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Foreword 
 

The development of embedded systems with real‐time and other types of critical constraints 
implies handling very specific architectural choices, as well as various types of critical non‐
functional constraints  (related  to  real‐time deadlines and  to platform parameters,  such as 
energy consumption and memory footprint). The last few years have seen a growing interest 
in (1) using precise (preferably formal) domain‐specific models for capturing such dedicated 
architectural and non‐functional information, and (2) using model‐driven engineering (MDE) 
techniques  for  combining  these models with  platform  independent  functional models  to 
obtain  a  running  system.  As  such, MDE  can  be  used  as  a means  for  developing  analysis 
oriented specifications that represent the design model at the same time. 

The objective of this workshop is to bring together researchers and practitioners interested 
in  all  aspects  of model‐based  software  engineering  for  real‐time  embedded  systems. We 
target  this  subject  at different  levels,  from modelling  languages  and  related  semantics  to 
concrete  application  experiments,  from  model  analysis  techniques  to  model‐based 
implementation and deployment. In particular the workshop focus on the following: 

• Architecture description  languages (ADLs). Architecture models are crucial elements 
in system and software development, as they capture the earliest decisions that have 
a huge impact on the realisation of the (non‐functional) requirements, the remaining 
development of  the  system or  software,  its deployment, etc.  In particular, we  are 
interested in examining: 

o the position of ADLs in an MDE approach 
o the  relation  between  architecture models  and  other  types  of models  used 

during requirement engineering (e.g., SysML), design (e.g., UML), etc. 
o techniques for deriving architecture models from requirements, and deriving 

high‐level design models from architecture models 
o verification and early validation using architecture models 

• Domain  specific  design  and  implementation  languages.  To  achieve  the  high 
confidence  levels  required  from  critical  embedded  systems  through  analytical 
methods, specific languages with particularly well‐behaved semantics are often used 
in  practice,  such  as  synchronous  languages  and  models  (Lustre/SCADE, 
Signal/Polychrony, Esterel), time triggered models (TTA, Giotto), scheduling‐oriented 
models  (HRT‐UML, Ada Ravenscar), etc. We are  interested  in examining the model‐
oriented  counterparts  of  such  languages,  together  with  the  related  analysis  and 
development methods.  

• Languages  for  capturing  non‐functional  constraints  (UML‐MARTE,  AADL,  OMEGA, 
etc.) 
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• Component  languages  and  system  description  languages  (SysML,  BIP,  FRACTAL, 
Ptolemy, etc.). 

We received 16 submissions from 8 different countries, of which 10 papers were accepted 
for  the workshop. We  hope  that  the  contributions  for  the workshop  and  the  discussions 
during the workshop will help to contribute and provide  interesting new  insights  in Model 
Based Architecting and Construction of Embedded Systems. 

 

The ACESMB 2008 organising committee, 

 
Iulian Ober, 
Stefan Van Baelen, 
Susanne Graf, 
Mamoun Filali, 
Thomas Weigert, 
Sébastien Gérard, 

September 2008. 
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Multi-Level power consumption modelling in the

AADL design flow for DSP, GPP, and FPGA

Eric SENN, Johann LAURENT, and Jean-Philippe DIGUET

Université de Bretagne Sud, Lab-STICC,
CNRS UMR3192,

F-56321 LORIENT Cedex, France

Abstract. This paper presents a method that permits to estimate the
power consumption of components in the AADL component assembly
model, once deployed onto components in the AADL target platform
model. This estimation is performed at different levels in the AADL
refinement process. Multi-level power models have been specifically de-
veloped for the different type of possible hardware targets: General Pur-
pose Processors (GPP), Digital Signal Processors (DSP) and Field Pro-
grammable Gate Arrays (FPGA). Three models are presented for a com-
plex DSP (the Texas Instrument C62), a RISC GPP (the PowerPC 405),
and a FPGA from Altera (Stratix EP1S80). The accuracy of these models
depends on the refinement level. The maximum error introduced ranges
from 70% for the FPGA at the first refinement level (only the operating
frequency is considered here) to 5% for the GPP at the third refinement
level (where the component’s actual source code is considered).

1 Introduction

Originally coming from the avionic domain, AADL (Architecture Analysis &

Design Language) is now commonly used as an input modelling language for
real-time embedded systems [1, 2]. It allows the early analysis of the specifica-
tion, the verification of functional and non functional properties of the system,
and even code generation for the targeted hardware platform [3–5]. In the con-
text of the European project SPICES (Support for Predictable Integration of

mission Critical Embedded Systems) [6], our aim is to enrich the AADL compo-
nent based design flow to permit energy and power consumption estimations at
different levels in the refinement process. However, such early verifications are
only possible if power estimations are completed in a reasonable delay. Only at
this condition a fast and fruitful exploration of the design space is permitted.

Significant research efforts have been devoted to develop tools for power con-
sumption estimation at different abstraction levels in embedded system design.
A lot of those tools however work at the Register Transfer Level (RTL) (this is
the case for tools like SPICE, Diesel [7] and Petrol [8]), at the Cycle Accurate
Bit Accurate (CABA) level ([9, 10]), and a few tools at the architectural level
(Wattch [11] and Simplepower [12]). Such approaches cannot be used at high
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levels because simulation times at such low abstraction levels become enormous
for complete and complex systems, like multiprocessor heterogeneous platforms.

In [13] and [14], the authors present a characterization methodology for gen-
erating power models within TLM for peripheral components. The pertinent
activities are identified at several levels and granularities. The characterization
phase of the activities is performed at the gate level and is used to deduce
the power of coarse-grained activities at higher level. Again, applying such ap-
proaches for complex processors or complete systems is not doable. Instruction
level or functional level approaches have been proposed [15–17]. They however
only work at the assembly level, and need to be improved to take into account
pipelined architectures, large VLIW instruction sets, and internal data and in-
struction caches.

We introduced the Functional Level Power Analysis (FLPA) methodology
which we have applied to the building of high-level power models for differ-
ent hardware components, from simple RISC processors to complex superscalar
VLIW DSP [18, 19], and for different FPGA circuits [20]. In this paper we show
how this modelling approach fits into the AADL design flow and how our power
models, being interoperable, are used at different refinement levels. Section 2
presents the AADL component based design flow and the deployment of the Plat-
form Independent Models (PIM) to obtain the Platform Specific Model (PSM)
of the target. Section 3 presents the methodology for power estimations and
the global power analysis of a complete system described with AADL. Section
4 presents the building of power models and define the three refinement levels
where they can be used. The power models of the DSP TI C62, the GPP Pow-
erPC 405, and the FPGA Altera Stratix EP1S80 are presented as examples. The
accuracy of our power estimations is finally evaluated.

2 AADL design flow

Figure 1 presents the component based AADL design flow. The AADL compo-

nent assembly model contains all the components and connections instances of
the application, and references the implementation models of the components
instances from the AADL models library. The AADL target platform model de-
scribes the hardware of the physical target platform. This platform is composed
of at least one processor, one memory, and one bus entity to home processes
and threads execution. The AADL deployment plan model describes the AADL-
PSM composition process. It defines all the binding properties that are necessary
to deploy the processes and services model of the component-based application
on the target platform. All those models are combined to obtain the AADL-
PSM model of the complete component-based system. The final implementation
of the system is obtained afterward through model transformations and code
generation.

The Open Source AADL Environment Tool (OSATE) [21] permits the spec-
ification of a complete system using AADL. It also permits to check some of
its functional and non-functional properties. Those verifications rely on the use
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AADL component
assembly

model

AADL target
platform models:
- hw components

- services
- connectors

AADL deployment
plan model

AADL PSM model
composition

AADL models library:
- components

- interfaces

SystemC
model

SystemC
C++ code

code generation

model transformation

FPGA DSP GPP

HLS/LS/P&R; Compil./Link.

Fig. 1. AADL component based design flow

of different plug-ins included in the tool set. During the deployment, software
components in the component assembly model are bound to hardware com-
ponents in the target platform model [22]. According to the deployment plan
model, OSATE scheduling analysis plug-in uses information embedded in the
software components description to propose a binding for the system [23]. Figure
2 shows the typical binding of an application on a multiprocessor architecture.
In this example, process main_process and its data block data_b are bound
to the memory sysRAM. Threads control_thread, ethernet_driver_thread
and post_thread are bound to the first general purpose processor GPP1. Thread
pre_thread is bound to GPP2. Thread hw_thread1 is, like hw_thread2 a hard-
ware thread. It will be implemented in the reconfigurable FPGA circuit FPGA1.
One connection between pre_thread and post_thread has been declared using
in and out data ports in the threads. This connection is bound to bus sys_bus
since it connects two threads bound to two different components in the plat-
form. Intra-component connections, like between threads control_thread and
ethernet_driver_thread, do not need to be bound to specific buses. They will
however consume hardware resources while being used.

In addition to communication buses, dedicated supply buses can also been
declared. A power analysis command in the OSATE resources analysis plug-in
permits to check if the power capacity of a supply bus is not exceeded. To do
that, a power capacity property (SEI::PowerCapacity) is declared for a bus,
and a power budget is declared for every component that requires an access to
this bus (property SEI::PowerBudget). The plug-in adds all the power budgets
for a bus and compares the result with its power capacity. This mechanism, even
if it is interesting, is extremely limited: power budgets for every component are
only a guess from the user, and are only used to compute the power consumption
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Fig. 2. Binding components to the target platform

of buses in a very simplistic way. In this paper, we propose a method to greatly
enhance power analysis in the AADL flow, and to do it in an efficient way not
only for buses, but for every consuming component in the system. Moreover,
we propose to base power analysis on realistic power estimates, by using an
accurate power estimation tool and precise power consumption models for every
component in the targeted hardware platform.

3 High-level power consumption estimations

In order to complete power consumption analysis for the whole system, we need
first to compute the power budget for every software component in the AADL
component assembly model. This is the power estimation phase (1) represented
with plain edges on figure 3 in the case of the binding of a thread to a processor.

Next, the power budgets of software components are combined to get the
power budgets for hardware components. This is the power analysis phase (2)
represented with thick dotted edges on the figure. Using timing information, the
energy analysis will be performed afterwards (thin dotted edges).

The challenge for our power estimation tool is to provide a realistic power
budget for every component in the application. This tool gathers several infor-
mation in the system’s AADL specification at different places, here from the
process and thread descriptions, and from the processor specification. It also
uses binding information that may come from a preliminary scheduling analysis.
The tool uses the power model of the targeted hardware component (here a pro-
cessor) to compute the power budget for the (software) component. In fact, it
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determines the input parameters of the model from the set of information it has
gathered. This process is repeated, not only for threads bound to processors, but
also for any possible binding of software components onto hardware components,
and that means: (i-) threads onto processors or FPGA, (ii-) processes and data
onto memories, and (iii-) inter-components connections onto buses.

processor1

PowerBudget => ?
EnergyBudget => ?

PowerCapacity => 5W

process1

thread 1
PowerBudget => ?

EnergyBudget => ?

Power
Estimation
Tool

Power
Models
Library

scheduling
analysis

plug-in �

processor 

binding

Power
Analysis
Tool

Energy
Analysis
Tool

Timing
Analysis
Tools

(1)

(2)
A process and a thread in the 
component assembly model

A processor in the 
target platform model

B
IN

D
IN

G

Fig. 3. Power and Energy consumption estimation in the AADL design flow

Once the power budgets have been computed for every component in the
application, the power analysis is performed. The power analysis tool retrieves
all the component power budgets, together with additional information from the
specification, and computes the power budget for every hardware component
in the system. Then it computes the power estimation for the whole system.
The result of the scheduling analysis (which gives the load of processors) is also
taken into account at this level. Indeed, whenever a processor is idle, its power
consumption is at the minimum level. Scheduling analysis is performed using
basic information on the threads properties defined as properties for each thread
implementation in the AADL component assembly model: dispatch protocol (pe-
riodic, aperiodic, sporadic, background), period, deadline, execution time ...

This paper will concentrate on the power estimation phase, no further details
will be given on the power analysis. Energy analysis will be finally performed
using information from the timing analysis tools currently being developed by
some of our partners in the SPICES project.

4 Multi-level power models

Our Power Estimation Tool, PET, is an evolution of the former SoftExplorer,
initially dedicated to power and energy consumption estimation for processors
(from simple RISC General Purpose Processors to very complex VLIW Digital
Signal Processors) [24]. This tool comes with a library of power models for every
hardware component on the platform.
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Our objective is to allow power estimation at different levels in the flow.
This involves the use of multi-level power models, which are models that can be
used with more or less information, depending on the refinement level. In fact,
while the specification is being refined, more information is available and power
estimations get more precise.

Let’s consider a case study platform including one GPP (the PowerPC 405),
one DSP (the Texas Instrument C62), and one FPGA circuit (the Xillinx Vir-
tex 400E). The description of those components’ power models can be found
respectively in [25], [18], and [20]. Power models are built following our Func-
tional Level Power Analysis methodology [19]. The component’s architecture is
firstly analysed and relevant parameters regarding its power consumption are
identified. Then physical measurements are performed to assess the evolution of
the power consumption with the models’ input parameters (using little bench-
marking programs called ”scenario”), and finally power consumption laws are
established.

4.1 A complex Digital Signal Processor

The TI C62 processor has a complex architecture. It has a VLIW instructions
set, a deep pipeline (up to 15 stages), fixed point operators, and parallelism
capabilities (up to 8 operations in parallel). Its internal program memory can be
used like a cache in several modes, and an External Memory Interface (EMIF) is
used to load and store data and program from the external memory [26]. In the
case of the C62, the 6 following parameters are considered. The clock frequency

(F) and the memory mode (MM) are what we call architectural parameters. They
are directly related to the target platform and the hardware component, and can
be changed according to the users will. The influence of F is obvious. The C62
maximum frequency is 200MHz (it is for our version of the chip); the designer
can tweak this parameter to adjust consumption and performances.

The remaining parameters are called algorithmic parameters; they directly
depend on the application code itself. The parallelism rate α assesses the flow
between the processor’s instruction fetch stages and its internal program memory
controller inside its IMU (Instruction Management Unit). The activity of the
processing units is represented by the processing rate β. This parameter links
the the IMU and the PU (Processing Unit). The activity rate between the IMU
and the MMU (Memory Management Unit) is expressed by the program cache

miss rate γ. The pipeline stall rate (PSR) counts the number of pipeline stalls
during execution. It depends on the mapping of data in memory and on the
memory mode.

The memory mode MM illustrates the way the internal program memory is
used. Four modes are available. All the instructions are in the internal memory
in the mapped mode (MMM ). They are in the external memory in the bypass

mode (MMB). In the cache mode, the internal memory is used like a direct
mapped cache (MMC), as well as in the freeze mode where no writing in the
cache is allowed (MMF ). Internal logic components used to fetch instructions
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(for instance tag comparison in cache mode) actually depends on the memory
mode, and so the power consumption.

A precise description of the C62 power model and its building may be found
in [18]. The variation of the power consumption with the input parameters, more
precisely the fact that the estimation is not equally sensitive to every parameter,
allows to use the model in three different situations.

In the first situation, only the operating frequency is known. The tool returns
the average value of the power consumption, which comes from the minimum
and maximum values obtained when all the others parameters are being made
to vary. The designer can also ask for the maximum value if a higher bound is
needed for the power consumption.

In the second situation, we suppose that the architectural parameters (here
F and MM) are known. We also assume that the code is not known and that the
designer is able to give some realistic values for every algorithmic parameter. If
not, default values are proposed, from the values that we have observed running
different representative applications on this DSP (see table 1).

In the third situation, the source code is known. It is then parsed by our
power estimation tools: the value of every algorithmic parameter is computed
and the power consumption is estimated, using the power model and the values
enter by the user for the frequency and memory mode.

Table 1. Default algorithmic parameters for the C62

α β PSR

LMSBV 1024 1 0,625 0,385

MPEG 1 0,687 0,435 0,206

MPEG 2 ENC 0,847 0,507 0,28

FFT 1024 0,5 0,39 0,529

DCT 0,503 0,475 0,438

FIR 1024 1 0,875 0,666

EFR Vocoder GSM 0,578 0,344 0,045

HISTO (image equalisation by histogram) 0,506 0,346 0,499

SPECTRAL (signal spectral power density estimation) 0,541 0,413 0,288

TREILLIS (Soft Dcision Sequential Decoding) 0,55 0,351 0,038

LPC (Linear Predictive Coding) 0,684 0,468 0,171

ADPCM (Adaptive Differential Pulse Code Modulation) 0,96 0,489 0,194

DCT 2 (imag 128x128) 0,991 0,709 0,435

EDGE DETECTION 0,976 0,838 0,173

G721 (Marcus Lee) 1 0,682 0,032

AVERAGE VALUES 0,7549 0,5298 0,2919

The error introduced by our tool obviously differs in these three situations.
To calculate the maximum error, estimations are performed with given values
for the parameters known in the situation, and with all the possible values of
the remaining unknown parameters. The maximum error comes then from the
difference between the average and the maximum estimations. This is repeated
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for every valid set of known input parameters. The final maximum error is the
maximum of the maximum errors. Table 2 gives the maximum error in the three
situations above, which correspond to three levels of the specification refinement.
Note that the maximal errors computed at level 2 are really pessimistic since we
assume here that the designer is completely (100%) wrong on his evaluation of
all the input parameters. If his evaluation of those parameters is only 50%, or
25% wrong, then the error introduced by our tool is reduced as well.

Table 2. Maximum errors for the C62 power model (Power in mW)

Known parameters Memory Max Min Average Max
Mode Power Power Power Error

Level 1

Frequency X 3037 848 2076 59%

Level 2

Frequency, MM, α, β, γ, PSR Mapped 2954 848 1809 53%
Cache 2955 756 1778 57%
Freeze 3018 882 1801 51%
Bypass 3037 2014 2397 21%

Level 3

F, MM, and the source code Max Error = 8%, Average Error = 4%
is provided

4.2 A more simple General Purpose Processor

The PowerPC 405 is a light version of the IBM PowerPC, embedded in the
Xilinx VirtexII Pro FPGA. It includes one prefetch instruction unit that allows
to reduce the number of pipeline stalls due to instruction misses, two caches
(16KB each) (one for the data and the other for instructions). These two caches
can be involved separately and use LRU policy. They are two ways associative
with 32 bytes line size. And three TLB translating addresses from logical to
physical (2 shadow TLB - one for the instructions and one for data - are used
and coupled with an unified one).

Measurements show that among the most important factors in the PowerPC
405 consumption are its frequency and the frequency of the bus to which it is
connected. The processor can be clocked at 100, 150, 200 or 300 MHz, and,
depending on the processor frequency, the bus (OCM or PLB) frequency can
take different values between 25 to 100 MHz. Another important parameter to
consider is the configuration of the memory hierarchy associated to the proces-
sor’s core, and that means, which caches are used (data and / or instruction)
and where is located the primary memory (internal / external). Once again, the
component’s power model can be used at three refinement levels.

At the first refinement level, our model gives a rough estimate of the power
consumption for the software component, only from the knowledge of the proces-
sor and some basic information on its operating conditions. The only information
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we need is the processor frequency and the frequency of the internal bus (OCM
or PLB) to which the processor is connected inside the FPGA. They are two
architectural parameters of the PowerPC 405. They will be defined as a prop-
erty of the AADL processor implementation of the PowerPC 405 in the AADL
specification. The maximum error we get here is 27%.

At the second refinement level, we have to add some information about the
memories used. We have to indicate which caches will be used in the PowerPC
405 (data cache, instructions cache, or both), and if its primary memory is
internal (using the FPGA BRAM memory bank) or external (using a SDRAM
accessed through the FPGA I/O). Indeed, while building the power model for the
PowerPC 405, we have observed that it draws quite different power and energy
in those various situations [25]. Table 3 show the maximal errors we obtain here
for every valid set of known input parameters, the others being unknown. The
maximum error we obtain is 15,3% and the average error is 6,6%. The first line
indicates 0% because in this configuration, there are not remaining unknown
parameters that can change the power consumption of the processor.

Table 3. Maximal Errors for the PowerPC 405 at refinement level 2 (Power in mW)

Fprocessor/Fbus (MHz)
300/ 200/ 100/ 200/ 200/ 150/ 100/ 100/ 100/ Max
100 100 100 66 50 50 50 33 25 Error

2 caches BRAM 2595 2555 2515 2262 2134 2104 2084 1938 1869 0%

2 caches SDRAM MAX 3129 3091 3053 2760 2604 2585 2566 2400 2321
2 caches SDRAM MIN 2719 2681 2643 2350 2194 2175 2156 1990 1911

Error 7,0% 7,1% 7,2% 8,0% 8,5% 8,6% 8,7% 9,3% 9,7% 9,7%

BRAM MAX 2570 2515 2460 2241 2112 2084 2057 1920 1856
BRAM MIN 2472 2440 2408 2177 2053 2037 2021 1890 1829

Error 1,9% 1,5% 1,1% 1,4% 1,4% 1,1% 0,9% 0,8% 0,7% 1,9%

Icache BRAM&BRAM MAX 2662 2592 2522 2305 2170 2135 2100 1957 1890
Icache BRAM&BRAM MIN 2497 2451 2405 2193 2071 2048 2025 1897 1836

Error 3,2% 2,8% 2,4% 2,5% 2,3% 2,1% 1,8% 1,6% 1,4% 3,2%

Icache SDRAM MAX 3432 3267 3102 3155 3103 3020 2938 2882 2856
Icache SDRAM MIN 2600 2478 2356 2403 2367 2306 2239 2208 2190

Error 13,8% 13,7% 13,7% 13,5% 13,5% 13,4% 13,5% 13,2% 13,2% 13,8%

Dcache BRAM MAX 2595 2555 2515 2262 2124 2104 2084 1938 1869
Dcache BRAM MIN 2588 2544 2500 2254 2118 2096 2074 1930 1861

Error 0,1% 0,2% 0,3% 0,2% 0,1% 0,2% 0,2% 0,2% 0,2% 0,3%

Dcache SDRAM MAX 3535 3497 3459 3133 2960 2941 2922 2741 2622
Dcache SDRAM MIN 2744 2706 2668 2375 2218 2199 2180 2015 1936

Error 12,6% 12,8% 12,9% 13,8% 14,3% 14,4% 14,5% 15,3% 15,1% 15,3%

At the lowest refinement level, the actual code of the software component
is parsed. In the case of the PowerPC 405, what is important is not exactly
what instruction is executed, but rather the type of instruction being executed.
We have indeed exhibited that the power consumption changes noticeably from
memory access instructions (load or store in memory), to calculation instructions
(multiplication or addition). As we have seen before, the place where the data is
stored in memory is also important, so the data mapping is also parsed here. The
average error we get at this level is 2%. The maximum error is 5%. Logically,
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that corresponds to the max and average errors for the set of consumption laws
for the component.

4.3 Field Programmable Gate Arrays

FPGA (Field Programmable Gate Arrays) are now very common in electronic
systems. They are often used in addition to GPP (General Purpose Processors)
and / or DSP (Digital Signal Processors) to tackle data intensive dedicated
parts of an application. They act as hardware accelerators where and when the
application is very demanding regarding the performances, that typically for
signal or image processing algorithms. In this case again power estimation can
be performed at different refinement levels.

At the highest levels, the code of the application is not known yet. The de-
signer needs however to quickly evaluate the application against power, energy
and / or thermal constraints. A fast estimation is necessary here, and a much
larger error is acceptable. The parameters we can use from the high-level speci-
fications are the frequency F and the occupation ratio β of the targeted FPGA
implementation, that we consider as architectural parameters, and the activity
rate α. The experienced designer is indeed able to provide, even at this very
high-level, a realistic guess of those parameters’ value. As explained before, to
obtain the model, i.e. the mathematical equation linking its output to the param-
eters, we performed a set of different measurements on the targeted FPGA. For
different values of the occupation ratio, and for different values of the frequency,
we made the activity rate varying and measured the power consumption.

At our first refinement level, only the frequency is known. Our power es-
timation tool uses the model to estimate, at the given frequency, the power
consumption with α = β = 0,1 and with α = β = 0,9. Then it returns the
average value between those minimal and maximal values. The maximal errors
we obtain for F = 10MHz and F = 90MHz (upper bound for the Altera Stratix
EP1S80) are given table 4.

At the next refinement level, the two architectural parameters F and β, are
known to the user. Like in the case of the former processor’s models, default
values are proposed for α and also β, coming from a set of representative appli-
cations. The maximal error introduced in this case ranges from 6,9% to 44,8%.
To determine this error we compute the maximum and minimum estimations
for the four extreme (F , β) couples, and compare them to the estimations with
α default value.

At the lowest refinement level, the source code (a synthesizable hardware
description of the component behaviour, may be written in VHDL or SystemC
...) is used. A High-Level Synthesis tool [27] permits to estimate the amount of
resources necessary to implement the application, and given the targeted circuit,
to obtain its occupation ratio (β) and its activity rate (α). Those two parameters
and the frequency are finally used with the model.
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Table 4. Maximum errors for the Altera Stratix EP1S80 (Power in mW)

Known parameters Max Min Average Max
Power Power Power Error

Level 1

Frequency (F=10MHz) 789 307 548 44%
Frequency (F=90MHz) 4824 835 2830 70%

Level 2

Frequency, α, β

F=10MHz, β=0,1 353 307 324 8,8%
F=10MHz, β=0,9 789 544 667 24,1%
F=90MHz, β=0,1 931 835 883 6,9%
F=90MHz, β=0,9 4824 2435 3630 44,8%

Level 3

F and the source code Max Error = 4,2%, Average Error = 1,3%
is provided

5 AADL Property Sets

Table 5 and 6 show the property sets associated respectively to the TI C62 and
the PowerPC 405 for power estimation at the three refinement levels defined
above. Table 7 shows the property set for the FPGA Alter Stratix EP1S80.

Table 5. Property set for the TI C62

TI C62 property set

Processor_Frequency : aadlreal applies to (processor);

Processor_Memory_Mode : TIC62::Processor_Memory_Mode_Type applies to (processor);
Processor_Parallelism_Rate : aadlreal applies to (processor);

Processor_Processing_Rate : aadlreal applies to (processor);
Processor_Cache_Miss_Rate : aadlreal applies to (processor);
Processor_Pipeline_Stall_Rate : aadlreal applies to (processor);

Processor_Memory_Mode_Type : type enumeration (CACHE,FREEZE,BYPASS,MAPPED);
Processor_Parallelism_Rate_Default : constant aadlreal => 0,7549;

Processor_Processing_Rate_Default : constant aadlreal => 0,5298;
Processor_Cache_Miss_Rate_Default : constant aadlreal => 0,25;
Processor_Pipeline_Stall_Rate_Default : constant aadlreal => 0,2919;

As described section 3, the power estimation tool, when it is invoked, extracts
relevant information (a set of parameters) from the AADL specification, then
computes the components’ power consumption, and returns the results to fill
the power budget properties for the software components. The binding makes it
possible to put in relation components in the AADL component assembly model
with the power models of hardware components on the targeted platform.

As we have just seen, depending on the information refinement, coarse or
fine precision power estimations will be performed. Given the refinement level,
information to be provided to the estimation tool depends on the selected target
(which component). The information is more general if the refinement level is
high, it will be more dedicated to the target if the refinement level is low. The
set of properties that are used by the estimation tool actually depends on the
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Table 6. Property set for the PowerPC 405

PowerPC 405 property set

Processor_Frequency : aadlreal applies to (processor);

Processor_Bus_Frequency : aadlreal applies to (processor);
Processor_Primary_Memory : PPC405::Primary_Memory_Type applies to (processor);

Processor_Data_Cache : aadlboolean applies to (processor);
Processor_Instructions_Cache : aadlboolean applies to (processor);
Primary_Memory_Type : type enumeration (BRAM,SDRAM);

Table 7. Property set for the Altera Stratix EP1S80

FPGA Altera Stratix EP1S80 property set

FPGA_Frequency : aadlreal applies to (fpga);

FPGA_Activity_Rate : TIC62::Processor_Memory_Mode_Type applies to (fpga);
FPGA_Occupation_Ratio : aadlreal applies to (fpga);

FPGA_Activity_Rate_Default : constant aadlreal => 0,4;
FPGA_Occupation_Ratio_Default : constant aadlreal => 0,5;

component itself, and more precisely, on its power model. Even between two
components of the same type, another set of specific properties might be neces-
sary since another set of configuration parameters might apply. This is the case
here for the two processor components TI C62 and PowerPC405. The property
set of the processor comes finally as a part of its power model, and, as this, will
remain separated from the general property set associated to the current AADL
working project for the application being designed in the OSATE environment.

6 Conclusion

We have presented a method to perform power consumption estimations in the
component based AADL design flow. The power consumption of components in
the AADL component assembly model is estimated whatever the targeted hard-
ware resource, in the AADL target platform model, is: a DSP (Digital Signal Pro-
cessor), a GPP (General Purpose Processor), or a FPGA (Field Programmable
Gate Array). A power estimation tool has been developed with a library of multi-
level power models for those (hardware) components. These models can be used
at different levels in the AADL specification refinement process. We have cur-
rently defined three refinement levels in the AADL flow. At the lowest level, level
3, the (software) component’s actual business code is considered and an accurate
estimation is performed. This code, written in C, or C++, for standard threads,
can also be written in VHDL or SystemC for hardware threads. At level 2, the
power consumption is only estimated from the component operating frequency,
and its architectural parameters (mainly linked to its memory configuration in
the case of processors). At level 1, the highest level, only the operating frequency
of the component is considered.

Three power models have been presented for the TIC62 GPP, the Pow-
erPC405 GPP, and the Altera Stratix EP1S80 FPGA. The maximum errors
introduced by these models, at the three refinement levels, are given table 8.
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Table 8. Maximal errors summary

Component Max Error Level 1 Max Error Level 2 Max Error Level 3

TI C62 59% 57% 8%

PowerPC 405 27% 15,3% 5%

Altera Stratix EP1S80 70% 44,8% 4,2%

In the frame of the SPICES project, we are currently working at the inte-
gration of our Power Estimation Tool and Power Analysis Tool in the AADL
OSATE tool environment.
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Abstract. AADL is an aerospace standard for model-driven design of
complex real-time embedded systems. Currently, behavioral properties of
AADL models can be specified inside the system description using AADL
concepts or outside it using external textual languages, and verified using
schedulability analysis or (Time Petri Net-based) model-checking tools.
This paper (1) proposes Visual Timed Scenarios (V TS) as a graphical
property specification language for AADL, and (2) devises an effective
translation from V TS to Time Petri Nets (TPN) which enables model-
checking properties expressed in V TS over AADL models using TPN-
based tools integrated into AADL-compliant IDEs (e.g., TOPCASED).

1 Introduction

The Architecture Analysis and Design Language (AADL) [13] is an aerospace
standard released by the Society of Automotive Engineers (SAE) for model-based
specification and analysis of complex real-time embedded systems. AADL has
been designed to support model-based and formal analyses of critical properties.
For this, AADL provides modeling concepts for the description of application
system architectures in terms of suitable abstractions of software and hardware
components and the interactions between them. The definition of AADL moti-
vated the development of AADL-centric tools such as OSATE4 and Ocarina [10],
as well as the integration of AADL into domain-specific model-driven software
engineering environments, such as TOPCASED5. This enabled different kinds
of formal analyses, including schedulability, e.g., with Cheddar [14], and model-
checking, e.g., with Time Petri Net-based tools like Tina [4] and Romeo [9].

