
Thomas Freytag, Andreas Eckleder (Hrsg.)Algorithmen undWerkzeuge für Petrinetze16ter Workshop, AWPN 2009Karlsruhe, 25. September 2009Proceedings

Herausgeber:Thomas Freytag, Andreas EcklederDuale Hochschule Baden-Württemberg Karlsruhe, 76133 Karlsruhe, Germanyfreytag@dhbw-karlsruhe.de, andreas@eckleder.deISSN 1613-0073 (CEUR Workshop Proceedings)Online-Proceedings verfügbar unter http://CEUR-WS.org/Vol-501/BibTEX-Eintrag für Online-Proceedings:@proceedings{awpn2009,editor = {Thomas Freytag and Andreas Eckleder},title = {Proceedings of the 16th German Workshopon Algorithms and Tools for Petri Nets, AWPN 2009,Karlsruhe, Germany, September 25, 2009},booktitle = {Algorithmen und Werkzeuge f\"ur Petrinetze},publisher = {CEUR-WS.org},series = {CEUR Workshop Proceedings},volume = {501},year = {2009},url = {http://CEUR-WS.org/Vol-501/}}

Copyright © 2009 for the individual papers by the papers' authors. Copyingpermitted for private and academic purposes. Re-publication of material fromthis volume requires permission by the copyright owners.II

VorwortSeit 1994 bietet der Workshop �Algorithmen und Werkzeuge für Petrinetze�(AWPN) ein gemeinsames Forum für Entwickler und Anwender petrinetzbasierterTechnologie. Auÿerdem bildet er dank des traditionell geringen �nanziellenAufwands für die Teilnahme und der deutschsprachigen Ausrichtung eine Möglichkeitfür Nachwuchswissenschaftler(innen), Erfahrungen bei einer wissenschaftlichenVeranstaltung zu sammeln.Im Jahr 2009 �ndet der Workshop in seiner 16ten Ausgabe zum zweiten Malnach 1996 in Karlsruhe statt, erstmals an der Dualen Hochschule Baden-Württemberg(DHBW). Veranstalter ist wie immer die Fachgruppe Petrinetze und verwandteSystemmodelle der Gesellschaft für Informatik.Es gab sieben eingereichte Beiträge, die alle nach kurzer Prüfung durch dieFachgruppenleitung in das Programm aufgenommen wurden. Ein Begutachtungs-prozess fand wie auch in den vergangenen Jahren nicht statt. Wir ho�en, dassdie Vorträge eine gute Grundlage für rege Diskussionen bieten.Die Organisatoren danken der Fakultät für Wirtschaft der DHBW Karlsruhefür die �nanzielle und logistische Untersützung der Ausrichtung.September 2009 Thomas Freytag und Andreas Eckleder

III

Steering CommitteeJörg Desel (Stellvertreter) Katholische Universität Eichstätt-IngolstadtEkkart Kindler Technical University of DenmarkKurt Lautenbach Universität Koblenz-LandauRobert Lorenz Universität AugsburgDaniel Moldt Universität HamburgRüdiger Valk Universität HamburgKarsten Wolf (Sprecher) Universität RostockBisherige AWPN-Workshops1. Berlin 19942. Oldenburg 19953. Karlsruhe 19964. Berlin 19975. Dortmund 1998
6. Frankfurt 19997. Koblenz 20008. Eichstätt 20019. Potsdam 200210. Eichstätt 2003

11. Paderborn 200412. Berlin 200513. Hamburg 200614. Koblenz 200715. Rostock 2008

IV

InhaltsverzeichnisModellierung und Mining Kollaborativer Learn�ows . 1Robin Bergenthum, Jörg Desel, Andreas Harrer, and Sebastian MauserNet Agents for Activity Handling in a WFMS . 9Kolja Markwardt, Daniel Moldt, and Thomas WagnerParametric Petri Net Model for EthernetPerformance and Qos Evaluation . 15Dmitry A. Zaitsev, and Tatiana R. ShmelevaDecomposition into open nets . 29Stephan Mennicke, Olivia Oanea, and Karsten WolfPro�ling Services with Static Analysis .35Jan SürmeliAn Approach to Business Process ModellingEmphasizing the Early Design Phases . 41Sebastian Mauser, Robin Bergenthum, Jörg Desel, and Andreas KlettRealtime Detection and Coloring of Matching OperatorNodes in Work�ow Nets. .56Andreas Eckleder, Thomas Freytag, Jan Mendling, and Hajo A. Reijers

V

1

Modellierung und Mining Kollaborativer Learnflows

Robin Bergenthum, Jörg Desel, Andreas Harrer, Sebastian Mauser

Fachgebiet Informatik, Katholische Universität Eichstätt-Ingolstadt
vorname.name@ku-eichstaett.de

Zusammenfassung Basierend auf Ideen aus dem Bereich der Geschäftsprozess-
modellierung werden zwei Ansätze zur Modellierung kollaborativer learnflows
entwickelt und es wird gezeigt wie sich entsprechende Lernprozessmodelle auto-
matisch aus Protokolldateien von Lernsystemen erzeugen lassen.

1 Einleitung

Während sich die Repräsentation, Verarbeitung und Computerunterstützung von Ge-
schäftsprozessen etabliert hat und methodisch gereift ist, werden hingegen auf dem
verwandten Gebiet für Lehr- / Lernprozesse erst in den letzen Jahren verstärkte An-
strengungen unternommen. Aus diesem Anlass diskutierten wir in [1] die Gemeinsam-
keiten, Unterscheidungsmerkmale und einen potentiellen Methodentransfer zwischen
Geschäftsprozessen und Lernprozessen. An dieser Stelle entwickelten wir auch erste
Ansätze zur Modellierung von Gruppenlernprozessen mit Hilfe von Petri-Netzen und
der Generierung von Netzmodellen aus Protokollinformationen (logfiles) durch mining-
Algorithmen.

Von besonderem Interesse ist dabei, wie kollaborative Arbeit bzw. Lernen geeig-
net repräsentiert werden können und welche Rollen bzw. Gruppenzusammensetzungen
für einzelne Aktivitäten notwendig bzw. erwünscht sind. Dabei sind insbesondere die
Spezifika von kollaborativen Lehr- / Lernprozessen gegenüber Geschäfts- prozessen
zu berücksichtigen, was eine direkte Nutzung existierender Ansätze aus dem Bereich
der Geschäftsprozessmodellierung (z.B. [2]) einschränkt bzw. Erweiterungen notwen-
dig macht:

– Für den Geschäftsprozess ist die Durchführung des Prozesses und der damit ver-
bundenen Aktivitäten ein Mittel zur Erreichung eines bestimmten Endprodukts,
wobei die Qualität aber weniger die Beteiligung der einzelnen eingebundenen Ak-
teure im Vordergrund steht. Bei Lernprozessen ist hingegen wesentlich, dass die
Lernenden einen Lernprozess durchlaufen, bei dem einzelne Aktivitäten Lerngele-
genheiten bieten; das Ergebnis des Prozesses ist - abgesehen von formalen Prüfun-
gen - weniger wichtig als das (vollständige) Durchlaufen des Prozesses für die Teil-
nehmer. Daher sollten die einzelnen Akteure bei der Modellierung von Lernprozes-
sen größere Berücksichtigung finden.

– Das Rollenkonzept im workflow engineering beruht i.A. auf der Verantwortlichkeit
bzw. Kompetenz für eine bestimmte Menge von Aktivitäten, die nach anfänglicher
Zuweisung von Rollen für konkrete Akteure festbleibt. Dynamische Einschränkun-
gen der Aktivitätsbearbeitung (in etwa: derselbe Akteur, der das Angebot formuliert

2

soll auch den Vertrag abschließen) und spezielle Regeln zur Allokation von Akteu-
ren zu Aktivitäten (in etwa: der Akteur mit einer geforderten Rolle, der den wenig-
sten weiteren Rollen zugeordnet ist, soll zugewiesen werden) sind in verschiedenen
Ansätzen, z.B. RBAC (Role-Based Access Control), mit Zusatzkonstrukten expli-
zit formulierbar. Im Gegensatz zu diesem starren Rollenkonzept werden in Lern-
prozessen Rollen häufig eingesetzt, um bestimmte Fertigkeiten einzuüben und im
Laufe eines Lernprozesses werden Rollen dynamisch gewechselt bzw. erworben.
Eine Erweiterung eines statischen Rollenmodells hin zu einem dynamischen, das
in der Lage ist die Lernhistorie für Rollenfestlegungen heranzuziehen, ist folglich
für Lernprozesse vorzunehmen.

– Einzelne Aktivitäten, gelegentlich auch der gesamte Lernprozess, können durch
Gruppenarbeit, -diskussion usw. realisiert werden, wobei häufig in kollaborativen
Ansätzen diese Gruppenphasen von hoher Bedeutung für die Lernerfahrung sind.
Die Möglichkeit der Repräsentation von Gruppen, in der Gruppe notwendigen Rol-
len und gegebenenfalls dynamische Bildung / Umformung von Gruppen ist somit
eine weitere Anforderung an Lehr- / Lernprozesse.

Im Folgenden werden wir aufbauend auf den Konzepten der Geschäftsprozessmo-
dellierung aus [2] einen Prozessmodellierungsansatz präsentieren, der die Besonder-
heiten der Lehr- / Lernprozessmodellierung berücksichtigt. Neben der Anwendbarkeit
des Ansatzes speziell für Lehr- / Lernprozesse, sehen wir auch eine Nutzbarkeit für
Geschäftsprozesse, in denen Gruppenaktivitäten und dynamische Rollen wesentlich
sind.

Einen ersten entsprechenden Modellierungsansatz haben wir schon in [1] skizziert.
Wir haben vorgeschlagen Lernprozesse wie im Workflowbereich üblich mit Petrinet-
zen (oder entsprechenden Dialekten von Petrinetzen wie Aktivitätsdiagrammen) zu re-
präsentieren. Die Akteursallokation haben wir durch Zuweisung von benötigten Rollen
zu Aktivitäten durchgeführt, wobei ein globaler Pool mit in Rollen eingeteilten Akteu-
ren angenommen wird. Dabei haben wir bestehende Workflowkonzepte dadurch erwei-
tert, dass sich die Rollen der Akteure bei der Durchführung von Aktivitäten verändern
können.

Da die Akteure und insbesondere deren Rollenwechsel bei der Lernprozessmodel-
lierung eine zentrale Rolle spielen, schlagen wir hier vor diesen Ansatz zu verfeinern,
indem wir die dynamische Rollenbelegung der Akteure explizit durch ein Zustandsdia-
gramm modellieren (natürlich lassen sich hier auch hierarchische Rollenbeziehungen
darstellen). Ein Akteur kann seine Rolle, i.e. seinen Zustand, ändern, wenn er eine Ak-
tivität durchführt. Rollenwechsel finden also durch Synchronisation der Übergänge der
Zustandsdiagramme mit Aktivitäten des Prozessmodells statt.

In einem zweiten Modellierungsvorschlag gehen wir noch einen Schritt weiter, in-
dem wir den globalen Akteurspool auflösen und die Zustandsdiagramme, welche die
Akteure repräsentieren, als Marken in den Kontrollfluss des Prozessmodells einbetten.
Dadurch lässt sich insbesondere der Fortschritt der Akteure innerhalb des Lernprozes-
ses durch ihre ”Aufenthaltsorte“modellieren. Bei diesem Ansatz haben wir uns von
den existierenden Ideen zur Modellierung mit ”Netzen in Netzen“inspirieren lassen.
Insbesondere gibt es Arbeiten (z.B. [3]) zur Modellierung von Multiagentensystemen,
organisationsübergreifenden workflows und adaptiven workflows mit Objektnetzen.

3

Die zwei Modellierungsansätze fokussieren auf die Repräsentation dynamischer
Rollen und berücksichtigen (Lern-) Gruppen nur implizit durch kollaborative Akti-
vitäten. Wir geben daher anschließend einen Ausblick auf Erweiterungen der zwei
Ansätze zur expliziten Modellierung von Gruppen.

Zusätzlich zu den Modellierungsansätzen diskutieren wir die Möglichkeiten und das
Vorgehen für eine automatisierte Synthese von solchen Modellen aus realen Protokol-
linstanzen als Ansatz zum collaboration flow mining. Hierbei erweitern wir die in [1]
als Analogie zum workflow mining [4] vorgestellte Idee des learnflow mining. Während
sich dieses aber noch auf das Auffinden von Kontrollflussstrukturen beschränkte, stellt
sich in dem hier betrachteten Rahmen die weitere Herausforderung Informationen über
dynamische Rollen und entsprechende Kollaborationsregeln aus den Protokollinstanzen
zu gewinnen. Ein verwandter Ansatz aus dem Bereich der Geschäftsprozessmodellie-
rung ist das auf starre Rollen und Organisationseinheiten beschränkte organizational
mining [5].

In Kapitel 2 stellen wir die neuen Modellierungsansätze an einem Beispiel, welches
schon in [1] verwendet wurde, vor. Mit diesem Beispiel erklären wir die zentralen Ideen
des collaboration flow mining in Kapitel 3.

2 Modellierungsansätze

Als Beispiel betrachten wir im Folgenden Gruppen von je drei Schülern, die unterstützt
durch das Tool FreeStyler (www.collide.info) lernen, wie sich verschiedene Faktoren
(z.B. Lichtverhältnisse, CO2-Gehalt, ...) auf das Wachstum von Pflanzen auswirken (für
Details vgl. [1]). FreeStyler stellt hierfür verschiedene Registerkarten zur Verfügung,
auf denen Fragen formuliert, einfache Modelle gezeichnet oder Daten aus einem Si-
mulationsprogramm importiert werden können. Die Menge der Registerkarten ist somit
in unserem Beispiel die Menge der unterstützten Aktivitäten (Ei = Einführung in die
Thematik, Fr = Erarbeitung der wissenschaftlichen Fragestellung, Pl = Planung, Mo
= Modellierung der Beziehungen zwischen den Faktoren, Hy = Aufstellung einer For-
schungshypothese, E1 & E2 = Experimente zur Hypothesenprüfung, Da = Studium
existierender Daten, An = Analyse der Daten mitsamt Überprüfung der Hypothese, Pr
= Präsentation der Forschungsergebnisse). Einige dieser Lernaktivitäten (Ei, Hy, An
jeweils mit allen drei Schülern und Pl, Mo, Pr jeweils mit zwei Schülern) erfordern be-
stimmte Arten von Kollaboration zwischen den Schülern. Ein Lernprozessmodell soll
nun modellieren in welcher Reihenfolge und von wem die Registerkarten bearbeitet
werden sollen, wobei Letzteres von den Rollen abhängt, die die Schüler innerhalb der
Gruppe einnehmen.
Erstes Modell: Das Lernprozessmodell in Abbildung 1 stellt den Prozessaspekt des
Beispiels dar, der durch einen Zustandsautomaten, der ein Rollendiagramm repräsen-
tiert, in Abbildung 2 ergänzt wird. Eine Aktivität im Prozessmodell kann nur dann
durchgeführt werden, falls die an der Transition angeschriebene Anzahl von Rollen
im globalen Akteurspool vorhanden ist: beispielsweise erfordert die kollaborative Akti-
vität Planung (Pl) 2 Akteure in der Rolle Schüler. Beim Schalten der Transition werden
für die betreffenden Akteure Rollenveränderungen vorgenommen, die im Automaten-
modell einem Zustandswechsel mit dem Transitionsnamen als Eingabezeichen entspre-

4

chen; in unserem Beispiel gehen also durch die Planungsaktivität beide Schüler in die
Rolle Modellierer über. Als Konvention zur Vereinfachung des Zustandsautomaten set-
zen wir voraus, dass bei Aktionen, die im Diagramm nicht explizit einen Rollenwechsel
verursachen, die bisherige Rolle erhalten bleibt: Die Aktivität Modellierung (Mo) führt
für einen Akteur, der sich in der Rolle Modellierer befindet, keinen Rollenwechsel her-
bei und kann deshalb im Diagramm entfallen.

PrHy An

E1

Ei

Pl

Mo

Fr

E2

Da

3 Schüler

2 Schüler

2 Modellierer

Schüler

2 Modellierer+Protokollant

Modellierer || Protokollant

Modellierer || Protokollant

Modellierer || Protokollant

2 ModelliererEx
+ProtokollantEx

ModelliererEx
+ProtokollantEx

Abbildung 1. Erstes Modell: Prozessfluss repräsentiert als Stellen-Transitions-Petrinetz mit Rol-
lenbeschriftungen

Schüler

Protokollant

Modellierer

Fr

Pl
ModlliererEx

E1,E2,Da

ProtokollantEx
E1,E2,Da

Abbildung 2. Erstes Modell:
Rollendiagramm repräsen-
tiert als Zustandsautomat

Der Lernfortschritt und die Lernhistorie einzelner
Akteure werden bei diesem Modellierungsansatz in das
Rollendiagramm einkodiert: Beispielsweise wird durch
Ausführen von Experiment1 (E1) ein Lernfortschritt
durch einen Rollenwechsel erreicht, der ein Ausführen
von Experiment2 (E2) und Daten (Da) verhindert. Die-
se Repräsentation fortschrittsabhängiger Aspekte wird
im folgenden alternativen Modellierungsansatz elegan-
ter adressiert.
Zweites Modell: Die Abbildungen 3 und 4 stellen
in ähnlicher Form den Prozessaspekt und den Rollen-
aspekt im alternativen Modellierungsansatz dar. Hier-

bei wird für die Prozessrepräsentation ein hierarchisches Petrinetz verwendet, bei dem
die Marken selbst Rollenautomaten sind, die jeweils einen Akteur repräsentieren, des-
sen Rolle durch seinen aktuellen Zustand dargestellt wird und dessen Fortschritt im
Lernprozess durch die Platzierung im Netz erkennbar ist. In ähnlicher Weise wie im
ersten Modellierungsansatz wird eine Aktivität durchgeführt, sofern mindestens sovie-
le Akteure in Rollen, wie an der Transition angeschrieben, vorhanden sind, allerdings
müssen diese Akteure nun lokal im Vorbereich der Transition vorhanden sein. Die Kan-
tengewichte geben hierbei an wieviele Akteure aus welcher Stelle benötigt werden und
in welche Stellen wieviele Akteure fortschreiten (dabei muss die Anzahl der Akteure
für jede Transition erhalten bleiben: ”Männchenerhaltungssatz “). Für den Kontrollfluss
darf das Modell zusätzlich auch Stellen mit schwarzen Marken enthalten (wie zwischen
den Transitionen Planung und Modellierung).

Durch die Lokalisation jedes Akteurs als Marke im Prozessnetz sind fortschritts-
abhängige Aspekte bereits explizit im Petrinetz repräsentiert. Deshalb ist nun beispiels-
weise ein Rollenwechsel beim Ausführen von Experiment1 (E1) nicht mehr nötig, was

5

PrHy An

E1

Ei

Pl

Mo

Fr

E2

Da

3

2

2 2
2

3 2
2

Modellierer
+Protokollant

2
3 Schüler

2 Schüler

2 Modellierer

Schüler

2 Modellierer+Protokollant

Modellierer || Protokollant

Modellierer || Protokollant

Modellierer || Protokollant

2 Modellierer
+Protokollant

Abbildung 3. Zweites Modell: Prozessfluss repräsentiert als hierarchisches Petrinetz

sich im Rollenautomaten von Abbildung 4 gegenüber demjenigen in Abbildung 2 wi-
derspiegelt. Übergänge im Rollenautomaten werden wie bereits im ersten Ansatz durch
feuernde Transitionen als Eingabezeichen ausgelöst.

