A modified and fast Perceptron learning rule
and its use for Tag Recommendations
in Social Bookmarking Systems

Anestis Gkanogiannis and Theodore Kalamboukis

Department of Informatics
Athens University of Economics and Business, Athens, Greece
utumno@aueb.gr tzkQaueb.gr

Abstract. A modified and fast to converge Perceptron learning rule
algorithm is proposed as a general classification algorithm for linearly
separable data. The strategy of the algorithm takes advantage of training
errors to successively refine an initial Perceptron Classifier.

Original Perceptron learning rule uses training errors along with a pa-
rameter « (learning rate parameter that has to be determined) to define
a better classifier. The proposed modification does not need such a pa-
rameter (in fact it is automatically determined during execution of the
algorithm).

Experimental evaluation of the proposed algorithm on standard text clas-
sification collections, show that results compared favorably to those from
state of the art algorithms such as SVMs. Experiments also show a sig-
nificant improvement of the convergence rate of the proposed Perceptron
algorithm compared to the original one.

Seeing the problem of this year’s Discovery Challenge (Tag Recommen-
dation), as an automatic text classification problem, where tags play
the role of categories and posts play the role of text documents, we ap-
plied the proposed algorithm on the datasets for Task 2. In this paper
we briefly present the proposed algorithm and its experimental results
when applied on the Challenge’s data.

1 Introduction

Text categorization is the process of making binary decisions about related or
non-related documents to a given set of predefined thematic topics or categories.
This task is an important component in many information management organi-
zations. In our participation on the ECML/PKDD challenge 2009, we treat Task
2 as a standard text classification problem and try to solve it using a machine
learning, supervised, automatic classification method.

The rest of the paper is organized as follows. Section 2 provides a description
of the algorithm that we used. Section 3 briefly present the tasks of this year’s
Challenge. Section 4 presents the experimental setup, data processing and results
and finally in section 5 we conclude on the results.

2 The Learning Algorithm

The algorithm that we used is an evolution of the algorithm that appeared in [1]
as a text classification algorithm and then a revised version in [2] won last year’s
ECML PKDD Discovery Challenge on Spam Detection. The proposed algorithm
is a binary linear classifier and it combines a centroid with a batch perceptron
classifier and a modified perceptron learning rule that does not need any param-
eter estimation. Details on this modified algorithm, its experimental evaluation,
theoretical investigation etc, have already submitted and are under review for
publication at the time this paper was written. In the following paragraphs we
will briefly describe this method that we used for solving the problem of ECML
PKDD 2009 Discovery Challenge, Task 2.

2.1 Linear Classifiers

Linear Classifiers is a family of classifiers whose trained model is a linear combi-
nation of features. In another perspective linear classifiers train a model which
is a hyperplane in a high dimensional feature space. In this space each instance,
either of the train set or an unseen, is a point. The goal of a linear classifier is
then to find such a hyperplane that splits the space into two subspaces, where
one contains all the points of the positive class and the other contains all the
points of the negative class.

Assuming that feature space is of n dimensions, each instance x; will be
represented by an n dimensions vector

?i = (wilawi27"'7win) (1>

where w;j is a real value of the kth feature for instance x;.

Apart of each vector representation 7';, each instance x; may bears informa-
tion about being a member of a class or not. For example a document is known
to be spam or an image is known that shows a benign tumor. This information
can be coded using a variable y; for each instance x; which takes values as:

B 1 ifx; € C+
yi_{—lifﬂ:iec_ (2)
That is y; = 1 when z; is member of the positive class C; and y; = —1 when

it is member of the negative class C'_. So each instance z; is represented by a
tuple (T, y;). A training set Tr would be

TT:{(?hyl)7(T27y2)7"'7(ﬁm,ym)} (3)

A linear classifier then is defined by a model <W, b> where W is a vector in the

same n-dimensional space and b is a scalar bias (threshold) value. This model
defines a hyperplane h
heW-2+b=0 (4)

This is the equation of a hyperplane h in the n-dimensional space. This hyper-
plane is of n — 1 dimensions. W is a linear combination of n features (dimen-
sions). Hyperplane h splits space into two subspaces, the one where for every
vector @; : W -7 ;+b > 0 and the other where W - T; +b < 0. Every vector for
which W - T ; +b =0 lies on hyperplane h. The objective of each linear classifier

is to define such h : <W, b>. Different linear classifiers have different ways to
define model vector W and bias b.

