
A Knowledge Production Protocol for Cooperative
Development of Learning Objects

Juan M. Dodero
DEI Laboratory

Universidad Carlos III de
Madrid

Avda. de la Universidad, 30
28911 Leganés
Madrid, Spain

dodero@inf.uc3m.es

Miguel A. Sicilia
DEI Laboratory

Universidad Carlos III de
Madrid

Avda. de la Universidad, 30
28911 Leganés
Madrid, Spain

masicilia@inf.uc3m.es

Elena García-Barriocanal
Computer Science

Department
Universidad de Alcalá de

Henares
28871 Alcalá de Henares,

Madrid, Spain

elena.garciab@uah.es

ABSTRACT
In a distributed eLearning environment, the development of
learning objects becomes a cooperative task. We consider
learning objects as knowledge pieces, which are subject to
the management processes of acquisition, delivery, and pro-
duction. We present a two-tier architecture for coopera-
tive knowledge production tasks. In our model, knowledge-
producing agents are arranged into knowledge domains or
marts, and a distributed negotiation protocol is used to con-
solidate knowledge produced in a mart. The architecture
can be extended to a multiple-tier architecture, where con-
solidated knowledge can be negotiated in higher-level foreign
marts. This approach is applied to cooperative development
of learning objects, although it is proposed to be also appli-
cable to other knowledge production tasks.

Categories and Subject Descriptors
H.5.3 [Information Systems]: Group and Organization
Interfaces�Computer-supported cooperative work, Theory and
models; K.3.1 [Computing Milieux]: Computer Uses in
Education�Collaborative learning

General Terms
Algorithms

Keywords
Knowledge production, Learning objects, Collaborative de-
velopment, Multi-agent architectures

1. INTRODUCTION
A learning object can be de�ned as a set of learning contents,
integrated with course structure and sequencing (following
LTSA terminology [2]). In a more generic sense, a learning

object is any entity, digital or non-digital, which can be used,
re-used or referenced during technology-supported learning.
The production of learning objects becomes a common task
in the industry of Internet-based learning services �what
is often referred to as e-Learning�. In this work, we are
considering learning objects as knowledge pieces, which are
subject to the management processes of acquisition, delivery,
and production [16].

1.1 A Case Study of Learning Objects Devel-
opment

The IMS (Instructional Management Systems) Global Learn-
ing Consortium has recently released the public draft ver-
sion 1.1 of the IMS Content Packaging Speci�cation [7], that
provides the functionality to describe and package learning
materials, such as an individual course or a collection of
courses, into interoperable, distributable packages

Some commercial toolkits, like Microsoft LRNToolkit1, Peer32

and ToolBook II3, that provide implementations of the IMS
Content Packaging Speci�cation, have been released. Col-
laborative development of learning objects is not supported
in such tools, which present a unipersonal vision of the cre-
ation, edition, viewing, and testing of learning objects.

When constructing a learning object, the builder can use a
tool like Microsoft LRN, as shown in �gure 1. If the learning
object is being jointly developed, another user may wish to
contribute, making some modi�cation in the structure of the
course, or adding some object to the course contents. The
IMS speci�cation de�nes the structure of the learning object
by manifest XML �les, as depicted in �gure 2. Proposed
additions or modi�cations are transformed into changes to
the manifest �le.

While developing a learning object, two or more authors can
cooperate with the exchange of proposals, which are imple-
mented as changes to the manifest �le. Before any change
is considered as consolidated, it must be negotiated between
the participating authors. We will restrict our example to

1http://www.microsoft.com/elearn/support.asp
2http://www.peer3.com/text/software/software.html
3http://home.click2learn.com/products

Figure 1: Microsoft LRN Learning Object Editor, cMicrosoft Corp.

Figure 2: IMS manifest �le structure, cMicrosoft
Corp.

the tableofcontents structure of the organizations sec-
tion in the manifest �le. Nevertheless, collaborative devel-
opment can be also extended to resources or metadata sec-
tions.