Schüler

Protokollant

Modellierer

Fr

Pl

Abbildung 4. Zwei-
tes Modell: Rollen-
diagramm repräsen-
tiert als Zustandsau-
tomat

Zusammenfassend lässt sich festhalten, dass beide vorge-
schlagenen Modellierungsansätze dynamische Rollen, kolla-
borative Aktivitäten und den Fortschritt im Lernprozess geeig-
net repräsentieren können. Allerdings unterscheiden sich die
beiden Ansätze bezüglich der Eindeutigkeit und semantischen
Klarheit der Modellierung, wobei kein Ansatz dem anderen
eindeutig überlegen ist: Der erste Ansatz trennt die Modellie-
rung von Prozess und Rollen weitgehend voneinander und ver-
wendet einfache anonyme Marken im Petrinetz, wohingegen
der zweite Ansatz komplexe Marken verwendet, die jeweils
einen Rollenautomaten mit einem aktuellen (Rollen-)Zustand
repräsentieren, was zudem gegebenfalls die optische Lesbar-
keit des graphischen Modells erschwert (vergleiche Abbildun-
gen 1 und 3). Andererseits repräsentiert im zweiten Ansatz der
Rollenautomat ausschließlich semantisch klar definierte Rol-

len und Übergänge, was im ersten Ansatz eventuell durch fortschrittsabhängige Pseudo-
Rollen modelliert werden muss, falls die Lernhistorie berücksichtigt werden soll. Dies
zeigt sich klar im Vergleich der Abbildungen 4 und 2, in dem der zweite Ansatz we-
sentlich klarer die notwendigen Rollen darstellt.

Explizite Gruppenmodellierung: Gruppen sind in den zwei Modellen implizit über
kollaborative Aktivitäten berücksichtigt. Zur expliziten Gruppenmodellierung bieten
die zwei Modellierungsansätze zwei Möglichkeiten. Zum einen lassen sich Gruppen
durch verschiedene Prozessinstanzen repräsentieren. Hier fehlen allerdings noch Kon-
zepte zur Modellierung von Abhängigkeiten zwischen Prozessinstanzen um dynami-
sche Gruppenumformierungen darstellen zu können. Andererseits lassen sich Gruppen
auch analog zu Rollen explizit in den Zustandsdiagrammen der Akteure modellieren.
Bei Gruppen ist es aber im Gegensatz zu Rollen wichtig die Gesamtgruppendynamik
darzustellen, welche sich dann nur implizit über die Gruppenzugehörigkeiten der ein-
zelnen Akteure ergibt. Daher wären hier Erweiterungen der Modellierungsansätze inter-
essant, welche zu jedem Zeitpunkt explizit die Lerngruppen darstellen, z.B. geeignete
Gruppierungen der Zustandsdiagramme im Akteurspool.

6

3 Collaboration Flow Mining

In diesem Kapitel zeigen wir einen Ansatz zum Auffinden eines Lernprozessmodells
der ersten Form aus Protokollinformationen, d.h. es soll ein Lernprozessmodell erzeugt
werden, welches entweder das aufgezeichnete (dem Dozenten evtl. unbekannte) Lern-
verhalten der Schüler oder durch entsprechendes Filtern auch das erwünschte Lern-
verhalten der Schüler wiedergibt. Wenn ein Akteur unterstützt von einem Informati-
onssystem eine Aktivität ausführt, entstehen Ereignisse und durch Aufzeichnung der
Ereignisse Protokollinstanzen. Jede Aufzeichnung eines Ereignisses soll Informationen
über den zugehörigen Prozess, die zugehörige Prozessinstanz, den Name der Aktivität,
den Zeitpunkt ihrer Ausführung und die ausführenden Akteure (mehrere bei kollabo-
rativen Aktivitäten – u.U. müssen diese noch aus mehreren Ereignissen mit dem sel-
ben Zeitstempel zusammengesetzt werden) enthalten. Die Ereignisse werden erst nach
Prozess und Prozessinstanz und innerhalb einer Prozessinstanz in der Reihenfolge ih-
res Ausführungszeitpunktes geordnet. Damit ergibt sich für jede Prozessinstanz eine
Folge von Aktivitäten mit zugeordneten Akteuren. Diese Abläufe lassen sich als Aus-
gangspunkt für verschiedene Mining Algorithmen verwenden, um Prozessmodelle zu
erzeugen. Derart erzeugte Prozessmodelle können zur Verifikation, Analyse oder zur
Steuerung des operationalen Prozesses durch ein Informationssystem benutzt werden.

Das Tool Freestyler zeichnet die Aktivitäten der Schüler als Ereignisse auf. Abbil-
dung 5 zeigt einen Auszug aus einem Beispielprotokoll von Freestyler für den betrach-
teten Lernprozess. Darunter zeigt Abbildung 5 einen sich aus dem Beispielprotokoll
ergebenden Ablauf von Aktivitäten mit zugeordneten Akteuren. Der Dozent hat die
Möglichkeit die Menge der Lernabläufe zu filtern, indem er nach gewissen Kriterien
(z.B. nachträglich gemessener Lernerfolg) unerwünschte Lernabläufe entfernt und spe-
ziell erwünschte Lernabläufe zusätzlich vorgibt. In diesem Fall wird dann durch mining
ein Modell für einen erwünschten Lernprozess erzeugt, während ohne Filterung durch
den Dozenten ein Modell für den tatsächlich von den Schülern durchgeführten Lern-
prozess generiert wird.

Protokoll-Datei
Prozess Prozessinstanz Aktion Schüler Zeit

Photosynthese Gruppe A Einführung Andi, Basti, Robin 10:03:12
Photosynthese Gruppe A Fragestellung Robin 10:06:43
Photosynthese Gruppe B Einführung Bert, Caro, Hans 10:07:33

...

Lernabläufe
Gruppe A (Einführung; Andi,Basti,Robin), (Fragestellung; Robin), (Planung; Andi,Basti), (Modellierung; Andi,Basti),

(Hypothese; Andi,Basti,Robin), (Experiment1; Andi), (Experiment2; Robin), (Daten; Basti),
(Analyse; Andi,Basti,Robin), (Präsentation; Andi,Robin)

...

Projektion der Lernabläufe auf einzelne Schüler
Einführung, Planung, Modellierung, Hypothese, Experiment1, Analyse, Präsentation
Einführung, Planung, Modellierung, Hypothese, Daten, Analyse
Einführung, Fragestellung, Hypothese, Experiment2, Analyse, Präsentation
...

Lernabläufe für Rollenannotationen
Gruppe A (Einführung; -,-,-), (Fragestellung; Ei), (Planung; Ei,Ei), (Modellierung; EiPl,EiPl),

(Hypothese; EiPlMo,EiPlMo,EiFr), (Experiment1; EiPlMoHy), (Experiment2; EiFrHy), (Daten; EiPlMoHy),
(Analyse; EiPlMoHyE1,EiPlMoHyDa,EiFrHyE2), (Präsentation; EiPlMoHyE1An,EiFrHyE2An)

...

Abbildung 5. Beispielprotokoll.

7

Wir nehmen im Folgenden ein vollständiges Protokoll für den im letzten Kapitel
modellierten Lernprozess an, d.h. wir betrachten die Menge aller bzgl. dieses Lern-
prozesses möglichen Lernabläufe. Vernachlässigt man in dieser Menge von Lerna-
bläufen die Akteure, so lässt sich aus der resultierenden Menge von Aktivitätsfolgen
mit bekannten mining-Verfahren [1, 4] automatisch ein Modell für den Kontrollfluss
des Lernprozesses erzeugen. Beispielsweise erzeugt ein in VipTool implementiertes
mining-Verfahren das in Abbildung 1 gezeigte Petrinetzmodell noch ohne Rollenan-
notationen. Um nun zusätzlich Rollenannotationen und ein Zustandsdiagramm für die
dynamischen Rollen der Schüler zu generieren schlagen wir im Weiteren ein spezielles
mining-Verfahren vor.

Zuerst betrachten wir für jeden Lernablauf und jeden an dem Ablauf beteiligten
Schüler die Folge von Aktivitäten, die der Schüler in dem Ablauf durchführt. Abbil-
dung 5 illustriert diese Projektionen der Lernabläufe auf die Lernenden für den be-
trachteten Ablauf. All diese Folgen von Aktivitäten werden nun in einem determini-
stischen Zustandsdiagramm in Baumform zusammengefasst. Die Zustände sind dann
durch die in der Vergangenheit durchgeführten Aktivitäten eindeutig bestimmt und wer-
den entsprechend benannt. Für unser vollständiges Protokoll ergibt sich das Diagramm
in Abbildung 6, welches schon ein erstes Rollenmodell darstellt. Jede Rolle ergibt sich
also durch die in einer bestimmten Reihenfolge bisher durchgeführten Aktivitäten. Um
diese Rollen konsistent als Beschriftungen im Petrinetz zu verwenden, muss in jedem
Lernablauf jeder Akteursname durch die Rolle, die den Aktivitäten entspricht, welche
der Akteur in der Vergangenheit der betrachteten Aktivität in dem Ablauf durchgeführt
hat, ersetzt werden (siehe Abbildung 5 unten). Die Rollenbeschriftung einer Aktivität
im Petrinetz ergibt sich nun aus allen Rollen bzw. bei kollaborativen Aktivitäten Rol-
lenkombinationen, die in irgendeinem Lernablauf zusammen mit der Aktivität vorkom-
men.

- Ei
Ei

EiPlPl

EiPlMo EiPlMoHy
Hy

EiPlHy

Hy

E1 EiPlMoHyE1

E2

Da

An
EiPlMoHyE1An

Pr
EiPlMoHyE1AnPr

EiPlMoHyE2
An

EiPlMoHyE2An
Pr

EiPlMoHyE2AnPr

EiPlMoHyDa
An

EiPlMoHyDaAn
Pr

EiPlMoHyDaAnPr

EiPlHyE1
An

EiPlHyE1An
Pr

EiPlHyE1AnPr

EiPlHyE2
An

EiPlHyE2An
Pr

EiPlHyE2AnPr

EiPlHyDa
An

EiPlHyDaAn
Pr

EiPlHyDaAnPr

E1

E2

Da

EiFr

Fr

EiFrHy

EiFrHyE1
An

EiFrHyE1An
Pr

EiFrHyE1AnPr

EiFrHyE2
An

EiFrHyE2An
Pr

EiFrHyE2AnPr

EiFrHyDa
An

EiFrHyDaAn
Pr

EiFrHyDaAnPr

E1

E2

Da

Hy

Mo

Abbildung 6. Rollendiagramm mit feinster Granularität.

Für den betrachteten Modellierungsansatz lässt sich zeigen, dass aus einer vollständi-
gen Ablaufmenge eines Modells mit diesem mining-Verfahren immer ein verhaltens-
äquivalentes Modell erzeugt wird. Insbesondere ist das aus dem Beispiel generierte
Modell äquivalent zu dem Lernprozessmodell aus Abbildung 1. Allerdings entsteht hier

8

eine sehr feine Rollenaufteilung, die auf der vollständigen Aktivitätshistorie eines Ak-
teurs basiert.

Im Weiteren ist nun das Ziel das Rollenmodell zu vereinfachen, indem bestimm-
te Rollen zusammengefasst werden. Hierzu haben wir die folgenden Vereinfachungs-
regeln für Rollendiagramme entwickelt. Die Petrinetzbeschriftungen müssen jeweils
konsistent abgeändert werden.

– Rollenübergänge, durch Aktionen an denen alle in einer Prozessinstanz vorkom-
menden Akteure beteiligt sind, können weggelassen werden.

– Rollen, die dieselben Folgerollen (bzw. keine Folgerollen) mit denselben Über-
gangsaktivitäten haben (ersichtlich aus Abbildung 6), können zusammengefasst
werden, falls sie für jede ausgehende Aktivität in der Gesamtheit der Lernabläufe
genau mit denselben Rollen zusammen vorkommen (ersichtlich aus Abbildung 5
unten). Dabei dürfen Übergänge zwischen den zu verschmelzenden Rollen ver-
nachlässigt werden.

– Als letzte Reduktion können einmalig Rollen ohne Ausgänge entfernt werden.

Aus Platzgründen können wir diese Regeln hier nicht näher erläutern und illustrie-
ren. Es lässt sich zeigen, dass diese Regeln unter der Vollständigkeitsannahme des Pro-
tokolls wieder zu einem äquivalenten Modell führen. In unserem Beispiel ergibt sich
ein Rollendiagramm, welches isomorph zu dem in Abbildung 2 ist. Damit lässt sich bis
auf die Rollennamen, welche in einem Protokoll aber auch nicht auftauchen, das ur-
sprüngliche Lernprozessmodell aus einem vollständigen Protokoll reproduzieren. Die
Rollennamen müssten daher nachträglich vom Dozenten vergeben werden.

Typischerweise muss davon ausgegangen werden, dass nicht alle möglichen Abläufe
eines Prozesses aufgezeichnet werden und damit Protokolle unvollständig sind. Für sol-
che Protokolle sind Anpassungen der mining-Verfahren nötig. Hier sind Heuristiken
interessant um auf im Protokoll ”fehlende “Abläufe zu schließen und diese in das Pro-
zessmodell zu integrieren. Für die Kontrollflussperspektive wurden hierzu im Bereich
des process mining etliche Verfahren vorgeschlagen. Die Rollendiagramme betreffend
sehen wir Möglichkeiten zur Anwendung von Verfahren der strukturellen Äquivalenz
und der verallgemeinerten Blockmodellierung.

Literatur

1. Bergenthum, R., Desel, J., Harrer, A., Mauser, S.: Learnflow mining. In: DeLFI, LNI 132, GI
(2008) 269–280

2. Aalst, W., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT Press
(2002)

3. Aalst, W., Moldt, D., Wienberg, F., Valk, R.: Enacting interorganizational workflows using
nets in nets. In: Workflow Management Conference. (1999) 117–136

4. Aalst, W.: Finding Structure in Unstructured Processes: The Case for Process Mining. In:
ACSD 2007, IEEE (2007) 3–12

5. Song, M., Aalst, W.: Towards comprehensive support for organizational mining. Decision
Support Systems 46(1) (2008) 300–317

9

Net Agents for Activity Handling in a WFMS

Kolja Markwardt, Daniel Moldt, and Thomas Wagner

University of Hamburg - Department of Informatics
http://www.informatik.uni-hamburg.de/TGI

Abstract. Workflow Management Systems (WFMS) are used to orga-
nize work processes between different people within an organization or
between organizations. In this paper we will describe an agent-based
WFMS, built with Petri nets, to utilize the formal soundness of Petri
nets and the flexibility of multi-agent systems to enhance the useful-
ness of a WFMS. The focus of this paper lies in the way activities are
handled in the WFMS. We will first discuss the way this works in the
system as of now. Then we will go on and describe a way to use Activity
Agents to add a further flexibility to the activity handling of the system.
These Activity Agents will be responsible for providing the functionality,
including materials and user interface associated with an activity.

Keywords: Activity Agents, Reference Nets, Workflow Management Systems

1 Introduction

Workflow Management Systems (WFMS) are used regularly within companies.
In research and practice the question of coupling the different WFMS of cooper-
ating organizations arises, leading to inter-organizational WFMS. Agent-based
WFMS are one answer in this field. In [6, 7] we proposed an agent-based WFMS
and a process infrastructure for agent systems. The general model is quite elab-
orated, while the implementation has not been discussed deeply. Following the
proposal of [5] the ideas of tools and materials (see [10] for this general approach)
is introduced to multi-agent systems (MAS). Adding the concept of tools and
materials to our Mulan reference model adds further structuring capabilities
for the modeller.

In this contribution we will explain in Section 2 the technological basics of
our WFMS. Section 3 explains our current agent-based WFMS. Then Section 4
provides the information about the tool and material approach and its adap-
tation to our agent-based approach. On top that the central idea, the Activity
Agent is introduced. How to implement the afore mentioned Activity Agent con-
cept is described in Section 5. The paper concludes with a short summary and
outlook in Section 6.

2 Basics

The technological foundation for this contribution are the Mulan and Capa
agent architectures. Mulan stands for Multi-agent nets, which is also the main

10

idea behind it. It was described in [8]. Every element of Mulan, including agent
behavior, agent knowledge and agents themselves, is modelled using the reference
net formalism introduced in [4].

Capa (Concurrent Agent Platform Architecture) is an extension of Mu-
lan, which was introduced in [2]. Its main focus is on communication between
platforms and making the Mulan principles fully compliant with the FIPA stan-
dards. The reference net tool Renew serves as both development and runtime
environment. A description of Renew can be found in [4].

Within the WFMS workflows are modelled using a variation of the workflow
nets described in [9]. This variation of workflow nets uses the task transition
introduced in [3]. A task transitions actually represents three regular transitions.
The three transitions model the request of a work item and the cancellation or
confirmation of an activity.

3 An Agent-Based WFMS

In its current version the system supports basic WFMS functionality. It provides
the means to administrate the system, add and edit workflow definitions and
instantiate and execute workflow instances.

The functionality of the WFMS is provided by a number of different agent
types. The system’s core is made up of a trio of agents, which provide the internal
function of the WFMS. These agents are the Workflow Engine agent (WFEngine
agent), the Workflow Enactment Service agent (WFES agent) and the Workitem
Dispatcher agent (WiDi agent). The WFEngine agent is responsible for firing the
internal transitions of the tasks and for initiating the workflow instances. The
WiDi agent distributes work items and activities to the users, if they are eligible
for them. The WFES agent is located between the other two agents. It manages
different workflow instances on the workflow engine. These three agents interact
with each other to organize the functionality to provide work items and activities
to the user. For each user a user agent exists, which manages the interactions
between the WFMS and the user’s GUI. Its main responsibility lies in invoking
interactions upon actions of the user within the GUI and in initiating display
updates within the GUI. The other agent types offer the functionality to manage
and authenticate logged in users as well as access to the database.

Currently the WFMS supports two kinds of tasks. Simple tasks can only be
accepted and then be marked as completed or canceled. They represent actions,
which have to be completed outside of the functionality the WFMS offers. The
other kind of tasks is form tasks. When a form task is assigned to a user, a form
window is opened, in which the user enters the necessary information. Forms
can consist of an arbitrary number of labels, text boxes, check boxes and radio
buttons. When the form task is completed the data entered into a form is read
into the system and can be used in later form tasks.

The subject of this contribution concerns the the way activities are handled
within the system. Because of this it is important to give a description of the
way activities are assigned in the current version.

11

While workflow instances are active within the system, eligible users can
request the work items, which are currently activated in the workflow nets. When
a user wishes to request a work item he initiates the associated interaction. If this
interaction is successful the WFEngine agent fires the internal request transition
of the task and creates the activity.

When any changes in a workflow net occur a decision component (DC) net,
a special part of the WFEngine agent, is automatically informed. This listener
DC net contains a cycle, which is responsible for handling reported changes
in the set of activities and is always repeated when a new change occurs. The
cycle checks which activities have changed and need to be updated. The cycle
ends with the initiation of the UpdateActivityList interaction. The UpdateAc-
tivityList updates the internal lists of the WFEngine agent, the WFES agent
and the WiDi agent.

After the UpdateActivityList interaction has been completed, the OfferAc-
tivityList interaction is started, in which the WiDi agent informs all user agents
connected to him about the previously updated status of their activities. These
updated activities are then displayed for the user and can be executed.

4 Tool- and Activity-Agents

In this paper we propose a new way of handling activities in the WFMS by using
a special kind of Tool Agents, called Activity Agents. We will first describe the
notion of Tool Agents and how they can be used to build flexible tool-based
applications. Then we will describe the special incarnation of Activity Agents
and the way they will be integrated into the WFMS architecture.

4.1 Tool Agents

Tool Agents are a way to use multi-agent systems to build tools for supporting
individual users work as well as collaborative efforts. This follows the notions of
the tools and materials approach [10], applied to multi-agent systems to address
distributed workplaces.

Overview The main idea about the tool agent concept is that each user controls
a user agent (UA), which can be enhanced by different tool agents (TA) as shown
in [5]. The user agent provides basic functionality like a standard user interface
and the possibility to load new tool agents. Those tool agents can then plug into
the user agents UI with their own UI parts, offering their functionality to the
user. By choosing the specific set of tool agents, the user can tailor his work
environment to his specific needs.

Material agents (MA) are used to represent and encapsulate the materials
or work objects that are currently worked on, like an insurance claim or a text
file. Materials are manipulated by tools and can be created, deleted and moved
between workplaces. Tools and materials populate the workspace of the user.

12

An agent called the Tool Factory is used to manage the different types of
tool agents known to the system. It is called by the user agent to create a ne
instance of a tool agent to use. Figure 1 shows how these agents work together.

