
3rd PAN WORKSHOP. UNCOVERING

PLAGIARISM, AUTHORSHIP AND

SOCIAL SOFTWARE MISUSE

25th ANNUAL CONFERENCE OF THE

SPANISH SOCIETY FOR NATURAL

LANGUAGE PROCESSING, SEPLN 2009

Benno Stein

Paolo Rosso

Efstathios Stamatatos

Moshe Koppel

Eneko Agirre

(eds.)

Preface

The PAN workshop brought together experts and researchers around the exciting and future-oriented

topics of plagiarism detection, authorship identification, and the detection of social software misuse. The

development of new solutions for these problems can benefit from the combination of existing technolo-

gies, and in this sense the workshop provides a platform that spans different views and approaches.

Plagiarism analysis is a collective term for computer-based methods to identify a plagiarism of-

fense. In connection with text documents we distinguish between corpus-based and intrinsic analysis: the

former compares suspicious documents against a set of potential original documents, the latter identifies

potentially plagiarized passages by analyzing the suspicious document with respect to changes in writing

style.

Authorship identification divides into so-called attribution and verification problems. In the au-

thorship attribution problem, one is given examples of the writing of a number of authors and is asked to

determine which of them authored given anonymous texts. In the authorship verification problem, one

is given examples of the writing of a single author and is asked to determine if given texts were or were

not written by this author. As a categorization problem, verification is significantly more difficult than

attribution. Authorship verification and intrinsic plagiarism analysis represent two sides of the same coin.

“Social Software Misuse” can nowadays be noticed on many social software based platforms.

These platforms like Blogs, sharing sites for photos and videos, wikis and on-line forums are contributing

up to one third of new Web content. ”Social Software Misuse” is a collective term for anti-social behavior

in on-line communities; an example is the distribution of spam via the e-mail infrastructure. Interestingly,

spam is one of the few misuses for which detection technology is developed at all, though various forms

of misuse exist that threaten the different on-line communities. Our workshop shall close this gap and

invites contributions concerned with all kinds of social software misuse.

September 2009 Benno Stein

Paolo Rosso

Efstathios Stamatatos

Moshe Koppel

Eneko Agirre

Organization

PAN 2009 was organized by the Web Technology & Information Systems Group of the Bauhaus

University Weimar, the Natural Language Engineering Lab. of the Technical University of Va-

lencia, the Dept. of Information and Communication Systems Engineering of the University

of the Aegean, the Department of Computer Science of the Bar-Ilan University and the IXA

Research Group of the Basque Country University.

Organizing Committee

Benno Stein Bauhaus University Weimar

Paolo Rosso Technical University of Valencia

Efstathios Stamatatos University of the Aegean

Moshe Koppel Bar-Ilan University

Eneko Agirre University of the Basque Country

Program Committee

Alberto Barrón-Cedeño Technical University of Valencia

Benno Stein Bauhaus University Weimar

Carole Chaski Institute for Linguistic Evidence

Christian Guetl University of Technology Graz

David Pinto B. Autonomous University of Puebla

Efstathios Stamatatos University of the Aegean

Eneko Agirre University of the Basque Country

Fazli Can Bilkent University

George Mikros National and Capodestrian University of Athens

Graeme Hirst University of Toronto

Martin Potthast Bauhaus University Weimar

Mike Reddy Newport Business School

Moshe Koppel Bar-Ilan University

Ozlem Uzuner State University of New York

Paolo Rosso Technical University of Valencia

Paul Clough University of Sheffield

Shlomo Argamon Illinois Institute of Technology

Sven Meyer zu Eissen Bayer Business Services

1st International Competition on Plagiarism Detection

Martin Potthast Bauhaus University Weimar

Andreas Eiselt Bauhaus University Weimar

Alberto Barrón-Cedeño Technical University of Valencia

Workshop and Competition Sponsors

Table of Contents

1. Introduction

Overview of the 1st International Competition on Plagiarism Detection 1

Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barrón Cedeño, Paolo Rosso

2. External Plagiarism Detection

ENCOPLOT: Pairwise Sequence Matching in Linear Time Applied to Plagiarism

Detection . 10

Cristian Grozea, Christian Gehl, Marius Popescu

A Plagiarism Detection Procedure in Three Steps: Selection, Matches and “Squares” . . . 19

Chiara Basile, Dario Benedetto, Emanuele Caglioti, Giampaolo Cristadoro, Mirko

Degli Esposti

Finding Plagiarism by Evaluating Document Similarities . 24

Jan Kasprzak, Michal Brandejs, Miroslav Křipač

Tackling the PAN’09 External Plagiarism Detection Corpus with a Desktop Plagiarism

Detector . 29

James A. Malcolm, Peter C. R. Lane

Putting Ourselves in SME’s Shoes: Automatic Detection of Plagiarism by the

WCopyFind Tool . 34

Enrique Vallés Balaguer

Using Microsoft SQL Server Platform for Plagiarism Detection . 36

Vladislav Scherbinin, Sergey Butakov

3. Intrinsic Plagiarism Detection and Authorship Identification

Intrinsic Plagiarism Detection Using Character n-gram Profiles . 38

Efstathios Stamatatos

External and Intrinsic Plagiarism Detection using Vector Space Models 47

Mario Zechner, Markus Muhr, Roman Kern, Michael Granitzer

Intrinsic Plagiarism Detection Using Complexity Analysis . 56

Leanne Seaward, Stan Matwin

Ordinal measures in authorship identification . 62

Liviu P. Dinu, Marius Popescu

“Counter Plagiarism Detection Software” and “Counter Counter Plagiarism Detection”

Methods . 67

Yurii Palkovskii

Authors index . 69

Overview of the

1st International Competition on Plagiarism Detection∗

Martin Potthast Benno Stein Andreas Eiselt Alberto Barrón-Cedeño Paolo Rosso

Web Technology & Information Systems Group Natural Language Engineering Lab, ELiRF
Bauhaus-Universität Weimar Universidad Politécnica de Valencia

<first name>.<last name>@uni-weimar.de {lbarron|prosso}@dsic.upv.es

Abstract: The 1st International Competition on Plagiarism Detection, held in con-
junction with the 3rd PAN workshop on Uncovering Plagiarism, Authorship, and

Social Software Misuse, brought together researchers from many disciplines around

the exciting retrieval task of automatic plagiarism detection. The competition was
divided into the subtasks external plagiarism detection and intrinsic plagiarism de-

tection, which were tackled by 13 participating groups.

An important by-product of the competition is an evaluation framework for pla-
giarism detection, which consists of a large-scale plagiarism corpus and detection

quality measures. The framework may serve as a unified test environment to com-
pare future plagiarism detection research. In this paper we describe the corpus

design and the quality measures, survey the detection approaches developed by the

participants, and compile the achieved performance results of the competitors.

Keywords: Plagiarism Detection, Competition, Evaluation Framework

1 Introduction

Plagiarism and its automatic retrieval have
attracted considerable attention from re-

search and industry: various papers have
been published on the topic, and many com-

mercial software systems are being devel-

oped. However, when asked to name the best
algorithm or the best system for plagiarism

detection, hardly any evidence can be found
to make an educated guess among the al-

ternatives. One reason for this is that the

research field of plagiarism detection lacks
a controlled evaluation environment. This

leads researchers to devise their own experi-
mentation and methodologies, which are of-

ten not reproducible or comparable across

papers. Furterhmore, it is unknown which
detection quality can at least be expected

from a plagiarism detection system.
To close this gap we have organized an in-

ternational competition on plagiarism detec-

tion. We have set up, presumably for the first
time, a controlled evaluation environment for

plagiarism detection which consists of a large-

scale corpus of artificial plagiarism and de-

∗
http://www.webis.de/research/workshopseries/pan-09

tection quality measures. In what follows we

overview the corpus, the quality measures,
the participants’ detection approaches, and

their obtained results.

1.1 Related Work

Research on plagiarism detection has been
surveyed by Maurer, Kappe, and Zaka (2006)

and Clough (2003). Particularly the latter

provides well thought-out insights into, even
today, “[...] new challenges in automatic pla-
giarism detection”, among which the need for

a standardized evaluation framework is al-
ready mentioned.

With respect to the evaluation of com-
mercial plagiarism detection systems, Weber-

Wulff and Köhler (2008) have conducted a

manual evaluation: 31 handmade cases of
plagiarism were submitted to 19 systems.

The sources for the plagiarism cases were se-
lected from the Web and the systems were

judged by their capability to retrieve them.

Due to the use of the Web, the experiment
is not controlled which limits reproducibility,

and since each case is only about two pages
long there are concerns with respect to the

study’s representativeness. However, com-

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 1-9, 2009.

Reference
collection D

Heuristic
retrieval

Detailed
analysis

Plagiarism Detection

Suspicious
sections

Candidate
documents

Knowledge-based
post-processing

dq

Figure 1: Generic retrieval process for external plagiarism detection.

mercial systems are usually not available for
a close inspection which may leave no other

choice to evaluate them.

1.2 Plagiarism Detection

The literature on the subject often puts pla-

giarism detection on a level with the iden-
tification of highly similar sections in texts

or other objects. But this does not show

the whole picture. From our point of view
plagiarism detection divides into two major

problem classes, namely external plagiarism
detection and intrinsic plagiarism detection.

Both of which include a number of subprob-

lems and the frequently mentioned step-by-
step comparison of two documents is only one

of them.
For external plagiarism detection Stein,

Meyer zu Eissen, and Potthast (2007) intro-

duce a generic three-step retrieval process.
The authors consider that the source of a pla-

giarism case may be hidden in a large refer-
ence collection, as well as that the detection

results may not be perfectly accurate. Fig-

ure 1 illustrates this retrieval process. In fact,
all detection approaches submitted by the

competition participants can be explained in
terms of these building blocks (cf. Section 4).

The process starts with a suspicious doc-

ument dq and a collection D of documents
from which dq’s author may have plagiarized.

Within a so-called heuristic retrieval step a

small number of candidate documents Dx,
which are likely to be sources for plagiarism,

are retrieved from D. Note that D is usually
very large, e.g., in the size of the Web, so

that it is impractical to compare dq one after

the other with each document in D. Then,
within a so-called detailed analysis step, dq

is compared section-wise with the retrieved
candidates. All pairs of sections (sq, sx) with

sq ∈ dq and sx ∈ dx, dx ∈ Dx, are to be

retrieved such that sq and sx have a high
similarity under some retrieval model. In a

knowledge-based post-processing step those

sections are filtered for which certain exclu-
sion criteria hold, such as the use of proper

citation or literal speech. The remaining sus-
picious sections are presented to a human,

who may decide whether or not a plagiarism

offense is given.
Intrinsic plagiarism detection has been

studied in detail by Meyer zu Eissen and
Stein (2006). In this setting one is given a

suspicious document dq but no reference col-

lection D. Technology that tackles instances
of this problem class resembles the human

ability to spot potential cases of plagiarism
just by reading dq.

1.3 Competition Agenda

We have set up a large-scale corpus
(Dq,D, S) of “artificial plagiarism” cases for

the competition, where Dq is a collection of
suspicious documents, D is a collection of

source documents, and S is the set of annota-

tions of all plagiarism cases between Dq and
D. The competition divided into two tasks

and into two phases for which the corpus was
split up into 4 parts; one part for each com-

bination of tasks and phases. For simplicity

the sub-corpora are not denoted by different
symbols.

Competition tasks and phases:

• External Plagiarism Detection Task.

Given Dq and D the task is to identify

the sections in Dq which are plagiarized,

and their source sections in D.

• Intrinsic Plagiarism Detection Task.

Given only Dq the task is to identify the
plagiarized sections.

2 Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barrón-Cedeño and Paolo Rosso

• Training Phase. Release of a training

corpus (Dq,D, S) to allow for the devel-
opment of a plagiarism detection system.

• Competition Phase. Release of a compe-
tition corpus (Dq,D) whose plagiarism

cases were to be detected and submitted
as detection annotations, R.

Participants were allowed to compete in

either of the two tasks or both. After the

competition phase the participants’ detec-
tions were evaluated, and the winner of each

task as well as an overall winner was deter-
mined as that participant whose detections R

best matched S in the respective competition

corpora.

2 Plagiarism Corpus

The PAN plagiarism corpus, PAN-PC-09,

comprises 41 223 text documents in which
94 202 cases of artificial plagiarism have been

inserted automatically (Webis at Bauhaus-

Universität Weimar and NLEL at Univer-
sidad Politécnica de Valencia, 2009). The

corpus is based on 22 874 book-length doc-
uments from the Project Gutenberg.1 All

documents are, to the best of our knowledge,

public domain; therefore the corpus is avail-
able free of charge to other researchers. Im-

portant parameters of the corpus are the fol-
lowing:

• Document Length. 50% of the doc-

uments are small (1-10 pages), 35%

medium (10-100 pages), and 15% large
(100-1000 pages).

• Suspicious-to-Source Ratio. 50% of the
documents are designated as suspicious

documents Dq, and 50% are designated
as source documents D (see Figure 2).

• Plagiarism Percentage. The percent-
age θ of plagiarism per suspicious doc-

ument dq ∈ Dq ranges from 0% to 100%,

whereas 50% of the suspicious docu-
ments contain no plagiarism at all. Fig-

ure 3 shows the distribution of the pla-
giarized documents for the external test

corpus. For the intrinsic test corpus ap-

plies the hashed part of the distribution.

• Plagiarism Length. The length of a pla-

giarism case is evenly distributed be-
tween 50 words and 5000 words.

1http://www.gutenberg.org

Source
doucments

Suspicious
documents

without
plagiarsim

with
plagiarsim

Figure 2: Distribution of suspicious documents
(with and without plagiarism) and source docu-
ments.

• Plagiarism Languages. 90% of the cases
are monolingual English plagiarism, the

remainder of the cases are cross-lingual
plagiarism which were translated auto-

matically from German and Spanish to

English.

• Plagiarism Obfuscation. The monolin-
gual portion of the plagiarism in the ex-

ternal test corpus was obfuscated (cf.
Section 2.1). The degree of obfuscation

ranges evenly from none to high.

Note that for the estimation of the pa-

rameter distributions one cannot fall back on
large case studies on real plagiarism cases.

Hence, we decided to construct more sim-
ple cases than complex ones, where “simple”

refers to short lengths, a small percentage

θ, and less obfuscation. However, complex
cases are overrepresented to allow for a bet-

ter judgement whether a system detects them
properly.

2.1 Obfuscation Synthesis

Plagiarists often modify or rewrite the sec-

tions they copy in order to obfuscate the pla-
giarism. In this respect, the automatic syn-

thesis of plagiarism obfuscation we applied

when constructing the corpus is of particular
interest. The respective synthesis task reads

y
y
y
y
y
y
y
y
yyyyyy

5 755025 100%θ:

Figure 3: Distribution of the plagiarism percent-
age θ in the external test corpus. For the intrinsic
test corpus applies the hashed part only.

Overview of the 1st International Competition on Plagiarism Detection 3

as follows: given a section of text sx, create a

section sq which has a high content similarity
to sx under some retrieval model but with a

(substantially) different wording than sx.
An optimal obfuscation synthesizer, i.e.,

an automatic plagiarist, takes an sx and

creates an sq which is human-readable and
which creates the same ideas in mind as sx

does when read by a human. Today, such
a synthesizer cannot be constructed. There-

fore, we approach the task from the basic

understanding of content similarity in infor-
mation retrieval, namely the bag-of-words

model. By allowing our obfuscation synthe-
sizers to construct texts which are not nec-

essarily human-readable they can be greatly

simplified. We have set up three heuristics to
construct sq from sx:

• Random Text Operations. Given sx, sq

is created by shuffling, removing, insert-

ing, or replacing words or short phrases

at random. Insertions and replacements
are, for instance, taken from the docu-

ment dq, the new context of sq.

• Semantic Word Variation. Given sx, sq

is created by replacing each word by one

of its synonyms, antonyms, hyponyms,
or hypernyms, chosen at random. A

word is retained if neither are available.

• POS-preserving Word Shuffling. Given
sx its sequence of parts of speech (POS)

is determined. Then, sq is created by

shuffling words at random while the orig-
inal POS sequence is maintained.

2.2 Critical Remarks

The corpus has been conceived and con-
structed only just in time for the competition

so that there may still be errors in it. For

instance, the participants pointed out that
there are a number of unintended overlaps

between unrelated documents. These acci-
dental similarities do not occur frequently, so

that an additional set of annotations solves

this problem.
The obfuscation synthesizer based on ran-

dom text operations produces anomalies in
some of the obfuscated texts, such as se-

quences of punctuation marks and stop

words. These issues were not entirely re-
solved so that it is possible to find some of

the plagiarism cases by applying a kind of
anomaly detection. Nevertheless, this was

not observed during the competition.

Finally, by construction the corpus does

not accurately simulate a heuristic retrieval
situation in which the Web is used as refer-

ence collection. The source documents in the
corpus do not resemble the Web appropri-

ately. Note, however, that sampling the Web

is also a problem for many ranking evaluation
frameworks.

3 Detection Quality Measures

A measure that quantifies the performance of
a plagiarism detection algorithm will resem-

ble concepts in terms of precision and recall.
However, these concepts cannot be trans-

ferred one-to-one from the classical informa-

tion retrieval situation to plagiarism detec-
tion. This section explains the underlying

connections and introduces a reasonable mea-

sure that accounts for the particularities.

Let dq be a plagiarized document; dq

defines a sequence of characters each of
which is either labeled as plagiarized or non-

plagiarized. A plagiarized section s forms a
contiguous sequence of plagiarized characters

in dq. The set of all plagiarized sections in dq

is denoted by S, where ∀si, sj ∈ S : i �= j →
(si ∩ sj = ∅), i.e., the plagiarized sections do

not intersect. Likewise, the set of all sections
r ⊂ dq found by a plagiarism detection algo-

rithm is denoted by R. See Figure 4 for an

illustration.

original characters

plagiarized characters

detected characters

y
document as character sequence

S

Ryyy
r1 r3y

r2yy
r5r4

s1 s3s2

Figure 4: A document as character sequence,
including plagiarized sections S and detections
R returned by a plagiarism detection algorithm.
The figure is drawn at scale 1 : n chars, n
 1.

If the characters in dq are considered as

basic retrieval units, precision and recall for
a given 〈dq, S,R〉 compute straightforwardly.

This view may be called micro-averaged or

system-oriented. For the situation shown in
Figure 4 the micro-averaged precision is 8/16,

likewise, the micro-averaged recall is 8/13.
The advantage of a micro-averaged view is its

clear computational semantics, which comes

4 Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barrón-Cedeño and Paolo Rosso

at a price: given an imbalance in the lengths

of the elements in S—which usually corre-
lates with the detection difficulty of a plagia-

rized section—the explanatory power of the
computed measures is limited.

It is more natural to treat the contiguous

sequences of plagiarized characters as basic
retrieval units. In this sense each si ∈ S de-

fines a query qi for which a plagiarism detec-
tion algorithm returns a result set Ri ⊆ R.

This view may be called macro-averaged or

user-oriented. The recall of a plagiarism de-
tection algorithm, recPDA, is then defined as

the mean of the returned fractions of the pla-
giarized sections, averaged over all sections

in S:

recPDA(S,R) =
1

|S|

∑

s∈S

|s �
⋃

r∈R
r|

|s|
, (1)

where � computes the positionally overlap-
ping characters.

Problem 1. The precision of a plagiarism

detection algorithm is not defined under the
macro-averaged view, which is rooted in the

fact that a detection algorithm does not re-

turn a unique result set for each plagiarized
section s ∈ S. This deficit can be resolved

by switching the reference basis. Instead of
the plagiarized sections, S, the algorithmi-

cally determined sections, R, become the tar-

gets: the precision with which the queries in
S are answered is identified with the recall

of R under S.2 By computing the mean av-
erage over the r ∈ R one obtains a definite

computation rule that captures the concept

of retrieval precision for S:

precPDA(S,R) =
1

|R|

∑

r∈R

|r �
⋃

s∈S
s|

|r|
, (2)

where � computes the positionally overlap-
ping characters. The domain of precPDA is

[0, 1]; in particular it can be shown that this

definition quantifies the necessary properties
of a precision statistic.

Problem 2. Both the micro-averaged view

and the macro-averaged view are insensitive
to the number of times an s ∈ S is detected

in a detection result R, i.e., the granularity of

R. We define the granularity of R for a set of
plagiarized sections S by the average size of

the existing covers: a detection r ∈ R belongs

2In (Stein, 2007) this idea is mathematically de-
rived as “precision stress” and “recall stress”.

to the cover Cs of an s ∈ S iff s and r overlap.

Let SR ⊆ S denote the set of cases so that
for each s ∈ S : |Cs| > 0. The granularity of

R given S is defined as follows:

granPDA(S,R) =
1

|SR|

∑

s∈SR

|Cs|, (3)

where SR = {s | s ∈ S ∧ ∃r ∈ R : s∩ r �= ∅}
and Cs = {r | r ∈ R ∧ s ∩ r �= ∅}. The

domain of the granularity is [1, |R|], where
1 marks the desireable one-to-one correspon-

dence between R and S, and where |R| marks

the worst case, when a single s ∈ S is de-
tected over an over again.

The measures (1), (2), and (3) are com-
bined to an overall score:

overallPDA(S,R) =
F

log2(1 + granPDA)
,

where F denotes the F-Measure, i.e., the har-
monic mean of the precision precPDA and the

recall recPDA. To smooth the influence of the

granularity on the overall score we take its
logarithm.

4 Survey ofDetection Approaches

For the competition, 13 participants devel-

oped plagiarism detection systems to tackle
one or both of the tasks external plagiarism

detection and intrinsic plagiarism detection.

The questions that naturally arise: how do
they work and how well? To give an answer,

we survey the approaches in a unified way
and report on their detection quality in the

competition.

4.1 External Plagiarism Detection

Most of the participants competed in the ex-

ternal plagiarism detection task of the com-

petition; detection results were submitted for
10 systems. As it turns out, all systems

are based on common approaches—although
they perform very differently.

As explained at the outset, external pla-

giarism detection divides into three steps (cf.
Figure 1): the heuristic retrieval step, the de-

tailed analysis step, and the post-processing
step. Table 1 summarizes the participants’

detection approaches in terms of these steps.

However, the post-processing step was omit-
ted here since neither of the participants ap-

plied noteworthy post-processing. Each row
of the table summarizes one system; we re-

strict the survey to the top 6 systems since

Overview of the 1st International Competition on Plagiarism Detection 5

Table 1: Unified summary of the detection approaches of the participants.

External Plagiarism Detection Approach

Heuristic Retrieval Detailed Analysis Participant

Retrieval Model.
Character-16-gram VSM
(frequency weights, cosine similarity)

Comparison of Dq and D.

Exhaustive

Candidates Dx ⊂ D for a dq.
The 51 documents most similar to dq.

Exact Matches of dq and dx ∈ Dx.
Character-16-grams

Match Merging Heuristic to get (sq, sx).
Computation of the distances of adjacent
matches. Joining of the matches based on a
Monte Carlo optimization. Refinement of
the obtained section pairs, e.g., by
discarding too small sections.

Grozea, Gehl, and
Popescu (2009)

Retrieval Model.

Word-5-gram VSM
(boolean weights, Jaccard similarity)

Comparison of Dq and D.

Exhaustive

Candidates Dx ⊂ D for a dq.

Documents which share at least 20
n-grams with dq.

Exact Matches of dq and dx ∈ Dx.

Word-5-grams

Match Merging Heuristic to get (sq, sx).
Extraction of the pairs of sections (sq, sx) of
maximal size which share at least 20
matches, including the first and the last
n-gram of sq and sx, and for which 2
adjacent matches are at most 49
not-matching n-grams apart.

Kasprzak, Brandejs,
and Křipač (2009)

Retrieval Model.
Word-8-gram VSM
(frequency weights, custom distance)

Comparison of Dq and D.

Exhaustive

Candidates Dx ⊂ D for a dq.
The 10 documents nearest to dq.

Exact Matches of dq and dx ∈ Dx.
Word-8-grams

Match Merging Heuristic to get (sq, sx).
Extraction of the pairs of sections (sq, sx)
which are obtained by greedily joining
consecutive matches if their distance is not
too high.

Basile et al. (2009)

Using the commercial system Plagiarism Detector (http://plagiarism-detector.com) Palkovskii, Belov,
and Muzika (2009)

Retrieval Model.
Word-1-gram VSM
(frequency weights, cosine similarity)

Comparison of Dq and D.
Clustering-based data-partitioning of
D’s sentences. Comparison of Dq ’s
sentences with each partitions’ centroid.

Candidates Dx ⊂ D for a dq.
For each sentence of dq, the documents
from the 2 most similar partitions which
share similar sentences.

Exact Matches of dq and dx ∈ Dx.
Sentences

Match Merging Heuristic to get (sq, sx).
Extraction of the pairs of sections (sq, sx)
which are obtained by greedily joining
consecutive sentences. Gaps are allowed if
the respective sentences are similar to the
corresponding sentences in the other
document.

Muhr et al. (2009)

Retrieval Model.

Winnowing fingerprinting
50 char chunks with 30 char overlap

Comparison of Dq and D.

Exhaustive

Candidates Dx ⊂ D for a dq.

Documents whose fingerprints share at
least one value with dq’s fingerprint.

Exact Matches of dq and dx ∈ Dx.

Fingerprint chunks

Match Merging Heuristic to get (sq, sx).
Extraction of the pairs of sections (sq, sx)
which are obtained by enlarging matches
and joining adjacent matches. Gaps must be
below a certain Levenshtein distance.

Scherbinin and
Butakov (2009)

the overall performance of the remaining sys-

tems is negligible. Nevertheless, these sys-

tems also implement the generic three-step
process. The focus of this survey is on

describing algorithmic and retrieval aspects
rather than implementation details. The lat-

ter are diverse in terms of applied languages,

software, and their runtime efficiency; de-

scriptions can be found in the respective ref-

erences.
The heuristic retrieval step (column 1 of

Table 1) involves the comparison of the cor-
pus’ suspicious documents Dq with the source

documents D. For this, each participant em-

6 Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barrón-Cedeño and Paolo Rosso

Table 2: Performance results for the external plagiarism detection task.

External Detection Quality

Rank Overall F Precision Recall Granularity Participant

1 0.6957 0.6976 0.7418 0.6585 1.0038 Grozea, Gehl, and Popescu (2009)

2 0.6093 0.6192 0.5573 0.6967 1.0228 Kasprzak, Brandejs, and Křipač (2009)

3 0.6041 0.6491 0.6727 0.6272 1.1060 Basile et al. (2009)

4 0.3045 0.5286 0.6689 0.4370 2.3317 Palkovskii, Belov, and Muzika (2009)

5 0.1885 0.4603 0.6051 0.3714 4.4354 Muhr et al. (2009)

6 0.1422 0.6190 0.7473 0.5284 19.4327 Scherbinin and Butakov (2009)

7 0.0649 0.1736 0.6552 0.1001 5.3966 Pereira, Moreira, and Galante (2009)

8 0.0264 0.0265 0.0136 0.4586 1.0068 Vallés Balaguer (2009)

9 0.0187 0.0553 0.0290 0.6048 6.7780 Malcolm and Lane (2009)

10 0.0117 0.0226 0.3684 0.0116 2.8256 Allen (2009)

ploys a specific retrieval model, a comparison

strategy, and a heuristic to select the candi-
date documents Dx from the D. Most of the

participants use a variation of the well-known
vector space model (VSM) as retrieval model,

whereas, the tokens are often character- or

word-n-grams instead of single words. As
comparison strategy, the top 3 approaches

perform an exhaustive comparison of Dq and
D, i.e., each dq ∈ Dq is compared with each

dx ∈ D in time O(|Dq| · |D|), while the re-

maining approaches employ data partition-
ing and space partitioning technologies to

achieve lower runtime complexities. To se-
lect the candidate documents Dx for a dq ei-

ther its k nearest neighbors are selected or

the documents which exceed a certain simi-
larity threshold.

The detailed analysis step (column 2 of
Table 1) involves the comparison of each

dq ∈ Dq with its respective candidate doc-

uments Dx in order to extract pairs of sec-
tions (sq, sx), where sq ∈ dq and sx ∈ dx,

dx ∈ Dx, from them which are highly sim-
ilar, if any. For this, each participant first

extracts all exact matches between dq and dx

and then merges the matches heuristically to
form suspicious sections (sq, sx). While each

participant uses the same type of token to

extract exact matches as his respective re-

trieval model of the heuristic retrieval step,
the match merging heuristics differ largely

from one another. However, it can be said
that in most approaches a kind of distance

between exact matches is measured first, and

then a custom algorithm is employed which
clusters them to sections.

Table 2 lists the detection performance re-
sults of all approaches, computed with the

quality measures introduced in Section 3.

Observe that the approach with top preci-
sion is the one on rank 6 which is based on

fingerprinting, the approach with top recall is
the one on rank 2, and the approach with top

granularity is the one on rank 1. The latter is

also the winner of this task since it provides
the best trade off between the three quality

measures.

4.2 Intrinsic Plagiarism Detection

The intrinsic plagiarism detection task has

gathered less attention than external plagia-
rism detection; detection results were submit-

ted for 4 systems. Table 3 lists their detec-
tion performance results. Unlike in external

plagiarism detection, in this task the baseline

performance is not 0. The reason for this is
that intrinsic plagiarism detection is a one-

Table 3: Performance results for the intrinsic plagiarism detection task.

Intrinsic Detection Quality

Rank Overall F Precision Recall Granularity Participant

1 0.2462 0.3086 0.2321 0.4607 1.3839 Stamatatos (2009)

2 0.1955 0.1956 0.1091 0.9437 1.0007 Hagbi and Koppel (2009) (Baseline)

3 0.1766 0.2286 0.1968 0.2724 1.4524 Muhr et al. (2009)

4 0.1219 0.1750 0.1036 0.5630 1.7049 Seaward and Matwin (2009)

Overview of the 1st International Competition on Plagiarism Detection 7

Table 4: Overall plagiarism detection performance.

