
Quick Prototyping and Simulation with the
INGENIAS Agent Framework

Jorge J. Gomez-Sanz
Facultad de Informática

Universidad Complutense
Madrid, Spain

Email: jjgomez@sip.ucm.es

Carlos Rodrı́guez Fernández
Facultad de Informática

Universidad Complutense
Madrid, Spain

Email: carlosrodriguez@computer.org

Juan Pavón
Facultad de Informática

Universidad Complutense
Madrid, Spain

Email: jpavon@fdi.ucm.es

Abstract—A major nightmare of software developers is having
clients claiming the delivered software is not what they expected.
Developers make an extensive use of prototypes to prevent such
situations to occur. However, the role of simulations have not
been studied enough. If an agent based simulation is intended,
not all existing agent oriented methodologies are capable of it.
It requires code generation capabilities, round-trip features, and
components with predefined behaviors. This work introduces the
ability of the INGENIAS Agent Framework to simulate MAS
specifications and how this can be useful for for agile development
of agent-based applications.

I. INTRODUCTION

A software development needs to verify the system under
construction satisfies a client needs. Requirements engineering
has contributed strongly to the solution by guaranteing the
requirements are properly captured and processed. Software
development processes have been modified to include the
ideas of incremental development (segmenting the system
functionality into coherent pieces and ordering them so that
their sequential/paralell realisation leads to the final system),
iterations (miniprojects focusing on the development of a
concrete piece of functionality of the application). Expected
products from this development process include several types
of documents aiming to communicate with the client and tell
them what is being done; and acceptance tests, to ensure the
behavior of the application is the one expected. Despite these
avances, prototyping seems to be a recurrent option.

Prototypes [1] have been extensively used as a effective
mean of showing results to the client and for experimenting
with part of the functionality the client demanded. However,
the development of a prototype is incomplete without a proper
environment that resembles the platform where the software
will be deployed. Hence, essaying with different software
architectures or showing a client how the software is expected
to behave is expensive.

In this scenario, agent technology has been recognised
as an affordable mean for producing prototypes and define
simulations [2]. Nevertheless, actual prototyping and simula-
tors are built ad-hoc. The facilities needed to facilitate rapid
application development where a simulation is required are
not present in most agent oriented methodologies. Remarkable
exceptions are ADELFE [3] and PASSIM [4], which integrate

simulations into their development cycles. However, as dis-
cussed in section VIII, more effective code generation and
specification-code synchronization facilities are needed.

In this aspect, INGENIAS [5] can improve existing pro-
posals. INGENIAS is an agent oriented software engineering
methodology which follows the model driven development
paradigm [6]. As a result, it considers the MAS specifica-
tion as the main product of the development and provides
tools to transform this specification into executable code.
INGENIAS takes advantage of the INGENIAS Development
Kit for producing fully functional systems [7]. Within this
kit, there is a distinguished module, the INGENIAS Agent
Framework which determines how to interprete the MAS
specification using as target platform JADE. This module is
complemented with the Code Uploader and the AppLinker
modules that provide round-trip engineering features, i.e., they
upload changes made in the code back into the specification.

This paper discusses how INGENIAS can make use of the
simulation concept in order to develop a software system. The
discussion bases in the features provided by the INGENIAS
Agent Framework, which is introduced in section II. The way
this software can be used to simulate is introduced in section
III. The introduction of the case study concerns to section IV.
The INGENIAS solution to the case study is made in section
V. The simulation made in this case study itself is introduced
in section VI and evaluated in section VII. The related works
are presented in section VIII. Finally, section IX introduces
the conclusions.

II. THE INGENIAS AGENT FRAMEWORK

IAF stands for the INGENIAS Agent Framework. It is a
framework developed along several years that enables a full
model driven development. This means that a developer can
focus most of its effort in specifying the system, converting a
great deal of the implementation in a matter of transforming
automatically the specification into code. This IAF permits
to combine the classic approach for coding applications with
modern techniques of automatic code generation. The resulting
system is almost fully operational, reducing the amount of
work of the developer in an relevant degree. Each produced
MAS works over the JADE platform. Hence, additional tools
existing for this framework can be applied as well.



