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Abstract. AADL is an aerospace standard for model-driven design of
complex real-time embedded systems. Currently, behavioral properties of
AADL models can be specified inside the system description using AADL
concepts or outside it using external textual languages, and verified using
schedulability analysis or (Time Petri Net-based) model-checking tools.
This paper (1) proposes Visual Timed Scenarios (V TS) as a graphical
property specification language for AADL, and (2) devises an effective
translation from V TS to Time Petri Nets (TPN) which enables model-
checking properties expressed in V TS over AADL models using TPN-
based tools integrated into AADL-compliant IDEs (e.g., TOPCASED).

1 Introduction

The Architecture Analysis and Design Language (AADL) [13] is an aerospace
standard released by the Society of Automotive Engineers (SAE) for model-based
specification and analysis of complex real-time embedded systems. AADL has
been designed to support model-based and formal analyses of critical properties.
For this, AADL provides modeling concepts for the description of application
system architectures in terms of suitable abstractions of software and hardware
components and the interactions between them. The definition of AADL moti-
vated the development of AADL-centric tools such as OSATE4 and Ocarina [10],
as well as the integration of AADL into domain-specific model-driven software
engineering environments, such as TOPCASED5. This enabled different kinds
of formal analyses, including schedulability, e.g., with Cheddar [14], and model-
checking, e.g., with Time Petri Net-based tools like Tina [4] and Romeo [9].

A way of enhancing the usability of formal techniques in model-driven sys-
tem design and flows analysis consists in resorting to visual languages capable
of representing and visually presenting application semantics in a clear, precise
way, specially in the context of event-based systems. Following this idea, in this
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paper we adopt Visual Timed Scenarios (V TS) [1] as a language for specifying
behavioral properties of models of systems described in AADL. In order to make
possible the verification of these properties using available tools integrated into
AADL-complaint IDEs, we devise a translation from V TS to Time Petri Nets.
This allows to use existing model checking tools for verifying if operational de-
scriptions encompassed by AADL model satisfy the translated property. Fig. 1
exhibits the integration of the AADL models with V TS scenarios in a tool chain.
The part concerning V TS (enclosed in gray) will be explained in detail along
this work.

AADL Model

TPN

Modelchecker

Ocarina

(no flows)

VTS CS [7]

CS2ES [11]

VTS ES [1]

ES2TPN

TPN Model

TPN Property

Expected

Property of

AADL Model

Fig. 1. Tool chain integrating AADL and V TS

The paper is structured as follows. Sec. 2 recalls V TS by means of an exam-
ple. Sec. 3 briefly reviews Time Petri Nets (TPN). Sec. 4 presents the translation
of V TS into TPN. Sec. 5 proposes a procedure to model-check whether a TPN
satisfies a property expressed in V TS. Sec. 6 illustrates the application of these
results for verifying different behavioral properties of AADL models: (1) mode-
change behaviors, and (2) flow specifications.

2 Visual Timed Scenarios (V TS)

2.1 Informal presentation

Visual Timed Scenarios [1,7] language is used to describe event patterns, which
can be regarded as simple, graphical depictions of predicates over traces (time-
stamped executions), constraining expected behavior. It basically features anno-
tated partial order of relevant events, denoting a (possibly infinite) set of match-
ing traces. Violation of verification goals for models such as freshness, bounded
response or event correlation can naturally be expressed using the notation.

The basic elements of V TS graphical notation are points connected by lines
and arrows. Points are labeled by sets of events, meaning that the point stands
for an occurrence of one of the events in an execution. V TS can represent prece-

dence relations and temporal distances between points; and sets of events which
are forbidden between them. The detailed formalization of V TS and its thor-
ough comparison with other visual languages is given in [7]. Here, we informally
introduce V TS through a simple, yet illustrative, example.

Consider a system composed of two jobs Job1 and Job2 (Fig. 2, based on [2]).
The behavior of the system is as follows: (1) Job1 if started, always terminates;
(2) Job2 if started, always terminates; (3) Job2 can not start while Job1 is in
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execution; (4) Job1 must terminate in at most 12; (5) Job2 must wait at least
14 to start; (6) The temporal distance between both jobs’ ends is at most 10.

