
Net Agents for Activity Handling in a WFMS

Kolja Markwardt, Daniel Moldt, and Thomas Wagner

University of Hamburg - Department of Informatics
http://www.informatik.uni-hamburg.de/TGI

Abstract. Workflow Management Systems (WFMS) are used to orga-
nize work processes between different people within an organization or
between organizations. In this paper we will describe an agent-based
WFMS, built with Petri nets, to utilize the formal soundness of Petri
nets and the flexibility of multi-agent systems to enhance the useful-
ness of a WFMS. The focus of this paper lies in the way activities are
handled in the WFMS. We will first discuss the way this works in the
system as of now. Then we will go on and describe a way to use Activity
Agents to add a further flexibility to the activity handling of the system.
These Activity Agents will be responsible for providing the functionality,
including materials and user interface associated with an activity.

Keywords: Activity Agents, Reference Nets, Workflow Management Systems

1 Introduction

Workflow Management Systems (WFMS) are used regularly within companies.
In research and practice the question of coupling the different WFMS of cooper-
ating organizations arises, leading to inter-organizational WFMS. Agent-based
WFMS are one answer in this field. In [6, 7] we proposed an agent-based WFMS
and a process infrastructure for agent systems. The general model is quite elab-
orated, while the implementation has not been discussed deeply. Following the
proposal of [5] the ideas of tools and materials (see [10] for this general approach)
is introduced to multi-agent systems (MAS). Adding the concept of tools and
materials to our Mulan reference model adds further structuring capabilities
for the modeller.

In this contribution we will explain in Section 2 the technological basics of
our WFMS. Section 3 explains our current agent-based WFMS. Then Section 4
provides the information about the tool and material approach and its adap-
tation to our agent-based approach. On top that the central idea, the Activity
Agent is introduced. How to implement the afore mentioned Activity Agent con-
cept is described in Section 5. The paper concludes with a short summary and
outlook in Section 6.

2 Basics

The technological foundation for this contribution are the Mulan and Capa
agent architectures. Mulan stands for Multi-agent nets, which is also the main



idea behind it. It was described in [8]. Every element of Mulan, including agent
behavior, agent knowledge and agents themselves, is modelled using the reference
net formalism introduced in [4].

Capa (Concurrent Agent Platform Architecture) is an extension of Mu-
lan, which was introduced in [2]. Its main focus is on communication between
platforms and making the Mulan principles fully compliant with the FIPA stan-
dards. The reference net tool Renew serves as both development and runtime
environment. A description of Renew can be found in [4].

Within the WFMS workflows are modelled using a variation of the workflow
nets described in [9]. This variation of workflow nets uses the task transition
introduced in [3]. A task transitions actually represents three regular transitions.
The three transitions model the request of a work item and the cancellation or
confirmation of an activity.

3 An Agent-Based WFMS

In its current version the system supports basic WFMS functionality. It provides
the means to administrate the system, add and edit workflow definitions and
instantiate and execute workflow instances.

The functionality of the WFMS is provided by a number of different agent
types. The system’s core is made up of a trio of agents, which provide the internal
function of the WFMS. These agents are the Workflow Engine agent (WFEngine
agent), the Workflow Enactment Service agent (WFES agent) and the Workitem
Dispatcher agent (WiDi agent). The WFEngine agent is responsible for firing the
internal transitions of the tasks and for initiating the workflow instances. The
WiDi agent distributes work items and activities to the users, if they are eligible
for them. The WFES agent is located between the other two agents. It manages
different workflow instances on the workflow engine. These three agents interact
with each other to organize the functionality to provide work items and activities
to the user. For each user a user agent exists, which manages the interactions
between the WFMS and the user’s GUI. Its main responsibility lies in invoking
interactions upon actions of the user within the GUI and in initiating display
updates within the GUI. The other agent types offer the functionality to manage
and authenticate logged in users as well as access to the database.

Currently the WFMS supports two kinds of tasks. Simple tasks can only be
accepted and then be marked as completed or canceled. They represent actions,
which have to be completed outside of the functionality the WFMS offers. The
other kind of tasks is form tasks. When a form task is assigned to a user, a form
window is opened, in which the user enters the necessary information. Forms
can consist of an arbitrary number of labels, text boxes, check boxes and radio
buttons. When the form task is completed the data entered into a form is read
into the system and can be used in later form tasks.

The subject of this contribution concerns the the way activities are handled
within the system. Because of this it is important to give a description of the
way activities are assigned in the current version.