A MAS in the IAF is constructed over the JADE platform.
The MAS can be distributed along one or several containers
in one or many computers. To enable this feature, the IAF has
means of declaring different deployment configurations.

The running MAS will be connected to several non-agent
applications providing the basic services. Hence, if the MAS
has to interact with a user, there will be GUIs producing
events according to user actions, and defining actuators for
agents. These GUIs will be specified as applications at the
specification level.

An important feature of the IAF is the relevance of in-
teractions, which are considered first class citizens during
specification and coding. An interaction in runtime is called
a conversation. The interactions according to the IAF have
the main purpose of transferrring information from one agent
to another. This information transfer is ruled by timeouts
and initiation/colaboration conditions. Also, interactions can
be aborted due to failures in the communication or simply
because an agent did not answer within the timeout. Finally,
the software code realising interactions consider cases where
there may be several actors of the same time, i.e., supports the
deliver of information to several recipients and the reception
of the answer from several agents at the task level.

Tasks are important as well. An agent chooses to schedule
a task for execution because the agent wants to attain a
pursued goal. The tasks influence in the mental state by re-
moving/adding information, starting conversations with other
agents, or modify already existing conversations. Tasks support
cardinality attributes associated to the inputs, so a task can use
as input all instances of a certain information type or just a
few.

Custom deployments permit the developer to define which
types of agents will be used and what individual mental state
will have during the start-up. This feature allows the developer
to define different configurations of the system so that the
developer can observe the behavior of the MAS under such
conditions.

Testing is a recent addition to the IAF. A developer can
define at the specification level what tests will be performed
and to what configuration of MAS will be applied. The
detailed definition of the test has to be handcrafted, though
there are some software libraries that make this work easier.

III. BUILDING A SIMULATION WITH THE INGENIAS
AGENT FRAMEWORK

In general, there are two approaches for simulation using
the IAF: simulating the environment or simulating the envi-
ronment and the application. In the first, MAS infrastructure is
provided in order to represent different elements of the target
runtime environment. Therefore, there is external software (the
one recently developed and whose behavior is to be verified)
and the environment built with a MAS. The external software
would be docked to the MAS based environment by means
of application entities. In the second, not only the elements
of the application environment are provided, but parts of

the system-to-be are included as well, reusing directly pre-
dedefined behaviors from the IAF.

A. Simulating the internals of the application

The IAF provides built-in predefined behaviors which can
be used to simulate parts of the application. They are intro-
duced following:

• Task Raw simulation. The developer defines no specific
code for tasks, assuming the default behavior of tasks
in the IAF. This behavior consists in consuming/reading
the information declared as input and producing all the
outputs declared in the specification. All produced in-
stances of information entities are empty. This means that
if an information entity has attributes, its instances will
see these attributes exist, though they have empty values.
Also, when a task creates an instance of an interaction,
i.e., a conversation, the collaborators will be chosen
randomly among existing valid ones (a valid agent type or
a valid agent role according to the interaction definition).
If one collaborator is defined as having cardinality greater
than one, then multiple agents satisfying the requirements
from the concrete interaction specification are chosen and
incorporated automatically.

• Application Raw simulation. The applications are wrap-
pers for non-agent software. The default code produced
for such instances of applications does nothing. Neverthe-
less, if the specification declared a certain event has to be
produced from the application, then the IAF generates a
GUI from which the user can trigger the generation of an
instance of the expected event. This new instance would
be incorporated automatically into the mental state of the
agent owning the application. If the specification declares
an application type is owned by certain agent type, then
an instance of an application can be accesible only to an
instance of the agent type or to multiple instances of the
agent type (this is implemented by means of a singleton
pattern [8]). This is useful to represent shared resources
and communication through the environment. In the later
case, one agent performs an action over the application
that triggers an event which is passed to all agents owning
the application.

• Interaction Raw simulation. For each agent capable of
initiating a conversation, the IAF generates a basic
GUI that can trigger this conversation without having
a task launching it. The conversation may not progress
if the corresponding information that should be deliv-
ered/received does not exist. Therefore, a simulation of
the interactions must be accompanied with a specialized
deployment where the initial mental state of involed
agents satisfies the requirements of the interaction at the
specification level.