Overall Detection Quality

Rank Overall F Precision Recall Granularity Participant

1 0.4871 0.4884 0.5193 0.4610 1.0038 Grozea, Gehl, and Popescu (2009)

2 0.4265 0.4335 0.3901 0.4877 1.0228 Kasprzak, Brandejs, and Křipač (2009)

3 0.4229 0.4544 0.4709 0.4390 1.1060 Basile et al. (2009)

4 0.2131 0.3700 0.4682 0.3059 2.3317 Palkovskii, Belov, and Muzika (2009)

5 0.1833 0.4001 0.4826 0.3417 3.5405 Muhr et al. (2009)

6 0.0996 0.4333 0.5231 0.3699 19.4327 Scherbinin and Butakov (2009)

7 0.0739 0.0926 0.0696 0.1382 1.3839 Stamatatos (2009)

8 0.0586 0.0587 0.0327 0.2831 1.0007 Hagbi and Koppel (2009)

9 0.0454 0.1216 0.4586 0.0701 5.3966 Pereira, Moreira, and Galante (2009)

10 0.0366 0.0525 0.0311 0.1689 1.7049 Seaward and Matwin (2009)

11 0.0184 0.0185 0.0095 0.3210 1.0068 Vallés Balaguer (2009)

12 0.0131 0.0387 0.0203 0.4234 6.7780 Malcolm and Lane (2009)

13 0.0081 0.0157 0.2579 0.0081 2.8256 Allen (2009)

class classification problem in which it has
to be decided for each section of a document

whether it is plagiarized, or not. The baseline

performance in such problems is commonly
computed as the naive assumption that ev-

erything belongs to the target class, which
is also what Hagbi and Koppel (2009) did

who classified almost everything as plagia-

rized. Interestingly, the baseline approach
is on rank 2 while two approaches perform

worse than the baseline. Only the approach

of Stamatatos (2009) performs better than
the baseline.

4.3 Overall Detection Results

To determine the overall winner of the com-
petition, we have computed the combined de-

tection performance of each participant on

the competition corpora of both tasks. Ta-
ble 4 shows the results. Note that the com-

petition corpus of the external plagiarism de-
tection task is a lot bigger than the one for

the intrinsic plagiarism detection task, which

is why the top ranked approaches are those
who performed best in the former task. Over-

all winner of the competition is the approach
of Grozea, Gehl, and Popescu (2009).

5 Summary

The 1st International Competition on Plagia-
rism Detection fostered research and brought

a number of new insights into the problems of

automatic plagiarism detection and its evalu-
ation. An important by-product of the com-

petition is a controlled large-scale evaluation
framework which consists of a corpus of artifi-

cial plagiarism cases and new detection qual-

ity measures. The corpus contains more than
40 000 documents and about 94 000 cases of

plagiarism.

Furthermore, in this paper we give a com-
prehensive overview about the competition

and in particular about the plagiarism de-
tection approaches of the competition’s 13

participants. It turns out that all of the de-

tection approaches follow a generic retrieval
process scheme which consists of the three

steps heuristic retrieval, detailed analysis,

and knowledge-based post-processing. To as-
certain this fact we have compiled a unified

summary of the top approaches in Table 1.
The competition divided into the two

tasks external plagiarism detection and in-

trinsic plagiarism detection. The winning
approach for the former task achieves 0.74

precision at 0.65 recall at 1.00 granularity.
The winning approach for the latter task im-

proves 26% above the baseline approach and

achieves 0.23 precision at 0.46 recall at 1.38
granularity.

Acknowledgements

We thank Yahoo! Research and the Univer-
sity of the Basque Country for their sponsor-

ship. This work was also partially funded by
the Text-Enterprise 2.0 TIN2009-13391-C04-

03 project and the CONACYT-MEXICO

192021 grant. Our special thanks go to the
participants of the competition for their de-

voted work.

8 Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barrón-Cedeño and Paolo Rosso

References

Allen, James. 2009. Submission to the 1st
International Competition on Plagiarism
Detection. From the Southern Methodist
University in Dallas, USA.

Basile, Chiara, Dario Benedetto, Emanuele
Caglioti, Giampaolo Cristadoro, and Mirko
Degli Esposti. 2009. A Plagiarism Detection
Procedure in Three Steps: Selection, Matches
and “Squares”. In Stein et al. (Stein et al.,
2009).

Clough, Paul. 2003. Old and new challenges in
automatic plagiarism detection. National UK
Plagiarism Advisory Service,
http://ir.shef.ac.uk/cloughie/papers/pas plagiarism.pdf.

Grozea, Cristian, Christian Gehl, and Marius
Popescu. 2009. ENCOPLOT: Pairwise Sequence
Matching in Linear Time Applied to Plagiarism
Detection. In Stein et al. (Stein et al., 2009).

Hagbi, Barak and Moshe Koppel. 2009.
Submission to the 1st International Competition
on Plagiarism Detection. From the Bar Ilan
University, Israel.

Kasprzak, Jan, Michal Brandejs, and Miroslav
Křipač. 2009. Finding Plagiarism by Evaluating
Document Similarities. In Stein et al. (Stein et
al., 2009).

Malcolm, James A. and Peter C. R. Lane. 2009.
Tackling the PAN’09 External Plagiarism
Detection Corpus with a Desktop Plagiarism
Detector. In Stein et al. (Stein et al., 2009).

Maurer, Hermann, Frank Kappe, and Bilal
Zaka. 2006. Plagiarism - a survey. Journal of
Universal Computer Science, 12(8):1050–1084.

Meyer zu Eissen, Sven and Benno Stein. 2006.
Intrinsic plagiarism detection. In Mounia
Lalmas, Andy MacFarlane, Stefan M. Rüger,
Anastasios Tombros, Theodora Tsikrika, and
Alexei Yavlinsky, editors, Proceedings of the
European Conference on Information Retrieval
(ECIR 2006), volume 3936 of Lecture Notes in
Computer Science, pages 565–569. Springer.

Muhr, Markus, Mario Zechner, Roman Kern,
and Michael Granitzer. 2009. External and
Intrinsic Plagiarism Detection Using Vector
Space Models. In Stein et al. (Stein et al., 2009).

Palkovskii, Yurii Anatol’yevich,
Alexei Vitalievich Belov, and
Irina Alexandrovna Muzika. 2009. Submission
to the 1st International Competition on
Plagiarism Detection. From the Zhytomyr State
University, Ukraine.

Pereira, Rafael C., V. P. Moreira, and
R. Galante. 2009. Submission to the 1st
International Competition on Plagiarism
Detection. From the Universidade Federal do
Rio Grande do Sul, Brazil.

Scherbinin, Vladislav and Sergey Butakov. 2009.
Using Microsoft SQL Server Platform for
Plagiarism Detection. In Stein et al. (Stein et
al., 2009).

Seaward, Leanne and Stan Matwin. 2009.
Intrinsic Plagiarism Detection Using Complexity
Analysis. In Stein et al. (Stein et al., 2009).

Stamatatos, Efstathios. 2009. Intrinsic
Plagiarism Detection Using Character n-gram
Profiles. In Stein et al. (Stein et al., 2009).

Stein, Benno. 2007. Principles of hash-based
text retrieval. In Charles Clarke, Norbert Fuhr,
Noriko Kando, Wessel Kraaij, and Arjen de
Vries, editors, 30th Annual International ACM
SIGIR Conference, pages 527–534. ACM, July.

Stein, Benno, Sven Meyer zu Eissen, and Martin
Potthast. 2007. Strategies for Retrieving
Plagiarized Documents. In Charles Clarke,
Norbert Fuhr, Noriko Kando, Wessel Kraaij, and
Arjen de Vries, editors, 30th Annual
International ACM SIGIR Conference, pages
825–826. ACM, July.

Stein, Benno, Paolo Rosso, Efstathios
Stamatatos, Moshe Koppel, and Eneko Agirre,
editors. 2009. Proceedings of the SEPLN
Workshop on Uncovering Plagiarism,
Authorship, and Social Software Misuse,
PAN’09, September 10 2009, Donostia-San
Sebastián, Spain. Universidad Polytécnica de
Valencia.

Vallés Balaguer, Enrique. 2009. Putting
Ourselves in SME’s Shoes: Automatic Detection
of Plagiarism by the WCopyFind tool. In Stein
et al. (Stein et al., 2009).

Weber-Wulff, Debora and Katrin Köhler. 2008.
Plagiarism detection softwaretest 2008.
http://plagiat.htw-berlin.de/software/2008/.

Webis at Bauhaus-Universität Weimar and
NLEL at Universidad Politécnica de Valencia.
2009. PAN Plagiarism Corpus PAN-PC-09.
http://www.webis.de/research/corpora.
Martin Potthast, Andreas Eiselt, Benno Stein,
Alberto Barrón-Cedeño, and Paolo Rosso
(editors).

Overview of the 1st International Competition on Plagiarism Detection 9

ENCOPLOT: Pairwise Sequence Matching in Linear Time
Applied to Plagiarism Detection ∗

Cristian Grozea
Fraunhofer FIRST

IDA Group
Kekulestrasse 7,

12489 Berlin, Germany
cristian.grozea@first.fraunhofer.de

Christian Gehl
Fraunhofer FIRST

IDA Group
Kekulestrasse 7,

12489 Berlin, Germany
christian.gehl@first.fraunhofer.de

Marius Popescu
University of Bucharest

Faculty of Mathematics and Computer Science
Academiei 14, Sect. 1,
Bucharest, Romania

popescunmarius@gmail.com

Abstract: In this paper we describe a new general plagiarism detection method,
that we used in our winning entry to the 1st International Competition on Plagia-
rism Detection, the external plagiarism detection task, which assumes the source
documents are available. In the first phase of our method, a matrix of kernel values
is computed, which gives a similarity value based on n-grams between each source
and each suspicious document. In the second phase, each promising pair is further
investigated, in order to extract the precise positions and lengths of the subtexts
that have been copied and maybe obfuscated – using encoplot, a novel linear time
pairwise sequence matching technique. We solved the significant computational chal-
lenges arising from having to compare millions of document pairs by using a library
developed by our group mainly for use in network security tools. The performance
achieved is comparing more than 49 million pairs of documents in 12 hours on a
single computer. The results in the challenge were very good, we outperformed all
other methods.
Keywords: n-gram, plagiarism detection, network security, challenge

1 Introduction

Many methods have been developed for pla-
giarism detection, especially for the exter-
nal plagiarism analysis, which consists in
finding passages in the suspicious documents
which have been plagiarized and the corre-
sponding text passages in the source doc-
uments. Almost all these methods handle
the text at word level. Various compar-
ison units have been employed in plagia-
rism detection methods. Entire documents
are compared in (Lyon, Barrett, and Mal-
colm, 2004). Sentences from suspicious docu-
ments are compared to sentences from refer-
ence documents in (Kang, Gelbukh, and Han,
2006). Mixed-length comparisons in which
suspicious sentences are compared with entire
reference documents were used in (Barrón-
Cedeño and Rosso, 2009; Barrón-Cedeño,
Rosso, and Bened́ı, 2009). Irrespective of the

∗ partly supported from the BMBF project ReMIND
(KZ 01-IS07007A) and CNCSIS PN2-Idei project 228

comparison unit used, all methods of plagia-
rism detection need a similarity measure to
compare the text fragments corresponding to
the comparison unit. Most similarity mea-
sures used in plagiarism detection are based
on estimating the amount of common config-
urations of words. They differ by the config-
urations considered (n-grams, subsequences,
etc.) or by what words are used in compar-
isons (only words from the text fragments,
stemmed or not, synonyms from WordNet,
etc.). In (Lyon, Barrett, and Malcolm, 2004)
word trigrams are used to measure the sim-
ilarity between texts. The authors based
their choice of using word trigrams for plagia-
rism detection on the fact that the number of
common word trigrams in two independently
written texts (even if the text are on the same
topic) must be low given the Zipfian distribu-
tion of words. Also in (Barrón-Cedeño and
Rosso, 2009) it is reported that using word bi-
grams and trigrams led to best results in their
experiments. In order to address the prob-

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 10-18, 2009.

lem of rewording in plagiarism, PPChecker
(Kang, Gelbukh, and Han, 2006) is based on
a special designed similarity measure, that
takes into account also the synonyms (ob-
tained from the WordNet) of the words in the
suspicious sentences. Some of the most elab-
orate similarity measures used in plagiarism
detection are described in (Bao et al., 2003;
Bao et al., 2004a; Bao et al., 2004b). These
measures are derived from the string kernel,
a kernel type successfully used in text cate-
gorization (Lodhi et al., 2002). The string
kernel works at character level, although in
(Bao et al., 2003; Bao et al., 2004a; Bao et
al., 2004b) it is extended to work at word
level, comparing two semantic sequences ac-
cording to their common words and position
information.

Using words is natural in text analysis
tasks like text categorization (by topic), au-
thorship identification and plagiarism detec-
tion. Perharps surprisingly, recent results
proved that methods that handle the text at
character level can also be very effective in
text analysis tasks. In (Lodhi et al., 2002)
string kernels were used for document cat-
egorization with very good results. Trying
to explain why treating documents as sym-
bol sequences and using string kernels ob-
tained such good results the authors suppose
that: ”the [string] kernel is performing some-
thing similar to stemming, hence providing
semantic links between words that the word
kernel must view as distinct”. String ker-
nels were also successfully used in authorship
identification (Sanderson and Guenter, 2006;
Popescu and Dinu, 2007). A possible reason
for the success of string kernels in author-
ship identification is given in (Popescu and
Dinu, 2007): ”the similarity of two strings as
it is measured by string kernels reflects the
similarity of the two texts as it is given by
the short words (2-5 characters) which usu-
ally are function words, but also takes into
account other morphemes like suffixes (’ing’
for example) which also can be good indica-
tors of the author’s style”1

For plagiarism detection, the only ap-
proach that handles the text at character
level that we are aware of is in (Bao, Lyon,
and Lane, 2006), for Chinese, and there is
justified by the difficulties of the Chinese lan-

1the string kernel used in (Popescu and Dinu,
2007) takes into account substrings of length up to
5 characters.

guage (word segmentation).
There is a strong connection between the

research in NLP and the research in computer
network security. In recent years, network se-
curity research started to approach the prob-
lem of detecting automatically unknown at-
tacks as soon as they reach the targeted sys-
tem. These attacks may follow the syntax
but try to exploit the semantics of the net-
work communication between the client and
the server applications, in order to gain ac-
cess over the attacked computer or at least
to prevent it from working normally. The
communication process defined by the appli-
cation layer protocols – e.g. HTTP, FTP,
RPC or IMAP – can also be considered as a
text-based communication in an artificial lan-
guage. The idea of payload analysis, which
treats the data as sequences of bytes has
been explored in detail (Kruegel, Toth, and
Kirda, 2002; Wang and Stolfo, 2004; Rieck
and Laskov, 2006; Wang, Parekh, and Stolfo,
2006; Rieck and Laskov, 2007). As the focus
in this field shifted towards applying more
advanced machine learning methods, gener-
alizing the extraction and representation of
the features has increased much the flexibil-
ity in defining similarity measures between
sequential data, in a security context. The
work (Rieck and Laskov, 2008) presents an
efficient way to combine features extracted
from byte sequences, e.g. words or n-grams
with arbitrary n value, for a wide range of
linear and non-linear similarity measures.

Graphics methods in comparing sequences
have been used in many fields, mostly un-
der the name dotplot – see (Maizel and Lenk,
1981) for one of the first uses in biology
and (Church and Helfman, 1993) for uses in
source text comparison. Whereas very at-
tractive for exploratory data analysis, build-
ing this graphic is potentially quadratic in
time and space. Also it tends to be noisy,
by showing many irrelevant coincidences be-
tween the sequences compared. Even with
these limitations, the method has been ap-
plied to source code, videos, music, protein
and other biological sequences, with various
ways to filter the noisy graphics and to handle
the problem of the potential quadratic size.
We improve on this technique by deriving our
own, linear space, linear time technique, that
we named the encoplot, short for “eN-gram
COincidence PLOT”. It is fully described in
Section 2.3, with code in Appendix 1.

ENCOPLOT: Pairwise Sequence Matching in Linear Time Applied to Plagiarism Detection 11

Our plagiarism detection method can be
described as a combination of techniques
from many fields: it is character n-gram
based. It leverages a very efficient network
security software to compute the matrices
of kernel values. It uses the very fast en-
coplot algorithm and processes the encoplot
data in a quantitative fashion to solve what
can be seen as a rudimentary machine vision
or a specialized 2-dimensional data cluster-
ing task, in order to identify the matching
text passages for a given document pair, as
explained thoroughly below.

In what follows, the dataset specifics and
the time performance figures refer to the
dataset of the 1st International Competi-
tion on Plagiarism Detection, external pla-
giarism detection task (Webis at Bauhaus-
Universität Weimar and NLEL at Universi-
dad Politécnica de Valencia, 2009). The de-
velopment corpus of this dataset contained
about 7000 source documents and 7000 sus-
picious ones, with the plagiarism generated
automatically with various degrees of obfus-
cation (permutations, words deleted, inserted
or replaced by synonyms or antonyms) and
annotated. The competition corpus had the
same characteristics (different documents)
and the annotation was missing.

2 Methods

Our approach consists of two main phases.
In the first phase, a matrix of string ker-
nel values is computed, which gives a sim-
ilarity value between each source and each
suspicious document. Then, for each source,
the possible “destinations” (suspicious docu-
ments) are ranked based on their similarity
level with the current source, in decreasing
order. In the second phase, each promising
pair is further investigated, in order to ex-
tract the precise positions and lengths of the
subtexts that have been copied and maybe
obfuscated by the random plagiarist. In the
end we do a supplementary filtering that in-
creases the precision with the price of de-
creasing the recall.

2.1 Selecting a kernel and
computing the matrix of
kernel values for a large set of
documents

Based on the work of (Rieck and Laskov,
2008), a C library for sequential data, lib-
mindy, has been implemented by our net-

distance function d(x,y)

Minkowski k

√∑
ng∈An

|φng(x) − φng(y)|k

Canberra
∑

ng∈An

|φng(x)−φng(y)|
φng(x)+φng(y)

kernel function k(x,y)

linear kernel
∑

ng∈An
φng(x) · φng(y)

RBF kernel exp(−
∑

ng∈An
||φng(x)−φng(y)||2

2σ2)

Table 1: Distances and kernels functions for sequen-
tial data.

work security research group. It has been
developed mainly for being used in build-
ing real-time network analysis tools at packet
level, as part of network intrusion detection
and prevention systems. It can map byte
sequences to a vectorial n-gram representa-
tion, such that the similarity between two
byte sequences can be expressed in terms of
distance and kernel functions on those rep-
resentations. The n-gram extraction set of
feasible byte sequences is given by An = Σn,
where Σ is the alphabet (in our case the
whole ASCII–8 set). The n-gram embed-
ding function φ for a byte sequence x is
then defined as φ(x) = (φng(x))ng∈An with
φng(x) = emb(x, ng), where the dimension
of the vector φ(x) is |An|. The function
emb(x, ng) returns either the frequency, the
count or the presence bit for a n-gram ng in
x. With the embedding function φ fixed, one
can compute a pairwise similarity value for
the vectorial representations of two byte se-
quences. Table 1 presents a selection of the
implemented distances and similarity mea-
sures that we could have used (where x and
y are arbitrary byte sequences).

Experiments with a very small subset of
only 5 documents and our previous experi-
ence in string kernels led us to use the linear
kernel over a representation where every n-
gram present is marked by 1 and every other
is marked by 0 (ignoring thus the frequencies
of the n-grams). The kernel was normalized,
such as K(x, x) = 1 for any string x. For the
length of the n-grams we used 16 characters.
Although in our estimations 18 should have
been better (closer to three times the average
word length plus two separators), the speed-
up of the software used can only be obtained
up to n-grams of length 16, see below and Ap-
pendix 1 for details. Using windows of two
to three words in plagiarism detection was

12 Cristian Grozea, Christian Gehl and Marius Popescu

found to be the best choice by (Lyon, Barrett,
and Malcolm, 2004) and (Barrón-Cedeño and
Rosso, 2009).

The computation of a matrix of kernel val-
ues with sizes as large as 7000 is computa-
tionally intensive. There are more than 49
million pairs of documents for which the ker-
nel value has to be computed, in each of
the two datasets, the development and the
competition corpus, accounting for a total of
more than 98 million pairs to consider. lib-
mindy has had already a tool for building a
(symmetric) kernel matrix for a set of docu-
ments. We extended this tool for being able
to handle asymmetric matrices of kernel val-
ues, where the kernel values are computed for
each x ∈ X and y ∈ Y , where X and Y are
two independent finite sets of files, not nec-
essarily having the same cardinal. While the
new tool could in principle perform the task
fast enough, it would have needed an amount
of RAM of about 400 GB for a kernel based
on length 16 n-grams. To avoid this issue,
we partitioned the matrix of kernel values in
blocks of sizes up to 1000x1000 (1 million
pairs in most blocks), which required only
8 to 10 GB of RAM for processing. Those
64 blocks per dataset we processed one after
the other, but the processing of each block
was fully parallelized on the 8 cores of the
machine, as a result of internally distribut-
ing the tasks by the means of OpenMP pro-
gramming. Processing a full dataset took 12
hours on the machine we used (Dell Preci-
sion T7400). Although we had access to a
cluster, it offered only a 32-bit environment.
This would have slowed the whole process-
ing by a factor that would almost completely
eliminated the advantage of having 8 to 12
times more computing cores, and this is why
we decided to use a single multi-core com-
puter.

2.2 Pruning of the pairs

If the total processing for one pair of docu-
ments (up to book length level) would only
take one second, this would lead to a total
computation time of more than three years!
Even by successfully parallelizing this task
and dividing the time by hopefully 8 (the
number of computing cores), the time needed
would have been more than 4 months. It
was obvious that even with the matrix of
kernel values computed, there is too much
work in comparing the documents in each

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40 45 50

E
st

im
at

io
n

of
 m

ax
im

um
 re

ca
ll

Rank

Ranking destinations
Ranking sources

Figure 1: Maximum achievable recall for different
pruning thresholds. Ranking the suspicious docu-
ments for each source leads consistently to better val-
ues than ranking the sources for each suspicious doc-
ument.

pair. Pruning was seen from the start as
a requirement, the question was what effect
will it have on limiting the performance that
can be achieved. We have considered rank-
ing the pairs such that the ones with most
chances of corresponding to plagiarism come
first. Ranking on the absolute values of the
kernel proved to work worst. Ranking for
each source the suspicious documents proved
to provide a consistent 10% advantage over
ranking for each suspicious document the
sources. Therefore, given also the values that
can be seen in the Figure 1, we decided to
limit our effort to the first 51 most promising
suspicious documents for each given source.

2.3 Comparing two documents -
The encoplot

With the maximum effort down to an esti-
mate of about 100 hours, assuming spending
in average a second per exhaustive document
comparison (with the hope of reducing it to
12 hours by multicore parallelism), we pro-
ceeded to search for a way to identify what
the documents have in common, if anything.
Essential to this was the visualization of the
coincidence pattern of n-grams between two
documents. This is a scatter plot of a sub-
list of the positions where both texts have
the same n-gram. We call this plot encoplot.
Plots computed for pairs in the development
corpus can be seen in Figures 2 and 3. All
these plots use documents in the development
dataset.

Related ideas (the “dotplot” graphs) exist
about visualizing the n-grams that two texts
(or sequences) share. The problem with those

ENCOPLOT: Pairwise Sequence Matching in Linear Time Applied to Plagiarism Detection 13

0 1 2 3 4 5 6 7 8
x 105

0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Source Document Position

Su
spi

cio
us

Do
cum

en
t P

osi
tion

Figure 2: Encoplot for source #3094 and suspicious #9. Many plagiarism instances for the same document
pair. The shattered look of some comes from higher obfuscation. In red, the local contiguity score, scaled.

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3

4

5

6

7

8

9
x 105

Source Document Position

S
us

pi
ci

ou
s

D
oc

um
en

t P
os

iti
on

Figure 3: Encoplot for source #134 and suspicious
#2499 – a real case of human (self) plagiarism.

is that the number of pairs can be quadratic
in the size of the documents. For megabytes
long texts, this can easily become computa-
tionally intractable. We solve this issue by
limiting ourselves to a sublist that is guar-
anteed to be no longer than the shortest of
the documents, and can be computed in lin-
ear time. The precise procedure we employed
starts by sorting virtually the sets of n-grams
for both documents to be compared. Then

these ordered sets of n-grams are compared
with a procedure that is derived from the pro-
cedure from merging two sorted lists. Every
time the smallest elements of the two lists dif-
fer, the smallest of them is dropped, without
producing any output. Every time the small-
est elements of the lists are equal, the pair of
positions on which this identical n-gram oc-
curs is being collected by outputting it to the
standard output. Code for this core proce-
dure is given in Appendix 1. Please note that
encoplot pairs the first instance of an n-gram
in one document with the first instance of the
same in the other document, the second one
with the second one and so on – as opposed
to the dotplot, wich pairs each instance with
each instance.

2.4 Heuristics used for separating
the copied subtexts

Once the encoplot data (the list of pairs of
indexes) is obtained, it is sorted by the value
of the first index in each pair, which corre-
sponds to the position in source of the com-
mon n-gram. From this list a local “contigu-
ity” score is derived by computing whether
there is simultaneously a small jump on both
indexes (sum of absolute jumps less than 4)
when going from a pair to the next pair, fol-
lowed by a smoothing by a convolution with
a constant vector of length 16. The contigu-

14 Cristian Grozea, Christian Gehl and Marius Popescu

ity score for an encoplot is displayed in red in
Figures 2 and 2. Then a Monte Carlo opti-
mization procedure is called, not more than
30 times for each document pair, which in
10 attempts tries to find the largest group
from the current encoplot data. The start of
the group is decided randomly with uniform
distribution over the list of available pairs,
then the group is extended to left and right
such that the average contiguity score stays
above 0.5 and there are no jumps (skipped
portions) longer than 512 in any 16 steps.
After a group is obtained, it is checked to
have an average contiguity score of over 0.75
and a length of at least 256 characters. If
not, it is rejected as insignificant. If kept, it
is projected to the dimension of the indexes
that correspond to the suspicious document,
and only the compact core of it is preserved.
The compact core is obtained by sorting on
the suspicious document axis and eliminating
the outliers by starting from the group center
and extending it to left and right while the
skips are less than 256 positions. What re-
mains is projected back onto the source doc-
ument axis, obtaining thus an estimate of
the indexes whose convex hull define the two
subtexts corresponding to each other. This
candidate of a plagiarism instance is checked
once again, this time for a final length of at
least 256, for not having shrinked to less than
half with respect to the initial group length
and for the two subtexts not having sizes too
different (the absolute difference more than
half of the mean of the two lengths). This
subset of the encoplot data is removed, the
plagiarism instance is outputted if all tests
succeeded, and the procedure is repeated in
the search for more groups. If the group
found fails to satisfy the checks, it is deemed
as a failure. At three consecutive failures the
search is abandoned and the treatment of the
pair of documents is considered completed.
This decision may be risky, but accelerates
substantially this phase, as on very compli-
cated document pairs it can take minutes to
completely examine an involved pair. On the
other hand, for the actually unrelated doc-
uments this ends the investigation rapidly.
Technically, we have accelerated this process-
ing phase even more by running simultane-
ously up to 10 detailed examinations of doc-
ument pairs at a time, trying to balance the
processing power required and the disk la-
tency.

3 Results

We combined the best F-measure – the har-
monic mean of precision and recall – 0.6976
(the next competitor had 0.6192) with the
best granularity – lack of fragmentation in
detection of the plagiated passages – 1.0027
(the next best value was 1.0164), winning
thus the competition.

4 Discussion and Conclusions

The first question is whether our choice to
compare the documents in pairs was optimal.
Indexing based methods could be faster, by
eliminating the need for exhaustive pairwise
comparison of documents in a large corpus.
They function by first indexing the collection
of source documents and then searching for
parts of the suspicious documents in the in-
dex, as the system MOSS (Schleimer, Wilk-
erson, and Aiken, 2003) does. Such an in-
flexible approach cannot handle well obfus-
cation, as opposed to our approach. On the
other hand, flexible matching is an always-
current research topic in information retrieval
systems (Navarro, 2001), and this eventually
improves plagiarism detection as well. We
think that, whereas needing more computa-
tional effort, our approach had the chance
of producing better results. And, as a con-
sequence of using highly optimized network
analysis code, it did so in a reasonable time,
even when run on a single contemporary com-
puter, as opposed to a full cluster. One could
say that it was closer to being optimal in
terms of quality of the results, while still be-
ing acceptable in terms of running time.

A second question of interest is whether
our values for the hyperparameters of the
method are optimal for this dataset. The an-
swer is probably no, but maybe not far from
that. They have been chosen by educated
guess guided by the exploratory data analy-
sis, as opposed to blindly optimizing a cross-
validation towards the best (over)fitting.

The third interesting issue is the claim
of some experts that only the humans can
have very good results at spotting plagiarism
(Weber-Wulff, 2008). We think that, as far
as the ethics is concerned, a human must
look at the evidence before claiming a case
as one of plagiarism. And of course, text
understanding is still not within the reach
of artificial intelligence yet. On the other
hand, the claim that the only automatization
in plagiarism detection should limit to using

ENCOPLOT: Pairwise Sequence Matching in Linear Time Applied to Plagiarism Detection 15

the one’s favorite search engine and searching
for paragraphs selected based on one’s intu-
ition is questionable. How would such an ex-
pert deal with 7000 documents up to a book
length? How long would it take to process
those by hand, even using a public search en-
gine? How long does it take one to read 7000
works/books? The need for automatization
seems evident, as it was to (Grozea, 2004)
when he had to grade 400 projects from 60
students in less than 24 hours. Crowdsourc-
ing could also be a possibility, but one needs
very big crowds for that (optimally quadratic
size, if using the same choice in the trade-
off between speed and quality as we chose).
Time is the key factor in plagiarism detec-
tion.