A way of enhancing the usability of formal techniques in model-driven sys-
tem design and flows analysis consists in resorting to visual languages capable
of representing and visually presenting application semantics in a clear, precise
way, specially in the context of event-based systems. Following this idea, in this

⋆ Partially supported by ANPCyT projects PICT 32440 and PICTO-CRUP 31352,
STIC-AmSud project TAPIOCA and UBACyT X021

⋆⋆ Currently visiting UBA and UADE.
⋆ ⋆ ⋆ Conicet

4 http://www.aadl.info/
5 http://www.topcased.org
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paper we adopt Visual Timed Scenarios (V TS) [1] as a language for specifying
behavioral properties of models of systems described in AADL. In order to make
possible the verification of these properties using available tools integrated into
AADL-complaint IDEs, we devise a translation from V TS to Time Petri Nets.
This allows to use existing model checking tools for verifying if operational de-
scriptions encompassed by AADL model satisfy the translated property. Fig. 1
exhibits the integration of the AADL models with V TS scenarios in a tool chain.
The part concerning V TS (enclosed in gray) will be explained in detail along
this work.

AADL Model

TPN

Modelchecker

Ocarina

(no flows)

VTS CS [7]

CS2ES [11]

VTS ES [1]

ES2TPN

TPN Model

TPN Property

Expected

Property of

AADL Model

Fig. 1. Tool chain integrating AADL and V TS

The paper is structured as follows. Sec. 2 recalls V TS by means of an exam-
ple. Sec. 3 briefly reviews Time Petri Nets (TPN). Sec. 4 presents the translation
of V TS into TPN. Sec. 5 proposes a procedure to model-check whether a TPN
satisfies a property expressed in V TS. Sec. 6 illustrates the application of these
results for verifying different behavioral properties of AADL models: (1) mode-
change behaviors, and (2) flow specifications.

2 Visual Timed Scenarios (V TS)

2.1 Informal presentation

Visual Timed Scenarios [1,7] language is used to describe event patterns, which
can be regarded as simple, graphical depictions of predicates over traces (time-
stamped executions), constraining expected behavior. It basically features anno-
tated partial order of relevant events, denoting a (possibly infinite) set of match-
ing traces. Violation of verification goals for models such as freshness, bounded
response or event correlation can naturally be expressed using the notation.

The basic elements of V TS graphical notation are points connected by lines
and arrows. Points are labeled by sets of events, meaning that the point stands
for an occurrence of one of the events in an execution. V TS can represent prece-

dence relations and temporal distances between points; and sets of events which
are forbidden between them. The detailed formalization of V TS and its thor-
ough comparison with other visual languages is given in [7]. Here, we informally
introduce V TS through a simple, yet illustrative, example.

Consider a system composed of two jobs Job1 and Job2 (Fig. 2, based on [2]).
The behavior of the system is as follows: (1) Job1 if started, always terminates;
(2) Job2 if started, always terminates; (3) Job2 can not start while Job1 is in
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execution; (4) Job1 must terminate in at most 12; (5) Job2 must wait at least
14 to start; (6) The temporal distance between both jobs’ ends is at most 10.

JobJob
1 2

START START END
1 2END

time

1 2LAUNCH

Fig. 2. Example of two jobs

Fig. 3 illustrates these requirements expressed in V TS as conditional sce-

narios [7]. Conditional scenarios allow to state that whenever an antecedent

sub-scenario (depicted in black) happens, a consequent sub-scenario (depicted
in gray) must happen too.

1

1

<=12

1

>=14

1
1

¬ START2

1

<
=
1
0

START1

p2

1

END1

p3

1

END2

p5

1

START2

p4

1

LAUNCH

p1

Fig. 3. V TS Conditional scenarios for requirements of two jobs example

Points are labeled with events. Triangles below points are used to display
optional point names, needed for the formal notation. An arrow between two
points specifies a precedence relationship. Arrow labels specify forbidden events

between points: for instance, there is no START2 event between START1 and
END1. A double forward arrow means “the next” occurrence of the event of the
destination point (i.e., shorthand for labeling the arrow with the destination’s
label). A double backward arrow meas “the previous” occurrence of the event of
the source point (i.e., shorthand for labeling the arrow with the source’s label).
A dashed line linking two points expresses a temporal distance between them.
Dashed lines can also be labeled with forbidden events. Fig. 4 shows the graphical
notation of V TS elements used in this work6.

Verifying conditional scenarios is done by building (using the CS2ES tool
showed in Fig. 1) a set of existential scenarios that stand for all possible coun-
terexamples of the conditional scenarios [7, 11]. These scenarios, a.k.a. anti-
scenarios, model all the ways in which a conditional scenario may be violated
by the system. This work only relies on how to model-check existential scenar-
ios, and therefore, hereinafter, existential scenarios are referred as “scenarios”.
Fig. 5 illustrates all the V TS anti-scenarios of the conditional scenario of Fig. 3.

6 V TS has more primitives, that increase its expressive power, which are omitted here
for the sake of simplicity. The interested reader is referred to [7].
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q matches the next b-event after p

p and q must match different events

point

a

p

b

q

(min, max]

forbidden events

p precedes q

a

p

b

q

(min, max]

forbidden events

p matches the a-event previous to q

a

p

b

q

(min, max]

forbidden events
a

p

b

q

(min, max]

forbidden events

p and q are consecutive a and b events

a

p

b

q

events

point name

begin end

(min, max]

forbidden events

Fig. 4. V TS graphical notation

A big full circle stands for the begin of the execution, and two concentric circles
correspond to its end.

¬ END1
START1LAUNCH

(a) Job1 starts, but does
not terminate (1)

¬ END2
START2LAUNCH

(b) Job2 starts, but does
not terminate (2)

START1 END1

START2

LAUNCH

(c) Job2 starts while Job1

is in execution (3)

START1 END1

>12

LAUNCH

(d) Job1 terminates after
12. (4)

START2

<14

LAUNCH

(e) Job2 starts before
14. (5)

START1 END1

END2START2

>
1
0

LAUNCH

(f) More than 10 passes
between jobs ends. (6)

Fig. 5. Anti-scenarios (existential scenarios).

2.2 Formal presentation

Definition 1 (V TS syntax). A scenario is a tuple 〈Σ, P, ℓ, 6≡, <, γ, δ〉 , where:

– Σ is a finite set of events;
– P is a finite set of points;
– ℓ : P → 2Σ is labels each point with a non-empty set of events;

– 6≡ ⊆ P × P is an asymmetric relation ( inequality) between points (graphi-

cally represented by dotted lines);

– < ⊆ (P ⊎{0}×P ⊎{∞})r{〈0,∞〉} is a precedence relation between points

(graphically represented by arrows), where 0 and ∞ represent the begin and

the end of an execution, resp.;

– γ : (6≡ ∪ <) → 2Σ assigns to each pair of points, related by inequality or

precedence, the set of events forbidden between them;

– δ : (6≡ ∪ (< r (P × {∞}))) → I assigns to each inequality or precedence

relation an integer-bounded or upper-unbounded interval of non-negative real-

numbers restricting the time elapsed between the two points.

Given a set C, a sequence over C is a (possibly infinite) sequence of elements

from C. Given a sequence s, |s| is its length (|s|
def
= ∞ when s is infinite) and
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Π(s)
def
= {i ∈ N / 0 ≤ i < |s|} is the set of positions of s. Given i, j ∈ Π(s),

si is the ith element of s; si] is the prefix ending at position i; s[i is the suffix
starting at position i and s[i,j] is the sub-sequence from position i to position j (if

i > j, s[i,j]
def
= s[j,i]). Using ‘(’ or ‘)’ instead of ‘[’ or ‘]’ means the corresponding

sub-sequence does not include its border(s). We call first(s) the first element of
s. If s is finite, last(s) is its last element. For X ⊆ C, s ∩ X denotes the set of
elements of X appearing in s, i.e., {x ∈ X | ∃i. si = x}.

A temporal sequence is a weakly increasing sequence of timestamps (i.e., non
negative real numbers). Given a finite temporal sequence τ we define ∆(τ) as
the time elapsed during τ : ∆(τ) = last(τ)− first(τ) or 0 if |τ | = 0. A temporal
sequence τ can be shifted by a real number ǫ producing a temporal sequence
called τ + ǫ, such that ∀i ∈ Π(τ); (τ + ǫ)i = τi + ǫ.

A trace over a set C is a pair 〈s, τ〉 where s is a sequence over C and τ is
a temporal sequence of the same length. Given a trace σ = 〈s, τ〉 , we define

|σ|
def
= |s| and Π(σ)

def
= Π(s). A trace is time-divergent iff for any real number T

there exists a position k such that ∆(τk]) > T .

The semantics of V TS assigns to each scenario a set of traces satisfying
it. Labeled points represent events in the traces, they can match a particular
position in a trace if the event in that position is among the allowed events
associated to the point by the labeling function ℓ.

Intuitively, a matching is a mapping between points in a scenario and posi-
tions in a trace, exhibiting how the trace satisfies the scenario. Formally:

Definition 2 (V TS semantics). Given a scenario S = 〈ΣS , P, ℓ, 6≡, <, γ, δ〉 ,

a trace σ = 〈s, τ〉 over Σ′ where ΣS ⊆ Σ′, and a mapping ·̂ : P → Π(σ); we say

that ·̂ is a matching between S and σ iff for all points p, q ∈ P :

M1 sp̂ ∈ ℓ(p); the mapping for a point is a position of the trace with an event that
labels this point.

M2 if p 6≡ q then p̂ 6= q̂; two different points cannot map to the same position.
M3 if p < q then p̂ < q̂; the position of the source point must be smaller than the

destination’s.
M4 s(p̂, q̂) ∩ γ(p, q) = ∅; no forbidden event can appear in the sub-trace defined by

corresponding occurrences of the points.
M5 sp̂) ∩ γ(0, p) = s(p̂ ∩ γ(p,∞) = ∅; no forbidden event specified between begin (resp.,

a point) and a point (resp., end) can appear before (resp., after) the corresponding
occurrence of the point.

M6 ∆(τ[p̂, q̂]) ² δ(p, q); the time elapsed between the occurrences of the corresponding
points must satisfy the specified time restriction.

M7 ∆(τp̂]) ² δ(0, p); the time elapsed since begin until the occurrence of a point must
satisfy the specified time restriction.

Rules M4-5 and M6-7 must be considered only when the domains of the functions

γ and δ are defined, respectively.

Definition 3 (Existential V TS Semantics). We say that a trace σ satisfies
a scenario S (noted σ ² S) iff there exists at least one matching between them.
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3 Time Petri Nets (TPNs)

Time Petri Nets [5] are a widely used formalism for timed systems. They are
supported by several tools (e.g. TINA [4], Romeo [9]). TPNs extend Petri nets
with temporal intervals associated with transitions: assuming transition t, with
an interval [α, β], became last enabled at time τ , then t cannot fire earlier than
time τ +α and must fire no later than τ +β, unless disabled by firing some other
transition. Firing a transition takes no time.

3.1 TPNs Formal Syntax

Definition 4 (Time Petri Net). A Time Petri Net7 is a tuple N = 〈S, T,

Pre, Post, ΣN ,L, Inh,≻,m0, Is〉, where:

– S is a finite set of places.

– T is a finite set of transitions.

– Pre ⊆ T× S is a relation between transitions and input places.

– Post ⊆ T× S is a relation between transitions and output places.

– ΣN is a finite set of events.

– L : T → ΣN ∪ {λ} is a function that labels each transition with an event or

with λ 6∈ ΣN . We assume that ∀ e ∈ ΣN , ∃ t ∈ T, s.t. L(t) = e.

– Inh ⊆ T× S is a relation that defines inhibitor places for transitions.

– ≻ ⊆ T × T is a priority (irreflexive, asymmetric, and transitive) relation

between transitions.

– m0 ⊆ S is a set of places with initial marking.

– Is : T → I is a function called static interval function.

Fig. 6 summarizes the graphical notation for TPNs used in this work.

transition

place name

place

in initial 

marking

place name transition name

event

[min,max]

inhibitor arctransition pre-arc transition post-arc

transitions priority

transition

t1 is higher 

priority

than t2
t1 t2

place place

interval is [0, )

when is not explicit

event is  when is 

not explicit

read arc
place with 

pre-arc and 

post-arc to 

same transition

t1 t1l0 l0 t1l0 t1l0

Fig. 6. TPN graphical notation

Parallel Composition. This operation combines two TPNs in one TPN where
transitions with the same label (different from λ) are merged. The parallel com-
position between two TPNs, N1 and N2, is denoted as N1‖N2. See [5] for more
details.
7 For simplicity, we consider here ordinary (i.e. all arcs have weight 1) TPNs, but the

results can be extended to non-ordinary ones.
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3.2 TPNs Semantics

Given a TPN N , a state of N is a pair ω = 〈m, I〉, where m : S → N is a marking
and I : T → I is the interval function that associates a temporal interval with
every transition enabled at m. The initial state is denoted ω0.

The semantics of TPNs defines the evolution of a TPN state resulting from
the firing of transitions and passage of time. The reader is referred to [5] for the
detailed semantics.

We write ω
L(t)@θ
−→ ω′ to denote that from state ω, transition t is fired after

a time θ, resulting in state ω′; and ω
λ@θ
−→ ω′ to denote that from state ω, time

can elapse to state ω′. An execution is a time-divergent sequence ρ : ω0
a0@θ0−→

ω1
a1@θ1−→ . . . We write mρi

to denote the marking of the i-th state of ρ. The
time-divergent trace of ρ is σ = 〈s, τ〉 with s = a0, a1 . . . , and τ = ϑ0, ϑ1 . . . ,
where ϑ0 = θ0 and ϑi = ϑi−1 + θi, for i ≥ 1.

4 Translating V TS into TPN

The translation algorithm proceeds as follows: for each part of the V TS scenario
that must be matched, it builds a TPN component. So, each point, forbidden
event, time restriction, precedence between points, etc., in the V TS scenario,
generates a TPN. The translation of the whole scenario is obtained by the fusion

(a special composition, see below) of all components. The rules that formally
define this translation can be found in [12]. The ES2TPN tool (Fig. 1) performs
this whole process.

4.1 Construction of TPN components

Construction of TPN components for matching points. In order to rec-
ognize occurrences of events as matchings of points, we construct a TPN as
follows. For every point p of the V TS scenario, we add two places to the TPN:
notYetp and matchp. The place notYetp has an initial marking and represents that
no event labeling point p has occurred yet. The place matchp, if marked, models
that a matching event for this point has occurred. Between these places, we add
the possible matching transitions: one transition for each event e labeling point
p. Each of these is labeled with e, and has a pre-arc from notYetp and a post-arc

to matchp. Also, we must consider the case where two (or more) points match
the same event. Therefore, we add transitions for all possible combinations of
multiple matching points for each event.

To take into account precedence relations among points, for every matching
transition into place matchp we add a read-arc from any place matchq, whenever
there is a precedence arrow from q to p (this is because place matchq must be
marked before marking place matchp).

Finally, this component has special transitions which will be used in the
construction of forthcoming components. Transition trape is set with higher pri-
ority than any matching transition labeled with event e. Transition trapAll has
higher priority than all transitions labeled trape, and therefore higher than all
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matching transitions (by transitivity). For every point p and event e labeling p,
a transition trape¬p

is added, with higher priority than any transition matching
event e but not matching point p. The purpose of these transitions is to define a
priority schema, not to be fired, as they are always disabled by adding a pre-arc

from a place called empty which is never marked. Fig. 7 gives an example of the
construction of TPN component for matching points.

b

p

a

q

(a) V TS scenario

¬p
notYetp matchp

b

pb

trapAll empty

matchq trapb

trapb

(b) TPN component for point p

Fig. 7. TPN component construction for matching points.

Construction of TPN components for events not matched by any

point. To recognize occurrences of events not associated to point matchings, we
add a unique place loop, with an initial marking, and loop transitions for each
event e of the scenario.

Fig. 8 shows the resulting TPN for a simple example.

b

p

a

q

(a) V TS scenario

a

loop a
loop

b

loopb

(b) TPN of unmatched occurrences of events a and b

Fig. 8. TPN component construction for unmatched events.

Construction of components for forbidden events on precedence rela-

tions. Suppose there is precedence relation from point q to p, and let matchq

and matchp be the corresponding matching places of the points. For each forbid-
den event e on the precedence relation, a forbidden transition, labeled with e, is
added with a pre-arc from matchq and an inhibitor-arc from matchp.

In order for this transition to capture all possible occurrences of the forbidden
event e, if e is labeling p, a priority relation is added to transition trape, otherwise
is added to transition trape¬p

. As we have seen, trape has higher priority than
any matching transition for event e, and trape¬p

, has higher priority than any
matching transition for event e not related with p.

Also, the corresponding loop transition for event e is disallowed whenever
the forbidden transition is enabled, by setting a priority relation. Therefore, the
loop transition is enabled only when point q has occurred but not yet point p,
avoiding any occurrence of event e not corresponding to the matching point p.
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At last, a post-arc with an inhibitor-arc is added to place invalidMatch. This
place, as we will show later, if not empty, avoids reaching the acceptance condi-
tion for matching the whole V TS scenario. The purpose of this inhibitor-arc is
to ensure the boundedness of the TPN.

Fig. 9 illustrates the construction of TPN components for forbidden events

on precedence relations.

b

p

¬ b, c
a

q

(a) V TS scenario

invalidMatch

matchp

trap

matchq

q.p

b

bforbidden

b

loopb

b

¬p

(b) TPN for forb. event b

invalidMatch

matchp

trap

matchq

q.p

c

cforbidden

c

loopc

c

(c) TPN for forb. event c

Fig. 9. TPN components for forbidden events over precedence relations.

Construction of TPN components for temporal restrictions on prece-

dence relations. In V TS, temporal restrictions over a precedence relation can
involve two cases: (1) when the time elapsed between the source and destination
points has a maximum allowed value, and (2) when it has a minimum allowed
value. Note that V TS time restrictions allow both cases to be combined in an
interval constraint.

In case of an upper limit β, we add a transition tooLateq·p with a lower
bound of β. This transition has a read-arc from place matchq, an inhibitor-arc

from place matchp, and a post-arc with an inhibitor-arc to place invalidMatch.
We add a priority relation from this transition to trapAll to avoid matching
points when it is enabled. Therefore, this transition will avoid point p to match
after a time β since point q has occurred. Fig. 10(a) and 10(b) illustrates this
construction.

In case of a lower limit α, we use two transitions. One transition, called
onT imeq·p, will delay at least α after point q matches, leaving a token at a
new place notEarlyq·p. The other transition, called tooEarly

q·p, has a pre-arc

from place matchp, an inhibitor-arc from place notEarlyq·p, and a post-arc with
an inhibitor-arc to place invalidMatch. Therefore, this transition will prevent a
scenario matching if point p occurs, but not transition onT imeq·p which only
becomes enabled after a time α since point q’s occurrence. Fig. 10(c) and 10(d)
illustrates this construction.

Construction of TPN components for restrictions over inequality rela-

tions. Consider two points q and p, such that p 6≡ q. By definition these points
have different matching, then necessarily, either q occurs before p, or p occurs
before q. Therefore, both cases must be considered. For this, we apply the rules
explained above for taking care of precedence relations.
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b

p

<10

a

q

(a) V TS scenario 1

invalidMatch

matchpmatchq

q.ptooLatetrapAll

[10, )

(b) TPN 1

b

p

>=2

a

q

(c) V TS scenario 2

invalidMatch

matchpnotEarlymatchq

q.ptooEarly

q.p
q.ponTime

[2,

[0,0]

(d) TPN 2

Fig. 10. TPN components for time restrictions over precedence relations

4.2 Construction of the TPN for the whole scenario

Scenario matching We add a place, namely, validMatch, and two transitions,
namely, accept and reject. Transition accept, immediately fires if all points
have been matched, and only if place invalidMatch is empty, putting a token
in validMatch. Transition reject, fires as soon as invalidMatch is reached, remov-
ing all tokens (if any) from validMatch. This transition is needed to wait for
occurrences of forbidden events in the future. Fig. 11 illustrates this construc-
tion.

b

p

a

q

(a) V TS scenario (b) TPN

Fig. 11. TPN component for scenario matching.

Fusion of TPNs. Now, we introduce the fusion operation, to obtain a TPN
by combining two or more TPNs. This operation is based on set union; so if two
combined TPNs share places and transitions, these will appear once in the final
construction. The fusion operation between two TPNs, N1 and N2, is denoted as
N1⊕N2. Fig. 12 illustrate fusion operation. Resulting fusion of TPNs Fig. 12(a)
and Fig. 12(b) is presented in Fig. 12(c).
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notYetp4

matchp4

START2

matchp1

trapAll trapSTART2

p4START2

(a) TPN N1

matchp4

[14,
invalidMatch

matchp1

trapAll

p1.p4tooLate

(b) TPN N2

notYetp4

matchp4

START2

[14,
invalidMatch

matchp1

trapAll trapSTART2

p4START2

p1.p4tooLate

(c) TPN N1 ⊕ N2

Fig. 12. TPNs’ fusion sample

Definition 5. Given a scenario S, we define the TPN of S, denoted TS , as the

fusion of the component TPNs constructed as explained above.

Example. Fig. 13 shows the resulting TPN for the V TS scenario initially pre-
sented at Fig. 5(e)8. For this scenario, the TPN results from the fusion of the
following components:

– Matching points: for points p4 (Fig. 12(a)) and p1.

– Unmatched event: for events START2 and LAUNCH.

– Forbidden events: for the forbidden event of START2 labeling the precedence
relation from point p1 to p4.

– Temporal restrictions: for time restriction of < 14 labeling the precedence re-
lation from point p1 to p4 (Fig. 12(b)).

– Scenario Matching.

START2

p4

<
1
4

LAUNCH

p1

(a) V TS

notYetp4 matchp4

START2

empty

loop

START2

[14,

invalid

Match

START2

validMatch[0,0]

[0,0]

notYetp1

matchp1

LAUNCH

LAUNCH

(b) TPN

Fig. 13. TPN for scenario: Job2 starts before 14.

8 In Fig. 13(b) transition names have been omitted in order to keep the figure small
and readable.
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5 Model Checking V TS

The problem of checking whether a system under analysis (SUA) modeled as
a TPN N satisfies a V TS scenario S is solved in the following way. The algo-
rithm presented in Sec. 4 translates S into a TPN (observer) TS which recognizes
matching traces. TS is composed with the SUA N to check whether a matching
execution exists, by using available model checking tools for TPNs. Specifically,
the model-checking problem consists in verifying whether there exists an execu-
tion that reaches a state where place validMatch of TS is marked, and remains
marked thereafter.

Property 6. Given N and S then: N‖TS is bounded iff N is bounded.

Property 7. Given N , S with ΣS ⊆ ΣN , and a trace σ over ΣN ∪ {λ} then:

σ is a trace of N‖TS iff σ is trace of N .

Therefore, we are sure that the composition of N with the TPN TS of the
scenario preserves the traces of the SUA.

Theorem 8 (Model checking V TS). Given N and S with ΣS ⊆ ΣN , then:

N ² S iff there exists a time-divergent execution sequence ρ of N‖TS such that,

∃k ∈ N. ∀k′ ≥ k. mρk′
(validMatch) = 1.

6 Case studies

To carry out our tests, we resort to a tool chain that allows us to link the
V TS scenarios with AADL models. Based on a property expressed as a V TS

conditional scenario, we use the tool presented in [11] to generate the related
V TS existential scenarios, that are then translated into TPNs. For this last step,
we have developed a tool that implements the translation algorithm described in
Sec. 4. On the other hand, the TPN representing the AADL models have been
constructed manually9. Finally we use the composition of both resulting TPNs
as input to the tool Tina, which generates the reachability graph preserving
LTL. To check whether the model satisfies the property, we encode Thm. 8
as an LTL model-checking problem and use the selt application of the Tina
tool-box. For the case studies we analyzed, because selt is unable to determine
whether an execution is time-divergent, we either relied on the strongly non-

Zeno [15] hypothesis of the SUA or performed semi-automatic verification. We
discuss in the conclusions an approach for automatizing the procedure derived
from Thm. 8.

6.1 AADL Mode Change Protocol

In AADL systems, components can operate in different modes, where each of
them is associated with a configuration of the component. Changes between
modes are triggered by events. A more detailed description can be found in [6].

9 In the future we plan to use OCARINA [10] or TOPCASED (through FIACRE [3])
to generate them automatically.
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prodA
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dismiss_a

Fig. 14. TPN of the model driver

Fig. 14 shows the TPN of a driver system (extracted from [6]). V TS can
be used to analyze and verify different kinds of properties. The mode-change
protocol should ensure that the maximum delay between a mode-change request
and the entry in the new mode is lower than a specified value. Fig. 15(a) shows a
conditional scenario for the verification of this property at the request of event a.
Fig. 15(b) expresses the correlation between the driver events with the environ-
ment ones. For example, part of this conditional scenario establishes that if a
change to mode SOM2 occurs, a corresponding input event event a triggering
the mode-change must have occurred. Fig. 15(c) presents a conditional scenario
where the antecedent defines an environment behavior by which a certain driver
property (the consequent) must be verified. It is important to notice that with
V TS we avoid modelling the environment as a (hand-coded) TPN composed
with the driver model as proposed at [6], by including its behavior in the sce-
nario as its antecedent. All these scenarios were verified to hold.
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Fig. 15. V TS Conditional Scenarios for verifying Mode-Change example
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6.2 AADL Flows Specification

AADL flow specifications are used to describe externally observable sequences
of connections through component ports. Flow specifications can be annotated
with properties, such as latency, whose verification depend on the properties of
the involved components, ports, etc., such as execution times, periods, deadlines,
communication delays, etc. Quantitative analysis of flow properties is addressed
in [8] and implemented in OSATE. The proposed technique, is based on case-
by-case analysis according to the architecture of the sub-components. Here, we
propose using V TS scenarios for checking flow latency. We believe the advantages
of our approach are twofold. First, it is independent of the architecture of the
SUA. Second, it allows specifying non-linear flows, currently not available in
AADL. As a case study, we use the example provided in [8]. The TPN of the
3-task system with a periodic sensor and aperiodic tasks and actuator is shown
in Fig. 16(a). The V TS scenario for the flow specification is shown in Fig. 16(b).
This scenario asserts two properties at once: whenever the sensor produces an
output, then (1) the flow is realized, and (2) its latency is less than or equal to
48. Notice that our approach gives a tighter latency than the one in [8].
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(a) TPN of aperiodic tasks
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(b) V TS scenario of flow latency

Fig. 16. Flow latency example (taken from [8])

7 Conclusions and Future Works

This paper proposes an approach for checking complex properties on AADL spec-
ifications by relying on the visual language V TS for expressing them. To make
it practical, we devised a procedure for generating TPNs from V TS to enable its
connection with available IDEs for AADL, such as OSATE and TOPCASED,
which integrate TPN-based verification tools.

V TS scenarios proved to be adequate to intuitively express complex prop-
erties of AADL models. We also incorporate the idea of using them to describe
flows in a more general and independent way. Besides its concrete practical ap-
plication to AADL-centric system design, the translation presented in this work
provides an alternative way to verifying V TS requirements in addition to the
one based upon timed automata reachability analysis [1].
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Several future research directions are envisaged. First, we plan to generate
TOPCASED tool-independent intermediate modeling language FIACRE [3] in-
stead of TPN directly. This will allow model-checking V TS with a larger number
of tools integrated by the TOPCASED consortium. Second, we will explore more
deeply the connection between V TS and AADL flows. The purpose of this is to
investigate whether AADL flow specifications could be extended to cope with
non-linear flows. Last but not least, to fully automatize the approach resulting
from Thm. 8, a verification procedure which takes into account time-divergence
should be implemented for TPNs, adapting, for instance, the algorithms pro-
posed in [15] for timed Büchi automata.
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Translating AADL into BIP - Application to the

Verification of Real-time Systems⋆

M.Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis

Verimag, Centre Equation - 2, avenue de Vignate 38610 GIERES

Abstract. This paper studies a general methodology and an associated
tool for translating AADL (Architecture Analysis and Design Language)
and annex behavior specification into the BIP (Behavior Interaction Pri-
ority) language. This allows simulation of systems specified in AADL and
application to these systems of formal verification techniques developed
for BIP, e.g. deadlock detection. We present a concise description of
AADL and BIP followed by the presentation of the translation method-
ology illustrated by a Flight Computer example.

1 Introduction

AADL [5] is used to describe the structure of component-based systems as an
assembly of software components mapped onto an execution platform. AADL is
used to describe functional interfaces and performance-critical aspects of com-
ponents. It is used to describe how components interact, and to describe the
dynamic behavior of the runtime architecture by providing support for model
operational modes and mode transitions. The language is designed to be exten-
sible to accommodate analysis of runtime architectures.

An AADL specification describes the software, hardware, and system part of
an embedded real-time system. Basically, an AADL specification is composed of
components such as data, subprogram, threads, processes (the software side of
a specification), processors, memory, devices and buses (the hardware side of a
specification) and system (the system side of a specification).

The AADL specification language is designed to be used with analysis tools
that support automatic generation of the source code needed to integrate the
system components and build a system executable.

BIP [9] is a language for the description and composition of components as
well as associated tools for analyzing models and generating code on a dedi-
cated platform. The language provides a powerful mechanism for structuring
interactions involving rendezvous and broadcast.

In order to demonstrate the feasibility of the BIP language and its runtime
for the construction of real-time systems, several case studies were carried out
such as an MPEG4 encoder [15], TinyOS [10], and DALA [8].

⋆ This work is partially supported by the ITEA/Spices project as well as by the STIC-
AmSud project TAPIOCA
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This paper provides a general methodology for translating AADL models
into BIP models [4]. This allows simulation of systems specified in AADL and
application to these systems of formal verification techniques developed for BIP,
e.g. deadlock detection [11].

We use existing case studies [3, 2] to validate the methodology. This paper is
organized as follows. Section 2 gives an overview of AADL and annex behavior
specification. Section 3 gives an overview of BIP. In section 4, we translate AADL
components (software, hardware, system and annex behavior specification). We
present our tool in Section 5. In section 6, we present a Flight Computer example.
Conclusions close the article in Section 7.

2 Overview of AADL

2.1 Generalities

The SAE Architecture Analysis & Design Language (AADL) [5] is a textual
and graphical language used to design and analyze the software and hardware
architecture of performance-critical real-time systems. It plays a central role in
several projects such as Topcased [7], OSATE [6], etc.

A system modelled in AADL consists of application software mapped to
an execution platform. Data, subprograms, threads, and processes collectively
represent application software. They are called software components. Processor,
memory, bus, and device collectively represent the execution platform. They are
called execution platform components. Execution platform components support
the execution of threads, the storage of data and code, and the communication
between threads. Systems are called compositional components. They permit
software and execution platform components to be organized into hierarchical
structures with well-defined interfaces. Operating systems may be represented
either as properties of the execution platform or can be modelled as software
components.

Components may be hierarchical, i.e. they my contain other components.
In fact, an AADL description is almost always hierarchical, with the topmost
component being an AADL system that contains, for example, processes and
processors, where the processes contain threads and data, and so on.

Compared to other modeling languages, AADL defines low-level abstractions
including hardware descriptions. These abstractions are more likely to help de-
sign a detailed model close to the final product.

2.2 AADL Components

In this section, we describe the fragment of AADL components, connections and
annex behavior taken into account by our translation.

Software Components AADL has the following categories of software com-
ponents: subprogram, data, thread and process.
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Subprogram : A subprogram component represents an execution entry-point
in the source text. Subprograms can be called from threads and from other
subprograms. These calls are handled sequentially by the threads. A subprogram
call sequence is declared in other subprograms or thread implementations.

A subprogram type declaration contains parameters (in and out), out event

ports, and out event data ports. A subprogram implementation contains con-

nections subclause, a subprogram calls subclause, annex behavior subclause, and
subprogram property associations. Figure 1 gives an example of a subprogram,
that takes as input two integers A, B, and produces the result as output.

