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1 Motivation

Ontology design and maintenance require an expertise in both the domain of
application and the ontology language. Realistic ontologies typically model dif-
ferent aspects of an application domain at various levels of granularity; prominent
examples are the National Cancer Institute Ontology (NCI)4, which describes
diseases, drugs, proteins, etc., and GALEN5, which represents knowledge mainly
about the human anatomy, but also about other domains such as drugs.

Established ontologies such as NCI and GALEN are used in various appli-
cations as reference ontologies, i.e., ontology developers reuse these ontologies
and customise them for their specific needs. For example, ontology designers use
classes from NCI or GALEN and refine them (e.g., add new sub-classes), gen-
eralise them (e.g., add new super-classes), or refer to them when expressing a
property of some other class (e.g., define the class Polyarticular JRA by referring
to the class Joint from GALEN).

One of such reuse cases is the development of an ontology, called JRAO,
that describes a kind of arthritis called JRA (Juvenile Rheumatoid Arthritis)
within the Health-e-Child project.6 Following the ILAR7, JRAO describes in
detail various kinds of JRA by means of the joints affected, the occurrence of
fever, and the required treatment. GALEN and NCI contain information that
is relevant to JRA such as detailed descriptions of the human joints as well as
diseases and their symptoms. Figure 1 shows a fragment of NCI including the
class for JRA as well as our reuse scenario, where C1, . . . , C7 stand for subclasses
of JRA to be defined in JRAO.

The JRAO developers want to reuse knowledge from NCI and GALEN for
three reasons: (a) they want to save time through reusing existing ontologies
rather than writing their own; (b) they value knowledge that is commonly ac-
cepted by the community and used in similar applications; (c) they are not
experts in all areas covered by NCI and GALEN.
4 Online browser: http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do, latest

version: ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI Thesaurus
5 http://www.co-ode.org/galen
6 See http://www.health-e-child.org.
7 Int. League of Associations for Rheumatology http://www.ilarportal.org/
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Figure 1. Constructing the ontology JRAO reusing fragments of GALEN and NCI

GALEN, NCI, and JRAO are written in OWL DL, and hence the semantics
of OWL should be taken into account for ontology reuse. First, the developers of
JRAO do not want to change the original meaning of classes reused from NCI or
GALEN. For example, due to (b) and (c) above, if it followed from the union of
JRAO and NCI that JRA is a subclass of GeneticDisorder and both are classes
from NCI, then it should also follow from NCI alone. Second, only small parts of
large ontologies like NCI and GALEN are relevant for our refinement of JRA. For
efficiency and succinctness, the JRAO developers want to import as few axioms
from NCI and GALEN as possible, yet they want to make sure that they import
all axioms that are relevant for JRAO. For example, if it follows from the union
of JRAO and the whole NCI that JRA is a subclass of RheumatologicDisorder,
then this should also follow from the union of JRAO and the chosen fragment of
NCI. That is, the JRAO developers should not see any difference between only
adding the chosen fragments or the whole ontology to JRAO – apart from the
fact that JRAO is smaller in the former case.

The following three guarantees summarise the above observations:

(G1) The meaning of the imported classes and properties is not changed
through axioms in the importing ontology.

(G2↑) The fragment of the ontology to be imported is such that the ontology
designer will see no difference between adding only this fragment or the
whole ontology to their ontology.

(G2↓) The fragment of the ontology to be imported is as small as possible.

(G1) and (G2↑) motivated “safe” in our title, and (G2↓) motivated “economic”.
In the following, we sketch the logical background of these guarantees and the



concepts we have developed to help provide these guarantees, and we propose
a methodology for ontology design in reuse scenarios which is based on these
concepts and guarantees and supported by a Protégé 48 plugin we are developing.