Given the very good results obtained by
our method it is worth asking – and fur-
ther investigating – whether using character
n-grams offers any advantage over using word
n-grams. First, let us note that our method
uses n-grams of 16 characters which in aver-
age2 correspond to word trigrams (the stan-
dard approach in plagiarism detection). It
may seem that (on average) the same infor-
mation is brought by 16 characters n-grams
and word trigrams. What differentiates the
two types of n-grams is in our opinion the fact
that character n-grams favor long words over
short ones, and when people copy text they
do that for the content words of the copied
text that tend to be longer than the func-
tional words (stop words) which are short.
For example: a common syntagmatic expres-
sion3 like ”as far as” will contribute with one
word trigram, but with none character 16-
gram. On the other hand, a sequence of
content words (worth being copied) like ”ed-
ucated guess guided” will contribute again
with only one word trigram, but with 6 char-
acter 16-grams.

Another item to discuss is how to balance
precision and recall in automatic plagiarism
detection systems. Given that a human is in
many cases the final link in the chain that
leads to the proof of plagiarism, the effort of
that human must be spared as much as pos-
sible. The accuse of plagiarism is so strong,
that it needs strong evidence. Both these
aspects recommend to balance the precision
and recall towards a high precision, even at

2The average word length in the corpus is 5.2
3Frequently and systematically co-occurring lexi-

cal items.

the expense of lowering the recall. This is
how we tuned our system’s parameters, in-
cluding but not limited to the last check-
ing phase. Of course, accurate comparison
of systems should take into account the en-
tire precision-recall curve. By plotting on the
same graph these curves for more systems,
one could easily see where is the best perfor-
mance region for each system and whether or
not one of the systems is overall better than
another system.

Related to the maximum achievable pre-
cision while keeping a fair recall is the is-
sue of the documents independence and of
the automatic plagiarism. The dataset con-
tains plagiarism built automatically and ran-
domly and only these borrowings between the
source documents and the suspicious docu-
ments had to be found. But the documents
were not independent enough: there are pairs
of documents with the same or almost the
same content, such as independent transla-
tions of “One Thousand and One Night” or
several Bible editions, authors doing heavy
reuse from their previous works (the so-called
self-plagiarism). These are interesting in two
ways: they are better examples of what the
human plagiarism is, so spotting those as re-
lated is very good. On the other hand, this
can be seen as unintended (by the organizers)
plagiarism, so any such pair reported will ac-
tually lower the precision score.

A very interesting issue is the asymmetry
of the ranking quality. Why is it 10% bet-
ter to rank all suspicious documents for any
fixed source instead of ranking all possible
sources for every fixed suspicious document,
as clearly seen in Figure 1? A possible source
of this asymmetry is that while it was guar-
anteed for each suspicious document that the
areas plagiated do not overlap, this was not
the case for the source documents, where the
areas plagiated could overlap. This asymme-
try deserves more investigation, being one of
the few glints of hope so far to tackling what
could be the biggest open problem in auto-
matic plagiarism detection, that is determin-
ing the direction of plagiarism in a pair of
documents – being able to indicate with con-
fidence which is the copy and which is the
original.

To conclude, by combining advanced soft-
ware engineering and effort-sparing heuristics
tuned using the novel visualization technique
encoplot, we have been able to achieve the top

16 Cristian Grozea, Christian Gehl and Marius Popescu

placement in the final results, proving that
the interaction of NLP researchers with net-
works security researchers can lead to high-
performance NLP systems.

4.1 Acknowledgment

We thank Dr. Andreas Ziehe and the anony-
mous reviewers for the thorough review of our
paper and for the useful suggestions.

References

Bao, Jun Peng, Caroline Lyon, and Peter
C. R. Lane. 2006. Copy detection in chi-
nese documents using ferret. Language
Resources and Evaluation, 40(3-4):357–
365.

Bao, Jun-Peng, Jun-Yi Shen, Xiao-Dong Liu,
Hai-Yan Liu, and Xiao-Di Zhang. 2003.
Document copy detection based on ker-
nel method. In Proceedings of Natural
Language Processing and Knowledge En-
gineering Conference (IEEE), pages 250–
255.

Bao, Jun-Peng, Jun-Yi Shen, Xiao-Dong
Liu, Hai-Yan Liu, and Xiao-Di Zhang.
2004a. Finding plagiarism based on com-
mon semantic sequence model. In Qing
Li, Guoren Wang, and Ling Feng, ed-
itors, WAIM, volume 3129 of Lecture
Notes in Computer Science, pages 640–
645. Springer.

Bao, Jun-Peng, Jun-Yi Shen, Xiao-Dong Liu,
Hai-Yan Liu, and Xiao-Di Zhang. 2004b.
Semantic sequence kin: A method of
document copy detection. In Honghua
Dai, Ramakrishnan Srikant, and Chengqi
Zhang, editors, PAKDD, volume 3056 of
Lecture Notes in Computer Science, pages
529–538. Springer.

Barrón-Cedeño, Alberto and Paolo Rosso.
2009. On Automatic Plagiarism Detec-
tion based on n-grams Comparison. In
Mohand Boughanem, Catherine Berrut,
Josiane Mothe, and Chantal Soulé-Dupuy,
editors, ECIR 2009, volume 5478 of
LNCS, pages 696–700, Toulouse, France.
Springer.

Barrón-Cedeño, Alberto, Paolo Rosso, and
José-Miguel Bened́ı. 2009. Reducing the
Plagiarism Detection Search Space on the
Basis of the Kullback-Leibler Distance. In
Alexander F. Gelbukh, editor, CICLing
2009, volume 5449 of Lecture Notes in

Computer Science, pages 523–534, Mex-
ico, Mexico. Springer.

Church, K.W. and J.I. Helfman. 1993.
Dotplot: A program for exploring self-
similarity in millions of lines of text and
code. Journal of Computational and
Graphical Statistics, pages 153–174.

Grozea, C. 2004. Plagiarism detection with
state of the art compression programs.
Report CDMTCS-247, Centre for Discrete
Mathematics and Theoretical Computer
Science, University of Auckland, Auck-
land, New Zealand, August.

Kang, NamOh, Alexander F. Gelbukh, and
Sang-Yong Han. 2006. Ppchecker: Pla-
giarism pattern checker in document copy
detection. In Petr Sojka, Ivan Kopecek,
and Karel Pala, editors, TSD, volume
4188 of Lecture Notes in Computer Sci-
ence, pages 661–667. Springer.

Kruegel, C., T. Toth, and E. Kirda. 2002.
Service specific anomaly detection for net-
work intrusion detection. In Proc. of ACM
Symposium on Applied Computing, pages
201–208.

Lodhi, Huma, Craig Saunders, John Shawe-
Taylor, Nello Cristianini, and Christopher
J. C. H. Watkins. 2002. Text classification
using string kernels. Journal of Machine
Learning Research, 2:419–444.

Lyon, Caroline, Ruth Barrett, and James
Malcolm. 2004. A theoretical basis to the
automated detection of copying between
texts, and its practical implementation in
the ferret plagiarism and collusion detec-
tor. In Plagiarism: Prevention, Practice
and Policies Conference.

Maizel, J.V. and R.P. Lenk. 1981. Enhanced
graphic matrix analysis of nucleic acid and
protein sequences. Proceedings of the Na-
tional Academy of Sciences, 78(12):7665–
7669.

Navarro, G. 2001. A guided tour to approx-
imate string matching. ACM Computing
Surveys (CSUR), 33(1):31–88.

Popescu, Marius and Liviu P. Dinu. 2007.
Kernel methods and string kernels for au-
thorship identification: The federalist pa-
pers case. In Proceedings of the Inter-
national Conference on Recent Advances
in Natural Language Processing (RANLP-
07), Borovets, Bulgaria, September.

ENCOPLOT: Pairwise Sequence Matching in Linear Time Applied to Plagiarism Detection 17

Rieck, K. and P. Laskov. 2008. Linear-time
computation of similarity measures for se-
quential data. The Journal of Machine
Learning Research, 9:23–48.

Rieck, Konrad and Pavel Laskov. 2006. De-
tecting unknown network attacks using
language models. In Detection of Intru-
sions and Malware, and Vulnerability As-
sessment, Proc. of 3rd DIMVA Confer-
ence, LNCS, pages 74–90, July.

Rieck, Konrad and Pavel Laskov. 2007. Lan-
guage models for detection of unknown at-
tacks in network traffic. Journal in Com-
puter Virology, 2(4):243–256.

Sanderson, Conrad and Simon Guenter.
2006. Short text authorship attribution
via sequence kernels, markov chains and
author unmasking: An investigation. In
Proceedings of the 2006 Conference on
Empirical Methods in Natural Language
Processing, pages 482–491, Sydney, Aus-
tralia, July. Association for Computa-
tional Linguistics.

Schleimer, S., D.S. Wilkerson, and A. Aiken.
2003. Winnowing: local algorithms for
document fingerprinting. In Proceedings
of the 2003 ACM SIGMOD international
conference on Management of data, pages
76–85. ACM New York, NY, USA.

Wang, K., J.J. Parekh, and S.J. Stolfo. 2006.
Anagram: A content anomaly detector re-
sistant to mimicry attack. pages 226–248.

Wang, K. and S.J. Stolfo. 2004. Anoma-
lous payload-based network intrusion de-
tection. pages 203–222.

Weber-Wulff, Debora. 2008. Soft-
waretest, http://plagiat.htw-
berlin.de/software/2008/.

Webis at Bauhaus-Universität Weimar
and NLEL at Universidad Politécnica
de Valencia. 2009. PAN Pla-
giarism Corpus PAN-PC-09.
http://www.webis.de/research/corpora.
Martin Potthast, Andreas Eiselt, Benno
Stein, Alberto Barrń Cedeño, and Paolo
Rosso (editors).

A Appendix 1: Encoplot code

This appendix provides the listing of the im-
plementation of the encoplot algorithm. At
its core is a very fast implementation of

the radix sort algorithm for virtually sort-
ing the n-grams in a text without swapping
any memory blocks. It is a specialization of
the general radix sort algorithm. The key
part is avoiding to recompute the frequen-
cies at each step in the radix sort algorithm,
and relying instead on updating those incre-
mentally. Another key technical aspect is
the use of the 128 bit unsigned integer type
uint128 t, possible with the gcc compiler on

certain platforms, which allows for very good
speeds up to n-grams of length 16, on 64-
bit architectures, such as the common x86-64.
The main code uses this virtual sorting of the
n-grams sets to compute the encoplot data of
two given files, a central part of our plagia-
rism detection method, as explained above.
// computes the encop lot data o f a pa i r o f f i l e s

#inc lude ” s td i o . h”

#inc lude ” s t d l i b . h”

#inc lude ” s t r i n g . h”

#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <unis td . h>
typede f u i n t 1 2 8 t tngram ;

//CrG r s o r t

#de f i n e f r (x , y) f o r (i n t x=0;x<y ; x++)

in t ∗ i ndex r so r t ngrams (

unsigned char ∗x , i n t l , i n t DEPTH){
i n t NN=l−DEPTH+1; i f (NN>0){
unsigned char ∗pin=x+NN;

unsigned char ∗pout=x ;

i n t ∗ i x=(in t ∗) mal loc (NN∗ s i z e o f (i n t)) ;

i n t ∗ox=(in t ∗) mal loc (NN∗ s i z e o f (i n t)) ;

const i n t RANGE=256;

i n t counters [RANGE] ; i n t s t a r tpo s [RANGE] ;

f r (i ,NN) ix [i]= i ;

// rad ix sort , the input i s x ,

// the output rank i s ix

f r (k ,RANGE) counter s [k]=0;

f r (i ,NN) counter s [∗ (x+i)]++;

f r (j ,DEPTH){ i n t o f s=j ;// low endian

i n t sp=0;

f r (k ,RANGE){ s t a r tpo s [k]=sp ;

sp+=counters [k] ; }
f r (i ,NN){ unsigned char c=x [o f s+ix [i]] ;

ox [s t a r tpo s [c]++]= ix [i] ; }
memcpy(ix , ox ,NN∗ s i z e o f (ix [0])) ;

// update counter s

i f (j<DEPTH−1){
counter s [∗ pout++]−−; counter s [∗ pin++]++;}}
f r e e (ox) ; r e turn ix ;}}
#de f i n e MAXBUFSIZ 8000123

unsigned char f i l e 1 [MAXBUFSIZ] ;

unsigned char f i l e 2 [MAXBUFSIZ] ;

i n t l1 , l 2 ;

i n l i n e tngram readat (

const unsigned char ∗buf , i n t poz){
re turn ∗(tngram ∗) (buf+poz) ;}

i n t main (i n t argc , char ∗∗ argv){
i n t depth=s i z e o f (tngram) ;

FILE ∗ f 1=fopen (argv [1] , ” rb ”) ;

l 1=f r ead (f i l e 1 , 1 ,MAXBUFSIZ, f1) ; f c l o s e (f1) ;

FILE ∗ f 2=fopen (argv [2] , ” rb ”) ;

l 2=f r ead (f i l e 2 , 1 ,MAXBUFSIZ, f2) ; f c l o s e (f2) ;

// index the ngrams

in t ∗ ix1=index r so r t ngrams (f i l e 1 , l1 , depth) ;

i n t ∗ ix2=index r so r t ngrams (f i l e 2 , l2 , depth) ;

i n t i 1 =0; i n t i 2 =0;//merge

tngram s1=readat (f i l e 1 , ix1 [i 1]) ;

tngram s2=readat (f i l e 2 , ix2 [i 2]) ;

l1−=(depth −1); l2−=(depth −1);

whi le (i1<l 1 && i2<l 2){
i f (s1==s2){

p r i n t f (”%d %d\n” , ix1 [i 1] , ix2 [i 2]) ;

i 1++; i f (i1<l 1) s1=readat (f i l e 1 , ix1 [i 1]) ;

i 2++; i f (i2<l 2) s2=readat (f i l e 2 , ix2 [i 2]) ; }
e l s e i f (s1<s2){

i 1++; i f (i1<l 1) s1=readat (f i l e 1 , ix1 [i 1]) ; }
e l s e i f (s2<s1){

i 2++; i f (i2<l 2) s2=readat (f i l e 2 , ix2 [i 2]) ; } }
f r e e (ix2) ; f r e e (ix1) ; re turn 0 ;}

18 Cristian Grozea, Christian Gehl and Marius Popescu

A plagiarism detection procedure in three steps:
selection, matches and ”squares” ∗

Chiara Basile
Dip. Matematica
Univ. Bologna

P.zza di Porta S. Donato 5,
40126, Bologna, Italy
basile@dm.unibo.it

Giampaolo Cristadoro
Dip. Matematica
Univ. Bologna

P.zza di Porta S. Donato 5,
40126, Bologna, Italy

cristadoro@dm.unibo.it

Dario Benedetto
Dip. Matematica

Sapienza, Univ. Roma
P.le Aldo Moro 2,
00185, Roma, Italy

benedetto@mat.uniroma1.it

Emanuele Caglioti
Dip. Matematica

Sapienza, Univ. Roma
P.le Aldo Moro 2,
00185, Roma, Italy

caglioti@mat.uniroma1.it

Mirko Degli Esposti
Dip. Matematica
Univ. Bologna

P.zza di Porta S. Donato 5,
40126, Bologna, Italy
desposti@dm.unibo.it

Abstract: We present a detailed description of an algorithm tailored to detect
external plagiarism in PAN-09 competition. The algorithm is divided into three

steps: a first reduction of the size of the problem by a selection of ten suspicious

plagiarists using a n-gram distance on properly recoded texts. A search for matches
after T9-like recoding. A “joining algorithm” that merges selected matches and is

able to detect obfuscated plagiarism. The results are briefly discussed.
Keywords: n-grams, plagiarism, coding, string matching

1 Introduction

In this short paper we aim to describe our

approach to automatic plagiarism detection.

In particular, we discuss how we were able to
borrow and adapt some techniques and ideas

recently developed by some of us for differ-
ent, but related, problems such as Author-

ship Attribution (AA)(Benedetto, Caglioti,

and Loreto, 2002; Basile et al., 2008). While
some of the authors gained over the last years

certain expertise in the field of AA, it is the

first time we face plagiarism detection. The
algorithm we are going to describe has been

tailored on the “1st International Competi-
tion on Plagiarism Detection” (Stein et al.,

2009) and does not pretend to be optimal

for generic situations. Indeed we joined the
competition while being completely unaware

of the relevant literature, and thus the main
aim of this paper is to participate to a de-

tailed comparison of the different approaches

to the contest that, we hope, will permit to
enlarge the applicability of the methods and

generate a profound integration and combi-
nation of different ideas.

∗ We thank the organizers of PAN-09 competition
for the stimulating challenges and C. Cattuto and V.
Loreto for bringing the contest to our attention.

2 The problem and the datasets

The contest was divided into two different

challenges: external and internal plagiarism.
We concentrated on the external plagiarism

only. For the sake of completeness we re-
call the main goal (see (PAN-09-Organizers,

2009) for more details):

..given a set of suspicious documents and
a set of source documents the task is to find
all text passages in the suspicious documents
which have been plagiarized and the corre-
sponding text passages in the source docu-
ments.

The organizers provided a training corpus,

composed of 7214 source documents and 7214
suspicious documents, each with an associ-

ated XML containing the information about
plagiarized passages. A first statistical anal-

ysis shows that text lengths vary from few

hundreds to 2.5 million characters while the
total number of plagiarized passages is 37046.

Moreover, exactly half of the suspicious texts
contain no plagiarism and about 25% of the

source documents are not used to plagiarize

any suspicious document. The length of the
plagiarized passages has a very peculiar dis-

tribution, see Figure 1: there are no passages
with length in the window 6000-12000 char-

acters, and even for long texts there is no

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 19-23, 2009.

plagiarism longer than 30000 characters. A

remarkable fact is that about 13% of the pla-
giarized passages consist of translated plagia-

rism.

0 5000 10 000 15 000 20 000 25 000

0.01

0.1

1

10

length �carachters�

pe
rc

en
ta

ge
of

pl
ag

ia
ri

ze
d

pa
ss

ag
es

Figure 1: Distribution of plagiarized passage
lengths in the training corpus.

Similarly, the competition corpus is com-
posed of 7215 source documents and 7214

suspicious documents (obviously without any

associated XML files). The length statistics
are very close to those for the training corpus,

see Figure 2.
The overall score is then calculated as the

ratio between F-measure and granularity over

the whole set of detected chars (see (Stein et
al., 2009) for more details).

0 500 000 1.0�106 1.5�106 2.0�106 2.5�106

1�10�4

5�10�4

0.001

0.005

0.010

0.050

0.100

text length �characters�

pe
rc

en
ta

ge
of

te
xt

s
�l

og
ar

ith
m

ic
sc

al
e�

suspicious texts �competition�

suspicious texts �training�

source texts �competition�

source texts �training�

Figure 2: Text length distribution for the train-
ing corpus and for the competition corpus.

3 The method

3.1 A first selection

For each suspicious document, we first iden-

tify a small subset of source documents for
a second and deeper (computationally de-

manding) analysis.
We start by calculating a suitable dis-

tance between each suspicious and source

text. Then, for each suspicious text the first
10 source neighbors ordered according to this

distance are kept for further analysis.
In order to bring computational time

to a practical scale the texts were first

transformed into sequences of word lengths,

so that for example the sentence To be,
or not to be: that is the question

becomes simply 2223224238. All word
lengths greater than 9 were cut to 9, so

that the new alphabet consists of the nine

symbols {1, . . . , 9}. These coded versions of
the texts are on average 82.5% shorter than

the original ones, and so computation times
are greatly reduced.

The distance between each suspicious and
source text has been computed by comparing
in a suitable way the frequency vectors of the
8-grams of the coded versions. This n-gram
distance used here has been proved successful
in Authorship Attribution problems (Basile
et al., 2008). To be more precise, after a first
experiment based on bigram frequencies pre-
sented in 1976 by Bennett (Bennett, 1976),
Kešelj et al. published in 2003 a paper in
which n-gram frequencies were used to define
a similarity distance between texts (V. Kešelj
and Thomas, 2003). The distance introduced
in (Basile et al., 2008) and used here should
be considered as a natural development of the
previous ones: once the value of n has been
fixed, usually between 4 and 8, n-gram fre-
quencies are calculated for a given text x. If
we denote by ω an arbitrary n-gram, by fx(ω)
the relative frequency with which ω appears
in the text x and by Dn(x) the so called n-
gram dictionary of x, that is, the set of all
n-grams which have nonzero frequency in x,
for any pair of texts x and y, we can define:

dn(x, y) :=
1

|Dn(x)| + |Dn(y)|

∑

ω∈Dn(x)∪Dn(y)

(
fy(ω) − fx(ω)

fy(ω) + fx(ω)

)

This is exactly the distance that has been
used in (Basile et al., 2008), together with a

suitable voting procedure, for approaching a

two-class classification problem.
The parameter n = 8 for the n−gram

distance was chosen here as a compromise

between a good recall (the fraction of pla-
giarized characters coming from the first 10

nearest neighbors of each suspicious text
is 81%) and acceptable computation times

(about 2.3 days for the whole corpus). Since

it was impossible to do repeated computa-
tions on the whole corpus, the optimization

was done using a small subset of 160 sus-
picious texts and 300 source texts, suitably

selected by imposing total and plagiarism

length distributions comparable to those of
the whole corpus.

Note that a recall of 81% is a very good
result for the 8-gram distance, since the

method just described has basically no hope

20 Chiara Basile, Dario Benedetto, Emanuele Caglioti, Giampaolo Cristadoro and Mirko Degli Esposti

to recognize the 13% of translated plagiarism.

Therefore, at least on the small subset of the
training corpus, only about 6% of the (non

translated) plagiarized passages are lost in
this phase.

3.2 T9 and matches

After identifying the 10 “most probable pla-
giarist sources” we now perform a more de-

tailed analysis to detect the plagiarized pas-

sages. The idea is to look for common subse-
quences (matches) longer than a fixed thresh-

old. To this goal we need to recover some
of the information lost on the first passage

by first rewriting the text in the original al-

phabet and then using a different (and less
“lossy”) coding. We perform a T9-like cod-

ing: this system is typically used for assisted
writing on most mobile phones. The idea

is to translate three or four different letters

into the same character, for example {a,b,c}
�→ 2, {d,e,f} �→ 3 and so on. The symbol 0

is used for newline and blank space, 1 for all
symbols other than these two and the letters

of the alphabet. The new alphabet for the

coded texts is therefore made up of 10 sym-
bols: {0, 1, 2, . . . , 9}. Note that the use of

T9 “compression”, which could seem strange
at a first sight, can be justified by observing

that a “long” T9 sequence (10-15 characters)

has in most cases an “almost unique” trans-
lation in a sentence which makes sense in the

original language.

The “true” matches between a suspicious

and a source document are now found: from

any possible starting position in the suspi-
cious document the longest match in the

source document is calculated (possibly more
than one with the same length). If the length

is larger than a fixed threshold and the match

is not a submatch of a previously detected
one, it is stored in a list.

Here, we take advantage of the choice of
the T9 encoding, which uses ten symbols:

for any starting position in the source doc-

ument, the algorithm stores the last previ-
ous position of the same string of length 7,

and for any possible string of length 7 it is
memorized, in a vector of size 107, the last

occurrence in the source file. With respect

to other methods (suffix trees or sorting, for
istance), in this way we can search the maxi-

mum match in the source document avoiding

to compare the smaller ones.

Running this part of the algorithm on a

common PC for the whole corpus of 7214

texts took about 40 hours. The threshold for
the match length was fixed arbitrarily to 15

for texts shorter than 500000 characters, to
25 for longer texts.

3.3 Looking for “squares”

The previous phase gives a long list of

matches for each suspicious-source pair of
documents. Since the plagiarized passages

had undergone various levels of obfusca-
tion, typically the matches are “close” to

each other in the suspicious texts but taken

from not necessarily subsequent places in the
source texts. By representing the pair of

texts in a bidimensional plot, with the sus-
picious text on the x axis and the source

text on the y axis, each match of length l,

starting at x in the suspicious document and
at y in the source document, draws a line

from (x, y) to (x + l, y + l). The result is of-

ten something similar to Figure 3: there are
some random (short) matches all around the

plane but there are places where matches ac-
cumulate, forming lines or something similar

to a square. Non-obfuscated plagiarism cor-

responds to lines, i.e. a single long match
or many short close matches which are in

succession both in the suspicious and in the
source texts, whereas intuitively obfuscated

plagiarism corresponds to “squares”: here

the matching sequences are in a different or-
der in the source and suspicious documents.

50 000 100 000 150 000 200 000 250 000
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000
suspicious�document00814.txt vs. source�document04005.txt

Figure 3: Orange points correspond to the po-
sition of matching chars (measured in number of
chars from the beginning) between a suspicious
and a source document (see top of the plot) of
the training corpus. A “square” of matches cor-
responds to an obfuscated plagiarism.

Figure 4 is an example of what can happen
when there is no plagiarism: matches are uni-

formly spread around the plane and do not

accumulate anywhere. Obviously these are
just two of the many possible settings: longer

texts or the presence of “noise” (e.g. long
sequences of blanks, tables of numbers...)

can give rise to a much higher density of

A Plagiarism Detection Procedure in Three Steps: Selection, Matches and "Squares" 21

matches, substantially increasing the difficul-

ties in identifying the correct plagiarized pas-
sages.

0 50 000 100 000 150 000 200 000 250 000

0

50 000

100 000

150 000

200 000

250 000

300 000

suspicious�document00814.txt vs. source�document03464.txt

Figure 4: Orange points correspond to the po-
sition of matching chars (measured in number of
chars from the beginning) between a suspicious
and a source document (see top of the plot) of
the training corpus. No plagiarism is present in
this case.

In order to provide a single quadruple

(x, y, lx, ly) of starting points and lengths for
each detected plagiarized passage we need

to implement an algorithm that joins the
“cloud” of matches of each “square”.

Note that the algorithm that performs

this task needs to be scalable with pla-
giarism lengths, which can vary from few

hundreds, up to tens of thousands characters.

The algorithm used here joins two
matches if the following conditions hold si-
multaneously:

1. matches are subsequent in the x coordi-
nate;

2. the distance between the projections of

the matches on the x axis is greater than

or equal to zero (no superimposed pla-
giarism) but shorter than or equal to the

lx of the longest of the two sequences,
scaled by a certain δx;

3. the distance between the projection of

the matches on the y axis is greater than

or equal to zero but shorter than or equal
to the ly of the longer of the two se-

quences, scaled by a certain δy.

Merging now repeatedly the segments

which are superimposed either in x or in y,

we obtain some quadruples which correspond

roughly to the “diagonals” of the “squares” in
Figure 3. We finally run the algorithm once

again using smaller parameters δ′x and δ′y in
order to reduce the granularity from 2 to ap-

proximately the optimal value of 1. Figure

5 shows the result of the algorithm for the
couple of texts of Figure 3 (blue), and Fig-

ure 6 shows the very good superimposition
with the actual plagiarized passages (black),

as derived from the XML file.

The procedure just described has been de-
veloped and tuned for the competition in a re-

stricted time schedule, but it would be quite
interesting to compare the efficiency of this

procedure to the ones that can be achieved

by using standard clustering algorithms. We
plan to do this in the future.

50 000 100 000 150 000 200 000 250 000
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000
suspicious�document00814.txt vs. source�document04005.txt

Figure 5: Detected plagiarism for the pair of
texts of the training corpus indicated at the top
of the plot. Single matches in orange, joined
matches in blue.

50 000 100 000 150 000 200 000 250 000
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000
suspicious�document00814.txt vs. source�document04005.txt

Figure 6: Plagiarized passages for the pair of
texts of the training corpus indicated at the top of
the plot. Single matches in orange, actual plagia-
rism in black. Note the perfect superimposition
between the blue lines in figure 5 and the black
lines here.

3.4 Tuning the parameters

The “joining algorithm” described above de-
pends on 4 parameters: δx and δy for the

first joining phase, and the rescaled δ′x and
δ′y for the second joining phase. Our choice

of the actual value in use has been dictated

essentially by the lack of time and no rigor-
ous and efficient optimization has been per-

formed. Driven by very few trials and with
some heuristic, we decided to use the follow-

ing values: δx = δy = 3 and δ′x = δ′y = 0.5.

22 Chiara Basile, Dario Benedetto, Emanuele Caglioti, Giampaolo Cristadoro and Mirko Degli Esposti

It is important to remark that different

choices of the δ values yield to different de-
tection results. For example, increasing their

values typically results in a larger recall and
in a better granularity, but also in a smaller

precision. A further analysis of these de-

pendencies could provide (in future develop-
ments) a controllable way of modifying the

precision, the recall and the granularity, de-
pending on the plagiarism detection task into

consideration. A promising strategy that we

plan to explore in the future consists in a dy-
namical tuning of these parameters accord-

ing, for example, to the density of matches
or to the lengths of the two texts into consid-

eration.

The match-joining algorithm was devel-

oped using Mathematica c© 7, and it ran on a
common PC for about 20 hours on the whole

data set of the competition.

4 Results and comments

The algorithm described gave the following

results on the competition corpus (Stein et
al., 2009):

• Precision: 0.6727

• Recall: 0.6272

• F-measure: 0.6491

• Granularity: 1.0745

• Overall score: 0.6041

The overall score is the third best re-
sult after 0.6093 and 0.6957 of the first two.

We stress that the overall score drops con-

siderably starting from the fourth position
(0.3045), the fifth (0.1885), and so on. More-

over, while the winner has better results in

all precision, recall and granularity, our pre-
cision and recall are better than the second,

while granularity is worse.

The competition had a very tight sched-
ule, therefore many improvements are possi-

ble. In particular, it may be that the match-

joining problem can be advantageously for-
mulated in the framework of Hidden Markov

Models. Also, it would be worth to see
how standard clustering algorithms perform

in this case.

We are eager to compare techniques and
ideas with the other participants of the con-

test.

References

Basile, C., D. Benedetto, E. Caglioti, and

M. Degli Esposti. 2008. An exam-

ple of mathematical authorship attribu-

tion. Journal of Mathematical Physics,
49:125211–125230.