While workflow instances are active within the system, eligible users can
request the work items, which are currently activated in the workflow nets. When
a user wishes to request a work item he initiates the associated interaction. If this
interaction is successful the WFEngine agent fires the internal request transition
of the task and creates the activity.

When any changes in a workflow net occur a decision component (DC) net,
a special part of the WFEngine agent, is automatically informed. This listener
DC net contains a cycle, which is responsible for handling reported changes
in the set of activities and is always repeated when a new change occurs. The
cycle checks which activities have changed and need to be updated. The cycle
ends with the initiation of the UpdateActivityList interaction. The UpdateAc-
tivityList updates the internal lists of the WFEngine agent, the WFES agent
and the WiDi agent.

After the UpdateActivityList interaction has been completed, the OfferAc-
tivityList interaction is started, in which the WiDi agent informs all user agents
connected to him about the previously updated status of their activities. These
updated activities are then displayed for the user and can be executed.

4 Tool- and Activity-Agents

In this paper we propose a new way of handling activities in the WFMS by using
a special kind of Tool Agents, called Activity Agents. We will first describe the
notion of Tool Agents and how they can be used to build flexible tool-based
applications. Then we will describe the special incarnation of Activity Agents
and the way they will be integrated into the WFMS architecture.

4.1 Tool Agents

Tool Agents are a way to use multi-agent systems to build tools for supporting
individual users work as well as collaborative efforts. This follows the notions of
the tools and materials approach [10], applied to multi-agent systems to address
distributed workplaces.

Overview The main idea about the tool agent concept is that each user controls
a user agent (UA), which can be enhanced by different tool agents (TA) as shown
in [5]. The user agent provides basic functionality like a standard user interface
and the possibility to load new tool agents. Those tool agents can then plug into
the user agents UI with their own UI parts, offering their functionality to the
user. By choosing the specific set of tool agents, the user can tailor his work
environment to his specific needs.

Material agents (MA) are used to represent and encapsulate the materials
or work objects that are currently worked on, like an insurance claim or a text
file. Materials are manipulated by tools and can be created, deleted and moved
between workplaces. Tools and materials populate the workspace of the user.



An agent called the Tool Factory is used to manage the different types of
tool agents known to the system. It is called by the user agent to create a ne
instance of a tool agent to use. Figure 1 shows how these agents work together.

Fig. 1. User and Tool agents

4.2 Activity Agents

The definition of a workflow can contain any number of different types of tasks
for a user to perform. In the current systems, all these tasks have to be defined in
advance and the user needs to know how to handle them. It seems clear that in
this way the user can be a real bottleneck in the deployment of new workflows,
if these contain new types of tasks.

Tool Agents already provide a way to enhance the functionality of a User
Agent. Therefore, an adaptation of Tool Agents for WFMS will provide a way
to handle this problem, this adaptation is called an Activity Agent.

Like any Tool Agent it can be used to manipulate materials, but in this case
the material and the context for its manipulation is provided by the workflow.
An Activity Agent is not requested by the User to perform some task but it
is rather assigned to it by the workflow engine to handle an activity. Once it
is connected to the User however, it functions like another Tool Agent. It only
needs a way to determine that the work on the activity is done, so that it can
return the material and feedback on activity completion back to the workflow
engine, for example a “finish” or “abort “ button in the GUI.

4.3 The Activity Agent in the Activity handling process

Activity Agents represent activities within the running WFMS. When a user
successfully request a work item available to him, the system will automatically
start a new Activity Agent. This Activity Agent will be responsible for this
activity alone, and will only be active while the activity is being executed by
the user. During the execution of the activity the user will exchange information
with the Activity Agent, in order to work on the activity. When the activity has



been finished, the Activity Agent will transmit the relevant data back to the
workflow engine and terminate.

5 Design and Implementation

In this section we will describe our proposed way to implement the Activity
Agent. The Activity Agent will be started after the listener DC net of the
WFEngine has detected that a new activity has been created. Before the Update-
ActivityList interaction is started the listener will check if the activity is flagged
as an Activity Agent activity. If the activity is to be executed by an Activity
Agent, a new DC net is entered. The purpose of this new DC will be to start
the new Activity Agent and add the agent’s information to the activity, so that
the executor’s user agent knows how to interact with the Activity Agent. After
this is done, the listener DC net can continue and start the UpdateActivityList
interaction. Within The UpdateActivityList and OfferActivityList interactions
only the internal lists have to be modified, in order to incorporate the added
information.