JobJob
1 2

START START END
1 2END

time

1 2LAUNCH

Fig. 2. Example of two jobs

Fig. 3 illustrates these requirements expressed in V TS as conditional sce-

narios [7]. Conditional scenarios allow to state that whenever an antecedent

sub-scenario (depicted in black) happens, a consequent sub-scenario (depicted
in gray) must happen too.

1

1

<=12

1

>=14

1
1

¬ START2

1

<
=

1
0

START1

p2

1

END1

p3

1

END2

p5

1

START2

p4

1

LAUNCH

p1

Fig. 3. V TS Conditional scenarios for requirements of two jobs example

Points are labeled with events. Triangles below points are used to display
optional point names, needed for the formal notation. An arrow between two
points specifies a precedence relationship. Arrow labels specify forbidden events

between points: for instance, there is no START2 event between START1 and
END1. A double forward arrow means “the next” occurrence of the event of the
destination point (i.e., shorthand for labeling the arrow with the destination’s
label). A double backward arrow meas “the previous” occurrence of the event of
the source point (i.e., shorthand for labeling the arrow with the source’s label).
A dashed line linking two points expresses a temporal distance between them.
Dashed lines can also be labeled with forbidden events. Fig. 4 shows the graphical
notation of V TS elements used in this work6.

Verifying conditional scenarios is done by building (using the CS2ES tool
showed in Fig. 1) a set of existential scenarios that stand for all possible coun-
terexamples of the conditional scenarios [7, 11]. These scenarios, a.k.a. anti-
scenarios, model all the ways in which a conditional scenario may be violated
by the system. This work only relies on how to model-check existential scenar-
ios, and therefore, hereinafter, existential scenarios are referred as “scenarios”.
Fig. 5 illustrates all the V TS anti-scenarios of the conditional scenario of Fig. 3.

6 V TS has more primitives, that increase its expressive power, which are omitted here
for the sake of simplicity. The interested reader is referred to [7].
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q matches the next b-event after p

p and q must match different events

point

a

p

b

q

(min, max]

forbidden events

p precedes q

a

p

b

q

(min, max]

forbidden events

p matches the a-event previous to q

a

p

b

q

(min, max]

forbidden events
a

p

b

q

(min, max]

forbidden events

p and q are consecutive a and b events

a

p

b

q

events

point name

begin end

(min, max]

forbidden events

Fig. 4. V TS graphical notation

A big full circle stands for the begin of the execution, and two concentric circles
correspond to its end.

¬ END1
START1LAUNCH

(a) Job1 starts, but does
not terminate (1)

¬ END2
START2LAUNCH

(b) Job2 starts, but does
not terminate (2)

START1 END1

START2

LAUNCH

(c) Job2 starts while Job1

is in execution (3)

START1 END1

>12

LAUNCH

(d) Job1 terminates after
12. (4)

START2

<14

LAUNCH

(e) Job2 starts before
14. (5)

START1 END1

END2START2

>
1

0

LAUNCH

(f) More than 10 passes
between jobs ends. (6)

Fig. 5. Anti-scenarios (existential scenarios).

2.2 Formal presentation

Definition 1 (V TS syntax). A scenario is a tuple 〈Σ, P, ℓ, 6≡, <, γ, δ〉 , where:

– Σ is a finite set of events;
– P is a finite set of points;
– ℓ : P → 2Σ is labels each point with a non-empty set of events;

– 6≡ ⊆ P × P is an asymmetric relation ( inequality) between points (graphi-

cally represented by dotted lines);

– < ⊆ (P ⊎{0}×P ⊎{∞})r{〈0,∞〉} is a precedence relation between points

(graphically represented by arrows), where 0 and ∞ represent the begin and

the end of an execution, resp.;

– γ : (6≡ ∪ <) → 2Σ assigns to each pair of points, related by inequality or

precedence, the set of events forbidden between them;

– δ : (6≡ ∪ (< r (P × {∞}))) → I assigns to each inequality or precedence

relation an integer-bounded or upper-unbounded interval of non-negative real-

numbers restricting the time elapsed between the two points.