Benedetto, D., E. Caglioti, and V. Loreto.
2002. Language Trees and Zipping.

Physical Review Letters, 88(4):048702–1,
048702–4.

Bennett, W.R. 1976. Prentice-Hall, Engle-
wood Cliffs, NJ.

PAN-09-Organizers. 2009. Proceedings of
PAN-09.

Stein, B., M. Potthast, A. Eiselt,
P. Rosso, and A. Barrón-Cedeño.

2009. http://www.webis.de/pan-

09/competition.php.

V. Kešelj, F. Peng, N. Cercone and

C. Thomas. 2003. n-gram-based author
profiles for authorship attribution.

A Plagiarism Detection Procedure in Three Steps: Selection, Matches and "Squares" 23

Finding Plagiarism by Evaluating Document Similarities

Jan Kasprzak, Michal Brandejs, and Miroslav Křipač
Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic
kas@fi.muni.cz, brandejs@fi.muni.cz, kripac@fi.muni.cz

Abstract: In this paper we discuss the approach we have used for finding pla-
giarized passages of text during the PAN’09 plagiarism detection competition. We
describe the existing anti-plagiarism system we use in the Czech National Archive
of Graduate Theses. We then discuss the modifications to this system which have
been necessary in order to fit the results to the competition rules. We also present
a performance data of the described system, and the possible improvement for our
production systems, which result from the code written for the PAN’09 competition.
Keywords: Plagiarism, Similar Documents, Document Overlap, Distributed Com-
puting, Parallelism

1 Background

At Masaryk University, the study adminis-
tration is being supported by the Masaryk
University Information System (IS MU,
1999–2009). The integral part of this system
is the distributed document storage, used
by various subsystems, including e-learning
agendas, archive of graduate theses, etc.
The document storage is a feature-rich sub-
system with some properties similar to the
common file systems (hierarchical directory-
based storage, object as a stream of bytes,
etc.).

Some features are quite unique to this doc-
ument storage: the storage supports multi-
ple versions of the same document (e. g.DOC,
PDF, and plain text) as a single entity, au-
tomatic conversion between the file formats
(including OCR of the scanned PDF files,
generating thumbnail images for the picture
files such as JPEG, etc.), distributed replica-
tion with strong checksums, wide set of access
rights, etc.

Since August 2006, the storage subsys-
tem supports also finding similarities between
documents, in order to assist with discover-
ing plagiarism. The first version of the sys-
tem has been a prototype coded in Perl with
the DBI interface, using Oracle database as
a metadata back-end.

In early 2008, the system has been re-
placed by the custom distributed solution,

outlined in our earlier work (Kasprzak et al.,
2008), distributed aspects of which we further
discuss in (Kasprzak, Brandejs, and Bran-
dejsová, 2009). The same underlying sys-
tem is currently in use also in the Czech
National Archive of Graduate Theses (The-
ses.CZ, 2008–2009). This distributed system
has been used as a basis for solving the ex-
ternal plagiarism task in the PAN’09 compe-
tition (PAN’09, 2009).

2 General Approach

There are several possible approaches for
finding similarities in a given base of docu-
ments, some of them are discussed and com-
pared in (Monostori et al., 2002). The IS MU
and Theses.CZ anti-plagiarism system cur-
rently uses the approach similar to the one
described by (Finkel et al., 2002).

2.1 Tokenization

We use words as the base units which we han-
dle. In order to overtake the need of stem-
ming (which would bring the dependence on
the particular language to the system) and
also to handle some means of obfuscation of
the Czech language we translate the words
to the US-ASCII by stripping off diacritics1,
and ignoring short words, which in the Czech
language are mostly prepositions. We do not
use stop words of any kind.

1For example: tučňák → tucnak

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 24-28, 2009.

2.2 Creating the Index

The tokens (words) are then joined into
chunks. We use overlapping sequences of sev-
eral words, and we have generally had bet-
ter results with shorter chunks of about 4 to
6 words than the larger chunks as used by
(Broder, 1997) or (Finkel et al., 2002). The
chunks are then hashed by a hash function
(for our purposes, the value range of 28 to
32 bits seems to be sufficient, even though
the probability of hash function collisions is
higher with smaller number of bits). There
are no special requirements to the hash func-
tion itself—we have used the hinghest n bits
of the MD5 hash (Rivest, R., 1992).

The mapping of document ID to the se-
quence (or a set) of hash values is then con-
structed, and an inverted index mapping the
hash value to the sequence of document IDs
is computed from it.

2.3 Computing the Similarities

This inverted index is then used for finding
similarities in a given document base. For
now, the system computes only a single nu-
meric value for each pair of documents in a
given set. This value represents the number
of chunks which these two documents have in
common (not taking the possible hash func-
tion collisions into the account).

The most common use case is to discover
which documents are similar to the given doc-
ument (e. g. a newly imported thesis). We
postpone the computation of the actual sim-
ilar passages of the text to the time when the
user wants to see them.

2.4 Hardware Configuration

The IS MU and Theses.CZ systems use a
common document base of about 1,300,000
documents. The anti-plagiarism software
runs on a cluster of 45 non-dedicated PCs
with various dual-core CPUs (AMD and
Intel), and a dedicated server with Ora-
cle database for storing the computed re-
sults. Recomputing the similarities across
the whole document base takes about three
hours, most of which is spent by importing
the results to the database. The incremen-
tal run (after adding some more documents
to the system) then takes 12 to 25 minutes
depending on the overall system load (the
servers in the cluster have other tasks to do
besides computing the similarities).

3 The PAN’09 Competition

The requirements for the PAN’09 competi-
tion were quite different to what we currently
do in IS MU and Theses.CZ systems. The
main difference was that we should not only
find the similarity between the documents,
but also to show exactly where the similari-
ties are. Another important rule to consider
was the granularity measure, which had been
very strong, especially in the earlier version
of the rules.

The first approach we wanted to try was
simply to import both the suspicious docu-
ments and the source documents to the IS
MU system, and let it find the similarities.
This would have been a very straightforward
solution, requiring no programming except
post-processing the results on our side. Fur-
ther examination of the data led us to the
opinion that we can do better by modifying
our software to match the requirements of the
competition.

We have taken the core modules of our
system and modified them to run on a single
multi-core computer. Both the source cor-
pus and the set of the suspicious documents
were quite small (relative to what we have
to handle in our production systems), so the
relevant data could fit to the RAM of a single
mid-range server.

3.1 Rich Tokenization

We have modified the tokenization process to
get not only a list of words of a given docu-
ment but also for each word to include the po-
sition of the word in the document expressed
as two distinct numbers: firstly as the offset
of the first character in the word from the
beginning of the document, and secondly the
count of the (non-ignored) words discovered
so far in this document.

Using this additional data, we can con-
struct the document chunks with the extra
attributes: the offset of the first and last
character of the chunk2, and the sequence
number of that chunk3.

The tokenization process has been further
modified to include all the Unicode alphanu-
meric characters as word characters. In our
production systems, we do not count digits

2The offset of the last character in a chunk is com-
puted from the offset of the last word of that chunk
and the length of that word.

3The sequence number of that chunk is equal to
the sequence number of the first word of that chunk.

Finding Plagiarism by Evaluating Document Similarities 25

as word characters, because a common case
of plagiarism of student seminar works e. g.
in biology is to take the work of the other
student, and simply change the numbers in
measurements.

3.2 Computing the Inverted Index

The computation of the inverted index
(i. e. mapping the chunk hash value to the list
of document IDs) has been modified to con-
tain the additional data (the chunk sequence
number, and range of characters which the
chunk covers). In order to allow the case
when a single plagiarized passage has more
than one possible source passage in the same
source document, we have also allowed the
repeated occurences of the same chunk hash
value within the same source document.

3.3 Finding the Similar Document
Pairs

Using this enhanced inverted index, we can
now tokenize and evaluate the suspicious doc-
uments in order to find similarities. For
each suspicious document, we split it to the
chunks, and look up their hash values in the
index. This gives us the list of the docu-
ments, and positions of the chunks in them4.
We can now use a cut-off value, and further
handle the document pairs with at least this
value of common chunks.

For the competition itself, we have used
the cut-off value of 20 chunks, which together
with 5-word chunks gives us a minimum of 24
common words that we consider a similarity
between documents.

4 Discovering Similar Passages

In order to fulfill the requirements of the com-
petition, we have not only to compute the
similarity of the document pairs, but also to
show exactly which passages are similar. The
computation against an inverted index gives
for each suspicious document the list of pos-
sible source documents, and for each source
document a list of common chunks. With
each common chunk we have its sequence
number and characters range from the sus-
picious document, and (possibly more than
one) sequence number and character range
from the source document.

4Remember that a chunk from the suspicious doc-
ument can be identical to several chunks in one source
document.

Using this data, we can further narrow the
scope, and keep only the larger similar pas-
sages. How to compute the similar continu-
ous passages from the data is not clear. Our
approach is to consider only “dense enough”
intervals of the suspicious document, which
also map to the “dense enough” intervals of
the source document.

Since the computation has to be done both
from the point of view of the suspicious doc-
ument and the source document, for the al-
gorithm it does not matter which document
we are currently looking at. We will further
use the terms D1 and D2.

We have considered only intervals of
chunks of D1 matching the following criteria:

1. The first and the last chunk of this in-
terval are present in the D2.

2. The interval should have at least 20 (pos-
sibly overlapping) chunks, which are also
present in D2.

3. Between each two adjacent chunks from
the interval which are also present in D2,
there should be at most 49 chunks which
have no matching chunk in D2.

This interval we will hereby call a valid
interval.

For example, when the suspicious docu-
ment we have chunks numbered

50, 100, 150, ..., 950, 1000

which are all present in a particular source
document, we consider the interval 50–1000
to be a valid interval.

We further process only those valid inter-
vals, which also map to the valid interval in
some source document. We consider part
of the suspicious document covered by the
chunks from this valid interval to be a plagia-
rized passage. The plagiarized passage can
be computed using the algorithm, described
in the in the next subsection:

4.1 Algorithm: Valid Intervals

The input of the algorithm is a list of pairs
(chunks ID in D1, matching chunk ID in D2).
If one chunk in D1 maps to more than one
chunk in D2, the list has more than one entry
for this chunk.

1. Set the local variable depth to 0.

26 Jan Kasprzak, Michal Brandejs and Miroslav Křipač

2. Sort the list of pairs by the chunk ID in
D1.

3. Split the list to the largest possible valid
intervals in D1, ignore the chunk ID
pairs which are not present in any valid
interval.

4. If there is only one valid interval covering
the whole input list, increase the depth

variable by 1.

5. If the depth variable is equal to 2, return
the whole range of chunk IDs as the re-
sulting plagiarized passage.

6. For each valid interval, do the following:

(a) Create a new list of chunk ID pairs
as (chunk ID in D2, chunk ID in
D1), where the chunk ID in D1 is
from the current valid interval.

(b) Set the variable depth to 1.

(c) Rerun recursively the algorithm,
starting from the step 2.

4.2 Postprocessing

During the postprocessing phase, we remove
possible overlapping passages for each suspi-
cious document, keeping only the largest pas-
sage from the set of overlapping ones. This is
to meet the nature of the competition data.
In the real system, we would like to keep all
the possible similarities, even the overlapping
ones.

5 Practical Results

5.1 Implementation

The existing implementation of IS MU and
Theses.CZ anti-plagiarism system uses a mix-
ture of C and Perl code (C for performance-
critical code like generating an inverted in-
dex of chunks or searching this index, Perl for
feature-rich parts including the communica-
tion with the SQL database and generating
chunks from the text files). It is portable to
any 64-bit POSIX system. For the PAN’09
competition, it had to be only slightly modi-
fied, and a new valid interval evaluation and
postprocessing system has been written. We
have worked on the PAN’09 competition for
four days, and additional half a day after
the deadline has been extended. We did not
do any fine-tuning against the evaluation for-
mula, based on the development corpus.

5.2 Performance

The computation for the PAN’09 competi-
tion has been run on a single mid-range
server: dual Xeon E5472 (3.0 GHz, total of 8
cores), 64 GB RAM, and a RAID-10 array of
eight 15k RPM disks. The system runs Fe-
dora Linux with the Ext4 filesystem. Most
parts of the computation have been paral-
lelized on a document-by-document or a doc-
ument pair-by-pair basis.

Generating the inverted index from the
corpus of 7124 source documents took 34
minutes. Finding the matching chunk pairs
against the 7124 suspicious documents took
about 38 minutes. Computing the maximum
valid intervals from this data, postprocessing
and generating the XML output files took 2
minutes. Because of the relatively big RAM
available in the server, the computation was
mostly CPU-bound.

5.3 The Benefit of Valid Intervals

Computing the valid intervals instead of just
the similarity between the documents can
surprisingly enough be a win not only from
the viewpoint of getting a more meaningful
data, but also from the performance stand-
point: In our existing systems, most of the
time during the computation is spent by in-
serting the similarity data to the database.
Using the valid intervals can greatly reduce
false-positives, and thus the number of rows
(document pairs) which we need to insert to
the database:

In the development corpus we had about
576,000 document pairs, which had at least
20 chunks in common. Actually looking at
those chunks and keeping only those which
form a valid interval both in the suspicious
document and in the source document re-
duced this number to about 18,000 document
pairs with 47,000 similar passages.

As it can be seen from the previous sub-
section, the cost of this step is relatively in-
significant when compared to the other steps,
even though we have implemented this step
purely in Perl.

6 Conclusion

We have implemented the system which can
find similar documents relatively fast, given
a multi-core machine. The same approach
can even be used on a cluster of computers,
which can provide a significant benefit of a
distributed memory for large document sets.

Finding Plagiarism by Evaluating Document Similarities 27

This system can detect even moderately
obfuscated similar passages in a given docu-
ment base. In the development corpus, we
have found a big number of similar passages,
which have not been annotated in the devel-
opment data as plagiarized5.

In the competition itself, we had the
highest recall ratio6 amongst all the teams
(69.67 %, the second highest was 65.85 %).
Given our relatively poor precision ratio (we
were 7th in this parameter with the precision
of 55.73 %, the highest precision reached was
74.73 %), we may even have found the biggest
number of all the similar passages, including
those not generated by the machine plagia-
rist.

Our system currently cannot handle trans-
lations (although the work is in progress to
handle a plagiarism between Czech and Slo-
vak languages, which are quite similar in
structure and vocabulary). We also cannot
handle highly obfuscated text, which to us
non-native English speakers does not even
look similar to the source text7.

We have seen that evaluating the particu-
lar similar passages instead of just the over-
all document similarity can be a significant
improvement, so this result from the compe-
tition is an enhancement to incorporate back
to our production systems.

Acknowledgements

We would like to thank the organizers of
the PAN’09 competition. Taking part in the
competition has been a very enlightening ex-
perience for us.

References

Broder, A.Z. 1997. On the resemblance and
containment of documents. In Compres-
sion and Complexity of Sequences 1997.
Proceedings, pages 21–29, Jun.

Finkel, Raphael A., Arkady Zaslavsky,
Krisztián Monostori, and Heinz Schmidt.
5As an example, the suspicious document 02010,

characters 198,025 to 200,472 correspond to the
source document 06059, characters 429,098 to 431,429
almost exactly. The development corpus can be
downloaded from the competition web site.

6Refer to the competition web site for the exact
description of the evaluation criteria, including the
terms recall and precision.

7An example from the development corpus is the
suspicious document 00002, characters 618,098 to
618,798, which are annotated to be similar to the
source document 02400, characters 33,963 to 34,664.

2002. Signature extraction for over-
lap detection in documents. In ACSC
’02: Proceedings of the twenty-fifth Aus-
tralasian conference on Computer sci-
ence, pages 59–64, Darlinghurst, Aus-
tralia. Australian Computer Society, Inc.

IS MU. 1999–2009. Masaryk University In-
formation System. http://is.muni.cz/.

Kasprzak, J., M. Brandejs, and J. Brande-
jsová. 2009. Distributed aspects of the
system for discovering similar documents.
In ITA 09: Proceedings of the Third In-
ternational Conference on Internet Tech-
nology and Applications.

Kasprzak, J., M. Brandejs, M. Křipač, and
P. Šmerk. 2008. Distributed system for
discovering similar documents. In ICEIS
2008: Proceedings of the Tenth Interna-
tional Conference on Enterprise Informa-
tion Systems, Vol. DISI – Databases and
Informations Systems Integration, pages
437–440. INSTICC (Institute for Systems
and Technologies of Information, Control
and Communication), Setúbal, Portugal.

Monostori, Krisztián, Raphael A. Finkel,
Arkady B. Zaslavsky, Gábor Hodász, and
Máté Pataki. 2002. Comparison of
overlap detection techniques. In ICCS
’02: Proceedings of the International Con-
ference on Computational Science-Part
I, pages 51–60, London, UK. Springer-
Verlag.

PAN’09. 2009. 1st International Com-
petition on Plagiarism Detection.
http://www.webis.de/pan-09.

Rivest, R. 1992. RFC1321: The
MD5 Message-Digest Algorithm.
http://www.rfc-editor.org/rfc/

/rfc1321.txt.

Theses.CZ. 2008–2009. Czech na-
tional archive of graduate theses.
http://theses.cz/.

28 Jan Kasprzak, Michal Brandejs and Miroslav Křipač

Tackling the PAN’09 External Plagiarism Detection Corpus
with a Desktop Plagiarism Detector∗

James A Malcolm
University of Hertfordshire

College Lane, Hatfield, Herts
j.a.malcolm@herts.ac.uk

Peter C R Lane
University of Hertfordshire

College Lane, Hatfield, Herts
p.c.lane@herts.ac.uk

Abstract: Ferret is a fast and effective tool for detecting similarities in a group of
files. Applying it to the PAN’09 corpus required modifications to meet the require-
ments of the competition, mainly to deal with the very large number of files, the
large size of some of them, and to automate some of the decisions that would nor-
mally be made by a human operator. Ferret was able to detect numerous files in the
development corpus that contain substantial similarities not marked as plagiarism,
but it also identified quite a lot of pairs where random similarities masked actual
plagiarism. An improved metric is therefore indicated if the “plagiarised” or “not
plagiarised” decision is to be automated.
Keywords: Ferret, n-grams, plagiarism detection, similarity

1 Introduction

In this paper we describe how we approached
the challenge of the PAN’09 Plagiarism De-
tection Competition using the Ferret plagia-
rism detection software. We outline Ferret’s
strengths in normal use, highlight the diffi-
culties we had in using Ferret for the com-
petition task, and describe the results of the
improvements that we made as a result of en-
tering the competition.

The “external plagiarism analysis” task of
the PAN’09 Plagiarism Detection Competi-
tion (International Competition on Plagia-
rism Detection, 2009) is an example of cate-
gory 1 plagiarism (Lyon and Malcolm, 2002),
as we have the source(s) in our hand. This
suggests that Ferret is the tool for the job.

Ferret (Lyon, Barrett, and Malcolm, 2004;
Lyon, Malcolm, and Barrett, 2005) is a tool
that (when used on student work) is primar-
ily good for detecting collusion rather than
plagiarism (though it has been extended to
generate search terms to drive an Internet
search (Malcolm and Lane, 2008b)). It is
a desktop plagiarism detector, which means
that it is fast and interactive. It has to
be fast, because a human is waiting for the
results, and because it is interactive, hu-
man input is available and appropriate: after

∗ We thank Bob Dickerson who developed the core
from which the original Ferret code was developed.

all, plagiarism is an academic judgement not
something that can be measured by a ma-
chine (Flint, Clegg, and Macdonald, 2006;
Lyon, Barrett, and Malcolm, 2004). Before
tackling the competition we had done little
to automate the decision making process: “is
this plagiarism or not”; Ferret tells its user
which pairs to look at (and helps in review-
ing those pairs) but leaves the actual decision
has to him or her. There is therefore no need
for the software to draw a dividing line – a
ranked list is sufficient.

The competition did highlight what we
knew to be Ferret’s strengths and weak-
nesses: we came second on recall, but pre-
cision was poor as Ferret is too fine grained
in its identification of similarities.

2 Ferret’s Strengths

Assuming, as in the competition, that we al-
ready have the sources of all the copying,
then there are two tasks in identifying pla-
giarism in a collection of documents: finding
which pairs of documents to look at and (once
a pair has been selected for further examina-
tion) finding the blocks of matching text.

In the case of the competition there ap-
pear to be (7214)2 comparisons to be made.
In the more general case usually considered
by Ferret, every file needs to be compared
with every other, giving n·n−1

2 comparisons
(which for source and suspicious files together

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 29-33, 2009.

is 104,076,378 pairs). But it is important to
note that the way Ferret works these com-
parisons are not made explicitly; as the doc-
uments are read by Ferret it creates a data
structure which enables the most similar pair
of documents to be selected without making
a direct comparison of those two documents.
To be more specific, it remembers every three
word sequence (triple) that it has seen, and
which input files that triple appears in. Sim-
ilar files are those with the largest number
of common triples. This simple approach is
what makes Ferret fast.

The Ferret user interface then allows the
operator to display the similar documents
side by side with the similar text highlighted.
For large documents, it can take as long to
display one pair as it does to find all the sim-
ilarities in the set (we mention this to high-
light the speed of the first phase, rather than
as a deficiency of the user interface).

There is no specific support in Ferret for
finding the sections of a source that has been
copied. This is done by the operator (al-
though he or she can click on any one of
the matching triples to find where in the two
compared documents it appears).

We expect to look at the most similar pairs
(in descending order of similarity) and stop
when we judge that plagiarism is no longer
occurring. In effect this is a corpus spe-
cific threshold (partly mitigating the problem
mentioned in section 3.2).

3 Adapting for the Competition

The problems that have to be solved in order
to use Ferret for the competition relate firstly
to the large volume of data to be examined
and secondly to the difference between how
we would normally use Ferret and how the
competition is run.

3.1 Scale

To deal with the large volume of data in the
competition, we had to divide the input into
batches that were processed in turn as we did
not have a machine with sufficient RAM to
deal with all the data in one go. We esti-
mate that 32GB would be enough; our ma-
chine was 9GB (for normal use, Ferret runs
in 512KB or less). If batching is necessary,
it is most efficient if half the available mem-
ory is used for source documents, and half for
suspicious documents.

If M is the available memory, the num-
ber of batches of source documents, NO, will

be
2|O|

M
(where |O| is the total size of all the

source documents in the corpus). The num-
ber of batches of suspicious documents, NU ,

should be
2|U |

M
. The number of runs, NO ·NU ,

will thus be
4|O||U |

M2 which is quadratic in cor-
pus size; doubling the memory available will
make the system four times faster.

3.2 Automation

We needed to automate the decision between
“plagiarised” and “innocent similarity”. At
present Ferret supports two possible metrics:
a count of the number of common triples, and
the Jacquard coefficient, ‘R’.

Some of the files are very big, but these
are mixed with quite small files so our current
metric does not work very well. The copied
chunks vary from a couple of sentences up,
but it is the huge size of some of the files
that causes the problem, because the number
of randomly matching triples in a huge file
is bigger than the size of one of the smaller
copied chunks.

Examining results for the first 100 sus-
picious files in the Development corpus we
found that we should take the 50 most simi-
lar pairs to catch all the suspicious files where
artificial plagiarism had been introduced.

Ferret picks out many very small similar-
ities. Eliminating these “accidental” similar-
ities (common triples, typically isolated) was
a problem that we had to address with code
if we were to have success in the competition.
It was not a problem we had seen before be-
cause of the way we use Ferret.

3.3 Improvements

Our submission was the first run of the com-
plete system.

We later revised it to take some account
of the order of triples in the source docu-
ment when deciding if matching triples in the
suspicious document are part of a matching
block or just a random match. This code is
quite slow, and there are now a lot of param-
eters that can be fiddled to change how well
Ferret would perform in the competition:

• How many triples matching is considered
too small to be worth considering as in-
put to the second phase: currently less
than 50 (or R < 0.007).

30 James A. Malcolm and Peter C. R. Lane

• How many documents to keep in the
“most similar pairs” list: 5 on the first
(submitted) run, but considering 50.

• The unmatched gap between matching
sections that can be merged: 1 in the
first run; considering up to 4.

• How many sections before or after the
current section we can jump when merg-
ing: no restriction in first run; consider-
ing a range from 5 before to 10 after.

4 How the system operates

4.1 Identifying Similar Pairs

First we run Ferret on the complete corpus.
A bash script make-input-document-list
that creates an input file for the ferret -f
(definition file) option. Several copies of the
make-input-document-list script are com-
bined in a script that does multiple runs of
Ferret to do (small) groups of suspicious files
against (largish) groups of source files to pro-
duce a set of output files.

4.2 Identifying Sources

We read the output files generated by step
1 to select the likely sources for a given sus-
picious document. This uses a ruby script
process-output that runs ferret -x to
produce an XML file highlighting the simi-
larities in a particular suspicious-source pair
where the number of matches and/or resem-
blance metric meets hard coded (but easy
to change) constraints. This produces a set
of XML files (one for each ferret -x run);
these are scanned by another ruby script:
read-ferret-xml-files to produce output
in the required XML format. Formatting the
results to meet the competition requirements
raised a minor difficulty that the source off-
set required was not available in our system;
fortunately it did not appear to be part of
the evaluation metric.

5 Resource Analysis

Tackling more than about 500 files at a time
on a 1GB laptop led to it thrashing. On a
9GB server, about 5000 files at a time could
be dealt with comfortably.

For the development corpus, the out-
put from Ferret was divided into 146 files:
each file has results for about half of the
source files (numbers 1-3999 or 4000-7214)
and about 100 suspicious files. As explained
above, this is not the best way of organising

the data, but it was initially easier to test a
few suspicious files at a time.

Step 1 produces a lot of output. As an
indication of the scale of the problem, run-
ning the Unix wc (word count) utility on the
complete set of output files took about 37
minutes, involving 7 minutes CPU time. The
average size of the files is around 45MB, and
the total size about 6.5GB.

This emphasises the quadratic nature of
plagiarism detection: every suspicious file has
to be checked against every possible source
file. In the case of the competition this is
52,041,796 comparisons. As mentioned ear-
lier, Ferret usually compares every file with
every other, but fortunately we had already
implemented a grouping facility (it has sev-
eral other applications) whereby files in a
group are not compared with each other, but
only with files in other groups. We should
have filtered out the least similar pairs be-
fore generating the output from phase 1, as
the set of phase 1 output files is considerably
larger than the set of suspicious documents.
In normal use, Ferret displays a list of the
most similar pairs; the user only looks at the
most similar and because the rest of the list is
in memory there is little extra cost involved.

6 Results

Here now are our observations on running the
system we built around Ferret on the develop-
ment corpus (we do not yet know the “correct
answers” for the competition corpus).

We group the pairs into 5 types depending
on the kind of artificial plagiarism:

• raw plagiarism (without obfuscation)

• low obfuscation

• high obfuscation

• plagiarism by translation

• no artificial plagiarism

We plotted the value of R for each of these
types: figure 1 shows (for first 500 suspicious
documents of each type in the development
corpus) how documents which were identified
as plagiarised (with various degrees of obfus-
cation) differed from those where no similar-
ity was intended.

We see immediately that Ferret is (as ex-
pected) ineffective at detecting plagiarism by
translation (the line on top of the x-axis), so
this is left out of the later graphs.

Tackling the PAN'09 External Plagiarism Detection Corpus with a Desktop Plagiarism Detector 31

Figure 1: R for the first 500 pairs of each type

We also note some very high values for R,
and not just where there is introduced plagia-
rism. Some of the pairs where there was no
artificial plagiarism showed very high similar-
ity using Ferret; there are some very high val-
ues of R before the graph flattens off. In to-
tal 49 pairs (in the development corpus) have
R > 0.5. Twelve of these are pairs where no
plagiarism is alleged. We looked at each of
these pairs in detail, and present the results
in Table 1.

The worst case was suspicious document
1302 which had R = 0.91 when compared to
source document 5069. It turned out that
these were both Project Gutenberg (1971-
2009) “READ ME” documents with no other
text. I guess this could be viewed as an acci-
dent on the part of the compilers of the cor-
pus (Potthast, Martin et al. (editors), 2009).
Some of the other similarities are more in-
teresting, such as R = 0.80 between “The
Impossibles” and “Out Like a Light”, both
by the same author. Despite the consider-
able number of small changes between the
two documents, Wikipedia Authors (2009)
suggest this is a re-publication of the same
work under a new title.

Most of the high similarities in documents
not alleged to be plagiarised were different
editions of the same work, such as a volume
which is repeated (with numerous spelling
corrections) in the collected works or a “Sec-
ond Edition Revised and Enlarged” with ob-
viously a considerable overlap with the first
edition.

In most of these 12 cases, we have differ-
ent editions of the same work, or different
collections containing most of the same ma-
terial. A few are incomplete fragments, pos-
sibly arising from the way in which Project

Suspicious Source R Cause
00569 04692 .533 editions
01302 05069 .917 read me
01656 04163 .501 editions
01756 03972 .662 editions
01862 03766 .640 editions
02483 05054 .550 fragments
02730 01431 .629 fragments
04740 04973 .717 editions
05096 00620 .622 fragments
05959 06555 .706 editions
05964 06148 .816 editions
06188 05357 .798 plagiarism?

Table 1: Most similar non-plagiarised pairs

Gutenberg used to be distributed, so it is
hard to tell how the similarity to other frag-
ments came about.

We would presume that R values below 0.5
also indicate similar situations, as previous
work has shown that R > 0.04 is the limit
for “accidental similarity” but maybe a larger
value is appropriate for this corpus.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

No obfuscation
Low obfuscation
High obfuscation

Truncated
No plagiarism

Figure 2: R for the first 100 pairs of each type

In figure 2 (where R is plotted for only the
first 100 pairs of each type), it can be seen
more clearly that the graphs for obfuscated
plagiarism are higher than for raw, maybe be-
cause the obfuscated cases are longer: the av-
erage amount of source material in suspicious
documents containing raw (un-obfuscated)
plagiarism was 20,628 whereas for low and
high obfuscation the average lengths were
about 50% higher at 30,402 and 33,330 re-
spectively.