Fig. 1. User and Tool agents

4.2 Activity Agents

The definition of a workflow can contain any number of different types of tasks
for a user to perform. In the current systems, all these tasks have to be defined in
advance and the user needs to know how to handle them. It seems clear that in
this way the user can be a real bottleneck in the deployment of new workflows,
if these contain new types of tasks.

Tool Agents already provide a way to enhance the functionality of a User
Agent. Therefore, an adaptation of Tool Agents for WFMS will provide a way
to handle this problem, this adaptation is called an Activity Agent.

Like any Tool Agent it can be used to manipulate materials, but in this case
the material and the context for its manipulation is provided by the workflow.
An Activity Agent is not requested by the User to perform some task but it
is rather assigned to it by the workflow engine to handle an activity. Once it
is connected to the User however, it functions like another Tool Agent. It only
needs a way to determine that the work on the activity is done, so that it can
return the material and feedback on activity completion back to the workflow
engine, for example a “finish” or “abort “ button in the GUI.

4.3 The Activity Agent in the Activity handling process

Activity Agents represent activities within the running WFMS. When a user
successfully request a work item available to him, the system will automatically
start a new Activity Agent. This Activity Agent will be responsible for this
activity alone, and will only be active while the activity is being executed by
the user. During the execution of the activity the user will exchange information
with the Activity Agent, in order to work on the activity. When the activity has

13

been finished, the Activity Agent will transmit the relevant data back to the
workflow engine and terminate.

5 Design and Implementation

In this section we will describe our proposed way to implement the Activity
Agent. The Activity Agent will be started after the listener DC net of the
WFEngine has detected that a new activity has been created. Before the Update-
ActivityList interaction is started the listener will check if the activity is flagged
as an Activity Agent activity. If the activity is to be executed by an Activity
Agent, a new DC net is entered. The purpose of this new DC will be to start
the new Activity Agent and add the agent’s information to the activity, so that
the executor’s user agent knows how to interact with the Activity Agent. After
this is done, the listener DC net can continue and start the UpdateActivityList
interaction. Within The UpdateActivityList and OfferActivityList interactions
only the internal lists have to be modified, in order to incorporate the added
information.

While the Update- and OfferActivityList will not have to be changed much,
the handling of activities in general and within the user GUI require changes.
Concerning the handling of activities changes have to be made, because in the
proposed version the actual handling of the activity will be done by the Activity
Agent. In the current version the activities are manipulated within the GUI
and then passed to the user agent, who, upon completion of the activity, sends
them to the WFEngine agent. In the new version the user agent will not directly
communicate with the WFMS’s core in this matter, but will only communicate
with the Activity Agent in order to manipulate materials involved in the activity
(e.g. forms). When the user has finished his work on the activity he will inform
the Activity Agent, who then informs the WFMS’s core.

The reason for changes to the GUI is, that in the current version tasks are
simply displayed in a list (simple tasks) or a generic form window is opened (form
tasks). In both cases, the interface to complete the activity is embedded into the
general GUI. Since the Activity Agent is designed to be able to offer arbitrary
functionality with a possibly specialized GUI, this GUI has to be offered by
the agent itself, because otherwise the main user GUI has to be changed and
enhanced, whenever a new type of task is added. In order to support this, the
GUI has to be changed so that selecting an activity will contact the Activity
Agent who will in turn invoke his own GUI.

6 Summary and Outlook

We have proposed in this paper a way of enhancing an Agent-based WFMS
with flexible activity-handling procedures. Specialized agents will be used to
plug into the users’ system and provide them with the functionality needed to
perform their tasks within the workflow process. The underlying Petri nets allow
first of all an appropriate modelling of the system and its processes. In addition

14

the agents and their behaviour become a well defined semantics. Following our
Paose approach (see [1]) models are continuously transformed, so that they
can be executed. Reference nets support this directly. Introducing the tool and
material ideas into our multi-agent systems provides us with a highly expressible
modelling basis. Activity agents directly rely on this. The flexibility introduced
into the agent-based WFMS by the addition metaphor of the tool allows to
introduce new activities much easier than the former way of explicitly defining
all necessary parts redundantly.

Activity agents will directly be used in our next version of our distributed
and no longer centralized agent-based WFMS. There it will take care in a quite
generic way of activities of the workflows, the core of workflows in general.

References

1. Lawrence Cabac, Till Dörges, Michael Duvigneau, Christine Reese, and Matthias
Wester-Ebbinghaus. Application development with Mulan. In Daniel Moldt, Fab-
rice Kordon, Kees van Hee, José-Manuel Colom, and Rémi Bastide, editors, Pro-
ceedings of the International Workshop on Petri Nets and Software Engineering
(PNSE’07), pages 145–159, Siedlce, Poland, June 2007. Akademia Podlaska.

2. Michael Duvigneau. Bereitstellung einer agentenplattform für petrinetzbasierte
agenten. Diploma thesis, University of Hamburg, Department of Computer Science,
December 2002.

3. Thomas Jacob. Implementierung einer sicheren und rollenbasierten
workflowmanagement-komponente für ein petrinetzwerkzeug. Diploma the-
sis, University of Hamburg, Department of Computer Science, 2002.

4. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
5. Kolja Lehmann and Vanessa Markwardt. Proposal of an agent-based system for

distributed software development. In Daniel Moldt, editor, Third Workshop on
Modelling of Objects, Components and Agents (MOCA 2004), pages 65–70, Aarhus,
Denmark, October 2004.

6. Christine Reese, Jan Ortmann, Daniel Moldt, Sven Offermann, Kolja Lehmann,
and Timo Carl. Fragmented workflows supported by an agent based architecture.
In Manuel Kolp, Paolo Bresciani, Brian Henderson-Sellers, and Michael Winikoff,
editors, Agent-Oriented Information Systems III 7th International Bi-Conference
Workshop, AOIS 2005, Utrecht, Netherlands, July 26, 2005, and Klagenfurt, Aus-
tria, October 27, 2005, Revised Selected Papers, volume 3529 of Lecture Notes in
Computer Science, pages 200–215. Springer-Verlag, 2006.

7. Christine Reese, Matthias Wester-Ebbinghaus, Till Dörges, Lawrence Cabac, and
Daniel Moldt. Introducing a process infrastructure for agent systems. In Mehdi
Dastani, Amal El Fallah, João Leite, and Paolo Torroni, editors, LADS’007 Lan-
guages, Methodologies and Development Tools for Multi-Agent Systems, volume
5118 of Lecture Notes in Artificial Intelligence, pages 225–242, 2008. Revised Se-
lected and Invited Papers.

8. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

9. Wil M.P. van der Aalst. Verification of workflow nets. Lecture Notes in Computer
Science, 1248/1997:407–426, 1997. Application and Theory of Petri Nets 1997.

10. Heinz Züllighoven. Object-Oriented Construction Handbook. dpunkt Verlag, 2005.

15

Parametric Petri Net Model for
Ethernet Performance and Qos Evaluation

Dmitry A. Zaitsev1 and Tatiana R. Shmeleva2

Department of Communication Networks,
Odessa National Academy of Telecommunications,

Kovalska, 1, Odessa 65029, Ukraine
Web1: http://www.geocities.com/zsoftua, E-mail2: tishtri@rambler.ru

Abstract. Parametric model of switched Ethernet in the form of a
colored Petri net is presented. The model is invariant regarding the
structure of the network; it has fixed number of nodes for any
given tree-like network. Special measuring fragments, which
accomplish the model, provide the evaluation of the network
throughput and the frame delivery time directly in the process of
simulation. The anomaly of Ethernet switches’ mutual blocking
has been revealed.
Keywords: switched Ethernet, colored Petri net, parametric model,
delivery time, throughput, mutual blocking.

1 Introduction

At present Ethernet technology dominates the sector of local area networks.
Moreover, 1Gb and 10Gb standards allow positioning Ethernet as a universal
networking technology, because providers widely apply «Ethernet over DWDM»
solutions in backbone networks. Design of effective local and backbone networks
requires reliable estimations of throughput and the quality of service. Recently the
model driven development of telecommunication networks and devices becomes
prospective. It is based on express-evaluations of characteristics obtained in the
shortest time for new project decisions that determine the relevance of the present
research.

Colored Petri Nets [1] and CPN Tools [2] are successfully used for modeling
Ethernet [3-5], TCP/IP and MPLS [6], wireless Bluetooth [7] networks. Colored Petri
Nets allow not only the modeling of telecommunication networks, but also the
estimation of their characteristics via special measuring fragments [4,8] during the
process of simulation.

The mentioned papers are based mainly on the modular approach to the
telecommunication networks models construction: a model of a network is composed
of DTE (workstation, server) and DCE (switch, router) submodels, which were built
earlier. The essential disadvantages of this approach are the following: the necessity
of the model rebuilding for each new structural scheme of the network, great number
of used Petri net elements that considerably delay the processes of models
construction and analysis.

The parametric model of switched Ethernet presented in [5] has a fixed structure
for an arbitrary tree-like network; its elements are switches, workstations and servers.
The definite structure of a network is an input in the form of packed matrices as the
marking of corresponding Petri net places. However, in [5] only the principles of a
parametric Petri models construction were studied and the questions about the
evaluation of the modeled networks characteristics were not considered.

16

The goal of the present work is constructing the measuring fragments for
parametric model of switched Ethernet for the evaluation of throughput (traffic), the
quality of service (frame delivery time), the size of the switches internal buffers.
Moreover, for the confirmation of the built models adequacy, the technique for the
mentioned characteristics measuring on real-life networks was developed.

2 Parametric Model of Switched Ethernet

The model presented in [5] was refined in the following way: the expressions in the
transitions guards were simplified via variables superposition; the limitations of the
switches internal buffer size were added; the places, which describe the dump of frames
for the following calculation of characteristics, were added.

The model is represented in Fig. 1; the declarations of colors (color), variables (var)
and functions (fun) used in the model and measuring fragments are represented in Fig. 2.
The peculiarity of the parametric model is the special tags added to frames, which contain
switch and port numbers and provide the frames reentrance. The model has a fixed
structure and contains 14 places and 8 transitions of Petri net for an arbitrary tree-like
structure. The components of the model are switches, workstations and servers. The left
part of Petri net models all the Ethernet switches (the names of the elements names do not
have any suffix), the right upper part – all the workstations (the names of the elements
have WS suffix), the left lower part – all the servers (the names of the elements have S
suffix); the pair of places inPorts, outPorts model all segments. Names “in/out” are
chosen with respect to the switches; they model the full-duplex mode of work. Additional
places received, sent model the frames dump by DTE, places inSW, outSW model the
frames dump by switches. Additional names rcvd, snd, inSWITCH, outSWITCH are
used for the connection with model pages, which calculate characteristics described in the
next section.

A definite structure of modeled network is specified by the marking of places swtab,
SwichLink, Attach. The place swtab contains the switching tables of all the switches.
The switching tables are represented by corteges swi (destination address, port, switch).
The place SwichLink describes the connections of switches (uplinks), which are
represented by corteges swl (switch1, port1, switch2, port2). The place Attach describes
the DTE connection, which is represented by corteges swi (address, port, switch). In Fig. 1
the marking of the places corresponds to the Railway dispatcher center LAN represented
in Fig. 3.

17

(src,dst,nf,cT())

(src,dst,nf,cT())

(src,dst,nf,cT())
(src,dst,nf,cT())

(sw,bcur)

(sw,bcur)

(sw,bcur-1) (sw,bcur)

(sw,bcur+1)

(sw,bcur)

(sw,blim)

f(src,dst,p1,sw1,nf)

avail(sw1,p1)

avail(sw2,p2)

f(src,dst,p2,sw2,nf)

(sw1,p1,sw2,p2)
(src,dst,nf)

(dst,p,sw)

(src,p,sw)

(src,p,sw)

(dst,p,sw)

avail(sw,p)

f(src,dst,p,sw,nf)

avail(sw,p)

f(src,dst,p,sw,nf)

(src,dst,nf)
Nsend()`(dst,src,nf)

(src,dst,nf)

(src,dst,nf)

dst

avail(sw,p)

f(src,dst,p,sw,nf)

(src,dst,nf+1)@+Delay()

dstavail(sw,p)

f(src,dst,p,sw,nf)

avail(sw,p)

f(src,dst,p,sw,nf)(src,dst,p,sw,nf)

(src,dst,p2,sw,nf)

(dst,p2,sw)

avail(sw,p1)

f(src,dst,p1,sw,nf)

uplink

execS

@+Dexec()

sendS

@+14

receiveS

@+dSr

sendWS

@+14

receiveWS

@+4

put

@+12

get

@+2

[bcur<blim]

received
rcvd mac2s

sent
snd mac2s

outSW
outSWITCH buflimit

inSW
inSWITCH buflimit

bufLoad

1`(1,0)++
1`(2,0)++
1`(3,0)

buflimit

bufLim

1`(1,4)++
1`(2,4)++
1`(3,4)

buflimit

SwichLink

1`(1,4,3,1)++1`(3,1,1,4)++
1`(2,4,3,4)++1`(3,4,2,4)

swl

AttachWS
Attach 1`(1,1,1)++1`(2,2,1)++

1`(3,3,1)++1`(4,1,2)++
1`(5,2,2)++1`(6,3,2)++
1`(7,2,3)++1`(8,3,3)swi

AttachS
Attach

1`(1,1,1)++1`(2,2,1)++
1`(3,3,1)++1`(4,1,2)++
1`(5,2,2)++1`(6,3,2)++
1`(7,2,3)++1`(8,3,3)

swi

requestS frame

replyS frame

ownS

1`6++1`8

mac

rqWS

1`(1,6,1)@+800++1`(1,8,1)@+600++
1`(2,6,1)@+1100++1`(2,8,1)@+900++
1`(3,6,1)@+1300++1`(3,8,1)@+0++
1`(4,6,1)@+1000++1`(4,8,1)@+800++
1`(5,6,1)@+900++1`(5,8,1)@+1200++
1`(7,6,1)@+1300++1`(7,8,1)@+1100

mac2

ownWS

1`1++1`2++1`3++
1`4++1`5++1`7

mac

inPorts

1`avail(1,1)++1`avail(1,2)++1`avail(1,3)++
1`avail(1,4)++1`avail(2,1)++1`avail(2,2)++
1`avail(2,3)++1`avail(2,4)++1`avail(3,1)++
1`avail(3,2)++1`avail(3,3)++1`avail(3,4)

seg

outPorts

1`avail(1,1)++1`avail(1,2)++1`avail(1,3)++
1`avail(1,4)++1`avail(2,1)++1`avail(2,2)++
1`avail(2,3)++1`avail(2,4)++1`avail(3,1)++
1`avail(3,2)++1`avail(3,3)++1`avail(3,4)

seg

buffer

swf

swtab

1`(1,1,1)++1`(2,2,1)++1`(3,3,1)++
1`(4,4,1)++1`(5,4,1)++1`(6,4,1)++
1`(7,4,1)++1`(8,4,1)++1`(1,4,2)++
1`(2,4,2)++1`(3,4,2)++1`(4,1,2)++
1`(5,2,2)++1`(6,3,2)++1`(7,4,2)++
1`(8,4,2)++1`(1,1,3)++1`(2,1,3)++
1`(3,1,3)++1`(4,4,3)++1`(5,4,3)++
1`(6,4,3)++1`(7,2,3)++1`(8,3,3)

swi

Attach

Attach

inSWITCH

outSWITCH

snd

rcvd

Fig. 1. Parametric model of switched network

Moreover, the model contains the following parameters: workstations addresses

ownWS, servers addresses ownS, matrix of workstations requests to servers rqWS,
switch buffer size limit bufLim. Random functions Delay(), Dexec(), Nsend() define
the periodicity of workstations requests, the duration of the workstation request
execution by server and number of the servers response frames correspondingly.

In the model, the time delays are represented in MTU (Model Time Unit), the
sizes – in frames, which have maximal length. Time and date size scaling was
considered in [4]. In the model represented in Fig.1, the time delay corresponds to 100
Mbps Ethernet, 1MTU=10 ms, the maximal frame size is 12304 bit. Delays of the
sending transitions sendWS, sendS contain the time of frames transmission through
segment, delays of the receiving transitions receiveWS, receiveS contain only the
delays, which correspond to the devices performance (Ethernet adapters, switches).
Frequency of workstations requests is 10-20 µc; the time of requests execution by
server is 1-2 µc; requests length is 1 frame, servers answers length is 10-20 frames.

The model represented in Fig.1 describes the work of all the switches with
obligatory frames buffering and all the ports having the same transmission speed. For
frames buffers of switches and servers, the random choice discipline was realized. In
the evaluation of real-life networks characteristics more complicated variants of
models are used. Queues with FIFO discipline are realized for buffers. The transition
Direct is added for direct forwarding of received frame into the output port (if the
queue is empty and the destination port is free). Delay matrices are used for modeling
different ports transmission speeds.

The description of model elements which are added for posterior evaluation of
characteristics using measuring fragments should be considered in detail. Additional
elements model the processes of the frames dump studied in Section 5. At the instant
of the frame transmission by a terminal device into a segment via transitions sendWS,

18

the copy of its header containing sender address scr, destination address dst, ordinal
number of frame for the device nf, and also the time stamp of current model time
obtained by function cT() are saved into the place sent. In the similar way at the
instant of the frame receiving by a terminal device via transitions receiveWS,
receiveS, the copy of its header is saved into the place received. Moreover, the dump
is executed at the receiving/transmitting frames by switches into places inSW, outSW
that model the work of switches statistical subsystem or external packets analyzers
attached to the corresponding ports. In the present research such information as switch
number sw and the current size of switch buffer bcur for each input/output frame are
saved.

colset mac=int with 1..8;
colset portnum=int with 1..4;
colset swch=int with 1..3;
colset nfrm=INT;
colset mac2=product mac*mac*nfrm timed;
colset mac2s=product mac*mac*nfrm*INT timed;
colset sfrm=product mac*mac*nfrm*INT timed;
colset frm=product mac*mac*portnum*swch*nfrm
timed;
colset nseg=product swch*portnum;
colset seg=union f:frm+avail:nseg timed;
colset swi=product mac*portnum*swch;
colset swf=product mac*mac*portnum*swch*nfrm
timed;
colset frame=product mac*mac*nfrm timed;
colset swl=product swch*portnum*swch*portnum;
colset buflimit = product swch * INT;

colset pairch=product mac*mac*INT;
colset zero=int with 0..0;
colset pairch0=product mac*mac*zero;
colset dex= int with 100..200;
colset nse = int with 10..20;
colset Delta= int with 1000..2000;
var src,dst: mac;
var sw,sw1,sw2:swch;
var p,p1,p2: portnum;
var i,t,t1,t2,q,mt,dt,mx,s,pt,m,a,av : INT;
var blim, bcur, bmax: INT;
var nf,nf1: nfrm;
val bitms=12304*10;
fun Dexec()=dex.ran();
fun Nsend()=nse.ran();
fun Delay()=Delta.ran();
fun cT()=IntInf.toInt(!CPN'Time.model_time)

Fig. 2. Declarations of colors, variables and functions

SWI3

S2
MAC=8

WS6
MAC=7

WS5
MAC=5

WS4
MAC=4

SWI2SWI1

WS1
MAC=1

WS2
MAC=2

WS3
MAC=3

S1
MAC=6

1 1

1 2

2 23

3

3

4

4 4

Fig. 3. An example of a switched network

3 Measuring Fragments

The technique of measuring fragments was earlier presented and studied in [4] for
nonparametric models. Its main idea consists in the following: as a colored Petri net is
a universal algorithmic system, the algorithms of the characteristics calculation may
be described by additional fragments of Petri net named by measuring fragments
(MF). The model accomplished with measuring fragments implements the calculation
of telecommunication network characteristics directly during the process of
simulation. The measuring fragments of parametric model for evaluation of traffic,

19

frames delivery time and the size of switches internal buffers are constructed further.
Measuring fragments are drawn in red color.