Let us consider the development of a learning object named
"Introduction to XML" with Microsoft LRN Toolkit. In a
given moment, an author knows the currently consolidated
knowledge (see �gure 3) and elaborates a new proposal (see
�gure 4). There may be several negotiation processes ini-
tiated, each one a�ecting a section of the learning object,
that can be negotiated separately (v.g., tableofcontents,

resources, and metadata). Then, the author submits a
proposal, including the di�erences between both �les, and
refering to tableofcontents negotiation. The rest of collab-
orating authors receive and evaluate the proposal, according
to a set of previously agreed criteria, like those described in
section 3.3. Then, a negotiation protocol is executed by
every author until the proposal is eventually accepted, or
substituted by a further elaborated proposal. This process
continues until an agreement is reached or some degree of
consensus is achieved.

1.2 Cooperative development of learning ob-
jects

Since learning objects can be considered as knowledge, their
cooperative development is a process that can be knowlegde-
managed. Knowledge management can be considered as a
discipline that a�ects every knowledge process carried out
in a given organization (i.e., a group of people who work to-
gether). According to Swanstrom [16], knowledge processes
can be broadly classi�ed into three categories, that are enu-
merated according to the common timing of implementation.

Acquisition Knowledge is a subset of information that has
been extracted, �ltered and formatted in a speci�c
way. Once the usefulness of information is proved, in-
formation becomes knowledge. The goal of knowledge
acquisition is to extract knowledge from available in-
formation sources.

Delivery and learning Knowledge needs to be constantly
updated and delivered to the right places at the right
time. Learning is a continuous process that can be
oriented by the delivery of knowledge interesting to a
person or community of users.

Production Knowledge becomes a network of ideas, plans,
or artifacts, that are produced by both experts and

Figure 3: Initial state of a manifest �le while developing a learning object

Figure 4: Proposed state of a manifest �le while developing a learning object

users. A cooperation model is advisable to coordinate
such knowledge production tasks, and to ensure that
knowledge production e�ort is not duplicated.

In a highly distributed environment �for instance, the fac-
ulty sta� in a virtual university�, cooperative development
of learning objects becomes harder, since the holding of syn-
chronous �physical or virtual� meetings is quite less fre-
quent. The exchange of ideas between members of the dis-
tributed workgroup is an asynchronous process, where par-
ticipants may keep their own pace within the interchange.
Although, a group of agents can jointly, asynchronously de-
velop learning objects if they coordinate their creation ac-
tivities.

An structured model of cooperation between knowledge-
producing agents is presented in section 2. In our model,
agents are arranged into cooperative knowledge marts, that
are described in section 2. Knowledge production in a mart
is achieved by argumentation-based negotiation (section 3).
Section 4 presents the distributed negotiation protocol to
coordinate knowledge-producing agents, and outlines some
implementation issues. Finally, conclusions and future work
are described in section 5.

2. COOPERATIVE KNOWLEDGE PRODUC-
TION ARCHITECTURE

Knowledge-producing agents can operate into disjoint do-
mains or knowledge marts that we call zocos4 , as shown in
�gure 5. An agent can operate in a foreign market by us-
ing an intermediate proxy agent. Proxy agents act as mart
representatives in foreign marts, according to the proxy de-
sign pattern [5], so that interaction between marts is not
tightly coupled. To facilitate cooperation between domains,
marts can be structured in a hierarchical way, as depicted
in �gure 6.

Knowledge Mart A

Collaborative
Agent

Knowledge Mart B

Knowledge Mart C

Collaborative
Agent

Proxy
Agent

Proxy
Agent

Proxy
Agent

Collaborative
Agent

Collaborative
Agent

Collaborative
Agent

Collaborative
Agent

Proxy
Agent Proxy

Agent

Figure 5: Cooperative knowledge marts

In this architecture, cooperation domains can be modeled as
knowledge marts, and marts can be arranged into knowledge
warehouses.