Figure 3 compares R for the four types
across the full range of pairs. Here the x-
axis is a percentage of the total number of

32 James A. Malcolm and Peter C. R. Lane

pairs of the type and the most similar pairs
of each type (R > 0.4) have been omitted.
The big difference between plagiarised and
non plagiarised is evident, but also we note
that at the RHS of the diagram these lines
merge. This is because the influence on the R

metric for small pieces of plagiarism in large
documents is rather too small.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

No plagiarism
No obfuscation

Low obfuscation
High obfuscation

Figure 3: R for all the pairs of each type

7 Conclusions and Future Work

Producing a corpus with no similar text ex-
cept that which has been added deliberately
is hard: there is far too much duplicate data
on the Internet to make it easy. It is for this
reason that this paper concentrates on the
Development corpus, as we know which parts
of it are supposed to be plagiarised. However
the competition organisers have done an ex-
cellent job in encouraging research.

The competition has clearly shown us that
a better metric than R is needed. As we have
suggested before (Malcolm and Lane, 2008a),
a metric that takes account of the order of the
similar features looks promising. Calculating
the longest common subsequence of triples
would probably work well, but is computa-
tionally costly; we want to take care not to
slow Ferret down.

We need to develop better approaches to
spanning gaps caused by obfuscation, espe-
cially in very long files as our current algo-
rithm can still get two isolated triples that
happen to be in the right order, for example a

b c X k l m turning into a 7 word match, which
is probably long enough to appear in the out-
put. We should also optimise the other pa-
rameters listed in subsection 3.3.

Ferret’s strength is its speed: we were able
to upgrade our machine from 9 to 32GB of

RAM, so can now process the entire compe-
tition corpus in a single ferret run of 1h42m.
This works out at an effective rate of compar-
ison of 50,000 pairs per second. The input is
read at 450kB/s (this includes all ferret’s pro-
cessing, including writing out the very large
results file).

References

Flint, Abbi, Sue Clegg, and Ranald Mac-
donald. 2006. Exploring staff percep-
tions of student plagiarism. Journal of
Further and Higher Education, 30(2):145–
156, May.

International Competition on Plagiarism De-
tection. 2009. http://www.webis.de/
pan-09/competition.php.

Lyon, Caroline, Ruth Barrett, and James
Malcolm. 2004. A theoretical basis to the
automated detection of copying between
texts, and its practical implementation in
the ferret plagiarism and collusion detec-
tor. In Plagiarism: Prevention, Practice
and Policies Conference, June.

Lyon, Caroline and James Malcolm. 2002.
Experience of plagiarism detection and
prevention in higher education. In Pro-
ceedings of the World Congress, Net-
worked Learning in a Global Environment:
Challenges and Solutions for Virtual Ed-
ucation. ICSC-NAISO Academic Press.

Lyon, Caroline, James Malcolm, and Ruth
Barrett. 2005. The ferret copy detector:
finding similar passages in large quantities
of text. In Submitted to the 43rd Annual
Meeting of the Association for Computa-
tional Linguistics.

Malcolm, J.A. and P.C.R. Lane. 2008a.
An approach to detecting article spin-
ning. Proceedings of the Third Interna-
tional Conference on Plagiarism.

Malcolm, James A. and Peter C. R. Lane.
2008b. Efficient search for plagiarism on
the web. In Proceedings of i-TCE 2008.

Potthast, Martin et al. (editors). 2009. PAN
Plagiarism Corpus PAN-PC-09. http:
//www.webis.de/research/corpora.

Project Gutenberg. 1971-2009. http:
//www.gutenberg.org/.

Wikipedia Authors. 2009. http:
//en.wikipedia.org/wiki/Mark
Phillips (author).

Tackling the PAN'09 External Plagiarism Detection Corpus with a Desktop Plagiarism Detector 33

Putting Ourselves in SME’s Shoes: Automatic Detection of
Plagiarism by the WCopyFind tool

Enrique Vallés Balaguer
Private Competitor

enriquevallesbalaguer@gmail.com

Abstract: Thanks in part, to the large amount of information circulating today on
the Internet, unfortunately, the plagiarism has become a very common practice, up
to become one of the biggest problems of today’s society. One of the most affected
sectors by the plagiarism are small and medium entreprises (SME’s), which are daily
victims from their competitors. Finding a system able to detect plagiarism in texts,
has become a major goal for the interests of SME’s, which are forced to solve the
problem through the tools available on the web. In this paper we analyze the results
obtained in the PAN’09 competition with the WCopyFind tool.
Keywords: Plagiarism detection, WCopyFind

1 Introduction

Internet is one of the greatest advances
in history in the area of communication.
Thanks to (the) Internet, you can have
immediate access to information, regardless
of the distances. However, the easy access
to information, has increased the number of
plagiarism cases.
Within the business area must be empha-

sized the importance of the automatic pla-
giarism detection for SME’s. For SME’s is
vital to know if their proposals, products,
ideas, etc, have been plagiarized by competi-
tors. To solve this problem, the companies
have mainly to rely on the software available
on the web. In this paper, we attempt using
the software WCopyFind (Dreher, 2007) de-
veloped in the University of Virginia.

2 Plagiarism detection for SME’s

SME’s build web pages to enter information
about themselves, advertise their products,
etc..., to approach (to) the consumer. But
the information on the web is also visible for
the competitors. When a company launches
a new tool, this is discovered by competitors
within a few hours or days. But, there are
companies that use this information to copy.
The automatic plagiarism detection aims to
try to find an automated approach that is
able to locate fragments of texts suspects of
plagiarism.

Currently the automatic plagiarism
detection is divided into two different
branches. By one side, is the external
plagiarism analysis, which requires a set of
original sources from which seeking possible
plagiarized fragments in suspicious texts.
Within this branch, there are methods
developed with the intention to locate
fragments suspected of plagiarism through
search strategies.

Given the large amount of information
available at present, comparing a suspected
document with all the available ones is a
virtually unmanageable task. Therefore,
emerged the intrinsic plagiarism analysis,
tries to rely on the suspected document. Its
intention is to capture the style and the
complexity of a document with the aim of
finding unusual fragments that are candi-
dates to be instances of plagiarism (Barrón-
Cedeño and Rosso, 2009).

2.1 WCopyFind

WCopyFind1 is a software developed in 2004
by Bloomfield at the University of Virginia.
To detect suspicious fragments of plagiarism,
WCopyfind conducts a search through the
comparison of n-grams.

Since WCopyfind works with n-grams,
language is not important and matches are

1http://plagiarism.phys.virginia.edu/

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 34-35, 2009.

n-gram Precision Recall

4 2.05 % 66.34 %

5 11.34 % 59.08 %

6 17.85 % 57.06 %

Table 1: Training Phase

readily identified from the candidate docu-
ments submitted for analysis (Dreher, 2007).

3 Corpus

The PAN’09 corpus which refers to the Exter-
nal Plagiarism Analysis task, consists mainly
of documents in English, in which you can
find any type of plagiarism.
There are a total of 7,214 suspicious

documents, which may contain plagiarized
fragments from one or more original docu-
ments or do not contain any plagiarized frag-
ment at all. On the other hand, the number
of original documents that constitute the cor-
pus is 7,215.

4 Results

Due to the fact that the WCopyFind tool
allows the user to select the size of the
n-grams, before carrying out the analysis on
the competition corpus, we have made seve-
ral experiments with training corpus to find
the appropriate size of the n-grams. Table
1 shows the results for each one of the ex-
periments. We can highlight several interes-
ting points. By one side it is noteworthy that
contrary to other language engineering tasks,
we must stress that the obtained precision is
smaller than the obtained recall.
Another interesting fact observed in Table

1 is that, how much smaller size of n-grams
is, the smaller is the precision. However, it
happens all the contrary to the measure of
recall, that is, the smaller the n-grams, the
greater is the recall. This is because, the
smaller are the n-grams, the greater is the
possibility of finding similar fragments in pla-
giarized documents. In (Barrón-Cedeño and
Rosso, 2009), the authors analyzed this fact,
and they showed that the probability of fin-
ding common n-grams in different documents
decreases as n increases.
Finally, we have taken the decision that

the best size for the n-grams was hexagrams,
because there is no great loss with to respect
of recall and it has the best result in precision.

Software Precision Recall

WCopyFind 1.36 % 45.86 %

Table 2: Final results obtained

Table 2 shows the results that we have ob-
tained. From the results, we can noting that
the results are not good, especially in terms
of precision which is very low.

5 Conclusions and further work

Unlike most areas of the language
engineering, in the automatic detection
of plagiarism, the precision is lower than the
recall. This is because it is very likely to find
similar fragments between two documents,
although these are not plagiarized fragments.
For a future work, it would be interesting
search for a automated approach to reduce
the space of search before conducting the
search based on the comparison between
n-grams. In (Barrón-Cedeño, Rosso, and
Bened́ı, 2009), the author proposed the
reduction of the space of search on the basis
of the Kullback-Leibler distance.
In this paper we tried to put ourselves in

a SME’s shoes and in its need of detecting
cases of plagiarism of its marketing campaign
on the web. The idea was to investigate to
what extent this could be done using the pla-
giarism detection software which is available
on the web. The poor results we obtained
with WCopyFind tool, highlight the need to
develop at-hoc plagiarism detection methods
for SME’s.

References

Barrón-Cedeño, A. and P. Rosso. 2009.
On automatic plagiarism detection based
on n-grams comparisons. Proc. Eu-
ropean Conference on Information Re-
trieval, ECIR-2009, pages 696–700.

Barrón-Cedeño, A., P. Rosso, and J.M.
Bened́ı. 2009. Reducing the plagiarism
detection search space on the basis of the
Kullback-Leibler Distance. Proc. 10th Int.
Conf. on Comput. Ling. and Intelligent
Text Processing, CICLing-2009, Springer-
Verlag, LNCS(5449), pages 523–534.

Dreher, H. 2007. Automatic conceptual
analysis for plagiarism detection. Journal
of Issues in Informing Science and Infor-
mation Technology 4, pages 601–614.

Putting Ourselves in SME's Shoes: Automatic Detection of Plagiarism by the WCopyFind Tool 35

Using Microsoft SQL Server platform for plagiarism detection

Vladislav Shcherbinin
American University of Nigeria

Lamido Zubairu way, Yola township by-pass,
PMB 2250, Yola, Nigeria

vladislav.scherbinin@gmail.com

Sergey Butakov
SolBridge International School of Business,

151-13 Samsung 1-Dong, Dong-gu, Daejeon,
300-814, South Korea

butakov@solbridge.ac.kr

Abstract: The paper presents an approach for plagiarism detection using Microsoft SQL Server
platform in a large corpus of documents. The approach was used for participation in the first
international plagiarism detection competition that was held as a part of PAN’09 workshop. The
main advantages of the proposed approach are its high precision, good performance and
readiness for deployment into a production environment with relatively low cost of the required
third party software. The approach uses fingerprinting-based algorithm to compare documents
and Levenstein’s metric to markup plagiarized fragments in the texts.
Keywords: external plagiarism detection, Winnowing, document fingerprinting

1 Introduction

Digital plagiarism remains a burning issue both
in academia and industry over the last two
decades. Of course methods and tools of
plagiarism uncovering have evolved a lot from
the pioneering works on plagiarism uncovering
in source codes in 1980s to web-enabled anti-
plagiarism services of today.

Plagiarism detection methods at large can be
split into two large groups: external document
analysis methods and intrinsic plagiarism
detection methods, or stylometry (Maurer,
Kappe, & Zaka 2006). The method and
software proposed in this paper aimed on the
external plagiarism detection, e.g. revealing the
text copied from other documents. The software
was tested on the corpus of document provided
for competition. The rest of the paper is
organized as follows: the detailed description of
the software platform and the detection process
can be found in the second and third sections of
the paper. Conclusion section summarizes the
results and proposes directions for the future
research.

2 Detection process

The document processing for the competition
was performed by three nodes. Node 1 served
as DBMS platform and Node 2 and Node 3
were used on the detection phase. The
following subsections explain detection steps in
details.

2.1 Loading and preprocessing of the
documents

To perform the comparison on a large corpus of
documents we decided to use the Winnowing,
one of the well-known fingerprinting-based
algorithms (Schleimer et al., 2003). According
to this algorithm each document was substituted
with a set of its hashes for the detection
purposes.

The database designed to store documents
and fingerprints consists of three tables: Folder,
Document, and Fingerprint.

After loading documents and compiling their
fingerprints the Fingerprint table was indexed
with two indexes: one nonclustered index on
hash value and document ID (index 1) and
another clustered index on document ID, hash
value and sequential number of a hash in the
document (index 2). After the loading phase

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 36-37, 2009.

the Fingerprint table was populated with
137,981,386 records. The most time consuming
operation here was loading documents and
compiling fingerprints.

2.2 Locating sources

The main objective of this step was to reduce
the number of documents for comparison phase.
This step selects all pairs of documents that
share at least one fingerprint and stores these
pairs in a table for more detailed analysis. After
this step the table that links the pairs of possible
matches in the documents was populated with
only 44,532 records instead of 52,000,000 –
possible number of pairs the search would have
had to process if it compares all suspicious
documents versus all source documents: 7214 *
7215 = 52,049,010. This step literally
substituted the “one-vs-all” comparison with
“one-vs-suspicions”. As this step consists of
only one query the better system performance
could be achieved only by improving MS SQL
Server hardware. This step uses index 1.

2.3 Detecting plagiarized passages

At this point all the required information is
ready for the main step: detection of the
common fragments in documents. The result
from this step was used to identify exact
plagiarized excerpts and to establish anchors for
the further analysis. The main point here is the
proper indexing of the Fingerprint table: on this
step the clustered index created earlier (index 2)
was used which provided the best possible
execution plan.

After all common fingerprints have been
identified and thus provided established
anchors, the next task was to find common
intervals for marking up the plagiarized
passages. For better performance this process
was distributed among two workstations (nodes
2 and 3), each running a console application
performing the following steps:
1. Retrieve an unprocessed document from the

Document table and corresponding records
from the table that links it with possible
sources.

2. For each record run the following steps:
a. Execute the stored procedure to

retrieve starting positions of the
common excerpts.

b. For each result skip forward
character by character in both

source and suspicious documents,
while characters are equal. This will
identify exact excerpt.

c. Skip forward n characters, and
compare excerpts using
Levenstein’s distance to identify
near similar and obfuscated
excerpts.

3. Save identified intervals into the DB.
Both nodes used several separate threads for

this processing and each thread was processing
a separate document, retrieved on the step 1
shown above. The detection time could be
improved by increasing the computational
power of the processing nodes (nodes 2 and 3)
or by further increasing the number of nodes.

2.4 Compiling results

On the last step Microsoft SQL Server
Integration Services was used to export
information about detected plagiarism to XML
files with the required format.

3 Conclusion

As the competition results indicate the proposed
approach provides competitive results in terms
of preciseness. Moreover it comes in the ready-
to-deploy form that can be easily implemented
on relatively inexpensive third party software
(MS SQL Server). This will allow easy system
integration with virtually any university-wide
course management system. The required
improvements to reduce the granularity of
results are planned for implementation in the
next version of the software. At this stage of the
development the solution is publicly available
for downloading as a desktop version at
www.siberiasoft.info.

References

Maurer, H., Kappe F., Zaka B. (2006)
Plagiarism – A Survey. Journal of Universal
Computer Sciences, vol. 12, no. 8, pp. 1050
– 1084.

Schleimer S., Wilkerson D., and Aiken A.
(2003). Winnowing: Local Algorithms for
Document Fingerprinting. Proceedings of
the ACM SIGMOD International
Conference on Management of Data, pages
76-85, June 2003.

Using Microsoft SQL Server Platform for Plagiarism Detection 37

Intrinsic Plagiarism Detection Using Character n-gram Profiles

Efstathios Stamatatos
University of the Aegean

83200 - Karlovassi, Samos, Greece
stamatatos@aegean.gr

Abstract: The task of intrinsic plagiarism detection deals with cases where no reference corpus
is available and it is exclusively based on stylistic changes or inconsistencies within a given
document. In this paper a new method is presented that attempts to quantify the style variation
within a document using character n-gram profiles and a style change function based on an
appropriate dissimilarity measure originally proposed for author identification. In addition, we
propose a set of heuristic rules that attempt to detect plagiarism–free documents and
plagiarized passages, as well as to reduce the effect of irrelevant style changes within a
document. The proposed approach is evaluated on the recently-available corpus of the 1st Int.
Competition on Plagiarism Detection with promising results.

Keywords: Plagiarism detection, Character n-grams, Stylistic inconsistencies

1 Introduction
Textual plagiarism (the unacknowledged use of
the work of another author either as an exact
copy or a slightly modified version) is a major
problem in modern world affecting education
and research mainly. The rapid development of
WWW made billions of web pages easily
accessible to anyone providing plenty of
potential sources for plagiarism. As a result,
automated plagiarism analysis and detection
receives increasing attention in both academia
and software industry (Maurer et al, 2006).

There are two basic tasks in plagiarism
analysis. In external plagiarism detection a
reference corpus is given and the task is to
identify pairs of identical or very similar
passages from a suspicious document and some
texts of the reference corpus. Most of the
research studies in plagiarism analysis deal with
this task (Hoad and Zobel, 2003; Stein, 2005).
On the other hand, intrinsic plagiarism
detection is more ambitious since no reference
corpus is given (Meyer zu Eissen et al., 2007;
Stein and Meyer zu Eissen, 2007). This task is
applied in cases where it is not possible to have
a representative reference corpus. In addition,
the comparison of a suspicious document with
all the texts of a very large corpus may be
impractical in terms of computational time cost.

It can also serve as a preprocessing step to an
external plagiarism detection tool in order to
reduce the time cost.

To handle the intrinsic plagiarism detection
task one has to detect plagiarized passages of a
suspicious document exclusively based on
irregularities or inconsistencies within the
document. Such inconsistencies or anomalies
are mainly of stylistic nature.

The attempts to quantify writing style, a line
of research known as ‘stylometry’, have a long
history (Holmes, 1998). A great variety of
measures that represent some kind of stylistic
information have been proposed especially in
the framework of authorship attribution
research. In a recent survey, Stamatatos (2009)
distinguishes the following types of stylometric
features: lexical features (word frequencies,
word n-grams, vocabulary richness, etc.),
character features (character types, character n-
grams), syntactic features (part-of-speech
frequencies, types of phrases, etc.), semantic
features (synonyms, semantic dependencies,
etc.), and application-specific features
(structural, content-specific, language-specific).

Although the lexical features are still the
most popular, a number of independent recent
studies have demonstrated the effectiveness of
character n-grams for quantifying writing style
(Keselj et al., 2003; Stamatatos, 2006;

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 38-46, 2009.

Stamatatos, 2007; Kanaris and Stamatatos,
2007; Koppel et al., 2009). This type of features
can be easily measured in any text and it is
language and domain independent since it does
not require any text pre-processing. These
measures are also robust to noise. Note that in
plagiarism analysis the efforts of an author to
slightly modify a plagiarized passage may be
considered as noise insertion. Graham et al.
(2005) were the first to use character n-grams to
detect stylistic inconsistencies in texts.
However, their results were poor. One reason
for this is that they only used character bigrams.
Another reason is that the distance measure
they used (cosine distance) was unreliable for
very short texts. Note also that Graham et al.
(2005) were based on predefined text segments
(paragraphs) and their task was to identify
whether two consecutive paragraphs differ in
style or not.

In this paper, we propose a method for
intrinsic plagiarism detection based on
character n-gram profiles (the set of character
n-gram normalized frequencies of a text) and an
appropriate dissimilarity measure originally
proposed for author identification. Our method
automatically segments documents according to
stylistic inconsistencies and decide whether or
not a document is plagiarism-free. A set of
heuristic rules is introduced that attempt to
detect plagiarism on either the document level
or the text passage level as well as to reduce the
effect of irrelevant stylistic changes within a
document.

The rest of the paper is organized as follows.
Section 2 describes the method of quantifying
stylistic changes within a document. Then,
Section 3 includes the plagiarism detection
heuristics while Section 4 describes the
evaluation procedure. Finally, Section 5
discusses the main points of this study and
proposes future work directions.

2 The style change function
The main idea of the proposed approach is

to define a sliding window over the text length
and compare the text in the window with the
whole document. Thus, we get a function that
quantifies the style changes within the
document. Then, we can use the anomalies of
that function to detect the plagiarized sections.
In particular, the peaks of that function
(corresponding to text sections of great
dissimilarity with the whole document) indicate

likely plagiarized sections. Therefore, what we
need is a means to compare two texts knowing
that one of the two (the text in the window) is
shorter or much shorter than the other (the
whole document).

Following the practice of recent successful
methods in author identification (Keselj et al.,
2003; Stamatatos, 2006; Stamatatos, 2007;
Koppel et al., 2009; Stamatatos, 2009), each
text is considered as a bag-of-character n-
grams. That is, given a predefined n that
denotes the length of strings, we build a vector
of normalized frequencies (over text length) of
all the character n-grams appearing at least once
in the text. This vector is called the profile of
the text. Note that the size of the profile
depends on the text length (longer texts have
bigger profiles). An important question is the
value of n. A high n corresponds to long strings
and better capture intra-word and inter-word
information. On the other hand, a high n
considerably increases the dimensionality of the
profile. To keep dimensionality relatively low
and based on preliminary experiments as well
as on previous work on author identification
(Stamatatos, 2007; Koppel et al., 2009) we used
character 3-grams in this study. The complete
set of parameter settings for the proposed
method is given in Table 1. These settings were
estimated using a small part (~200 documents)
of the evaluation corpus (see section 4).

Description Symbol Value
Character n-gram length n 3
Sliding window length l 1,000
Sliding window step s 200
Threshold of plagiarism-
free criterion

t1 0.02

Real window length
threshold

t2 1,500

Sensitivity of plagiarism
detection

a 2

Table 1: Parameter settings used in this study.

Let P(A) and P(B) be the profiles of two
texts A and B, respectively. Stamatatos (2007)
studied the performance of various distance
measures that quantify the similarity between
two character n-gram profiles in the framework
of author identification experiments. The
following distance (or dissimilarity) measure
has been found to be both accurate and robust
when the two texts significantly differ in length.

Intrinsic Plagiarism Detection Using Character n-gram Profiles 39

∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
)(

2

1)()(
))()((2

),(
APg BA

BA

gfgf
gfgf

BAd

where fA(g) and fB(g) are the frequency of
occurrence (normalized over text length) of the
n-gram g in text A and text B, respectively,
Note that d1 is not a symmetric function
(typically, this means it cannot be called
distance function). That is, only the n-grams of
the first text are taken into account in the sum.
This function is designed to handle cases where
text A is shorter than text B. Stamatatos (2007)
showed that d1 is quite stable even when text A
is much shorter than text B. This is exactly the
case in the proposed method for intrinsic
plagiarism detection where we want to compare
a short text passage with the whole document
that may be quite long. In this paper, we
modified this measure as follows:

)(4
)()(
))()((2

),()(

2

1 AP
gfgf
gfgf

BAnd APg BA

BA∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=

where |P(A)| is the size of the profile of text A.
The denominator ensures that the values of
dissimilarity function lie between 0 (highest
similarity) and 1. We call this measure
normalized d1 (or nd1).

Let w be a sliding window of length l (in
characters) and step s (in characters). That is,
each time the window is moved to the right by s
characters and the profile of the next l
characters is extracted. If l>s the windows are
overlapping. Then, we can define the style
change function (sc) of a document D as
follows:

sc(i,D)=nd1(wi, D), i=1…|w|

where |w| is the total amount of windows (it
depends on text-length). Given a text of x
characters |w| is computed as follows:

⎥⎦
⎥

⎢⎣
⎢ −
+=

s
lxw 1

Examples of style change functions can be
seen in figures 1, 2, 3, and 4.

3 Detecting plagiarism

3.1 Plagiarism on the document level
The first important question that must be
answered is whether or not a given document
contains any plagiarized passages. This is
crucial to keep the precision of our method

high. If we are unable to find documents that
are plagiarism-free, it is quite likely for the
plagiarism detection method to identify a
number of text passages as the result of
potential plagiarism for any given document.
Thus, the credibility of the method would be
very low.

There are two options to decide whether or
not a document contains plagiarized sections:

By pre-processing: A criterion must be
defined to indicate a plagiarism-free document.
If this is the case, there is no further detection
of plagiarized sections.

By post-processing: The algorithm detects
any likely plagiarized sections and then a
decision is taken based on these results.

 Typically, the detected sections are
compared to other sections of the document to
decide whether there are significant differences
between them (Stein and Meyer zu Eissen,
2007).

In this study we followed the former
approach. The criterion we used is based on the
variance of the style change function. If the
document is written by one author, we expect
the style change function to remain relatively
stable. On the other hand, if there are
plagiarized sections, the style change function
will be characterized by peaks that significantly
deviate from the average value. The existence
of such peaks is indicated by the standard
deviation. Let S denote the standard deviation
of the style change function. If S is lower than a
predefined threshold, then the document is
considered plagiarism-free.

Plagiarism-free criterion: S<t1

The value of the threshold t1 was determined
empirically at 0.02. Recall that the dissimilarity
function we use is normalized. So, the
definition of such a common threshold for all
the documents is possible. However, the nd1
measure is not independent of text length. Very
short documents tend to have low style change
function values. Moreover, very long texts are
likely to contain stylistic changes made
intentionally by the author. In both these cases
this criterion will not be very accurate.

Figures 2 and 3 show the style change
function of documents 00017 and 00034 of
IPAT-DC (see section 4) that fall under the
plagiarism-free criterion. The former is a
successful case where no plagiarism exists. On
the other hand, in the case of document 00034,

40 Efstathios Stamatatos

despite the presence of two plagiarized
passages, the style change function fails to
produce significant peaks that would increase
its standard deviation. Note also that 00017 is
longer than 00034 (more sliding windows in the
x-axis) and the average style change function of
00017 is higher than that of 00034.
Additionally, Figure 4 shows the style change
of document 00022 of IPAT-DC. Although this
document is plagiarism-free, the standard

deviation of its style function is greater than the
used threshold (false positive).

3.2 Identifying plagiarized passages
Given the style change function of a document,
the task of plagiarism detection can be viewed
as detecting peaks of that function
corresponding to text sections that significantly
differ from the rest of the document. One big

0 200 400 600 800

0.00

0.10

0.20

0.30

0.40

0.50

0 200 400 600 800

St
yl

e
ch

an
ge

 fu
nc

tio
n

Sliding window position

Figure 1: The style change function of
document 00005 of IPAT-DC (solid line). The

dashed line indicates the threshold of the
plagiarized passage criterion. The binary
function above indicates real plagiarized

passages (high values).

0.00

0.10

0.20

0.30

0.40

0.50

0 100 200 300 400 500 600

St
yl

e
ch

an
ge

 fu
nc

tio
n

Sliding window position

Figure 2: The style change function of
document 00017 of IPAT-DC (a plagiarism-free

document).

0 50 100 150

0.00

0.10

0.20

0.30

0.40

0.50

0 50 100 150

St
yl

e
ch

an
ge

 fu
nc

tio
n

Sliding window position

Figure 3: The style change function of
document 00034 of IPAT-DC (false negative).

The binary function above indicates real
plagiarized passages (high values).

0.00

0.10

0.20

0.30

0.40

0.50

0 100 200 300 400

St
yl

e
ch

an
ge

 fu
nc

tio
n

Sliding window position

Figure 4: The style change function of the
plagiarism-free document 00022 of IPAT-DC

(a false positive). The dashed line indicates
the threshold of the plagiarized passage

criterion.

Intrinsic Plagiarism Detection Using Character n-gram Profiles 41

problem in plagiarism detection is that it is not
possible to estimate the percentage of
plagiarized text beforehand. In intrinsic
plagiarism detection the problem is much
harder since if the plagiarized sections are too
long the stylistic anomalies would correspond
to the style of the alleged author rather than the
plagiarized sections. In this study we suppose
that at least half of the text is not plagiarized so
that the average of style change function would
indicate the style of that author. However, the
calculation of the average sc value would
inevitably involve the plagiarized passages as
well.

Let M and S denote the mean and standard
deviation of sc, respectively. To reduce this
problem we first remove from sc all the text
windows with value greater than M+S. These
text sections are highly likely to correspond to
plagiarized sections. Let sc(i′,D) denote the
style change function after the removal of these
sections. Let M′ and S′ be the mean and
standard deviation of sc(i′,D). Then, we define
the following criterion to detect plagiarism:

Plagiarized passage criterion:
sc(i′,D) >M′+a*S′

The parameter a determines the sensitivity
of the plagiarism detection method. The higher
the value of a, the less (and more likely
plagiarized) sections are detected. The value of
a was determined empirically at 2.0 to attain a
good combination of precision and recall.
Figures 1 and 4 show the result of applying the
proposed criterion in two documents.

3.3 Detecting irrelevant style changes
An important factor that affects style using the
character n-gram representation is the
formatting of documents. A document written
in uppercase with many space characters,
punctuation symbols will have a quite different
character n-gram profile than the same
document in lowercase after the removal of any
extra space and punctuation characters. The
proposed method for the quantification of style
changes is very general and is sensitive to such
stylistic changes that are irrelevant to
plagiarism. In fact, a very common technique to
disguise plagiarism is to change the formatting
of text. So, any plagiarism detection tool should
attempt to reduce the formatting factor.

To deal with this problem, we performed a
number of processes. First, each document is
transformed to lowercase. Although the

uppercase information is important for
representing adequately the style of an author, it
can be easily used to fool a plagiarism detection
tool. Then, we removed from the profile of a
text every character n-gram that contains no
letter characters (a-z, or any lowercase
character of foreign languages) at all. This way,
any character n-gram that contains only digit,
space, or punctuation characters, that is
irrelevant to the content of text, is excluded and
the formatting factor is reduced. Finally, the
sliding window parameters operate on letter
characters. That is, a window length of l
characters means that the window should
contain l letter characters. Note that all the other
characters (digits, spaces, punctuation, etc.) are
not removed. Therefore, if l=1,000, a window
may contain 1,200 characters (this is the real
window length) in total from which 1,000 are
letter characters. Moreover, a step of s
characters means that the window is moved to
the right by s letter characters. This procedure
ensures that all the text windows will have the
same number of letter (or content) characters

Figure 5: The style change function and the
real window length of the last part of

document 00046 of IPAT-DC.