3.1 Network Throughput (traffic) Evaluation

The evaluation of traffic is implemented on the basis of delivered frames dump
within terminal devices. It should be noticed that the evaluation might also be
implemented on the basis of sent frames dump and the percentage of dropped frames
might be obtained. As in the parametric model represented in Fig. 1 the frames
dropping process is not modeled, both mentioned evaluations coincide.

The measuring fragment for traffics evaluation is shown in Fig. 4. The fusion
place newFrame receives the dump of the regular frame received by the terminal
device from the network model (Fig. 1). Transition procFrame saves its copy into the
place newDbl for the delivery time evaluation MF and starts the recalculating of
characteristics which are stored into places nFrm, nFrmAll, trafficAll, traffic. Note
that, the formulae of recalculation are represented by the inscriptions of
corresponding arcs.

(src,dst,if cT()>0 then ((q+1)*bitms) div cT() else 0)

(src,dst,t1)(src,dst,q+1)

(src,dst,q)

(src,dst,nf,t2)

if cT()>0 then ((i+1)*bitms) div cT() else 0

t
i+1

i

(src,dst,nf,t2)

procFrame

traffic

pairch0.all()

pairch

nFrm

pairch0.all()

pairch

newDbl
rcvd1 mac2s

trafficAll

0

INT

nFrmAll

0

INT

newFrame
rcvd mac2srcvdrcvd1

Fig. 4. Measuring fragment for traffic evaluation

The place traffic stores the traffic matrix for each pair of MAC-addresses
represented with corteges in the form (addr1, addr2, traffic). That allows the
evaluation of asymmetrical traffic as the cortege defines the direction of transmission.
For the calculation of traffic, the place nFrm is used that stores the matrix of
transmitted frames quantity in the form (addr1, addr2, quantity). Each firing of the
transition procFrame increases the quantity of received frames for each pair of
addresses: (src, dst, q+1). Traffic is calculated via the division of received frames
number by the current model time; the constant bitms is used for the reduction of
dimension to bit/ms. The simplest formula used for traffic calculation is the
following:

dt
ntraffic = ,

where n is the amount of delivered information, dt – the timed interval of measuring.

As in the majority of cases the traffic between each pair of devices is a too
detailed characteristic, the calculation of an integral characteristic such as the total
network traffic represented with the place trafficAll is provided. For its calculation

20

the place nFrmAll is added that stores the total number of frames received by all the
terminal devices.

3.2 Frame Delivery Time Evaluation

The evaluation of frame delivery time is implemented on the basis of calculating
the difference between time stamps of the receiving and sending frame for each pair
of interacting terminal devices. For the identification of a frame its ordinal number nf
is used that is unique for each transmitting terminal device.

MF for evaluation of frames delivery time is represented in Fig. 5. Transition
culcDT calculates frame delivery time dt. Transition culcAVR starts the recalculation
of characteristics stored into places sumPair, sumAll, averPair, averAll, maxAll,
maxPair, quantAll, quantPair.

i+1

is+dt

s

Int.max(mx,Int.max(mt,dt))
(s+dt) div (i+1)

mx
av

(src,dst,dt)

(src,dst,t2-t1)

(src,dst,nf,t2)(src,dst,nf,t1)

(src,dst,Int.max(mt,dt))

(src,dst,mt)

(src,dst,(t+dt) div (q+1))

(src,dst,a)

(src,dst,t+dt) (src,dst,q+1)

(src,dst,q)(src,dst,t)

culcDT

cuclAVR quantAll

0

INT

sumAll

0

INT

maxAll

0

INT

averAll

0

INT

DT

pairch

receivedT
rcvd1 mac2s

sentT
snd mac2s

maxPair

pairch0.all()

pairch
averPair

pairch0.all()

pairch

quantPair

pairch0.all()

pairch

sumPair

pairch0.all()

pairch

snd
rcvd1

Fig. 5. Measuring fragment for frame delivery time evaluation

Places sumPair and quanPair store the sum of delivery times and the quantity of

delivered frames for each pair of terminal devices correspondingly. They are used for
the calculation of the average averPair and the maximal maxPair frame delivery
times for each pair of devices. Note that, at the calculation of averages the
information about a newly arrived frame is used: ((t+dt) div (q+1)). The following
formula is used for the average delivery time calculation:

q
dtdtdt

adt q)...(21 +++
= ,

where idt is the delivery time of i-th frame, q – total number of delivered frames.

Places sumAll and quantAll store the sum of delivery times and the total number of
all the delivered frames correspondingly. They are used for calculation of the average
averAll and maximal maxAll delivery times for all the frames transmitted within the
network.

21

3.3 Switch Buffer Size Evaluation
During the equipment choice and also during the telecommunication networks

devices design, the task of determining the devices optimal characteristics is solved.
For switches with the given transmission speed on the ports (for instance: 100Mbps,
1Gbps) such characteristics are the average time of frame switching which may be
implicitly evaluated on the base of producer information about the number of frames
processed in the unit of time [4] and also the size of switch internal buffer of frames.

In Fig. 6 the measuring fragment for the evaluation of switch internal buffer size is
represented. Parametric model (Fig. 1) allows the assigning of buffer size limit into
place bufLim and implements the dump of frames received and sent by switches.

(sw,if cT()>0 then (m+i*(cT()-pt)) div cT() else 0)(sw,if cT()>0 then (m+i*(cT()-pt)) div cT() else 0)

(sw,a)(sw,a)

(sw,cT())

(sw,pt)

(sw,m+i*(cT()-pt))

(sw,m)

(sw,cT())

(sw,pt)

(sw,m)

(sw,m+i*(cT()-pt))

(sw,if i+1>bmax then i+1 else bmax)

(sw,bmax)

(sw,i)(sw,i)
outin

average

1`(1,0)++
1`(2,0)++
1`(3,0)

buflimit

prevCT

1`(1,0)++
1`(2,0)++
1`(3,0)

buflimit

sum

1`(1,0)++
1`(2,0)++
1`(3,0)

buflimit

maximum

1`(1,0)++
1`(2,0)++
1`(3,0)

buflimit

inSWI
inSWITCH buflimit

outSWI
outSWITCH buflimitoutSWITCHinSWITCH

Fig. 6. Measuring fragment for switch buffer size evaluation

On receiving a frame by switch, the number of the switch and the current size
of its buffer are stored into the place inSWI. The same information is stored into
the place outSWI at the transmitting of a frame by switch. MF calculates the
maximal actual size of the buffer in the place maximum and also the average size
of the buffer in the place average. Auxiliary places sum and prevCT serve for the
storing the sum of products and the value of the previous time instant of the size
measurement for each switch. Let us consider the formula of average buffer size
calculation in detail:

()
dt

dtidtidtia kk ⋅++⋅+⋅
=

...2211 ,

where ji is the size of the buffer on the time interval jdt , dt – the total interval
of time measurement. As the measurement starts from the zero instant of time, the
length of the total time interval equals to the current model time cT(). For
calculating the current interval jdt , values of the last measurement time instant pt

stored into the place prevCT for each switch are used: ptcTdt j −= () . The sum
of the products represented in the numerator is accumulated into the place sum for
each switch separately.

The construction of other measuring fragments is also possible, for instance,
for the evaluation of collisions percentage at hubs usage, evaluation of application
systems response times etc. In [4] the measuring fragments (for nonparametric
Ethernet models) for the evaluation of application system GID-Ural VNIIZT
response time which includes network delivery times and time of request

22

processing by server were presented. Such an integral characteristic is the basic
one during real-time systems design.

4 Computational Experiments with the Model

For obtaining reliable evaluations of telecommunication networks characteristics,
the special organization of computational experiments with the model was
implemented. As the processes of requests generation and processing into client-
server system are represented with random functions, their interaction with the
communication equipment defines a stochastic process. That is why the statistical
approach based on calculating the average of distribution and central statistical
moments is applied. In the majority of cases two magnitudes: the average of
distribution and dispersion are used.

The simulation of the net dynamics was implemented on rather prolonged
intervals of model time that correspond to a few minutes of real time. At first, the
existence of state stable mode of the model behavior was studied. Then the evaluation
of characteristics in state stable mode was implemented.

For each time interval idt not less than twenty individual experiments were
implemented. Then average

idta and dispersion
idtσ were calculated for each

characteristic on the chosen interval. Measurements and calculations were repeated
for doubled time interval and so on. If the averages and dispersion coincided

11
,

++
==

iiii dtdtdtdt aa σσ then the decision about a state stable mode existence was
adopted. It should be noticed that the absence of a state stable mode might be easily
observed, for instance, in case of the increase of requests frequency by factor of 100.

However, the mentioned observance is not concerned with the telecommunication
equipment, but with the increase of average numbers of unsent frames into terminal
equipment. Telecommunication equipment work normally providing the delivery of
frames under peak load due to the modeling flow control facilities stipulated by the
standards. Examples of the tables which illustrate the growth of queues in non state
stable mode are shown in [8].

Further, in the state stable mode the evaluations of characteristics for various
parameters combinations of hardware and software such as the requests frequency,
the time duration of processing and the size of switch internal buffer were
implemented. In Fig. 7 the current marking of MF for delivery time calculation (Fig.
5) obtained on time interval 168009MTU=1,68 s is represented.

Thus, the average frame delivery time equals to 36 MTU=0,36 µs; maximal
delivery time equals to 415 MTU=4,15 µs. From the matrix of delivery times
maxPair, it might be seen that the maximal delivery time is reached at the delivery of
frames sent by the server S1 (MAC=6) to workstation WS3 (MAC=3). The shown
fragments of matrices acknowledge that the transmission of the frame among the pairs
of workstations as well as among the pairs of servers does not take place
(corresponding values are zero).

23

i+1

is+dt

s

Int.max(mx,Int.max(mt,dt))
(s+dt) div (i+1)

mx
av

(src,dst,dt)

(src,dst,t2-t1)

(src,dst,nf,t2)(src,dst,nf,t1)

(src,dst,Int.max(mt,dt))

(src,dst,mt)

(src,dst,(t+dt) div (q+1))

(src,dst,a)

(src,dst,t+dt) (src,dst,q+1)

(src,dst,q)(src,dst,t)

culcDT

cuclAVR quantAll

0

INT

sumAll

0

INT

maxAll

0

INT

averAll

0

INT

DT

pairch

receivedT
rcvd1 mac2s

sentT
snd mac2s

maxPair

pairch0.all()

pairch
averPair

pairch0.all()

pairch

quantPair

pairch0.all()

pairch

sumPair

pairch0.all()

pairch

snd
rcvd1

1 1`709911`256841

1 1`4151 1`36

5

1`(4,6,37,57191)@57201+++
1`(6,1,37,57184)@57194+++
1`(6,5,38,57199)@57209+++
1`(8,2,39,57186)@57196+++
1`(8,4,36,57141)@57151

64

1`(4,1,0)++
1`(4,2,0)++
1`(4,3,0)++
1`(4,4,0)++
1`(4,5,0)++
1`(4,6,33)++
1`(4,7,0)++
1`(4,8,34)++
1`(5,1,0)++
1`(5,2,0)++
1`(5,3,0)++
1`(5,4,0)++
1`(5,5,0)++
1`(5,6,20)++
1`(5,7,0)++
1`(5,8,43)++
1`(6,1,205)++
1`(6,2,338)++
1`(6,3,415)++
1`(6,4,313)++
1`(6,5,245)++
1`(6,6,0)++
1`(6,7,216)++

64

1`(4,1,0)++
1`(4,2,0)++
1`(4,3,0)++
1`(4,4,0)++
1`(4,5,0)++
1`(4,6,20)++
1`(4,7,0)++
1`(4,8,30)++
1`(5,1,0)++
1`(5,2,0)++
1`(5,3,0)++
1`(5,4,0)++
1`(5,5,0)++
1`(5,6,20)++
1`(5,7,0)++
1`(5,8,31)++
1`(6,1,44)++
1`(6,2,46)++
1`(6,3,49)++
1`(6,4,29)++
1`(6,5,24)++
1`(6,6,0)++
1`(6,7,35)++

64

1`(4,1,0)++
1`(4,2,0)++
1`(4,3,0)++
1`(4,4,0)++
1`(4,5,0)++
1`(4,6,36)++
1`(4,7,0)++
1`(4,8,36)++
1`(5,1,0)++
1`(5,2,0)++
1`(5,3,0)++
1`(5,4,0)++
1`(5,5,0)++
1`(5,6,38)++
1`(5,7,0)++
1`(5,8,36)++
1`(6,1,539)++
1`(6,2,615)++
1`(6,3,555)++
1`(6,4,547)++
1`(6,5,552)++
1`(6,6,0)++
1`(6,7,521)++

64

1`(4,1,0)++
1`(4,2,0)++
1`(4,3,0)++
1`(4,4,0)++
1`(4,5,0)++
1`(4,6,739)++
1`(4,7,0)++
1`(4,8,1092)++
1`(5,1,0)++
1`(5,2,0)++
1`(5,3,0)++
1`(5,4,0)++
1`(5,5,0)++
1`(5,6,760)++
1`(5,7,0)++
1`(5,8,1121)++
1`(6,1,24004)++
1`(6,2,28764)++
1`(6,3,27516)++
1`(6,4,15904)++
1`(6,5,13442)++
1`(6,6,0)++
1`(6,7,18409)++

Fig. 7. Results of delivery time evaluation

5 Measuring Real-Life Networks Characteristics

The adequacy of models to real-life objects is the basic question of a research. It is
expedient to consider the mentioned characteristics measurement and evaluation
technique for real-life networks and apply it to the models construction and the
comparison of obtained results. The in-situ measurements of functional characteristics
have been implemented on real-life local area networks; an example of the network is
represented in Fig. 3.

The easiest way of the measuring is to settle it on the network DTE with
WinDump packet analyzer for MS Windows (TCPDump for Unix). The results of the
measurements have also been confirmed with software SoftPerfect Network Protocol
Analyzer.

WinDump is the software with the command line interface which provides the
recording of transmitting the Ethernet frames accomplished with time stamps into a
file. Then the content of the file can be viewed and analyzed. WindDump is optimized
as to resources consumed and can work in the background mode for a long time, not
reducing the computer performance. The following command line provides the
recording of the frames into the SavedFrames file:

WinDump -w SavedFrames

For the analysis of the frames transmission process and calculation of the frames
delivery time, the following command line is used:

WinDump -ttt -r SavedFrames

Option –ttt is used for the automatic calculation of timed interval between frames;
option –r provides the reading of the earlier saved information from the SavedFrames
file. An example of the obtained dump of frames is represented in Fig. 8.

24

000252 IP 192.168.0.158.1172 > 192.168.0.130.139: P 854:917(63) ack 840 win 64957
000854 IP 192.168.0.130.139 > 192.168.0.158.1172: . 840:2300(1460) ack 917 win 64502
000141 IP 192.168.0.130.139 > 192.168.0.158.1172: . 2300:3760(1460) ack 917 win 64502
000029 IP 192.168.0.158.1172 > 192.168.0.130.139: . ack 3760 win 65535
000107 IP 192.168.0.130.139 > 192.168.0.158.1172: . 3760:5220(1460) ack 917 win 64502
000138 IP 192.168.0.130.139 > 192.168.0.158.1172: . 5220:6680(1460) ack 917 win 64502
000024 IP 192.168.0.158.1172 > 192.168.0.130.139: . ack 6680 win 65535
000114 IP 192.168.0.130.139 > 192.168.0.158.1172: . 6680:8140(1460) ack 917 win 64502
000086 IP 192.168.0.130.139 > 192.168.0.158.1172: P 8140:9095(955) ack 917 win 64502
000287 IP 192.168.0.158.1172 > 192.168.0.130.139: . ack 9095 win 65535
000606 IP 192.168.0.158.1172 > 192.168.0.130.139: P 917:980(63) ack 9095 win 65535
000729 IP 192.168.0.130.139 > 192.168.0.158.1172: . 9095:10555(1460) ack 980 win 64439

Fig. 8. Dump of frames

Let us consider the dump of frames. The first column contains the intervals in
milliseconds between the frames entries, then the IP-address and the port number of
the sender and receiver follow. After the colon, the fields of packet header are written,
such as the first and the last number of passed bytes, packet length in parenthesis, the
number of confirmed byte and the window length. In the above example,
192.168.0.158 is the IP-address of the workstation; 192.168.0.130 is the IP-address of
the server. Port number 139 corresponds to MS NetBIOS TCP service, port number
1172 is a randomly selected port number of client software.

Time synchronization and the frames dumps comparison in all the terminal
devices allow identifying the frames and calculating their delivery times using simple
software. The obtained information is a primary one for the calculation of QoS and
throughput characteristics of networks. It is significant that the measuring in DTE
gives us objective information about actually delivered frames. Moreover,
measurements may be implemented in network devices.

Modern Ethernet switches give us wide spectrum of possibilities for the traffic
measurement and analysis. For example, CISCO corporation switches, like the series
Catalist 4000, 4900 (4948-10GE, ME 4924-10GE) realize the following monitoring
services: the check up of the ports condition and possibilities; the analysis of the ports
data Switch TopN, the system of statistics collection RMON, the ports analyzer
SPAN (Switched Port Analyzer). Usually the switch has the port for immediate
connection to console; moreover, it also stipulates the remote access with Telnet and
Web-interface for the input of commands. Testing the state of a switch port is
implemented with the following command:

show port [port_number]

Testing the port resources is implemented with the command:

show port capabilities [port_number]

Port statistics gathering TopN is started by the command:

show top [port_number]

Displaying the collected statistics is implemented with the following command:

show top report [report_number]

The service TopN provides the accumulation of such information as: port capacity,
the quantity of sent and received bytes, the number of errors and the quantity of
buffers repletion. RMON system is started with the command:

set snmp rmon enable

25

RMON system accumulates the information about the quantity of sent bytes, received
bytes and the number of errors for each port. Moreover, the supplementary
possibilities are provided for alarms generation on special events.

SPAN service gives the possibility to redirect the traffic of selected port to another
switch port for analysis. For example, the command:

set span [nport1] [nport2]

redirects the nport1 port traffic into nport2 port. The device, which saves the
frames into some file or analyzes them, can be connected to the corresponding port. In
this way, it is possible to receive the information similar to the damp of frames
obtained with TCPDump program.

For testing the model adequacy, the frames dump was started on terminal devices
(workstations and servers) in the local area network of Railway dispatcher center
(Fig. 3), equipped with GID Ural-VNIIZT system. The frames receiving time is
measured, it is accumulated in the dump for a time interval, which equals to one shift
(about 12 hours). The comparison of these results and the results obtained via
modeling allows the following conclusion: the average error of delivery time
evaluation via modeling amounts to no more than 5%. It is a good enough result that
acknowledges the adequacy of the built models.

6 Analysis of Simulation Results

Simple evaluations of throughput and frames delivery time on the basis of
maximal transmission speed of the chosen technology (100Mbps, 1, 10Gbps) are not
realistic even at single switch usage because of asymmetry, pulsation and other
peculiarities of realistic traffic. So, for instance, for a switch with n ports of 100Mbps
technology the maximal throughput close to Mbpsn 100⋅ can be provided only in full
duplex mode and upon even n merely at transmission of 100Mbps flows among the
pairs of terminal devices.

In case of the asymmetry of traffic, the destination port of the frame arrived into
the switch may be already busy with the transmission of some other frame that leads
to either the storing of frame into the switch buffer or the suppression of transmitting
device activity with flow control facilities and repeated transmission; as the result the
delivery time is increased. Moreover, compulsory idleness of other ports leads to
reduction of actual throughput.

The usage of tree-like structure of a few switches (Fig. 3) complicates the
described processes and hampers its analytical evaluation. Thus, the usage of
simulation models, that adequately describe the processes of frames switching
according to the technologies standards and peculiarities of the traffic generating, is a
prospective direction of research.

The traditional incremental way of solving telecommunication networks problems
is a simple passage to the next level of technology, for instance, from 100Mbps to
1Gbps. But such solutions might be too expensive in the scale of the whole company.
Moreover, a new level of transmission speed might appear insufficient for network
bottlenecks.