Given a set C, a sequence over C is a (possibly infinite) sequence of elements

from C. Given a sequence s, |s| is its length (|s|
def
= ∞ when s is infinite) and
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Π(s)
def
= {i ∈ N / 0 ≤ i < |s|} is the set of positions of s. Given i, j ∈ Π(s),

si is the ith element of s; si] is the prefix ending at position i; s[i is the suffix
starting at position i and s[i,j] is the sub-sequence from position i to position j (if

i > j, s[i,j]
def
= s[j,i]). Using ‘(’ or ‘)’ instead of ‘[’ or ‘]’ means the corresponding

sub-sequence does not include its border(s). We call first(s) the first element of
s. If s is finite, last(s) is its last element. For X ⊆ C, s ∩ X denotes the set of
elements of X appearing in s, i.e., {x ∈ X | ∃i. si = x}.

A temporal sequence is a weakly increasing sequence of timestamps (i.e., non
negative real numbers). Given a finite temporal sequence τ we define ∆(τ) as
the time elapsed during τ : ∆(τ) = last(τ)− first(τ) or 0 if |τ | = 0. A temporal
sequence τ can be shifted by a real number ǫ producing a temporal sequence
called τ + ǫ, such that ∀i ∈ Π(τ); (τ + ǫ)i = τi + ǫ.

A trace over a set C is a pair 〈s, τ〉 where s is a sequence over C and τ is
a temporal sequence of the same length. Given a trace σ = 〈s, τ〉 , we define

|σ|
def
= |s| and Π(σ)

def
= Π(s). A trace is time-divergent iff for any real number T

there exists a position k such that ∆(τk]) > T .

The semantics of V TS assigns to each scenario a set of traces satisfying
it. Labeled points represent events in the traces, they can match a particular
position in a trace if the event in that position is among the allowed events
associated to the point by the labeling function ℓ.

Intuitively, a matching is a mapping between points in a scenario and posi-
tions in a trace, exhibiting how the trace satisfies the scenario. Formally:

Definition 2 (V TS semantics). Given a scenario S = 〈ΣS , P, ℓ, 6≡, <, γ, δ〉 ,

a trace σ = 〈s, τ〉 over Σ′ where ΣS ⊆ Σ′, and a mapping ·̂ : P → Π(σ); we say

that ·̂ is a matching between S and σ iff for all points p, q ∈ P :

M1 sp̂ ∈ ℓ(p); the mapping for a point is a position of the trace with an event that
labels this point.

M2 if p 6≡ q then p̂ 6= q̂; two different points cannot map to the same position.
M3 if p < q then p̂ < q̂; the position of the source point must be smaller than the

destination’s.
M4 s(p̂, q̂) ∩ γ(p, q) = ∅; no forbidden event can appear in the sub-trace defined by

corresponding occurrences of the points.
M5 sp̂) ∩ γ(0, p) = s(p̂ ∩ γ(p,∞) = ∅; no forbidden event specified between begin (resp.,

a point) and a point (resp., end) can appear before (resp., after) the corresponding
occurrence of the point.

M6 ∆(τ[p̂, q̂]) ² δ(p, q); the time elapsed between the occurrences of the corresponding
points must satisfy the specified time restriction.

M7 ∆(τp̂]) ² δ(0, p); the time elapsed since begin until the occurrence of a point must
satisfy the specified time restriction.

Rules M4-5 and M6-7 must be considered only when the domains of the functions

γ and δ are defined, respectively.

Definition 3 (Existential V TS Semantics). We say that a trace σ satisfies
a scenario S (noted σ ² S) iff there exists at least one matching between them.
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3 Time Petri Nets (TPNs)

Time Petri Nets [5] are a widely used formalism for timed systems. They are
supported by several tools (e.g. TINA [4], Romeo [9]). TPNs extend Petri nets
with temporal intervals associated with transitions: assuming transition t, with
an interval [α, β], became last enabled at time τ , then t cannot fire earlier than
time τ +α and must fire no later than τ +β, unless disabled by firing some other
transition. Firing a transition takes no time.