2 Logical Background – a Sketch

Based on the scenario in Section 1, we define the notions of a conservative ex-
tension, safety, and module [1, 2]. For simplicity, we restrict ourselves to OWL
without individual names but with cardinality constraints, i.e., to the SHIQ
fragment of OWL1.1. Moreover, we use v as the DL shorthand for subClassOf,
Sig() to denote the signature of an ontology or an axiom, i.e., the set of class
and property names used in this ontology or axiom, and we use |= for the usual
entailment relation, i.e., O |= α means that O entails α. In this and the follow-
ing section, we have omitted most of the technical details, which can be found
in a technical report available at http://www.cs.man.ac.uk/∼schneidt/publ/
safe-eco-reuse-report.pdf. Finally, for simplicity, we assume that terms are
reused literally, i.e., we ignore mapping rules but come back to them in Section 6.

2.1 Conservative Extensions, Safety and Modules

When reusing knowledge from NCI and GALEN, the developer of JRAO should
not change the original meaning of the reused classes, see (G1). We formalise this
requirement using the notion of a conservative extension [1, 3] and safety [2].

Definition 1 (Conservative Extension). Let O1 ⊆ O be ontologies, and S
a signature. We say that O is an S-conservative extension of O1 if, for every
axiom α with Sig(α) ⊆ S, we have O |= α iff O1 |= α; O is a conservative
extension of O1 if O is an S-conservative extension of O1 for S = Sig(O1).

Definition 1 applies to our example as follows: O1 = NCI is the ontology to be
reused, O is the union of JRAO and NCI, S represents the terms from NCI to be
reused in JRAO such as JRA and Rheumatologic Disorder, and α stands for any
axiom over the reused terms only, e.g., JRA v Rheumatologic Disorder. Now if
O is an S-conservative extension of NCI, then all entailments from O (JRAO ∪
NCI) concerning terms from NCI are already entailments of NCI and vice versa.

Definition 1 assumes that the reused ontology is static, i.e., that we know both
O and O1. In practice, however, ontologies such as NCI are under development
and may evolve beyond the control of the JRAO developers. Thus, it would
be convenient to reuse the axioms of NCI on demand via a reference in JRAO
such that the developers of JRAO need not commit to a particular version of
NCI. The notion of safety [2] is a stronger version of conservative extension that
abstracts from the particular ontology to be reused and focuses only on the way
terms are reused. In our example, we would like to make sure that JRAO is safe
for the class and property names S it uses from NCI because this guarantees
8 Ontology Editor Protégé 4: http://www.co-ode.org/downloads/protege-x/



that JRAO does not change their meaning as defined in NCI—regardless of the
version of NCI under consideration. Hence safety ensures (G1).

Definition 2 (Safety for a Signature). Let O be an ontology and S a signa-
ture. We say that O is safe for S if, for every ontology O′ with Sig(O)∩Sig(O′) ⊆
S, we have that O ∪O′ is a conservative extension of O′.

As mentioned in Section 1, we would also like to import only (hopefully
small) fragments of NCI and GALEN—provided that we can be sure to not lose
relevant information. We formalise this idea using the notion of a module [2]. In
our example, assume we have added to JRAO only a module of NCI for a given
signature S, and we want check an entailment over JRAO that uses only NCI
terms from S. Then we would get exactly the same answers as if we had added
the whole NCI to JRAO. Hence every module guarantees (G2↑) from above, and
we will see below how we can compute small such modules to satisfy (G2↓).

Definition 3 (Module for a Signature). Let O′
1 ⊆ O′ be ontologies and S

a signature. We say that O′
1 is a module for S in O′ (or an S-module in O′)

if, for every ontology O with Sig(O) ∩ Sig(O′) ⊆ S, we have that O ∪ O′ is a
conservative extension of O ∪O′

1 for Sig(O).

2.2 Checking safety and computing modules

Summing up, using terms S in a safe way guarantees that we do not change
the meaning of terms in S (G1), and importing a module O′ ⊆ O for S instead
of O ensures that we have imported all information about S from O, (G2↑).
Next we discuss how we can test safety and compute hopefully small modules
(G2↓). First the bad news: the decision problems associated with conservative
extensions, safety and modules—e.g., given a fragment O′ ⊆ O, is O′ an S-
module of O?—are undecidable for SHOIQ [4, 2]. Now the good news: we
have found sufficient conditions for safety and modules. That is, if an ontology
satisfies these conditions, then we can guarantee that it is safe/a module, but
the converse does not necessarily hold [2], i.e., we guarantee (G1) and (G2↑), but
we might be a bit too restrictive regarding (G1) and we only approximate (G2↓)
in the sense that our module might contain superfluous axioms. A particularly
useful condition is locality [2] since it is widely applicable in practice and it can
be checked syntactically.