Data : The data component type represents a data type in the source text
that defines a representation and interpretation for instances of data. A data
implementation can contain data subcomponents, and data property associations.
An example of data is given in Figure 1.

subprogram operation
features

A: in parameter integer;
B: in parameter integer;
result: out parameter integer;

end operation;

data Person
end Person;
data implementation Person.impl

subcomponents

Name : data string;
Adress: data string;
Age : data integer;

end Person.impl;

Fig. 1. Example of AADL subprogram and data

Thread : A thread represents a sequential flow of control that executes instruc-
tions within a binary image produced from source text. A thread always executes
within a process. A scheduler manages the execution of a thread.

A thread type declaration contains ports such as data port, event port, and
event data port, subprogram declarations, and property associations. A thread
component implementation contains data declarations, a calls subclause, annex

behavior, and thread property associations.
Threads can have properties. A property has a name, a type and a value.

Properties are used to represent attributes and other characteristics, such as
the period, dispatch protocol, and deadline of the threads, etc. Dispatch protocol
is a property which defines the dispatch behavior for a thread. Four dispatch
protocols are supported in AADL: periodic, aperiodic, sporadic, and background.

Figure 2 presents a thread component called sensor, that is a periodic thread
with inter-arrival time of 20ms. This thread receives an integer data through
port inp and sends an event through port outp.

Process : A process represents a virtual address space. Process components
are an abstraction of software responsible for executing threads. Processes must
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contain at least one explicitly declared thread or thread group, and can contain a
connections subclause, and a properties subclause. Figure 2 presents an example
of process called Partition, that contains thread subcomponents and two types
of connections (data port and event port) between threads.

thread sensor
features

inp : in data port integer;
outp : out event port;

properties

Dispatch protocol=>Periodic;
Period => 20ms;

end sensor;

process Partition
end Partition;
process implementation Partition.Impl

subcomponents

Sensor A : thread Sensor Thread.A;
Data Fusion: thread Fusion Thread.Impl;
Alrm 1 : thread Alrm Thread.Impl;

connections

data port

Sensor A.outp->Data Fusion.inpA;
event port

Sensor A.launch alrm->Alrm.launch A;
end Partition.Impl;

Fig. 2. Example of AADL thread and process

Hardware Components Execution platform components represent hardware
and software that is capable of scheduling threads, interfacing with an external
environment, and performing communication for application system connections.
We consider two types of hardware components: processors and devices.

Processor : AADL processor components are an abstraction of hardware and
software that is responsible for scheduling and executing threads. In other words,
a processor may include functionality provided by operating systems.

Device : A device component represents an execution platform component that
interfaces with the external environment. A device can interact with application
software components through their ports.

Systems A system is the toplevel component of the AADL hierarchy of compo-
nents. A system component represents a composite component as an assembly
of software and execution platform components. All subcomponents of a system
are considered to be contained in that system. We present an example of system:

system Platform
end Platform;
system implementation Platform.Impl

subcomponents

Part : process Partition.Impl;
p : processor myProcessor ;
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...
end Platform.Impl;

Annex Behavior Specification Behavior specifications [1] can be attached to
AADL model elements using an annex. The behavioral annex describes a transi-
tion system attached to subprograms and threads. Behavioral specifications are
defined by the following grammar:

annex behavior specification {**
<state variables>? <initialization>? <states>? <transitions>?

**};

– State variables section declares typed identifiers. They must be initialized in
the initialization section.

– States section declares automaton states.
– Transitions section defines transitions from a source state to a destination

state. The transition can be guarded with events or boolean conditions. An
action part can be attached to a transition.

Connections A connection is a linkage that represents communication of data
and control between components. This can be the transmission of control and
data between ports of different threads or between threads and processor or
device components. There are two types of connections: port connections, and
parameter connections.

Port connection: Port connections represent transfer of data and control be-
tween two concurrently executing components. There are three types of port
connections: event, data and event data.

Parameter connection: represent flow of data between the parameters of a
sequence of subprogram calls in a thread.

3 The BIP component framework

BIP (Behavior Interaction Priority) is a framework for modeling heterogeneous
real-time components [9]. The BIP component model is the superposition of
three layers: the lower layer describes the behavior of a component as a set of
transitions (i.e. a finite state automaton extended with data); the intermedi-
ate layer includes connectors describing the interactions between transitions of
the layer underneath; the upper layer consists of a set of priority rules used to
describe scheduling policies for interactions. Such a layering offers a clear sepa-
ration between component behavior and structure of a system (interactions and
priorities).

The BIP framework consists of a language and a toolset including a fron-
tend for editing and parsing BIP programs and a dedicated platform for model
validation. The platform consists of an Engine and software infrastructure for
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executing models. It allows state space exploration and provides access to model-
checking tools of the IF toolset [13] such as Aldebaran [12], as well as the D-
Finder tool [11]. This permits to validate BIP models and ensure that they meet
properties such as deadlock-freedom, state invariants [11] and schedulability.

Fig. 3. BIP Atomic Component

The BIP language allows hierarchical con-
struction [14] of composite components from
atomic ones by using connectors and priori-
ties.

An atomic component consists of a set
of ports used for the synchronization with
other components, a set of transitions and a
set of local variables. Transitions describe the
behavior of the component. They are repre-
sented as a labeled relation between control

states. A transition is labeled with a port p,
a guard g and a function f written in C. The
guard g is a boolean expression on local vari-
ables and the function f is a block of C code.
When g is true, an interaction involving p

may occur, in which case f is executed. The
interactions between components are specified by connectors.

Figure 3 shows an atomic component with two control states Si and Sj , ports
in and out,and corresponding transitions guarded by guard gi and gj .

Interactions between components are specified by connectors. A connector
is a list of ports of atomic components which may interact. To determine the
interactions of a connector, its ports have the synchronization attributes trigger

or synchron, represented graphically by a triangle and a bullet, respectively. A
connector defines a set of interactions defined by the following rules:

- If all the ports of a connector are synchrons then synchronization is by
rendezvous. That is, only one interaction is possible, the interaction including
all the ports of the connector.

- If a connector has one trigger port then synchronization is by broadcast. That
is, the trigger port may synchronize with the other ports of the connector.
The possible interactions are the non empty sublists containing this trigger
port.

In BIP, it is possible to associate with an interaction an activation condition
(guard) and a data transfer function both written in C. The interaction is possi-
ble if components are ready to communicate through its ports and its activation
condition is true. Its execution starts with the computation of data transfer func-
tion followed by notification of its completion to the interacting components.

4 Automatic model transformation from AADL to BIP

In this section, we present the translation from AADL [5] to BIP [9]. It is orga-
nized in five part. First, we translate AADL software components (subprogram,
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data, thread and process). Second, we translate hardware components (proces-
sor, device). Third, we translate a system component. Fourth, we translate the
AADL annex behavior specification [1] in BIP. Finally, we translate connections.

4.1 Software Component

We define the translation of the different AADL software components into BIP.

Subprogram Depending on its structure, we translate the AADL subprograms
into atomic or compound BIP components:

Fig. 4. Subprogram as atomic BIP component

As atomic BIP component :

When the AADL subprogram
does not contain subprogram
calls and connections, it is mod-
elled as an atomic component
in BIP. Figure 4 shows such
a component. This component
has two ports call and re-

turn, because subprogram can
be called from another subpro-
gram or thread. It also has a
particular state IDLE and two
transitions to express the call
and return to the IDLE state.
The behavior is obtained from
the annex as described in sec-
tion 4.4.

As compound component : When the AADL subprogram contains subprogram
calls and connections, it is modelled as a compound BIP component. The sub-
program calls are executed sequentially. This execution is modelled by an atomic
component with states wait call1...wait calln and wait return1...wait returnn,
transitions labeled by the ports call1...calln and return1...returnn (where n is
the number of the subprograms called sub1...subn). To enforce the right sequence
of execution and the transfer of parameters, two ports call and return are used
to express calls to the compound subprogram by other subprograms or threads,
and the port data to sends event or data to the threads, as shown in Figure 5.

Data The data component type represents a data type in the source text that
defines a representation and interpretation for instances of data in the source
text. In BIP it is transformed into a C data structure.
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Fig. 5. Subprogram as compound BIP component

Thread : An AADL thread is modelled in BIP by an atomic component as
shown in Figure 6. The initial state of the thread is halted. On an interaction
through port load the thread is initialized. Once initialization is completed the
thread enters the ready state, if the thread is ready for an interaction through
the port req exec. Otherwise, it enters the suspended state. When the thread
is in the suspended state it cannot be dispatched for execution.

Fig. 6. BIP model for thread behavior
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When in the suspended state, the thread is waiting for an event and/or pe-
riod to be activated depending on the thread dispatch protocol (periodic, aperi-
odic, sporadic). In the ready state, a thread is waiting to be dispatched through
an interaction in the port get exec. When dispatched, it enters the state com-

pute to make a computation. Upon successful completion of the computation,
the thread goes to the outputs state. If there are some out ports to dispatch
the thread returns to the outputs state. otherwise, it enters the finish state.

The thread may be requested to enter its halted state through a port stop

after completing the execution of a dispatch. A thread may also enter the thread
halted state immediately through an abort port.

Fig. 7. BIP model for process behavior

Process : Processes must contain at
least one explicitly declared thread or
thread group. The process behavior
is illustrated in Figure 7. Once pro-
cessors of an execution platform are
started, the process enters to the state
loading through port load and it is
ready to be loaded.

A process is considered as stopped
when all threads of the process are
halted. When a process is stopped,
each of its threads is given a chance
to finalize its execution.

A process can be aborted by using
abort port. In this case, all contained
threads terminate their execution im-
mediately and release all resources.

The Load deadline property specifies the maximum amount of elapsed time
allowed between the time the process begins and completes loading.

4.2 Execution Platform Components

This section defines the translation into BIP of processors and devices.

Processors AADL processor components are an abstraction of hardware and
software that is responsible for scheduling and executing threads. Schedulers
are modelled as atomic BIP components as shown in Figure 8. The initial state
of a scheduler is idle. When a thread become ready, the scheduler enters the
choice state through an interaction on port ready. In this state, the thread ID
is stored into the scheduler memory. When a thread is dispatched, the scheduler
selects a thread identifier (into SelectedID variable) and enters the wait end

state through an interaction on port dispatch. If there are several threads to be
dispatched the scheduler re-enters to the state choice, otherwise, it enters the
state idle.
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Fig. 8. BIP model of a scheduler

Devices A device component represents an execution platform component that
interfaces with the external environment. A device can interact with application
software components through their ports. It is modelled as an atomic component
in BIP.

4.3 System

A system component represents an assembly of software and execution platform
components. All subcomponents of a system are considered to be contained in
that system. A system is modelled as a compound component in BIP. Figure 9
shows a BIP component representing a system and connexion between threads,
process, and scheduler.

4.4 Annex Behavior specification

Some annex behavior elements can be directly translated to BIP whereas for
others we need new BIP facilities. Actual behaviors are supposed to be described
using the implementation language. The proposed behavioral annex allows the
expression of data dependent behaviors so that more precise behavioral analysis
remains possible.

– The state variables section declares typed identifiers. In BIP, they correspond
to data variables. They must be initialized in the initialization section, which
is directly included in the BIP initialization part.

– The states section declares automaton states as: The initial state is directly
included in BIP. The return state indicates the return to the caller. This case
is represented in BIP as a transition from return state to idle state.

– The transitions section defines transitions from a source state to a destination
state. Transitions can be guarded with events or boolean conditions, and can
contain an action. Each transition is translated as one or a sequence of BIP
transitions.
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Fig. 9. BIP System

4.5 Connections

Port connection : is translated in BIP depending on the categories :

– an event connection is translated into strong synchronization between the
corresponding event ports.

– a data connection is translated into connection with transfer of data.
– an event data connection is translated into a strong synchronization between

the corresponding ports with transfer of data.

Parameter connection : is translated in BIP by transfer of data between the
parameters of a sequence of subprogram calls in a thread, as shown in section 4.1.

5 Tool

From the high-integrity systems point-of-view, the use of automatic code gen-
eration in the development process is profitable. As the generated code is a
combination of a relatively small set of extensively tested design patterns, the
analysis and review of this code is easier than for hand-written code.

The tool chain is described in Figure 10, and it has the following features:

– AADL to BIP Transformation: Using model transformations, allows to per-
form analysis on the models before code generation. The tool generating BIP
from AADL (Figure 10) has been implemented in Java, as a set of plugins for
the open source Eclipse platform. It takes an input an AADL model(.aaxl)
conforming to the AADL metamodel and generates a BIP model conforming
to the BIP metamodel. Models generated may be timed or untimed. Timed
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models can be transformed into untimed models in which time progress is
represented by a tick port that exists in all timed components and a connec-
tor connecting all tick ports.

– Code Generation: Takes as input a BIP model and generate the C/C++
code to be executed by the Engine.

– Exploration Engine: The engine has a state space exploration mode, which
under some restrictions on the data used, generates state graphs that can be
analyzed by using finite state model-checking tools.

– Simulation: Monitors the state of atomic components and finds all the en-
abled interactions by evaluating the guards on the connectors. Then, between
the enabled interactions, priority rules are used to eliminate the ones with
low priority.

– Verification: Automatic verification is very useful for early error detection.

Fig. 10. AADL to BIP Tool Architecture

6 Case studies

We used some examples of AADL [3, 2] (with annex behavior specification) to
check the feasibility of our translation from AADL to BIP. In this section, we
present the example of a simplistic flight computer [2].

The Flight Computer has a thread called Sensor Sim that periodically sends
integers data for the current AoA(angle-of-attack) and Climb Rate, and an event
in case of Engine Failure. It also has a thread called Stall Monitor that is periodic
and monitors the condition of the AoA and Climb Rate sensors and raise a stall
warning if certain conditions are met. The thread Operator simulates the pilot. It
is a periodic thread that sends a command (Gear Cmd) at every dispatch to raise
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or lower the landing gear of the aircraft. The thread Landing Gear simulates the
landing gear subsystem. It receives a command to start a landing gear operation,
and is a sporadic thread with a minimum inter-arrival time of 3 seconds. The
thread HCI is a human computer interface. It receives a Stall Warning as an event
data of type Integer; Engine Failure as an event; a landing gear command from the
pilot. It may send a landing gear operation request (Gear Req) to the landing gear
subsystem, and receives a landing gear operation acknowledgement (Gear Ack)
from the landing gear subsystem. It is a sporadic thread with a minimum inter-
arrival time of 10ms. The graphical representation of Flight Computer system
model is given in Figure 11.

Fig. 11. Flight Computer Architecture

6.1 BIP model

The AADL model of the Flight Computer is transformed into BIP automatically
by using our AADL to BIP translation tool. Figure 12 shows the obtained BIP
model. This figure represents the BIP atomic components (AADL Threads) and
connectors between them. Notice that we omit here the connectors between
threads, process and scheduler that are shown in the Figure 9.

The component Dummy In Out models the communication between the Dummy Out

and Dummy In events ports. In the AADL model (Figure 11), these two events
are used to control thread reactivation: execution of the Landing Gear thread is
activated by the Dummy In event; it emits a Dummy Out event upon completion.
Thus, synchronizing these two events ensures periodic activation of this thread.
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Fig. 12. BIP model for the Flight computer (including observer property, dashed)

6.2 Verification

The model construction methodology applied to this example, opens the way for
enhanced analysis and early error detection by using verifications techniques.

Once the model has been generated, two model checking techniques for ver-
ification have been applied:

Model checking by Aldebaran: The first technique of verification is deadlock
detection by using the tool Aldebaran [12]. Exhaustive exploration by the BIP
exploration engine, generates a Labeled Transition System (LTS) which can be
analyzed by model checking. e.g, Aldebaran takes as input the LTS generated
from BIP and checks for deadlock-freedom. We have checked that the model is
deadlock-free.

Model checking with observers: The second technique of verification is by using
BIP observers to express and check requirements. Observers allow us to express
in a much simple manner most safety requirements. We apply this technique to
verify two properties:

• Verification of thread deadlines by using an observer component keeping
track of the execution time of threads. If the execution time of a thread
exceeds its deadline the observer moves to an error state.

• Verification of synchronization between components: Landing Gear is sporad-
ically activated bye HCI trough the Req port. When it is activated, it send
back an acknowledgement through the ACK port, and possibly reactivates
itself through the Dummy In Out component. This property can be verified
by an observer which monitors the interactions between HCI, landing Gear

and Dummy In Out components (Figure 11).
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7 Conclusion

The Architecture Analysis and Design Language (AADL) suffers from the ab-
sence of concrete operational semantics. In this paper, we address this problem by
providing a translation from AADL to BIP, which has an operational semantics
formally defined in terms of labelled transition systems. This translation allows
simulation of AADL models, as well as application verification techniques, such
as state exploration (using IF toolset [13]) or component-based deadlock detec-
tion (using Aldebaran [12], and D-Finder tool [11]). The proposed method has
been implemented in translation tool, which has been tested on the Flight Com-
puter case study, also presented in this paper. Future work includes incorporating
features that will appear in V2.0 of the AADL standard.
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Abstract. This paper is concerned with the early development phases of 

distributed applications, service compositions and workflow systems. It deals 

with the transformation of a global requirements model, which makes 

abstraction from the physical distribution of the different system functions, into 

a system design that identifies a certain number of distributed components. The 

temporal constraints of the global requirements on the execution of the different 

activities imply certain coordination messages between the different system 

components. The paper presents a transformation algorithm that derives, from a 

given global behavior, the local behaviors for each of the system components 

including the exchange of coordination messages for the global synchronization 

of the activities. In contrast to earlier work, strong and weak sequencing is 

distinguished and the primitive sub-activities included in the global behavior 

descriptions may be collaborations involving several components.  

Keywords. Distributed applications, workflow, model transformations, Activity 

Diagrams, component design, protocol derivation, distributed system design, 

Web Services, design derivation.  

1  Introduction 

Various kinds of system models can be used during the system development process. 

In this paper, we are concerned with the transformation from a global requirements 

model, which describes the functional behavior of a distributed system in an abstract 

manner, to a distributed system design where the different system components are 

identified and their behavior must be determined such that their interactions give rise 

to a behavior satisfying the global requirements model. At the design level, the 

behavior of the different system components are often modeled using communicating 

state machines or modeling languages such as SDL or UML State Diagrams. The 

translation from these models into implementation code can be largely automated. 

We consider in this paper distributed applications, for instance systems providing 

communication services, workflow management systems, e-commerce applications, 

etc. Various notations have been proposed for defining the global requirement models 

for such system. We mention in particular UML Activity Diagrams, Use Case Maps 

(UCM), the Process Definition Language (XPDL) of the Workflow Management 
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Coalition, the Business Process Execution Language (BPEL), and the Web Services 

Choreography Description Language (WS-CDL) developed by W3C. These different 

notations contain many common concepts, but also show important differences. They 

all have in common that the overall workflow behavior can be decomposed into 

several sub-activities, and further into sub-sub-activities. Most of these notations 

assume that the basic (primitive) activities in this behavior decomposition are 

activities that are allocated to a single system component within the architectural 

design of the system. However, for many of these applications, the basic building 

blocks of the behavior are activities that are actually collaborations between several 

system components, for instance a service operation between a client and a server. 

Therefore we have proposed to use the UML Collaborations as the basic building 

blocks for constructing global requirement models [1]. Our approach was to use the 

sequencing operations of UML Activity Diagrams and use Collaborations as the basic 

activities; the temporal order among these collaborations is then defined by the flow 

relations of the Activity Diagrams (an example is discussed in Section 2).   

Before the transformation into a design model, it is important to define the 

architectural design and to identify the different system components that are involved 

in providing the different functions of the system. For each of the primitive 

collaboration activities identified in the global requirements model, one has to 

determine which system component will implement each of the collaboration roles 

involved. This goes hand in hand with the allocation of system resources and is very 

important for obtaining the desired system performance characteristics.  This question 

of what is the best architectural design, resource allocation and allocation of 

collaboration roles to different system components is not further developed in this 

paper.  Instead, we concentrate here on the subsequent question: What should be the 

dynamic behavior of each of the system components in order to coordinate the 

activities in such a manner that the sequencing rules of the global requirements model 

will be satisfied.  

We note that the same kind of question has been addressed by many papers during 

the last 10 years in a context where the global requirements are defined in terms of 

Message Sequence Charts (MSCs) or UML Sequence Diagrams. In this context, one 

usually wants to describe the behavior of each system component in the form of a 

state machine. This approach encountered many difficulties; a review of these issues 

is included in [1]. In many cases, a given MSC execution scenario may only be 

realizable by the given set of components if at the same time other so-called implied 

scenarios would also be realized [14]. Furthermore, the distributed nature of the 

design often gives rise to so-called race conditions which means that certain messages 

may arrive before they are expected, or in a different order than expected [16].  

These difficulties are increased by the use of weak sequencing operators in the 

description of the global system behavior. We note that strong sequencing between 

two activities A1 and A2 means that all sub-activities of A1 must be completed before 

any sub-activity of A2 may start. In contrast, weak sequencing between A1 and A2 

means that each system component locally applies sequencing to the local sub-

activities of A1 and A2, that is, a component may start with sub-activities that belong 

to A2 as soon as it has completed all its local sub-activities that are part of A1. Strong 

sequencing implies weak sequencing, but not inversely. We note that weak 

sequencing was introduced in High-Level MSCs (HMSCs) as the normal sequencing 
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operator between different sequence charts. It is also supported in UML Sequence and 

Interaction Overview diagrams.   

We think that weak sequencing is an important concept for modeling abstract 

requirements of distributed systems, because it requires less synchronization 

messages than strong sequencing. Therefore we consider in this paper weak and 

strong sequencing. We use a number of temporal ordering operators, similar to those 

found in Activity Diagrams, XPDL and BPEL, to build the global requirements model 

for a system. In this paper, we show how such an abstract model, together with the 

allocation of collaboration roles to the system components identified by the 

architectural design, can be automatically transformed into a set of component 

behavior models. These component models are correct by construction, that is, they 

will give rise to a global system behavior that satisfies the global requirements model.  

The transformation algorithm presented in this paper is inspired by some of our 

early work under the title “Deriving protocol specifications from service 

specifications” in the 1980ies [3, 4, 5, 6], where we concentrated our attention on 

strong sequencing.  The main contribution of this paper is the extension of the 

previous work to requirement specifications that contains weak sequencing.  Some 

inspiration also came from my collaboration with Humberto Nicolás Castejón and 

Rolv Bræk on the modeling of distributed applications using the concept of 

collaborations [1, 2] and the discussion of problems that must be solved during the 

development of the component behaviors.  

The paper is structured as follows. In Section 2, we consider the temporal ordering 

of activities in a global requirements model, present the ordering operators that we 

assume in this paper and introduce a simple example. The main body of the paper is 

Section 3. After a review of past work on the transformation from global requirements 

to component behaviors, we describe in Section 3.1 the principles of our automatic 

transformation approach.  One important question, not addressed by the earlier work 

mentioned above, is the following: In the case of choices, it is not evident how a 

component involved in some specific sub-activity may determine when this sub-

activity is completed and the next sub-activity (in weak sequence) may be started ? – 

This problem is solved by the so-called choice indication messages. Then in Section 

3.2, we present an algorithm that does this transformation automatically. The 

application of this algorithm to the example of Section 2 is discussed in Section 4. 

Finally, Section 5 provides our conclusions. 

2   Describing composed collaborations and work flow applications 

As mentioned above, various notations have been proposed for describing global 

requirements for distributed applications, workflows, or communication services. We 

consider here in particular UML Activity Diagrams (AD). They include the following 

concepts for defining the order of execution of activities: sequential execution, 

alternative choice, concurrency, as well as loops and partial-order dependencies. In 

addition, they support interruptible regions of activities which are useful for modeling 

exception handling and external priority interrupts. ADs also support the explicit 

modeling of dataflow relationships between different activities and the specification 
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of the type of data exchanged (using UML Class Diagrams). XPDL and BPEL have 

similar constructs for describing the control flow of applications. All these notations 

support hierarchical decomposition where an activity shown at one level of 

abstraction as a basic, non-divisible activity can be described at a more detailed level 

to be composed out of a number of smaller units with a specific control structure 

defining the order of execution of these more basic activities. It is our intention to 

support these same concepts for describing the control structure using the notation 

introduced below. 

We note that most of these notations assume that the basic (primitive) activities in 

this behavior decomposition are activities that are allocated to a single system 

component within the architectural design of the system. This is also the case for 

Message Sequence Charts (MSCs) or UML Sequence Diagrams, where the primitive 

actions are the sending or reception of messages by specific system components. In 

contrast, as mentioned in the Introduction, we assume that the basic activities in the 

description of the overall behavior may be collaborations involving several 

components.  

One may ask the question whether different notations are required for describing 

the dynamic behavior of the global requirements model, on the one hand, and the 

behavior of the different system components, on the other hand. In this paper, we use 

essentially the same behavior expressions to describe both of these behaviors. 

However, the distinction between weak and strong sequencing disappears when one 

deals with the behavior of a single component. The operators used for describing the 

temporal properties of these behavioral models are listed in Table 1. They are closely 

related to the sequencing operators of UML Activity Diagrams and High-Level 

MSCs.  We distinguish between strong and weak sequence. Following the spirit of 

“Structured Programming”, we restrict ourselves to flow control constructs that have 

a single entry point and a single exit point.  

We write “<name>(R) = C” to indicate that the behavior of a collaboration, called 

<name>, which involves the set of roles R, is given by the expression C. The 

expression is composed out of primitive actions, the invocation of collaborations and 

certain sequencing operators as shown in Table 1. We refer to the sub-expressions C1, 

C2, and C3 in the table as sub-collaborations of the collaboration C. We note that our 

notation does not include the equivalent of the Join and Merge operators used in 

Activity Diagrams. However, the presence of a Merge node is implied at the end of a 

choice expression, and a Join node is implied at the end of the concurrency construct. 

It is possible to invoke a collaboration that has no explicitly defined behavior; in 

this case, its behavior may be defined by some other formalism, such as a sequence 

diagram or an implementation in some programming language.  

As an example we consider the telemedicine consultation service described in [1]. 

A patient is being treated over an extended period of time for an illness that requires 

frequent tests and consultations with a doctor at the hospital to set the right doses of 

medicine. Since the patient may stay at home and the hospital is a considerable 

distance away from the patient’s home, the patient has been equipped with the 

necessary testing equipment at home.  The patient will call the hospital on a regular 

basis to have remote tests done and consult with a doctor. A consultation may proceed 

as follows: The patient calls the telemedicine reception desk to ask for a consultation 

session with one of the doctors. The receptionist will register the information needed, 
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and then see if the doctor is available (collaboration <registr> below).  If the doctor is 

available, the patient will be assigned to the doctor and the consultation can start. 

Otherwise, the patient is put on hold, possibly listening to music, until a doctor is 

available (collaboration <w> below). If the patient does not want to wait any longer, 

he/she may hang up (action <h-up> below) and call back later.  

Table 1: Operators used in behavior expressions 

Construct Notation Explanation of the semantics 

primitive 

activity 

<action>(r) Execution of a local action with name <action> 

performed by role r 

invocation 

of sub-col. 

<subcol>(R) Execution of a collaboration with name <subcol> 

involving the set R of participating roles 

strong 

sequence

C1  ;s   C2 C2  is executed after C1 in strong sequence, that is, all 

actions of C1 are completed before C2 can start 

weak 

sequence

C1 ;w   C2 C2  is executed after  C1 in weak sequence, that is, only 

local order is enforced by each participating role 

choice C1 [] C2 Either C1 or C2 is executed; this may be a local choice 

(that is, the choice is performed by a single role / 

component) or competing initiatives from several roles; 

for a more detailed discussion, see [2]) 

strong 

while loop 

C1 * s   C2 C1 is executed zero, one or more times and then C2 will 

be executed; more precisely, the behavior starts with a 

choice between C1 and C2 ; if C1 is executed, there is  

strong sequencing between the end of C1 and the choice 

of executing C1 again or terminating the loop with C2 ;

we assume that the choice is local (performed by a 

single role).  

weak while 

loop 

C1 * w   C2 As above, except that weak sequencing is used between 

the end of C1 and the choice of executing C1 again or 

terminating the loop with C2

concurrency C1  ||  C2 C1 and C2 are executed concurrently 

interruption C1 |> C2

else C3

C1 is executed, but may be interrupted by C2 which 

represents a choice with priority; C2 is enabled as soon 

as C1 starts. If C2 does not occur (or occurs when C1 is 

already terminated) then C3 will occur after C1 (this is 

the other choice alternative). 

This behavior can be described using the operators defined in Table 1 as follows: 

<telemed> = <registr>{P, R}  ;w   ( <w>{P, R}   |> <h-up>{P} else <act>{P, R, D}  )

where  <w>{P, R}    = <wait>{P, R}   *w        and   

            <act>{P, R, D}   =  <assign>{R, D}  ;w  <consult>{P, D}  

The roles involved in each activity are indicated by the upper indices (P stands for 

patient, R for receptionist, and D for doctor). This definition of the <telemed> 

workflow indicates that the registration of the patient is followed by a waiting period 

<w> that may be empty ( ); this waiting period may be interrupted when the patient 

hangs up the telephone. The waiting period, if not interrupted, is followed by the 

<act> sub-collaboration which consists of the weak sequential execution of the 

assignment of the patient to the doctor followed by the consultation. We note that the 

detailed interactions involved in each of these activities (or collaborations) are not 
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specified, and we do not need to know them for what we discuss in this paper. The 

behavior can also be represented by the UML Activity Diagrams shown in Figure 1. 

    

                                                                      

Fig. 1. Dynamic behavior of the Telemedicine collaboration, including two sub-collaborations 

3  Deriving component-based designs 

Our early work in this area [3, 4, 5] covered behavior expressions containing 

primitive actions, invocations of behaviors without recursion, strong sequence, choice 

and concurrency. Coordination messages were introduced for a strong sequence "C1 

;s C2" to ensure that all activities of C1 are completed before any activity of C2 can 

start. The various messages introduced by the derivation algorithm included a 

parameter that avoided any ambiguities concerning the choices that were made during 

the execution of the behavior. A later paper [6] dealt with recursive behavior 

invocations and interruption. 

In the above references, it was assumed that a choice between different branches of 

execution is always made by a single component. This is called a "local choice". In 

the case of a "non-local choice" where several components are involved [7], 

distributed algorithms for making a decision may be introduced, for instance, based 

on a circulating token. Gouda showed in 1984 [8] how a choice involving competing 

initiatives from two different components may be resolved by giving priority to one of 

the parties. 

During the last 10 years, much research was concerned with weak sequencing and 

related race conditions. Most of this work was in the context were the system 

behavior is defined in terms of MSCs or Sequence Diagrams;  and it was pointed out 

that one sequence diagram, when implemented by a set of components, may 

necessarily give rise to other so-called “implied sequences” [14]. The difficulties of 

coordination for distributed behaviors including weak sequencing have been 

summarized in [2]. An interesting observation was made by Mooij [9, 10] who points 

out that many race conditions can be avoided by making a distinction between the 

reception of a message by a component and the consumption of this message by the 

behavior of a role played by this component. He assumes that received messages are 

put into a buffer pool from where appropriate messages may be fetched when the 

destination role is ready to process them. A similar idea is the use of the SDL SAVE 

construct to reorder the sequence of received messages [15]. 
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In the area of Web Services and workflow management, several approaches have 

been described for deriving distributed execution environments for 

services/workflows that are specified in a global (centralized) view. For instance, the 

decentralized execution of composite Web Services specified in BPEL has been 

proposed in [18]. Here the global BPEL specification is partitioned into small code 

fragments which are then combined (based on data flow relations) into several local 

partitions that are executed on the different servers identified in the original BPEL 

specification. The resulting implementation is in general more efficient since the 

number of required messages is reduced. A proposal for workflow fragmentation and 

distributed execution [19] is also based on data flow and uses a variant of Petri nets 

for describing the workflow to be performed. The workflow is partitioned into 

fragments of which the first is executed locally and the others may be distributed to 

other servers. The choice of these servers can be performed dynamically during the 

execution of the current fragment. A theoretically oriented paper [20] considers a 

formalization of WS-CDL for the specification of the global behavior and the –

calculus for the behaviors of the components. We note that these approaches consider 

that the basic activities to be performed can be allocated to a single component 

(server). Therefore they cannot deal with the more general situation considered in this 

paper, where the basic activities are collaborations that may involve, each, several 

collaborating components. 