Using these pre-defined behaviors, the developer models the
internals of the application using an agent oriented method-
ology, like INGENIAS, and proceeds to observe how the
resulting MAS behave.



The simulation can get closer to the actual intended software
by customizing more the behavior of the elements:

• Adding custom code to the tasks in the MAS. Instead
of the default behavior (consuming input entities and
creating new ones in the output), a developer can code
more concrete behavior, like using existing APIs from ap-
plications to perform actions or detail which collaborators
a conversation will have. This new code is inserted into
a code component entity and used to replace the code in
the generated task. These changes are maintable throught
he use of the code uploader module of the INGENIAS
Development Kit, which migrates changes made to tasks
into existing code components in the specification.

• Adding initialization/shutdown code for applications.
This code permits to properly construct/shutdown the ap-
plication knowing during creation/shutdown time which
agent will be assigned to it. This way, an application
acquires a reference to its agent or agents.

• Modifying the API of the application code and providing
a body to the methods. An application can be coded ad-
hoc for a concrete development or act as mediator [8] to
some external software (e.g. a database or some existing
GUI). The API is synchronized with the specification
by means of the AppLinker module of the IDK. This
module analyzes the generated code of already generated
applications looking for changes in the API with respect
to the API stored in the specification. Differences are
merged automatically so that the API in the specification
is the same. This way, a developer can either modify the
specification and let the system regenerate the code, or
modify the API in the code and upload the new methods
to the specification.

The degree of customization is a decision of the developer.
The resulting MAS can become the intented system or remain
as a proof that the MAS specification is valid for the problem.
In the first, case, the specification and the customization of
the generated code would progress towards the final system.
In the second case, the developers would decide to realize the
specification into a different agent platform or just reuse the
acquired knowledge to be used within another methodology
(agent oriented or not).

The IAF recognises automatically generated code, manually
maintained code, and a hybrid mixture of both. All of them
exist into separated folders. Hence, a developer can work
safely in the src folder, creating clasess regularly; delete safely
the content of gensrc folder knowing that it can be completely
generated from the specification; or customize the content
of permsrc folder knowing that changes made will not be
overwritten by sucessive code generation requests.

B. Simulating the environment

Once key elements to be simulated are identified, a de-
veloper can represent them as agents or as applications. It
is an agent when its behavior of the simulated entity can
be captured with goals and tasks and the execution of the
corresponding tasks corresponds to the achievement of goals.

It is an application in other case. Being an application means
an API is offered and that this API can be used within the tasks
of the agent. Optionally, the application is expected to produce
events in order to notify agents of changes. As explained in the
previous section, these events can be asserted within a single
or multiple owners.

The external software (software which already exists before
the current MAS is developed) is wrapped into applications.
Generated code for applications will act as a mediator [8]
between the generated MAS and the external software. The
initialization code for applications will be used to connect the
mediator with the external software, while the shutdown code
will do the opposite. These appliciations should offer the same
API the external software does. If there are multiple APIs,
a developer can choose to merge all of them into a single
application or creating multiple applications holding each one
separately.

Most likely, there will be agents representing the different
types of users in the system, which could be humans or not.
A developer will define a certain role capturing the generic
behavior expected from that user. This behavior is supposed
to be assumed by a agent or specialised by another role.
Assuming there is a role with a task X having as input an
entity type Y, the specialization can happen as follows. First,
an agent can define a task XX having as input the entity Y.
This will cause tasks XX will be executed instead of tasks X.
Second, a new role extending the original role can be defined.
This new role, can define a task XXX having as input the
entity Y. This will cause tasks XXX are executed before the
task X. In both cases, when task XX or XXX is executed, they,
probably, will remove entity Y from the mental state, aborting
this way any possible execution of previously scheduled X
tasks.

With these two ways of capturing behaviors, a developer
can create populations of users with varying behaviors. The
resulting agents will perform actions over the existing appli-
cations, which are supposed to be connected to the software
system currently under execution.