As mentioned in Section 1, when using a term from NCI or GALEN, the
JRAO developers may refine it, extend it, or refer to it for expressing a prop-
erty of another term. The simultaneous refinement and generalisation of a given
“external” term, however, may compromise (G1). For example, JRAO cannot
simultaneously contain the following axioms:

Polyarticular JRA v JRA (1)
Juvenile Chronic Polyarthritis v Polyarticular JRA (2)



where the underlined class names are reused from NCI, see Figure 1. These ax-
ioms imply that Juvenile Chronic Polyarthritis is a subclass of JRA, and therefore
may change the meaning of the reused terms, e.g., if this subclass relation-
ship is not a consequence of NCI or, even worse, if NCI implies that they are
disjoint: in this case, a class from NCI becomes unsatisfiable through our im-
port. Hence an ontology containing axioms (1) and (2) is not safe w.r.t. S =
{JRA, Juvenile Chronic Polyarthritis}. Thus, to guarantee safety, we need to ask
the ontology designer whether she wants to refine or generalise the reused terms
from an ontology, and then either ask her to restrict herself to use these terms
only in a refinement-safe way, e.g., in axioms like (1), or only in a generalisation-
safe way, e.g., in axioms like (2), but not in both. In this context, if we want to
reference external terms in our ontology and guarantee their safety, then we can
choose refinement-safety: e.g., the axiom Polyarticular JRA v > 5 affects.Joint is
refinement-safe w.r.t. S = {Joint}. The definition of what it means for an axiom
to be refinement- or generalisation-safe uses the notion of locality and can be
found in [2]. For our purpose here, it suffices to say that these are syntactic
conditions and that they can indeed be used to guarantee (G1): e.g., if JRAO
uses all terms from NCI in a refinement-safe way, then it is guaranteed that no
terms from NCI change their meaning through their usage in JRAO.

Similarly, making use of locality, we have defined upper and lower modules
for a signature S from an ontology O, and proved that these modules are indeed
S-modules in O as defined in Definition 3. Upper and lower modules are, again,
defined syntactically—see the report for details, where they are called ⊥- and >-
modules. They can be computed in polynomial time [2]. Hence we can guarantee
(G2↑) but only approximate (G2↓) since our modules might not be minimal.

Upper and lower modules enjoy a property which determines their scope: let
O1 (O2) be an upper module (lower module) for S in O, then O1 (O2) contains
all super-classes (sub-classes) in O of all classes in S. That is, if α := (X v Y ),
β := (Y v X), for X, Y class names, then O1 |= α iff O |= α and O2 |= β
iff O |= β [2]. For example, if we were to reuse the class JRA from NCI as
shown in Figure 1, the upper module for a signature that contains JRA would
also contain all the super-classes of JRA in NCI, namely Rheumatoid Arthritis,
Autoimmune Disease, Rheumatologic Disorder, Arthritis, and Arthropathy. Since
an upper module is a module, it will contain all axioms necessary for entailing
these subclass relations.

Finally, given O and S, there is a unique minimal upper module and a unique
minimal lower module for S in O, and both can be computed efficiently [2]. In
Section 4.1, we will report on experiments that show that our modules are often
small, yet sometimes indeed not minimal.

3 A Novel Methodology for Ontology Reuse

Based on our scenario in Section 1 and the theory of modularity sketched in Sec-
tion 2, we propose a novel methodology for designing an ontology when knowl-
edge is to be borrowed from several external ontologies. This methodology pro-



vides precise guidelines for ontology developers to follow, and incorporates our
guarantees. We propose the working cycle given in Figure 2. This cycle consists
of an offline phase—which is performed independently from the current contents
of the external ontologies—and an online phase—where knowledge from the ex-
ternal ontologies is extracted and transferred into the current ontology. Note
that the separation between offline and online is not strict: The first phase is
called “offline” simply because it does not need to be performed online. However,
the user may still choose to do so.
The Offline Phase starts with the ontology O being developed, e.g., JRAO.
The ontology engineer specifies the set S of terms to be reused from external
ontologies and associates, to each term, the external ontology from which it will
be borrowed. In Figure 2 this signature selection is represented in the Repeat
loop: each Si ⊆ S represents the external terms to be borrowed from a particular
ontology O′

i; in our example, we have S = S1 ] S2, where S1 is associated with
NCI and contains JRA, and S2 is associated with GALEN and contains terms
related to joints and drugs. This part of the offline phase may involve an “online”
component since the developer may browse through the external ontologies to
choose the terms she wants to import.