In the present section the results of parametric model (Fig. 1) studied with the help
of measuring fragments (Fig. 4, 5, 6) are presented for railway dispatcher centre LAN
(Fig. 3) under the choice of various types of switches and Ethernet adapters. The
topics of model parameters calculation on the characteristics of real-life equipment
were studied in [8]. In Fig. 9 the dependencies of network characteristics on chosen
equipment technology are shown.

26

It should be noticed, that in the regular mode the network should provide the
transmission of the whole traffic of servers and workstations. In the considered
example of the network each workstation generates two flows of average intensity of
1 frame in 15 ms; in the response to the request each of the servers generates 12 flows
(2x6) of 15 frames 15 ms each. Thus, the rough evaluation of the total traffic may be
represented as:

() 157Mbpsps157491200b015,0123041612 ≈=⋅⋅=traffic

Starting from the standard transmission speed of the chosen technology and the
maximal frame length, the possible minimal (ideal) frame delivery time equals to:
1,23 µs for 10Mbps, 123 ms for 100Mbps, 12,3 ms for 1Gbps and 1,23 ms for
10Gbps. Even at a single switch usage that provides cutting-through transmission
without complete buffering, the minimal delivery time is increased. After receiving
the frame header, the switch requires definite time for the header analysis and
determining the destination port according to the switching table. This time may be
estimated on the basis of either declared performance of the switch that is measured in
frames per second or the performance of the switch internal bus. So, for instance,
declared performance of Intel SS101TX4EU switch equals approximately to 10000
frames per second which corresponds to the frame processing time of about 100 ms;
notice that real-life delay may exceed mentioned delay because of the parallel work of
ports. For switch Cisco ME 4924 only the performance of internal bus 49 Gbps was
declared that corresponds to 251 ns delay. Moreover, real-life performance of
Ethernet adapters is distinguished from the maximal transmission speed of the chosen
technology. So, for instance, Ethernet adapter Intel Ether Express PRO/100 provides
maximal transmission speed 92,1Mbps that corresponds to the frame transmission
delay of 144 ms.

From Fig. 9a) it can be seen that 10Mbps technology does not provide the
transmission of all the generated flows of frames; the state stable mode is not reached
in the system containing networking and terminal equipment that is acknowledged by
the growth of the queues length into the place replyS. More fast technologies provide
the transmission of all the flows; throughputs differ in the bounds of dispersion. But
delivery times (Fig. 9b) differ considerably; note that, different units of delivery time
measurement were used for different technologies. The total tendency is that the
maximal delivery time exceeds the average merely tenfold. The decrease of maximal
delivery time for 10Mbps technology may be explained by the considerable fall of
throughput. During the study of the mentioned characteristics for various performance
of Ethernet adapters and switches and also buffer sizes of chosen switches, only
minor variation of characteristics was revealed merely in the bound of dispersion.
Thus, for the considered traffic generated with periodical requests of workstations to
servers, only the choice of technology is essential; the differences in the equipment
performance actually do not affect the characteristics of the network. Note that, the
maximal delivery time (Fig. 5, place maxALL) can be used as an estimation of
guaranteed delivery time for real-time systems with hard timed bounds. For systems
with soft timed bounds, average delivery time (Fig. 5, place averALL) can be used in
estimations.

27

ne

0

20

40

60

80

100

120

140

160

Traffic (Mbps)

10Mbps 100Mbps 1Gbps 10Gbps

Technology

Network capacity

10Mbps
(100ms) 100Mbps(10ms) 1Gbps

(1ms) 10Gbps
(100ns)

average
maximal 0

50
100
150
200
250
300
350
400
450

Time
(different
units)

Technology

Delivery time

a) Throughput b) Delivery time

Fig. 9. Evaluation of network characteristics

During the study of the model under the small sizes of switch internal buffer of

frames, an anomaly leading to mutual blocking of all the switches work was revealed.
The mentioned anomaly might take place at arbitrary buffer sizes and specific
peculiarities of traffic but with the increase of the buffer size its probability reduces
considerably. Fig. 10 shows the simplest variant of switches mutual blocking in a
network consisting of two switches with the buffers size equaling to 2 frames (value 1
for the model).

Fig. 10. Mutual blocking of switches

Suppose that two frames have arrived into Switch1 with the destination address of
Switch2 terminal devices and at the same time two frames have arrived into Switch2
with the destination address of Switch1 terminal devices. Suppose each of the
switches started the transmission of its first frame. As, the frame cannot be located
into the buffer, each of the switches suppresses the transmission of the frame using
flow control facilities. The mutual blocking of the switches occurs. The considered
clinch does not occur in case of using cut-through switches that work without
compulsory buffering. In this case Frame1 of Switch1 is directly forwarded by
Switch2 to the corresponding port of destination terminal device. Moreover, in real-
life switches the operation of the frames dropping is implemented for the frames the
storing time of which exceeds the limits. Thus, the clinch is eliminated but the
performance of the switch falls dramatically due to the inevitable dropping of the
frames.

Frame1 Frame2

Frame1 Frame2 Switch1

Switch2

Jam Jam

28

7 Conclusion
Thus, in the present work the refined parametric model of switched Ethernet was

presented that is invariant with respect to network structure and the quantity of
attached communication and terminal devices. The model was accomplished by
measuring fragments providing the evaluation of throughput, frame delivery time and
switches buffer sizes during the process of simulation.

The adequacy of the model has been confirmed by real-life networks
characteristics measurements; the analysis of modeling results was implemented for
various types of used equipment. The area of obtained results application is the design
of telecommunication networks and devices close to optimal.

References
1. Jensen K. Colored Petri Nets – Basic Concepts, Analysis Methods and Practical

Use. Springer-Verlag, 1997, Vol.1-3.
2. Beaudouin-Lafon M., Mackay W.E., Jensen M. et al. CPN Tools: A Tool for

Editing and Simulating Coloured Petri Nets. LNCS 2031: Tools and Algorithms
for the Construction and Analysis of Systems, 2001, 574-580.
(http://www.daimi.au.dk/CPNTools)

3. Zaitsev D.A. Switched LAN simulation by colored Petri nets. Mathematics and
Computers in Simulation, vol. 65, no. 3, 2004, 245-249.

4. Zaitsev D.A. An Evaluation of Network Response Time using Coloured Petri Net
Model of Switched LAN // Proceedings of Fifth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, October 8-11, 2004,
Aarhus (Denmark), 157-167.

5. Zaitsev D.A., Shmeleva T.R. Principes of parametric Petri net models construction
for switched networks // Proceedings of First International Simulation and
Computer Graphics Conference, October 4-7, 2005, Donetsk (Ukraine), 207-215.
In Russ.

6. Zaitsev D.A., Sakun A.L. An Evaluation of MPLS Efficacy using Colored Petri Net
Models // Proc. of of International Middle Eastern Multiconference on Simulation
and Modelling (MESM'2008), Amman (Jordan), August 26-28, 2008, 31-36.

7. Bereznyuk M.V., Gupta K.K., Zaitsev D.A. Effectiveness of Bluetooth Address
Space Usage // Proceedings of 20th International Conference, Software & Systems
Engineering and their Applications (ICSSEA 2007), December 4-6, Paris, 2007.

8. Zaitsev D.A., Shmeleva T.R. Switched Ethernet Response Time Evaluation via
Colored Petri Net Model // Proceedings of International Middle Eastern
Multiconference on Simulation and Modelling, August 28-30, 2006, Alexandria
(Egypt), 68-77.

29

Decomposition into open nets

Stephan Mennicke and Olivia Oanea and Karsten Wolf

Universität Rostock, Institut für Informatik,  Rostock, Germany
{stephan.mennicke, olivia.oanea, karsten.wolf}@uni-rostock.de

Abstract. We study the decomposition of an arbitrary Petri net into open nets. This means that shared
places can be seen as message channels between components. We show that there exists a unique de-
composition into atomic components which can be efficiently computed. We further show that every
composition of components yields a component and that every component can be built from atomic
components. Finally, we briefly discuss potential applications.

1 Introduction

Several authors [6, 1] proposed open nets as a means for open components or web services. An open net is
Petri net with an interface consisting of places. Each place in the interface is either an input or an output
place.

We study the problem of decomposing an arbitrary Petri net into open nets. This means that we want to
find open nets such that the whole net is structurally isomorphic to the composition of the components. The
actual challenge is that a shared place must belong to exactly two components where it serves as input place
for one component and as output place for the other.

We show that there are elegant and efficient techniques for handling a decomposition into open nets. In
fact, every component constitutes of atomic components which can be computed in little more than linear
time.

An implementation of the technique teaches as that practically relevant Petri nets decompose into many
and small components. Hence, decomposition into open nets can be used for divide-and-conquer algorithms.
A potential candidate is Commoner’s property [4, 3] since Petri net structures such as siphons and traps
relate quite regularly to open net components. Another interesting application could be the decomposition of
business process models into web services where the atomic components can be aggregated into components
of useful size by applying available role annotations in the activities.

2 Definitions

We use the standard notation [P, T, F] for a (place/transition) Petri net. We require for all nets |T | > 0 and
disallow isolated nodes. Arc weights are ignored for simplicity; their insertion would not cause any problem.

An open net [P, T, F, In, Out] consists of a Petri net N = [P, T, F], and an interface I = [In, Out] with
In ∪ Out ⊆ P and In ∩ Out = ∅. In the interface, In is the set of input places and Out is the set of output
places. We require •In = ∅ and Out• = ∅. A set M of open nets is composable iff their sets of transitions
is disjoint and each place belongs to at most two nets in M . Thereby, it must be an input place in one net
and an output place in the other. The composition ⊕M of a composable set M of open nets is obtained by
building the union of the respective constituents.

A decomposition of a Petri net N = [P, T, F] is a set M of open nets such that ⊕M = [P, T, F, I, O],
for some I and O. {[P, T, F, ∅, ∅]} is the trivial decomposition of [P, T, F]. A decomposition of an open net

30

N = [P, T, F, In, Out] is a set M of open nets such that⊕M = N . {N} is the trivial decomposition of open
net N .

Decomposition M1 of N is finer than decomposition M2 of N if, for each N ∈M2, there is a subset of
M1 which is a decomposition of N . M is a finest decomposition of N if it is finer than every decomposition
of N .

3 Existence of a finest decomposition

Throughout this section, we consider a Petri net N = [P, T, F]. We prove the existence of a finest decom-
position by construction. To this end, we inductively define an equivalence relation R on P ∪ T . For every
decomposition of N , different nodes that are related by R occur as inner nodes in the same component. In
the following definition, let X∗ be the reflexive and transitive closure of relation X .

Definition 1 (Relation R). Let R =
⋃

i∈Nat Ri where
(Base:) R0 = ({[t1, t2] | ∃p : p ∈ P ∩ •t1 ∩ •t2 or p ∈ P ∩ t•1 ∩ t•2})∗.
(Step:) Ri+1 = (Ri ∪ {[p, t1], [t1, p] | ∃t2 : p ∈ P ∩ •t1 ∩ t•2, [t1, t2] ∈ Ri})∗.

It is easy to see that all the Ri, and thus R, are equivalence relations. Note that the pairs [p, t2] and [t2, p]
are inserted in the step as well, due to the transitive closure.

Lemma 1. If [x, y] ∈ R and x 6= y then x and y occur as internal nodes in the same component in every
decomposition of N .

Proof. (Base:) Assume that ∃p : p ∈ P ∩ •t1 ∩ •t2. Then t1 and t2 cannot occur in different components
since otherwise p must be an interface place where both components consume tokens, in contradiction to the
definition of a decomposition. Both t1 and t2 are internal as transitions cannot be part of the interface. The
case p ∈ P ∩ t•1 ∩ t•2 is analogous. Building the reflexive and transitive closure does not destroy the property
as “occurrence in the same component” is naturally a transitive relation.
(Step:) By the inductive assumption, [t1, t2] ∈ Ri implies that t1 and t2 occur as internal nodes in the same
component. As t1 consumes tokens from p while t2 produces tokens on p, p cannot be an interface place.
Consequently, it must be an internal place in the same component as t1 and t2. Again, building the transitive
closure is harmless. ut

The following few lemmas prepare the actual construction of the finest decomposition.

Lemma 2. Every non-singleton equivalence class contains transitions.

Proof. No pairs between two places are inserted into R (except for transitive closures). ut

Next we show that classes which contain transitions are not adjacent.

Lemma 3. If [p, t] ∈ F or [t, p] ∈ F (p ∈ P, t ∈ T) such that p�Rt, then {p} is an equivalence class w.r.t. R.

Proof. Assume that p is part of a nontrivial class. Then p is connected to other nodes only in the step
of the construction of R. This means that the equivalence class of p contains both a pre-transition and a
post-transition of p. By the inductive base, however, one of these transitions must be equivalent to t, so, by
transitivity, p, and t would be equivalent, in contradiction to the initial assumption. ut

31

In consequence, every class that contains transitions is surrounded by singleton place classes. Next we
show that a singleton place class {p} has at most one class from where tokens are produced to p, and at most
one class from where tokens are consumed from p.

Lemma 4. Let {p} be an equivalence class w.r.t. R. Then all transitions in •p are equivalent and all transi-
tions in p• are equivalent.

Proof. This is evident from the construction of R0. ut

The above lemmas show that open nets can be constructed by letting a class that contains transition serve
as the set of inner nodes while the adjacent singleton place classes are used as interface.

Definition 2 (Open net from equivalence class). Consider an equivalence class E according to the above
relation R that contains at least one transition. The corresponding open net [P ′, T ′, F ′, I, O] is determined
by T ′ = E ∩ T , P ′ = T ′• ∪ T ′•, F ′ = F ∩ (P ′ ∪ T ′), I = (P ′ \ E) \ T ′•, and O = (P ′ \ E) \ •T ′.

Lemma 5. The just defined structure is indeed an open net.

Proof. We have |T ′| > 0 since E contains a transition. No node is isolated as only pre-and post-places of
T ′ are considered, and each element of T ′ has at least one pre- or post-place. I and O are valid sets of input
and output places as problematic transitions are removed. ut

Lemma 6. The set of constructed open nets are composable.

Proof. This is an immediate consequence of Lemma 4. ut

Now we are ready to prove the main result of this section.

Theorem 1. Every Petri net has a unique finest decomposition into open nets.

Proof. Consider relation R and the just constructed set of open nets. Each node occurs in a class. If the class
contains a transition, then all its elements form the inner of some constructed open net. If the class does not
contain transitions, it is a singleton place class. Since this place p is not isolated in N , it is connected to
at least one class that contains a transition. So, p appears in the interface of one or two of the constructed
open nets. Each arc of N appears in one of the constructed nets as well. The constructed set of open nets is
composable. Consequently, the composition of this set exists and contains all nodes and arcs of N (and no
other nodes or arcs). Hence, the set of open nets is a valid decomposition.

Consider any other decomposition and one of its components C. By Lemma 1, C contains, with every
node, the whole equivalence class of that node. If it contains a class which contains transitions, it must also
contain all adjacent singleton place classes since otherwise the arcs from or to the place in the singleton class
cannot be represented in any composition involving C. Consequently, C is the union (in other words, the
composition) of some open nets as constructed above. ut

Corollary 1. The finest decomposition is unique.

Proof. The relation “finer as” can easily be identified as a partial order. Partial orders, however, cannot have
more than one minimum. ut

The main result can be interpreted as follows: Every decomposition can be obtained by first building the
finest decomposition and then composing some disjoint subsets to larger open nets. The last result of this
section considers the same idea the other way round:

32

Theorem 2. Let C be the finest decomposition of N . Let P be a partition of C. Then {⊕P | P ∈ P} is a
decomposition of N .

Proof. This can be easily verified as composition is plain union of the ingredients, and composability is not
affected by the constructions. ut

The results of this section justify the name atomic components for the members of the finest decomposi-
tion.

4 Constructing a finest decomposition

The main task in constructing the finest decomposition is to compute the equivalence relation R. We rep-
resent R as the corresponding partition of P ∪ T . Initially, the partition consists of singleton nodes of the
given net only. We access the partition using two operations. Find(x) takes a node as input and returns the
(unique) class in the partition that contains x. Union(C1, C2) takes two (not necessarily different) classes as
argument and modifies the partition by replacing C1 and C2 by C1 ∪ C2. The result is a (coarser) partition.
Tarjan [7] showed that a partition can be organised such that an arbitrary sequence of n union and find oper-
ations can be executed in O(nlog ∗ n) time where log∗ is an extremely slowly growing but asymptotically
unbounded function. Our considerations result in the procedure sketched in Table 1.

Consequently, the finest decomposition can be computed in little more than linear time.

5 Potential applications

Divide-and-conquer techniques for structural analysis

Some traditional Petri net structures, in particular siphons (a set of places S where •S ⊆ S•) and traps (a
set of places R where R• ⊆ •R) behave quite regularly w.r.t. the proposed way of decomposition. If S is a
siphon in N = [P, T, F] and C = [P ′, T ′, F ′, In, Out] is a component of some decomposition, then S ∩ P ′

is a siphon in C. The other way round, if N = N1⊕N2, S1 is a siphon in N1, S2 is a siphon in N2 and both
S1 and S2 contain the same interface places, then S1 ∪S2 is a siphon in N . Traps behave similarly. In future
work, we aim at exploiting this observation for a divide-and-conquer algorithm for deciding Commoner’s
property (every siphon contains an initially marked trap) which allows nice implications to liveness of free-
choice nets or deadlock-freedom of arbitrary Petri nets.

Extracting services from business process models

Open nets have been studied as models for web service behavior. Business processes can be modeled as Petri
nets as well. A decomposition of a business process model into open nets thus yields a separation of the busi-
ness process into web service. The finest decomposition is not necessarily a useful decomposition. However,
building larger components by composing, for instance, components with identical role annotations may
lead to the identification of useful portions of the net which could be separated as a web service.

33

Table 1. Construction of finest decomposition

Input: Net [P, T, F]
Output: Set of open nets M

Var U : SET of SET of Nodes

Init: U = {{x} | x ∈ P ∪ T}

FOR ALL p ∈ P ,t1, t2 ∈ T DO
IF p ∈ t•1 ∩ t•2 THEN union(find(t1), find(t2));
IF P ∈ •t1 ∩ •t2 THEN union(find(t1), find(t2));

END
REPEAT UNTIL nothing changes

FOR ALL p ∈ P ,t1, t2 ∈ T , t1 6= t2 DO
IF find(t1) = find(t2) AND p ∈ •t1 ∪ t•2 THEN union(find(t1, find(p)));

END
END
M := ∅;
FOR ALL X ∈ U DO

IF X ∩ T 6= ∅ THEN
TT := X ∩ TT ;
PP := TT • ∪ •TT ;
FF := F ∩ (PP ∪ TT)× (PP ∪ TT);
II := (PP \X) \ TT •;
OO := (PP \X) \ •TT ;
M := M ∪ {[PP, TT, FF, II, OO]};

END
END

6 Examples

Applying our decomposition to academic examples leads to widely varying results. A particular version
of the n dining philosophers net yields 2n open nets in the finest decomposition. Figure 1 shows the de-
composition of the dining philosophers net for n = 3. Each open net consists of just two transitions (with
a same label) and five interface places. Some standard net that grants concurrent read access and exclu-
sive write access to some data base decomposes into no more than two open nets, regardless of the num-
ber of reading and writing processes. In realistic examples, our technique tends to decompose into many
and small components, as the following numbers show. Using the implementation available online under
www.service-technology.org/diane, we checked more than 1700 workflow nets provided by
IBM Zurich. The nets had up to 273 places, 284 transitions, and 572 arcs. The resulting open net in the
decomposition had at most 66 places, 12 transitions, and 66 arcs. In fact, many resulting open nets consisted
of only one transition and a couple of interface places.

34

a

b

c

d

e

f

g

h
i

j

k
m

p r

s
t

u

x
z

w

ü

h

b

g

f

x

s

d

Fig. 1. Dining philosophers net and its decomposition

7 Related Work and Conclusion

Decomposition of Petri nets is a well-studied domain [2, 8]. [5] considers decomposition of nets where cut
places and transitions are given and compositional verification of Commoner property for asymmetric choice
nets. The idea to cut a net such that the border places form an asynchronous message passing interface,
however, appears to be new. The closest approach seems to be the decomposition of a net into conflict
clusters. In fact, every conflict cluster of a net is local to a dingle open net component (cf. the base in the
inductive definition of R). In contrast to conflict clusters, our components are also closed under backward
conflict clusters (see again the definition of R). Given these observations as well as the sketched potential
applications, this kind of decomposition could eventually pay off.