3.1 TPNs Formal Syntax

Definition 4 (Time Petri Net). A Time Petri Net7 is a tuple N = 〈S, T,

Pre, Post, ΣN ,L, Inh,≻,m0, Is〉, where:

– S is a finite set of places.

– T is a finite set of transitions.

– Pre ⊆ T× S is a relation between transitions and input places.

– Post ⊆ T× S is a relation between transitions and output places.

– ΣN is a finite set of events.

– L : T → ΣN ∪ {λ} is a function that labels each transition with an event or

with λ 6∈ ΣN . We assume that ∀ e ∈ ΣN , ∃ t ∈ T, s.t. L(t) = e.

– Inh ⊆ T× S is a relation that defines inhibitor places for transitions.

– ≻ ⊆ T × T is a priority (irreflexive, asymmetric, and transitive) relation

between transitions.

– m0 ⊆ S is a set of places with initial marking.

– Is : T → I is a function called static interval function.

Fig. 6 summarizes the graphical notation for TPNs used in this work.

transition

place name

place

in initial 

marking

place name transition name

event

[min,max]

inhibitor arctransition pre-arc transition post-arc

transitions priority

transition

t1 is higher 

priority

than t2
t1 t2

place place

interval is [0, )

when is not explicit

event is  when is 

not explicit

read arc
place with 

pre-arc and 

post-arc to 

same transition

t1 t1l0 l0 t1l0 t1l0

Fig. 6. TPN graphical notation

Parallel Composition. This operation combines two TPNs in one TPN where
transitions with the same label (different from λ) are merged. The parallel com-
position between two TPNs, N1 and N2, is denoted as N1‖N2. See [5] for more
details.
7 For simplicity, we consider here ordinary (i.e. all arcs have weight 1) TPNs, but the

results can be extended to non-ordinary ones.
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3.2 TPNs Semantics

Given a TPN N , a state of N is a pair ω = 〈m, I〉, where m : S → N is a marking
and I : T → I is the interval function that associates a temporal interval with
every transition enabled at m. The initial state is denoted ω0.

The semantics of TPNs defines the evolution of a TPN state resulting from
the firing of transitions and passage of time. The reader is referred to [5] for the
detailed semantics.

We write ω
L(t)@θ
−→ ω′ to denote that from state ω, transition t is fired after

a time θ, resulting in state ω′; and ω
λ@θ
−→ ω′ to denote that from state ω, time

can elapse to state ω′. An execution is a time-divergent sequence ρ : ω0
a0@θ0−→

ω1
a1@θ1−→ . . . We write mρi

to denote the marking of the i-th state of ρ. The
time-divergent trace of ρ is σ = 〈s, τ〉 with s = a0, a1 . . . , and τ = ϑ0, ϑ1 . . . ,
where ϑ0 = θ0 and ϑi = ϑi−1 + θi, for i ≥ 1.

4 Translating V TS into TPN

The translation algorithm proceeds as follows: for each part of the V TS scenario
that must be matched, it builds a TPN component. So, each point, forbidden
event, time restriction, precedence between points, etc., in the V TS scenario,
generates a TPN. The translation of the whole scenario is obtained by the fusion

(a special composition, see below) of all components. The rules that formally
define this translation can be found in [12]. The ES2TPN tool (Fig. 1) performs
this whole process.

4.1 Construction of TPN components

Construction of TPN components for matching points. In order to rec-
ognize occurrences of events as matchings of points, we construct a TPN as
follows. For every point p of the V TS scenario, we add two places to the TPN:
notYetp and matchp. The place notYetp has an initial marking and represents that
no event labeling point p has occurred yet. The place matchp, if marked, models
that a matching event for this point has occurred. Between these places, we add
the possible matching transitions: one transition for each event e labeling point
p. Each of these is labeled with e, and has a pre-arc from notYetp and a post-arc

to matchp. Also, we must consider the case where two (or more) points match
the same event. Therefore, we add transitions for all possible combinations of
multiple matching points for each event.