3.1  Proposed derivation method 

The derivation method described here uses the following ideas described previously: 

(a) coordination messages for strong sequencing [3, 4, 5], (b) the idea that messages 

should have an identifier that indicates to which sub-expression of the behavior 

expression they belong (particular methods of obtaining such an identifier were 

proposed by Nakata [11], and for Application Protocols in the ASN.1 standard), and 

(c) the idea of buffering received messages until they are processed, as proposed in [9, 

10]. The proposed derivation method extends the previous work by providing a 

method to deal with weak sequencing. It also introduces the treatment of loops and a 

particular form of interruption. For the treatment of non-local choices, the reader is 

referred to [2]. 

The main ideas underlying the proposed derivation method, specifically for dealing 

with weak sequencing, can be summarized as follows: 

1. Each role knows which sub-collaborations are currently active. Message re-

ordering at reception is used to accept only those messages that relate to 

active collaborations.  

2. It is assumed that sub-collaborations that may be concurrently active have 

disjoint sets of messages that can be received by a given role; or simply, that 

their message sets are disjoint. 

3. At a given role, each sub-collaboration is in one of the following phases: (1)  

inactive (messages for this sub-activity are not accepted), (2) enabled (the 

role is not a starting role, the messages of this sub-activity are accepted), (3) 

active (local activities for this sub-activity have started, messages are 

accepted). We say that a sub-collaboration ends when the role knows that no 
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further actions pertaining to this sub-collaboration are required. When a sub-

collaboration ends, it goes back into the inactive phase.  

4. The transition from inactive to enabled occurs when the "previous" sub-

collaboration ends. If the role is a starting role, it may immediately go into 

the active state. A non-starting role enters the active state when it receives 

(and accepts) the first message pertaining to this sub-collaboration. When the 

sub-collaboration ends, the "following" sub-activity goes into the enabled or 

active state. 

5. It is therefore important that each role knows when an active collaboration 

ends. This happens when the final action (for this role) is performed. If the 

role is participating, it should know when all actions pertaining to this sub-

collaboration have been performed (termination decision). If it is not 

participating, there is no point in doing anything. 

6. If the sub-collaboration contains no choice, then each role knows what 

actions must be locally performed. The termination decision is easy: the sub-

collaboration ends when all these actions have been performed. If the sub-

collaboration consists of a choice C1 [] C2, there are the following cases: 

o The role participates in both alternatives: choice propagation is 

assured by the disjointness of the message sets of the two 

alternatives. The participating role will know which alternative is 

performed and will therefore know which actions must be 

performed. 

o The role does not participate in any alternative: there is no 

participation at all. 

o The role participates in C1 but not in C2 (or inversely):  If C1 is 

chosen, there is no problem. If C2 is chosen, we have to introduce a 

special kind of coordination message sent to this role by a role 

participating in C2 which indicates that C2 was chosen. We call this 

message a choice indication message. On the reception of this 

message, the given role can consider that the choice has ended.  

The above discussion indicates that we have to identify for each collaboration or 

sub-collaboration the following items which are defined based on the partial order 

between the actions that compose the collaboration: 

• Special kinds of actions of a collaboration 

o Initial action(s): An action of a collaboration is initial if there is no other 

action in that collaboration that precedes it.  

o Final action(s): An action of a collaboration is final if there is no other 

action in that collaboration that succeeds it. 

o Last action(s) of a given role: During the execution of a collaboration, an 

action is a last action for a given role if the action is performed by that role 

and there is no other action in that collaboration that must be performed by 

that role after the given action. 

• Different roles involved in a collaboration 

o Starting role: this is a role that performs an initial action of the 

collaboration or an initial action of an initial sub-collaboration. 

o Terminating role: this is a role that performs a final action of the 

collaboration or a final action of a final sub-collaboration. 
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o Participating role: this is a role that executes a primitive action of the 

collaboration or of a sub-collaboration. This includes the starting and 

terminating roles.  

Table 2 shows how the sets of starting, terminating and participating roles are 

calculated for a behavior expression depending on the sequencing operators used. 

Table 2: Rules for calculating the starting, terminating and participating roles  

Operator Starting roles (SR) Terminating roles 

(TR)

Participating roles 

(PR)

<action>(r) {r} {r} {r}

<subcol>(R) SR(<name>) TR(<name>) PR(<name>) = R 

C1 ;s   C2 SR(C1) TR(C2) PR(C1) U PR(C2)

C1 ;w   C2 SR(C1) U 

 (SR(C2) - PR(C1))

TR(C2) U 

 (TR(C1) - PR(C2)) 

PR(C1) U PR(C2)

C1  []  C2 SR(C1) U SR(C2) TR(C1) U TR(C2) PR(C1) U PR(C2)

C1 * s   C2 SR(C1) = SR(C2)= {r} TR(C2); SR(C1) if C2=  PR(C1) U PR(C2)

C1 * w   C2 as above TR(C2) U  

(TR(C1) - PR(C2))

PR(C1) U PR(C2)

C1  ||  C2 SR(C1) U SR(C2) TR(C1) U TR(C2) PR(C1) U PR(C2)

C1 |> C2

else C3

SR(C1) TR(C2) U TR(C3) PR(C1) U PR(C2) U 

PR(C3)

Before we can derive the behavior of the distributed system components that 

should implement the actions defined by the collaboration behavior, we have to 

determine how the different roles defined in the behavior of the collaboration are 

allocated to the different system components. In general, each system component 

should have some role to play, but several behavior roles may be allocated to the 

same system component. We assume in the following that a function Alloc() defines 

for each role the system component to which it is allocated. 

After having calculated the starting (SR), terminating (TR) and participating (PR) 

roles for the collaboration and each of its sub-collaborations, we then can derive the 

behavior for each system component as follows. Basically, the control flow of the 

behavior of each system component follows the control flow of the collaboration 

behavior; it is obtained from the global behavior specification of the collaboration "by 

projection" onto the particular component. This means that actions not local to the 

component in question are dropped. Therefore any sub-collaboration for which no 

participating role is allocated to the component in question will also be dropped.  

In addition, the following coordination messages between different system 

components are introduced (for details, see Table 3): 

− Flow message for coordinating strong sequencing, abbreviated fm(x) or fim(x, i); 

each message includes a parameter x which indicates to which strong sequencing 

construct the message belongs within the syntactical structure of the overall 

collaboration behavior, as originally proposed in [3]. 

− Choice indication message for propagating the choice to a component that does not 

participate in the selected alternative, abbreviated cim(y) where y indicates to 

which choice construct the message refers; note that such a message is only 

required if the destination component is involved in some activities following the 

choice. 
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− Interrupt and interrupt enable messages for coordinating the interruption of an 

ongoing activity, abbreviated im(z) and iem(z), respectively, where z indicates to 

which interrupt construct the message refers. 

3.2  Algorithm for deriving component behaviors from global behavior  

In the following, we define an algorithm that realizes the derivation method explained 

in Section 3.1. We assume that the overall workflow is defined by a main-

collaboration and several sub-collaborations, identified by their name, which are 

invoked by the main-collaboration or some activated sub-collaboration. Each of these 

collaborations is defined by a behavior expressions C which is formed by primitive 

actions, sub-collaboration invocations and the operators introduced in Table 1. For 

each of the components c that implements the roles of these collaborations, we define 

in the following a translation functions Tc  that translates the behavior expressions of 

the collaborations into local behavior expressions to be performed by the component 

in question. These local behavior expressions will include those primitive actions of 

the collaborations that are performed by the component in question, in addition to the 

sending and receiving of coordination messages as required by the behavior 

expressions. Overall, the syntactic structure of the resulting behavior expressions for 

all these components resembles the syntactic structure of the original expression of 

the global collaboration behavior.  

In the following we make the assumption that all choices are local. We note that 

certain standard approaches to solving non-local choices could be easily integrated 

with our derivation algorithm. However, as explained in [1, 2], the nature of non-local 

choices may vary a lot in practice and it appears necessary to allow for ad-hoc 

solutions to fit the specific requirements in particular cases 

Table 3 contains the definition of the translation function Tc (C) that defines for a 

given global behavior expression C the behavior of the system component c. It is 

defined recursively by the rules in the table. The resulting component behavior 

expression is constructed using the same sequencing operators as for describing the 

global behavior, however, since the behavior is performed locally by a given 

component, there is no point in making a distinction between weak and strong 

sequencing. We simply use the operator “;” to denote sequential execution.  

The text defining the translation function in the table uses a notation similar to Java 

Server Pages, namely a mixture of text that represents the generated specification of 

the component behavior, and of text that represents actions and decisions to be 

performed during the translation. The latter is written in italics. We also include some 

comments (written between “(*” and “*)” ) and notes for making the definition of the 

translation more readable. 

As mentioned at the beginning of Section 3.1, the parameters of the coordination 

messages and the buffering of received messages before their consumption are 

important elements for the correct operation of the distribution system derived by the 

algorithm of Table 3. We make the following assumptions: 

1. Each coordination message contains the following parameters: (a) source role, 

(b) destination role, (c) name of sub-collaboration it belongs to, (d) the 

particular sequencing operator instance it refers to within the global behavior 
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expression of the given sub-collaboration – these are the parameters named x, 

y, and z in Table 3. As noted earlier, the parameters (c) and (d) above are 

important for non-ambiguous choice propagation (see also [3, 4, 5]). In 

addition, the messages also need addressing information in order to be 

transmitted through the network to the right computer and the responsible 

application. 

2. The reception of coordination messages proceeds in two steps: When a 

message is received by a component, it is first placed into a buffer pool, called 

receive-buffer.  It will be “consumed” from the receive-buffer only when the 

behavior expression generated for the component according to Table 3 

foresees the execution of a receive statement for a message of the specific type 

and parameter values. The message parameters mentioned above, and the 

additional parameter mentioned under point 4 below are used to determine 

whether a message in the receive-buffer is “receivable”. If no receivable 

message is in the receive-buffer, the execution of the local behavior will wait 

until such a message arrives. 

3. The flow messages used within an interrupt construct, abbreviated fim(x, i),  

have an additional Boolean parameter i that indicates whether an interrupt was 

successful. 

4. The execution of a weak while loop, say C1*w C2 , within the distributed 

environment may lead to situations where the component deciding the looping 

conditions, say c1 , may already have performed several iterations of C1 while 

another component c2 may have only started the first iteration (as shown in 

Figure 9(c) of [1]). When c2 receives a flow message indicating the beginning 

of C2 , it is important that c2 can determine whether C2 should be started or 

whether more executions of C1 should first be performed. Therefore we 

include an additional parameter, say n, in all flow messages that are part of the 

coordination within C2 , which contains the number of times that C1 has been 

executed. For more details, see [17]. 

Table 3: Definition of the translation function Tc  for component  c 

Operator Definition of Tc

C = <action>(r) Tc (C) = if Alloc(r) = c then <action> else

Note:  is the empty string and means that no actions need to be 

performed. 

C = invoke 

<subcol>(R)
Tc (C) = if c in Alloc(R) then  invoke <subcol> else

C = C1 ;s  C2 Tc (C) = Tc (C1)  “;“  SFM(C1 , C2)  “;“  RFM(C1 , C2)   “;“   Tc (C2)

where SFM(C1 , C2) = if c in Alloc(TR(C1)) then

               “send fm(x) to all c’ in (Alloc(SR(C2)) – {c})” 

and  RFM(C1 , C2) = if c in Alloc(SR(C2)) then

               “receive fm(x) from all c’ in (Alloc(TR(C1)) – {c} ” 

Note: The term “– {c}” avoids that flow messages are sent to the 

component itself. 

C = C1 ;w   C2 Tc (C) = Tc (C1)  “;“   Tc (C2)
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C = C1  []  C2  Tc(C) = DOcimc(C1, C2)  []  DOcimc(C2, C1)   

where DOcimc(C1, C2) =  if c in Alloc(PR(C1)) then 

          “( Tc (C1)” if c is responsible for cim then

          “|| send cim(y) to all c’ in (Alloc(PR(C2)) - Alloc(PR(C1)))  )” ;  

    else if c in (Alloc(PR(C2) - Alloc(PR(C1)))  then  “receive cim(y)“ 

Note: The function DOcimc(C1, C2) generates code for performing 

C1, and looks after the transfer of choice indication messages from 

some component participating in C1 to those components not 

participating in C1, but in C2.   

C = C1 * s   C2 We assume Alloc(SR(C1)) = {r}, and Alloc(SR(C2)) = {r} or C2 = .

Tc(C) =“(“ Tc(C1 ) “;“ SFM(C1 , C1) “;“ RFM(C1 , C1) “)* ; ( “ Tc(C2)

if c=r then “|| send cim(y) to all c’ in PR“   if c in PR  then “|| receive 

cim(y) from r“ “)” where PR = Alloc(PR(C1)) - Alloc(PR(C2)) – {r}  

C = C1 * w   C2 As above, except that the SFM and RFM constructs are absent 

C = C1  ||  C2 Tc (C) = Tc (C1)  ||   Tc (C2)

C = C1 |> C2

else C3

We assume that C2 has the form “ <action>(r) ;s C2’ “. 

Tc (C) = NormalBeh ||* InterruptBeh . (see note below) 

These two parts communicate within each component using the 

following boolean local variables which are initially false: 

Interr : an interrupt occured (but it may have occurred too late) 

Interrupted : the normal behavior has been interrupted 

In addition, a local variable I-Enabled is used by the InterruptBeh 

part. The action “wait(x)”waits until the expression x becomes true.  

NormalBeh = 

if c in Alloc(PR(C1)) then “( Tc (C1) |> (wait(Interr);   

                                                          Interrupted := true; ) else  );”

if c in Alloc(TR(C1)) then “send fim(x, Interrupted) to all c’ in SR”  

if c in SR  then “(for all c’ in (Alloc(TR(C1))–{c}) do  

                (receive fim(x, i) from c’;  if i then Interrupted := true;); 

            if not Interrupted then DOcimc (C3, C’2); )  

        ||* (wait(Interrupted); DOcimc (C’2, C3) )      ) “ 

else  “ (DOcimc (C’2, C3) [] DOcimc (C3, C’2) ); “  

where SR = (Alloc(SR(C’2)) U Alloc(SR(C3))) –{c} 

InterruptBeh = if c = r then ( 

     if c in (Alloc(SR(C1)) then “I-Enabled := true; “  else  “for all c’ in 

            (Alloc(SR(C1))–{c}) do (receive iem(z); I-Enabled := true) 

     || ( wait(I-Enabled); <action> (* this may never happen *) ;

              Interr := true; send im(z) to all c’ in (Alloc(PR(C1)) - r) ;  ) “ 

else (* c not equal r *) (  

    if c in Alloc(SR(C1)) then “send iem(z) to r; “ 

    if c in Alloc(PR(C1)) then 

            ”(receive im(z) from r (*may not happen *); Interr := true; )” 

The expression “C1 ||* C2” has the meaning that the two sub-expressions C1 and 

C2 are executed in parallel, but the whole construct terminates as soon as C1 

terminates. 
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4  Application to the Telemedicine example 

Referring to the example discussed in Section 2, let us assume that the roles P 

(patient), R (receptionist) and D (doctor) are to be implemented on three different 

components, also called P, R and D, respectively. In the following we explain how the 

algorithm described in Section 3 can be used to derive the behavior of these 

components such that they realize the correct coordination of activities among these 

three components.  

We assume that the starting and terminating roles of the basic activities are as 

follows: SR(<registration>) = TR(<registration>) = {P}; SR(<wait>) = {R};  

TR(<wait>) = {P};  SR(<h-up>) = TR(<h-up>) = {P};  SR(<assign>) = TR(<assign>) 

= {R}; SR(<consult>) = {D};  TR(<consult>) = {P, D}. Using Table 2, this leads to 

the starting and terminating roles of the sub-activities <w> and <act> as follows: 

SR(<w>) = TR(<w>) = {R};  SR(<act>) = {R};  TR(<act>) = {P, D, R};   

Let us first determine the behavior for the sub-activities <w> and <act> at each of 

the three components:  

TP (<w>) = TP (<wait>) * ; receive cim(y) from R 

TP (<act>) = TP (<consult>)   (* P is not involved in <assign> *) 

TR (<w>) = TR (<wait>) * ; send cim(y) to P 

TR (<act>) = TR (<assign>)   (* R is not involved in <consult> *) 

TD (<w>) = 

TD (<act>) = TD (<assign>) ; TD (<consult>) 

Now let us determine the behaviors of the three components for the <telemed> 

activity. Applying the rules of Table 3, we obtain the following behaviors for all 

components c = P, R or D: 

Tc (<telemed>) = Tc (<registr>) ; Tc (<w>  |>   <h-up>;     else <act> ) 

                          = Tc (<registr>) ; ( NormalBeh c   | |  InterruptBeh  c ) 

where TD (<registr>) =  and the behaviors NormalBeh c  and  InterruptBeh c  are 

defined as follows:

   NormalBeh P  = (TP (<w>)  |> ( wait(Interr); Interrupted := true;) else );

     ( receive cim(y) from R  []  TP (<act>) ) 

InterruptBeh P = receive iem(z) from R; <h-up>; Interr := true; send im(z) to R 

NormalBeh R  = (TR (<w>)  |> ( wait(Interr); Interrupted := true;) else );

     ( receive fim(x, i) from P;  if i then  Interrupted := true;  if not Interrupted  

        then TR (<act>) )    | |   (wait(Interrupted); send cim(y) to D and P ) 

InterruptBeh R = send iem(z) to P; receive im(z) from P; Interr := true 

NormalBeh D  = TD (<act>)  [] receive cim(y) from R 

InterruptBeh D = 

By substituting the behaviors of the sub-activities <w> and <act> given above, we 

obtain three behavior expressions for the three system components P, R and D. These 

expressions include the local behaviors of the primitive collaborations <wait>, 

<assign> and <consult> and are independent of their particular nature; the expressions 

only depend of the sets of starting, terminating and participating roles given above. 

We note that these behaviors can also be represented by UML Activity Diagrams. 

Further details are given in [17]. If the behaviors of the primitive collaborations are 

also given, for instance in the form of simple Sequence Diagrams, a complete 
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description of each component behavior can be obtained by substitution. An example 

is discussed in [17] in more detail, including possible execution scenarios. 

6  Conclusions 

We assume that the system design for a distributed system consisting of several 

separate components can be developed in the following steps: 

1. Construction of a requirements model including the specification of the global 

behavior of the system in terms of basic activities and their temporal ordering. 

2. Through architectural and non-functional requirements, a certain number of 

separate system components are identified; each of the activities identified at 

the requirements level is either allocated to one of these components, or 

performed as a collaboration among several components. 

3. Based on the global behavior of the requirements, the identified components 

and a more detailed description of the basic activities, the distributed system 

design is developed which defines the behavior of each of the system 

components including the messages required for realizing the collaborations 

and for ensuring the global coordination of all activities among the different 

system components. 

We have shown in this paper how the third step can be automated, assuming that 

the global behavior is given in a suitable modeling language. The modeling language 

supported by our design derivation algorithm described in Section 3 supports most of 

the concepts found in UML Activity Diagrams. This includes stepwise refinement 

where the behavior of a given activity is further detailed in terms of sub-activities and 

their ordering constraints, described as a separate activity diagram. In addition, a 

distinction between weak and strong sequencing can be made in the requirements 

model. We plan to prove the correctness of the algorithm, as discussed in [17]. 

 We believe that this approach to the automatic derivation of distributed system 

designs is useful in many fields of application, including distributed workflow 

management systems, service composition for communication services, e-commerce 

applications, or Web Services. 

We plan to work on the implementation of the here proposed derivation algorithm 

in a tool environment and on the extension of the algorithm to support more general 

order relationships including data flow. 
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Abstract. Higher-order model composition can be employed as a mech-
anism for scalable model construction. By creating a description that
manipulates model fragments as first-class objects, designers’ work of
model creation and maintenance can be greatly simplified. In this paper,
we present our approach to higher-order model composition based on
model transformation. We define basic transformation rules to operate
on the graph structures of actor models. The composition of basic trans-
formation rules with heterogeneous models of computation form complex
transformation systems, which we use to construct large models. We ar-
gue that our approach is more visual than the traditional approaches
using textual model descriptions. It also has the advantage of allowing
to dynamically modify models and to execute them on the fly. Our argu-
ments are supported by a concrete example of constructing a distributed
model of arbitrary size.

1 Introduction

We take an actor-oriented approach to the design of embedded systems. A model
consists of actors as the basic building blocks, which implement functions that
map signals at their input ports to signals at their output ports. The wiring be-
tween output ports and input ports represents transmission of unaltered signals.
In a hierarchical design, models may contain models, in which case the contained
models themselves act as actors. The execution semantics are defined by the di-
rector of the model, if it has one, or otherwise the director of the containing
model. Each director implements a model of computation (MoC). Examples of
MoCs include DE (Discrete Event), SDF (Synchronous Dataflow), FSM (Finite
State Machine), and PN (Karn Process Network). A heterogeneous model uses
various MoCs at different levels of its hierarchy. This proves extremely flexible
for system design, because model designers can freely choose a convenient MoC
for any part of the model [1].

⋆ This work was supported in part by the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley, which receives support from the National Science
Foundation (NSF awards #0720882 (CSR-EHS: PRET) and #0720841 (CSR-CPS)),
the U. S. Army Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force
Office of Scientific Research (MURI #FA9550-06-0312), the Air Force Research Lab
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(a) Top level of the MapReduce model

(b) Internal design of the Split actor

(c) Internal design of the Map actor

(d) Internal design of the Reduce actor

(e) Internal design of the WaitingStop actor

Fig. 1. MapReduce model with 2 Map machines and 3 Reduce machines
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In recent practice we have seen large-scale models containing thousands or
even millions of actors. One concrete example is the model for distributed word-
counting created using the MapReduce programming paradigm as described by
Dean and Ghemawat in Google [2]. The model is designed to utilize hundreds
of computers available in a large cluster to count the occurrences of each word
in a huge number of web documents. We have created a simplified demo using
5 worker machines in the Ptolemy II modeling and simulation environment [3],
as shown in Fig. 1. Two of the machines (modeled by actors) provide the Map
functionality and three provide Reduce. The Split actor, located either on a
central computer or on any of the worker machines, distributes the key-document
pairs received at its input port to the Map machines. The Map machines map
words in the input documents onto word-number pairs. In this case, the numbers
in those pairs are always 1, each denoting a single occurrence of a word. Those
pairs are then sent to the Reduce machines designated by the hash code of the
words. Therefore, pairs containing the same word are always delivered to the
same Reduce machine. The Reduce machines then count the pairs for each word
that they receive, and send the result to the Merge actor for output. When all
input documents are processed, the WaitingStop actor receives a true-valued
input, and terminates the execution.

It is hard to imagine manually constructing one such model for a large number
of worker machines. The complexity of the work grows sharply as the number
of actors increases. Even if the model can be constructed manually, it is still
extremely difficult to modify or maintain the design. We are thus motivated to
explore an approach to automated model construction and modification.

In our prior work, we have developed Ptalon as a declarative language for
higher-order model composition [4]. Textual model descriptions can be written by
designers to manipulate model fragments as first-class objects, and to compose
them to generate large models. As an example, the same MapReduce model is
constructed with Ptalon [5]. It is shown that the size of the Ptalon description
does not grow with the increase of worker machines used by the model. This is
because the number of worker machines is defined as an integer parameter that
can be set by the user.

In our recent effort on higher-order model composition, we aim to provide
a more straightforward and user-friendly mechanism for constructing models.
We view models as attributed graphs, and employ graph transformation tech-
nique. We have implemented a tool that supports a visual language for specifying
transformations. The visual language is very close to the language that model
designers use to manually create models. This removes the need for requiring
model designers to learn new languages.

We envision a variety of applications for our technique. In this paper, we
present an example for automated model construction and execution. Other
applications include model optimization, refactoring, structural parametrization,
and workflow automation.

(AFRL), the State of California Micro Program, and the following companies: Agi-
lent, Bosch, HSBC, Lockheed-Martin, National Instruments, and Toyota.
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Top

A

C

B

(a) An example of a hierarchical model (b) Attributed graph representation

Fig. 2. Hierarchical model and its representation in attributed graph

This technique differs from Ptalon in the following ways.

1. Models are constructed with graph transformation rules that have a visual
representation, whereas in Ptalon, textual descriptions are used.

2. Transformations can be applied to existing models as incremental modifica-
tions statically or dynamically.

3. A hierarchical heterogeneous model can be used to control the application
of multiple transformations.

The following sections are organized as follows. In Section 2, we present
models as graphs and define basic transformations. In Section 3, we discuss using
a model to control basic transformations to form a complex transformation. We
construct a MapReduce model with transformation as an example in Section 4.
We study the related work in Section 5, and conclude our discussion in Section 6.

2 Model Transformation Based on Graph Transformation

Fig. 2 shows how a hierarchical model can be represented with an attributed
graph. In Fig. 2(b), vertices represent actors, ports, and relations in the model.
The styles of the vertices denote their types encoded with attributes, as will be
discussed later. Actors are represented by big circles, ports represented by small
hollow circles, and relations by filled dots. There are two types of edges. Dashed
lines represent containment relationship, where the end vertices are semantically
contained by the start vertices. Solid lines represent connections between ports.
To represent a bidirectional connection between ports, we use two reversed di-
rected edges.

This alternative representation of models allows us to directly apply graph
transformation techniques [6] to modify model structures.

2.1 Visual Representation of Transformation Rules

We use a visual syntax to specify transformation. This syntax is inspired by
triple graph grammar [7]. A transformation is defined by a transformation rule,
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Pattern Replacement

1 Map Map

2 Reduce Reduce

(c) Correspondence

(a) Pattern

(b) Replacement

Fig. 3. A transformation rule for connecting a Map and a Reduce

which is similar to a rewrite rule in a context-free grammar. It can be used
to match a subgraph in a given graph, and to replace that subgraph with a
replacement graph. We specify a transformation rule with three components: a
pattern, a replacement, and the correspondence between objects in those two.

Fig. 3 shows a transformation rule designed for our MapReduce example,
which we will further discussed in Section 4. This rule creates connections be-
tween the output ports of a Map actor and the input ports of a Reduce actor.
Repeatedly applying the rule results in having all the Map actors and Reduce
actors connected in this way. In the pattern, two matchers aim to match two
distinct actors in the given model. The names of the matchers are insignificant
and need not be the same as those of the matched actors. Without consider-
ing the constraint, the two matchers in the pattern match any two such actors:
one with output ports named “outputKeys” and “outputValues,” and the other
with input ports “inputKeys” and “inputValues.” The constraint requires that
the ports of the two actors not be connected before the transformation is applied.
This avoids creating excessive connections between the same pairs of ports.

In the replacement, the two matchers are preserved, meaning that the matched
actors should be kept after transformation. Two connections are to be created
between their ports, because those connections (along with the hidden relations
on them) do not exist in the pattern. In general, designers of transformation
rules can specify adding or deleting objects by editing the replacement as they
wish. Note that the names of the matchers in the replacement need not be the
same as those in the pattern, because the third component, the correspondence
table, establishes the relations between the two graphs. In this case, the cor-
respondence table states that the “Map” object in the pattern corresponds to
the “Map” object in the replacement, and the “Reduce” object in the pattern
corresponds to the “Reduce” object in the replacement. For brevity, we do not
show correspondence relations between other types of vertices such as ports and
relations.
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2.2 Formal Definition of Graph Transformation

Our graph transformation is defined as a modified version of the double-pushout
approach introduced in [8] and reviewed in [9]. For completeness, we first review
that approach here.

A graph G is a tuple 〈VG, EG〉, where VG is the set of vertices in G and
EG ⊆ VG×VG is the set of edges. Graph G is a subgraph of graph H if VG ⊆ VH

and EG ⊆ EH .
A graph morphism, or simply morphism, from graph G to H is a total func-

tion m : VG → VH , such that for any v1, v2 ∈ VG, if (v1, v2) ∈ EG, then
(

m(v1),m(v2)
)

∈ EH . We denote this morphism with G
m
−→ H. For any vertex

v ∈ VG, we say v matches v′ in m if m(v) = v′. For any edge (v1, v2) ∈ EG,
we say (v1, v2) matches (v′1, v

′

2) in m if m(v1) = v′1 and m(v2) = v′2. If m is an
injective function, then we say G is isomorphic to a subgraph of H, or G matches

a subgraph of H.
The composition of G

m
−→ H with H

n
−→ I is G

n◦m
−→ I, where n◦m : VG → VI

is the composition of function m : VG → VH and n : VH → VI .

G H

I J

K

m

n n0

m0

y

x

z

Fig. 4. Pushout of graph morphisms

Given graphs G, H, I, and morphisms G
m
−→ H and G

n
−→ I as depicted

in Fig. 4, a pushout is a tuple 〈J, I
m′

−→ J,H
n′

−→ J〉, in which J is a graph and

morphisms I
m′

−→ J and H
n′

−→ J satisfy the following conditions:

1. n′ ◦m = m′ ◦ n, and

2. For any graph K with morphisms H
x
−→ K and I

y
−→ K satisfying x ◦m =

y ◦ n, there exists a unique J
z
−→ K satisfying z ◦ n′ = x and z ◦m′ = y.

A transformation rule T , denoted by 〈P
m
←− K

n
−→ R〉, consists of graphs

P , K and R, and injective morphisms K
m
−→ P and K

n
−→ R. P is called the

pattern graph (or left-hand side). R is the replacement graph (or right-hand side).
K is the correspondence graph (or glue graph) that relates the vertices and edges
in the pattern and those in the replacement.
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R
n

P K
m

D O
n0

I
m0

dp r

Fig. 5. Graph transformation based on double-pushout

Given transformation rule T = 〈P
m
←− K

n
−→ R〉 and input graph I, if an

injective morphism P
p
−→ I exists (i.e., P matches a subgraph of I), then T

is applicable to I. If applicable, the result of applying T to I, as depicted in
Fig. 5, is an output graph O, such that there exist graph D, injective morphisms

K
d
−→ D and R

r
−→ O, and morphisms D

m′

−→ I and D
n′

−→ O, such that

〈I, P
p
−→ I,D

m′

−→ I〉 and 〈O,R
r
−→ O,D

n′

−→ O〉 are both pushouts.

2.3 Attributes

In order to transform models using graph transformation, it is necessary to cat-
egorize vertices and edges of different types. (Recall that three types of vertices
and two types of edges are used in Fig. 2.) It is also necessary to take into account
other attributes that further differentiate vertices, such as the ones that decide
whether a port is input port or output port. Therefore, we let A be a globally
defined attribute set, and extend the definition of graph G to be 〈VG, EG, AG〉,
where AG : (VG ∪ EG)→ 2A is a total function that returns a (possibly empty)
set of attributes for each vertex and edge.

Our other definitions in the previous subsection remain unchanged, except
that the definition of graph morphism is enhanced next to take into consideration
the attributes.