References

1. P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional modeling of reactive systems using open nets. In
CONCUR, volume 2154 of LNCS, pages 502–518. Springer, 2001.

2. G. Berthelot. Transformations and decompositions of nets. In APN 1986. Springer-Verlag, 1987.
3. F. Commoner. Deadlocks in Petri Nets. Applied Data Research, Inc., Wakefield, Massachusetts, Report CA-7206-

2311, 1972.
4. M.H.T. Hack. Analysis of Production Schemata by Petri Nets. Master’s thesis, MIT, Dept. Electrical Engineering,,

Cambridge, Mass, 1972.
5. Li Jiao. Decomposition of nets and verification in terms of decomposition. In CIMCA/IAWTIC, pages 804–809. IEEE

Computer Society, 2005.
6. E. Kindler, A. Martens, and W. Reisig. Inter-operability of workflow applications: Local criteria for global soundness.

In BPM, volume 1806 of LNCS, pages 235–253. Springer, 2000.
7. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–225, 1975.
8. W. Vogler and B. Kangsah. Improved decomposition of signal transition graphs. Fundam. Inform., 78(1):161–197,

2007.

35

Pro�ling Services with Static Analysis

Jan Sürmeli

Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany

suermeli@informatik.hu-berlin.de

Abstract. In a service-oriented architecture, Services are components
that interact with each other via well-de�ned interfaces. Open nets are
a special class of Petri nets, designed to model the behavior of open sys-
tems. Asynchronous interaction and stateful behavior complicate predict-
ing the combinations of messages that a service can process. We present
pro�les which support the modeler in verifying compliance of the model
with given constraints, without knowing its future environment. We ex-
plain the computation of pro�les by static Petri net analysis.

1 Introduction

In a service-oriented architecture (SOA) [1], services interact with each other
by exchanging messages over prede�ned channels. Typically, services are under-
stood as software artifacts that o�er a functionality over a well-de�ned interface,
de�ning those channels a service uses. Control and data �ow of services heavily
depend on the interaction with other services. We aim at analyzing the behavior
of a service S and thus model S with open nets (or service nets, open work�ow
nets) [2]. We will describe this extension to classical Petri nets in Sec. 2.

Well-developed methods to analyze the behavior of a service S with open
nets, already exist alongside di�erent behavioral correctness criteria such as con-
trollability [3] and exchangeability [4]. Those criteria can be veri�ed by dynamic

techniques and were implemented in a tool chain1. Another subject is to check
behavioral constraints on services and their compositions. We can demand orders

on messages, causalities, limits et cetera. Work in this area has been done in [5].
We can think of di�erent levels of abstraction as well as extensions of the classical
evaluation of a constraint to true or false, e.g. three valued logics, probabilities
or costs. On top of that, services behave dependent on their environment, so
we are interested in overapproximating the behavior for all or a subclass of all
possible environments. Work on structural analysis on open nets has been done
in [6].

In this paper we present an approach to solve a speci�c class of behavioral
constraints based on well-known static Petri net analysis techniques. Such a
constraint speci�es lower and upper bounds for the occurrence of events in the
interaction with other services. An event occurs when a message is sent or re-
ceived. A constraint might e.g. demand the exchange of a single message or

1 Available at http://www.service-technology.org/tools

36

restrict the occurrence of a linear combination of events. A pro�le for S is a
set of constraints that S satis�es. Since there exists an in�nite number of lin-
ear combinations of events, there also exists an in�nite number of pro�les for
S, providing di�erent levels of precision. But we can in�uence this aspect when
computing a pro�le, such that it meets the requirements of the use case. We
formally de�ne the class of constraints, the concept of pro�les as well as their
computation with static Petri net methods in Sec. 3.

Pro�les can be applied in di�erent phases in the lifecycle of a service S. The
modeler of S can use pro�les to prove that the model complies with the spec-
i�cation. Other analysis methods can bene�t from pro�les, in this case pro�les
are used as a preprocessor. During implementation of S, pro�les can be used to
generate test cases, since a pro�le contains constraints that the model satis�es.
After deploying S it will be available in a service repository. A pro�le can be
used to store an abstraction of S that can support behavioral query resolving.
A pro�le, however, does not cover all aspects of S: It is restricted to abstract
interaction behavior. We will discuss the application of pro�les in Sec. 4. We
conclude the paper in Sec. 5 with open issues and ideas for further work.

2 Modeling with Open Nets

pf

E

CB TB

C T

(a) N1

pf

E

C T

CB TB

(b) N2

pf

E

CB TB

C T

(c) N3

Fig. 1. Three open nets with the �nal marking [pf]

Two services interact by exchanging messages over channels prede�ned in
the interface of a service. We assume an asynchronous communication model:
Sending and receiving of a message does not occur in the same moment, as
opposed to hand-shaking-techniques. Thus, for each exchanged message, two
events occur: Sending and receiving. From the viewpoint of one of the involved
services however, only one of the two events is observable, namely the event
of sending or receiving a message by the service itself. For example, service S
sends a message that is later received by service S′, then for S the sending
event is observable and from the viewpoint of S′ only the receiving event occurs.

37

Furthermore we assume that a service only communicates unidirectional over a
message channel: Either messages are sent or received via this channel.

We use the classical syntax and semantics of Petri nets as in [7]. We de�ne
the behavior of a Petri net N as the set of all sequential runs in N . Open nets are
Petri nets that are augmented by a �nal marking and an interface for message
exchange, the latter is realized by designating some places as input and some
as output places. These so called interface places are used as connectors for the
composition. Other places are called internal places and the net structure is that
of a classical Petri net.

Figure 1 shows three open nets with the same interface, graphically empha-
sized by the dashed line. E, TB and CB are input places, C and T are output
places. N1, N2 and N3 are models of simple co�ee/tea machines that have one
button for co�ee (CB), one for tea (TB), an input for money (E) and two output
slots, one for co�ee (C) and one for tea (T). Although the three models have the
same interface, they di�er obviously in the internal structure.

The modeling of interface places is only the prerequisite for message ex-
change, message exchange can only occur between a number of open nets that
are composed. Two two open nets N and N ′ can be composed if they are syntac-
tically compatible, meaning that they do not share internal places or transitions
and have compatible interfaces. Two interfaces A and B are compatible if the
output (input) channels of A are not used as output (input) channels in B and
vice versa. Composition is done by union of the net elements, composing initial
and �nal marking and merging identically named interface places that become
internal places.

3 Pro�les for Open Nets

In this paper, we approach a speci�c class of constraints: Lower and upper bounds

for event occurrence. Intuitively a constraint of that class speci�es the bounds
for legal interaction: An event or a linear combination of several events is only
allowed to occur in those bounds. An example for a constraint is 2 ≤ a ≤
7, meaning that the event a occurs at least two and at most seven times. A
constraint however need not give an integer value for one or both bounds, it
can also specify one of the bounds as unbounded, meaning that interaction is
not constrained in that direction. For example 2 ≤ a ≤ _ demands that event a
occurs at least two times but might occur in�nitely often. Dependencies between
messages can be expressed easily as well: 1 ≤ a+b ≤ 1 states that always exactly
one of the two events occur. 0 ≤ a− b ≤ 0 demands that a and b occur equally
often, since the inequality can easily be transformed to a = b. We can not specify
temporal orders between messages, causalities or more complex dependencies.
The open nets N1, N2, N3 in Fig. 1 all three comply to the constraints E = 1,
0 ≤ C ≤ 1, CB + TB = 1. Only N1 and N2 comply with the constraints
CB −C = 0, TB − T = 0, CB + T = 1 and TB +C = 1 that demand that TB
(CB) only occurs with T (C). We can not express order restrictions with such
constraints, so we can not forbid a behavior as in N2.

38

Formally, a constraint c is a quadruple 〈A, θ, l, u〉, where A is a �nite set of
events, θ : A → ZZ is a linear combination of events and l, u ∈ ZZ ∪ {_}. The
semantics of such a constraint is as follows: θ, l, u form an inequality φ of the
form l ≤ θ ≤ u, with the elements of A as variables. Let N and N ′ be open nets.
A run r in N⊕N ′ satis�es c from the viewpoint of N , written c `N r if and only
if the occurrence rate of events in the projection of r to transitions of N is a
satisfying assignment for the variables in c. A sequential run is terminating if and
only if it starts at the initial marking and ends at the �nal marking. N complies
with a constraint c if, for an arbitrary N ′ and every terminating sequential run
r in N ⊕N ′, c `N r holds.

A pro�le of N speci�es a set of constraints that N complies with. These
constraints need not be the strictest ones that apply but might be quite liberal.
Computation of a pro�le for an open net can be done by static analysis, avoiding
state space construction. Thus, a pro�le is an abstraction of the behavior of N
with any arbitrary service N ′.

Knowledge of N ′ can not be assumed, therein we �nd the �rst challenge
for computing a pro�le. We approach the problem by overapproximating every
possible N ′ by a canonical open net that has the most liberal interaction be-
havior, called the unrestricted environment of N , denoted as N̂ : An open net,
only consisting of exactly one transition for each interface place of N and no
internal places. One would not encounter N̂ in the practical �eld, but it proves
to be very helpful in analyzing the service in interaction with N̂ and deducing its
behavior in an arbitrary environment from the results. The connection between
the behavior of N⊕N̂ and N⊕N ′ is the following: Fixing any run in N⊕N ′, we
can �nd a run N ⊕ N̂ , such that the two are equivalent if we just concentrate on
N 's part. We demonstrate this on the example of the open net N1 in Fig. 2(a):
Figure 2(b) shows the unrestricted environment for N1 and their composition is
depicted in Fig. 2(c).

pf

E

CB TB

C T

(a) N1

E

CB

TB

C

T

(b) N̂1

pf

(c) N1 ⊕ N̂1

Fig. 2. N1 (repeated from Fig. 1), its unrestricted environment N̂1 and N1 ⊕ N̂1.

However, for computing a pro�le we do not construct and explore the state
space, but use a classical static Petri net method, namely the state equation, a

39

canonical system of linear equations, taking into account two markings β, β′. For
every run from β to β′, there exists a solution m, such that transitions occur
as often in the run as given by m. We construct the state equation of N ⊕ N̂ ,
setting β = α and β′ = ω. We add an equation for each possible event in N ,
specifying the transitions of N that let an event occur. The set of all solutions
is thus both an overapproximation of all terminating sequential runs r in N ⊕ N̂
and gives the occurrence rates for events in r from the viewpoint of N .

Given a set of linear combinations of events, we can now apply linear pro-

gramming to �nd lower and upper bounds for these combinations. Solutions of
these linear programs are constraints that N complies with. Thus we directly
construct a pro�le. The set of linear combinations is the only parameter, the rest
is canonical on the net structure. We can distinguish between two general start-
ing points for pro�les: (1) there exists a speci�cation, given as constraints before
computing the pro�le, (2) we compute the pro�le in advance. In the �rst case, the
input for the pro�le computation can be taken directly from the speci�cation.
In the second case, the selection of useful linear combinations has to be done
manually, although we can imagine taking into account structural properties like
invariants, con�ict situations and the like.

The computation of pro�les for a given open net has been implemented in
the tool Linda2. It takes a set of constraints as input and computes an according
pro�le, using the lp_solve-library3 to solve linear problems. Interoperability with
other tools is enforced by usage of the same open net format as the other tools
in the above mentioned tool chain.

4 Application of Pro�les

Given an open net N and a set of constraints C, we can create a pro�le ψ to
determine compliance of N to the constraints in C. In some cases, however,
we are neither able to prove compliance nor non-compliance with this method.
We demonstrate the compliance checking process with an example. Let N be

cp

cy

cn

cu

Fig. 3. The bounds given by four constraints cp, cy, cn, cm.

an arbitrary open net and cy, cn, cu be constraints that restrict the same linear
combination. Creating a pro�le for any of the singleton sets {cy}, {cn} and {cu}
leads to the same result, we denote it as {cp}. Let the bounds given by the
constraints cp, cy, cn, cu be as depicted in Fig. 3. We �rst check compliance with

2 Available at http://www.service-technology.org/tools/linda
3 Available at http://lpsolve.sourceforge.net

40

cy: N complies with cy since the bounds given by the pro�le imply those of
cy. In contrast to that, N does not comply with cn: The lower bound of cn is
greater than the upper bound of cp. In the case of cu however, we can not decide
compliance or non-compliance of N with cu by the method of pro�ling.

Given a pro�le ψ of N , we can also check compliance of N with a constraint c,
although the linear combination of c is not directly restricted by any constraint
in ψ: We determine a constraint restricting the same linear combination as c that
is implied by the constraints in ψ and then do compliance checking as explained
above. Finding such an implied constraint can be done by linear programming.

5 Conclusion and Further Work

We have described a class of constraints for the interaction behavior of a service.
Our approach to the solution is the computation of a pro�le, a set of constraints
that a service complies with, using static Petri net analysis methods. We have
demonstrated how pro�ling can be used to check compliance, answering with
yes, no or unknown.

It is part of further work to determine the inputs of pro�le computation if
they can not be derived from a speci�cation, such that a pro�le can be stored as
an abstraction of an open net. Since a pro�le is an abstraction, we can think of
making use of re�nement techniques to further explore questions answered with
unknown. We will embed pro�les in di�erent tools to analyze services and their
composition, so that they bene�t from preprocessed information or on-the-�y
checking of constraints.

References

1. Gottschalk, K.: Web services architecture overview.
http://www.ibm.com/developerworks/web/library/w-ovr/ (2000)

2. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35�43

3. Wolf, K.: Does my service have partners? T. Petri Nets and Other Models of
Concurrency 2 (2009) 152�171

4. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding Substitutability of Services with
Operating Guidelines. Transactions on Petri Nets and Other Models of Concurrency
II, Special Issue on Concurrency in Process-Aware Information Systems 2(5460)
(March 2009) 172�191

5. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In
Alonso, G., Dadam, P., Rosemann, M., eds.: Business Process Management, 5th
International Conference, BPM 2007, Brisbane, Australia, September 24-28, 2007,
Proceedings. Volume 4714 of Lecture Notes in Computer Science., Springer-Verlag
(September 2007) 271�287

6. Oanea, O., Wolf, K.: An e�cient necessary condition for compatibility. In Kopp, O.,
Lohmann, N., eds.: ZEUS. Volume 438 of CEUR Workshop Proceedings., CEUR-
WS.org (2009) 81�87

7. Reisig, W.: Petri nets: an introduction. Springer-Verlag New York, Inc., New York,
NY, USA (1985)

41

An Approach to Business Process Modeling
Emphasizing the Early Design Phases

Sebastian Mauser, Robin Bergenthum, Jörg Desel, Andreas Klett

Department of Applied Computer Science, Catholic University of Eichstätt-Ingolstadt
sebastian.mauser, robin.bergenthum, joerg.desel,

andreas.klett@ku-eichstaett.de

Abstract. This paper proposes an approach to formal business process model-
ing emphasizing the early design phases. That means, the focus is on gathering
requirements of a business process in an informal environment. First, methods to
systematically elicit all requirements are discussed. Then, it is suggested to for-
mally model and validate the elicited requirements before integrating them to a
formal business process model and verifying the model w.r.t. the formal require-
ments. The approach is inspired by techniques which have proven successful in
the area of software requirements engineering. The key technique is the applica-
tion of scenarios to bridge the gap between the informal view on the process by
practitioners and the formal business process model.

1 Introduction

Business process modeling is an important part of many software development projects
[1, 2] because software is often applied in the context of business processes. But the
number and variety of purposes, business process models are used for, is growing.
Business process modeling and management has attracted increasing attention going
beyond software engineering in recent years [3, 4]. Process models are more and more
used for pure organizational purposes like mere documentation, process reorganiza-
tion and optimization, certification, activity-based costing or human resource planing.
Business process models are also applied as input to workflow systems to control and
monitor the proper execution of work items.

In this context, it is very important that the models are valid, i.e. that they correctly
and completely represent the relevant aspects of the underlying real-world business pro-
cess. However, although the need for valid process models increases, there usually is
little effort on guaranteeing validity in practice. Mostly, process models are constructed
ad hoc – usually in workshops – without detailed documentation of the different re-
quirements of the users involved. Also in theory, most approaches to business process
design and according tools assume validity of models and concentrate on analysis (e.g.
soundness tests) and optimization issues. But analysis and optimization of invalid mod-
els is useless and decisions based on invalid models or execution of invalid models will
cause errors.

We faced the problem of generating valid process models in a recent industrial
project with the purchasing department of the AUDI AG. Correct modeling of processes

42

is very important for AUDI, because in the recent years documentation of business pro-
cesses more and more became a major part of the requirements for a TÜV (short for
Technischer Überwachungs-Verein, Technical Inspection Association in English) cer-
tification for German automobile manufacturers. The increasing importance of valid
business process models caused AUDI to ask for our academic support in modeling.
The practical problems in such a large company make the modeling of valid business
processes really difficult. The processes are typically inter-divisional such that the pro-
cesses of the purchasing department have impact on the whole company. They are sup-
ported by a heterogeneous system landscape and include many media breaks. Within
our project we developed an approach of how to come to valid process models in such
a complex setting.

To design valid business process models significant attention should be paid to early
phases of business process design, i.e. to the question how to systematically gather in-
formation about a business process in an informal environment. This part of business
process modeling has not yet been sufficiently considered in the literature. But we claim
that similar problems have been tackled in the field of requirements engineering for
software systems. Therefore, the core idea of our approach is to adopt findings of re-
quirements engineering to the area of business process modeling, in particular w.r.t. the
early phases of the design process.

In requirements engineering, scenario based specifications proved to be a successful
starting point. Consequently, our approach also starts with elicitation of scenarios which
are single process instances of a business process model. Our approach suggests to then
formalize and validate the process instances up to a level of preciseness and complete-
ness such that formal methods can be applied in the follow-up steps of integrating the
scenarios to a formal process model, e.g. an Event-Driven Process Chain (EPC) or a
work flow Petri net, and of verifying the model w.r.t. the scenarios.

The approach is developed within our industrial project but we claim that in prin-
ciple it can be applied for business process modeling in general. We want to present a
first proposal for a respective modeling approach in this workshop paper. Still, we are
collecting further experiences in the ongoing project.

The paper is structured as follows: The following section provides a rough sur-
vey on the state-of-the-art of requirements engineering in software development, with
a particular focus on scenarios. In the sequel, some of these ideas are adopted to early
phases of business process modeling. Section 3 provides a comparative study of liter-
ature concerning the early phases of business process modeling. Section 4 describes
our modeling approach. It is structured in several subsections, referring to the different
phases of our approach. Finally, Section 5 provides some concluding remarks.

2 Software Requirements Engineering: A Short Review

In software engineering, significant attention has been paid to conceptual modeling
bridging the gap between informal information about the information system to be im-
plemented and the final implementation. Main approaches have been structured analysis
and structured design, developed in the late 1970’s, and object-oriented analysis and de-
sign, starting in the late 1980’s [5]. In the 1990’s it was generally accepted that require-

43

ments engineering [6] – the elicitation, documentation and validation of requirements
of a system - is a fundamental aspect of software development and thus requirements
engineering emerged as a field of study in its own right.

Information system analysts discovered that faulty requirements analysis was a ma-
jor reason for project failure or unsatisfactory software systems and that the costs of
errors grows exponentially with progressing time in the development process, see e.g.
[7, 6]. Therefore, in many cases improving the quality of requirements by using more
structured approaches and formal models to elicit and articulate user and domain re-
quirements is likely to both improve the quality of delivered information systems and
reduce the costs of system development.