C. Analysing a simulation run

Once the MAS is defined, it is time to perform different
runs of the system. The user can inspect visually the results by
means of the IAF default GUI. Nevertheless, it is convenient
to make use of a more exhaustive and objective analysis by
means of studying the system logs. The INGENIAS Agent
Framework produces logs with the produced events in a system
run, so that they can be inspected and accounted later on.
Registered events are:

• A task has been scheduled. The id and type of the task,
as well as the id of the agent, are provided

• A new piece of information is added/removed to/from the
agent mental state. The id and type of the entity as well
as the id of the agent are provided.

• A task has been executed. The id and type of the task,
as well as the id of the agent, are provided



• A task has been aborted. The id and type of the task, the
expected inputs that were missing, as well as the id of
the agent, are provided

• A conversation has been started. The id of the conversa-
tion, the interaction type, collaborators, and the id of the
launcher agent, are provided

• An agent decides to participate into an requested con-
versation. The id of the conversation, the interaction
type, collaborators, and the id of the launcher agent, are
provided

• A message has been delivered. The id of the message, its
content, sender and receivers are provided

Each event is marked with a timestamp (24 hour format and
milliseconds format) obtained from the same hardware clock.
Therefore, this timestamp should not be used as a reference
to compare logs produced into different physical machines.

By properly interpreting each task, the developer can pro-
duce graphics similar to those frequently found in conventional
simulations. For example, a task Y is designed to peform a
payment through paypal in ebay after a succesfull auction.
By accounting the times this task was executed, and using
timestaps, it can be generated a graphic of the number of
finished auctions through a determined period of time.

IV. THE CASE STUDY

Technological advances are increasing with time. The vol-
ume of scientic publications patents, research projects, tech-
nology news and related international standards of tech-
nology is in continuous increase. This makes available to
researchers, R+D organizations, and industry in general, a
huge amount of information to analyze for their projects
and strategies. Technology Watch Systems are involved in
processing of all information tech- nology environment to
extract knowledge, such as identifying trends and changes.
This case study focuses on the management of quality of
information sources within a Technology Watch System.

Technological watch is a tool used wihtin Competitive
Intelligence. Competitive Intelligence is the legal obtention,
analysis, distribution of information about a competitive envi-
ronment, including strong and weak points as well as the inten-
tions of competitors [9]. Technological watch is an organized,
selective and permanent process for information gathering
scientific and technological information coming from in and
out the organization; selecting it; analyzing it; distributing it;
and commnunicating it; to convert it into knowldge supporting
decision making activities with lower risk and being able to
anticipate changes [10].

In an organization dedicated to R+D, clients of a Techno-
logical Watch are research groups. These researchers, gener-
ally, have already located relevant information sources to be
watched. Therefore, researchers are a potential suppliers of
information sources. If the system was feeded with bad quality
information sources, the system would supply results with
noise causing the analyses to be inadequate or wrong. This
problem suggests the system should not accept all suggested
information sources. In fact, giving more relevance to those

researchers investing effort in providing good information
sources would potentially increase the quality of the produced
results. Similarly, controlling more bad suggestors allows to
keep the quality degree.

The development of Technological Watch system follows
recommendations from the UNE 166006:2006 EX [10]. This
normative provides a set of requirements, but no APIs or
formal definitions. One of the recommendations consists in
qualifying information sources with some attributes, which
are are highly related to the reputation and trust models well
known in the agent literature. These attributes are supposed
to be managed by humans, what means necessarily increasing
the amount of work of operators.

Therefore, this case study to what extent reputation and trust
models can be integrated in a Technological Watch System.
The question is how such functionality can be integrated, i.e.,
are new components needed? is it enough with modifying the
responsibilities of existing components?

This evaluation has required building a prototype dealing
with three basic scenarios corresponding to the use case
Manage quality of information sources by means of reputation
and trust models:

• A low quality information source proposal made by a
collaborator with low reputation in general

• A high quality information source proposal made by a
collaborator with high reputation in general

• A low quality information source proposal made by a
collaborator agent subject of bad reputation on behalf a
supervisor agent which has witnessed past requests from
the same agent.