42 Efstathios Stamatatos

and the formatting of the text will not
significantly affect the style change function.

Since there is no prior knowledge on the
genre of documents, a given document may be
composed of several sections each one
belonging to a different genre (or sub-genre)
and therefore having different stylistic
characteristics. For example, a table of contents
has different style than the main document. The
character n-gram representation is able to
capture both the style of author and the style of
genre but it is hard to distinguish these factors.
To handle this problem, we make use of the real
window length as defined above. In more detail,
let l′ be the real window length (the total
number of characters included in a window that
contains l letter characters) of a text section.
The real window length is affected by some
genres. For example, the l′ of a table of contents
is higher than the l′ of the main document. This
is demonstrated in figure 5 that shows the style
change function and the real window length of
the last part of document 00046 of IPAT-DC
(for l=1,000). This document ends with an
index. Note that the real window length of this
special section is much higher than the rest of
the document. The stylistic difference between
the index and the rest of the document is
captured by the style change function.
However, this difference has nothing to do with
plagiarism. To take such cases into account, an
additional criterion was used to detect
plagiarized passages:

Special section criterion: l′<t2

This criterion is combined with the
plagiarized passage criterion. Based on
empirical evaluation, the value of the threshold
t2 was estimated at 1,500 (or 1.5l). Note that
this criterion excludes text sections with overly
real window length. However, one can take
advantage of this criterion and disguise
plagiarism by inserting many formatting
characters to a text section so that l′ is
considerably increased. Moreover, a plagiarized
section within a special section (e.g. table of
contents) that resembles the style of that section
will not be detected.

4 Evaluation
In the framework of the 1st International
competition on plagiarism detection a large
corpus has been released for the Intrinsic
Plagiarism Analysis Task (Potthast et al., 2009).

This corpus is segmented into a development
part (IPAT-DC) and a competition part (IPAT-
CC) each one comprising 3,091 documents. An
artificial plagiarism tool has been used to
automatically insert plagiarized passages within
the documents. The following evaluation results
are mainly based on IPAT-DC since this corpus
also provides ground truth data. IPAT-DC
comprises a wide variety of texts covering
many genres and topics. The text length varies
from (roughly) 3,000 characters to 2.5 million
characters. Interestingly, the plagiarized
passages begin in randomly selected positions
covering arbitrary combinations of words,
sentences, and paragraphs.

4.1 Evaluation on the document level
First, we evaluate the plagiarism-free

criterion that operates on the document level.
Table 2 shows the confusion matrix of IPAT-
DC after the application of this criterion. It is
important that over 70% of the plagiarism-free
documents were correctly classified. This is
crucial to keep the overall precision on
reasonable level. On the other hand, false
positives (see Figure 4) harm the precision
while false negatives (see Figure 3) harm the
recall.

 Actual

Guess Plagiarism-free Plagiarized
Plagiarism-free 1102 545 (22%)

Plagiarized 443 1001 (78%)

Table 2: Confusion matrix (on the document
level) after the application of the plagiarism-
free criterion. The percentage of plagiarized

passages included in the documents are inside
parentheses.

As can be seen, roughly 1/3 of the
plagiarized documents are considered
plagiarism-free. However, taking into account
the number of plagiarized passages within each
document (indicated inside parentheses in the
table), we see that 22% of the plagiarized
passages is missed. So, the upper bound for the
recall on the passage level will be 78%. A
closer look to the false negatives shows that
text-length is a crucial factor. Figure 6 depicts
the distribution of false negatives over text-
length of documents. As can be seen, the
majority of false negatives are relatively short
documents (<30K chars). Moreover, the shorter

Intrinsic Plagiarism Detection Using Character n-gram Profiles 43

a document, the more likely to be false
negative.

Corpus IPAT-DC IPAT-CC
Recall 0.4552 0.4607

Precision 0.2183 0.2321
F-score 0.2876 0.3086

Granularity 1.22 1.25
Overall
score

0.2358 0.2462

Table 3: Performance of the plagiarism passage
criterion on two corpora (development and

competition corpus).

4.2 Evaluation on the passage level
To evaluate the plagiarism detection

method, we should first define appropriate
measures. In particular, we used the
performance measures defined in the
framework of the 1st int. competition on
plagiarism detection: recall, precision,
granularity, and overall score. Let r denote a
plagiarized passage and |R| be the set of all
plagiarized passages in the corpus. Moreover,
let p be a detected passage by the proposed
method, |P| be the set of all detected passages,
and |Rp| be the subset of R that overlap with at
least one member of |P|. Finally, let |r| and r̂
be the length of a plagiarized passage and the
sum of its detected characters by the plagiarism
detection method, respectively. Similarly, |p|
and p̂ are the length of a detected passage and
the sum of their chars that belong to any
plagiarized passage. Then, recall, precision, and
granularity can be defined as follows:

∑
=

=
R

i i

i

r
r

R
recall

1

ˆ1

∑
=

=
P

i i

i

p
p

P
precision

1

ˆ1

∑
=

∩+=
PR

i
i

P

Pr
R

ygranularit
1

2
11(log

ygranularit
Foverall =

where |ri∩P| denotes the number of different
detections that overlap with the plagiarized
passage ri, and F is the harmonic mean of recall
and precision. Essentially, the granularity
measure indicates the fragmentation of the
detected passages. A granularity value of 1

means that at most one detected section
overlaps with a plagiarized passage.

The results of the evaluation of the
plagiarized passage criterion are included in
table 3 on the development and competition
corpus of the intrinsic plagiarism analysis task
(taken by the official results of the
competition). The parameter values shown in
table 1 have been used to produce these results.
As can be seen, the performance of the
proposed method remains stable for both
corpora. Actually, the performance on IPAT-
CC is better than on IPAT-DC that was used for
estimating the values of parameters. This
indicates that the proposed settings are quite
general and robust.

Figure 6: Distribution of false negatives over
text length.

Figure 7: Recall and precision for varying text
length.

44 Efstathios Stamatatos

Figure 7 provides a closer look in the recall-
precision results on IPAT-DC with respect to
text-length of documents. It is obvious that
recall is dramatically affected by decreasing
text length. The distribution of false negatives
showed in figure 6 offers a reasonable
explanation for this. Precision is more stable.
However, it tends to decrease while text length
increases.

5 Discussion
In this paper a new method for intrinsic
plagiarism detection has been presented. The
proposed approach is based on character n-gram
profiles, a style change function using an
appropriate dissimilarity measure as well as a
set of heuristic rules to detect plagiarized
passages. The evaluation results demonstrate
that it is able to detect roughly half of the
plagiarized sections. On the other hand, the
precision remains low. An important factor for
improving precision is the development of more
sophisticated and accurate plagiarism-free
criteria on the document level. The precision
can also be improved by increasing the
sensitivity parameter a. However, this will
harm recall.

The proposed method is easy to follow and
requires no language-dependent resources.
Moreover, it requires no text segmentation or
preprocessing. The proposed parameter settings
proved to be effective when the approach was
evaluated on the IPAT-CC. Note that the
parameter values of table 1 were not optimized
for IPAT-DC. However, the application of
machine learning algorithms could improve the
estimation of these parameters. Especially, the
definition of the window length is crucial since
it determines the shortest plagiarized passage
that can be detected. On the other hand, a very
short window would not adequately capture the
stylistic properties of the text.

Another future work direction is to examine
different schemes for comparing a text window
with the whole document. The approach
followed in this paper is fast since it requires
the calculation of only one profile for the whole
document. Alternative approaches include the
comparison of the text window with the
window complement (the document without the
window) and the comparison of a text window
with all the other text windows.

Finally, character n-grams of higher order
could be used. Preliminary experiments using

character 4-grams and 5-grams did not show
significant improvement on the performance of
the method. However, this remains to be
carefully examined.

References
Graham, N. Hirst, G. and Marthi, B. (2005).

Segmenting Documents by Stylistic
Character. Natural Language Engineering,
11(4): 397-415.

Hoad, T.C. and J. Zobel. 2003. Methods for
Identifying Versioned and Plagiarised
Documents. Journal of the American Society
for Information Science and Technology,
54(3):203–215.

Holmes, D.I. 1998. The Evolution of
Stylometry in Humanities Scholarship.
Literary and Linguistic Computing, 13(3):
111-117.

Kanaris, I. and E. Stamatatos. 2007. Webpage
Genre Identification Using Variable-length
Character n-grams, In Proc. of the 19th
IEEE Int. Conf. on Tools with Artificial
Intelligence, v.2, pp. 3-10.

Keselj, V., F. Peng, N. Cercone, and C.
Thomas. 2003.. N-gram-based Author
Profiles for Authorship Attribution. In
Proceedings of the Pacific Association for
Computational Linguistics, pp. 255-264.

Koppel, M., J. Schler, and S. Argamon. 2009.
Computational Methods in Authorship
Attribution, Journal of the American Society
for information Science and Technology,
60(1): 9-26.

Maurer, H., F. Kappe, and B. Zaka. 2006.
Plagiarism - A Survey. Journal of Universal
Computer Science, 12(8): 1050-1084.

Meyer zu Eissen, S., B. Stein, and M. Kulig.
2007. Plagiarism Detection without
Reference Collections. Advances in Data
Analysis, pp. 359-366, Springer.

Potthast, M., A. Eiselt, B. Stein, A. Barron, and
P. Rosso. 2009. Plagiarism Corpus PAN-
PC-09. Webis at Bauhaus-Universitaet
Weimar and NLEL at Universidad
Polytecnica de Valencia.
(http://www.webis.de/research/corpora)

Stamatatos, E. 2009. A Survey of Modern
Authorship Attribution Methods, Journal of

Intrinsic Plagiarism Detection Using Character n-gram Profiles 45

the American Society for information
Science and Technology, 60(3): 538-556.

Stamatatos, E. 2007. Author Identification
Using Imbalanced and Limited Training
Texts. In Proceedings of the 4th
International Workshop on Text-based
Information Retrieval, pp. 237-241.

Stamatatos, E. 2006. Ensemble-based Author
Identification Using Character N-grams, In
Proc. of the 3rd Int. Workshop on Text-
based Information Retrieval, pp. 41-46.

Stein, B., and S. Meyer zu Eissen. 2007.
Intrinsic Plagiarism Analysis with Meta
Learning. In Proceedings of the SIGIR
Workshop on Plagiarism Analysis,
Authorship Attribution, and Near-Duplicate
Detection, pp.45-50.

Stein, B. 2005. Fuzzy-Fingerprints for Text-
Based Information Retrieval. In Proceedings
of the 5th International Conference on
Knowledge Management, J.UCS: 572–579.

46 Efstathios Stamatatos

External and Intrinsic Plagiarism Detection
Using Vector Space Models

Mario Zechner, Markus Muhr, Roman Kern
Know-Center
8010 Graz

{mzechner, mmuhr, rkern}@know-center.at

Michael Granitzer
Know-Center Graz

Graz University of Technology
mgranitzer@tugraz.at

Abstract: Plagiarism detection can be divided in external and intrinsic methods.
Naive external plagiarism analysis suffers from computationally demanding full near-
est neighbor searches within a reference corpus. We present a conceptually simple
space partitioning approach to achieve search times sub linear in the number of ref-
erence documents, trading precision for speed. We focus on full duplicate searches
while achieving acceptable results in the near duplicate case. Intrinsic plagiarism
analysis tries to find plagiarized passages within a document without any exter-
nal knowledge. We use several topic independent stylometric features from which
a vector space model for each sentence of a suspicious document is constructed.
Plagiarized passages are detected by an outlier analysis relative to the document
mean vector. Our system was created for the first PAN competition on plagiarism
detection in 2009. The evaluation was performed on the challenge’s development
and competition corpora for which we report our results.
Keywords: Plagiarism Detection, Nearest Neighbor Search, Stylometry, Outlier
Detection

1 Introduction

Plagiarism, defined as the theft of intellec-
tual property (Maurer, Kappe, and Zaka,
2006), has been a problem for centuries not
only in academic circles. There exist differ-
ent forms of plagiarism, ranging from simply
copying and pasting original passages to more
elaborate paraphrased and translated plagia-
rism. Anecdotal evidence and studies such
as (Sheard et al., 2002) strengthen the suspi-
cion that plagiarism is on the rise, facilitated
by new media such as the World Wide Web.
Growing information sources ease plagiarism
while plagiarism prevention and detection be-
come harder.

To combat these problems the first com-
petition on plagiarism detection was held at
the third PAN workshop in 2009 in which we
participated. The competition was split into
two tasks: external plagiarism detection and
intrinsic plagiarism detection. External pla-
giarism detection deals with the problem of
finding plagiarized passages in a suspicious
document based on a reference corpus. In-
trinsic plagiarism detection does not use ex-
ternal knowledge and tries to identify dis-
crepancies in style within a suspicious docu-
ment. For both tasks extensive, machine gen-
erated training corpora were provided upon
which we developed and evaluated our solu-
tions. Our contribution is as follows:

• We present a robust external plagiarism
detection method based on indexing by
balanced clustering in a high dimen-
sional term vector space with a focus on
full and very near duplicate detection.

• We present an intrinsic plagiarism detec-
tion method based on a combined set
of stylometric features spanning a vec-
tor space, using outlier analysis to de-
termine plagiarized passages without a
reference corpus or any other external
knowledge source.

• We report our results for both problems
on the PAN 09 development and compe-
tition corpora.

This paper is outlined as follows: in sec-
tion 2 we present related work. Section 3 de-
scribes our system for the external plagiarism
task, section 4 gives insight on our intrinsic
plagiarism detection system. In section 5 we
describe the PAN 09 dataset and report our
results for the external and intrinsic plagia-
rism tasks. We conclude and give an outlook
on future work in section 6

2 Related Work

External plagiarism detection relies on a ref-
erence corpus composed of documents from
which passages might have been plagiarized.

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 47-55, 2009.

A passage could be made up of paragraphs,
a fixed size block of words, a block of sen-
tences and so on. A suspicious document is
checked for plagiarism by searching for pas-
sages that are duplicates or near duplicates
of passages in documents within the reference
corpus. An external plagiarism system then
reports these findings to a human controller
who decides whether the detected passages
are plagiarized or not.

A naive solution to this problem is to com-
pare each passage in a suspicious document
to every passage of each document in the ref-
erence corpus. This is obviously prohibitive.
The reference corpus has to be large in order
to find as many plagiarized passages as possi-
ble. This fact directly translates to very high
runtimes when using the naive approach.

External plagiarism detection is similar
to textual information retrieval (IR) (Baeza-
Yates and Ribeiro-Neto, 1999). Given a set
of query terms an IR system returns a ranked
set of documents from a corpus that best
matches the query terms. The most common
structure for answering such queries is an in-
verted index. An external plagiarism detec-
tion system using an inverted index indexes
passages of the reference corpus’ documents.
For each passage in a suspicious document a
query is send to the system and the returned
ranked list of reference passages is analyzed.
Such a system was presented in (Hoad and
Zobel, 2003) for finding duplicate or near du-
plicate documents.

Another method for finding duplicates
and near duplicates is based on hashing or
fingerprinting. Such methods produce one
or more fingerprints that describe the con-
tent of a document or passage. A suspi-
cious document’s passages are compared to
the reference corpus based on their hashes
or fingerprints. Duplicate and near duplicate
passages are assumed to have similar finger-
prints. One of the first systems for plagiarism
detection using this schema was presented in
(Brin, Davis, and Garcia-Molina, 1995).

External plagiarism detection can also be
viewed as nearest neighbor problem in a vec-
tor space Rd. Passages are represented as
vectors within this vector space. If pas-
sages from the reference corpus are ”near
enough” to a passage of the suspicious doc-
ument in this vector space, the passage is
marked as potentially plagiarized. The di-
mensions of the vector space are usually de-

fined by features extracted from the pas-
sages such as terms (usually called the ”bag
of words” vector space model). This often
yields high dimensional vector spaces. Neigh-
bors are defined either by a distance metric
D : Rd × Rd → R or by a similarity function
S : Rd×Rd → R. Smaller values for D signal
nearness while high values for S signal sim-
ilarity. Nearest neighbor searches in a vec-
tor space with a distance metric can be made
sub linear by the use of space partitioning
techniques that rely on the triangle inequality
guaranteed by a metric. Famous partitioning
schemes are the Kd-Tree (Bentley, 1975) or
the metric tree (Ciaccia, Patella, and Zezula,
1997). However, these techniques degrade to
linear searches for high dimensional vector
spaces due to the curse of dimensionality: av-
erage inter point distances become more sim-
ilar. This can be somewhat overcome by as-
suming that the data indeed lies on a lower
dimensional manifold which can be captured
by dimensionality reduction. In the reduced
space partitioning schemas might be appli-
cable again while the original neighborhoods
are preserved by the reduction. Common di-
mensionality reduction approaches are Prin-
ciple Component Analysis (M.E., 2003) for
linear reduction or Isomap (Tenenbaum, de
Silva, and Langford, 2000) for non linear re-
duction. These methods are generally very
costly so other methods for nearest neighbor
searches in high dimensional vector spaces
have been devised. Locality sensitive hashing
(LSH) (Gionis, Indyk, and Motwani, 1999)
received a lot of attention in recent years due
to its simplicity and theoretical guarantees.
LSH is the equivalent of the aforementioned
fingerprinting schemes applied to high dimen-
sional vector spaces. The nearest neighbors
returned by LSH are only approximate in na-
ture. Another approximate nearest neighbor
schema was introduced in (Chierichetti et al.,
2007) that uses hierarchical cluster trees for
space partitioning.

Intrinsic plagiarism detection only re-
cently received attention from the scien-
tific community. It was first introduced in
(Meyer zu Eissen and Stein, 2006) and de-
fined as detecting plagiarized passages in a
suspicious document without a reference col-
lection or any other external knowledge. A
suspicious document is first decomposed into
passages. For each passage a feature vector is
constructed. Features are derived from sty-

48 Mario Zechner, Markus Muhr, Roman Kern and Michael Granitzer

lometric measures like the average sentence
length or the average word length known
from the field of authorship analysis. These
features have to be topic independent so as
to capture the style of an author and not the
domain she writes about. Next a difference
vector is constructed for each passage that
captures the passages deviation from the doc-
ument mean vector. Meyer zu Eissen and
Stein (2006) assume that a ground truth is
given, marking passages actually from the au-
thor of the suspicious document. A model is
then trained based on one-class classification,
using the ground truth as the training set.
The model is then used to determine which
passages are plagiarized. However, it is not
clear how the ground truth is derived from
a suspicious document when no information
about the document is known beforehand.

3 External Plagiarism Detection

We treat external plagiarism detection as a
nearest neighbor search in a high dimensional
term vector space. This is motivated by the
extensive literature that exists for the nearest
neighbor search problem as well as its concep-
tual simplicity. Our system consists of three
stages:

• Vectorization of the passages of each
document in the reference corpus and
partitioning of the reference corpus vec-
tor space.

• Vectorization of the passages of a sus-
picious document and finding each pas-
sage’s nearest neighbor(s) in the refer-
ence corpus vector space. Detection of
plagiarism for each suspicious document
is based on its nearest neighbor list via
similarity thresholding.

• Post processing of the detected plagia-
rized passages, merging subsequent pla-
giarized passages to a single block.

3.1 Reference Corpus
Vectorization & Partitioning

We adopt the vector space model for textual
data as given in (Salton, Wong, and Yang,
1975). Each unique term in the reference cor-
pus is represented as a dimension in the vec-
tor space Rd, where d is the number of unique
terms. Instead of creating a single vector for
a complete document we create vectors for

each sentence in a document as we want to
detect plagiarism on a per sentence level.

We use the OpenNLP Framework 1 for to-
kenization and sentence splitting. For each
sentence in every reference corpus document
a term frequency vector based on the sen-
tence’s lower cased tokens is constructed, ex-
cluding stop words based on a stop word list.
We did not apply any stemming or lemma-
tization. The resulting vectors are then nor-
malized to unit length to overcome difference
in sentence length. We use the standard co-
sine similarity to asses the similarity between
sentences given by:

cosine similarity(x,y) =
〈x,y〉
‖x‖‖y‖

were x,y ∈ Rd. The denominator of the
above equation can be dropped as all vectors
are scaled to unit length.

To achieve sub linear nearest neighbor
searches we implement a variation of clus-
ter pruning (Chierichetti et al., 2007). The
set of reference corpus sentence vectors is
first clustered into l partitions using a bal-
anced online spherical k-means implementa-
tion (Zhong, 2005). Balancing is crucial as it
provides more equal runtimes when search-
ing for nearest neighbors. The balancing is
achieved by introducing a penality to clusters
that have more samples than others during
the clustering process. Each sentence vec-
tor is associated with a single partition, each
partition has a representative centroid vector.
Our approach deviates from cluster pruning
as presented in (Chierichetti et al., 2007) by
associating each sentence vector only with
the nearest cluster. Additionally we store
a sorted list of similarities for each cluster,
holding the similarities between the centroid
of the cluster and the sentence vectors asso-
ciated with that cluster. The resulting struc-
ture serves as an index. It allows searching
the approximate nearest sentences for a given
query sentence.

3.2 Suspicious Document
Vectorization & Plagiarism
Detection

We vectorize a suspicious document in the
same way we vectorize reference corpus doc-
uments. For each sentence vector of a suspi-

1http://opennlp.sourceforge.net/

External and Intrinsic Plagiarism Detection Using Vector Space Models 49

cious document we search the reference cor-
pus for the k most similar sentences as fol-
lows:

• Determine the nearest cluster to the
query sentence based on the cosine sim-
ilarity between the centroids and the
query sentence.

• Find the position in the sorted similarity
list the query sentence would be inserted
at based on its similarity to the cluster
centroid. Gather k

2 sentence vectors to
the left and right of that position in the
list.

• Perform the same search in the sec-
ond nearest cluster returning k

2 potential
nearest neighbors and merge the two sets
of candidate reference corpus sentences.

We justify this procedure as follows: The
cluster a vector belongs to is likely to also
contain the vector’s nearest neighbors. To in-
crease the probability of catching most true
nearest neighbors we also use the second
nearest cluster. An original sentence in the
reference corpus and a full duplicate in a sus-
picious document will belong to the same
cluster as they have the same vector represen-
tation. Consequently both vectors have the
same similarity with the centroid of that clus-
ter. The search in a cluster’s similarity list
should thus return the duplicated sentence.
This can fail if there are more than k vec-
tors in the cluster having the same similarity
with the centroid as the suspicious sentence
vector. The outcome is dependent on the
quality of the sentence splitter as this type of
search for full duplicates relies on correct sen-
tence boundaries. The schema will also work
in case a sentence was plagiarized with small
modifications, albeit with a much lower prob-
ability of finding the correct nearest neigh-
bor. We thus expect our system to work well
for detecting full duplicates, acceptable in the
case of slightly modified sentences and poorly
for highly obfuscated sentences. Figure 1 il-
lustrates the function of the similarity list of
a cluster.

With the presented schema we can re-
duce the search for the nearest neighbors of a
sentence from being linear in the number of
sentences in the reference corpus to roughly
O(l + k + k/2) cosine similarity evaluations
per sentence, where l is the number of cen-
troids or clusters, k is the number of vectors

taken from the nearest cluster’s similarity list
and k

2 is the number of vectors taken from the
second nearest cluster’s similarity list.

A sentence of a suspicious document is
marked as plagiarized if its cosine similar-
ity to the most similar candidate sentence
from the reference corpus exceeds a thresh-
old α. This parameter allows controlling the
sensitivity of the system. The outcome of
this stage is a set of sentences from the sus-
picious document that are plagiarized with
high probability. The information about the
plagiarized sentences’ position in the original
documents is also retained.

3.3 Post Processing

The final stage assembles the sentences
marked as plagiarized in the second stage to
continuous blocks. This is accomplished by
simply checking whether sentences marked
as plagiarized are in sequence in the suspi-
cious document. If this is the case they are
merged. This is repeated until no more merg-
ing is possible. To further increase the re-
call, we compare a plagiarized sentence’s left
and right neighbor sentences to the neighbors
of the original sentence. These might have
been missed in the nearest neighbor search
and have now a chance to be detected. The
neighborhood sentences are again compared
via the cosine similarity and marked as pla-
giarized if the similarity to an original sen-
tence is above some threshold β.

4 Intrinsic Plagiarism Detection

Our intrinsic plagiarism detection system is
based on the ideas presented in (Meyer zu
Eissen and Stein, 2006) and (Grieve, 2007).
Meyer zu Eissen and Stein were the first to
define the problem of intrinsic plagiarism de-
tection: determine whether passages in a sus-
picious document are plagiarized based only
on changes in style within the document. An
author’s style is also of importance in the field
of authorship classification. Both problems
rely on so called stylometric features. These
features should be topic and genre indepen-
dent and reflect an author’s style of writing.
Changes of style within a document can be
detected by various methods. We choose a
simple outlier detection scheme based on a
vector space spanned by various stylometric
features. The system is composed of 3 stages:

• Vectorization of each sentence in the sus-
picious document.

50 Mario Zechner, Markus Muhr, Roman Kern and Michael Granitzer

Figure 1: A cluster with its centroid, ten associated sentence vectors as well as a query sentence
vector. The similarity sorting induces concentric rings of near equal similarity around the
centroid. The search of the query sentence in the sorted similarity list with k = 4 is illustrated
to the left.

• Determination of outlier sentences based
on the document’s mean vector.

• Post processing of the detected outlier
sentences.

4.1 Suspicious Document
Vectorization

Plagiarism is determined on a per sentence
level in our intrinsic plagiarism detection sys-
tem. However, we chose to use a window of
k sentences around a given suspicious sen-
tence. The window is composed of k

2 sen-
tences to the left and right of the sentence.
We adopt various stylometric features as pre-
sented in (Meyer zu Eissen and Stein, 2006)
and (Grieve, 2007) that together form a sin-
gle vector space:

• Average word frequency class: Each
token w in a sentence window is as-
signed to an average word frequency
class. The class is calculated by
�log(freqw∗/freqw�, where freqw∗ is the
absolute number of occurances of the
most frequent word in a huge corpus and
freqw is the number of occurances of the
token in that same corpus. We derrived
our frequency table from tokenizing the
English Wikipedia, resulting in aproxi-
mately 6 million unique terms. Each av-
erage word frequency class is represented

by a single dimension in the final vec-
tor space. The values in these dimension
specify the number of tokens belonging
to that class.

• Punctuation: For each sentence win-
dow the number of occurances of a cer-
tain punctuation character is measured.
Each punctuation character is repre-
sented by a single dimension in the final
vector space. The values in these dimen-
sions reflect the frequencies of punctua-
tion characters in the sentence window.
2

• Part of speech tags: Each token w in
a sentence window is assigned a part of
speech tag from the Penn Treebank part
of speech tag set. Each part of speech
tag is represented by a dimension in the
final vector space. The values in these
dimensions reflect the frequencies of part
of speech tags in the sentence window.

• Pronouns: For each sentence window
the number of occurances of a certain
pronoun is measured. Each pronoun is
represented as a single dimension in the
final vector space. The values reflect the

2We used the following punctuation characters in
our experiments: .,?!:;()-

External and Intrinsic Plagiarism Detection Using Vector Space Models 51

Figure 2: Similarity curve for a document.
The x-axis shows the sentence as they appear
in the document, the y-axis shows the sim-
ilarity of the sentence with the document’s
mean vector. Filled areas indicate the loca-
tion of actually plagiarized sentences.

frequencies with which each pronoun oc-
cured in a sentence window. 3

• Closed class words: For each sentence
window the number of occurances of a
certain stop word is measured. Each
stop word is represented by a single di-
mension in the final vector space. The
values reflect the frequencies of stop
words in a sentence window. We used
the stop word list from the Snowball
stemming framework 4.

For each sentence we construct a vector
for each stylometric feature space based on
the sentence’s window. Each vector is nor-
malized to unit length. The vectors of a sen-
tence are then combined to a single vector by
concatenation. The resulting vector is again
normalized. Based on the final vectors of all
sentences we construct a document mean vec-
tor.

4.2 Outlier Detection

The outlier detection tries to determine
which sentences deviate from the document’s
mean. We use a simple detection scheme: we
measure the cosine similarity from the mean
vector to each sentence vector. We smooth

3We used the following pronouns: i, you, he, she,
it, we, you, they, me, you, him, her, it, us, you,
them, myself, yourself, himself, herself, itself, our-
selves, yourselves, themselves, mine, yours, his, hers,
its, ours, yours, theirs, my, your, his, her, its, our,
your, their.

4http://snowball.tartarus.org/

the list of similarities by an average window
smoothing procedure, where the size of the
window l is a parameter. We determine the
mean cosine similarity as well as the standard
deviation from this list of similarities as:

mean =
1
n

n∑

i=1

cos(vi,m)

stddev =

√√√√ 1
n

n∑

i=1

(cos(vi,m) − mean)2

Where n is the number of sentences, vi is
the ith sentence vector in the document, m
is the document mean vector and cos is the
cosine similarity. The jth sentence is marked
as an outlier if the following inequality holds:

cos(vj,m) < mean − ε ∗ stddev

where ε is some small constant ≥ 1, and
vj is the sentence’s vector. Marked sentences
form the input to the last stage of the sys-
tem. Figure 2 presents the similarity curve
obtained for the suspicious document 5 in the
development corpus of the PAN 09 challenge
after smoothing.

4.3 Post Processing

Based on the sentences that deviate to much
from the mean we derive the final blocks of
plagiarized passages. As in the case of exter-
nal plagiarism detection we simply merge all
sentences marked that are neighbors until no
further merging is possible.

