Term2.             ... 
 
Liveness rules 
L_CTerm1. A Quay Crane cannot download 

a container on its buffer if the buffer is 
full. 

L_CTerm2.          … 

Fig. 4. The Society Model of the Container Terminal Society. 

2) The Straddle Carrier Agent Model 
Part of the Agent Model of the Straddle Carrier Agent is 
shown in Figure 5. In particular: 
- Figure 5.a shows the Straddle Carrier Goal Model in 

which, as the two goals (Movement of containers from 
Buffer to Yard and Movement of containers from Yard to 
Buffer)  can be achieved independently, no achievement 
relationship is present; 

- Figures 5.b illustrates a part of the Straddle Carrier 
Behavioral Model; in particular, the Straddle Carrier 
Activity Table specifies the activities (Container 
Movement Activity) which the Straddle Carrier Agent 
executes for achieving its goals, along with the pre and 
post conditions and the execution schedule (periodical). 
Moreover, as the definition of an Agent Behavioral Model 
requires that each activity in the Agent Activity Table 
must be further described by an UML [23] Activity 
Diagram, the diagram for the Container Movement 
Activity is also shown. The UML Activity Diagram must 
be further enriched with an Activity Action Table (not 
shown in figure due to space limitations) which reports, 
for each single component action, a synthetic description 
of the action along with its pre and post conditions, the 
capabilities required for carrying out the action and its 
type (computation or interaction).   

- Figure 5.c reports the Straddle Carrier Interaction Model 
which specifies, for each action of the interaction type 
(Task Assignment Request, Assigner Response) of the 
Container Movement Activity, the initiator, the partners 
of the interaction and the exchanged information. 

(sub)goal

SC_sg1 SC_sg2

SC_sg1: Movement of 
containers from Buffer to Yard

SC_sg2: Movement of 
containers from Yard to Buffer

(a) The Straddle Carrier Goal Model 
- Vendor Activity Table - 

Activity Goal Pre
conditions

Post
conditions

Execution 
Schedule

Container 
Movement

SC_sg1
SC_sg2

- The container 
handled during the 
task must be put 

down in the yard or 
in the buffer 

depending on the 
task type

Periodical

 
- UML Activity Diagram for the Container Movement Activity - 

[Vessel Handling not completed]

[Movement in progress]

[No Movement in progress]

Legenda

Time Signal

Send Signal

Accept Signal

Action

Decision

Final node

Flow/edge

Assigner
Response

Task 
Assignment
Request

[Vessel Handling completed]

[Yard to Buffer Task]

Move 
Container

From the Yard
to the Buffer

[Buffer to Yard Task]
Move 

Container
From the Buf fer

to the Yard

(b) A part of the Straddle Carrier Behavioral Model

Interaction Activity Initiator Partners Exchanged
Information

Task 
Assignment 
Request

Container 
Movement

Straddle Carrier Movement 
Task Assigner

Task Request

Assigner
Response

Container
Movement

Movement Task 
Assigner

Straddle 
Carrier

Task   
Description

(c) The Straddle Carrier Interaction Model 
Fig. 5. Part of the Agent Model of the Straddle Carrier Agent. 

- Movement Task Assigner Activity Table - 
Activity Service Pre

conditions
Post

conditions
Execution 
Schedule

Task 
Assignment

Movement 
Task 

Assignment

A movement task must 
be available unless the 

Vessel handling is 
completed

If available, a new 
movement task 

must be assigned to 
the SC 

Triggered

 
- UML Activity Diagram for the Task Assignment Activity - 

[Vessel Handling not completed]

Task Assignment
Request

Task 
Assignment
Response

[Vessel Handling completed]

Assign a move 
to the

requesting SC

Evaluate
next moves for
the other SCs

in the pool

Fig. 6. Part of the Movement Task Assigner Behavioral Model. 

3) The Movement Task Assigner Artifact Model 
Figure 6 presents part of the Artifact Model of the 

Movement Task Assigner Artifact, and, in particular, the part 
of the Movement Task Assigner Behavioral Model which 
describes the Task Assignment Activity triggered by an SC 
requesting a new container movement to be performed. In 
particular, at the completion of its container movement the SC 
requests the next assignment from the Movement Task 
Assigner (see Figure 5.c). The Movement Task Assigner must 



 

then decide, from available moves, the next best move for the 
requesting SC taking into account also subsequent moves 
which could be assigned to the other SCs in the pool 
(Lookahead Policy). Such planning could be dynamically 
revised at the next task assignment request. 