In early stages of requirements engineering, user oriented specification models are
desired to describe the required behavior of a complex system from the user’s view-
point while for implementation of the system, integrated state-based system models are
necessary [5]. For intuitive user oriented behavioral specifications, scenarios, firstly in-
troduced by Jacobson’s use cases [8], proved to be the key concept. Domain experts
know scenarios of a complex system to be modeled better than the system as a whole.
Thus, starting with scenarios helps to gather system specifications which are valid, i.e.
they faithfully reflect the real system requirements. Important advantages of using sce-
narios at the beginning of the requirements engineering process include the view of
the system from the viewpoint of users, the ease of understanding (by different groups
of stakeholders), the possibility to write partial specifications and to incrementally ex-
tend specifications, easy abstraction possibilities, short feedback cycles, the possibilities
to directly derive test cases, the documentation of user-oriented requirements and the
possibility to derive scenarios from log files recorded by information systems [9, 10].
However, scenarios cannot capture the entire desired behavior of a system in a struc-
tured fashion [5]. Therefore, the final phases of requirements engineering dealing with
implementation, final system design and documentation, analysis, simulation or opti-
mization issues, require an integrated state-based model regarding the complete reac-
tivity of (each component of) the system. Since we are interested in the early phases of
system design in this paper, we focus on the scenario view of a system in the following.

In the literature the topic of modeling software systems by means of scenarios has
received much attention over the past years, see e.g. [6, 5]. Popular scenario notations
include e.g. the ITU standard of Message Sequence Charts, the UML diagrams suitable
to model scenarios, namely Sequence Diagrams, Communication Diagrams, Activity
Diagrams and Interaction Overview Diagrams, as well as Live Sequence Charts, Sce-
nario Trees, Use Case Trees or Chisel Diagrams [10]. But such diagrams can often
hardly be used and understood by typical users [11]. On the other hand, the complex-
ity of natural language specifications of typical users in real world situations can often
hardly be handled by developers [12]. Scenario modeling approaches accounting for
such problems are presented in [6, 13]. Notable approaches in requirements engineer-
ing developed to generally bridge the gap between natural language specifications and
the variety of conceptual modeling languages are the KCPM [14, 13] (Klagenfurt con-
ceptual pre-design model) and the information modeling approach of [12].

Having finally modeled the requirements of a system by scenarios, the next chal-
lenge is to come from the scenario view of a system to a state-based system model,

44

which is closer to design and implementation. Also for this problem several method-
ologies have been proposed, see e.g. [15, 10, 6, 13, 5].

3 Requirements Engineering in Business Process Modeling

We in this paper claim that for modeling valid business processes ideas from software
requirements engineering are appropriate. But domain specific problems require the ap-
plication of (partly) new techniques and approaches in the field of business processes.
For instance, when modeling a software system the scope is usually clearly focused
around this system and it always has to be kept track of implementation issues [6].
On the other hand, a business process model often has a larger scope, including many
systems and even crossing organizational boundaries, and it often includes many im-
plementation independent parts such as interactions between humans [4]. Moreover,
the focus of software modeling [5, 15, 6] is on components or objects, communication
(dependencies) between components and the distinction between inter- and intra-object
behavior, while the emphasis of business process modeling [3, 4] is on global activities
(where modularity comes into play by appropriate refinement and composition con-
cepts), dependencies through pre- and post-conditions of activities, and resources for
activities.

Detailed ideas how to elicit requirements on a business process were for the first
time raised in the articles [1, 16], where some initial work on this topic has been done
by adapting the KCPM [14] approach. There are several further articles mentioning
the suitability of requirements engineering activities for the actual design of business
process models, see e.g. [17–19], but they do neither go into details concerning this
topic nor do they discuss a copious application of requirements engineering techniques
in particular for the first phases of business process modeling.

Apart from the two highlighted articles, so far, only few research focused on the
early phases of business process modeling can be found. There are a lot of method-
ologies for the modeling of business processes, but, as far as we know, they rarely
provide elaborate systematic approaches to gather the information necessary for de-
veloping a process model. Notable examples of business process modeling procedures
covering some aspects concerned with gathering process requirements include the ap-
proaches presented in [2, 18, 19] and some of the approaches mentioned in the survey
paper [17]. In particular, the ARIS approach [20, 21] is very successful in practice.
But also these approaches lack a detailed discussion of problems and concrete meth-
ods concerned with this topic. Rather, as it is true for most other modeling approaches,
their focus is on problems relevant in later modeling stages such as the discussion of
process modeling techniques and how to apply the techniques to capture certain be-
havior. In this paper, we are interested in the first phases of modeling, namely how
to find the behavior that should be modeled in an informal environment. Only if this
behavior is correctly elicited, a model implementing the behavior can be expected to
faithfully represent the intended business process. Although, except from [1, 16], we
found no comprehensive methods in literature dealing with the early stages on the way
to come to a valid business process model, the mentioned business process modeling
procedures [2, 18, 19, 17, 20, 21] present some valuable ideas on this topic. Moreover,

45

there are several helpful strategies and assisting procedures supporting the elicitation of
information about a process, e.g. the papers [22–26] apply the user view of scenarios
in the context of business process design, many papers such as [27, 28] discuss how
to formally integrate different views on a process, the surveys [3, 4] include some early
modeling strategies, and finally there are several user-oriented modeling techniques (see
e.g. [29] for some recent trends) such as design principles (top-down, bottom-up and
inside-out approaches), ideas for the management of modeling activities (e.g. terminol-
ogy, conventions, process model governance and ownership), tool support for several
modeling activities (see e.g. http://bpmn.org), reference models (best practices), pat-
terns (http://www.workflowpatterns.com) and modeling guidelines (quality factors).

4 Modeling Approach

In this section we present our comprehensive approach to model business processes.
The approach is inspired by the concepts of scenario-based requirements engineer-
ing, i.e. we suggest focusing on scenarios of a business process before designing an
integrated process model. Looking at scenarios to specify the behavior of a business
process has similar advantages as for the software engineering domain, in particular
user-oriented intuitive modeling is supported. The starting point of our approach is dis-
tributed knowledge about a business process in an informal real-life environment. The
aim is to first develop a comprehensive formal specification of the business process by
scenarios and some other types of requirements artifacts. The single formal artifacts
can easily be checked for correctness according to the real-life requirements ensuring a
valid specification. Then the artifacts are integrated into a business process model given
by some modeling language and the generated process model is verified w.r.t. the ar-
tifacts. It is important to mention that integration and verification heavily benefit from
having a valid formal specification, because this allows (semi-) automatic generation of
a process model from the specification, e.g. by Petri net synthesis [24, 26] or merging
procedures [27, 28], and formal verification whether a process model fulfills the spec-
ification is possible. Altogether, the construction of complex process models behaving
valid according to the requirements is supported.

Besides the influences from the requirements engineering domain mentioned in
Section 2, our methodology adopted several ideas from the articles on business pro-
cess modeling cited in Section 3, in particular, from the highly related work of [1, 16].
But in contrast to [1, 16], our approach focuses on scenarios, it is seen independently
from the software engineering domain and it is less technical but more detailed in the
concepts of the first modeling stages. In general, the difference to all other process
modeling approaches is that the methodology of this paper concentrates on the early
modeling phases of gathering all relevant information in an informal environment and
of the transition from the informal setting to more and more complex formal models.

Our approach is divided into the five phases elicitation, formalization, validation,
integration and verification (see Figure 1) and the additional orthogonal phase of in-
formation management. The first three phases are inspired by the three dimensions of
requirements engineering and the respective requirements engineering activities sug-
gested in [6].

46

validation

elicitation formalisation integration

verification

elicitation
plan

information management

Fig. 1. An approach for business process modeling.

The focus in the elicitation phase is on gathering information. The main problem is
to relate and combine the information collected from different information providers in
an informal environment into a valid database of knowledge. Therefore, an elicitation
plan which determines appropriate strategies for the elicitation procedure has to be
assembled. The information collected according to the elicitation plan has to be filtered
and documented, yielding a collection of pieces of information. The pieces have to be
formalized to information artifacts in the next phase. This enables validation in a follow-
up feedback phase. The valid information artifacts document the process requirements
which can be integrated into a process model. The process model is finally verified w.r.t.
the documented requirements. During all these five phases, it is necessary to manage
the progress of information retrieval and to organize all gathered information in the
orthogonal phase of information management.

Remark that, while we describe our approach as a sequence of five phases together
with one parallel phase, for applying the approach we do not suggest to adhere strictly
on the given sequential ordering of phases. On the one hand it is not always possible
to generate a process model in one run, such that phases have to be iterated, i.e. it is
necessary to repeat phases when information is missing. On the other hand, sometimes
it is helpful to move to a next phase, in particular having elicited certain information
items, it can be useful to directly formalize and validate them before further proceeding
with the elicitation phase.

Next we explain each of these six phases. Thereby, we concentrate on the elicitation,
formalization and validation phases and discuss them in more detail. Figure 2 shows all
necessary steps of these phases together with the resulting objects. The first two lines
refine the elicitation phase, the third line refines the formalization phase and the last
line refines the validation phase. The model incorporates ideas from different domains
concerned with information retrieval (e.g. [30, 14, 12]).

47

Fig. 2. Steps in the elicitation, formalization and validation phase.

4.1 Elicitation

The first three steps at the very beginning of the elicitation phase are the basis of the
next six core elicitation steps. When modeling a business process, the starting point
is to define scope and aim of the project. It is necessary to set up the project frame-
work which surely influences all decisions made in later steps. Next, the outline of the
process has to be defined. This clarifies the border of the process together with the
environment and its interfaces. Now, that the business process is set to its context, a
first rough structure of the process including aims, related organizational structures and
involved documents and systems has to be identified, preferably with the help of a do-
main expert having a high level view on the process. This helps to get an overview of
the information which has to be elicited, i.e. the information needs, and on potential
information sources. To actually set up an elicitation plan, it is important to gather more
detailed knowledge about available information providers and existing documents de-
scribing the process. Such a plan organizes the choice of people or documents which
may provide detailed information about parts of the process. For each information to
be collected the elicitation plan contains a list of information providers and documents.
Gathering information often leads to the following specific problems: the information
contains redundancies and repetitions, homonyms and synonyms, exceptional cases to
be handled, implicit information or confusions between schema and instance level. To
tackle these problems, an adequate elicitation method together with a harmonized doc-
umentation method has to be chosen. Since this is an important decision to be made, we
will provide a suggestion for both. After these choices have been made, the next step is
to gather and record all the information according to the specified elicitation methods.

48

This normally leads to a large set of loosely arranged information pieces, collected in
different kinds of documents, which have to be filtered in the next step of the elicitation
process. Filtering corrects all the above listed problems identified in the collected set
of information items. The last step integrates and classifies the collected knowledge,
i.e. the loose pieces of filtered information are merged and ordered in a structured way
according to the chosen documentation method. This concludes the elicitation phase.

Before describing the follow-up formalization phase, we tackle the problem of
choosing an appropriate elicitation and documentation method. Often there exist several
kinds of documents to be considered, such as working instructions, already existing pro-
cess models, intra-net information or even theses about parts of the process. Also, exist
a lot of methods for elicitation of requirements from the information providers such as
interviews, monitoring, logging, rollplays, discussing, questionnaires, meetings, etc [6,
31]. Practical experience suggests to first elicit all adequate documents to get a good
overview of the process before starting to consult information providers. Eliciting from
information providers needs considerable effort such that a good previous knowledge
about the process is desired. After having elicited documents we suggest to interview
information providers focused on discussing scenarios. The interviews should be guided
by the following framework: After a short round of introduction, the aim of the inter-
view has to be explained to the information provider. This includes level of abstraction,
borders, environment and, if already available, interfaces of the process to be modeled.
We found it very helpful to shortly introduce the concept of scenarios before the actual
interview, because information given by the information provider then was much better
structured. Introducing already existing process models to illustrate the sort of the as-
pired model has similar positive effects. After that, firstly, single scenario instances or
even real live examples should be elicited and documented as structured text. Together
with the information provider, then a scenario schema is deduced from the scenario in-
stances and documented in a precast scenario form. These forms include entries such as
name, description, information provider, activities, events, ordering relation, variations
and exceptional cases, pre- and post-conditions, goals and results, success factors and
responsibilities. Having filled out such a scenario form, we ask for details about single
important activities, events, involved systems, business objects or actors and document
them in similar precast forms as well. Although our suggestion here is to focus on sce-
narios, sometimes it is helpful to discuss whole process fragments which can be done in
a similar way. Process fragments are scenarios containing alternatives or loops. Some
information providers experienced in modeling may find it easier to describe complex
process structures directly in terms of such process fragments. Generally, within the
interviews it is important to always mind completeness and clarity of each information
recorded and to accomplish the interviews in an appropriate intensity (see e.g. [31]).

The precast forms are already part of our documentation method. We not only use
the forms in the interviews, but each type of form defines a template for storing infor-
mation. As far as possible we insert each gathered information to such a form and port
the forms into a database. This yields one table in the database for each type of template.
Information not fitting any template is stored in an additional table of the database as
structured text together with general specifications such as information provider. Such
an organization of information allows to generate different perspectives on the stored

49

requirements through different database queries and search functionalities. It is also
possible to automatically produce requirements documents following certain standards.

The main building blocks of a process model are activities, events and different
kinds of objects. Therefore, to prepare the requirements for process modeling, we clas-
sify the information collected in the tables of the database in a similar way as described
in the ARIS [21] methodology. Each information has to be classified into one out of
three different views described in Figure 3 (the ARIS methodology suggests the views
organization, data, function and one control view relating the first three). Every infor-
mation about activities or events is stored in a process view. Information about objects
is divided into a data and an organizational view. Resource and data objects as well
as systems and applications are assigned to the data view and objects concerned with
responsibilities and access rights are assigned to the organizational view. Each kind of
template naturally belongs to one of these views. Scenarios, activities and events be-
long to the process view, business objects and systems to the data view and actors to
the organizational view. Each information stored in the general purpose table explicitly
has to be assigned to a view. Note that in our approach the process view is the dominant
one and the relations between the views are naturally included within the process view
(instead of a separate control view), e.g. by systems or roles associated to activities (as
already given by the templates).

process view data view
organizational view

data objects

responsibilitiesactivities

objects

events

Fig. 3. Three different views to formalize data.

Additionally to the requirements database, we suggest to build a dictionary (similar
to an approach described in [14]) to define a consistent language for activities, events
and objects used in the documentation. To allow a quick matching of information gath-
ered from different sources, each item in this dictionary is given with a short description
(similar to a glossary) and a list of possible synonyms (similar to a thesaurus). In order
to navigate through the dictionary we allow to add relations between items yielding a
thesaurus-like representation of the domain specific vocabulary of the business process
at hand. In particular, a hierarchical ordering of the items is useful to find notions used
in the dictionary for certain objects. Similar as in the case of object oriented modeling,

50

it is useful to refine the hierarchy by distinguishing an is-a, a part-of and a property-of
relation if possible. Additionally, an association relation to generally link related items
is important. Via a graphical representation it is possible to feedback such a dictionary
to the information providers. A tool nicely visualizing the relations of the items, having
intuitive hide/show functionalities and a search functionality is necessary here. Finally,
it is important to link the dictionary to the process information stored in the database,
e.g. by adding hyperlinks between the dictionary and respective notions occurring in
the entries of the database.

4.2 Formalization

The next two steps depicted in Figure 2 are allocated in the formalization phase. This
phase is necessary to get precise requirements of the intended process model. Using
informal or semiformal models instead of formal ones for specifying requirements can
lead to misunderstandings between author and recipient of a model.

There is a rich variety of different formalisms to choose from. The choice may de-
pend on the documentation method, the target process modeling language or surround-
ing conditions in the enterprize. Generally, graphical modeling languages should be
preferred. The structured pieces of information gathered in the elicitation phase can be
translated in an appropriate formal representation. Each formal model of a requirement
is called information artifact. The formal models should be linked with the respective
documented information.

Our suggestion is to formalize scenarios similar to instance EPCs [32, 22], but al-
low both events and activities (functions) which not necessarily strictly alternate. That
means, it is possible to specify any ordering between activities and events such that
any kind of scenario specification can be regarded. In particular, it is possible to con-
sider partial orders of activities called runs or partial orders of events called lifelines.
Process fragments (if elicited) can be formalized similarly by adding alternatives to
the scenarios. To express process fragments it is also possible to already use the target
process modeling language or to simply specify a respective set of scenarios for each
fragment. The other way round, having a highly related set of scenarios, it may be help-
ful to directly fuse them to one process fragment, if that is easy, in order to account for
their strong connection. Additionally, we use formalization concepts for pre- and post-
conditions, relations between activities or events, invariants or behavioral restrictions
(which might be derived from elicited business rules) and triggers in the process view.
For the data view we use ER-diagrams and related concepts within the UML, and for
the organizational view organigrams or group and role concepts are applied.

4.3 Validation

After some information artifacts have been prepared, their validation is started. This
is done in three steps. Before we take a closer look at them, we discuss some basics
about validation. Validation of the formalized requirements is a necessary phase in our
approach because it is easier to check the requirement artifacts than checking a whole
process model. When the validation phase takes place at an early stage of the whole

51

modeling procedure, mistakes recognized at such a stage can be clarified with less ef-
fort. As a consequence, validation is a task that also takes place in the first two phases of
elicitation and formalization, e.g. the preparative high-level model, the elicitation plan
and the filled out precast forms have to be validated (using the same methods applied
in our actual validation phase). But the main validation phase of our approach, which
we discuss in this subsection, is accomplished using the information artifacts after the
phases of elicitation and formalization. This is because at this stage the requirements
have to be correct and complete to allow a reasonable further processing in the integra-
tion phase. Therefore, a validation-quality-goal which has to be passed by every single
information is applied.

The first step of validation, called analysis, solely deals with the documented infor-
mation not involving any information provider. In this analysis step the unambiguous
formal representation of the information artifacts enables to check for inconsistencies
(e.g. some precondition never appears as a postcondition), conflicts (only occurs when
there are more than one information provider for specific information) and similar prob-
lems in the requirements. Concerning conflicts, it is important to identify, analyze and
solve them in this early stadium. They are documented because it might be that the same
controversial subject reappears later on. Concerning inconsistencies, even automated or
semi-automated analysis methods are applied for analyzing formal artifacts, e.g. match-
ing preconditions and postconditions, checking every artifact if it is formalized with a
correct syntax or analyzing patterns. Besides examining the formal representations, we
also investigate the applied precast forms. These have to be checked to contain no empty
fields and that the content of the fields has the right form. Altogether, in this first step of
validation we discover problems and lack of clarity within the information artifacts. But
the problems and unclear parts can only be resolved with additional information from
the information providers. That is the reason why the analysis takes place before the
other two steps of validation, namely validation w.r.t. correctness and validation w.r.t.
completeness (see Figure 2). Within these two steps, one returns to the information
providers, now knowing further points to discuss.

In the step of validation w.r.t. correctness, besides trying to resolve conflicts, incon-
sistencies and similar problems, it is checked in detail whether the artifacts faithfully
model the intended requirements. The main goal of this step is to eliminate mistakes
coming from misunderstandings during the elicitation phase and mistakes coming from
a faulty transfer from informal requirements to formal artifacts during the formalization
phase. Therefore, the information artifacts are discussed with the corresponding infor-
mation provider, i.e. it is asked if they express exactly what the provider meant. For
the discussion, we lean on standard validation techniques from software engineering
[6] such as inspections, reviews or walkthroughs. Due to their concreteness and clear-
ness, our main modeling concept of scenarios is very well suited for such discussions.
If necessary, the artifacts can be discussed with different information providers (hav-
ing different perspectives on one topic) or even external specialists, so that the final
information artifacts can really be regarded as correct. This part of the validation w.r.t.
correctness is performed in collaborative meetings or one-on-one interviews. As assist-
ing techniques for this step of validation we first use perspective based reading (the
information provider has to concentrate on a special point of view or role while reading

52

an artifact) to reveal problems [6]. Moreover, we apply automatic approaches for val-
idating formal information artifacts w.r.t. correctness. It is very useful to simulate the
given scenarios or to test them towards performance. Even, first prototypes or process
fragments are synthesized from the scenarios (and additional artifacts). Automatically
analyzing them as well as feedbacking them to information providers often leads to new
insights whether the respective input scenarios are correct or not.