Next, the ontology developer decides, for each Si, whether she wants to re-
fine or generalise the terms from this set. For instance, in the reuse example
shown in Figure 1, the terms from NCI are refined since we introduce subclasses
C1, . . . , C7 of the NCI term JRA. In both cases, the user may also reference
the external terms in the domain or range of some property; in our example,
certain types of JRA are defined by referencing classes in GALEN (e.g., joints)
via properties affects and isTreatedBy. As argued in Section 1, refinement and
generalisation, combined with reference, constitute the main possible intentions
when reusing external knowledge. Therefore it is reasonable for the user, both
from the modelling and tool design perspectives, to declare her intentions. These
declarations are made in the For loop in Figure 2.

At this stage, we want to ensure (G1), i.e., that the designer of O does not
change the original meaning of the reused classes and properties, independently
of their meaning in the external ontologies. This is achieved if, for each set of
external terms Si, O uses all terms from Si in a refinement-safe (generalisation-
safe) way in case that the designer has chosen the refinement (generalisation)
view for Si. In case this test fails, say for Sj , the designer of O may choose to
give up on (G1) (and possibly change the meaning of terms from Sj) or to go
back and “repair” the axioms that caused this failure.
In the Online Phase, the relevant knowledge from each external ontology is
imported into O. Here we aim at ensuring (G2↑) and (G2↓), i.e., we want to
import as few axioms as possibly, while not missing any axiom relevant to the
reused terms: i.e., we want small modules in the sense of Definition 3.

As shown in Figure 2, the import for each external ontology O′
i is performed

in four steps. First, O′
i is loaded; by doing so, the ontology engineer commits to a

particular version of it. Second, the scope of the module to be extracted from O′
i

is customised; in practice, this means that the ontology engineer is given a view of
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Figure 2. The two phases of import with the required guarantees

O′
i and enabled to extend Si by specifying, e.g., that “the module has to contain

the class ‘joint’, all its direct super-classes and two levels of its sub-classes”. In
the third step, the actual fragment of O′

Si
is extracted from O′

i. At this stage,
we should ensure that the extracted fragment is a module for the customised
signature according to Definition 3, i.e., it should ensure (G2↑), and we refer the
reader to [2] for a description of how this can be achieved. Finally, the actual
module OSi is imported, and O evolves to O ∪OSi . As a consequence, it could
be the case that (G1) with respect to the other external ontologies might be
compromised. This is clearly undesirable and hence we formulate the following
guarantee:

(G3) the other guarantees (G1) and (G2↑) are independent of the order in
which we actually extend our ontology with modules. That is, if our
ontology is (refinement- or generalisation-)safe for a set of terms Si,
then it is still (refinement- or generalisation-)safe after importing other
modules.

(G3) is guaranteed in case that all signatures Si are disjoint and O is local w.r.t.
every Si.



4 The Ontology Reuse Tool

We are developing a Protégé 4 plugin that supports the methodology presented
in Section 3. The plugin and user manual are available at http://krono.act.
uji.es/people/Ernesto/safety-ontology-reuse.