2.4 Criteria Attributes and Operation Attributes

We define a subset of attributes U ⊆ A to be unchecked attributes. It contains
attributes that need not be directly checked in the extended graph morphisms to
be defined below. A subset of unchecked attributes, C ⊆ U , is called criteria. Let
B be an auxiliary set that equals 2A × 2A. We require any criterion c ∈ C to be
an element in 2B . Given two vertices or edges x ∈

(

VG∪EG

)

and y ∈
(

VH∪EH

)

,

we say that criterion c is satisfied by x matching y if
(

AG(x), AH(y)
)

∈ c.
We now extend the definition of graph morphism discussed in Sec. 2.2 to

become the following. An attributed graph morphism from graph G to H is a
graph morphism m : VG → VH satisfying the following additional conditions:

1. for any v ∈ VG,
(a) ∀a ∈

(

AG(v) \ U
)

. a ∈ AH(m(v))
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(b) ∀c ∈
(

AG(v) ∩ C
)

.
(

AG(v), AH(m(v))
)

∈ c

2. for any (v1, v2) ∈ EG,
(a) ∀a ∈

(

AG((v1, v2)) \ U
)

. a ∈ AH((m(v1),m(v2)))

(b) ∀c ∈
(

AG((v1, v2)) ∩ C
)

.
(

AG((v1, v2)), AH((m(v1),m(v2)))
)

∈ c

Case (a) of the two conditions requires that all attributes belonging to a
vertex or edge in G, except the unchecked ones, be associated with the matched
vertex or edge in H. Therefore, the unchecked attributes of the latter form a
superset of those of the former. Case (b) of the two conditions ensures that the
criteria associated any vertex or edge in G be satisfied by the matching.

Practically, for a transformation depicted in Fig. 5, only the graphs P and
R contain vertices and edges with criteria attributes. In particular, we call the
criteria in the replacement graph R operations, since they essentially enforce
restrictions on the output graph that may be satisfied by performing additional
attribute adding or removal operations. (In this discussion, we assume that those
criteria in R can be satisfied by adding or removing attributes in the output
graph O.)

Notice that because of the criteria in P and R, it may not be possible to
apply transformation rule T to input graph I even if it is applicable in the sense
that the pattern P matches a subgraph of I.

2.5 Basic Model Transformation

The example in Fig. 2 shows a way to represent a model with an attributed graph.
In the attributed graph, three special attributes are assigned to the vertices to
distinguish their types: Actor (visually represented by big circles), Port (small
hollow circles) and Relation (filled dots). Two additional attributes identify the
types of the edges: Containment (dashed lines) and Connection (solid lines). The
names of the vertices are unchecked attributes that are unique at each level of
the hierarchy of a transformation rule. Names at different levels may be identical.

Graph-to-model 

Conversion

Transformation 

Rule

Input Model

Output Model

Model-to-graph 

Conversion

Graph 

Transformation

Model-to-graph 

Conversion

Fig. 6. The basic transformation process

Using the graph representation, we establish a basic model transformation

process as shown in Fig. 6. The inputs to the process consist of an input model
and a transformation rule, both specified in the modeling language. (Fig. 1 and
Fig. 3 provide examples of both in this language.) The two inputs are then
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converted into attributed graphs. To convert a model into an attributed graph,
a vertex is created for each actor, port or relation, and an edge is created for
each connection or containment relation. (We use two reversed edges with the
same attributes to simulate an undirected edge in Fig. 2.)

The transformation rule is converted into multiple graphs. Its pattern and
replacement contain model fragments and are converted into the P graph and the
R graph in Fig. 5. The correspondence table simplifies the specification of the K

graph. Its “Pattern” column shows the names of the actors in the pattern. (For
clearer presentation, we hide the vertices corresponding to ports and relations as
well as all edges.) For a hierarchical transformation rule, the names may contain
parts separated by dots, referring to the unique identifiers at different levels.
The “Replacement” column shows the names of the corresponding actors in the
replacement. There is a one-to-one relationship between entries in both columns.
Conceptually the conversion process computes a subgraph of P as K, such that
K contains only vertices listed in the “Pattern” column. The one-to-one nature
ensures that a subgraph exists in R that is isomorphic to this selection of K.

After the conversion, graph transformation can be applied. The transforma-
tion result is converted back into a model for output.

3 Model-Based Transformation

Basic transformations are limited in expressiveness. To locate a match in the
input model, a subgraph isomorphic problem needs to be solved, which is known
to be NP-hard. This complexity restricts the size of patterns that can be used
in practice. Furthermore, because a basic transformation is context-free, it can
only operate on a subgraph matched by the pattern each time, regardless of the
rest of the graph.

To enhance expressiveness, a common practice is to employ an additional
mechanism to control multiple applications of basic transformations. In our work,
we leverage the heterogeneous models of computation provided by Ptolemy. We
allow transformation designers to create higher-order models as compositions
of basic transformations. Those basic transformations in the higher-order model
operate on models that are considered as first-class objects. The output of a basic
transformation can be passed to the next one via its output port. The communi-
cation is governed by the model of computation used. We call such a higher-order
model a model-based transformation, as opposed to basic transformations that
do no involve any control mechanism.

3.1 TransformationRule Actor

We consider any basic transformation T as a function FT : G → G, where G is
the set of all graph representations of models. For any input graph I ∈ G, if T

is applicable to I, FT returns the output graph obtained by applying T to I;
otherwise, FT simply returns I. We then define the TransformationRule actor
as a pure functional actor that computes FT . It has a single input port and
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two output ports. The input port accepts actor tokens, which contain models to
be transformed. Its first output port sends the transformation results obtained
by applying FT to the inputs. Its second output port (visually shown at the
bottom of the actor’s icon) produces true or false values, which signify whether
the transformation was applicable for those inputs.

When the TransformationRule actor is opened in the Ptolemy II GUI (Graph-
ical User Interface), an interface appears to allow the designer to edit the basic
transformation that this actor contains. This interface has a tab for each of
the three components, as is shown in Fig. 3. (For better usability, the corre-
spondence table is automatically maintained by the tool unless the designers
explicitly specify it.)

3.2 A Library of Actors for Model-Based Transformation

In addition to TransformationRule, we have created other actors in an actor
library for model-based transformation.

ModelGenerator is used to generate initial actor tokens. It has different us-
ages. If an input string containing the description of a model in the Modeling
Markup Language (MoML) is provided, it parses the string and sends the model
via its output port. If only a model name is provided, it creates an empty model
with the given name.

ModelCombine accepts multiple input models at each time. It merges those
models and outputs a combined model. Suppose the n input models are repre-
sented with graphs G1, G2, · · · , Gn, then the output model can be represented
with G = 〈VG, EG, AG〉, where VG, EG and AG are the disjoint unions of the ver-
tex sets, edge sets and attribute functions (considered as sets of argument-value
pairs) of the input graphs. We take an extra step after the merging to update
the name attributes so that they are unique at each level of the resulting model.

ModelView displays the input models in a separate window. It updates the
window when a new actor token is received. After displaying the model in the
actor token, it sends the token to downstream actors via its output port.

ModelExecutor executes the input models to completion. Inputs can be pro-
vided to the models being executed via user-customized input ports of Mod-
elExecutor. The tokens available at those input ports are automatically trans-
mitted to the input ports with the same names of the executed models that
have the same names. Outputs from the models are also transmitted to the
user-customized output ports.

MoMLGenerator exports the input models in the Modeling Markup Lan-
guage (MoML). The exported strings can be written into files by FileWriter.

3.3 Applications

There is a large variety of applications for model-based transformation. We
sketch some of them here. A concrete example of the model construction ap-
plication will be discussed in the next section.
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– Model construction. ModelGenerator can be used to generate empty mod-
els, which are first-class objects manipulated by a higher-order model (the
one that contains the ModelGenerator). Arbitrary models can thus be con-
structed by modifying empty models with transformations. The constructed
models can be executed by ModelExecutor on the fly, or be stored in files
by MoMLGenerator and FileWriter.

– Model optimization. When appropriate information about model behavior
is provided, model transformation can be used to optimize existing models
while preserving their behavior. One example is to partially evaluate a given
model by eliminating the parts of computation logic that output signals that
can be computed statically. The validity is based on the information about
whether the actors’ outputs are constant, or how actors’ outputs depend on
their inputs. This information may be provided in the actors’ behavioral in-
terface [10], or be obtained with a static analysis of the code that implements
the actors.

– Design refactoring. Refactoring also preserves model behavior. It usually
aims to improve model designs for better understandability or easier main-
tenance. Take hierarchy flattening as an example. For some models, hierarchy
may be eliminated by moving actors to higher levels. An opposite operation
is to introduce extra levels to the hierarchy by encapsulating actors, which
helps clarify the design and protect the encapsulated parts.

– Structural parametrization. Models can be parametrized with placeholders
defined in their structures. Model transformations can be used to config-
ure those placeholders to form complete models. Compared to value-based
parametrization, structural parametrization is a generalization that pro-
vides more design flexibility and reuse opportunity. Furthermore, one can
construct a class hierarchy for models, where models at each level (except
the root level) are variants obtained from structurally parametrizing some
models at a higher level. Formal checking, using for example interface au-
tomata [11], can be incorporated to guarantee behavioral properties. This
leads to an actor-oriented subclassing mechanism that generalizes the work
in [12].

– Execution parallelization. Using a model of computation that provides con-
currency, multiple models can be executed in parallel with ModelExecutors.
Those models can communicate with each other via the user-customized in-
put ports and output ports of the ModelExecutors. This makes it possible
to simulate a distributed system, where the models are executed on separate
computers and communicate with each other.

– Workflow automation. Model-based transformation can also be used to auto-
mate tasks in the model development workflow. Those tasks include compo-
nent configuration and composition, version control, and regression testing.

4 MapReduce Example

In this section we discuss a parametrized higher-order model that generates a
MapReduce model and executes it. Fig. 7 shows part of the hierarchy of this
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Fig. 7. A higher-order model that generates a MapReduce model and executes it

higher-order model. A parameter at the top level, numberOfMachines, defines
the preferred number of worker machines, which can be set by the user. For
simulation, we use a FileReader to read the documents from disk and to output
them in tokens via the upper output port. The lower output port produces true
when all documents are sent, or false otherwise. When it outputs false, the doc-
ument tokens are queued in the buffer for the ModelExecutor’s upper-left input
port. When it outputs true, the Switch sends a token to the CreateMapReduce
actor, triggering it to generate a MapReduce model in an actor token. (Fig. 1
shows the MapReduce model generated when numberOfMachines equals 5.) The
model is then sent to the ModelExecutor for immediate execution. The buffered
documents are provided to the model as inputs at its “document” input port,
and its outputs to the “result” output port are automatically transmitted to the
Display actor connected to the ModelExecutor’s output port.
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(a) Pattern (empty) (b) Replacement

Pattern Replacement

1 (empty)

(c) Correspondence

Fig. 8. The transformation rule in CreateSplit

The CreateMapReduce actor contains an SDF (Synchronous Dataflow) model
that controls several TransformationRule actors (each represented with a yolk-
like icon surrounded by a box). mapCount is defined to be the number of Map
machines, and reduceCount is the number of Reduce machines. Fig. 8 shows
the transformation rules in the CreateSplit actor. It creates a Split actor and a
Merge actor, together with the input ports and output port of the MapReduce
model. Its pattern is deliberately made empty so that the transformation rule is
applicable to the empty model generated by the ModelGenerator. In Fig. 3, we
have shown the transformation rule in the LinkMapAndReduce actor. It con-
nects the ports of an arbitrary Map actor and an arbitrary Reduce actor, with
a constraint to make sure that no duplicated connections are made in multi-
ple applications of the same transformation rule. We set a special parameter,
which is not shown in the interface, so that the transformation is applied ex-
actly (mapCount×reduceCount) times for each input model, so that all the Map
actors and Reduce actors in it are interconnected.

This example shows how we use model transformation as a tool to construct
a complex model. The size of the dynamically generated model is parametrizable
with an integer parameter, and has no impact on the size of the higher-order
model that the designer manually creates. Each TransformationRule actor can
be separately designed, documented and maintained. It can also be parametrized
and reused to construct other models.

5 Related Work

Model transformation has been under active research in recent years. In recog-
nition of the public interest, the OMG (Object Management Group) has issued
a request for proposal (RFP) on MOF (Meta-Object Facility) QVT (Query /
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Views / Transformations) to seek a standardized approach to model transfor-
mation [13].

Besides our model transformation tool developed in the Ptolemy II frame-
work, existing tools include AGG [14], PROGRES [15], AToM3 [16], FUJABA [17],
VIATRA2 [18], and GReAT [19]. Among those, our tool is the only one that
supports a large and extensible collection of MoCs for controlling basic trans-
formations. By carefully choosing MoCs, sequential transformation and parallel
transformation can be achieved, as well as a mixture of both. This control mech-
anism is more flexible than the priority-based control provided by AGG and
AToM3, the imperative program control implemented in PROGRES, and the
restricted selection of MoCs that the other tools offer. Furthermore, our model
transformation tool provides a user-friendly language for transformation specifi-
cation. It employs the same visual language as that used for manually creating
models. This frees designers from learning another language for specifying trans-
formations (such as a textual language and UML class diagrams), understanding
the meta-models of their models, and describing their transformations in terms of
the meta-models. Higher-order model composition for embedded system design
is proposed in [20] and [21]. Compared to other related approaches in this field,
such as Ptalon [4] and higher-order Petri nets [22], our model-based transforma-
tion approach allows designers to visually describe pieces of model structures and
to transform them step by step. Besides, our model descriptions are themselves
hierarchical heterogeneous models, which can be divided into parametrized com-
ponents for reuse. Therefore, not only the models constructed by the descriptions
can easily scale to large sizes, the descriptions themselves are also scalable.

6 Conclusion

We present our approach to higher-order model composition based on model
transformation. We provide a formal definition of graph transformation, which
serves as the basis of our model transformation technique. We show that basic
transformations can be used as actors in a hierarchical heterogeneous models.
Our approach makes it easy to create complex transformations as composition
of basic ones. We provide a word-counting model designed using the MapReduce
programming pattern as a concrete example.
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Abstract. Cross toolkits (assembler, linker, debugger, simulator, pro-
filer) are widely used for software-hardware codesign; an early creation
of cross toolkits is an important success factor for industrial embedded
systems. At the hardware design stage systems are subject to significant
design alterations including changes in the instruction set of target CPUs.
This is a challenging issue for early cross toolkit development. In this pa-
per, we present a new Architecture Description Language (ADL) called
ISE language and an approach to early cross toolkit development to
cope with hardware design changes. The paper introduces the MetaDSP
framework that supports ISE-based construction of cross toolkits and
gives brief overview of the MetaDSP applications to industrial projects
that proves the industrial strength of the presented approach and tools.

1 Introduction

Nowadays we witness creation of various embedded systems with rather strict
constraints (chip size, power consumption, performance) not only for aerospace
and military applications but also for industry and even consumer electronics.
The constant trend of cost and schedule reduction in microelectronics hardware
design and development makes it reasonable to develop special-purpose com-
puting systems for various applications and gives new impulse to the market
of embedded systems. Such systems consist of a dedicated hardware platform
developed for a particular application and a problem-specific software optimized
for that hardware.

Cross tools play an important role for bringing an embedded system to life as
they allow development, debugging and profiling of the target software on power-
ful workstations which do not suffer from the limitations of the target embedded
systems and typically run on CPUs which architecture and instruction set are
different from the target CPUs. Primary components of such cross toolkits are
assembler, linker, simulator, debugger, and profiler. Unlike chip production, de-
velopment of cross toolkits does not require precise hardware design description;
it is sufficient to have just high-level definition of the target hardware platform:
the memory/register architecture and the instruction set with cycle specifica-
tion. This allows developing cross tools as soon as the early design stages even
if exact VHDL/Verilog specification is not ready yet. Such co-development has
the following crucial benefits:
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– Hardware prototyping and design space exploration (e.g. [1] and [2]) – early
development, execution and profiling of sample programs allows study and
estimation of the overall design adequacy as well as efficiency of particular
design ideas such as adding/removing instructions, functional blocks, regis-
ters or whole co-processors.

– Early software development including development, debugging and optimiz-
ing the software before the target hardware production. It reduces time-to-
market for the complete “Hardware + Software” product.

– Hardware design validation. The developed cross-simulator could be used to
run test programs against VHDL/Verilog-based simulators. This capability
could not be overestimated for the quality assurance before actual silicon
production.

The first feature mentioned above – design space exploration – results in
frequent changes of requirements. System designers may decide to add or remove
an instruction or modify the register file of the CPU. Cross toolkit developers
must rapidly answer to such changes and produce new version of the toolkit
in short terms. Besides, this practice imposes certain quality and performance
requirements on the cross toolkits and on the simulator in particular. Special
attention should be paid to the performance efficiency of the simulator.

1.1 Related Work

Efficient cross toolkit development process requires automation to minimize time
and effort necessary to update the toolkit to match new requirements. Such
automation is built around a machine-readable definition of the target hardware
platform. There are three groups of languages suitable for this task:

– Hardware Definition Languages (HDL, [3]) used for detailed definition of the
hardware;

– Architecture Description Languages (ADL, [4] and [5]) used for high-level
description of the hardware;

– and general purpose programming languages (such as C/C++).

HDL specifications define CPU operations with very high level of detail. All
three major modern HDL – VHDL [6], Verilog [7], and SystemC [8] – have exe-
cution environments that can serve as a simulator to run any assembly language
programs for the target CPU: Synopsys VCS, Mentor Graphics ModelSim, Ca-
dence NC-Sim and other. Still, low performance of HDL-based simulators is one
of the major obstacles for HDL application in cross toolkit development. Another
issue is the late moment of HDL description availability: it appears after complet-
ing the instruction set design and functional decomposition. Furthermore, HDL
does not contain an explicit instruction set definition that makes automated as-
sembler/disassembler development impossible. These issues prevent from using
HDL to automate cross toolkit development.

Architecture Description Languages (such as nML[9], ISDL[10], EXPRES-
SION[11]) are under active development during the recent decade. There are
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tools created for rapid hardware prototyping at the high level including cross
toolkit generation. Corresponding approaches are really good for early design
phase since they help to explore key design decisions. Unfortunately, at the
later design stages details in an ADL description become smaller, the size of
the description grows and sooner or later it comes across the limitations of the
language. As a result, is breaks the efficiency of the simulator generated from
the ADL description and makes the profiler to give only rough performance
estimates without clear picture of bottlenecks. Cross toolkits completely gener-
ated from an ADL description are not applicable for industrial-grade software
development yet.

Manual coding with C or C++ language gives full control over all possible
details and allows creation of cross toolkits of industrial quality and efficiency.
Many companies offer services on cross toolkit development in C/C++ (e.g.
TASKING, Raisonance, Signum Systems, ICE Technology, etc.). Still it requires
significant efforts and (what is more important) time to develop the toolkit
from scratch and maintain it aligned with the requirements. Long development
cycle makes it almost impossible to use cross toolkits developed in C/C++ for
hardware prototyping and design space exploration.

1.2 Paper Overview

In this paper, we present a new approach to cross toolkit development that
combines the power of high-level definition using ADL-like language and the
efficiency of the modern programming languages. The method provides rea-
sonable level of automation with support for rapid requirement changes and
co-development of hardware and software components of modern embedded sys-
tems.

The article is organized as follows. Section 2 presents the new ADL language
for defining instruction set called ISE. Section 3 introduces MetaDSP frame-
work for cross toolkit development that uses hybrid hardware description with
both high-level ADL part and efficient C/C++ part. Section 4 briefly overviews
several industrial applications of ISE and MetaDSP framework. Conclusion sum-
marizes the lessons learned and gives some perspectives for future development.

2 ISE Language

We developed ISE (Instruction Set Extension) language to specify hardware de-
sign elements that are subject to most frequent changes: memory architecture
and CPI instruction set. ISE description is used to generate assembler and dis-
assembler tools completely and to generate components of the linker, debugger
and simulator tool.

The following considerations guided the language design:

– the structure of an ISE description should follow the typical structure of an
instruction set reference manual (like [12] or [13]) that usually serve as the
input for the ISE description development;
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– support for irregular encoding of instructions typical for embedded DSP ap-
plications including support for large number of various formats, distributed
encoding of operands in the word, etc.;

– operational definition of data types, logic and arithmetic instructions, other
executable entities should be specified in a C-like programming language.

ISE module consists of 7 sections:

1. .architecture defines global CPU architecture properties such as pipeline
stages, CPU resources (buses, ALUs, etc.), initial CPU state;

2. .storage defines memory structure including memory ranges, I/O ports,
access time;

3. .ttypes and .otypes define data type to represent registers and instruction
operands;

4. .instructions defines CPU instruction set (see 2.1);
5. .aspects defines various aspects of binary encoding of CPU instructions or

specifies additional resources or operational semantics of instructions;
6. .conflicts specifies constraints on sequential execution of instructions such

as potential write after read register or bus conflict; assembler uses conflict
constraints to automatically insert NOP instructions to prevent conflicts
during software execution.

2.1 Instruction Definition

.instruction section is the primary section an ISE module. It defines the in-
struction set of the target CPU. For each instruction cross toolkit developers
can specify:

– mnemonics and binary encoding;
– reference manual entry;
– instruction properties and resources used;
– instruction constraints and inter-instruction dependencies;
– definition of execution pipeline stage.

Mnemonics part of an instruction definition is a template string that specifies
fixed part of mnemonics (e.g. ADD, MOV), optional suffixes (e.g. ADDC or ADDS) and
operands. A singe instruction might have several definitions depending on the
operand types. For example, MOV instruction could have different definitions for
register-register operation, register-memory and memory-memory operations.

Binary encoding is a template that specifies how to encode/decode instruc-
tions depending on the instruction name, suffixes and operands.

Reference manual entry is a human-readable specification of the instruction.
Properties and resources specify external aspects of the instruction execution

such as registers that it reads and writes, buses that the instruction accesses, flags
set etc. This information is used to detect and resolve conflicts by the assembler
tool. Besides this the instruction definition might specify explicit dependencies
on preceding or succeeding instructions in the constraints and dependencies sec-
tion.
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ISE language contains an extension of C programming language called ISE-
C. This extension is used to specify execution of the operation on each pipeline
stage. ISE-C has extra types for integer and fixed point arithmetic of various bit
length, new built-in bit operators (e.g. shift with rotation), built-in primitives
for bit handling. ISE-C has some grammar extension for handling operands and
optional suffixes in mnemonics. Furthermore ISE-C expression can use a large
number of functions implemented in ISE core library.

An example of instruction specification is presented at figure 1.

/*

* This is a C-style block comment.

*/

// This is a C++-style one-line comment.

// <ALU001> - the identifier of the definition.

// ADD[S:A][C:B] - instruction mnemonics with optional parts.

// Actually defines 4 instructions: ADD, ADDS, ADDC, ADDSC.

// GRs, GRt - identifiers of a general-purpose register.

// Rules for binary encoding of GRs and GRt are defined in

// .otypes section.

<ALU001> ADD[S:A][C:B] {GRs}, {GRt}

// Binary encoding rule.

// For example, "ADDC R0, R1" is encoded as

// 0111-0001-1000-1001

0111-0A0B-1SSS-1TTT

// The reference manual string.

"ADD[S][C] GRs, GRt"

// instruction properties:

// reads the registers GRs and GRt,

// writes the register GRs.

properties [ wgrn:GRs, rgrn:GRs, rgrn:GRt ]

// Operation of the EXE pipeline stage

// specifies using ISE-C language.

action {

alu_temp = GRs + GRt;

// If the suffix ‘C’ is set in mnemonics

// use ‘getFlag’ function from the core library.

if (#B) alu_temp += getFlag(ACO);

// If the suffix ‘S’ is set in mnemonics

// use ‘SAT16’ function from the core library.

if (#A) alu_temp = SAT16(alu_temp);

GRs = alu_temp;

}

Fig. 1. An example of instruction specification.
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Please note that unlike classic ADL languages ISE specification does not
provide the complete CPU model. The purpose of ISE is to simplify definition
of the elements that are subject to the most frequent changes. All the rest of
the model is specified using C/C++ code. This separation allows for flexible and
maintainable hardware definition along with high performance and cycle-precise
simulation.

3 Development Process

The proposed hybrid ADL/C++ hardware definition is supported by the MetaDSP

framework for cross-toolkit development. The framework includes:

– ISE translator that generates components of cross tools from the ISE speci-
fication;

– pre-defined components for ISE development (e.g. ISE-C core functions li-
brary);

– an IDE for hardware definition development (in ISE and C++), target soft-
ware development (in Embedded C[14] and assembly languages), controlled
execution within simulator; the Embedded C compiler supports a number of
optimizations specific for DSP applications[15].

Figure 2 presents the structure of the MetaDSP framework.

Fig. 2. MetaDSP framework structure
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MetaDSP toolkit uses ISE specification to generate cross tools and com-
ponents. For example, the MetaDSP tools generate assembler and disassembler
tools completely from the ISE specification. For linker MetaDSP generates infor-
mation about instruction binary encodings, instruction operands and relocatable
instructions. Debugger and profiler use memory structures and operand types
from the ISE specification.

The cycle-precise simulator is an important part of the toolkit. Figure 3
presents its architecture. MetaDSP tools generate several components from the
ISE specification: memory implementation (from .storage section), resources
(from .architecture section), instruction implementations and decoding ta-
bles (from .instruction section), as well as conflicts detector and instruction
metadata.

Fig. 3. MetaDSP simulator architecture

Within the presented approach certain components are specified in C++:

– control logic, including pipeline control (if any), address generation, instruc-
tion decoder;

– memory control;

– model of the peripheral devices including I/O ports.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 93



8

For most of the manual components MetaDSP tools generate stubs or some
basic implementation in C++. Developers may use the generated code to im-
plement peculiarities of the target CPU, such as jumps prediction, instruction
reordering, etc.

Using C/C++ to implement CPU control logic and memory model facilitates
high performance of the simulator. Another benefit of using C/C++ compared
to true ADL languages is an early development of the cross toolkit: it might
start before completing the function decomposition of the target CPU; thus the
simulator could be used to experiment with design variations.

Figure 4 presents the snapshot of OSCAR Studio, the IDE for MetaDSP
framework.

Fig. 4. OSCAR Studio: the IDE for MetaDSP framework

Red numbers mark various windows of the IDE:

1. Project Navigator window. It displays the tree of the source files and data
files.

2. Source Code Editor window. The editor supports syntax highlight and in-
struction autocompletion (from the ISE specification). The editor window
is integrated with the debugger - it marks break points, frame count points
and trace points.

3. Stack Memory window displays the contents of the stack.
4. Call Stack window displays the enclosing frames (both assembly subroutines

and C functions).
5. Register window displays the contents of the CPU registers.
6. Memory dump window displays contents of various memory regions.
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7. Watch window displays the current value of arbitrary C expressions.
8. Code Memory window displays the instructions being executed. It supports

both binary and disassembly forms as well as displaying the current pipeline
stage (fetch, decode, execute, etc.).

9. OS debugger window displays the current state of the execution environment
(OS): list of the current tasks, semaphores, mutexes, etc.

10. Profiler window displays various profiling data. The profiler is integrated
with the editor window as well – the editor can show profiling information
associated with code elements.

4 Industrial Applications

The approach presented in this paper and MetaDSP framework were applied to
five industrial projects. Please note that the each “major releases of the cross
toolkit” mentioned in the project list below is caused by a major change in CPU
design such as modification of the instruction set or memory model alteration.

– 16-bit RISC DSP CPU with fixed point arithmetic. Produced 25 major re-
leases of the cross-toolkit.

– 16-bit RISC DSP CPU with support for Adaptive Multi-Rate (AMR) sound
compression algorithm. Produced 25 major releases of the cross-toolkit.

– 32-bit RISC DSP CPU with support for Fourier transform and other DSP
extensions. Produced 39 major releases of the cross-toolkit.

– 16/32-bit RISC CPU clone of ARM9 architecture.
– 16/32-bit VLIW DSP CPU with support for Fourier transform, DMA, etc.

Produced 33 major releases of the cross-toolkit.

The following list summarizes lessons learned from the practical applications
of the approach. We compared time and effort needed in a pure C++ develop-
ment cycle of cross toolkits with the ISE-enabled process:

– size of assembler, disassembler and simulator sources (excluding generated
code), in lines of code: reduced by 12 times;

– cross-toolkit development team (excluding C compiler development): reduc-
ing from 10 to 3 engineers;

– number of errors detected in the presentation of hardware specifications in
cross tools: reduction by the factor of more than 10;

– average duration of the toolkit update: reduced from several days to hours
(even minutes in many cases).

4.1 Performance Study

This section presents a performance study of a production implementation of
the AMR sound compression algorithm. The study was performed on Intel Core
2 Duo 2.4 GHz.

The size of the implementation was 119 C source files and 142 C header files,
and 25 files in the assembly language; total size of sources was 20.2 thousand
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LOC without comments and empty lines. The duration of the audio sample (10
seconds voice speech) lasted 670 million of cycles on the target hardware.

Table 1 presents elapsed time measurements of the generated cross tools for
the AMR case study. Table 2 presents measurements of the generated simulator
in MCPS (millions of cycles per second).

Table 1. AMR sample – cross toolkit performance

Operation Duration, sec.

Translation (.c → .asm) 22

Assembly (.asm → .obj) 14

Link (.obj → .exe) 1

Build, total 37

Execution on the audio sample (fast mode) 53

Execution on the audio sample (debug mode with
profiling)

93

Table 2. AMR sample – simulator performance

Execution mode MCPS

Fast mode 12.6

Debug mode with profiling 7.2

Peak performance on a synthetic sample 25.0

5 Conclusion

The paper presents an approach to automation of cross toolkit development for
special-purpose embedded systems such as DSP and microcontrollers. The ap-
proach aims at creation the cross tools, namely assembler/disassembler, linker,
simulator, debugger, and profiler, at early stages of system design. Early creation
of the cross tools gives opportunity to prototype and estimate efficiency of de-
sign variations, co-development of the hardware and software components of the
target embedded system, and verification and QA of the hardware specifications
before silicon production.

The presented approach relies on a two-level description of the target hard-
ware: description of the most flexible part – the instruction set and memory
model – using the new ADL language called ISE and description of complex fine
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grained functional aspects of CPU operations using a general purpose program-
ming language (C/C++). Having ADL descriptions along with a framework to
generate components of the target cross toolkits and common libraries brings
high level of responsiveness to frequent changes in the initial design that are a
common issue for modern industrial projects. Using C/C++ gives cycle-accurate
simulation and overall efficiency of the cross toolkits that meets the needs of in-
dustrial developers. The approach is supported by a family of tools comprising
MetaDSP framework.

The approach is applicable to various embedded systems with RISC core
architectures. It supports simple pipelines with fixed number of stages, multiple
memory banks, instructions with fixed and variable cycle count. These facilities
cover most of modern special purpose CPUs (esp. DSP) and embedded systems.
Still some features of modern general purpose high performance processors lay
beyond the capabilities of the presented approach: superscalar architectures,
microcode, instruction multi-issue, out-of-order execution. Besides this, the basic
memory model implemented in MetaDSP does not support caches, speculative
access, etc.

Despite the limitations of the approach mentioned above it was successfully
applied in a number of industrial projects including 16 and 32-bit RISC DSPs
and 16/32 ARM CPUs. Number of major design changes (with corresponding
releases of cross toolkits) ranged in those projects from 25 to 40. The industrial
applications of the presented approach proved the concept of using the hybrid
ADL/C++ description for automated development of cross toolkits in a volatile
design process.
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Abstract. While design automation for hardware systems is quite ad-
vanced, this is not the case for practical embedded systems. The cur-
rent state-of-the-art is to use a software modeling environment and inte-
grated development environment for code development and debugging,
but these rarely include the sort of automatic synthesis and verification
capabilities available in the VLSI domain. We present a model-based
integration environment which uses a graphical architecture description
language (EsMoL) to pull together control design, code and configura-
tion generation, platform-specific resimulation, and a number of other
features useful for taming the heterogeneity inherent in safety-critical
embedded control system designs. We describe concepts, elements, and
development status for this suite of tools.

1 Introduction

Embedded software often operates in environments critical to human life and
subject to our direct expectations. We assume that a handheld MP3 player will
perform reliably, or that the unseen aircraft control system aboard our flight
will function safely and correctly. Safety-critical embedded environments require
far more care than provided by the current best practices in software develop-
ment. Embedded systems design challenges are well-documented [1], but indus-
trial practice still falls short of these expectations for many kinds of embedded
systems.