The development made focuses in the first scenario.

V. DEFINING WITH INGENIAS
In the long term, the developed MAS aims to discover what

kind of agents are required in order to have a population
representative of a real scenario. Also, As it is now, it serves to
experiment with the necessary protocols for integrating a trust
model in the information sources management mechanisms.

As figure 1 shows, there are four groups of agents in the
organization responsible of technological watch services.

• Collaborators. They are agents which propose new in-
formation sources. These agents can be a human operator
representative or, directly, an agent that does not require
a human operator.

• Supervisors. They are resposible of deciding how to
evaluate proposals from the collaborators.The evaluation
itself is performed by agents belonging to the Test Team.

• Test Team. They assign a quality value to an information
source prior to its incorporation into the system. They do
this by pretending the source is already incorporated and
starting to use it with some predefined queries. Also they
can request human expert evaluations.

• Operations Team. They watch accepted information
sources and other technological watch services. There
are agents within this group who are in charge of in-
specting accepted information sources. They maintain



Fig. 1. Organization responsible of Technological Watch

updated information about the quality of the sources. This
evaluation is used later to compute the trust degree of
collaborators.

The MAS developed uses the REGRET trust model [11],
making two simplifications. All supvervisors have a credibility
of 1 and only reputation information from witness will be
taken into account.

Focusing on a SupervisorRole, this role has as goal keeping
the system with high quality information sources. The capa-
bilities of this role are expressed as tasks (fig. 2):

• ProcessReceivedProposalTask. The agent can process
proposal from collaborators.

• AddSourceIntoSystemTask. The agent can add accepted
information source into the system. This task also in-
cludes the request of quality inspection for the accepted
information source.

• RequestAlphaQualityInspectionTask. The agent can re-
quest alpha quality inspection to inspectors. “Alpha qual-
ity inspection” means making a quality inspection without
adding the information source into the system to be
watched.

• ProcessAlphaQualityInspectionResultTask. The agent
can process the results of alpha quality inspections.

• ProcessQualityInspectionResultTask. The agent can
process the results of quality inspections.

Fig. 2. Tasks assigned to a Supervisor

Fig. 3. Description of the task which process an information source proposed

Fig. 4. Definition of the deployment for the test

Task ProcessReceivedProposalTask (fig. 3) is activated
when the fact SourceProposed is found. The SourceProposed
fact comes in the proposal message of the PerformProposal
conversation. This task makes decisions about what filters
apply to the proposal as follows:

• Reject the proposal because the collaborator has at-
tempted too much to add information sources with low
quality. The task produces the RejectedProposal fact to
be sent as response in the reject-proposal speaking
act of the PerformProposal conversation.

• Request an alpha quality inspection for the information
source in order to obtain quality information in some
criterias. It is because the supervisor doesn’t trust in
the collaborator about the quality (in some criterias)
of information sources which he usually proposes. The
objetive behind is to apply the selected filters, that is, If
the information source has the quality value (in a specific
criteria) less than the minimum quality value permited (in



Fig. 6. Information source acceptance/rejection ratio

the specific criteria), then reject the proposal. Otherwise,
accept the proposal. The task produces the SourceTo-
Prove fact to indicate the request.

• Request the adding of the information source into the
system to be watched. The proposal is accepted because
the supervisor trust in the collaborator. The task produces
the SourceToProcess fact to indicate the request.

The TrustInformations fact has the information about trust-
ing of all collaborators who have made proposal to the
supervisor.

VI. SIMULATING

Figure 5 shows the GUI of the developed system where
different actions can be triggered to run the basic scenarios.
The log corresponds to these sequence of actions. First, the
Collaborator makes a proposal of a information source with
regular quality.The Supervisor #0 applies the filter, it’s mean,
request an alpha quality inspection to the Alpha Inspector.
Also, The Supervisor #0 requests reputation information to the
Supervisor #1, and the later response with the reputation infor-
mation which has a high reliability. The Supervisor #0 accepts
the proposal. Second, the Collaborator makes a new proposal
with low quality. The Supervisor #0 doesn’t trust (trust degree
information with high reliability) in the Collaborator, then the
agent decides to apply the filter to the proposal, and finds that
the proposal has low quality and must be rejected.