The offline phase first involves the selection of the external entities. Our
plugin provides functionality for declaring entities as external and for defining
the external ontology URI for the selected entities; this information is stored
in the ontology using OWL 1.1 annotations [5]. We use an ontology annotation
axiom per external ontology, an entity annotation axiom to declare an entity
external, and an entity annotation axiom per external entity to indicate its ex-
ternal ontology. The set of external entities with the same external ontology URI
can be viewed as one of the Si. The UI of the plugin also allows for the specifi-
cation, for each external ontology, whether it will be refined or generalised. The
tool then allows for safety checking of the ontology w.r.t. each group of external
terms separately. The safety check uses refinement-safety (generalisation-safety)
for signature groups that adopt the refinement (generalisation) view. Axioms
violating safety conditions are appropriately displayed. In this phase, our tool
does allow the user to work completely offline, without the need of extracting and
importing external knowledge, and even without knowing exactly from which on-
tology the reused entities will come from. Indeed, the specification of the URI of
the external ontologies is optional at this stage, and, even if indicated, such URI
may not refer to a real ontology, but it may simply act as a temporary name.

In the online phase, the user chooses external ontologies and imports axioms
from them. At this stage, the groups of external terms to be imported should
refer to the location of a “real” external ontology. Once an external ontology
has been selected for import, the signature selected for it can be customised
by adding super- and sub-classes of the selected classes. The tool provides pre-
views of the class hierarchy of the external ontology for this purpose. Once the
signature under consideration has been customised, a module satisfying (G2↑)
and approximating (G2↓) is extracted. The user can preview it in a separate
frame, and either import it or cancel the process and come back to the signa-
ture customisation stage. The user can also import the whole external ontology
instead of importing a module. Finally, since we guarantee (G3), the order in
which modules are imported is irrelevant.

Currently, the import of a module is done “by value”, in the sense that the
module becomes independent from the original ontology: if the external ontology
on the Web evolves, the previously extracted module will not change.

4.1 Evaluation

So far, we have demonstrated our tool to various ontology developers9 who
have expressed great interest and provided us with useful feedback regarding its

9 Thanks to Elena Beißwanger, Sebastian Brandt, Alan Rector, and Holger Stenzhorn
for valuable comments and feedback.



improvements. In the technical report http://www.cs.man.ac.uk/∼schneidt/
publ/safe-eco-reuse-report.pdf, we describe experiments we have performed
to show that locality-based modules are good approximations for (G2↓), i.e., they
may not be minimal, but they are reasonably sized compared to the whole on-
tology and compared to other fragment extraction mechanisms.

5 Related Work

Several ontology engineering methodologies have been proposed; prominent ex-
amples are Methontology [6], On-To-Knowledge (OTK) [7], and ONTOCLEAN
[8]. These methodologies, however, do not address ontology development scenar-
ios involving reuse. Our proposed methodology is complementary and can be
used in combination with them.

In the last few years, a growing body of work has been developed addressing
ontology modularisation, mapping, alignment, merging, integration, and segmen-
tation, see [9, 10, 11] for surveys. This field is diverse and has originated from
different communities. In particular, numerous techniques have been proposed
for extracting fragments of ontologies. Most of them, such as [12, 13, 14], rely
on syntactic heuristics for detecting relevant axioms and do not attempt to for-
mally specify the intended outputs and thus it is unclear which guarantees they
provide.

Finally, there are various proposals for “safely” combining ontologies or mod-
ules; most of these proposals, such as E-connections, Distributed Description
Logics and Package-based Description Logics propose a specialised semantics
for controlling the interaction between the importing and the imported mod-
ules to avoid side-effects; for an overview see [15]. In contrast, here we assume
that reuse is performed by simply building the logical union of the axioms in
the modules under the standard semantics; instead, we provide the user with a
collection of reasoning services, such as safety testing, to check for side-effects.
Our paper is based on other work on modular reuse of ontologies [16, 17, 4, 3]
which enables us to provide the necessary guarantees. We extend this work with
a methodology and tool support.

6 Future Work

We aim at extending the tool support so that the user can “shop” for terms
to reuse: it will allow to browse an ontology for terms to reuse and provide a
simple mechanism to pick them and, on “check-out”, will compute the relevant
module. Next, we plan to carry out a user study to assess the usefulness of the
interface and how to improve it. Finally, our current tool support implements a
“by value” mechanism: modules are extracted at the user’s request. In addition,
we would like to support reuse “by reference”, i.e., we want to store information
in the importing ontology that allows for automated updates of the imported
modules. Finally, we plan to extend this approach with a mapping mechanism
so that we can (safely) rename external terms.
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