In modern designs, graphical modeling and simulation tools (e.g. Mathworks’
Simulink/Stateflow) represent physical systems and engineering designs using
block diagram notations. Design work revolves around simulation and test cases,
with code generated from ”‘complete”’ designs. Control designs often ignore
software design constraints and issues arising from embedded platform choices.
At early stages of the design, platforms may be vaguely specified to engineers as
sets of tradeoffs.
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Software development uses UML (or similar) tools to capture concepts such
as components, interactions, timing, fault handling, and deployment. Workflows
focus on source code organization and management, followed by testing and
debugging on target hardware. Physical and environmental constraints are not
represented by the tools. At best such constraints may be provided as documen-
tation to developers.

Complete systems rely on both aspects of a design. Designers lack tools to
model the interactions between the hardware, software, and the environment.
For example, software generated from a carefully simulated functional dataflow
model may fail to perform correctly when its functions are distributed over a
shared network of processing nodes. Cost considerations may force the selection
of platform hardware that limits timing accuracy. Neither aspect of develop-
ment supports comprehensive validation of certification requirements to meet
government safety standards.

We propose a suite of tools that aim to address many of these challenges.
Currently under development at Vanderbilt’s Institute for Software Integrated
Systems (ISIS), these tools use the Embedded Systems Modeling Language (ES-
MoL), which is a suite of domain-specific modeling languages (DSML) to in-
tegrate the disparate aspects of a safety-critical embedded systems design and
maintain proper separation of concerns between engineering and software de-
velopment teams. Many of the concepts and features presented here also exist
separately in other tools. We describe a model-based approach to building a
unified model-based design and integration tool suite which has the potential to
go far beyond the state of the art.

In the sequel we will provide an overview of the tool vision, and then describe
the features of these tools from the point of view of available functionality. Note
that two different development processes will be discussed – the development of
a distributed control system implementation (by an imagined user of the tools),
and our development of the tool suite itself. The initial vision section illustrates
how the tools would be used to model and develop a control system. The final
sections describe different parts of our tool-development process in decreasing
order of maturity. We strive for clarity, with an apology to the diligent reader
where the distinction is unclear.

2 Toolchain Vision and Overview

In this work, we envision a sophisticated, end-to-end toolchain that supports not
only construction but also the verification of the engineering artifacts (including
software) for high-confidence applications. The development flow provided by
the toolchain shall follow a variation of the classical V-model (with software and
hardware development on the two branches), with some refinements added at
the various stages. Fig. 1 illustrates this development flow.

Consider the general class of control system designs for use in a flight control
system. Sensors, actuators, and data networks are designed redundantly to miti-
gate faults. The underlying hardware implements a variant of the time-triggered
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Fig. 1. Conceptual model of the toolchain: Development flow

architecture (TTA) [2], which provides precise timing and reliability guaran-
tees. Safety-critical tasks and messages execute according to strict precomputed
schedules to ensure synchronization between replicated components and provide
fault mitigation and management. Software implementations of the control func-
tions must pass strict certification requirements which impose constraints on the
software as well as on the development process.

A modeling language to support this development flow must have several
desired properties: (1) the ability to capture the relevant aspects of the system
architecture and hardware, (2) ability to “understand” (and import) functional
models from existing design tools, (3) support for componentization of functional
models, and (4) ability to model the deployment of the software architecture onto
the hardware architecture. The ability to import existing models from functional
modeling tools is not a deeply justified requirement, it is merely pragmatic.
EsMoL provides modeling concepts and capabilities that are highly compatible
with AADL [3]. The chief differences are that EsMoL aims for a simpler graphical
entry language, a wider range of execution semantics, and most important model-
enabled integration to external tools as described below. Model exchange with
AADL tools may be desirable in the future. A simple sample design will introduce
key points of our model-based development flow and illustrate language concepts.

Our language design was influenced by two factors: (1) the MoC implemented
by the platform and (2) the need for integration with legacy modeling and embed-
ded systems tools. We have chosen Simulink/Stateflow as the supported “legacy”
tool. As our chosen MoC relies on periodically scheduled time-triggered compo-
nents, it was natural to use this concept as the basis for our modeling language
and interpret the imported Simulink blocks as the implementation of these com-
ponents. To clarify the use of this functionality, we import a Simulink design and
select functional subsets which execute in discrete time, and then assign them
to software components using a modeling language that has compatible (time-
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triggered) semantics. Communication links (signals) between Simulink blocks
are mapped onto TTA messages passed between the tasks. The resulting lan-
guage provides a componentized view of Simulink models that are scheduled
periodically (with a fixed rate) and communicate using time-triggered messages.
Extensions to heterogeneous MoC-s is an active area of research.

2.1 Requirements Analysis (RA)

Our example will model a data network implementing a single sensor/actuator
loop with a distributed implementation. The sensors and actuators in the ex-
ample are doubly-redundant, while the data network is triply-redundant. Unlike
true safety-critical designs, we will deploy the same functions on all replicas
rather than requiring multiple versions as is often done in practice [4]. The sen-
sors and actuators close a single physical feedback loop. Specifying the physical
system and particulars of the control functions are beyond the scope of this
example as our focus is on modeling.

This example has an informal set of requirements, though our modeling lan-
guage currently supports the formalization of timing constraints between sen-
sor and actuator tasks. Formal requirements modeling offers great promise, but
in ESMoL requirements modeling is still in conceptual stages. A simple sen-
sor/actuator latency modeling example appears in a later section covering pre-
liminary features for the language.

2.2 Functional Design (FD)

Fig. 2. Simulink design of a basic signal conditioner and controller.

Functional designs can appear in the form of Simulink/Stateflow models or as
existing C code snippets. ESMoL does not support the full semantics of Simulink.
In ESMoL the execution of Simulink data flow blocks is restricted to periodic
discrete time, consistent with the underlying time-triggered platform. This also
restricts the type and configuration of blocks that may be used in a design.
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Continuous integrator blocks and sample time settings do not have meaning in
ESMoL. C code snippets are captured in ESMoL as well. C code definitions
are limited to synchronous, bounded-time function calls which will execute in a
periodic task.

Fig. 3. ESMoL-imported functional models of the Simulink design.

Fig. 2 shows a simple top-level Simulink design for our feedback loop along
with the imported ESMoL model (Fig. 3). The ESMoL model is a structural
replica of the original Simulink, only endowed with a richer software design
environment and tool-provided APIs for navigating and manipulating the model
structure in code. A model import utility provides the illustrated function.

2.3 Software Architecture (SwA)

Fig. 4. The architecture diagram defines logical interconnections, and gives finer con-
trol over instantiation of functional units.

The software architecture model describes the logical interconnection of func-
tional blocks. In the architecture language a component may be implemented by
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either a Simulink Subsystem or a C function. They are compatible at this level,
because here their model elements represent the code that will finally imple-
ment the functions. These units are modeled as blocks with ports, where the
ports represent parameters passed into and out of C function calls. The seman-
tics for architecture model connections is that of sending and receiving messages
using time-triggered communication.

Fig. 4 shows the architecture diagram for our TMR model. Instances of the
functional blocks from the Simulink model are augmented with C code imple-
menting replicated data voting.

2.4 Hardware Architecture (HwA)

Fig. 5. Overall hardware layout for the TMR example.

Hardware configurations are explicitly modeled in the platform language.
Platforms are defined hierarchically as hardware units with ports for intercon-
nections. Primitive components include processing nodes and communication
buses. Behavioral semantics for these networks come from the underlying time-
triggered architecture. The platform provides services such as deterministic exe-
cution of replicated components and timed message-passing. Model attributes for
hardware also capture timing resolution, overhead parameters for data transfers,
and task context switching times.

Figs. 5 and 6 show model details for redundant hardware elements. Each
controller unit is a private network with two nodes and three independent data
buses. Sensor voting and flight control function instances will be deployed to the
controller unit networks.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 104



7

Fig. 6. Detail of hardware model for controller units.

2.5 Deployment Models (CD, SY, DPL)

Fig. 7. Deployment model: task assignment to nodes and details of task definition.

A common graphical language captures the grouping of architecture com-
ponents into tasks. In ESMoL a task executes on a single processing node at
a single periodic rate. All components within the task execute synchronously.
Data sent between tasks takes the form of messages in the model. Whether de-
livered locally (same processing node) or remotely, all inter-task messages are
scheduled for delivery. ESMoL uses logical execution time semantics found in
time-triggered languages such as Giotto [5] – message delivery is scheduled after
the deadline of the sending task, but before the release of the receiving tasks.
In the TT model of computation receivers assume that their data is available at
task release time. Tasks never block, but execute with whatever data is available
each period.

Deployment concepts, tasks running on processing nodes and messages sent
over data buses, are modeled as shown in Fig. 7. Most of the model elements
shown here are actually references to elements defined in the architecture and
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platform models. Model interpreters generate platform-specific code and analysis
artifacts directly from the deployment models.

3 Existing Tools: Simulink to TTA

Control designs in Simulink are integrated using a graphical modeling language
describing software architecture. Components within the architecture are as-
signed to tasks, which run on nodes in the platform.

3.1 Integration Details

Fig. 8. Platforms. This metamodel describes a simple language for modeling the topol-
ogy of a time-triggered processing network. A sample platform model is included.

The Simulink and Stateflow sublanguages of our modeling environment are
described elsewhere, though the ESMoL language changes many of the other
design concepts from older languages described by Neema [6].

In our toolchain we created a number of code generators. In the construction
of the two main platform-independent code generators (one for Simulink-style
models and another one for Stateflow-style models), we have used a higher-level
approach based on graph transformations [7]. This approach relies on an as-
sumption that (1) models are typed and attributed graphs with specific structure
(governed by the metamodel of the language) and (2) executable code can be
produced as an abstract syntax graph (which is then printed directly into source
code). This graph transformation-based approach allows a higher-level represen-
tation of the translation process, which lends itself to algorithmic analysis of the
transformations.
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Fig. 9. Architecture Metamodel. Architecture models use Simulink subsystems or C
code functions as components, adding attributes for real-time execution. The Input
and Output port classes are typed according to the implementation class to which
they belong.

The models in the example, and the metamodels described in the sequel were
created using the ISIS Generic Modeling Environment tool (GME) [8]. GME
allows language designers to create stereotyped UML-style class diagrams defin-
ing metamodels. The metamodels are instantiated into a graphical language,
and metamodel class stereotypes and attributes determine how the elements are
presented and used by modelers. The GME metamodeling syntax may not be
entirely familiar to the reader, but it is well-documented elsewhere [9]. Class
concepts such as inheritance can be read analogously to UML. Class aggrega-
tion represents containment in the modeling environment, though an aggregate
element can be flagged as a port object. In the modeling environment a port
object will also be visible at the next higher level in the model hierarchy, and
available for connections. The dot between the Connectable class and the Wire
class represents a line-style connector in the modeling environment.

High-confidence systems require platforms that provide services and guaran-
tees for needed properties, e.g. fault containment, temporal firewalls, etc. These
critical services (like partitioning) should be provided by the platform and not
re-implemented from scratch by system developers [10]. Note that the platform
also defines a ’Model of Computation’ [11]. An MoC governs how the concur-
rent objects of an application interact (i.e. synchronization and communica-
tion), and how these activities unfold in time. The simple platform definition
language shown in Fig. 8 contains relationships and attributes for describing a
time-triggered network.

Similarly, Fig. 9 describes the software architecture language. The Connector
element models communication between components. Semantic details of com-
munication interactions remain abstract in this logical architecture – the plat-
form model must be specified and associated in order to completely specify the
interactions (though in this version we only offer synchronous and time-triggered
communications).

Deployment models capture the assignment of Components (and Ports) from
the Architecture to Platform Nodes (and Channels). Additional implementation
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Fig. 10. Details from deployment sublanguage.

details (e.g. worst-case execution time) are represented here for platform-specific
synthesis. Fig. 10 shows the relevant modeling concepts. Simulink objects SLIn-
putPort and SLOutputPort are assigned to Message objects, which represent the
marshaling of data to be sent on a Bus.

4 Under Development: Platform-specific simulation,

generic hardware, and scheduling

A control system designer initially uses simulation to check correctness of the
design. Software engineers later take code implementing control functions and
deploy it to distributed controllers. Concurrent execution and platform limita-
tions may introduce new behaviors which degrade controller performance and
introduce errors. Ideally, the tools could allow the control functions to be re-
simulated with appropriate platform effects.

The TrueTime simulation environment [12] provides Simulink blocks mod-
eling processing nodes and communication links. Tasks can execute existing C
code or invoke subsystems in Simulink models. Task execution follows config-
ured real-time scheduling models, with communication over a selected medium
and protocol. TrueTime models use a Matlab script to associate platform ele-
ments with function implementations. A platform-specific re-simulation requires
this Matlab mapping function, and in our case also a periodic schedule for dis-
tributed time-triggered execution. Both of these can be obtained by synthesis
from ESMoL models.

After resimulation follows synthesis to a time-triggered platform. In order to
use generic computing hardware with this modeling environment, we created a
simple, portable time-triggered virtual machine to simulate the timed behavior
of a TT cluster [13] on generic processing hardware. Since the commercial TT
cluster and the open TT virtual machine both implement the same model of
computation, synthesis differences amount to management of structural details
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in the models. The open VM platform is limited to the timing precision of the
underlying processor, operating system, and network, but it is useful for testing.

For both steps above the missing link is schedule generation. In commercial
TTP platforms, associated software tools perform cluster analysis and sched-
ule generation. For resimulation and deployment to an open platform, an open
schedule generation tool is required. To this end we created a simple schedule
generator using the Gecode constraint programming library [14]. The scheduling
approach implements and extends the work of Schild and Würtz [15]. Configu-
ration for the schedule generator is also generated by the modeling tools.

4.1 Integration Details

To configure TrueTime or the scheduler, the important details lie in the deploy-
ment model. Tasks and Messages must be associated with the proper processing
nodes and bus channels in the model. The ISIS UDM libraries [16] provide a
portable C++ API for creating interpreters to navigate models and extract the
relevant information. See Fig. 10 for the relevant associations. Model naviga-
tion in these intepreters must maintain the relationships between processors and
tasks and between buses and messages. Scheduler configuration also requires
extraction of all message sender and receiver dependencies in the model.

5 Designs in Progress: Requirements and model updates

Many types of requirements apply to real-time embedded control systems design.
Embedded systems are heterogeneous, so requirements can include constraints
on control performance, computational resources, mechanical design, and relia-
bility, to name a few things. Formal safety standards (e.g. DO-178B [4]) impose
constraints on the designs as well as on the development process itself. Accord-
ingly, current research has produced many techniques for formalizing require-
ments (e.g. ground models in abstract state machines [17] or Z notation [18]).
Models could be used to incorporate formal requirements into other aspects of
the design process. During analysis, requirements may appear as constraints in
synthesized optimization problems or conditions for model checking. Require-
ments can also be used for test generation and assessment of results.

Management of model updates is also essential. As designs evolve engineers
and developers reassess and make modifications. Changes to either the plat-
form model or functional aspects of the design may invalidate architecture and
deployment models created earlier. Some portions of the dependent models will
survive changes. Other parts needing changes must be identified. Where possible,
updates should be automated.

5.1 Integration Details

The requirements sublanguage is in design, and so is light on details. Fig. 13
shows an example model with latency requirements between tasks, and Fig. 11
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Fig. 11. Latencies are timing constraints
between task execution times.

Fig. 12. Simulink’s UserData field can help
manage model changes occuring outside
the design environment.

shows the modeling language definition. This simple relationship can be quan-
tified and passed directly to the schedule solver as a constraint. Ideally a more
sophisticated requirements language could capture the syntax and semantics of
an existing formal requirements tool. Some candidate languages and approaches
are currently under consideration for inclusion in the framework.

To track model changes we propose to use the Simulink UserData field to
store unique tags when the models are imported. During an update operation
tags in the control design can be compared with previously imported tags in the
model environment. Fig. 12 shows the UserData attribute from our Simulink
sublanguage, corresponding to the actual attribute in Simulink blocks. To handle
issues arising from topology concerns, we require control designers to group
top-level functionality into subsystems and place a few restrictions on model
hierarchy in deployment models.

6 Wishlist: Expanded semantics, implementation

generation, and verification

Many exciting possibilities loom on the horizon for this tool chain construction
effort. We briefly describe some forward-looking concepts currently in discussion
for the tools.

The current modeling languages describe systems which provide performance
and reliability guarantees by implementing a time-triggered model of computa-
tion. This is not adequate for many physical processes and controller platforms.
We also need provisions for event-triggered communication and components.
Event-triggered component structures give rise to interesting and useful com-
munication patterns common in practical systems (e.g. publish-subscribe, ren-
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Fig. 13. Example of task latency spec for sample model, with detail of timing attribute
value specified on model links.

dezvous, and broadcast). Several research projects have explored heterogeneous
timed models of computation. Two notable examples are the Ptolemy project [19]
and the DEVs formalism and associated implementations [20]. More general sim-
ulation and model-checking tools for timed systems and specifications include
UPPAAL [21] and timed abstract state machines [22]. We aim to identify useful
design idioms from event-triggered models and extend the semantics of the mod-
eling language to incorporate them. Synthesis to analysis tools is also possible
using model APIs.

Safe automation of controller implementation techniques is another focus.
Control designs are often created and simulated in continuous time and arbitrary
numerical precision, and then discretized in time for platforms with periodic sam-
pling and in value for platforms with limited numeric precision. Recent work in
optimization and control offers some techniques for building optimization prob-
lems which describe valid controller implementation possibilities [23] [24]. Early
model interpreter work aims to generate such optimization problems directly
from the models. Other interesting problems include automated generation of
fixed-point scaling for data flow designs. If integrated, tools like BIP [25] provide
potential for automated verification of distributed computing properties (safety,
liveness, etc...). Model representation of data flow functions, platform precision,
and safety requirements could be used together for scaling calculation.

The addition of proper formal requirements modeling can enable synthesis
of conditions for model checking and other verification tools. Executable seman-
tics for these modeling languages can also provide the behavioral models to be
checked (see Chen [26] [27], Gargantini [28], and Ouimet [29]). Other relevant
work includes integration of code-level checking, as in the Java Pathfinder [30]
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or Saturn [31] tools. Synthesis to these models must also be verified, an active
area of research at ISIS [32].

7 Acknowledgements

This work is sponsored in part by the National Science Foundation (grant
NSF-CCF-0820088) and by the Air Force Office of Scientific Research, USAF
(grant/contract number FA9550-06-0312). The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of the
Air Force Office of Scientific Research or the U.S. Government.

References

1. Henzinger, T., Sifakis, J.: The embedded systems design challenge. In: FM: Formal
Methods. Lecture Notes in Computer Science 4085. Springer (2006) 1–15

2. Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the IEEE,
Special Issue on Modeling and Design of Embedded Software (Oct 2001)

3. AS-2 Embedded Computing Systems Committee: Architecture analysis and de-
sign language (aadl). Technical Report AS5506, Society of Automotive Engineers
(November 2004)

4. RTCA, Inc. 1828 L St. NW, Ste. 805, Washington, D.C. 20036: DO-178B: Soft-
ware Considerations in Airborne Systems and Equipment Certification. (December
1992) Prepared by: RTCA SC-167.

5. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for
embedded programming. Lecture Notes in Computer Science 2211 (2001) 166–184

6. Neema, S., Karsai, G.: Embedded control systems language for distributed process-
ing (ECSL-DP). Technical Report ISIS-04-505, Institute for Software Integrated
Systems, Vanderbilt University (2004)

7. Aditya Agrawal and Gabor Karsai and Sandeep Neema and Feng Shi and Attila
Vizhanyo: The design of a language for model transformations. Journal on Software
and System Modeling 5(3) (Sep 2006) 261–288

8. ISIS, V.U.: Generic Modeling Environment. http://repo.isis.vanderbilt.edu/
9. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development

of embedded software. Proceedings of the IEEE 91(1) (Jan. 2003)
10. Sangiovanni-Vincentelli, A.: Defining Platform-based Design. EEDesign of EE-

Times (February 2002)
11. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A denotational framework for comparing

models of computation. Technical Report UCB/ERL M97/11, EECS Department,
University of California, Berkeley (1997)

12. Ohlin, M., Henriksson, D., Cervin, A.: TrueTime 1.5 Reference Man-
ual. Dept. of Automatic Control, Lund University, Sweden. (January 2007)
http://www.control.lth.se/truetime/.

13. Thibodeaux, R.: The specification and implementation of a model of computation.
Master’s thesis, Vanderbilt University (May 2008)

14. Schulte, C., Lagerkvist, M., Tack, G.: Gecode: Generic Constraint Development
Environment. http://www.gecode.org/

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 112



15
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Abstract. Numerous engineering fields are nowadays dealing with complex 
systems. The analysis, design, testing and maintenance of such systems are 
crucial challenges. For this purpose, the OMG proposed SysML, an extension 
of UML, in order to address the issues of modeling complex systems in 
different engineering domains. This standard enables the elaboration of efficient 
tools allowing automated analysis, verification and validation of systems. The 
radio-frequency front-end’s design is one of engineering fields which would 
benefit from such a technology to enhance the efficiency of the design and 
manufacturing process. In this paper, we discuss the provision and the 
limitations of both UML and SysML. We also present a case study consisting of 
the modeling of a Universal Mobile Telecommunications System (UMTS) 
transceiver using SysML and we discuss the advantages and the drawbacks of 
such a technology from the designer’s point of view. 

Keywords: SysML, UML, Modeling, Systems Engineering, UMTS, 
Transceiver. 

1   Introduction 

Engineering systems are increasingly growing in complexity, implying various design 
and testing challenges. Consequently, multiple fields of engineering are looking for a 
general-purpose and high-level methodology for systems’ modeling. This can 
effectively enable an efficient design process from specifications all the way through 
to delivery and maintenance. One of these fields is radio-frequency (RF) and 
microwave engineering which mainly addresses the design and manufacturing of 
microwave radios and components. In fact, RF front-ends represent an important part 
in several embedded devices such as wireless sensors and smart radios. 

Modern RF front-ends need to be modeled in parallel with the baseband hardware 
and software parts which carry out signal processing and support, in some cases, user 
applications. Software modeling can currently be achieved using Unified Modeling 
Language (UML) [1]. UML was originally defined by the Object Management Group 
(OMG) in order to enable the definition and modeling of complex software systems 
and was later used in other fields. On the other hand, complex engineering systems 
including software, electrical, hydraulic and mechanical hardware, can be modeled by 
the recent Systems Modeling Language (SysML) [2]. 

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 115



Because SysML is a recent standard addressing modeling in a wide range of 
domains, each engineering field must first evaluate its abilities to express and describe 
its specific particularities. Some studies had been already carried out in some fields 
such as sensor networks [3] and System-on-Chip/Network-on-Chip [4]. As far as RF 
design is concerned, case studies must be performed to test the usefulness of SysML 
for modeling RF systems. In this paper, we first focus on the modeling languages and 
we compare the use of OMG’s UML and SysML in the modeling of 
software/hardware systems. We specifically discuss how RF front-ends can be 
modeled using SysML. Second, we present a case study in which a UMTS transceiver 
is modeled using SysML. Finally, we discuss the benefits and the limitations of using 
SysML in  RF systems’ design. 

2   Modeling Languages in Modern Systems Engineering 

The growing complexity of software systems led various organizations and research 
task groups, both in industry and academia, to investigate modeling techniques. One 
of these organizations, the OMG, has gathered several proposals with the intent of 
elaborating a standardized modeling language [5], [6], [7]. The outcome of this effort 
was the establishment of the Unified Modeling Language (UML). Therefore, UML, a 
visual specification language for object modeling, has emerged as a viable modeling 
language empowering software design, bringing high-level of abstraction and 
enabling different automated techniques such as code generation, verification and 
validation of software and allowed also data interchange and meta-modeling. 

UML has proven its importance particularly in the field of software design. Its 
extensibility enhanced its scope to other domains. This advantage gives more appeal 
to UML which can then be used to model systems other than software. However, the 
provision of UML to systems engineering is limited. In fact, it is unable to express 
specific aspects of several domains. For example, it does not support efficiently the 
modeling of dynamically changing parameters causing the system to behave 
differently under different configurations [3]. It also expresses weakly the 
relationships between mixed systems composed of both hardware and software [3]. 
An interesting survey about the common limitations and defects of UML is given in 
[8]. In order to address these limitations and others, the OMG has specified and 
standardized another modeling language, SysML, which is intended to provide visual 
modeling support for a wide range of engineered systems. SysML is a general-
purpose graphical modeling language for specifying, analyzing, designing, and 
verifying complex systems that may include different types of components such as 
software, hardware, etc. [2]. It provides graphical representations with semantic 
foundations in order to model different aspects of a complex system such as its 
structure, behavior, requirements, and parametrics. 

Despite the fact that SysML is a subset of UML, it differs remarkably from it. First, 
UML is a general-purpose modeling language while SysML, as a customized profile 
of UML 2.0 conceived for systems engineering, is domain-specific. Thus, SysML is 
smaller and easier to learn than UML since it removes many software-centric 
constructs. It expresses systems engineering semantics better than UML. Second, it is 
a precise language, including support for constraints and parametric analysis which 
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allows models to be analyzed and simulated, greatly improving the value of system 
models compared to textual system descriptions. SysML also supports various 
diagrams that facilitate automated analyses, verification and validation. In addition, it 
is an open standard which is compliant with various data interchange formats such as 
XML, XMI (XML Metadata Interchange) and AP233 standards. Furthermore, SysML 
improves communication by using a formal language, namely Object Constraint 
Language (OCL), for sharing system information to all project engineers [9], [10]. 

RF front-ends, as a complex engineering domain, require high-level modeling 
methodologies providing enough flexibility and abstraction in order to analyze, 
design, and validate RF systems. In practice, modeling would help the automation of 
several design aspects. Some of the most important are (i) verification, as the process 
of determining that a model implementation accurately represents the designer's 
conceptual description of the model and (ii) validation, as the process of determining 
the degree to which a model is an accurate representation of the real RF system from 
a functional perspective. In this context, we try to explore the provision and the 
limitations of SysML in this regard. For this purpose, we present in the next sections 
the results of a case study consisting of the modeling of a UMTS transceiver using 
SysML. 

3   Case Study: Modeling a UMTS Transceiver Using SysML 

To evaluate the benefits and the limitations of SysML in modeling RF and microwave 
front-ends, which represent an important interface between embedded systems and the 
real world, we propose to apply it to the modeling of a UMTS transceiver. This choice 
is motivated by the fact that a UMTS mobile phone is composed of three main parts: 
(i) software, carrying out the main signal processing, internetworking and user 
applications, (ii) digital hardware, such as digital signal processors to execute the 
signal processing algorithms and baseband operations and (iii) analog hardware, 
carrying out the transmission/reception of radio signals to/from the base station, 
known as node B in the UMTS terminology. If software can be modeled using UML 
and digital hardware using hardware description languages, analog hardware is still 
developed using classical techniques. As a result, RF design lacks flexibility and is 
still implemented manually. The prospect of modeling it using SysML is to achieve a 
high-level of abstraction and automation, particularly for such RF design tasks as 
verification and validation. In this section, we present a summary of the UMTS 
transceiver specifications and describe how we capture and model them using SysML. 
Due to space constraints, only a subset of the SysML diagrams we experimented with 
for this system is presented. 

3.1   UMTS Transceiver Specifications 

Universal Mobile Telecommunication System (UMTS) is a mobile standard 
conceived for third-generation mobile communications networks. This 
communication standard had specified different radio interfaces. In this section, we 
present a summary of the specification for a UMTS Terrestrial Radio 
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Access/Frequency Division Duplex (UTRA/FDD) compliant mobile transceiver. This 
summary is based on [11], [12] and [13].  

An UTRA/FDD transceiver is a radio whose RF front-end is composed of three 
parts: (i) duplex filter, (ii) transmitter and (iii) receiver. All three are linked to the 
antenna as shown in Fig. 1. 

UTRA/FDD

Transmitter

UTRA/FDD

Receiver

Duplex 

Filter

Fig. 1. A synoptic schematic of an UTRA/FDD Transceiver. 

There are various architectures for implementing the transmitter and receiver 
blocks. Among these, direct up-/down-conversion architectures are being widely used 
in mobile communications, particularly in GSM and W-CDMA applications [11]. In 
fact, a direct up-/down-conversion transceiver is less complicated than classical 
architectures such as a superheterodyne radio. Fig. 2 shows a typical architecture of a 
direct conversion UTRA/FDD transceiver.  

In the transmission phase, the baseband signal is modulated and data symbols are 
typically converted into two analog signals (in-phase, I, and in quadrature, Q) via 
digital-to-analog converters. The I/Q signals are then up-converted in the quadrature 
up-conversion stage (QUC) to the RF frequency determined by the local oscillator 
(LO) and then summed. The resulting signal is then amplified, by the variable-gain 
amplifier (VGA), in order to adjust its power level to the desired value, and filtered by 
the band-pass filter (BPF-T), in order to reduce intermodulation products. The final 
stage of the transmitter is the power amplifier (PA) which amplifies the transmitted 
signal to the high power level required for transmission. In the reception phase, the 
received signal is low power and its level is close to the noise floor. Therefore, it is 
first amplified by the low-noise amplifier (LNA1), which keeps the added noise to a 
minimum, and pass-band filtered by BPF-R in order to eliminate interferences. A 
second stage amplifier, LNA2, boosts the received signal further before it is divided 
into two signals which are mixed with the LO reference signal. One signal is mixed 
with the inphase LO while the other with the quadrature (90-degree phase-shifted) 
LO. The resulting I/Q signals are then amplified and filtered, to remove 
intermodulation products and non desirable signals, in the BFA1 and BFA2 blocks 
before they are digitized for baseband demodulation. 

In a UTRA/FDD transceiver, both the receiver and the transmitter operate 
simultaneously. Any leakage between the transmitter and the receiver can either 
saturate the low-noise amplifier or disturb the transmitted signal. For this purpose, a 
duplex filter is added in order to isolate the received and the transmitted signals. The 
UTRA/FDD standard determines rigorously the specifications of the duplex filter and 
each component in the receiver/transmitter chains. For example, Table 1 presents the 
specifications of the duplex filter [11] while Table 2 presents some key specifications 
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of a UTRA/FDD radio as stated in [13]. The duplex filter plays the role of a duplexer 
and a filter. It isolates the incoming and outgoing signals and also allows the rejection 
of out-of-band interferences. This duality in role implies severe constraints in terms of 
isolation and in-band attenuation. 

Fig. 2. A detailed view of a direct-conversion UTRA/FDD transceiver.  

Table 1.  Duplex filter requirements in terms of attenuation and isolation.

Tx – Antenna Attenuation (dB) < 2 
Rx – Antenna Attenuation (dB) < 3 
Tx – Rx Isolation / Tx-Band (dB) > 50 
Tx – Rx Isolation / Rx-Band (dB) > 37 

Table 2.  Some of UMTS standard specifications.

Frequency Band (Up-link) (MHz) 1920 – 1980 
Frequency Band (Down-link) (MHz) 2110 – 2170 
Frequency Spacing (MHz) 4.4 – 5.2 
Modulation QPSK 
Pulse Shaping RRC / roll-off = 0.22 
Chip Rate (Mc/s) 3.84 
User Bit Rate (kbps) @ BER=10-3 12.2 
Power Control Frequency (Hz) 1500 
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Signal-to-Noise Ratio (dB) 6.0 
Power Sensitivity (dBm) -120.0 
Input Noise Level (dBm) -111.0 
Reference LO Power (dBm) 6.0 

The UMTS standard specifies the baseband characteristics such as the type of 
modulation, shaping filter and the chip rate. It also establishes the front-end 
parameters such as the input noise level, the signal-to-noise ratio, the power 
sensitivity, etc. These specifications are generally produced following extensive 
system level analysis. In the next section, we present how to capture the UTRA/FDD 
specifications using a SysML model. 