Cooperative knowledge mart A Cooperative Knowledge

4Zoco is the spanish word for souk, an open-air market in
an Arabian city

Cooperative Knowledge Mart Cooperative Knowledge Mart

Cooperative Knowledge Warehouse

Supervisor
Agent

Supervisor
Agent

Supervisor
Agent

Figure 6: Cooperative knowledge warehouse

Mart (CKM) is a distributed group of cooperative agents
that try to produce a piece of knowledge in a given do-
main. When knowledge produced in a mart can a�ect
agents' performance in some other domain, a special
proxy agent can act as representative in a foreign mart.

Cooperative knowledge warehouse A Cooperative Knowl-
edge Warehouse (CKW) is the place where knowledge
produced in foreign marts is merged in a structured
fashion. Two or more CKMs can negotiate using rep-
resentatives in a common CKW.

Because of simplicity, we de�ne a two-tier cooperative work
architecture. Nevertheless, it can be easily extended to a
multiple-tier architecture, where cooperative agents collab-
orate in lower-level domains to consolidate some knowledge,
before they try to collaborate or compete in higher-level do-
mains.

Collaborative development of a number of learning objects
that make up an in-development curriculum is not a trivial
task. Changes or additions in some learning material can
a�ect several courses that depend on it. Sometimes, two or
more teaching sta� members have to negotiate the inclusion
of some content in a given course under his/her responsibil-
ity. In this case, the architecture of several marts, depicted
in �gure 6 can be helpful to structure the negotiation.

3. AGENT NEGOTIATION IN A KNOWL-
EDGE MART

Negotiation is an essential kind of interaction in multi-agent
knowledge systems. Agents do not usually enjoy an inher-
ent control over each other. Thus, the usual way to in�u-
ence one another is persuasion. In some cases, a persuadee
agent needs a few arguments to behave according to the
persuader directives. In other cases, the persuadee is hardly
determined to accept persuader's proposals. Then, the per-
suadee has to be convinced to change its beliefs, goals, or
preferences, in order to accept �perhaps modi�ed� pro-
posals.

The minimum requirement to negotiate is that agents can
build and deliver proposals, which can be accepted or re-
jected. An example is the Contract Net Protocol (CNP)
[15]. The collaboration protocol is more sophisticated when
recipients have a chance to build counterproposals that al-
ter certain issues that were not satisfactory in the original
proposal [13]. A more elaborated form of negotiation allows
parties to send justi�cations or arguments along with pro-
posals. Such arguments indicate why proposals should be
accepted [17][11][12].

This section introduces an approach to design argumenta-
tive multi-agent architectures, where agents try to convince
each other to accept a given knowledge in some domain.
Agents are structured into knowledge marts, thus building
up knowledge domains. The aim is to allow agents to consol-
idate knowledge continuously produced in a CKM. Knowl-
edge consolidation in a CKM is the establishment of knowl-
edge as accepted by every agent operating in the CKM.
Agents can reach a consensus on the CKM-wide accepted
knowledge by the exchange of messages.

3.1 Negotiation Principles
Negotiation between agents is carried out by exchanging pro-
posals in a common language, like ACL [10]. Proposal inter-
change is directed by goals and necessities of the participat-
ing agents. Although the formalisation of agents' commu-
nication language and goals are not included as objectives
of our model, this account is subject to a minimal set of
conventions about the language and negotiation protocol:

1. Agent rationality is modeled in terms of preference re-
lationships or relevance functions [4], in order to allow
agents to evaluate and compare proposals.

2. Relevant aspects of negotiation can be modeled as is-
sues and values that can be changed as negotiation
progresses.

3. Agents can deliberate and achieve an internal state,
thus recording the history of negotiation and their de-
cisions.

An agent can be involved in several negotiation processes.
The negotiation protocol described in section 4 keeps a sep-
arate negotiation where agents can participate.

3.2 Messages
The basic types of messages abstractions that can be ex-
changed between agents belonging to the same CKM are
the following:

proposal(k,n) Given a negotiation process n, agents send a
proposal message when they have a piece of knowledge
k and wish it to be consolidated in the CKM.

consolidate(k,n) Agents send a consolidate message when
they reach a given state in the negotiation protocol, for
a previously submitted own proposal k to be accepted
in a negotiation process n.