2.2 Perceptron

Perceptron is a flavor of Linear Classifiers. It starts with an initial model and
iteratively refines this model using the classifications errors during training. It
is the elementary particle of neural networks and it has been investigated and
studied since the 1950s [3]. It has been shown that when trained on a linearly
separable set of instances, it converges (it finds a separating hyperplane) in a
finite number of steps [4] (which depends on the geometric characteristics of the
instances on their feature space).

The Perceptron is a Linear Binary Classifier that maps its input @ (a real-
valued vector) to an output value f(T') (a single binary value) as:

LifW-Z+b>0

@) = {—1 else (5)

where W is a vector of real-valued weights and W - 7 is the dot product (which
computes a weighted sum). b is the bias, a constant term that does not depend
on any input value. The value of f(7) (1 or —1) is used to classify instance x
as either a positive or a negative instance, in the case of a binary classification
problem. The bias b can be thought of as offsetting the activation function,
or giving the output neuron a "base” level of activity. If b is negative, then the
weighted combination of inputs must produce a positive value greater than —b in
order to push the classifier neuron over the 0 threshold. Spatially, the bias alters
the position (though not the orientation) of the decision boundary (separating
hyperplane h).

We can always assume for convenience that the bias term b is zero. This is
not a restriction since an extra dimension n + 1 can be added to all the input
vectors T'; with @;(n + 1) = 1, in which case W(n + 1) replaces the bias term.

Learning is modeled as the weight vector w being updated for multiple
iterations over all training instances. Let

Tr={(T1,y1),(T2,92), (Tm:Ym)}

denote a training set of m training examples (instances). At each iteration k the
weight vector is updated as follows. For each (@;,y;) pair in T'r

a(k_l)

k k—
W():W(1)+

(v = 10 @) 7 (6)

where « is a constant real value in the range 0 < a < 1 and is called the learning
rate. Note that equation 6 means that a change in the weight vector W will only
take place for a given training example (7;,y;) if its output f (7;) is different
from the desired output y;. In other words the weight vector will change only in
the case where the model has made an error. The initialization of W is usually
performed simply by setting W(O) =0.

The training set Tr is said to be linearly separable if there exists a positive
constant v and a weight vector W such that

Ui (W-?i+b) >, V(T ,y;) €Tr (7)

Novikoff [4] proved that the perceptron algorithm converges after a finite number
of iterations k if the train data set is linearly separable. The number of mistakes

(iterations) is bounded then by
2R\ "

v

where R = max{||7;||} is the maximum norm of an input train vector.

2.3 Batch Perceptron

Equation 6 defines a single sample fixed increment perceptron learning rule. It
is called fixed increment because parameter a is constant throughout training.
In the case where this parameter changes at each iteration, we say that it is a
variable increment perceptron. It is also called single sample because this rule
applies at each instance z; which was misclassified during iteration k. In other
words, at iteration k each (T;,y;) € T'r is presented to model W(k_l) and if it is
misclassified by it (f(*~1 (T;) # ;) then this single instance 7; is used (along
with parameter a*=1) to alter 7 into W,

A modification of this perceptron can be made defining a set of instances
ErrCTr

Err ={(T)}, f50 (0) # i)

that contains all the misclassified examples at iteration k& and then modifying
weight vector as:

A G I SR (10)
(?i,yi)EETT

In the case where bias value is not incorporated into example and weight vectors
(via an additional n+1 dimension), then bias value is modified as:

B =D k- STy, (11)
(T)i,yi)EErr

Equations 10 and 11 are called a Batch Perceptron learning rule and as the
single sample perceptron, parameter a(*~1) can be constant (fixed increment)
or varying at each iteration (variable increment).

2.4 Centroid Classifier

A Centroid classifier is a simple linear classifier, that will help us understand
the notion behind our modification presented in the next Section. In the simple
binary case there are two classes, the positive and the negative one. We define set
C4 and C_ containing instances from the positive and respectively the negative
class. We call Centroid of the positive class and respectively the Centroid of the
negative class as

]' xd

TieCy

Cem X (13)

T Tlec.
‘We then define a linear classifier as
h:W-Z+b=0 (14)

where

W=0C,-C_ (15)

and bias value b is defined by some technique we discuss in the following para-
graphs.

Figure 1 illustrates a simple case of a centroid classifier in a 2-dimensional
space. Sets C';. of the positive class and C_ of the negative class are shown along
with their centroid vectors 6’}4_ and C_ respectively. We note that in this simple
example, these two classes are linearly separable and therefore it is possible to
find a value for bias b such that h is a perfect separating hyperplane.