3.2   UTRA/FDD Transceiver’s SysML Model 

We presented some of the specifications of a UTRA/FDD transceiver in the previous 
section. We chose the direct conversion architecture to implement the radio. For the 
detailed specifications, the reader can refer to [11], [12] and [13]. In this section, we 
present how to capture these specifications in a SysML model. In this model, we 
present the structure of the overall transceiver and we detail the internal blocks of the 
receiver. We also show how to capture some of the transceiver requirements. 

The structure of a RF front-end incorporates the different components of which it 
is made. The SysML model can capture this structure using different diagrams at 
different levels of abstraction. Among these diagrams, we use the package diagram in 
order to give an overview of the general structure of the model packages, see Fig. 3. 
As shown in this Figure, the transceiver’s SysML model is organized into four main 
packages: (i) Value Types, describing the measurement units used in the other 
packages (ii) Transceiver Structure, describing the structural components of the 
transceiver (iii) Transceiver Behavior, describing the signal flow inside the 
transceiver (iv) Transceiver Requirements, illustrating the requirements of the 
transceiver. 

As in many disciplines, different measurement units are used in the radio-
frequency domain. SysML allows their modeling using “value types”. In the value 
types package, shown in detail in Fig. 4, we present the measurement units used in the 
specifications of a UTRA/FDD transceiver. All other packages using these 
measurement units have a “dependency” relationship with this package (see Fig. 3). 

The structure package is composed of diagrams such as the block definition 
diagram and the internal block diagram. The former illustrates the structure of an 
object with blocks presenting its different components while the latter gives an insight 
of how a block is structured. The general structure of the UTRA/FDD transceiver can 
be modeled using a standard block definition diagram. This diagram captures the 
different components of the transceiver and organizes them into different levels of 
hierarchy. Fig. 5 shows the block definition diagram of the entire transceiver which   
is made up of a back-end consisting in an antenna, and a RF front-end which includes 
the duplex filter, the transmitter and the receiver. The duplex filter is an atomic 
component. However, the receiver and the transmitter are composed of several other 
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components such as the local oscillator, the mixer, etc. To illustrate the structure of 
the transceiver for example, we can use the internal block diagram as shown in Fig. 6. 

The components of the blocks are called “parts”. One of the advantages of this 
representation is its ability to capture how they are connected and which types of 
information or signals can be exchanged between them. 

Fig. 3. Package diagram of the UTRA/FDD transceiver’s SysML model. 

Fig. 4. Value types package.  
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Fig. 5. The block definition diagram of the UTRA/FDD transceiver showing the hierarchy of 
its components.  

Fig. 6. The internal block diagram of the receiver presenting how its different parts are linked 
as well as the signal flow between them.  

Different analog signals of different origins travel between these components. For 
example, two types of signals are required inside the mixer block. Both the baseband 
and the LO reference signals are needed in order to achieve the down-conversion 
operation. These signals are communicated to the mixer via its input ports. The flow 
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of signals can also be captured by the internal block diagram as shown in Fig. 7. The 
RF signal is communicated to the mixer by its RF input port and then divided in two 
signals: one is in-phase and another is 90-degree phase-shifted. Both of them are 
down-converted according to the LO reference frequency received from the LO 
output port. The result is the I and Q signals, each carrying a part of the information. 

Fig. 7. The internal block diagram of the receiver’s mixer and the signal flow inside it. 

One of SysML novelties is the requirement diagram whose role is the capture of 
specifications and requirements of an engineering system in a simple and standard 
manner. In RF engineering, the requirement diagram is an important tool that can help 
the designer to represent and communicate the specifications to the other designers of 
the team. For example, the information of Table 1 can be represented in a requirement 
diagram as shown in Fig. 8. Requirements can be organized in a hierarchal fashion. 
They can be copied, derived or traced. Test cases can be added in order to verify the 
system at the end of the design cycle. In the example of Fig. 8, the duplex filter has 
two main properties: attenuation and isolation. Its final design must satisfy the 
requirements expressed in Table 1. 

Requirements can be organized in a nested structure, as shown in Fig. 9. This 
allows more clarity in the representation. They can also be grouped into constraints, 
test cases, etc. For example, in Fig. 9 the user bit rate is considered 12.2 kbps only if 
the corresponding bit error rate (BER) is equal to 10-3.  
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Fig. 8. The requirement diagram of the duplex filter.  

4   Discussion 

In the previous section, we presented a model of a UTRA/FDD transceiver. We have 
shown particularly how the different aspects of a RF system’s specifications can be 
captured using a SysML model. In this section, we discuss the consistency and 
coherency of such a methodology for modeling RF front-ends. We specifically focus 
on the provision and the limitations observed in this case study. 

SysML is a language, inspired from UML, aiming to offer a powerful standard 
supporting rigorous modeling of various systems. It addresses this issue in a wide 
range of engineering domains. This mission is not easy because each engineering field 
has its own particularities. Despite the fact that SysML is defined as a new language, 
it retains and extends many concepts of UML. A legitimate question is: is this 
property a provision or a limitation? 

In the radio-frequency domain, semantics are very important. The notations and the 
representations are needed by RF designers and engineers for easily expressing, 
understanding and sharing designs. For example, the symbols used to represent RF 
components such as mixers and LOs are fixed by a consensus. This facilitates the 
understanding and the interpretation of RF schematics. However, their SysML 
representation, being currently limited to a restrictive set of notations, lacks the 
flexibility of customized symbolic representation. Consequently, RF engineers will 
find it difficult to read and interpret SysML diagrams and impractical to work with its 
notation. Adding customizable symbols to the SysML standard representation of 
blocks and parts will go a long way towards making SysML more easily accepted by 
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RF engineers. To illustrate this, we reproduce the block definition diagram of Fig. 5 
with added RF symbols as shown in Fig. 10. This enhances considerably the 
readability of this SysML representation of the transceiver. A possible solution to 
adopt in this regard is the creation of a SysML profile for modeling RF and analog 
components. Such a profile would define the stereotypes and constraints which enable 
the specifications, analysis and verification of RF systems. 

Fig. 9. A portion of the requirement diagram expressing the specifications of Table 2.  

On the modeling level, some important questions remain open, namely, what is the 
right depth of a SysML model? In other words, is there any definition of the 
granularity concept? At this stage, it is difficult to formulate a definite answer since 
(i) SysML, like UML, is a notation and not a methodology, (ii) a SysML model is not 
unique and (iii) many experiments and case studies have to be carried out in order to 
learn how the depth of a model relates to the hierarchical levels of the modeled 
system. Consequently, a SysML model depends on the level of experience of the 
system modeler and may need several iterations before reaching acceptable results.  

In the light of the above case study, one can argue that the provision of SysML to 
the design of RF systems lies in three main levels: (i) abstraction, (ii) flexibility and 
(iii) requirements. First, on the abstraction level, SysML can represent the structure of 
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a RF system in different ways. Aspects such as hierarchy, containment, and 
multiplicity can be expressed rigorously. This allows the masking of some levels of 
the SysML model. Such a mechanism can be very useful in RF systems. In fact, one 
of the issues in RF systems is the absence of an abstraction mechanism which controls 
the level of details of the system meaning that the designer can choose the level of 
abstraction and the granularity at which he wants to carry out the analysis of the 
system. Such a mechanism can really empower a hardware abstraction strategy 
allowing automatic design and synthesis of RF components and systems. Second, our 
experience has shown that SysML formalism and notations are flexible enough to 
express most of a RF system’s aspects. For example, the port is considered as the 
lowest level of abstraction in a RF system. SysML allows describing the properties of 
RF ports, the flows travelling between them and the connectors relating them. Third, 
SysML can capture and express requirements in an organized and simple way. For 
several years, designers have been experiencing difficulties communicating the 
specifications among themselves. Ambiguities and forgotten details usually lead to 
serious negative effects on the design, test, integration and validation times. SysML 
presents an important evolution from traditional requirements management tools to 
UML/SysML models which offer a rich language for expressing the context, behavior 
and constraints of an engineering system. Therefore, the requirement diagram of 
SysML can be a useful tool to help RF designers and engineers to organize their 
specifications in a rigorous way. 

Fig. 10. An example of block definition diagram incorporating notations belonging to RF 
engineering domain. 

Additionally, on the verification and validation level, though not illustrated in our 
case study, SysML allows the representation of flows, the choice of their type and the 
corresponding ports such that the designer can model the signal flow of the RF system 
and carry out an automatic check of the model leading to automated verification and 
validation (AV&V) of RF systems, which would be of great use in RF engineering. 

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 126



Another equally useful SysML concept for RF design is the parametric diagram since 
RF design relies heavily on mathematical models with multiple parameters. We 
believe that the parametric diagram can help in building models for customized RF 
components and systems. 

Finally, one can observe that SysML is a new language that surely needs more 
refinement and revision. This said, one cannot deny the importance and the 
consistency of the modeling concepts it presents. SysML can help RF designers to 
automate at least some design tasks. However, only few tools currently truly support 
SysML.  Furthermore, the majority of them are either not sufficiently mature or were 
originally designed to support UML. This situation hinders significantly the 
widespread adoption of SysML. 

5   Conclusion 

SysML is a modeling language recently standardized by the OMG. It was introduced 
in order to address modeling issues in systems engineering. In this paper, we 
investigated the possibility to use this language to model RF front-ends. We first 
discussed the scope of UML and the emerging SysML. Then, we studied how a 
typical RF front-end such a UTRA/FDD transceiver can be modeled using the latter. 
We finally discussed the provision and the limitations of SysML to RF systems 
design.  

This work allows us to conclude that SysML is useful in RF front-ends’ design. In 
fact, modeling RF systems using tools that implement this language can provide 
significant flexibility to designers because it allows the abstraction of certain RF 
subsystems. Such tools can also help automating some design tasks, especially the 
coherence verification of the model and even the validation of its resulting 
implementations. This modeling approach can also enhance productivity because it 
captures the requirements and the constraints imposed to the system. However, great 
efforts must be deployed in order to enhance the SysML-supporting tools and ensure 
their widespread acceptance in various engineering fields. 
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Abstract. An important challenge in the domain of automotive control design is 

to provide a seamless flow for modelling conjointly with the behaviour, the 

temporal characteristics and the timing constraints of a system at different 

abstraction levels. In addition, this flow should provide analysis phases for 

validating the real-time behaviour of the functional models in regard to these 

constraints and a specific execution platform, To achieve this goal, we adopt a 

model-based approach, based on the UML MARTE profile [1], that allows the 

modelling of a system, with a separation of concerns between the software 

(functional model) and the execution platform resources (non-functional model) 

as well as the timing constraints (non-functional model). The temporal 

characteristics (offset, period) and timing constraints (deadline) are modelled 

with a high level notion of time called the logical time at the functional level 

down to the physical time called the chronometric time at the implementation 

level. From these high-level models we extract the temporal characteristics and 

the timing constraints of the application relatively to the execution platform, 

and we apply scheduling analysis techniques in order to provide an 

implementation which satisfies the timing constraints. 

Keywords: UML, MARTE, Methodology, Time modelling, Scheduling 

Analysis, 

1   Introduction 

The ever increasing complexity of real-time embedded systems raises the problem of 

merging inside the development process, different concepts and techniques coming 

from the domain of software development and others concepts developed for real-

time systems design.  
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UML (Unified Modelling Language) [2] and its domain specific extensions are 

becoming accepted notations to cope with the design of complex automotive real-time 

embedded applications.  

The recent OMG standardization of the MARTE profile (Modelling and Analysis of 

Real-Time and Embedded systems) is an important step for modelling non-functional 

characteristics of real-time embedded systems. An important contribution of MARTE 

lies in its time model, centred on the notion of multiform time (logical or 

chronometric), that enriches UML with explicit time model elements (clocks, clocks 

type …). This is a real advance in regard to the SPT [3] (Scheduling Performance and 

Time) profile which considers time as an implicit notion closed to the physical time, 

modelled by a simple annotation onto UML models. In addition, MARTE provides 

two other models for describing execution platforms, and the allocation of application 

functions onto the resources of the platform.. 

Scheduling analyses are based on well founded theory widely used in the domain of 

real-time control systems. Applying such analysis techniques to a UML design 

requires extracting from functional and non-functional models the temporal 

characteristics of every function of these models. The main characteristics are the 

period, the deadline possibly equal to the period. Analysis techniques need also, as 

input, the Worst Case Execution Time of the function (WCET). The WCET of a 

function depends on its execution platform.  

In this paper we shall not focus on the transformation of these temporally 

characterized functions into tasks which depends on the Real-time Operating System 

(RTOS). Later on, we shall use the term task, which is more usual in the real-time 

community, instead of function as soon as we shall speak of these temporally 

characterized functions.   

The UML profile MARTE is an interesting answer to the problem of a specialization 

of UML for real-time embedded systems modelling.  

In our approach, we use MARTE for building four models. One for representing the 

functional part of the system mainly composed of activity diagrams, state machine 

and structure diagrams. Another model called the time model contains the main time 

entities (clocks, clock type, clock constraints) as units for expressing the non-

functional temporal characteristics (period) and constraints (deadline). Two other 

models represent the resources and the allocation of the functional parts onto these 

resources. The allocation model allows in particular, an identification of the tasks of 

the system by exploiting, in addition to non-functional temporal characteristics, other 

temporal characteristics such as the WCET which actually is hardware dependent.  

The time model is composed of multiple clocks which are the inputs of a scheduling 

analysis of the tasks deduced from the application. As these clocks can be of different 

nature (logical or chronometric), the model integrates clock constraints for merging 

the clocks and for obtaining a common notion of time in order to verify the 

schedulability of these tasks according to a specific execution platform.  

These complementary models capture different views of an application. Their 

relationships are based on the semantic of MARTE. This profile is recent but an 

experimental implementation of the profile is available in the UML editor Papyrus 

[4]. As we use this editor, we obtain an intermediate format which can be transformed 

into an input format whose syntax must be compliant with a scheduling analysis tool, 
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such as Cheddar [5], SynDEx [6], etc. These model transformations are out of the 

scope of the work presented here.  

In this paper, we discuss and illustrate some methodological aspects on using 

MARTE at the different steps of a modelling approach that integrates both functional 

and non-functional modelling. Another contribution is to show how it is possible to 

exploit these models by extracting the temporal information and the implementation 

characteristics in order to provide a schedulability analysis.  

The paper is organized as follows. The section 2 gives an overview of the capabilities 

of UML and ADL-based languages for modelling time. The section 3 presents the 

concepts defined in the time model of MARTE. We show how to build a time model 

by using the clock and the time concepts of MARTE and how to express in a non-

ambiguous manner the time units and relations between the clocks of the system. We 

establish the link between the clock and a functional description. We illustrate the 

usage of the profile with the example of an ignition control system.  

The section 4 presents the transition from a high level notion of time (logical time) to 

the real-time (chronometric time). We call this step the refinement of time which is 

performed by integrating and resolving the constraints between clocks and by 

considering the resources of the intended platform.  

The last section is devoted to the exploitation of the models in order to apply a 

scheduling analysis. The result of such analysis is a starting point for a manual or 

automatic implementation solution of the functional model onto the execution 

platform model.  

2 High level modelling of time

The adoption of a model based design approach conjointly with UML and ADL 

(Architecture Description Languages) is becoming promising for real-time embedded 

systems design [7], especially in the automotive domain. In such domain, a critical 

issue is to develop separate views of the software independent from the execution 

platform and to provide mechanisms for the projection/allocation of software onto this 

execution platform. In addition, both models must be endowed with timing 

characteristics (functional and non-functional properties). 

2.1   UML and time  

Applying a model based design approach to real-time embedded system design 

requires considering the modelling of time. UML is a modelling language for 

specifying, visualizing, constructing, and documenting software systems and business

processes. Several profiles have been standardized by the OMG to cope with real- 

time.  

A first profile called SPT (Scheduling Performance and Time) [3] extends UML1.4 

and allows the expression of quantitative temporal information onto structural and 

behavioural UML models such as activity diagrams, sequence diagrams, events, and 

structure. This information is defined as instants, duration and observations. They 
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referred to an implicit notion of time so the semantic of this “implicit” time is not 

defined.  

UML has integrated these concepts in the release 2.0. After that, a new RPF (Request 

For Proposal) for a UML profile focusing on embedded real-time system modelling 

has been proposed by the OMG. The result of the RFP heavy process is an official 

OMG profile called MARTE [1]. 

MARTE is a UML profile composed of different packages which provide adapted 

concepts for modelling and analyzing a real-time embedded system. Among these 

packages, the timing model of MARTE provides a concrete representation of clocks 

into UML model and, in that way, the access to duration, deadline, period and 

observation linked to these clocks. Another major concept introduced in the timing 

model is the different nature of clocks dense (the physical continuous time) or 

discrete (a discretized view of this time) and their different types, i.e.: chronometric 

(concept closed to the physical time) or logical (any repetitive event can be modelled 

as a clock). These different concepts are presented in the domain view chapter of the 

MARTE document. The implementation and the usage of these concepts is the profile 

itself which relies on the UML view. The user of the profile is mostly concerned by 

the UML view.   

2.2   EAST-ADL and Autosar 

Architecture Description Languages has been adopted in the automotive domain. 

EAST-ADL [8] and Autosar [9] are respectively a language and the standard that 

allows a separation of concerns between the functional view of an application, and the 

non-functional ones (execution platform, environment and implementation views). 

This separation of concerns is compatible with a Model Based Design approach, 

[7][10].  

Another orthogonal concept of these ADL is the decomposition of a design in 

domain-oriented modelling levels. To that aim, EAST-ADL provides specific model 

elements for catching vehicle features description, control/command modelling, 

software-oriented design, whereas Autosar covers the implementation level.  

EAST-ADL and Autosar focus on a structural description of a system. The 

behavioural parts are differed to external formalisms (native languages such as 

Matlab/Simulink diagrams or C code…). The temporal characterization of the 

structural parts is limited to the expression of requirements associated with 

ADLFunctionType/Prototypes which are the elements for modelling the structure in 

EAST_ADL and Autosar software components.  Such modelling of temporal aspects 

is not sufficient for applying timing analysis onto these models. A scheduling analysis 

requires a precise association of temporal characteristics (period and WCET) and 

constraints (deadline) to the different functionalities. Worst Case Execution Time of 

computations or communications between functions depends on the execution 

platform resources such as the CPU, the network, the bus, etc. Results on the 

transformation of AADL models for scheduling analysis are presented in [11]  

Projects such as ATESST [12] and TIMMO [13][14] consider the problem of 

extending EAST-ADL2 and Autosar with MARTE temporal features.  
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3   Principles of Time modelling with MARTE  

We adopt the recent UML-MARTE profile and particularly its timing model [15] to 

capture the various forms of repetitive event that trigger the functional parts of an 

automotive embedded system, and to model them at a high level of abstraction. As it 

is shown in section 3.1, the rotation of the camshaft is the main trigger of the ignition 

control system. In the initial requirements of the ignition control system, the value of 

the period and the deadline are expressed with the unit camshaft degree.  

The semantic attached to these multiform time (clocks, period, deadline, jitters…) 

makes it possible to transform this high level model of time to the real time.  

3.1   Clocks as model elements  

In MARTE, time is modelled with clocks. A clock is an instance of a clockType

(see Figure 1) which has multiple attributes such as the nature of the clock (discrete or 

dense), the unitType that is an enumeration of the different units, and the relationships 

between them. For instance, the relationship between s and ms is a conversion factor 

of 0.001. The boolean attribute isLogical indicates whether the clock is endowed with 

a classical unit such as chronometric unit (closed to the classical notion of time -UTC 

time) or with logical units (concepts of time related to logical events). A 

clockType has also resolAttrib, maxValAttrib and offsetAttrib attributes. The 

resolution indicates the granularity of the clock (minimal interval between two 

values). The maximal value corresponds to a modulo-value and the offset denotes a 

temporal shift at the first instant. The different operations (getTime, setTime,

indexToValue) are defined to access the clock. 

Figure 1: ClockType stereotype in MARTE

A clock with a logical unit may represent any repetitive logical event in a system. 

Intervals between two consecutive occurrences of these events denote the instants 

(ticks) of the clock. Intervals are not necessarily equal. A duration represents the 

number of ticks between two events linked to this clock.  

An example of such a logical clock is the camshaft revolution in an automotive 

engine. The different instants of this clock are linked to teeth detection onto the axis. 

The temporal distance between two consecutive teeth may vary and depends on the 
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engine rotation speed. This means that a logical clock is not necessarily periodic; 

nevertheless, it is possible to quantify a duration based on this clock, which represents 

the duration between two ticks on this clock. The unitType of this clock is the angle 

degree.

The Figure 2 shows an example of a time model with two clockTypes:

MyIdealClockType (chronometric) and AngleClock (logical) and their UnitKind

(MyTimeUnitKind and AngleUnitKind). Three instances of clocks are defined in the 

model (crkClk, camClk and myIdealClock) with different properties. We consider 

that the clock myIdealClock inherits, from its type, the default values for the 

resolution and offset. The crkClk and camClk have the same clockType but the 

maxValue attribute for their periods are different. One tick on camClk corresponds to 

two ticks on crkClk.  

Figure 2: Elements of the Time Model

3.2   Relations and constraints between Clocks 

As multiple heterogeneous clocks may be necessary in a model, MARTE allows the 

expression of relations between them. These relations are expressed by the way of 

clockConstraint expressions. In the MARTE profile, a specific language called 

CCSL (Clock Constraint Specification Language) [16] has been defined to express the 

different relationships between clocks.  

From these constraint expressions, an automatic analysis based on partial order 

calculus can be applied that provides a solution for merging the clocks onto a 

common on considered as the reference. We call this phase the refinement of clocks 

that consist in the “projection” of the instants of logical and heterogeneous clocks 

onto a common one. In our example the relation between the crkClk and camClk 

clocks is given by the following CCSL expression:  

camClk = crkClk filteredby 0b(10) 

This means that camClk is a subclock of crkClk, and that the ticks of the camClk are 

coincident with the ticks of the crkClk when applying the binary mask 10 as a filter.  
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For a given application, the analysis of a set of clock constraints provides a solution, 

if this solution exists, of the interleaving of these clocks.  

Clock constraints can be also used simply to transform a duration from one unit to 

another one. In the case of the crkClk, the relation between a second (s) and a °CRK 

depends on the rotation speed of the Crankshaft (Rotation Per Minute). Equation 1 

expresses this relation.  

                             °CRK

1
1

6
s

RPM
. (1)

3.3   UML Behaviour modelling using Clocks 

A MARTE model containing clocks makes it possible to associate instant 

(occurrences) to events, or intervals (durations) to behaviours of a UML model. To 

achieve this goal, UML behaviours can be stereotyped with timedProcessing.

Figure 3: timedProcessing attributes 

A timedProcessing may be any UML behaviour such as an activity diagram, a 

sequence diagram, a state machine and is linked to a clock (on attribute).  

The main effect of such association is the possibility offered to the designer for 

expressing temporal characteristics and constraints onto behaviours. In MARTE these 

constraints are timedValueSpecification which represents either a duration or an 

interval, in between which, the behaviour should execute.  

The Figure 3 shows the attributes of a TimedProcessing stereotype. The clock

attribute indicates the reference clock on which the durations and events are 

measured. Two significant timedEvents can be associated with the start and stop of 

this behaviour.  The start attribute indicates the event that triggers the behaviour. The 

stop attribute is an event produced by the behaviour at the end of its execution. This 

event materializes the duration of the activity and can be used in a 

timedValueSpecification to express a temporal constraint.  

Of course, multiple factors influence the temporal distance between these two events. 

An advantage of using these events is the possibility of reasoning on the end of a 

behaviour independently to its physical execution support.  

A timedValueSpecification expresses a constraint onto the activity duration. Notice 

that different clocks can be involved in a duration expression. In the equation 2 

extracted from the paper [17], the duration is expressed as follows:  

30 tick on crkClk,
duration

MaxSamples*T on MyIdealClock
MIN (2)
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The duration depends on two values measured onto two different clocks. Duration 

must be less than the minimum between 30 tick measured onto the crkClk clock and 

MaxSamples*T tick measured onto myIdealClock. MaxSamples is a variable of the 

application specification.  

This equation can be solved after integrating the clocks constraints as explained in the 

paragraph 3.2. In this case, it consists in translating the crkClk unit to the second unit.   

3.4    Illustration on an ignition control system  

We illustrate the MARTE Time Model usage on the example of an automotive engine 

control system. We focus on a particular part of this control that is the correction of 

the ignition. The activity diagram on Figure 4 shows that the ignition of the spark 

plug in an engine depends on different corrections imposed by physical phenomenon 

such as the knock, the temperature variation and the warm-up of the engine. Multiple 

sensors and actuators participate to this correction. The correction controllers must be 

executed periodically and their executions may overlap. The period unit is the crkClk 

clock. The period, the offset and the deadline of these actions are also linked to this 

logical time base.  

Figure 4: Correction activity of a control engine system

We associate to each correction controller a temporal characteristic such as its period 

and a timing constraint such as a deadline. For the sake of visibility we have 

represented these constraints at the bottom parts of the actions and the activity. In an 

actual model using tools, these constraints are modelled with timedValueSpecification 

expressions which are elements of the design.  

A consequence of the activity diagram hierarchy is that time constraints can be 

expressed at the different levels of this hierarchy. Thus, time constraints at the lower 

levels must comply with those of the higher level. 
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A verification of such constraints can be done by applying mathematical rules and 

reasoning on a high level of abstraction of time. At this level we can obtain results 

about the feasibility of this control according to the different constraints and some 

other characteristics of the system.  

Examples of the feasibility results are: all the correction controls can be executed on 

time in the case of a 4-stroke engine with a maximum engine rotation speed of 4000 

rpm but cannot be executed if the rotation speed exceeds this value. These results, 

detailed in the paper [17], were obtained by a manual calculus applied to functions 

executing sequentially (non preemptive cyclic scheduling). On the example presented 

figure 4 multi-task scheduling is intended. For that purpose the tasks has been 

enriched with the temporal characteristics requested for this type of analysis.  

4   From logical to physical real-time 

4.1   Clock refinement  

The modelling of multiple heterogeneous clocks in the time model allows a high level 

modelling of temporal aspects of a system. The goal is to apply scheduling analysis 

onto these models. Such analysis requires two conditions. The first one is, at the 

behavioural modelling level, the necessity to cope with a common notion of time. The 

second condition is the integration of the execution platform model and the allocation 

constraints in order to integrate the physical time (the one of the CPU processor).   

The paragraph 4.2 addresses this second aspect. Concerning the common notion of 

time, it is obtained at the behavioural model level by the integration of temporal 

constraints. Equation 1 gives the relation between the crkClk and the idealClock (s). 

The parameter RPM represents the engine rotation speed. This parameter depends on 

the automotive phases (acceleration, deceleration …). To evaluate the schedulability 

of the different tasks, we have to consider the worst case execution time 

corresponding to the maximum value of the RPM (MAXRPM=4500). By considering 

this value, we may use the clock constraint expressed in Equation 1 to transform the 

period values which time unit is the crankshaft degree °CRK to period expressed in 

second. The Table 1 gives the result of such transformation.   

4.2   Integration of the execution platform characteristics 

In a MDE design process, the execution platform model is built separately from the 

application model. The MARTE profile provides a set of resources model elements 

that supports the modelling of the application. The association between an application 

model and an execution platform model is obtained through an allocation model.  

Figure 5 shows a structural description of the architecture of the ECU on which the 

engine controller will be executed. The execution platform is modelled as a set of 

microcontrollers and a memory; all the elements are interconnected by a bus. 
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Figure 5: ECU execution platform

The execution platform can be annotated with temporal information based on logical 

or chronometric clocks. Figure 6 provides a timed-view of the different elements of 

the execution platform. A computation resource can be seen as a clock with a 

resolution that corresponds to the duration for executing one instruction cycle on this 

processor. As the Infineon TC1766 is a PCP2 (single cycle instruction), it means that 

one instruction on this processor takes a duration of 125 10-10 second. The temporal 

characteristic of a bus is generally its transmission rate.    

Figure 6: Time model of hardware 

This abstract view of the execution platform can be enriched with others similar non-

functional characteristics such as the memory cost, the power consumption. Such 

model allows a verification of the execution platform capabilities in regard to the 

constraints and the characteristics of the application parts.   

4.3   Allocation of functionalities onto execution platform resources 

The association between the application model and the execution platform model is 

expressed by the allocation model. An allocation associates every element of the 

application model to a resource of the execution platform model. In MARTE 

allocations, are annotated with time constraints and temporal characteristics. The 

allocation modelling establishes the link between the model views of time and the 

actual physical time.  

Allocations can map structural to structural elements, and behavioural to behavioural 

or structural elements. The Figure 7 represents the potential allocations of sensors, 

actuators and actions of Figure 4 onto the possible computation resources of the ECU. 

The sensors and actuators behavioural parts are allocated to the ASIC 
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(signalConditioning). The functions are allocated to the Infineon TC1766. In some 

cases, a behavioural part may have several possible allocations onto different 

resources. The allocation of a function onto a physical resource implies a temporal 

cost (the WCET). This cost is a new information that appears on the allocation 

diagram at the bottom part of each action.   

Figure 7: Partition of activities 

Table 1 is a summary of the different temporal characteristics of the behavioural 

parts. The period, offset and deadline values have been extracted from the behavioural 

models. 

The period expressed initially with the time unit °CRK has been translated in second 

by applying the time constraint relation on equation 1.  

The offset and deadline were expressed as relative dates in the behavioural model 

with the time unit °CRK. We give in Table 1 the actual values of these parameters 

obtained by calculating the corresponding values in milliseconds. The last row of the 

table represents the duration of the deadline which depends on the offset and the 

deadline date.  

Knock Over Temp Wam-up 

WCET (on TC1766 in ms) 0,5  0,2 0,2 

Period(°CRK - ms) 180 - 6,66 180 - 6,66 180 - 6,66
Offset  date (°CRK - ms) 24 – 0,888 0 - 0 0 - 0
Deadline date (°CRK / ms) 50 – 1,851 50 – 1,851 50 – 1,851
Deadline duration (°CRK / ms) 26 – 0,962 50 – 1,851 50 – 1,851

Table 1: Temporal information associated to tasks

The WCETs are obtained either by emulating or profiling the tasks corresponding to 

the correction controllers represented in the behavioural model. The time base in this 

case is the time base of the processor on which these tasks will execute, i.e. the 

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 139



physical clock. The value of the deadline has been extracted from the book [18] which 

gives some actual parameters values of an ignition engine controller.  

The next step consists in exploiting these characteristics in the scheduling analysis 

phase.  

5   Scheduling analysis

5.1   Principles 

The scheduling analysis may start as soon as the application models with its 

associated timing model, and the architecture model, are available. Mainly, it consists 

in exploiting the timing information, i.e. the temporal characteristics (periods and 

WCETs, the latter depending on the allocation) as well as the timing constraints 

(deadlines), attached to each temporally characterized function of the application 

model. The allocation model allows the designer to determine the actual timing 

characteristics which vary with the various possible computing resources each 

application element can be allocated to. Multiple potential allocations can be 

considered for a function when several computing resources are able to implement it. 

In our case the computing resource is unique since we address uniprocessor 

architecture. Nevertheless several versions of this unique processor may be 

considered. In this case the schedulability analysis must be iterated according to the 

different processors which induce different timing values of the WCET. 

The processor of the execution platform is supposed to provide a RTOS, e.g. OSEK in 

the case of our example. This RTOS is the standard for the automotive domain. The 

schedulability analysis assumes also that the given RTOS supports the scheduling 

policy the analysis is based on. This will guarantee that the real-time behaviour of the 

application, running on the chosen architecture, will satisfy the real-time constraints. 