While the Update- and OfferActivityList will not have to be changed much,
the handling of activities in general and within the user GUI require changes.
Concerning the handling of activities changes have to be made, because in the
proposed version the actual handling of the activity will be done by the Activity
Agent. In the current version the activities are manipulated within the GUI
and then passed to the user agent, who, upon completion of the activity, sends
them to the WFEngine agent. In the new version the user agent will not directly
communicate with the WFMS’s core in this matter, but will only communicate
with the Activity Agent in order to manipulate materials involved in the activity
(e.g. forms). When the user has finished his work on the activity he will inform
the Activity Agent, who then informs the WFMS’s core.

The reason for changes to the GUI is, that in the current version tasks are
simply displayed in a list (simple tasks) or a generic form window is opened (form
tasks). In both cases, the interface to complete the activity is embedded into the
general GUI. Since the Activity Agent is designed to be able to offer arbitrary
functionality with a possibly specialized GUI, this GUI has to be offered by
the agent itself, because otherwise the main user GUI has to be changed and
enhanced, whenever a new type of task is added. In order to support this, the
GUI has to be changed so that selecting an activity will contact the Activity
Agent who will in turn invoke his own GUI.

6 Summary and Outlook

We have proposed in this paper a way of enhancing an Agent-based WFMS
with flexible activity-handling procedures. Specialized agents will be used to
plug into the users’ system and provide them with the functionality needed to
perform their tasks within the workflow process. The underlying Petri nets allow
first of all an appropriate modelling of the system and its processes. In addition



the agents and their behaviour become a well defined semantics. Following our
Paose approach (see [1]) models are continuously transformed, so that they
can be executed. Reference nets support this directly. Introducing the tool and
material ideas into our multi-agent systems provides us with a highly expressible
modelling basis. Activity agents directly rely on this. The flexibility introduced
into the agent-based WFMS by the addition metaphor of the tool allows to
introduce new activities much easier than the former way of explicitly defining
all necessary parts redundantly.

Activity agents will directly be used in our next version of our distributed
and no longer centralized agent-based WFMS. There it will take care in a quite
generic way of activities of the workflows, the core of workflows in general.

References

1. Lawrence Cabac, Till Dörges, Michael Duvigneau, Christine Reese, and Matthias
Wester-Ebbinghaus. Application development with Mulan. In Daniel Moldt, Fab-
rice Kordon, Kees van Hee, José-Manuel Colom, and Rémi Bastide, editors, Pro-
ceedings of the International Workshop on Petri Nets and Software Engineering
(PNSE’07), pages 145–159, Siedlce, Poland, June 2007. Akademia Podlaska.

2. Michael Duvigneau. Bereitstellung einer agentenplattform für petrinetzbasierte
agenten. Diploma thesis, University of Hamburg, Department of Computer Science,
December 2002.

3. Thomas Jacob. Implementierung einer sicheren und rollenbasierten
workflowmanagement-komponente für ein petrinetzwerkzeug. Diploma the-
sis, University of Hamburg, Department of Computer Science, 2002.

4. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
5. Kolja Lehmann and Vanessa Markwardt. Proposal of an agent-based system for

distributed software development. In Daniel Moldt, editor, Third Workshop on
Modelling of Objects, Components and Agents (MOCA 2004), pages 65–70, Aarhus,
Denmark, October 2004.

6. Christine Reese, Jan Ortmann, Daniel Moldt, Sven Offermann, Kolja Lehmann,
and Timo Carl. Fragmented workflows supported by an agent based architecture.
In Manuel Kolp, Paolo Bresciani, Brian Henderson-Sellers, and Michael Winikoff,
editors, Agent-Oriented Information Systems III 7th International Bi-Conference
Workshop, AOIS 2005, Utrecht, Netherlands, July 26, 2005, and Klagenfurt, Aus-
tria, October 27, 2005, Revised Selected Papers, volume 3529 of Lecture Notes in
Computer Science, pages 200–215. Springer-Verlag, 2006.

7. Christine Reese, Matthias Wester-Ebbinghaus, Till Dörges, Lawrence Cabac, and
Daniel Moldt. Introducing a process infrastructure for agent systems. In Mehdi
Dastani, Amal El Fallah, João Leite, and Paolo Torroni, editors, LADS’007 Lan-
guages, Methodologies and Development Tools for Multi-Agent Systems, volume
5118 of Lecture Notes in Artificial Intelligence, pages 225–242, 2008. Revised Se-
lected and Invited Papers.

8. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

9. Wil M.P. van der Aalst. Verification of workflow nets. Lecture Notes in Computer
Science, 1248/1997:407–426, 1997. Application and Theory of Petri Nets 1997.

10. Heinz Züllighoven. Object-Oriented Construction Handbook. dpunkt Verlag, 2005.