Sources and recipients of messages are not explicited as pa-
rameters in above messages, since they are concern of an
underlying transport protocol that guarantees a reliable de-
livery. As well, message delivery to every agent in the same
CKM has to be supported by some multicasting facility in
the underlying transport.

3.3 Proposal Relevance
As stated above, agents rationality needs to be modeled in
terms of preference relationships or relevance functions, in
order to allow agents to evaluate and compare proposals.
Linguistic-expressed preferences [6] can also be integrated
in negotiation processes, as proposed in [1].

Next, we give some de�nitions used in the protocol described
in section 4.

Proposal attributes Proposal attributes are elementary
criteria to be considered when comparing proposals in
a CKM. Some examples of proposal attributes are:

� Submitter's hierarchical level, useful when agents
present di�erent decision privileges in the CKM
about the acceptance of proposals (v.g., lecturer
vs. assistant in a faculty sta�).

� Degree of ful�lment of a set of goals. For instance,
before the development of a learning content, a
set of educational objectives should be de�ned.
In the case of corporate learning, these goals can
be conducted by the training needs of the organi-
zation.

� Timestamp of the moment when a proposal was
�rstly submitted in the CKM (normally consid-
ered in the last case, when no other attribute can
decide).

Proposal relevance The relevance of a proposal is de�ned
as the set of proposal attributes considered at the mo-
ment of negotiation.

Proposal relevance function The relevance function u(k)
of a proposal k in a CKM returns a numerical value,
dependent on attributes of k, in such a way that if
ki 6= kj , then u(ki) 6= u(kj).

Proposal preference relationship A proposal k1 is pre-
ferred to another k2 in a CKM, denoted as k1 � k2, if
u(k1) > u(k2).

4. NEGOTIATION PROTOCOL IN A CKM
Let AM = fA1; : : : ; Ang be a discrete set of cooperative
agents, participating in a knowledge mart M.

Rule 1 When Ai wants a knowledge piece k to be consoli-
dated in M, it sends a proposal(ki; n) to every agent
in M, initiating a new negotiation n. Then, Ai sets
a timeout t0 before con�rming its proposal. During
t0, messages can arrive from any other agent Aj , with
(j 6= i), consisting of new proposals �maybe the orig-
inal, though modi�ed� referring to the same negotia-
tion n.

Rule 2 If Ai does not receive any message referred to n

during t0, it considers that there is no agent against its
proposal and it tries to ratify its proposal, by sending
a consolidate(ki; n) to every agent in M.

Rule 3 If Ai receives a proposal(kj ; n) message from other
agent Aj , referring to the same negotiation n, Ai eval-
uates the new proposal kj . If ki � kj , then Ai sets a
new time out t1, waiting for proposal kj to be rati�ed.
Then, Ai proceeds as follows:

1. If Ai does not receive any proposal referred to
negotiation n before t1 expires, then Ai initiates
back the protocol in Rule 1 with the same pro-
posal ki.

2. If Ai receives a consolidate(kj ; n), with kj � ki,
for j 6= i, before t1 expires, and referring to the
same negotiation n, then Ai gives up the initial
proposal and the protocol �nishes unsuccessfully.

3. If Ai receives a new proposal(kj; n), with ki � kj ,
it extends the timeout t1.

We are considering two di�erent timeouts, one for each phase
that can be noticed in the negotiation process. T0 is used for
the distribution phase, that occurs after an agent submits a
proposal by executing Rule 1. T1 is used for the consolida-
tion phase, that occurs if an agent that is in its distribution
phase (t0-waiting) receives a proposal that is evaluated as
preferred.

In any moment, the reception of a message from another
agent may provoke a momentary retraction from a previ-
ously submitted proposal, until a counter-proposal is elab-
orated. An agent that has not reached this state will be
waiting for t0 timeout. Then, if the agent receives a pro-
posal that is evaluated as preferred, a new timeout t1 is set
to give it a chance. But if the preferred proposal is not
eventually rati�ed, then the agent goes on about its aims
and will try again to consolidate its own proposal.