 Actually, this assumes that the WCET were carefully determined and enough 

margins were taken to approximate the cost of the RTOS itself, i.e. the cost of the 

scheduler including the cost of the preemption if it is allowed by the scheduling 

policy. 

5.2   Illustration on an ignition controller 

In the ignition control system example, the three behaviours: Knock control 

correction, Over temperature correction, and Warm-up correction are associated to a 

couple of temporal characteristics (deadline, period), and a WECT that was 

determined according to the execution platform resources it was allocated to. These 

associations lead to a system of three periodic tasks: Knock, OverTemp, and Warm-

up. Their periods initially expressed in °CRK have been translated in milliseconds 

(from the idealClock) by applying the time constraints between the two clocks. The 

resulting values are listed in Table 1. 
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With these data, it is possible to perform a scheduling analysis based on a fixed 

priority scheduling policy. Every tasks is periodic, has a WCET, and a deadline. In 

addition, preemption is allowed. As the deadline of each tasks is less than its periods, 

the system of tasks can be scheduled according to the Deadline Monotonic (DM) 

scheduling algorithm [19], i.e. the task with the smallest deadline has the highest 

priority, assuming these tasks are independent. If they are not independent a more 

complex schedulability analysis must be performed, but that does not change anything 

to the proposed approach. We do not focus on the schedulability analysis itself but on 

the way it is possible to perform it from the previous models, manually or possibly 

automatically. In this context, the scheduling analysis using DM algorithm amounts to 

verify the following sufficient condition.  As mentioned before, to be consistent the 

RTOS running on the considered uniprocessor must use also this algorithm. 

The system is schedulable if:   

1

1

2 1 with 
n

i n

i i

i i

WCET
n Deadline Period

Deadline

(3) 

We chose here the DM fixed priority policy instead of the Earliest Deadline First 

(EDF) variable priority policy because the scheduler is simpler, and thus its cost is 

easier to approximate. This approximation is a fundamental hypothesis used in the 

DM schedulability analysis. Usually the industrial designers take a margin equal up to 

30% of the task WCET. With these assumptions our automotive example with the 

three tasks mentioned above is schedulable if: 
1

33(2 1) 0.779KC OT WU

KC OT WU

WCET WCET WCET

deadline deadline deadline
(4) 

Considering the values of Table 1 we can conclude that this system of three tasks is 

schedulable with the assumption of a MaxRPM equal to 4500. In this case, the left 

part of the equation is equal to 0.735 < 0.779. On the other hand, if we consider a 

MaxRPM equal to 6000, the left part of the equation is equal to 0.980 > 0.779 and the 

system of tasks is not schedulable.  

Another constraint to be verified is the timedValueSpecification of the activity 

diagram (CorrectionAdvanceControl). According to the timedDurationConstraints 

expressed on Figure 4 the equation 5 must be verified.  

IDP KC OT WU MIxTAt WCET WCET WCET t (5)

This equation is also valid.  
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6   Conclusion

In order to cope with the complexity of real-time embedded systems, the Model 

Based Design approach promotes a separation of concerns between the model of the 

application (functions) and the model of  the execution platform.  

UML and its profiles are largely used to model both parts. The recent standardization 

of the UML MARTE profile extends UML with temporal information and physical 

resources modelling capabilities. Applying this profile to a model based design makes 

it possible to enrich the application and execution platform models with precise and 

semantically well founded temporal information. As this information corresponds to 

explicit model elements endowed with a clear semantic, they can be extracted from 

the model. Consequently, MARTE models can be used as a starting point for methods 

and tools intended for schedulability analysis. They take into account temporal 

information and timing constraints for verifying deadline constraints.  

In this paper, we presented the MARTE model elements associated with the time 

model package of MARTE, and we illustrated their uses on an automotive case study. 

Four models were presented, the functional model, the time model, the allocation

model, and the execution platform model. While temporal information (periods) and 

constraints (deadlines) are associated with the functional model and are independent 

from the execution platform model, other timing information (WCET) are dependent 

of the platform, i.e. the computing resources. 

In this approach, there are two notions of time, the time linked to the functional model 

logical time and the physical time related to both the allocation model and the 

execution platform model. We showed how to establish the link between logical time 

and physical time through the allocation model.  

From these models we extracted the physical timing information and used them to 

straightforwardly perform a schedulability analysis. We use an analysis based on the 

DM algorithm, but others types of analyses are possible, which concludes that the 

illustrative application, characterized with the temporal characteristics and 

constraints, is schedulable onto the given execution platform. 
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Abstract. The model-driven engineering (MDE) paradigm wishes to raise the

abstraction level of the user design space, while resting on the automated genera-

tion of all lower-level artifacts. Under the MDE approach the focus of verification

and validation increasingly verges on models. As a consequence, the expressive

power availed to the user is often considerably restricted to ensure that the models

are amenable to static analysis. Inherent tension thus arises in the very essence

of MDE between the restraints to be placed for a better good on the user-level

expressive power and the user need and expectation to be able to operate in a

modeling space delivered of platform dependences and constraints. In this paper

we contend that a new notion of modeling patterns may help resolve the con-

flict and increase the expressive power in the user space without jeopardizing the

integrity and effectiveness of the transformation process.

1 Introduction and related work

Motivation. Model-Driven Engineering [1] aims to decrease the time and cost of soft-

ware production and to increase quality, by leveraging on the factorization of best prac-

tices in programming and implementation. The MDE paradigm strives to raise the ab-

straction level of the user space and to generate all lower-level artifacts automatically,

source code, analysis models, and documentation alike. MDE wishes to deliver the

user from the burden of dealing with platform-specific implementation details, and to

concentrate instead on the (platform-independent) specification of the solution. The as-

sumption behind this vision is that the implementation may be largely if not completely

delegated to the automation capabilities of platform-specific development frameworks.

At present however, the adoption of MDE for the high-integrity application domain

is still a challenge. Already in the general case in fact, it may be overly difficult to pro-

vide sufficient assurance that all properties attached to the user model and validated at

that level of abstraction be correctly propagated throughout model transformations, and

preserved upon deployment and execution. This provision demands a level of control

over and proof of the production process, which is difficult to attain for the general user.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 145



2 Matteo Bordin, Marco Panunzio, Carlo Santamaria, and Tullio Vardanega

State of the art. The most prominent efforts in modeling languages for real-time sys-

tems in the industrial landscape to date are AADL and MARTE. AADL [2] focuses

on the modeling of schedulable entities, of information and control flows, and on the

analysis thereof. AADL has also recently been augmented with specific annexes target-

ing behavioral aspects and error treatment mechanisms. AADL conveys all user con-

cerns, such as scheduling, flow and behavioral modeling, into a single modeling view.

The main advantage of this choice is the comparative simplicity and cohesiveness of

the modeling language: the AADL syntax is particularly compact, and each semantic

concept can easily and directly be expressed with a single combination of syntactic

constructs. The single-view modeling of multiple concerns however limits the power of

abstraction considerably and pushes it down to the implementation level. The abstrac-

tion level of AADL models thus gets downcast to that of the underlying implementation

as intended by the target execution platform and the accompanying theories of analysis,

which is quite contrary to the intention of MDE.

MARTE [3] is an OMG effort to bridge schedulability-oriented modeling with

system-level aspects such as flow analysis and software/hardware interaction. (MARTE

can in fact be used in conjunction with SysML [4].) As of September 2008 the MARTE

specifications are in official beta status. MARTE suffers from the gigantism typical of

several OMG standards. As in UML, a MARTE model is comprised of several views,

the consistency of which is not assured by the underlying metamodel. Moreover, even

if vastly more expressive than AADL (especially for time-related semantics), numerous

syntactic constructs in MARTE insist on one and the same semantic concept and thus

overload it. These characteristics make MARTE models rather complex to understand.

Ultimately, the semantics expressible with MARTE is close to that assumed in common

scheduling analysis theories.

While both AADL and MARTE provide platform-independent ways of modeling

software systems in manners amenable to static analysis, the abstraction level of their

modeling space is restrained by constraints arising from the execution semantics in-

tended for the target platform. In fact, in both AADL and MARTE the abstraction level

at PIM is almost equivalent to that at PSM. That closeness eases the preservation of

model attributes and properties across model transformations, but at the cost of permit-

ting only a shallow distance between PIM and PSM.

The last modeling language we consider is HRT-UML/RCM [5,6], the authors’ own

proposal, an MDE infrastructure devised in the ASSERT project [7] to defy this chal-

lenge especially. In ASSERT, HRT-UML/RCM was used for the development of an

industrial-scale real-time embedded system by one of the major prime contractors in

European space industry.

HRT-UML/RCM aims to: (i) provide a design environment in which the user solely

operates in the PIM space, with the only exception of the specification of hardware

configuration and application deployment; and (ii) support an MDE methodology char-

acterized by principles of correctness by construction [8] and of property preservation

[9], across all model transformations including at run time.

The HRT-UML/RCM model space does not allow any semantic variation points:

the run-time semantics expressed in its models thus always is completely defined.
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In HRT-UML/RCM, the user specification of the PIM is declarative, while the trans-

formation process applied to it corresponds to an implementation designed to be prov-

ably correct by construction. The resulting product consequently does not need to be

verified a posteriori on a per-system basis, but only requires a single per-platform vali-

dation, with important cost savings for the developer.

HRT-UML/RCM has for now elected to produce a single PSM from the PIM. space,

though other PSM may in principle be generated, for instance to address dependability,

safety and security concerns. In HRT-UML/RCM the PSM is also used as a Schedula-

bility Analysis Model (SAM). The SAM represents the semantics of the system model

to the extent of allowing static analysis of the feasibility and sensitivity of its timing be-

havior. The SAM generated in HRT-UML/RCM is comprised of a set of comparatively

simple building blocks, which, through correct-by-construction composition, may ar-

rive at encompassing arbitrarily complex execution semantics.

HRT-UML/RCM seamlessly integrates round-trip support for feasibility and sensi-

tivity analysis and makes it start and end at the PIM [10] (see figure 1). While the anal-

ysis is of course made on the SAM, its results are propagated back to the PIM, which is

possible as the entire model transformation logic is deterministic and reversible, hence

it may be easily followed backwards.

Fig. 1. Round-trip timing analysis in HRT-UML/RCM

HRT-UML/RCM also supports automated generation of source code. This leg of the

transformation process starts from the SAM, which eases the provision of constructive

proofs that the system at run time does correspond to what was analyzed and deemed

feasible in the SAM. In the case in instance the complexity of the code generator is

modest since the SAM is very close to the system at run time and the code generation

engine makes extensive use of simple patterns [11].

A factor that greatly facilitated our attainment of correct-by-construction transfor-

mations was the decision to hoist the observance of the RCM constraints from the PSM

space up to the PIM. This decision however has the downside that it pushes back onto

the user the need to think in implementation terms (so that the RCM restrictions are not

violated) in contrast with the promise of delivery from those very concerns.
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Contribution. The challenge we wish to defy is to raise the user space to a higher

level of abstraction (closer to the problem domain and more distant from the constraints

of implementation) while guaranteeing preservation and assurance of properties across

deeper model transformations. In this paper we discuss the role that MDE patterns may

play to this end.

Previous work on the use of patterns in real-time systems [12,13] predominantly

if not exclusively considered design patterns in the way they were promoted by the

“Gang of Four” [14]. We contend that such a view fails to take full advantage of the

emerging MDE paradigm. We show additional classes of potentially useful patterns,

and attempt an initial classification of them from the broader perspective of the trans-

formation space.

The remainder of the paper is structured as follows: in section 2 we define what we

mean by ”expressive power” in the context of MDE; in section 3 we draw a tentative

classification of MDE patterns against the hierarchy of transformations implied in the

process; in section 4 we discuss a few example patterns in some details and finally we

draw some conclusions.

2 Expressive power in Model-Driven Engineering

We consider the expressive power of a language to relate to its economy of expres-

sions: the more synthetic the language entities and the denser their semantic contents,

the greater the expressive power. By this definition, the keywords of a programming

language are much more expressive than the words in the instruction set of the tar-

get processor. In the context of programming languages the transformation of a more

expressive program text into a lesser one is taken care of by the compiler. It is a well-

know observations that the very existence of a compiler for a given target permits to

implement other programming languages equipped with greater expressive power [15].

The expressive power thus is the capability of expressing, synthetically, high-level

concepts with a finite set of language terms with known meaning and with the guarantee

that they can be correctly translated into a semantically equivalent set of entities that

belong to an underpinning implementation language.

This very principle lies at the heart of the MDE paradigm too. The PIM space

may exploit a dictionary of technology- and implementation-independent terms, which

model transformation translates to terms that belong to a specific execution platform.

Source code is only one of many possible PSM produced by a model transformation of

a PIM. In general it is possible to generate a set of PSM each of which serves a different

purpose. Each PSM may thus represent the implementation of the PIM at a distinct level

of abstraction, or viewpoint, each of which focusing only on the concerns of interest to

selected view-specific stakeholder.

The expressive power of PSM is often constrained by the level of formalism re-

quired to permit the sound application of domain-specific analysis techniques. For ex-

ample, constructs that incur non-determinism or unbounded execution behavior may be

removed from the PSM language in the prevailing interest of facilitating static analysis.

In general, two opposite approaches can be pursued to increase the expressive power

availed to the PIM space:
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– granting the maximum possible (in principle, full) freedom of expression to the user

and then verifying a-posteriori whether the user model can be successfully turned

into a semantically-equivalent and legal PSM;

– capturing all of the constraints that propagate up from the PSM and striving to

relax all of them for which a transformation pattern may be devised which may be

proven correct a-priori and whose eventual overhead may be deemed acceptable to

the application.

In the former approach the MDE infrastructure provides the designer with expres-

sive power as large as the user can have. In this case however there is no guarantee that

a legal PSM may be obtained from automated transformation of the user model. The

verification must be therefore made a posteriori and on a per-model basis.

With the latter approach instead, the infrastructure clearly continues to restraint the

expressive power, but for the benefit of a-priori guarantees that any user model in the

PIM scope can be automatically transformed into a legal PSM. The metamodel is then

the key element to ensure that the user model space is exclusively populated with legal

entities, attributes and relations.

In HRT-UML/RCM the PIM modeling space is directly restrained by the bottom-

up propagation of semantic constraints from the underlying computational model, cast

onto the RCM metamodel. The RCM originates in language-neutral terms from the

Ravenscar Profile of the Ada programming language [16]. The Ravenscar profile: (i)

forbids the use of language constructs that may incur non-determism or unbounded

execution time; (ii) only allows asynchronous one-way communications mediated by

shared resources equipped with a deterministic synchronization protocols, like the Pri-

ority Ceiling Protocol (direct inter-task communication are thus prohibited). RCM fur-

ther requires threads to have a single suspension and a single (cyclic or sporadic) source

of activation events. All those restrictions are imposed on the PSM to ensure that all

models in that space be statically analyzable. We want to be able to turn every possible

user model in the PIM space into a semantically equivalent PSM, which also be correct

by construction against the RCM restrictions.

When the applicable RCM constraints propagate up to directly restrict the user mod-

eling space, the expressive power of the PIM can only be marginally larger than a simple

bottom-up projection of the expressive power of the PSM (cf. figure 2.a).

HRT-UML/RCM offers a set of declarative stereotypes to increase the abstraction

level in the PIM space. For example, provided services are decorated with attributes

that express their intended concurrent behavior and timing properties without the user

having to bother with how to implement them. Nonetheless, several restrictions of the

RCM (which thus pertain to the PSM) still directly apply to the PIM. For example, the

RCM forbids the creation of deferred operations with out parameters (i.e., operations

executed by a server-side thread which may return values to the caller) for that would

incur synchronous blocking semantics in violation of the Ravenscar restrictions.

We believe that a more advanced use of MDE patterns may help us extend the

expressive power of the PIM. We want to attain the maximum possible increase while

maintaining the guarantee that all the user models expressible in the PIM space can

be represented as (arbitrarily complex and yet correct by construction) compositions of

legal PSM entities. A deterministic yet efficient function must exist to transform the
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Fig. 2. Relation between expressive power of computational model and modeling language. Fig-

ure (a) represents a modeling space which is a projection of the underlying computational model:

this is the current situation of HRT-UML/RCM. In figure (b), we represent our goal: the user-

level modeling semantics is wider than the projection of the PSM computational model; but it

is still possible to trace such semantics to an equivalent representation that respects the RCM

constraints.

constructs that belong in the extended PIM space into a combination (thus, intuitively,

a composition pattern) of those primitively present in the PSM (see figure 2.b).

Granted, the additional expressive power can only come at some cost: the larger the

distance between the declarative language of the PIM and the implementation language

of the PSM, the greater the time and space overhead of the model transformation, of its

code products and of and its verification effort.

3 Classification of patterns

Let us first introduce a tentative classification of patterns in the MDE landscape. With

this classification we maintain that MDE patterns distinguish themselves by the abstrac-

tion level at which they are applied. The abstraction level at which any given pattern is

considered to belong thus becomes the central element to decide their goodness of fit to

serve our objective.

In our current classification, we recognize:

– determined patterns: this kind of patterns are explicitly instantiated by the user,

who recognizes their possible use in the current design and manually embeds them

in the model as a solution to the problem at hand

– executive patterns: this kind of patterns are the result of the identification of features

or constraints specific to the platform(s) of interest. They are directly included in

the metamodel and the associated transformations, for they provide satisfactory so-

lutions to known implementation-specific problems. These patterns are not directly

available to the user, who is not aware of their use

– declarative patterns: this kind of patterns are solutions to recurrent problems in the

application domain. The design infrastructure is aware of these patterns, which are

offered to the user as built-in components that can be safely embedded in transfor-

mations of the user model.
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Determined patterns represent user-perceived solutions to recurrent problems in the

modeling space of the application. The user recognizes a specific problem in the appli-

cation requirements and manually augments or adapts the model to host an instantiation

of the desired pattern(s). The design patterns discussed in [14] clearly fall in this cat-

egory. It is important to notice that, following our definition, this kind of patterns do

not increase the expressive power of the MDE infrastructure, since they are user-level

constructions that result from the assembly of primitive entities. Consequently, only the

latter actually “exist” in the model. The user-level constructions instead have no direct

representation across model transformation since the MDE infrastructure is unaware of

their existence.

Executive patterns encode traits of the implementation domain of interest. A com-

putational model, a set of constraints on thread activations and suspensions, archetypes

to factorize common behaviors, are all example of executive patterns. Executive patterns

distinguish themselves because they must necessarily be encoded in the metamodel and

fixed once and for all upon its creation. Since they are part of the metamodel, which

constrains the legal design space, they determine the PSM expressive power. As the

MDE paradigm wishes to lift the abstraction level of the user space away from imple-

mentation details, the executive patterns need not be directly visible to the user.

Declarative patterns are themselves solutions to a recurrent problem of the applica-

tion domain. More specifically, the designer recognizes a known problem in the system

specification and uses one of these patterns to solve it. Declared patterns must be se-

mantically understood by the user and recognized as solutions to specific problems in

the application space. They however require no implementation from the user, who just

need to cause them into existence. It is the process of model transformation in fact that

instantiates the required patterns and embeds them in the user model. For this reason

declarative patterns must pose no obstacle for the products of model transformation to

stay within a legal, correct by construction, design space. The most effective way to

achieve this is for declarative patterns to exist in the metamodel and consequently be

used as constructive elements of the model transformation logic. Following our def-

inition, declarative patterns augment the expressive power availed to the user, since

they result from constructs (e.g.: attributes) that model transformation resolves in a

predefined and correct by construction composition of primitive entities of the PSM.

Furthermore, the semantics of a declarative pattern is known and well defined and the

enforcement of legal conditions for its application can be assured by the MDE infras-

tructure itself; both these characteristics are instead contemplated in the application of

determined patterns.

One of the goals of this categorization is to let the reader appreciate how impor-

tant those patterns may be to the MDE process and how much they may influence the

expressive power availed to the user.

As we have seen, executive patterns basically determine the expressive power avail-

able at the PSM level, that is the (low-level) abstraction layer of the entities that populate

the system at run time.

Determined patterns live entirely in the user-level design space; they are composed

of primitive entities that can legally populate the PIM and therefore have scarce impor-

tance in the MDE process, since they do not augment the expressive power.
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Declarative patterns instead arguably are the most important category of patterns in

the context of an MDE process: they provide the user with a powerful abstraction that

is automatically instantiated by model transformations and therefore fit perfectly into

the model(s) product of the transformation.

It is then clear that declarative patterns are a crucial instrument for us to increase

the expressive power we may avail to the user. Expressed graphically with reference to

figure 2, we are increasing the slope of the lines that join the PSM space to the PIM.

One additional benefit of this classification is that makes it clear where the instanti-

ation of each pattern occurs. Figure 3 provides a diagrammatic representation of this

element of information: determined patterns clearly populate the application layer,

since they are composed of legal entities of the user-level design space; executive pat-

terns map or encode features of the execution environment, whether software (kernel

or middleware or both) or hardware; declarative patterns, finally, reside at PIM level,

but outside the direct projection of the PSM expressive power and thus require model

transformation to come in existence as a correct by construction assembly of legal PSM

entities and constructs.

Fig. 3. Patterns in model-driven engineering. Determined and declarative patterns are avaliable

in the user modeling space. Determined patterns result from direct projections of the PSM ex-

pressive power. Declarative patterns exist beyond the projection of the PSM expressive power

and require model transformation to be implemented in terms of legal PSM entities. Executive

patterns solely exist in the PSM level.

Let us now determine whether and to what extent the user should be aware of pat-

terns, according to their class of belonging.

Determined patterns are obviously known to the designer, who is the primary and

sole actor in their use. Conversely, executive patterns are intentionally hidden to the

user. The situation is not that clear instead for declarative patterns. Should the designer

be aware that the decoration of some model attributes triggers the activation of a declar-

ative pattern? Additionally, should the designer explicitly require the activation of a

pattern or else simply rely on the intelligent support of the framework to recognize

the conditions for its activation? Two analogies may help us illustrate the differences

between these two approaches.
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One of the classical optimization performed by a compiler is to move the invariant

part of a loop outside the loop itself. The average programmer need not be aware that

this optimization is performed. Conversely, let’s imagine a programming language that

prescribes that remote operations be flagged with a remote keyword; in this case the

programmer intentionally determines the generation of stubs, skeletons, and all other

elements required to perform a remote invocation. At present we do not have a strong

position on the entire class of declarative patterns, and we are inclined to believe that

the issue should be evaluated on a case by case (i.e., per pattern) basis.

4 Pattern catalogue

This section briefly discusses examples of patterns from the categorization we have

just proposed. The examples we have chosen reflect problems typical of the real-time

application domain. We concentrate on declarative and executive patterns, because de-

termined patterns should be well known to the reader.

4.1 Partitions and communication filters

While the notions of partition and communication filters are not new to software en-

gineering, especially in the high-integrity domain (see for example the ARINC-653

standard [17]), they still have to find their place in a model-based development.

The use of logical and physical partitions permit to attribute software and hard-

ware components to distinct levels of criticality so as to guarantee the required level of

isolation in time, space and communication among them.

The notion of partition must be part of the metamodel itself, because the designer

must be able to consciously allocate multiple executable entities within given partitions.

In that manner, the entities included in a partition inherit the partition criticality and

benefit from the partition-level isolation mechanisms. Neither the causing of criticality

inheritance nor the modeling of isolation mechanisms, however, are to be explictly per-

formed by the user: they can instead be easily realized by way of model transformation.

The notion of partition does thus reflect a declarative pattern.

Communication filters are tightly related to partitions. When a lower-criticality

partition establishes a communication link with a higher-criticality partition, the in-

tegrity of the exchanged messages should be subject to verification. The execution of

the higher-criticality partition may in fact be affected by the computation required by

a lower-criticality partition. To only permit allowable communications (operation re-

quests or reports of results), filters are suitably interposed between communicating par-

titions to perform all of the necessary verification on the permissibility of the commu-

nication.

Filters are part of the metamodel. However they are not to be used explicitly by the

user, who need not even be aware of their existence, but rather they are put into place by

the tail end of the model transformation process. The notion of filter does thus reflect

an executive pattern.
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4.2 Callback

The purpose of the Callback pattern is to extend the PIM expressive power beyond the

projection of the PSM modeling space. The pattern can be categorized as both an execu-

tive and declarative pattern. It does not require any specific action from the designer (as

thus equates to an executive pattern), but its application has consequences which must

be known to the user, as they impact the software architecture and the interpretation of

analysis results.

Let us use a simple example to illustrate the Callback pattern, which we base

on the classical producer-consumer archetype. Both the Producer and the Consumer

have a single method, respectively produce and consume (cf. figure 4). The oper-

ation of produce consists in (a) producing an item, (b) passing it to the consumer

and (c) adapting its own behavior according to the Consumer’s feedback. The opera-

tion of consume consumes the item and returns its feedback via an out parameter,

Feedback.

Fig. 4. Callback pattern: class diagram prior to the application of the pattern.

Following the HRT-UML/RCM modeling semantics for components, we declare

the concurrent semantics on ports of provided services: the port providing produce is

marked ≪cyclic≫, meaning that a dedicated task with a constant periodic release calls

produce. The port providing consume is instead marked ≪sporadic≫, meaning

that its invocation by a caller causes a sporadic task to be released to actually execute

consume (cf. figure 5). Additional non-functional concerns, such as tasks priority and

period or minimum inter-arrival time, are addressed by decorating the provided port of

each component with specific attributes (which we omit in this discussion).

It is worth noticing at this point that the semantics expressed in this user model is not

Ravenscar-compliant. The reason is that operation consume requires a synchronous

communication (since its profile includes an out parameter), but the corresponding

port is marked ≪sporadic≫, which makes it deferred in HRT-UML/RCM and thus

necessarily asynchronous. The semantics intended by the user model is that of a syn-

chronous deferred communication, which is forbidden in RCM. Interestingly however,

a simple stage of model validation can notice the problem and trigger appropriate ac-

tions to resolve it.

To solve the problem and thus satisfy the user without incurring violations of the

RCM restrictions, we first perform an automated model transformation on the class
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Fig. 5. Callback pattern: system model prior to the application of the pattern.

diagram (which is part of the so-called functional model in HRT-UML/RCM). The

transformation changes the profile of the consume to accept a callback (i.e., a function

pointer) instead of the Feedback out parameter. Its action semantics is then changed

to: (a) declare a local variable in place of the missing out parameter; and (b) invoke

the callback at the end of its execution, passing the above variable as its in parameter.

The action semantics of produce is then changed accordingly: in correspondence

to the invocation to produce it is split into two separate methods. The action seman-

tics coming after the invocation to consume is enclosed into consume callback,

which is the callback passed to consume (cf. figure 6).

Fig. 6. Callback pattern: class diagram after application of the pattern.

The concurrent semantics declared in the component ports remains the same for

those that provide consume and produce. The port providing consume callback

is instead marked ≪sporadic≫ so that a dedicated task may ensure a prompt response

to the invocation of the callback from consume.

The resulting model is Ravenscar-compliant again as the services provided by the

ports marked as ≪sporadic≫ do not include out parameters (cf. figure 7) anymore.

At this point an additional model transformation may generate the SAM and assign

the user-specific functional behavior to it. Dedicated tasks are created for produce

(cyclic), consume callback (sporadic) and consume (sporadic) and the respec-

tive methods are allocated to the fully-legal main operation of the respective tasks.

Message queues protected against concurrent access are created for consume and

consume callback as the means to implement asynchronous communication be-

tween the caller and the sporadic task on the side of the callee. A further shared re-
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Fig. 7. Callback pattern: system model after application of the pattern.

source may be automatically generated to safeguard the concurrent access the tasks

behind produce and consume callback to application data that the split of the

single user-level operation should not duplicate.

Source code is finally generated from the transformed model and from the SAM; no

code is instead generated from the original user model.

5 Discussion

By the introduction of the executive and declarative pattern categories, we achieve two

results which are beyond the reach of classical determined patterns.

Executive patterns, like the Filter pattern, relieve the designer the need to specify

complex yet recurrent parts of the software behavior, and rather introduce them directly

in the PSM (and, possibly in the source code too).

Declarative patterns instead, serve two distinct purposes. First of all, they reduce the

amount of modeling effort required for the designer to express the semantics needed to

solve an application-level problem: this is for example the case of the Partition pattern.

Declarative patterns may also help extend the expressive power availed at PIM well

beyond the perimeter permissible to the PSM: this is the case of the Callback pattern.

In fact, we see declarative patterns as a most promising pattern category for high-

integrity systems in general and real-time systems in particular. They have the potential

to release the user-level modeling process from (some of) the restraints that are prop-

agated upwards from the underlying analysis theories, and thus extend the expressive

power availed to the user. In practice the restraints that may be lifted are those for which

declarative patterns exist which permit model transformations that provably preserve

the properties of interest down to the final implementation.

Interestingly enough, declarative and executive patterns are both realized by means

of property preserving model transformations and take the form of correct by construc-

tion aggregates of primities entities of the metamodel. While those patterns are not

primitive entities themselves, they do exist in the metamodel space because it is their

very existence under the semantic constraints enforced by the metamodel that asserts

their legality. A key implication of this stipulation is that the compositional logic of the

model transformations must be defined as an integral element of the metamodel itself.

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 156



A Reinterpretation of Patterns to Increase the Expressive Power of MDE 13

What we currently see as the main limitation to the full application of declarative

patterns is the impact they may have on the functional (and not only architectural) spec-

ification of the system. We have seen a glimpse of this problem in the application of

the Callback pattern, which caused us to break a single functional operation into two

distinct parts.

To date, mainstream modeling technologies have failed to provide a full and usable

representation of action semantics in the metamodel space. This limitation constitutes

a technological (though not conceptual) hurdle to our endeavor.

In several, perhaps most cases, declarative patterns cannot be silently applied by

the modeling infrastructure as they may considerably increase the distance between the

user space and the part of the PSM that is the product of automated model transfor-

mation. The larger the distance the more complex to understand the end results of the

transformation, in both qualitative and quantitative terms. For example, the application

of the Callback pattern not only modifies the functional specification provided by the

user, but also impacts the concurrent and synchronization properties of the system by

creating an additional task and an additional shared resource. The modeling infrastruc-

ture should thus justify all model transformations and provide evidence of traceability

between levels of abstraction.

6 Conclusions

The production of formal analysis models is a complex task which requires to verify

that (i) the designed model does not evade the boundaries of the semantics permitted by

the underlying analysis theories; and (ii) the semantics is preserved at each abstraction

level crossed by transformation.

The preferred way to satisfy both requirements is to constraint the modeling space

by directly projecting the expressive power of the PSM onto the PIM modeling space

(with the side benefit of easing the automated production of the PSM).

We introduced two new categories of patterns specific of the MDE context to add

to the well-know category of determined patterns that stem from [14]. Executive and

declarative patterns are meant to address other issues than those targeted by classical

design patterns.

Executive patterns are expected to deliver the user from the need to specify parts of

the architecture and functional behavior of the application by embedding consolidated

solutions directly in the PSM (possibly the source code).

Declarative patterns instead extend the expressive power of the PIM by relaxing se-

mantic constraints that hold on the PSM. The implementation of the semantics implied

by declarative patterns is naturally realized by automated model transformation.

We discussed three specific instances of patterns in the above categories, which

address problems recurrent the real-time systems domain.

The introduction of those new categories of patterns promises to increase the ex-

pressive power attainable at user level and an interesting new dimension of automation

in the model-driven engineering of real-time systems. The full exploitation of those

patterns requires a highly integrated modeling infrastructure, which includes a mod-

MoDELS'08 ACES-MB Workshop Proceedings

Toulouse, France, September 29, 2008 157



14 Matteo Bordin, Marco Panunzio, Carlo Santamaria, and Tullio Vardanega

eling language, and a set of proven and correct by construction model-to-model and

model-to-code transformations.
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