A method for finding such a value is Scut [5], where we iteratively choose val-
ues for bias b and then keep the one that lead to the best classifier (as measured
by some evaluation measurement). Bias takes values as

by =W T, VT €Tr (16)

and then an evaluation measure (for example the F; measure) is computed for
classifier h: W- 7T + b; = 0. Finally as bias value is chosen the one that gave the
maximum evaluation measure. It is clear that the instance x; that corresponds
to the chosen b; lies on hyperplane h. In the shown 2-dimensional example of
Figure 1 this instance is marked by point T geu¢-

This simple algorithm has previously investigated and
methods have been proposed for altering initial centroids or weights in order to
achieve a better classifier [6-8].

In the next subsection we present how ideas from Centroid Classifier and
Perceptron are combined to our modified version of Perceptron.

(0]
L]

I

Fig. 1. A simple Centroid Classifier in 2 dimensions. The positive class C is linearly
separable from the negative one C_.

2.5 The proposed modification to Perceptron

Centroid Classifier of the previous subsection can be seen as a perceptron with

initial weight vector W(O) = 6+ 76’)_, bias value b as defined by an Scut method
and no other training adjustments at all. The case shown in Figure 1 is an ideal
case for a Centroid Classifier, meaning that it is possible to find a value for b
resulting to a perfect separating hyperplane h : W7 +b=0.

This is not however true in all cases. Figure 2 shows such a case where finding
a perfect separating hyperplane is not possible for a simple Centroid Classifier.
Dark regions contains misclassified instances that cannot correctly classified.
A Simple Sample or a Batch Perceptron would use these errors to modify the
weight vector W.

If we define sets FP and F'N as:

FP={(Ty) Vo, € O, f(T:) # i (17)
FN = {(T,y:) Vo € Oy, f(T0) # i (18)

in other words set F'P contains negative instances that were misclassified as
positive (False Positive), whereas set FIN contains positive instances that were
misclassified as negative (False Negative). A Batch Perceptron then using mis-

L]

Nzde)

Fig. 2. No perfect separating hyperplane exists for this Centroid Classifier. Dark re-
gions are misclassified.

classified instances modifies weight vector as Equation 10 or equivalently as:

W(kJrl) :W(k)+a(k) Z 7, — Z z, (19)

T ,eFNKR) T eFP®

However there is a parameter «, either constant or variable that needs to be
estimated. This learning rate parameter is strongly related to the field on which
perceptron learning is applied and train data itself. A way to estimate it is using
a validation set of instances and selecting a value for « that leads to maximum
performance. But this operation must be repeated whenever field of operation
or data is switched and costs very much in terms of time.

Another approach is to use a fixed value for the learning rate like « = 1 or
a = 0.5 for example, without attempting to find a optimal value. However this
could result to very unwanted effects because learning rate is too small or too
large for the specific field of operation and training instances.

The key idea of our approach is illustrated in Figure 3 where we concentrate

on the misclassified regions. Positive class and a portion of negative class are
0

shown. Initial weight vector W() and hyperplane h(?) are defined by a simple

Centroid Classifier. The idea is, at the next iteration 1, to modify weight vector

1
and bias into W() and b1 such that the resulting hyperplane h(1) passes through
the points defined by centroid vectors of the misclassified regions F'P and FN.

Fig. 3. The proposed modification to batch perceptron.

We define these misclassified centroids at each iteration as

m 1 -
TicFP®)

W1 -
TieFN®

where sets F'P and F'N are defined in Equations 17 and 18. We then define the
error vector at each iteration as

2® — N _ FpV (22)
Batch Perceptron learning rule of Equation 19 is then modified to:

WD g ® (23)

We can easily compute the value of this modified learning rate o/®*) if we note

k k
that misclassified centroids F 2_/:() and F ﬁ() lie by construction on the new
hyperplane h(**1)_ As a result error vector 2" is vertical to the new normal

k
vector W(+1). So

W(k+1)) ?(k) —0

(W(’“) n a/(m?(k)) e O

W(k)) ?(k) + a/(k)H?(k)HQ =0

. AR ()
I

And then the modified learning rule of Equation 23 is

®) (k)
Y w-e® AR (24)
e ™2

This is the normal vector defining the direction of the next hyperplane h+1).
The actual position of it is determined by the new bias value which is easily
computed (bringing in mind that misclassified centroids lie on the new hyper-
plane):

plk+1) — _W(k-irl)) F—}g(k') _ _W(kﬂ) ~W(k) (25)

Equations 24 and 25 define the new hyperplane

R0 D 2 g

3 Task Description

As last year’s, this year’s ECML PKDD Discovery Challenge deals with the well
known social bookmarking system called Bibsonomy !. In such systems, users
can share with everyone links to web pages or scientific publications. The former
are called bookmark posts, where the later are called bibtex posts. Apart from
posting the link to the page or the publication, users can assign tags (labels)
to their posts. Users are free to choose their own tags or the system can assist
them by suggesting them the appropriate tags.