The last step in the validation phase is the validation w.r.t. completeness. This step
should not be seen independently from the former validation step. That means, often
both validation steps take place together, e.g. within the same discussions with informa-
tion providers, and often the same validation techniques, e.g. discussion techniques, are
applied. But, nevertheless, we have distinguished this part of validation from validation
w.r.t. correctness, because there is a different focus, namely to test whether the gathered
information are not yet complete. We use the following validation techniques specially
tailored to find missing information: First, examining existing scenarios, process frag-
ments or prototypes as well as unfolding process fragments or prototypes yields hints
or inspirations towards additional scenarios. Second, matching equal states of different
scenarios or finding structural dependencies between different scenarios indicate that
other combinations of parts of the scenario should be considered. Third, it is important
to check if every single context aspect is taken care of, e.g. if all interfaces, stakehold-
ers and objects of the environment are covered by and fit to the specified scenarios. In
addition to these three techniques, one also has to simply ask the information providers
if they can suggest further providers which might contribute additional information.

4.4 Information Management

Parallel to the five other phases depicted in Figure 1, there is an information manage-
ment phase, providing the necessary infrastructure for storing, relating and updating
all the documents and data, as well as monitoring the progress of the steps described
above. Regarding the infrastructure, an appropriate tool management, data management
and file system has to be established. Concerning the monitoring of the progress of the
activities (note that this task is sometimes also considered a part of validation [6]) a
simple to-do list is suggested. In this list every row represents one special information
and every column represents the activities to be performed for one single information.
The rows can be taken directly from the elicitation plan. The columns should not only
contain the main activities elicitation, formalization, validation, integration and verifi-
cation, but also more precise steps like “make appointment”, “prepare appointment”,
“filter information”, and “classify information” are very useful. In particular for the
validation phase, a detailed consideration of the progress, even regarding a subdivision
of the different applied validation techniques, is necessary. Using such a to-do list con-
cept we suggest to not only keep quantity aspects in mind, since this could mislead to
just superficially perform the activities such that they can be marked in the list as done.
A respective list has a quality meaning as well. So, when marking a task as done one
should check the quality of its execution and of its results. For certain tasks, it is even
helpful to supplement the main to-do list by additional detailed checklists [6].

53

4.5 Integration and Verification

As depicted in Figure 1, the next phases of our modeling approach are the integration of
the gathered requirements into a formal process model, e.g. an EPC or a Petri net, and
verification of the model w.r.t. the requirements. For the integration, we suggest a semi-
automated approach. Given the formal requirements as an input, automatic synthesis
methods can suggest model components to a user and automatic test methods can on the
fly check the correctness of each component added by hand. That means, the process
is designed by a modeling expert, based on the requirements, assisted by a program
proposing components to be added and constantly checking for inconsistencies between
the designed process model and the requirements. Such a method is faster and less
error prone than modeling without algorithmic support. There are also advantages of a
semi-automated approach [10] compared to a fully automated approach. Firstly, being
involved into the modeling process increases the understanding of the model. This is
very important when the model should be extended or revised. Secondly, during the
modeling process ambiguous situations can explicitly be solved by the user, and he is
explicitly confronted with problems occurring when translating the requirements into
the process modeling language.

In the verification phase reliable formal requirements are a basis to apply verifica-
tion methods which check whether the process model correctly reflects the specified
requirements such as testing methods to check the executability of specified scenarios,
unfolding methods to check wether the process model has additional non-specified be-
havior and model checking methods for the verification of formalized business rules.
Besides, there are specification independent correctness criteria for process models,
such as the absence of deadlocks, certain soundness criteria or structural properties,
which also have to be checked by formal methods in the verification phase.

5 Conclusion

The described approach of emphasizing the early design phases of business process
modeling together with a consequent documentation and formalization of the informa-
tion gathered has many benefits. Most important is that as explained throughout the
paper the approach heavily supports the generation of valid models in an informal envi-
ronment. Furthermore, the elicited requirements are documented in such a way that it is
possible to get a detailed understanding of them at any time, e.g. if the business process
has to be changed or expanded one can build on the existing requirements. Especially,
in the case that the business process model is for statutory warranties, its requirements
have to be traceable. Moreover, the formal approach enables reliable validation of the
information collected and verification and testing of the constructed process model.
Formal requirements also support the application of formal methods such as synthesis
in the integration phase.

By now, within the AUDI project, we followed our modeling approach for exam-
ple business processes and found the results most promising. We also developed and
applied prototype tools supporting the early phases in our process modeling approach.
From the experiences of our project we in particular discovered that in practice there
are several difficulties that have to be regarded. There are legal constraints, e.g. it can

54

happen that information providers are not allowed to be stored together with the given
information, and organizational constraints, e.g. information providers are often not
available. Most important is the factor of time and cost such that a tradeoff between the
invested effort made in the early phases of process modeling and the related cost has to
be found. Still, as learned from software engineering for important process models we
think that emphasizing early design phases always pays off.

The integration and verification phases of our process modeling approach still have
to be elaborated. This is the focus of our further theoretical research. In particular, we
plan to support the integration phase by adjusting methods known from Petri net synthe-
sis and to develop verification methods by adapting the theories of testing executability
of scenarios and calculating unfoldings of Petri nets (algorithms in all these areas are
implemented in our toolset VipTool [24, 25], see http://viptool.ku-eichstaett.de). Con-
cerning further practical work, we plan a comprehensive evaluation of the modeling
approach going beyond our current industrial project.

References

1. Mayr, H.C., Kop, C., Esberger, D.: Business Process Modeling and Requirements Modeling.
In: ICDS 2007, IEEE (2007) 8–14

2. Oestereich, B.: Objektorientierte Geschäftsprozess-Modellierung und modellgetriebene
Softwareentwicklung. HMD - Praxis Wirtschaftsinformatik 241 (2005)

3. Aalst, W., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT Press
(2002)

4. Weske, M.: Business Process Management – Concepts, Languages and Architectures.
Springer (2007)

5. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer (2003)

6. Pohl, K.: Requirements Engineering. dpunkt (2008)
7. Faulk, S.: Software Requirements: A Tutorial. In: Software Engineering, IEEE (1995) 82–

101
8. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley (1992)
9. Glinz, M.: Improving the Quality of Requirements with Scenarios. In: Second World

Congress on Software Quality, Yokohama (2000) 55–60
10. Amyot, D., Eberlein, A.: An Evaluation of Scenario Notations and Construction Approaches

for Telecommunication Systems Development. Telecommunication Systems 24(1) (2003)
61–94

11. Moody, D.L.: Cognitive load effects on end user understanding of conceptual models: An
experimental analysis. In: ADBIS, LNCS 3255, Springer (2004) 129–143

12. Frederiks, P.J.M., van der Weide, T.P.: Information modeling: The process and the required
competencies of its participants. Data Knowl. Eng. 58(1) (2006) 4–20

13. Fliedl, G., Kop, C., Mayr, H.C.: From Textual Scenarios to a Conceptual Schema. Data
Knowl. Eng. 55(1) (2005) 20–37

14. Mayr, H.C., Kop, C.: A User Centered Approach to Requirements Modeling. In: Model-
lierung 2002, LNI 12, GI (2002) 75–86

15. Liang, H., Dingel, J., Diskin, Z.: A Comparative Survey of Scenario-Based to State-Based
Model Synthesis Approaches. In: SCESM 2006, ACM (2006) 5–12

55

16. Salbrechter, A., Mayr, H.C., Kop, C.: Mapping Pre-Designed Business Process Models to
UML. In: IASTED Conf. on Software Engineering and Applications 2004, IASTED/ACTA
Press (2004) 400–405

17. Holten, R., Striemer, R., Weske, M.: Vergleich von Anstzen zur Entwicklung von Workflow-
Anwendungen. In: Software Management 97. (1997) 258–274

18. Weske, M., Goesmann, T., Holten, R., Striemer, R.: A Reference Model for Workflow Ap-
plication Development Processes. In: WACC, ACM (1999) 1–10

19. Castela, N., Tribolet, J.M., Guerra, A., Lopes, E.R.: Survey, Analysis and Validation of
Information for Business Process Modeling. In: ICEIS, Ciudad Real (2002) 803–806

20. Scheer, A.W.: Architecture of Integrated Information Systems: Foundations of Enterprise-
Modeling. Springer (1992)

21. Scheer, A.W., Nüttgens, M.: ARIS Architecture and Reference Models for Business Process
Management. In: BPM 2000, LNCS 1806, Springer (2000) 376–389

22. Dongen, B., Aalst, W.: Multi-Phase Process Mining: Aggregating Instance Graphs into
EPC’s and Petri Nets. In: 2nd Workshop on Applications of Petri Nets to Coordination,
Workflow and Business Process Management, Petri Nets 2005, Miami (2005) 35–58

23. Desel, J.: From Human Knowledge to Process Models. In: UNISCON 2008, LNBIP 5,
Springer (2008) 84–95

24. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from Scenarios
with VipTool. In: Petri Nets 2008, LNCS 5062, Springer (2008) 388–398

25. Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and Validation with Viptool. In:
BPM 2003, LNCS 2678, Springer (2003) 380–389

26. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of Process Models from
Example Runs. In: ToPNoC, Springer (to appear in 2009)

27. van Hee, K.M., Sidorova, N., Somers, L.J., Voorhoeve, M.: Consistency in model integration.
Data Knowl. Eng. 56(1) (2006) 4–22

28. Mendling, J., Simon, C.: Business process design by view integration. In: BPM Workshops,
LNCS 4103, Springer (2006) 55–64

29. Recker, J.: Process Modeling in the 21st Century. BPTrends 3(5) (2006) 1–6
30. Bernhard, J., Jodin, D., Hömberg, K., Kuhnt, S., Schürmann, C., Wenzel, S.: Vorgehens-

modell zur Informationsgewinnung Prozessschritte und Methodennutzung, Technical Re-
port 06008. Sonderforschungsbereich 559, Modellierung großer Netze in der Logistik, Uni-
versität Dortmund (2007)

31. Hömberg, K., Jodin, D., Leppin, M.: Methoden der Informations- und Datenerhebung, Tech-
nical Report 04002. Sonderforschungsbereich 559, Modellierung großer Netze in der Logis-
tik, Universität Dortmund (2004)

32. Scheer: IDS Scheer: ARIS Process Performance Manager. http://www.ids-scheer.com.

56

Realtime Detection and Coloring of MatchingOperator Nodes in Work�ow NetsAndreas EcklederNero Development & Services GmbH, Karlsbad, Germanyaeckleder@nero.comThomas FreytagCooperative State University Karlsruhe, Germanyfreytag@dhbw-karlsruhe.deJan MendlingHumboldt-Universität zu Berlin, Germanyjan.mendling@wiwi.hu-berlin.deHajo A. ReijersEindhoven University of Technology, The Netherlandsh.a.reijers@tue.nlAbstractThis work describes the implementation of an algorithm to identify andcolorize matching split/join-operator pairs in work�ow net based processmodels within the open source software WoPeD [1]. The concept wassuggested as a powerful means to enhance the understandability of processgraphs in [2]. The implemented detection and coloring method works inrealtime, i. e. process designers get immediate feedback on actual orintended editing activities.1 IntroductionThe understandability of process graphs is a key requirement for successful vi-sual process modelling results. In [2, 3] it was investigated how the understand-ability of work�ow nets can be supported by several methods. One of them isto assign colors to matching pairs of control �ow operators (splits and joins).The approach makes use of the fact that colors are recognized and associatedwith a speci�c semantics faster than other elements of visualization.For a given pair of nodes in a work�ow net, the number of independent pathsleading from the one node to the other can be calculated with the max-�ow/min-cut algorithm of Ford and Fulkerson [4]. This approach is able to determineall P/T and T/P handles of a given work�ow net and therefore suitable toprove whether wellhandledness applies or not. In particular the techniques for�nding matching operator nodes in a work�ow net can also be applied to �ndmismatching operator nodes and thus can help to perform structural analysis,e. g. to check the existence or the violation of well-handledness.In the following sections, the algorithm for performing the required checkwill be introduced along with its formal prerequisites. Afterwards, an imple-mentation in the open source product WoPeD [1] will be sketched and demon-strated. Finally, a conclusion will be given with ideas to enhance the proposedtechniques.

57

2 ApproachOur de�nition of a pair of matching nodes is a generalization of the concept ofPT/TP-handles as used to de�ne well-handledness in [5, 6].In a well-handled WF-net PN, two nodes x and y are called matching oper-ator nodes i�
• x is an AND-split and y an AND-join or x is an XOR-split or a place, andy an XOR-join or a place
• there is a pair of elementary paths C1 and C2 leading from x to y suchthat: α(C1) ∩ α(C2)={x, y}⇒ C1 6= C2.The Ford and Fulkerson algorithm can be used to verify that there are indeed atleast two elementary paths leading from a given node x to another node y. Thiscan be done in analogy to the approach described in [5] to detect PT and TPhandles. However, to detect all matching operator nodes of a given work�ow net,all pairs of nodes {n1, n2} ∈ (As×Aj)∪(Xs×Xj)∪(Xs×S)∪(S×Xj)∪(S×S)where As/j stands for the nodes of type AND-split/join respectively and Xs/jstands for the nodes of type XOR-split/join respectively, must be checked. Asonly nodes with at least two elements in their postset can serve as a split andonly nodes with at least two elements in their preset can serve as a join, welimit our selection of pairs to the combinations of {n1, n2} where |n1 · | > 1 and

| ·n2| > 1. Whenever the max-�ow / min-cut algorithm is reporting a maximum�ow > 1 for any given pair of nodes, that pair is marked as a matching operatornode. Once all matching operator pairs of a given work�ow net are detected,their graphical representation can be colorized in a suitable way in order tostress the semantical relation between them. Figure 1 shows a simple exampleof the coloring algorithm applied to a single AND-split/join handle.
Figure 1: Simple coloring exampleIf multiple distinct handles exist in the same net, each matching operatornode pair is assigned an individual color (see �gure 2). When assigning colorsto operator node pairs, it must be considered that assigning a node to a givenmatching operator pair is not mutually exclusive, so a given node can be partof more than one match.

58

Figure 2: Example of distinct matching pairs marked in individual colors

Figure 3: Handle clustering exampleSince only one single color can be assigned to each node at a time, a waymust be found to determine a common color for operator nodes that are part ofmore than one matching pair. This is done by building node clusters from thelist of matching operator node pairs, where a given cluster contains all nodesof all pairs sharing at least one common node. Figure 3 shows an applicationexample of this clustering algorithm, resulting in the same color being used formultiple matching operator handles {t1,t7}, {t1,t5} and {t1,t10}.3 ImplementationWoPeD is an open source, Java-based graphical editor for work�ow nets sup-porting the well-established "van der Aalst" notation[6]. The tool is maintainedvia Sourceforge, a common platform for the distributed development of freesoftware projects. Several publications have accompanied the emerging devel-opment of WoPeD [7, 8, 9]. In the newest release which is obtainable on the

59

WoPeD website [1], coloring can be enabled or disabled simply by an assignedtoggle button on the toolbar. When coloring is switched on, each cluster ofmatching operators is assigned one of the colors from a selection palette. Thepalette itself can be created within a settings dialog (see �gure 4) and �lled witharbitrary color values.

Figure 4: A settings dialog allows the con�guration of optical appearanceThere is a special neutral color (usually white) that is used for all nodesthat have not been identi�ed as members of any pair or cluster by the algorithm.Their graphical representation matches that of standard nodes when the coloringfeature is disabled.In �enabled� mode, the work�ow net graph is constantly monitored for user-in�icted changes. If a relevant change is detected, the coloring algorithm isexecuted, producing a possibly new set of node clusters. Each cluster receivesan individual color from the palette until all colors are in use. If this happens,colors must be re-used or the palette must be extended. Finally, the visualrepresentation of the work�ow net is updated using the new colors. To enhancethe visual feedback of correct modelling, only node pairs that do not violate therules of well-handledness are considered for coloring.The coloring algorithm has been implemented on top of a simpli�ed repre-sentation of the transformed work�ow net. This transformed representation isderived from the original graph G = (S, T, F) by inserting a �rst node n' anda second node n� for each node n ∈ S ∪ T , and then creating an arc connecting

60

n' to n�. Once all nodes are processed this way, an arc connecting x' ' to y' isinserted for all arcs (x, y) ∈ F of the original net. The implementation of theFord and Fulkerson algorithm is derived from the one introduced in [10], withthe modi�cation to select nodes based on �breadth-�rst� search. The algorithmruns at polynomial time.Building the node clusters whose individual nodes are sharing one color hasbeen implemented by using a simple, iterative algorithm as follows:1. Let A be a list of sets of nodes, each set consisting of one of the matchingnode pairs detected2. While a∩ b 6= ∅ for any a, b ∈ A with a 6= b , set A = Ar {a, b}+ {(a∪ b)}The exemplary work�ow net shown in �gure 3 shows a total of three operatornode pairs, each with more than one distinct node paths leading from one toanother. Each pair is added to an initial list of node sets:1. {t1, t7}2. {t1, t5}3. {t1, t10}In the �rst iteration, {t1, t7} and {t1, t5} are combined to {t1, t5, t7}. Thesecond and last iteration combines {t1, t5, t7} and {t1, t10} to {t1, t5, t7, t10}.All nodes belonging to the same set of nodes are drawn with the same color.4 ConclusionOne shortcoming of our approach is the fact that the number of colors a humancan clearly distinguish from each other is fairly limited. A possible solution forthis could involve the assignment of special patterns in addition to plain palettecolors (e. g. hatched, striped or plaid). Such patterns could be used to extendthe amount of distinguishable handle clusters for complex work�ow nets withmore existing clusters than palette color entries.The coloring algorithm has been implemented in a su�ciently generic way asto allow its application to the generalized problem of detecting PT/TP-handlesand thus control-�ow errors in work�ow nets. Our implementation therefore alsoreplaces the structural work�ow net analysis functionality of WoPeD, allowingPT/TP-handle detection without falling back to external tools as Wo�an.

61

References[1] WoPeD website: www.woped.org, accessed on Aug 2, 2009.[2] M. D. Lara. Proano: Visual layout for drawing understandable ProcessModels. Master's thesis, Technische Universiteit Eindhoven, 2008.[3] J. Mendling, H.A. Reijers, and Jorge Cardoso. What Makes Process ModelsUnderstandable? In G. Alonso, P. Dadam and M. Rosemann, editors, Pro-ceedings of the 5th International Conference Business Process Management(BPM 2007), Lecture Notes in Computer Science 4714, 48-63. Springer Ver-lag, Berlin, 2007.[4] L. R. Ford and D. R. Fulkerson: Maximal �ow through a network, Canad.J. Math. 8 (1956), 399-404.[5] H. M. W. Verbeek: Veri�cation of WF nets. PhD dissertation, TechnischeUniversiteit Eindhoven, 2004.[6] W. M. P. van der Aalst and K. van Hee: Work�ow Management: Models,Methods, and Systems, 2002.[7] T. Freytag and S. I. Landes: PWFtool - a Petri net work�ow modellingenvironment. AWPN 2003 - Research Report, Catholic University of Eich-staett, 2003.[8] C. Flender and T. Freytag: Visualizing the Soundness of Work�ow Nets.AWPN 2006 - Research Report, University of Hamburg, 2006.[9] A. Eckleder and T. Freytag: WoPeD 2.0 goes BPEL 2.0. AWPN 2008 -Research Report, University of Rostock, 2008.[10] T. Ihringer: Diskrete Mathematik: Eine Einführung in Theorie und An-wendungen, 2002.

AutorenverzeichnisBergenthum, Robin, 1, 45Desel, Jörg, 1, 45Eckleder, Andreas, 56Freytag, Thomas, 56Harrer, Andreas, 1Klett, Andreas, 41Markwardt, Kolja, 9Mauser, Sebastian, 1, 41Mendling, Jan, 56
Mennicke, Stephan, 29Moldt, Daniel, 9Oanea, Olivia, 29Reijers, Hajo A., 56Shmeleva, Tatiana R., 15Sürmeli, Jan, 35Wagner, Thomas, 9Wolf, Karsten, 29Zaitsev, Dmitry A., 15