A cooperative agent Ai can participate in several negotiation
processes. Each negotiation process is handled separately,
by initiating a new execution thread of the protocol.

4.1 Activation Events
In any moment, an agent Ai can be involved in a negotiation
due to the arrival of a message from Aj referring to the
same negotiation. The following rules describe the actions
to undertake by agent Aj when it receives a message from
another agent Aj .

� If Ai receives a proposal(kj; n) from Aj :

Rule A If Ai sent a proposal(ki; n) and is waiting
for t0 timeout, then it can perform one of the
following actions:

� If kj � ki, then Ai acts in the same manner
as in step 3 and waits for proposal kj to be
rati�ed or an alternative proposal to come.

� If kj � ki, then Ai sends last proposal it sent
in the negotiation process back to Aj , and
extends t0 timeout.

Rule B If Ai sent a proposal(ki; n) and is waiting for
t1 timeout, then it can perform one of the follow-
ing actions:

� If kj � ki, then Ai acts in the same manner
as in step 3-3 and waits for proposal kj to be
rati�ed.

� If kj � ki, then Ai sends last proposal it sent
in the negotiation process back to Aj , and
extends t1 timeout.

Rule C If Ai did not sent any message referred to the
same negotiation n, it does nothing.

� If Ai receives a consolidate(kj ; n) from Aj :

Rule A If Ai sent a proposal(ki; n) and is waiting
for t0 timeout, then it can perform one of the
following actions:

� If kj � ki, then Ai acts in the same man-
ner as in step 3-2 and the protocol �nishes
unsuccessfully.

� If kj � ki, then Ai sends last proposal it sent
in the negotiation process back to Aj , and
extends t0 timeout.

Rule B If Ai sent a proposal(ki; n) and is waiting for
t1 timeout, then it can perform one of the follow-
ing actions:

� If kj � ki, then Ai acts in the same man-
ner as in step 3-2 and the protocol �nishes
unsuccessfully.

� If kj � ki, then Ai acts in the same manner
as in step 3-1 and initiates back the protocol
with the same proposal.

Rule C If Ai did not sent any message referred to the
same negotiation n, it does nothing.

4.2 Protocol Variants
The negotiation protocol described above uses only two mes-
sage types (i.e., proposal and consolidate). Some variants
using additional message types can also be formulated:

retract(k, n) Agents can retract from a previous proposal
k by issuing this message referred to a negotiation n.

substitute(k1, k2, n) Agents can replace a previously is-
sued proposal k1 by a new proposal k2. It is equivalent
to retract(k1; n) followed by proposal(k2; n).

reject(k, n) Agents can express with this message their re-
fusal for a proposal k without necessity to formulate
and issue a new proposal.

4.3 Implementation
We have built a prototype implementation of the protocol,
that uses message multicasting facilities provided by Java
Aglets [9] development framework. In the end-user version
of the protocol, messages will be delivered by e-mail, with
parameters coded into the SMTP message header. A con-
current versioning system will track the changes and commit
the consolidated proposals into a common repository.

5. CONCLUSIONS AND FUTURE WORK
This work presents a model to develop a collaborative multi-
agent architecture, applied to collaborative development of
learning objects. There are currently some popular proto-
cols of cooperation knowledge used heavily by multi-agent
systems. These protocols can be classi�ed into the following
approaches:

� Top-down methodologies try to design domain speci�c
agent systems, either from a market-based approach
(v.g., the contract net protocol or CNP [14]), or from
an organizational approach (v.g., the facilitator proto-
col or FP [3]). With top-down methodologies, it be-
comes di�cult to separate cooperation level knowledge
from problem-solving domain level knowledge. Jen-
nings [8] claimed the existence of a social level knowl-
edge that provides an abstract framework for compar-
ing and analyzing all types of multi-agent systems.

� Bottom-up methodologies aim to generate families of
components that can be assembled to build collabora-
tive agent systems in a more reusable fashion. When
the members of a multi-agent system are scattered over
a very large scope on the Internet, Yuan and Wu [18]
sector them into few territories and duplicate the so-
cial level knowledge in each territory. This approach
could lead to the problem of inconsistency.