This year’s Discovery Challenge problem is about generating methods that
would assist users of social bookmarking systems by recommending them tags
for their posts. There are two distinct task for this problem. Task 1 is about
recommending tags to posts over an unknown set of tags. That means that the
methods developed for Task 1 must be able to suggest tags that are unknown (in
other words suggest new tags). Task 2, on the other hand, is about recommending
tags that have been already known to be ones. 2

3.1 Data Description

Data provided for these tasks was extracted from Bibsonomy databases. Two
datasets where provided, one for training participant’s methods, and the other

! http://www.bibsonomy.org
2 More details about tasks can be found on Challenge’s site at
http://www.kde.cs.uni-kassel.de/ws/dc09/#tasks

for evaluating their performance. Both of them where provided as a set of 3 files
(tas, bookmark, bibtex). Files bookmark and bibtex contain textual data of the
corresponding posts. File tas contains which user assigned which tags to which
bookmark or bibtex resource. Each triplet (user,tags,resource) defines a post.
Train and test files where of the same tabular format, except test tas file which
of course did not contain tag information, as this was Challenge’s goal. 3

More details about preprocessing of the datasets will be given on the following
section 4.

4 Experimental Setup and Results

Challenge’s organizers had suggest that graph method would fit better to task 2,
whereas content based method would fit to task 1. In our work we concentrated
on task 2, and from this point on whenever we mention a task, we mean task 2.
Although organizers suggested graph method for the task, we choose to use our
modified perceptron rule for solving this problem. We made this decision because
we wanted to test the performance and robustness of the proposed algorithm on a
domain with a large category set. As we are going to present in our under review
paper, we have evaluated the proposed algorithm on standard text classification
datasets as well as on artificially generated (and linearly separable) datasets.
Although feature spaces of these datasets are of tens or hundreds of thousands
features, their categories sets are of few to at most a thousand categories. We
wanted to investigate how this method is going to perform when both feature
and category spaces are large.

So, Task 2 can be seen as a standard text classification problem, and the
proposed algorithm as a machine learning, supervised, automatic classification
method that applies on it. In this problem, tags (labels) that assigned on posts
can be seen as categories. On the other hand, posts can be seen as text docu-
ments, where category labels (tags) are assigned on them.

4.1 Data Preprocessing

Viewing task 2 as a supervised text classification problem, implies that datasets
must transformed to a vector space, where the proposed linear classifier can be
used. For every post (user,tags,resource), we construct a text document and then
transform it to the vector space.

We choose to discard user information from the posts, so the only textual
information for each post came from the assigned tags and the resource. Further-
more for each bookmark post we kept url, description and extended_description
fields. For each bibtex post we kept journal, booktitle, url, description, bibtexAb-
stract, title and author fields.

Fore every post, and using those field, we construct a text document. We
then transform document dataset to a vector space. First tokenization of the

3 More details about datasets can be found at
http://www.kde.cs.uni-kassel.de/ws/dc09/dataset

text, then stop word removal, then stemming (using Porter’s stemmer [9], then
term and feature extraction and finally feature weighting using tf*idf statistics.

The following table 1 presents some statistics about categories (tags) and
documents (posts) in the train and the test dataset.

Train dataset|Test dataset
Number of Documents 64,120 778
Number of Categories 13,276 -

Table 1. Statistics for categories and documents in datasets

The following diagram 4 presents the distribution of the sizes of categories in
the train dataset. Axis x denotes the number of categories that are of a certain
size. Axis y denotes the number of documents that a certain sized category
contains.

10000

@ 1000

<

o

€

3

%

3

< 100

°

8

o

E \\

3 .
104 ‘-,
1 T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of categories

Fig. 4. Distribution of the sizes of categories in the train dataset

We note that categories sizes are small in general. In fact 10,500 out of
13,276 categories have at most 10 documents. The average size of categories is
1.97 (average posts per tag).