5 Evaluation

We evaluated our system on the development
corpora of the PAN 09 plagiarism detection
competition. We describe description of the
dataset as well as precision, recall, granular-
ity and f1-measure results achieved by our
system for various parameter settings. The
measures are defined as follows:

precision =
1
|S|

|S|∑

i=1

#detected chars of si

|si|

recall =
1
|R|

|R|∑

i=1

#plagiarized chars of ri

|ri|

52 Mario Zechner, Markus Muhr, Roman Kern and Michael Granitzer

f1 =
2 ∗ precision ∗ recall

precision + recall

granularity = log2(1+
1

|SR|
|SR|∑

i=1

#detections ofsiinR)

were S is the set of detected passages and
si is a single detected passage, R is the set
of real plagiarized passages and ri is a single
plagiarized passage and SR is the set of real
plagiarized passages for which at least one
detection exists. |S|, |R| and |SR| denotes
the number of passages in a set, |si| and |ri|
denote the number of characters in a passage.

5.1 PAN 09 Development Corpora

For each of the two tasks of the PAN 09 com-
petition a development corpus was available.

The external plagiarism detection dataset
consisted of 7214 suspicious documents and
as many reference documents. Artificial pla-
giarized passages were added to the suspi-
cious documents via an artificial plagiarist.
For each document the plagiarist decided
whether or not to plagiarize, from which ref-
erence documents to plagiarize, how many
passages to plagiarize, which type of plagia-
rism to use for each passage and how long
each passage would be. The type of pla-
giarism could either be obfuscated or trans-
lated plagiarism. Obfuscation was achieved
by shuffling and deleting words, inserting
words from an external source and replacing
words with synonyms, antonyms, hypernyms
or hyponyms. Obfuscation levels ranged from
none to low to high.

For the intrinsic plagiarism detection task
a corpus of 3091 suspicious documents was
available. Plagiarized passages were gener-
ated similar to the external task.

5.2 External Plagiarism Detection
Results

We performed a parameter study, evaluating
precision, recall and f1-measure, for 500 ran-
domly drawn suspicious documents from the
external plagiarism development corpus. We
studies the effect of the following parameters:

• l, the number of clusters for the index.

• k, the number of candidates taken from
the similarity lists.

• α, the threshold above which the simi-
larity between a suspicious and reference
sentence has to be so that the suspicious
sentence is marked as plagiarized.

• β, the threshold above which the sim-
ilarity between neighbors of a marked
sentence and the neighbors of the orig-
inal sentence have to be in order to be
marked as plagiarized.

Table 5.2 gives the results for various pa-
rameter settings. The threshold α was set dy-
namically depending on the length of a sen-
tence. Very small sentences of five words,
which are most likely sentence splitting er-
rors or headlines, are completely ignored.
For smaller sentences with fewer than fif-
teen words, the threshold is set to to 0.7.
Sentences with up to thirty five words the
threshold is set to 0.5, for longer sentences
the threshold is set to 0.4. The threshold β
for expanding detected blocks is set to 0.4
with the reasoning that it is very unlikely
that nearby sentences will have high similar-
ity values by chance without being actually
copied. We arrived at this settings via man-
ual trial and error on a small subset of suspi-
cious documents.

The results show that the influence of the
number of centroids l as well as the num-
ber of candidates k is marginal. In fact only
a considerable change of the parameters to
l = 500 and k = 2000 can affect the recall
significantly. However, using such high set-
tings degrades the nearest neighbor search for
a sentence according to the previously stated
complexity of O(l + k + k

2) similarity mea-
surements. We believe that the marginal im-
provement of the precision and recall due to
higher values of l and k do not compensate
the much higher runtime. For larger corpora
l and k would have to be set even higher, fur-
ther increasing the runtime. We thus suggest
using moderate values for l and k and instead
focus on tuning α and β. Especially β is a
good candidate to improve the overall recall.

5.3 Intrinsic Plagiarism Detection
Results

We evaluated precision, recall and f1-measure
for all suspicious documents of the internal
plagiarism development corpus for various
parameter settings. The parameters of the
system are as follows:

• k, the size of the sentence window

• l, the size of the smoothing window by
which the similarity list is smoothed.

External and Intrinsic Plagiarism Detection Using Vector Space Models 53

l - k Precision Recall F1-Measure Granularity Recall None Recall Low
50 - 2 0.9616 0.4045 0.5695 1.9817 0.7044 0.4937
50 - 20 0.9523 0.4119 0.5750 1.9774 0.7053 0.4983
50 - 200 0.9411 0.4210 0.5818 1.9738 0.7053 0.5075
100 - 2 0.9597 0.4101 0.5746 1.9767 0.7044 0.4954
200 - 2 0.9419 0.4132 0.5745 1.9739 0.7050 0.4988
500 - 2000 0.8149 0.4782 0.6027 1.8497 0.7027 0.5534
Competition 0.6051 0.3714 0.4603 2.4424 - -

Table 1: Results for the extrinsic plagiarism detection system on a split of the development
corpus. The split contains 500 plagiarized documents plus the original documents from which
the plagiarized passages were taken. The last row shows the results on the competition corpus.
The postprocessing was always the same. The first column contains the number of centroids l
and the number of evaluated neighbors k in the similarity list. Each row holds the precision,
recall, f1-measure and granularity for all obfuscation levels. The column Recall None presents
the recall on none obfuscated plagiarized passages and Recall Low contains the recall on none and
low obfuscated plagiarized passages. The discrepancies between the measure on the development
corpus split and the competition corpus are due to β being to low for the competition corpus.

Feature Space (k-l) Precision Recall F1-Measure Granularity
Word Freq. Class (6-3) 0.2215 0.0934 0.1314 -
Punctuation (12-9) 0.1675 0.1908 0.1784 -
Part of Speech Tags (6-6) 0.1797 0.1791 0.1794 -
Pronouns (12-9) 0.1370 0.3587 0.1983 -
Closed Class Words (12-9) 0.1192 0.1467 0.1316 -
Combined Feature Space (12-6) 0.1827 0.2637 0.2159 -
Competition Corpus 0.1968 0.2724 0.2286 1.2942

Table 2: Results for the intrinsic plagiarism detection system on the development corpus. Each
cell holds the precision, recall and f1-measure for a given feature space and parameter setting.
We only present the top performing parameter settings due to space constraints. We did not
evaluate the granularity on the development corpus.

• ε, the constant by which the standard
deviation of the similarity list is multi-
plied

Table 5.3 gives the results for various fea-
ture spaces and settings for the parameters
k and l. Parameter ε was fixed at 1.1 for all
the experiments. We varied k from 6 to 12
in steps of 2 and l from 3 to 12 in steps of
3. The ranges arose from preliminary exper-
iments where they gave the best results.

We performed the experiment for each
separate feature space in order to deter-
mine which features have high discrimina-
tive power. Surprisingly, pronouns performed
very well when compared to more sophis-
ticated features like the average word fre-
quency class. It should be noted that pro-
nouns do not fulfill the constraint of genre in-
dependence. A play by Shakespeare is likely
to contain many more pronouns then a man-

ual. We can also reproduce the results by
Grieve (2007) for the punctuation feature
which performed acceptable as well.

Based on the results for the separate fea-
ture spaces we took the three best perform-
ing spaces, part of speech tags, pronouns
and punctuation as the basis for the com-
bined vector space. This combined vector
space was then again evaluated on the com-
plete development corpus with varying pa-
rameters, showing significant improvements
in all measures compared to the separate fea-
ture spaces. We used the best parameter set-
tings found in this evaluation for the compe-
tition corpus.

6 Conclusion and Future Work

We presented our methods and results for the
intrinsic and external plagiarism task of the
PAN 09 competition. Our systems performed
acceptable, taking the 5th out of 13 places in

54 Mario Zechner, Markus Muhr, Roman Kern and Michael Granitzer

the external task, the 3rd out of 4 places in
the intrinsic task and the 5th overall place
place out of 13 in the competition.

We plan on extending our external plagia-
rism detection system by incorporating term
expansion via synonyms, hyponyms and hy-
pernyms in order to cope with highly obfus-
cated plagiarism. We also plan to use a more
sophisticated cluster pruning scheme that is
hierarchical in nature, using hebbian learning
to construct a topology of the search space
to further increase the probability that the
true nearest neighbor of a vector can be de-
termined.

For future work for the intrinsic plagiarism
problem, we aim at a better outlier detec-
tion method. We will also try to analyze and
incorporate more stylometric features, com-
bining them with the best performing fea-
tures found in this competition. Dynamically
adapting the parameters k and l for each doc-
ument as well as for each feature space is also
planed.

References

Baeza-Yates, Ricardo and Berthier Ribeiro-
Neto. 1999. Modern Information Re-
trieval. Addison Wesley, May.

Bentley, Jon Louis. 1975. Multidimensional
binary search trees used for associative
searching. Commun. ACM, 18(9):509–
517.

Brin, S., J. Davis, and H. Garcia-Molina.
1995. Copy detection mechanisms for dig-
ital documents. In ACM International
Conference on Management of Data (SIG-
MOD 1995).

Chierichetti, Flavio, Alessandro Panconesi,
Prabhakar Raghavan, Mauro Sozio,
Alessandro Tiberi, and Eli Upfal. 2007.
Finding near neighbors through cluster
pruning. In PODS ’07: Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of
database systems, pages 103–112, New
York, NY, USA. ACM.

Ciaccia, Paolo, Marco Patella, and Pavel
Zezula. 1997. M-tree: An efficient ac-
cess method for similarity search in met-
ric spaces. In Matthias Jarke, Michael J.
Carey, Klaus R. Dittrich, Frederick H. Lo-
chovsky, Pericles Loucopoulos, and Man-
fred A. Jeusfeld, editors, VLDB, pages
426–435. Morgan Kaufmann.

Gionis, Aristides, Piotr Indyk, and Rajeev
Motwani. 1999. Similarity search in high
dimensions via hashing. In VLDB ’99:
Proceedings of the 25th International Con-
ference on Very Large Data Bases, pages
518–529, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Grieve, Jack. 2007. Quantitative authorship
attribution: An evaluation of techniques.
Lit Linguist Computing, 22(3):251–270,
September.

Hoad, Timothy C. and Justin Zobel. 2003.
Methods for identifying versioned and pla-
giarized documents. J. Am. Soc. Inf. Sci.
Technol., 54(3):203–215.

Maurer, Hermann, Frank Kappe, and Bi-
lal Zaka. 2006. Plagiarism - a survey.
Journal of Universal Computer Science,
12(8):1050–1084.

M.E., Timmerman. 2003. Principal compo-
nent analysis (2nd ed.). i. t. jolliffe. Jour-
nal of the American Statistical Associa-
tion, 98:1082–1083, January.

Meyer zu Eissen, Sven and Benno Stein.
2006. Intrinsic plagiarism detection.
In Mounia Lalmas, Andy MacFarlane,
Stefan M. Rüger, Anastasios Tombros,
Theodora Tsikrika, and Alexei Yavlinsky,
editors, ECIR, volume 3936 of Lecture
Notes in Computer Science, pages 565–
569. Springer.

Salton, G., A. Wong, and C. S. Yang. 1975.
A vector space model for automatic index-
ing. Commun. ACM, 18(11):613–620.

Sheard, Judy, Martin Dick, Selby Markham,
Ian Macdonald, and Meaghan Walsh.
2002. Cheating and plagiarism: percep-
tions and practices of first year it students.
SIGCSE Bull., 34(3):183–187.

Tenenbaum, J. B., V. de Silva, and J. C.
Langford. 2000. A global geometric
framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323,
December.

Zhong, Shi. 2005. Efficient online spherical
k-means clustering. In Neural Networks,
2005. IJCNN ’05. Proceedings. 2005 IEEE
International Joint Conference on, vol-
ume 5, pages 3180–3185 vol. 5, July-4
Aug.

External and Intrinsic Plagiarism Detection Using Vector Space Models 55

Intrinsic Plagiarism Detection using Complexity Analysis

Leanne Seaward and Stan Matwin
University of Ottawa

2096 Madrid Avenue, Ottawa, ON,K2J 0K4
leanne seaward@yahoo.ca, stan@site.uottawa.ca

Abstract: We introduce Kolmogorov Complexity measures as a way of extracting
structural information from texts for Intrinsic Plagiarism Detection. Kolmogorov
complexity measures have been used as features in a variety of machine learning
tasks including image recognition, radar signal classification, EEG classification,
DNA analysis, speech recognition and some text classification tasks (Chi and Kong,
1998; Zhang, Hu, and Jin, 2003; Bhattacharya, 2000; Menconi, Benci, and Buiatti,
2008; Frank, Chui, and Witten, 2000; Dalkilic et al., 2006; Seaward and Saxton,
2007; Seaward, Inkpen, and Nayak, 2008). Intrinsic Plagiarism detection uses no
external corpus for document comparison and thus plagiarism must be detected
solely on the basis of style shifts within the text to be analyzed. Given the small
amount of text to be analyzed, feature extraction is of particular importance. We
give a theoretical background as to why complexity measures are meaningful and we
introduce some experimental results on the PAN’09 Intrinsic Plagiarism Corpus. We
show complexity features based on the Lempel-Ziv compression algorithm slightly
increase performance over features based on normalized counts. Furthermore we
believe that more sophisticated compression algorithms which are suited to com-
pressing the English language show great promise for feature extraction for various
text classification problems.
Keywords: plagiarism, Kolmogorov, complexity, compression, machine learning

1 Introduction

Intrinsic plagiarism analysis involves analyz-
ing a document for style changes which would
suggest that certain passages have been writ-
ten by a different author and are therefore
plagiarized. It is closely related to author-
ship attribution and stylometry (Stamatatos,
Fakotakis, and Kokkinakis, 2000; Stein and
Meyer zu Eissen, 2007). Intrinsic plagia-
rism analysis is a very challenging problem
because one has a small amount of text for
global analysis and one must locally analyse
very small portions or chunks of that text
for style shifts. Authorship attribution nor-
mally uses several documents for author fin-
gerprinting and tests possible authorship on
an entire text document.

Because of the limited data available for
this task and the difficulty of the problem,
feature extraction is very important. Pla-
giarism analysis tools and authorship attri-
bution models attempt to fingerprint an au-
thor’s individual writing style using style fea-
tures such as normalized counts of lexical and
vocabulary richness features such as nouns,
verbs, stop words, syllables per word etc (Sta-
matatos, Fakotakis, and Kokkinakis, 2000;
Stein and Meyer zu Eissen, 2007). In addi-

tion one may analyze a document for topic or
cohesion words. One may also use readabil-
ity indexes to determine if the level of writing
shifts (Stein and Meyer zu Eissen, 2007).

Features are extracted globally (for the en-
tire document) and then locally (per sentence
or paragraph chunk). With the exception of
n-gram methods, the text is generally viewed
as a bag-of-words and structure is ignored.
We introduce a method of using compression
to extract Kolmogorov complexity features
which contain information about the struc-
ture of style features within the text. Ex-
tracting such features is scalable and com-
plexity features can be used in state-of-the-
art machine learning algorithms such as Sup-
port Vector Machines, Neural Networks and
Bayesian Classifiers. The small text sam-
ple makes complexity analysis more difficult
than for the authorship attribution problem.
However, this method still shows promise and
given the difficulty of the problem, a modest
improvement is still important.

2 Introduction to Plagiarism
Detection

There are two main types of plagiarism anal-
ysis - Intrinsic and Extrinsic. Extrinsic pla-

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 56-61, 2009.

giarism analysis compares the document of
interest to a corpus of reference documents
(web pages, text books etc.) and tries to
find passages which were copied from the ref-
erence collection. In contrast, intrinsic pla-
giarism detection uses no reference collection
and tries to determine plagiarized passages
by analyzing style changes within the docu-
ment. Intrinsic plagiarism detection is closely
related to author fingerprinting or stylome-
try.

Most research in plagiarism analysis fo-
cuses on extrinsic plagiarism analysis. If one
assumes that the reference collection is com-
plete, then extrinsic plagiarism analysis is a
somewhat easier problem due to the fact that
one must simply find the match between the
plagiarized passage and the corresponding
passage in the reference collection. The dif-
ficulty lies in reducing the computation time
and detecting obfuscation attempts.

Obtaining a reference collection of all pos-
sible sources of plagiarism is impossible. Not
all books are in electronic format and index-
ing all books for inclusion in such a corpus is
a formidable task. There is always the pos-
sibility that a student has plagiarized from
a document which is not available for index-
ing such as a paper from another student at
another university.

One imagines that a robust plagiarism
analysis tool would use both intrinsic and ex-
trinsic plagiarism analysis. This is similar to
the way a human expert such as a teacher
or professor would analyze student papers for
plagiarism. One may also use intrinsic plagia-
rism analysis to pre-select suspicious passages
which can then be passed to an extrinsic pla-
giarism detector. It is always more desirable
to have access to the plagiarized document
as this removes all doubt as to the suspected
plagiarism.

Intrinsic plagiarism analysis is related to
authorship attribution and generally uses
stylometry features which may consist of nor-
malized counts of lexical features such as
nouns and verbs as well as measures such
as average sentence length and average word
length. Intrinsic plagiarism detection may
also use readability indexes and as measures
which compute the divergence of the distribu-
tion of lexical elements to the expected prob-
ability distribution. With the exception of
readability indexes, features are extracted as
if each chunk in the text is a bag-of-words.

Humans do not read or write Bags-of-words
and so this approach is counterintuitive and
loses information.

The need arises for a way of measuring
structure of a text in a meaningful way which
can be used as a feature in style analysis. It
is also necessary that such a measure can be
computed in an efficient and scalable manner.

The structure which we are measuring
must be meaningful for the classification task
at hand. We propose Kolmogorov Complex-
ity measures as a way of measuring structural
complexity of lexical elements in order to fin-
gerprint author style.

3 Kolmogorov Complexity
Measures

This paper introduces Kolmogorov complex-
ity measures as style features in intrinsic pla-
giarism analysis. The basic idea is that each
segment of text has a distribution with re-
spect to a set of word classes. For example
with respect to the word class noun – the
text has a distribution of noun words and
non-noun words. This can be though of as
a binary string which has a 1 for each noun
word and a 0 for each non-noun word. This
binary string represents the distribution of
noun words in the text.

For example, suppose we have the string:
“Billy walked the dog yesterday.” The nouns
are “Billy” and “dog”, the noun distribution
is ’10010’. Likewise the only verb is “walked”
so the verb distribution is ’01000’. Similarly
if we look at short words (those with one
syllable) vs. long words the distribution is
’11001’. There is a different distribution for
any possible class of word type.

In Figure 1 we see how a text can be de-
composed into a representation for each word
class. Once we have this decomposition we
would then like to quantify the structure for
use in a machine learning algorithms.

Two sentences may have the same ratio
for a particular feature but the distribution
could be different. Suppose two sentences
have the following structure for short words
vs. long words.

010000111101000010001111010000001
000000001111110000001110000001111

Both representations have the same num-
ber of long vs. short words (0 vs. 1) but the

Intrinsic Plagiarism Detection Using Complexity Analysis 57

Figure 1: Decomposing a sentence into a variety of word class distributions for complexity
analysis

first representation is more random and com-
plex than the second. It is desirable to quan-
tify this degree of randomness or complexity.
One such method of doing so is Kolmogorov
complexity measures.

4 Kolmogorov Complexity

Kolmogorov complexity, also known as al-
gorithmic entropy, stochastic complexity,
descriptive complexity, Kolmogorov-Chaitin
complexity and program-size complexity, is
used to describe the complexity or de-
gree of randomness of a binary string. It
was independently developed by Andrey N.
Kolmogorov, Ray Solomonoff and Gregory
Chaitin in the late 1960’s (Li and Vitanyi,
1997).

In computer science, all objects can be
viewed as binary strings. Thus we will re-
fer to objects and strings interchangeably in
this discussion. The Kolmogorov complexity
of a binary string is the length of the short-
est program which can output the string on
a universal Turing machine and then stop (Li
and Vitanyi, 1997).

It is impossible to compute the Kol-
mogorov complexity of a binary string. How-
ever there have been methods developed to
approximate it. The Kolmogorov complexity
of a string x, denoted as K(x), can be approx-
imated using any lossless compression algo-
rithm (Li and Vitanyi, 1997). A compression
algorithm is one which transforms a string A,
to another shorter string, B. The associated
decompression algorithm transforms B back
into A or a string very close to A. A lossless

compression algorithm is one in which the de-
compression algorithm exactly computes A
from B and a lossy compression algorithm is
one in which A can be approximated given
B. When Kolmogorov Complexity, or K(x),
is approximated, this approximation corre-
sponds to an upper-bound of K(x) (Li and
Vitanyi, 1997). Let C be any compression
algorithm and let C(x) be the results of com-
pressing x using C. The approximate Kol-
mogorov complexity of x, using C as a com-
pression algorithm, denoted Kc(x), can be
defined as follows:

Kc(x) =
Length(C(x))

Length(x)
+ q

where q is the length in bits of the program
which implements C. In practice, q is usu-
ally ignored as it is not useful in comparing
complexity approximations and it varies ac-
cording to which programming language im-
plements C. If C was able to compress x a
great deal then Kc(x) is low and thus x has
low complexity. Likewise if C could not com-
press x very much then Kc(x) is high and x
has high complexity.

5 Compression Algorithms and
Kolmogorov Complexity
Analysis

Kolmogorov complexity can be computed us-
ing any lossless compression algorithm. Once
the text to be analyzed has been converted
into a binary form related to a particular
word class distribution, one simply applies a

58 Leanne Seaward and Stan Matwin

compression algorithm to determine the de-
gree to which it is compressed. If it com-
presses a great deal then complexity is high
and vice versa.

Our previous research has used generic
compression algorithms such as run-length
encoding and Lempel-Ziv (Zlib) compression.
For this intrinsic plagiarism detection task,
Zlib compression was used. It may be es-
pecially interesting to investigate compres-
sion algorithms which assume prior knowl-
edge about the probabilities of lexical fea-
tures or which are designed to maximize com-
pression for language texts in a particular
language.

Frank et al. (2000) investigated text cate-
gorization using statistical data compression
techniques. They use a corpus of two classes
of documents and train a statistical com-
pression tool (prediction by partial matching
or PPM) using each corpus. They attempt
to classify documents by determining which
compression model compresses it the most.
They conclude that data compression tech-
niques perform well but are inferior to state of
the art machine learning techniques such as
SVM or Neural Nets. No attempt was made
to merge compression features with machine
learning algorithms.

Thus we have three possibilities for com-
pression algorithms:

1. An algorithm which assumes no prior
knowledge and which can be used for any
compression task, text or otherwise.

2. An algorithm which has some knowledge
or prior probabilities and is trained for a
specific compression task (such as com-
pressing English text).

3. An algorithm which is specifically
trained with respect to a corpus which
corresponds to a class which we want to
predict. This is very closely related to
Kolmogorov Similarity Metrics.

The question arises as to whether all or
any of these compression algorithms yield
meaningful features and if so why. Com-
pression analysis for machine learning has
been done in a wide variety of fields. In
fact much of the research has been done by
those outside of machine learning who may or
may not even know they are performing ma-
chine learning and who seem to have done lit-
tle research into compression and complexity

analysis and have no idea why their method
works, only that it does.

Compression/complexity analysis has
been used in many classification tasks such
as image recognition, radar signal classifi-
cation, EEG classification, DNA analysis,
speech recognition and some text classifica-
tion tasks (Chi and Kong, 1998; Zhang, Hu,
and Jin, 2003; Bhattacharya, 2000; Menconi,
Benci, and Buiatti, 2008; Frank, Chui, and
Witten, 2000; Dalkilic et al., 2006; Seaward
and Saxton, 2007; Seaward, Inkpen, and
Nayak, 2008).

The method proposed here is different
then those which use Kolmogorov Complex-
ity measures to compute the distance be-
tween the object to be classified and a corpus
of training data. As this is intrinsic plagia-
rism analysis there is no set of documents for
which we can find a similarity metric. We can
only compare local text to the global docu-
ment. We can use a statistical compression
algorithm and this is somewhat related to
similarity metrics but it is not the same. We
are not explicitly using the concept that “like
compresses with like”. Moreover, such com-
pression measures can be used in a variety
of machine learning algorithms such as sup-
port vector machines, neural networks and
decision trees. We can also use boosting and
meta algorithms such as bagging and AD-
Aboost. What we are doing is finding a mea-
sure for each different distribution as to how
well its complexity can be described by the
compression algorithm.

6 Using Compression to Estimate
Complexity

Suppose we have a statistical compression
model which has been trained on a variety of
English text and we compress two text sam-
ples and find that one compresses much more
than the other. This means that one text was
much more alike to general English text than
the other was.

Now suppose we extract the noun repre-
sentation of both of those texts and com-
press them using a statistical compression al-
gorithm which has been trained on noun rep-
resentations of English text. The one which
compresses the most is closer to the normal
noun distributions of English text.

What if we use a compression algorithm
that has no prior training such as Lempel-
Ziv? Is it still meaningful? The answer is

Intrinsic Plagiarism Detection Using Complexity Analysis 59

Classifier Complexity features Plagiarism Recall Precision F-measure

SVM

no yes 0.651 0.538 0.589
no no 0.615 0.719 0.663
yes yes 0.671 0.521 0.587
yes no 0.617 0.752 0.678

Neural network

no yes 0.619 0.510 0.559
no no 0.593 0.695 0.640
yes yes 0.670 0.548 0.603
yes no 0.626 0.737 0.677

Table 1: Results on using feature sets with and without complexity features with SVM and
Neural Networks.

yes because we still have an idea of the com-
plexity of the distribution of nouns. While it
does not directly relate to the norms of the
English language, it is still a meaningful mea-
sure of the complexity of that distribution.
It relates the noun distribution to some dis-
tribution which can be most efficiently com-
pressed by that compression algorithm (even
if we do not know the distribution).

Research has shown this holds true (Sea-
ward and Saxton, 2007; Seaward, Inkpen,
and Nayak, 2008). Dalkilic et al. (2006)
have shown that Lempel-Ziv compression of
text can be used to distinguish authentic text
from non-authentic or computer generated
text. They show that the compressibility of
real texts is different than that of computer
generated “nonsense” texts due to topic ad-
herence. The idea is that when one writes a
coherent text, ideas and words are repeated
to increase readability.

With respect to text and compression, de
Marcken theorizes that language learning is
essentially a compression problem (De Mar-
cken, 1996). If one has a great deal of knowl-
edge about a language then one can build a
model which maximizes the compressibility
of text written in that language. Thus the
compressibility of a text is a measure of how
closely related the compression algorithm is
to the text representation.

7 Experimental Results

The PAN 09 intrinsic plagiarism competi-
tion corpus consisted of 3091 annotated texts
for training and 3091 texts for testing pur-
poses (initially released unannotated). We
extracted normalized counts and complexity
counts for the following word classes:

Nouns Stopwords
Verbs Topic words
Pronouns Common words
Adjectives Passive words
Adverbs Active words
Prepositions Word length

Features were extracted locally and glob-
ally and the standard deviation amongst the
local features was also computed. Zlib was
used for compression.

A 50/50 training/test split was used on
the training set to analyze the performance
gained from adding complexity measures.
The results were repeated for 10 random
splits and averaged. Two classifiers were used
– Support Vector Machine (SVM) and a Neu-
ral Network. Recall and precision are calcu-
lated per text chunk not per character (see
Table 1).

For many classifiers tested such as regres-
sions trees and support vector machines the
F-measure performance gained by using com-
plexity features was less than 2%. The neu-
ral network showed the most improvement
with complexity measures as F-measure was
increased 3.7-4.4%.

Previous classification tasks such as au-
thorship attribution and spam filtering
showed better results. The problem, as it was
discovered, was the high degree of granular-
ity required by the task. Complexity analysis
does not do well with short text.

Using various feature selection tools it was
found that complexity features and normal-
ized count features were found in equal num-
bers in the highest ranked features. For ex-
ample the top 10 features as determined by
a Chi-squared feature evaluator is shown be-
low.

As one can see in Table 2, 6 out of the
10 top ranked features are complexity fea-
tures. This indicates that complexity fea-

60 Leanne Seaward and Stan Matwin

Rank Feature
1 Adjective complexity (l)
2 Adjective count (gsd)
3 Topic word complexity (g)
4 Verb word complexity (g)
5 Passive word complexity (g)
6 Active word complexity (g)
7 Preposition count (g)
8 Stop word count (gsd)
9 Avg. word length per sentence (gsd)
10 Topic word complexity (l)

Table 2: Top 10 ranked features for the in-
trinsic plagiarism task as calculated by a Chi-
squared feature evaluator. l=local, g=global,
gsd=global stantard deviation

tures are able to discriminate plagiarized vs.
non-plagiarized passages as well as or better
than normalized count features.

8 Conclusion

We introduce using compression to find fea-
tures based on Kolmogorov complexity mea-
sures. We show why compression of text and
word distributions results in meaningful fea-
tures. Results in using complexity analysis in
intrinsic plagiarism detection are promising.
Performance is increased by a small amount
and it seems as though complexity is not
contributing to over fitting. More research
needs to be done in using compression models
which have prior knowledge of the language
to be analyzed and/.or the prior probabilities
of word classes. This would result in more
meaningful complexity features which would
likely aid in the difficult task of intrinsic pla-
giarism detection.

References

Bhattacharya, J. 2000. Complexity analysis
of spontaneous EEG. Acta Neurobiologiae
Experimentalis, 60(4):495–501.

Chi, Z. and J. Kong. 1998. Image content
classification using a block Kolmogorov
complexity measure. In Proceedings of the
Fourth International Conference on Signal
Processing ICSP 1998, Beijing, China.

Dalkilic, M. M., W. T. Clark, J. C. Costello,
and Radivojac P. 2006. Compression
to Identify Classes of Inauthentic Texts.
In Proceedings of the SIAM International

Conference on Data Mining SDM 2006,
Bethesda, MD.

De Marcken, C. 1996. Unsupervised
language acquisition. Phd thesis,
Michigan Institute of Technology.
http://www.demarcken.org/carl/papers/
PhD.pdf.

Frank, E., C. Chui, and I. H. Witten.
2000. Text categorization using compres-
sion models. In Proceedings of DCC-
00, IEEE Data Compression Conference,
pages 200–209, Snowbird, USA. IEEE
Computer Society Press.