The simulation of the system leads to a log of several
megabytes of information. By filtering the content, and fo-
cusing in the production of AcceptedProposal entities, Reject-
edProposal entities, and SourceProposal, it is straightforward
to obtain a list of events which tell when such entities are
incorporated into each individual agent mental state. These en-
tities are representative of a rejection, acceptance, and proposal
of new information sources. Hence, accounting occurrences,
one can determine the performance of the system. As figure
6 indicates, there are rejected sources and accepted sources.
Hence, the rejection mechanisms are used. Nevertheless, it
would be necessary to determine if the rejections should
actually happen, something not accounted here.

VII. EVALUATION

After developing this prototype, a greater knowledge of
the problem has been acquired. Using INGENIAS, generic
information exchanges were depicted, detailing the informa-
tion exchanged and having some wired code dealing with its
transformation.

The development time was reduced to a minimum, one
person for one weeks at full time (eight hours a day). Taking
into account that the actual Technological Watch system has
been developed for two years, this seems a reasonable price
for having an accurate specification of the problem. Also,
incorporating the produced system as an add on to the real
system remains a possibility.

The simulation of the environment was straightforward to
produce. Since the protocols were already established, it was
known what information the system was expecting from the
users. So, defining GUI agents interfacing with real human
operators or agents pretending to act directly with the system
was easy. From here, deciding the kind of agents to deploy and
their specific features, was a matter of depicting an ingenias
deployment entity.

The degree of reusability is not known yet. The model was
concluded recently and it is currently under the evaluation
of other partners in the project. Should the specification be
accepted, the ideas woud be incorporated into production,
modifying the current Technological Watch system being used.

VIII. RELATED WORK

The current state of art of agent oriented software engineer-
ing methodologies shows only a little number of methodolo-
gies permitting to produce directly code and perform the kind
of simulations made with INGENIAS. Methodologies like
MaSE [12] or Prometheus [13] are capable of code generation.
Nevertheless, they intend to produce fully functional systems
everytime and do not conceive the use of simulations as
part of the development. In the case of Prometheus, code
generation is a recent incorporation so its effective use to
produce MAS automatically is still under study (there is a
plugin but the documentation for its use has not been update
as of today). In the case of MaSE, code generation has
been integrated since the methodology was born. Systems are
specified almost completely from the tool. Nevertheless, the
customization of the produced code is not as effective as in
INGENIAS. A developer in INGENIAS will find several tools
to synchronize the produced code with the specification. In
MaSE, this possibility does not exist.

ADELFE [3] bases on several simulation platforms, one
of the most recent is SeSAm. The behavior of agents within
SeSAm is made by means of activity diagrams, permitting the
developer to express a variety of possible agents. Nevertheless,
the production of a SeSAm specification is achieved manually
using ADELFE concepts. This complicates the synchroniza-
tion of both the problem specification and the simulation,
something that does not occur with INGENIAS and the IAF.
Besides, the effort for defining an agent is lower in INGE-



Fig. 5. Agent learns not to trust in another agent by direct experience and reputation

NIAS. Doing the same in SeSAm implies manually modifying
the SeSAm agent template to incorporate the activities.

PASSIM [4] uses state-chart based simulation to validate
and produce protypes. The formalism used to describe the
system to simulate is Distilled StateCharts. The translation
between design concepts and simulation concepts is semi-
automatic. There is a first stage which produces the skeleton
and a second stage that requires human intervention to refine
the code. Simulation in PASSIM concerns the whole system.
In the work introduced in this paper, the simulation generation
is automatic and its content can concern the whole application
or only its environment. Also, INGENIAS provides means to
integrate with external applications, where PASSIM does not.
INGENIAS simulation agents base on the BDI paradigm and
are coded that way. In PASSIM, the coding corresponds to the
statechart formalism. Like in SeSAm.