4.2 Experimental Setup and Train phase

After converting documents (posts) into vectors in a high-dimensional space,
we can apply the proposed text classification method for solving the multilabel
classification problem. Since the method trains a binary linear classifier, the
problem must be transformed into binary classification. This is done by cracking
the problem into multiple binary classification problems. So, at the end we have
to solve 13,276 binary classification problems.

The number of problems is quite large and therefore the used method must be
as much fast as possible. After the train phase (which finishes after the reasonable
time of 2 hours in a mainstream laptop), the final classification system consists
of 13,276 binary classifiers.

4.3 Test phase and Results

Test phase consists of presenting each document of the test dataset (778 in
total) to every binary classifier resulted from training phase (13,276 in total).
Each classifier decides whether the presented document (post) belongs or not to
the corresponding category (tag). Time needed fore presenting all document to
all classifiers on a mainstream laptop was about 10 minutes (that is about 0.8
seconds for a document to pass through all classifiers).

We produced 2 types of results. The ones that come from binary classification
and the ones that come from ranking. During binary classification a document
could be assigned or not into a category. Therefore a document, after been
presented to every binary classifier, could be assigned to zero, one, or more
categories (max is 13,276 of course).

On the ranking mode, a classifier gives a score to each presented document
(higher score mean higher confidence of the classifier that this document belongs
to the corresponding category). Therefore at this mode, a document can be
assigned to any number z of categories we select (simply by selecting the z
categories which gave the higher scores).

We chose our submission to the Challenge, to contain results of the ranking
mode (by selecting the 5 higher scored categories for each document).

After releasing the original tag assignments of the test dataset, our results
of the ranking mode achieved a performance of F; = 0.1008. The results of the
first mode (binary mode), that where never submitted, achieved a performance of
F7 = 0.1622. Of course, those results could not have been known prior releasing
original test tas file, but we had a belief that the ranking mode (suggesting
5 tags for every post, instead of less or even zero) would had better results.
Unfortunately this belief was false.

5 Concluding Remarks

In this paper we described the application of a modified version of the Percep-
tron learning rule on Task 2 of ECML PKDD Discovery Challenge 2009. This

algorithm acts as a supervised machine learning, automatic text classification
algorithm on the data of the task. Task 2 is transformed to a supervised text
classification problem by treating users’ posts ass text documents and assigned
tags as thematic categories.

This algorithm has been prior tested on various text classification datasets
and artificially generated linearly separable datasets, and it has shown a ro-
bust performance and efficiency. Compared with the original Batch Perceptron
learning algorithm, it shows a significant improvement on the convergence rate.

Its fast training phase made it feasible to be used on Task 2 dataset, which
consists of a large categories set (more than 13,000 categories) and a linear
classifier had to be trained for each category.

Although its results on Task 2 test dataset where not so well, we think that
its fast training phase and fast evaluation (since it is just a dot product for each
category-document tuple) allow for further investigation.

Acknowledgments

This paper is part of the 03ED316/8.3.1. research project, implemented within
the framework of the ”Reinforcement Programme of Human Research Man-
power” (PENED) and co-financed by National and Community Funds (20%
from the Greek Ministry of Development-General Secretariat of Research and
Technology and 80% from E.U.-European Social Fund).

References

1. Gkanogiannis, A., Kalampoukis, T.: An algorithm for text categorization. In: 31st
ACM International Conference on Research and Development in Information Re-
trieval SIGIR-2008. (2008) 869-870

2. Gkanogiannis, A., Kalamboukis, T.: A novel supervised learning algorithm and its
use for spam detection in social bookmarking systems. In: ECML PKDD Discovery
Challenge ’08. (2008)

3. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review 65(6) (November 1958) 386—408

4. Novikoff, A.B.: On convergence proofs for perceptrons. In: Proceedings of the
Symposium on the Mathematical Theory of Automata. Volume 12. (1963) 615-622

5. Yang, Y.: A study on thresholding strategies for text categorization (2001)

6. Karypis, G., Shankar, S.: Weight adjustment schemes for a centroid based classifier
(2000)

7. Harman, D.: Relevance feedback and other query modification techniques. (1992)
241-263

8. Buckley, C., Salton, G.: Optimization of relevance feedback weights. In: SIGIR ’95:
Proceedings of the 18th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, ACM (1995) 351
357

9. Porter, M.F.: An algorithm for suffix stripping. Program 14(3) (1980) 130-137