Li, M. and P. Vitanyi. 1997. An Introduction
to Kolmogorov Complexity and its Appli-
cations. Springer Verlag, Berlin, second
edition.

Menconi, G., V. Benci, and M. Buiatti. 2008.
Data compression and genomes: a two-
dimensional life domain map. Journal of
Theoretical Biology, 253(2):281–288.

Seaward, L., D. Inkpen, and A. Nayak. 2008.
Using the Complexity of the Distribution
of Lexical Elements as a Feature in Au-
thorship Attribution. In Proceedings of
6th International Conference on Language
Resources and Evaluation LREC, Mar-
rakech, Morocco.

Seaward, L. and L. V. Saxton. 2007.
Filtering spam using Kolmogorov com-
plexity measures. In Proceedings of the
2007 IEEE International Symposium on
Data Mining and Information Retrieval
(DMIR-07), Niagara Falls.

Stamatatos, E., N. Fakotakis, and G. Kokki-
nakis. 2000. Automatic Text Categoriza-
tion in Terms of Genre and Author. Com-
putational Linguistics, 26(4):461–485.

Stein, B. and Sven Meyer zu Eissen. 2007.
Intrinsic plagiarism analysis with meta-
learning. In Proceedings of the SIGIR
2007 International Workshop on Plagia-
rism Analysis, Authorship Identification,
and Near-Duplicate Detection, PAN 2007,
Amsterdam, Netherlands.

Zhang, G., L. Hu, and W. Jin. 2003.
Complexity feature extraction of radar
emitter signals. In Environmental Elec-
tromagnetics, 2003. Proceedings of the
Asia-Pacific Conference on Environmen-
tal Electromagnetics CEEM 2003, pages
495–498.

Intrinsic Plagiarism Detection Using Complexity Analysis 61

Ordinal measures in authorship identification∗

Liviu P. Dinu
University or Bucharest, Faculty of

Mathematics and Computer Science,
14 Academiei, Bucharest, Romania,

ldinu@funinf.cs.unibuc.ro

Marius Popescu
University or Bucharest, Faculty of

Mathematics and Computer Science,
14 Academiei, Bucharest, Romania,

mpopescu@phobos.cs.unibuc.ro

Abstract: The goal of this paper is to compare a set of distance/similarity measures,
regarding theirs ability to reflect stylistic similarity between authors and texts. To
assess the ability of these distance/similarity functions to capture stylistic similarity
between texts, we tested them in one of the most frequently employed multivariate
statistical analysis settings: cluster analysis. The experiments are done on a corpus
of 30 English books written by British, American and Australian writers.
Keywords: authorship identification, ordinal measures

1 Introduction

The authorship identification problem is an
ancient and omnipresent challenge, and al-
most in every culture there are a lot of dis-
puted works (Shakespeare’s plays, Moliere vs.
Corneille (Labbe and Labbe, 2001), Feder-
alist Papers (Mosteller and Wallace, 2007),
etc.). The problem of authorship identi-
fication is based on the assumption that
there are stylistic features that help distin-
guish the real author from any other possi-
bility. Literary-linguistic research is limited
by the human capacity to analyze and com-
bine a small number of text parameters, to
help solve the authorship problem. We can
surpass limitation problems using computa-
tional methods, which allow us to explore
various text parameters and characteristics
and their combinations. Using these meth-
ods (van Halteren et al., 2005) have shown
that every writer has a unique fingerprint re-
garding language use. The set of language
use characteristics - stylistic, lexical, syntac-
tic - form the human stylom.

Because in all computational stylistic
studies/approaches, a process of comparison
of two or more texts is involved, in a way or
another, there was always a need for a dis-
tance/similarity function to measure similar-
ity (or dissimilarity) of texts from the stylis-
tic point of view. These measures vary a lot,
and in the last years a series of different tech-
niques were used in authorship identification:
approaches based on string kernel (Dinu, et

∗ Research supported by CNCSIS, PN2-Idei project
228

al., 2008), SVM based on function words fre-
quencies (Koppel et. al., 2007), standard
distances or ordinal distances (Popescu and
Dinu, 2008).

The goal of this paper is to compare a
set of distance/similarity measures, regard-
ing theirs ability to reflect stylistic similarity
between texts.

As style markers we have used the func-
tion words frequencies. Function words are
generally considered good indicators of style
because their use is very unlikely to be un-
der the conscious control of the author and
because of their psychological and cognitive
role (Chung and Pennebaker, 2007). Also
function words prove to be very effective in
many author attribution studies.

The distance/similarity between two texts
will be measured as distance/similarity be-
tween the function words frequencies corre-
sponding to the respective texts. For this
study we selected some similarity/distance
measures. We started with the most natural
distance/similarity measures: euclidean dis-
tance and (taking into account the statistical
nature of data) Pearson’s correlation coeffi-
cient. Since function words frequencies can
also be viewed as ordinal variables, we also
considered for comparison some specific sim-
ilarity measures: Spearman’s rank-order co-
efficient, Spearman’s footrule, Goodman and
Kruskal’s gamma, Kendall’s tau.

To assess the ability of these dis-
tance/similarity functions to capture stylistic
similarity between texts, we have tested them
in one of the most frequently employed mul-
tivariate statistical analysis settings: cluster

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 62-66, 2009.

analysis. Clustering is a very good test bed
for a distance/similarity measure behavior.
We plugged the distance/similarity measures
selected for comparison into a standard hier-
archical clustering algorithm and applied it
to a collection of 30 nineteenth century En-
glish books. The family trees thus obtained
revealed a lot about the distance/similarity
measures behavior.

The main finding of our comparison
is that the similarity measures that treat
function words frequencies as ordinal vari-
ables performed better than the others dis-
tance/similarity measures. Treating function
words frequencies as ordinal variables means
that in the calculation of distance/similarity
function the ranks of function words accord-
ing to their frequencies in text will be used
rather than the actual values of these fre-
quencies. Usage of the ranking of func-
tion words in the calculation of the dis-
tance/similarity measure instead of the ac-
tual values of the frequencies may seem
as a loss of information, but we consider
that the process of ranking makes the dis-
tance/similarity measure more robust acting
as a filter, eliminating the noise contained in
the values of the frequencies. The fact that a
specific function word has the rank 2 (is the
second most frequent word) in one text and
has the rank 4 (is the fourth most frequent
word) in another text can be more relevant
than the fact that the respective word ap-
pears 34% times in the first text and only
29% times in the second.

In the next section we present the dis-
tance/similarity measures involved in the
comparison study, section 3 briefly describes
the cluster analysis, and in section 4 and 5
are presented the experiments, the results ob-
tained, and suggestions for future work.

2 Similarity Measures

If we treat texts as random variables whose
values are the frequencies of different words
in the respective texts, then various statisti-
cal correlation measures can be used as sim-
ilarity measures between that texts. For two
texts X and Y and a fixed set of words
{w1, w2, . . . , wn} let denote by x1 the rela-
tive frequency of w1 in X, by y1 the relative
frequency of w1 in Y and so on by xn the rel-
ative frequency of wn in X, by yn the relative
frequency of wn in Y .

The Pearson’s correlation coefficient is:

r =

n∑
i=1

(
xi−x

sx

) (
yi−y
sy

)

n − 1

where x is the mean of X, y the mean of
Y , sx and sy are the standard deviation of
X, Y , respectively (Upton and Cook, 2008).
The correlation coefficient measures the ten-
dency of two variables to change in value to-
gether (i.e., to either increase or decrease).
r is related with the Euclidean distance, the√

2(1 − r) being the Euclidean distance be-
tween the standardized versions of X and Y .

The random variables X, Y representing
texts can also be treated as ordinal data, in
which data is ordered but cannot be assumed
to have equal distance between values. In this
case the values of X (and respectively Y) will
be the ranks of words {w1, w2, . . . , wn} ac-
cording to their frequencies in text X rather
than of the actual values of these frequen-
cies. The most common correlation statistic
for ordinal data is Spearman’s rank-order co-
efficient (Upton and Cook 2008):

rsc = 1 − 6
n(n2 − 1)

n∑

i=1

(xi − yi)2

To be noted that, this time, xi, yi are ranks
and actually, the Spearman’s rank-order coef-
ficient is the Pearson’s correlation coefficient
applied to ranks. The Spearman’s footrule is
the l1-version of Spearman’s rank-order coef-
ficient:

rsf = 1 − 3
n2 − 1

n∑

i=1

|xi − yi|

Another set of correlation statistics for
ordinal data are based on the number of
concordant and discordant pairs among two
variables. The number of concordant pairs
among two variables X and Y is P = |{(i, j) :
1 ≤ i < j ≤ n, (xi − xj)(yi − yj) > 0}|. Sim-
ilarly, the number of discordant pairs is Q =
|{(i, j) : 1 ≤ i < j ≤ n, (xi − xj)(yi − yj) <
0}|.

Goodman and Kruskal’s gamma(Upton
and Cook 2008) is defined as:

γ =
P − Q

P + Q

Kendall developed several slightly differ-
ent types of ordinal correlation as alterna-
tives to gamma. Kendall’s tau-a(Upton and

Ordinal Measures in Authorship Identification 63

Cook 2008) is based on the number of con-
cordant versus discordant pairs, divided by a
measure based on the total number of pairs
(n = the sample size):

τa =
P − Q
n(n−1)

2

Kendall’s tau-b(Upton and Cook 2008) is
a similar measure of association based on con-
cordant and discordant pairs, adjusted for
the number of ties in ranks.It is calculated
as (P −Q) divided by the geometric mean of
the number of pairs not tied on X (X0) and
the number of pairs not tied on Y (Y0):

τb =
P − Q√

(P + Q + X0)(P + Q + Y0)

All the above three correlation statistics
are very related, if n is fixed and X and Y
have no tied, then P , X0 and Y0 are com-
pletely determined by n and Q.

3 Clustering Analysis

An agglomerative hierarchical clustering al-
gorithm (Duda et. al. 2001) arranges a set of
objects in a family tree (dendogram) accord-
ing to their similarity, similarity which in its
turn is given by a distance function defined on
the set of objects. The algorithm initially as-
signs each object to its own cluster and then
repeatedly merges pairs of clusters until the
whole tree is formed. At each step the pair of
nearest clusters is selected for merging. Var-
ious agglomerative hierarchical clustering al-
gorithms differ in the way in which they mea-
sure the distance between clusters. Note that
although a distance function between objects
exists, the distance measure between clusters
(set of objects) remains to be defined. In our
experiments we used the complete linkage dis-
tance between clusters, the maximum of the
distances between all pairs of objects drawn
from the two clusters (one object from the
first cluster, the other from the second).

4 Experiments

In Popescu and Dinu (2009) we have com-
pared the set of distance/similarity mea-
sures described here on a collection of 21
nineteenth century English books written by
10 different authors and spanning a variety
of genre (the same set of books were used

Group Author Book

American Hawthorne Dr. Grimshawe’s Secret

Novelists House of Seven Gables

Melville Redburn

Moby Dick

Cooper The Last of the Mohicans

The Spy

Water Witch

American Thoreau Walden

Essayists A Week on Concord

Emerson Conduct Of Life

English Traits

British Shaw Pygmalion

Playwrights Misalliance

Getting Married

Wilde An Ideal Husband

Woman of No Importance

Bronte Anne Agnes Grey

Sisters Tenant Of Wildfell Hall

Charlotte The Professor

Jane Eyre

Emily Wuthering Heights

Australian B. Baynton Bush Studies

Novelists Human Toll

Henry Joe Wilson and His Mates

Lawson On the Track

While the Billy Boils

Miles My Brilliant Career

Franklin Some Everyday Folk and Dawn

Up the Country: A Saga of...

Back to Bool Bool

Table 1: The books used in experiments

by Koppel et al. (2007) in their author-
ship verification experiments). The experi-
ments have shown that the similarity mea-
sures that treat function words frequencies
as ordinal variables (Spearman’s rank-order
coefficient, Spearman’s footrule, Goodman
and Kruskal’s gamma, Kendall’s tau) per-
formed better than the distance/similarity
measures that use the actual values of func-
tion words frequencies (Euclidean distance,
Pearson’s correlation coefficient).

The aim of the actual experiments was
two-folded. Firstly we wanted to see if the
findings in Popescu and Dinu (2009) are con-
firmed in the case of a larger set (more au-
thors, more books) and secondly to further
investigate the ability of some of the simi-
larity measures (Spearman’s rank-order co-
efficient, Goodman and Kruskal’s gamma,
Kendall’s tau) to distinguish between the dif-
ferent nationality of English language writers
by adding to the data set works of Australian
writers from the same period. To the original
data set of Koppel et al. (2007) we added 9
works of three Australian authors from the
same period, resulting a data set of 30 books
and 13 authors (Table 1).

To perform the experiments, a set of words
must be fixed. The most frequent func-
tion words may be selected or other crite-
ria may be used for selection. In all our ex-
periments we used the set of function words
identified by Mosteller and Wallace (2007) as
good candidates for author-attribution stud-

64 Liviu P. Dinu and Marius Popescu

ies. We used the agglomerative hierarchical
clustering algorithm coupled with the various
distance similarity function employed in the
comparison to cluster the works in Table 1.

The dendrograms obtained sustain the re-
sults of Popescu and Dinu (2009). The re-
sulted dendrograms for Euclidean distance
and Pearson’s correlation coefficient (not
shown because of lack of space) are very sim-
ilar, which is no surprise taking into account
the close relation between the two measures
(see section 2.1). The problem of these fam-
ily trees is that the works of Melville are not
grouped together: one being clustered with
the essays of Thoreau (Moby Dick) and the
other with the novels of Hawthorne. Also,
”My Brilliant Career” of M. Franklin is clus-
tered with the novels of Charlotte Bronte.
Apart from authorship relation, the dendro-
grams reflect no other stylistic relation be-
tween the works (like grouping the works ac-
cording to genre or nationality of the authors:
American / English / Australian).

Spearman’s rank-order coefficient, Good-
man and Kruskal’s gamma and Kendall’s tau
produced the same dendrogram (modulo the
scale).Figure 1 shows the dendrogram for
Kendall’s tau. The dendrogram is perfect:
all works are clustered according to theirs
author. The nationality of the authors is
not reflected in the dendrogram (the authors
with the same nationality are not clustered
together).

We performed a series of experiments to
test in which cases the nationality of the au-
thors can be revealed by a stylistic similar-
ity measure. If only British and Australian
writers are selected, the Kendall’s tau pro-
duced the dendrogram presented in Figure
2. As can be seen the first two branches
correspond to the nationality of the authors:
British writers on upper branch, Australian
writers on lower branch. The same thing hap-
pen when British and American writers are
selected. Again, the writers are clustered ac-
cording to their nationality: this time, the
British writers on lower branch and Ameri-
can writers on upper branch. But when the
subset of American and Australian writers is
clustered using Kendall’s tau, the national-
ity of the writers is no longer reflected in the
family tree produced. The works of each au-
thor are clustered together, but there are no
clear branches corresponding to the two na-
tionalities.

5 Future Work

In this paper we have compared a set of mea-
sures, regarding theirs ability to reflect stylis-
tic similarity between texts. In future work it
would be interesting to compare these mea-
sures to other possible similarity measures. If
the frequencies of different words in the texts
are treated as probability distributions in-
stead as random variables, specific measures
can be applied: Kullback-Liebler Divergence
or Cross Entropy.

References

C. K. Chung, and J. W. Pennebaker. 2007.
The psychological function of function
words. In K. Fiedler, ed., Social commu-
nication: Frontiers of social psychology,
343−359. Psychology Press, New York.

L.P. Dinu, M. Popescu and A. Dinu. 2008.
Authorship Identification of Romanian
Texts with Controversial Paternity. Proc.
LREC 2008, Marrakech, Morocco.

R. O. Duda, P. E. Hart, and D. G. Stork.
2001. Pattern Classification (2nd ed.).
Wiley-Interscience Publication.

H. van Halteren, M. Haverkort, H. Baayen,
A. Neijt, and F. Tweedie. 2005. New ma-
chine learning methods demonstrate the
existence of a human stylome. Journal of
Quantitative Linguistics, 12:65−77.

M. Koppel, J. Schler, and E. Bonchek-
Dokow. 2007. Measuring differentiabil-
ity: Unmasking pseudonymous authors.
J. of Machine Learning Research, 8,1261
−1276.

C. Labbe and D. Labbe. 2006. A tool for lit-
erary studies: Intertextual distance and
tree classification. Literary and Linguistic
Computing, 21(3):311−326.

F. Mosteller and D.L. Wallace. 2007. Infer-
ence and Disputed Authorship: The Fed-
eralist. CSLI Publications, Stanford.

M. Popescu, L.P.Dinu, 2008. Rank Distance
as a Stylistic Similarity. Proceedings COL-
ING 2008, Manchester, UK

M. Popescu, L.P.Dinu, 2009. Comparing
Statistical Similarity Measures for Stylis-
tic Multivariate Analysis. Proceedings
RANLP 2009, Borovets, Bulgaria

G. Upton and I. Cook. 2008. A Dictionary of
Statistics. Oxford Univ. Press, Oxford.

Ordinal Measures in Authorship Identification 65

Figure 1: Dendrogram of 30 nineteenth century English books (Kendal’s tau)

Figure 2: Dendrogram of British and Australian writers (Kendal’s tau)

66 Liviu P. Dinu and Marius Popescu

�������	
��
��
	���
���������
�����
	��

��
�������	
������	

��
��
	���
����������
��������

��	��
�
��������

�������	
���

�������	
������������
��	
��
�
�����
�����

����������������
�!

����	
���
"#��
��$����
������%��
$#�
%����
����������
�&
��!�$��
���������'
��$��$���
��&$(���	
�$�

'�$#���
 ���
 $#�
 ��!�$��'���!���
 $#�$
 ���
%�
 �������
 ��
�����
 $�
 �&&��$�����
������
 �!�#

��&$(���

 �!��	���
���������'
��$��$���	
���������'	
��!�$��
���������'
��$��$���
��&$(���	
���������'

��$��$���
'�$#���

� ��������	
��
�
�������	�����
��
��

�����

��������
������������� �

��	��������	

"�" #��
��������!
��
��
��
	���
���������

������$
���������
��
%�	
���
�

����
����

)��������'
 ��$��$���
 ���
 ������$���
 %���'��

��
 �'���$��$
 ���!�
 ��
 ���������
 #��#��

��!��$�����
���$�$!$����

"#���
� ��$�
�
�!'%��

�&
�������
$#�$
������
$#�
�����'��
���#����$�

���%��'

 "#�
 �����
 ������
 �&
 ��&��'�$���

$��#������
 ���
 $#�
 ��$����$
 ��
 ���$��!���
 #��

����#��
$#�
'� �'!'
������
����
�!����
 $#�

�����$
�����
�&
���+��,

�!�$������
%�
 $#�

���!&&�����$
� ��������
�&
$#�
$���#���
��������

��
 ����$���
 $�
 $#�
 ��$����$
 $��#��������
 ���

���������'
��$��$���
'�$#���
 ��
 ���$��!���	
 �$

���!�$��
 ��
 ����
�&
 ���$���
 ����
 $#�
 �$!���$�-

(��$$��
 ������'��$�
 .!���$�

 "#��
 ��$��$
 $���

��!���
 $#�
 �������'��$
 ���
 ��$�!�!�$���
 �&

��&&����$
 ���������'
 ��$��$���
 ���
 ������$���

��&$(���
 ���!$����
 ���
 $#���
(���
 ��$����$���

��$�
$#�
�$!��
�������
��
��&&����$
��!��$�����

��$�%���#''��$�
���
����
$#�
��!�$��

� ������
����������	
��
�
������

	������
������������
�������
��

��������	
��
�
�������

����	

&�" �������	
��
��
	���
���������

�����
	��

/��
 �&
 $#�
 '��$
 ��$����$���
 �����$�
 �&
 $#�

���������'
 ��$��$���
 ��
 $#�
 $����$���
 �&
 $#�

&��'��
���0
��
$#�
&��$
$#�$
�������
�$!���$�-

�"
��'��$����
��
'!�#
#��#��
$#��
$#�$
�&
$#�

$���#���

"#��
��!���
 $#�
�!'%��
�&
�����
�&

�������
��&$(���
%����
���������
%�
�$!���$�
��

�
��!�$��'���!��
$�
&��#$
���������'
��$��$���

��������
 ���
 ��&$(���
 ���!$����

 /��
 �&
 $#�

� �'����
 $�
 '��$���
 ���
 12�$�)�����$3�����4

"#�
 � ��$
 $�$��
 �&
 $#�
 ��&$(���
 ��
0!�����
 ��

156789:5;857
<8::=>4

�$
��
�
�������
$� $
���$+

����������
 �������$���
 $#�$
 !���
 �&&��$���

������$#'�
$#�$
1�#!&&��4
��
�$#��(���
����'%��

$#�
$����$
$� $
!����
��&&����$
'�$#���
$�
������

$#�
&���������$
�����#
!������
%�
1%�������
!�4

$#�
�����$!���
 $#�$
���
������$��
 &��
 ���� ���

���
�����#

&�& ������	
��
��
	���
���������

���	�����

��'�
 ����������
 !���
 ���

12�$�)�����$3�����4
���
��'����
$�
$#�
����
!���

��
$#�
10����'
)��������$4
$#�$
(��
���������

&��
$#�
)2?�@
���������'
��$��$���
��'��$�$���

$�
�������
�%&!���$��
���������'
���$����	
��'�

�&
 $#���
������$#'�
���
�������
���
��'�
���

�������$
 $�
 ��������
 ����!����
 ����

 &��

� �'���
 A
 $#�
 ��
 ������
 1B�������
 $�
C�����#

�!%�$�$!$���4

"#�
���$��!���
'�$#��
�'�����
�

�!%�$�$!$���
 �&
 ��'�
 ��
 ���
 �&
 $#�
 ���$��!���

�#����$��
 ��
 �#����$���
 &��'
 $#�
 ��$���
 $� $

���#�%�$
&��
$#���
��$��
�.!������$
$#�$
#��
$#�

��'�
 ���!��
 �#���

 "#��
 '�$#��
 %�����
 $#�

&���������$
 �����$!��
 ���
 ��'����
 ���!����

!���$��$�%��
 �&
 $#�
 �����$���$���
 ��
����
%�
�

#!'��
�����(��

D��
� �'����

0!�����
1E4
A
��$��
FC�����#G
1�4

���������
1H4
A
��$��
FC�����#G
1 4

C �'����
#�
��

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 67-68, 2009.

"#�
 ��$$��
 1�4
 ��
 $#�
 (���
 1"���$4
 ��
 ��$

C�����#	
%!$
0!�����

"#��
 ���$��!���
 '�$#��
 ���
 %�

�'���'��$��
 ���
 ��
'��������
 � ����$��
 ��
 �

���$��!���
 ��&$(���
 �������'��$	
 &��
 � �'���

�������&$
I���

�$
�����$
%�
 �'���'��$��
��

�����
$� $
���
��&&����$
���!'��$
&��'�$�
$#�$

����
��$
�!����$
$#�
��.!����
&!��$������$�

"#��
�������
$�
�
�!'%��
�&
����!����

$#�$
 �#���
 $#�
 ��'�
 ����#����
 ���#�%�$
 F��

���$�����
�#���G�
0!�����	
���������	
J����!����

���
 ��'�
 �$#���

 "#��
 '�$#��
 ���
 %�

��$��$�����
 �������
 $�
 ���
 �������$
 ����!����

$#�$
 �#���
�$
 ����$
 �
����
�&
���!����
 ����$����

�#����$���

"#�
�$#��
�������
'�$#��
$#�$
��
(�����

!���
%�
 $#�
'���&���$���
�&
 1��$�+���������'+

������4
 ��
 ����
'���
 ��������	
 �$
 ��
 ������
 A

1(#�$�
 ����+�#����$��
 �����$���4

 "#�
 ����
 �&

$#��
�%&!���$���
'�$#��
��
��'���
���
�&&��$���

������$
 $#�
 �!$�'�$��
 ���������'
 ��$��$���

���$�'�
 ���
 �����
 ���!����
 #���
 $�
 ���$
 A
 �

�����
%�$(���
���
(����
��
&�����
(�$#
�
������

�#����$��
��
�
����
�&
�����'
�#����$���
$#�$
���

��$��
�������
��
(#�$�

"#��
��'���$���
���$��$�

$#�
 ��'��$��
 �$�!�$!��
 �&
 $#�
 ���$����
 %!$

��'����
���!����
!���$��$�%��

"�
���!�$��$�
$#��

'�$#��
$#�
&����(���
� �'���
���
%�
�#�(��

/�������
$� $�
 '
����

�����

����'%���
$� $�
'$����$
�����

"#�
 ����'%���
 $� $
 ���$����
�#����$��

1 4
 F���
 &��
 $#�
 ����
 �&
 $#�
 � �'���
 �$
 ��

�������
 ��
����
 ���$���
�&
(#�$�G
��
�
1(#�$�

����+�#����$��4
 $#�$
 ��
 �����$��
 %�$(���
 $#�

(����

�$
#��
(#�$�
��
�$�
%������!��
�����
$#�$

'����
�$
�%���!$���
������%��
$�
���!����
��$��$

"#�
����������
�&
�!�#
��&$(���
���
�$�

(���
 !����
 �'���
 �$!���$�
 &�����
 $#�

����������
�&
$#�
���������'
��$��$���
���!$����

$�
������$
�
�!'%��
�&
����$�����
������$#'�
$�

��$��$
�!�#
1�#!&&����4
����
$�
$#�
$� $
���
���

�
�������
����$
$�
$#�
&����
���������$�
�����$
$�

��&��'
$#�
�����(��
�%�!$
$#�
�����%��
!����
�&

$#�
1��!�$��
���������'
��$��$���4
������$#'�

"#�
� ��$����
�&
�!�#
��&$(���
����$�

$�
 $#�
 �������$�
 �&
 $#�
 �������'��$
 '���

���#��$���$��
���������'
��$��$���
���$�'�

"#�

&���$
 ������$���
 �&
 �!�#
 ���!$����
 !���
 $#�

&���������$���
'�$#��
 $�
 ��$��$
 $#�
 �����
 �&

��$��$���
 ���������'
 ��
 $#�
 %����
 �&
 $#�

&���������$
$����
&��'
$#�
���$����
A
$#�$
��
�$

!���
�
���$����
$�
��!�$
�
#��#
$�
%�
��$��
!���

��
 $#�
 �����#

 "#�
1B�!�$��
 ���������'

��$��$���
 ��&$(���4
 ��
 ���$$�
 �&&��$���
 ��

���$��$���
 $#�
 $� $
 $�
 $#�
 ������
 (#��

&���������$�
 �����$
 %�
 �&&��$�����
 !���
 ���

������
 ���
 $#!�
 $#�
 ����
 $�
 !��
 ���$#��

������$#'
��
%��!�#$
$�
��&�

&�(������	
������	
��
��
	���

���������

���	�����

"#�
�'���'��$�$���
�&
���#
������$#'
$#�$
(���

��$��$
 $#�
 �����
 �&
 ����%���$�
 �%&!���$���
 ��

��$#��
�$����#$&��(���
 ��
 ����
 $#�
�%&!���$���

'��#����'
 �����
 (�$#
 $#�
 $� $
 '�$�

�#����$����$���
 A
 �����	
 �#����$��
 ��$
 ��

��������

 C����
 �'���'��$�$���
 �&
 �!�#

������$#'
'!�$
%�
$����$��
������$
$#�
�����&��

�%&!���$���
'�$#��
(�$#
 $(�
�����%��
 �!$�!$

���!�$�
 A
 ��$#��
 ��!$����K�$���
 �&
 $#�
��!�$��

���������'
��$��$���
������$#'
 $�
 ��'���
 $#�

&��$���
$#�$
������$
���'��
��������
��
�����$���

$#�
 �!'%��
 ���
 �����
 �&
 $#�
 ���$��!���

���!�������
 F��
 �!����$��
���!�������G
 ��
 $#�

�����K��
$� $

0�&��������

�
 2�$�������$�������
��(�����
�����

#$$��LL(((
��$�����
�!L*��ML�,L*�L��$�N���

���$N������N%��%�N�N��$�������$�'N���$!��

��#����
#$'�

*
 /&&�����
����$���
$�
2�$�������$��������

#$$��LL(((
��$�������$
�!L&��!'L��&�!�$
���

 O�P���$�Q$P**R

R

��$����$
%����
$#�$
���$����
$#�
'�$#���

��
 #�(
 $�
 �#���
 ���������'
 ��$��$���

���$�'��

#$$��LL(((
��$�������$
�!L&��!'L��&�!�$
���

 O�P$�����Q&P�

68 Yurii Palkovskii

Author Index

Barrón Cedeño, Alberto . 1

Basile, Chiara .19

Benedetto, Dario .19

Brandejs, Michal . 24

Butakov, Sergey . 36

Caglioti, Emanuele . 19

Cristadoro, Giampaolo . 19

Degli Esposti, Mirko . 19

Dinu, Liviu P. 62

Eiselt, Andreas .1

Gehl, Christian . 10

Granitzer, Michael . 47

Grozea, Cristian . 10

Kasprzak, Jan . 24

Kern, Roman . 47

Křipač, Miroslav . 24

Lane, Peter C. R. 29

Malcolm, James A. 29

Matwin, Stan . 56

Muhr, Markus . 47

Palkovskii, Yurii . 67

Popescu, Marius . 10, 62

Potthast, Martin . 1

Rosso, Paolo . 1

Scherbinin, Vladislav .36

Seaward, Leanne . 56

Stamatatos, Efstathios . 38

Stein, Benno . 1

Vallés Balaguer, Enrique 34

Zechner, Mario . 47

	frontpage
	blank
	firstPage
	blank
	preface
	blank
	program_committee
	table_of_contents
	blank
	all_paper
	pan09_submission_14
	pan09_submission_8
	pan09_submission_9
	pan09_submission_4
	pan09_submission_13
	pan09_submission_10
	pan09_submission_2
	pan09_submission_3
	pan09_submission_6
	pan09_submission_7
	pan09_submission_11
	pan09_submission_12

	authorsIndex