The architecture presented here is a bottom-up approach to
the design of cooperative multi-agent systems. Every CKM
holds responsibilities on some domain level knowledge, while
cooperation level knowledge interfaces to other domains are
well-de�ned. The structuring of knowledge marts can help
to reduce inconsistencies between agent territories. The co-
operative approach presented in this work is also applicable
to other knowledge production tasks, as software develop-
ment, specially in analysis and design phases. Nevertheless,
further validation is needed to assess the usefulness of the
protocol in di�erent scenarios, and we are conducting tests
on the impact of the number of agents in the overall e�ec-
tiveness of the model. Our work does not consider yet how
knowledge marts are set up. As a future work, knowledge
mart generation and the participation of agents in CKMs
are proposed to be dynamic, depending on agents' ontology-
based expressed interests.

6. REFERENCES
[1] M. Delgado, F. Herrera, E. Herrera-Viedma, and

L. Martínez. Combining numerical and linguistic
information in group decision making. Information
Sciences, 7:177�194, 1998.

[2] F. Farance and J. Tonkel. Draft Standard for Learning
Technology � Learning Technology Systems
Architecture (LTSA). Technical report, Learning
Technology Standards Committee of the IEEE
Computer Society, Nov. 2000.

[3] T. Finin, R. Fritzson, D. McKay, and R. McEntire.
KQML as an Agent Communication Language. In
Proceedings of the 3rd Int. Conf. on Information and
Knowledge Management (CIKM'94), pages 456�463,
Gaithersburg, Maryland, 1994. ACM Press.

[4] P. C. Fishburn. Utility Theory for Decision Making.
Robert E. Krieger Publishing Co., Huntington, New
York, 1969.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1994. ISBN
0-201-63361-2.

[6] F. Herrera, E. Herrera-Viedma, and J. Verdegay. A
linguistic decision process in group decision making.
Group Decision and Negotiation, 5:165�176, 1996.

[7] IMS Global Learning Consortium. IMS Content
Packaging Speci�cation. Technical report, IMS Global
Learning Consortium, Inc., Dec. 2000.

[8] N. R. Jennings and J. R. Campos. Towards a social
level characterisation of socially responsible agents.
IEEE Proceedings on Software Engineering,
144(1):11�25, 1997.

[9] D. B. Lange and M. Oshima. Programming and
Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

[10] J. May�eld, Y. Labrou, and T. Finin. Desiderata for
agent communication languages. In AAAI Spring
Symposium on Information Gathering, 1995.

[11] S. D. Parsons and N. R. Jennings. Negotiation
through argumentation � A preliminary report. In
Proc. Second Int. Conf. on Multi-Agent Systems,
pages 267�274, Kyoto, Japan, 1996.

[12] H. Sawamura and S. Maeda. An argumentation-based
model of multi-agent systems. In H. Jaakkola and
H. Kangassalo, editors, Proceedings of the 10th
European-Japanese Conference on Information
Modelling and Knowledge Bases, number A28, pages
96�109, Saariselkä, Finland, May 08�11 2000.

[13] C. Sierra, P. Faratin, and N. Jennings. A
service-oriented negotiation model between
autonomous agents. In Proc. 8th European Workshop
on Modeling Autonomous Agents in a Multi-Agent
World, pages 17�35, Ronneby, Sweden, 1997.

[14] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. In IEEE Transactions on Computers,
number 12 in C-29, pages 1104�1113, 1980.

[15] R. G. Smith and R. Davis. Frameworks for
cooperation in distributed problem solving. IEEE
Transactions on Systems, Man, and Cybernetics,
11(1):61�70, Jan. 1981.

[16] E. Swanstrom. Knowledge Management: Modeling and
Managing the Knowledge Process. John Wiley & Sons,
1999.

[17] K. Sycara. Persuasive argumentation in negotiation.
Theory and Decision, 28:203�242, 1990.

[18] S. T. Yuan and Z. L. Wu. An infrastructure for
engineering cooperative agents. International Journal
of Software Engineering, 10(6):681�711, 2000.