 

 
(a) The Simulation Context 

 
(b) The Container Movement SBehavior of the Straddle 

Carrier SAgent 
Fig. 7. Part of  the Simulation Model. 

C. Simulation Design 

Figures 7.a-b show a portion of the Simulation Model 
produced by adopting the Repast Simphony Toolkit [18, 20] as 
the reference simulation framework. Figure 7.a shows the 
organization of the Simulation Context (SContext) whereas 
Figure 7.b shows a Simulation Behavior (SBehavior) of the 
SAgent representing a Straddle Carrier. In particular, the 
Container Movement SBehavior in figure 7.b corresponds to 
the Container Movement Activity reported in figure 5.b. The 
seamless transition between the two models is highlighted by 
the comparison between these two figures which clearly 
demonstrates that  the behavior of an Agent/Artifact, defined 
during the Conceptual Modeling phase in terms of Activities 

expressed by using the UML notation, can be directly mapped 
onto that of an SAgent, defined during the Simulation Design 
phase in terms of SBehaviors.  

D. Simulation Execution and Results Analysis 
Starting from the Simulation Model a great part of the 

simulation code is automatically generated by the Repast 
Simphony Development Environment [15], compiled by using 
a Java compiler and then loaded into the Repast Simphony 
Runtime Environment for the Simulation Set-up and 
Execution.  

According to the simulation objectives, the execution of the 
resulting Simulation Model made it possible to compare and 
quantify the benefits of both dedicated and pooling 
modalities. In particular, several simulations have been 
executed for different scenarios in order to evaluate: the Quay 
Crane Idle Time (QCIT), the Straddle Carrier Covered 
Distance (SCCD), and the Straddle Carrier Idle Time (SCIT). 
As an example, Figures 8.a-b illustrate the QCIT and the 
SCCD, in the two different modalities, with reference to a 
simulation scenario based on real-life organizational topology 
and equipment typologies of the Gioa Tauro Container 
Terminal [3]. In this simulation scenario one Vessel is handled 
by two QCs for the loading and discharging of 50 containers 
respectively. The results shown in Figure 8, which are results 
averaged from 30 simulation runs, made it possible to quantify 
the significant advantage of the pooling modality in terms of 
vessel handling time and cost reduction. 

 
(a) Quay Crane Idle Time(QCIT) 

 
(b) Average Distance Covered by the Straddle Carriers 

Fig. 8. Some Simulation Results. 

V. CONCLUSION 
Several tools for ABMS are now available as well as 

methodologies for the development of agent-based systems 
which are mainly proposed in the context of Agent-Oriented 
Software Engineering (AOSE). Nonetheless, only a few 
results are available which integrate the methodological 



 

features coming from the AOSE with the modeling and 
simulation features of modern ABMS tools. As a 
consequence, scarce support in the whole process which goes 
from the system analysis to the analysis of simulation results 
is provided to domain experts with limited programming 
expertise. To address these issues, easyABMS, a recently 
proposed and full-fledged methodology for agent-based 
modeling and simulation of complex systems, fruitfully 
exploits both AOSE modeling techniques and simulation tools 
specifically conceived for ABMS.  

In this paper, the effectiveness of easyABMS has been 
demonstrated using a case study in the logistics domain which 
concerns the analysis of different policies for managing 
Straddle Carriers in a Container Transshipment Terminal. In 
particular, overcoming the main limitations when using only 
classical analytical models, a quantitative assessment of two 
primary Straddle Carrier management policies and an 
effective solution in guiding the dynamic assignment of 
container moves have been easily provided.  The exploitation 
of easyABMS allowed to demonstrate how this new 
methodology can seamlessly guide domain experts from the 
analysis of the system under consideration to its modeling and 
simulation, as the phases which compose the easyABMS 
process, the work-products of each phase, and the (seamless) 
transitions among the phases are fully specified. In addition, 
easyABMS  focuses on system modeling and simulation 
analysis rather than details related to programming and 
implementation as it exploits the Model Driven paradigm, 
making it possible the automatic code generation from a set of 
(visual) models of the system.   

Future research efforts will be devoted to: (i) extend the 
Repast Simphony Toolkit so to obtain an integrated ABMS 
environment which fully supports all the process phases also 
comprising the System Analysis and Conceptual System 
Modeling phases; (ii) extensively experiment easyABMS in 
case studies of social, financial, economic, and logistic 
relevance; (iii) adopting a meta-simulation framework for the 
Simulation  Design phase so to obtain a platform-independent 
simulation model which can then be translated into different 
platform-dependent simulation models. 
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