IX. CONCLUSION

Prototyping and simulations are two ways of clarifying
system requirements and experimenting with different ap-
proaches in a domain problem. Prototypes are expendable and
simulations, depending on the support tool, are expendable
as well. A simulation performed with SeSAm, for instance,
cannot be used as a final product to be delivered to end
users. Hence, an approach permitting prototyping, creating
simulations, and reduce costs in producing both, would be
welcome.

INGENIAS can provide such services. In INGENIAS,
with the aid of the INGENIAS Development Kit and the
INGENIAS Agent Framework, it is possible to experiment
different configurations of a MAS investing little effort. Also,
it is possible to create artificial environments where there are
simulated human operators or external agents interacting with
the developed system. The result of the experimentation is a
MAS specification capturing the requirements of the client,
whose interpretation can be inspected visually by the client;
and a MAS obtained automatically from the specification,
which can be used as prototype or as final system, depending
on the needs of the development.

ACKNOWLEDGMENT

We acknowledge support from the project Agent-based
Modelling and Simulation of Complex Social Systems
(SiCoSSys), supported by Spanish Council for Science and
Innovation, with grant TIN2008-06464-C03-01. Also, we ac-
knowledge the funding from the Programa de Creación y Con-
solidación de Grupos de Investigación UCM-Banco Santander
for the group number 921354 (GRASIA group).

REFERENCES

[1] M. Schrage, “Cultures of prototyping,” pp. 191–213, 1996.
[2] M. Luck, P. McBurney, and C. Preist, “A manifesto for agent technology:

Towards next generation computing,” Autonomous Agents and Multi-
Agent Systems, vol. 9, no. 3, pp. 203–252, 2004.

[3] C. Bernon, M. P. Gleizes, and G. Picard, “Enhancing self-organising
emergent systems design with simulation,” in ESAW, ser. Lecture Notes
in Computer Science, G. M. P. O’Hare, A. Ricci, M. J. O’Grady, and
O. Dikenelli, Eds., vol. 4457. Springer, 2006, pp. 284–299.

[4] M. Cossentino, G. Fortino, A. Garro, S. Mascillaro, and W. Russo,
“Passim: a simulation-based process for the development of multi-agent
systems,” IJAOSE, vol. 2, no. 2, pp. 132–170, 2008.

[5] J. Pavón and J. J. Gómez-Sanz, “Agent oriented software engineering
with ingenias,” in CEEMAS, ser. Lecture Notes in Computer Science,
V. Marı́k, J. P. Müller, and M. Pechoucek, Eds., vol. 2691. Springer,
2003, pp. 394–403.

[6] J. Pavón, J. J. Gómez-Sanz, and R. Fuentes, “Model driven development
of multi-agent systems,” in ECMDA-FA, ser. Lecture Notes in Computer
Science, A. Rensink and J. Warmer, Eds., vol. 4066. Springer, 2006,
pp. 284–298.

[7] J. J. Gómez-Sanz, R. Fuentes, J. Pavón, and I. Garcı́a-Magariño,
“Ingenias development kit: a visual multi-agent system development
environment,” in AAMAS (Demos). IFAAMAS, 2008, pp. 1675–1676.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, January 1995.

[9] K. Conttrill, “Turnin Competitive Intelligence into Business Knowl-
edge,” Journal of Business Strategy, vol. 19, Julio/Agosto 1998.

[10] AENOR, “UNE 166006:2006 EX: Gestin de la I+D+i: Sistema de
Vigilancia Tecnolgica,” UNE, Final, 2006.

[11] J. Sabater, “Trust and Reputation for agent societies,” PhD Thesis,
Universitat Autnoma de Barcelona, 2003.

[12] J. C. Garcia-Ojeda, S. A. DeLoach, and Robby, “agenttool iii: From
process definition to code generation,” in Proceedings of the 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems,
2009, pp. 1393–1394.

[13] L. Padgham, J. Thangarajah, and M. Winikoff, “Auml protocols and code
generation in the prometheus design tool,” in AAMAS, E. H. Durfee,
M. Yokoo, M. N. Huhns, and O. Shehory, Eds. IFAAMAS, 2007, p.
270.