To take into account precedence relations among points, for every matching
transition into place matchp we add a read-arc from any place matchq, whenever
there is a precedence arrow from q to p (this is because place matchq must be
marked before marking place matchp).

Finally, this component has special transitions which will be used in the
construction of forthcoming components. Transition trape is set with higher pri-
ority than any matching transition labeled with event e. Transition trapAll has
higher priority than all transitions labeled trape, and therefore higher than all
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matching transitions (by transitivity). For every point p and event e labeling p,
a transition trape¬p

is added, with higher priority than any transition matching
event e but not matching point p. The purpose of these transitions is to define a
priority schema, not to be fired, as they are always disabled by adding a pre-arc

from a place called empty which is never marked. Fig. 7 gives an example of the
construction of TPN component for matching points.

b

p

a

q

(a) V TS scenario

¬p
notYetp matchp

b

pb

trapAll empty

matchq trapb

trapb

(b) TPN component for point p

Fig. 7. TPN component construction for matching points.

Construction of TPN components for events not matched by any

point. To recognize occurrences of events not associated to point matchings, we
add a unique place loop, with an initial marking, and loop transitions for each
event e of the scenario.

Fig. 8 shows the resulting TPN for a simple example.

b

p

a

q

(a) V TS scenario

a

loop a
loop

b

loopb

(b) TPN of unmatched occurrences of events a and b

Fig. 8. TPN component construction for unmatched events.

Construction of components for forbidden events on precedence rela-

tions. Suppose there is precedence relation from point q to p, and let matchq

and matchp be the corresponding matching places of the points. For each forbid-
den event e on the precedence relation, a forbidden transition, labeled with e, is
added with a pre-arc from matchq and an inhibitor-arc from matchp.

In order for this transition to capture all possible occurrences of the forbidden
event e, if e is labeling p, a priority relation is added to transition trape, otherwise
is added to transition trape¬p

. As we have seen, trape has higher priority than
any matching transition for event e, and trape¬p

, has higher priority than any
matching transition for event e not related with p.

Also, the corresponding loop transition for event e is disallowed whenever
the forbidden transition is enabled, by setting a priority relation. Therefore, the
loop transition is enabled only when point q has occurred but not yet point p,
avoiding any occurrence of event e not corresponding to the matching point p.
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At last, a post-arc with an inhibitor-arc is added to place invalidMatch. This
place, as we will show later, if not empty, avoids reaching the acceptance condi-
tion for matching the whole V TS scenario. The purpose of this inhibitor-arc is
to ensure the boundedness of the TPN.

Fig. 9 illustrates the construction of TPN components for forbidden events

on precedence relations.

b

p

¬ b, c
a

q

(a) V TS scenario

invalidMatch

matchp

trap

matchq

q.p

b

bforbidden

b

loopb

b

¬p

(b) TPN for forb. event b

invalidMatch

matchp

trap

matchq

q.p

c

cforbidden

c

loopc

c

(c) TPN for forb. event c

Fig. 9. TPN components for forbidden events over precedence relations.

Construction of TPN components for temporal restrictions on prece-

dence relations. In V TS, temporal restrictions over a precedence relation can
involve two cases: (1) when the time elapsed between the source and destination
points has a maximum allowed value, and (2) when it has a minimum allowed
value. Note that V TS time restrictions allow both cases to be combined in an
interval constraint.

In case of an upper limit β, we add a transition tooLateq·p with a lower
bound of β. This transition has a read-arc from place matchq, an inhibitor-arc

from place matchp, and a post-arc with an inhibitor-arc to place invalidMatch.
We add a priority relation from this transition to trapAll to avoid matching
points when it is enabled. Therefore, this transition will avoid point p to match
after a time β since point q has occurred. Fig. 10(a) and 10(b) illustrates this
construction.

In case of a lower limit α, we use two transitions. One transition, called
onT imeq·p, will delay at least α after point q matches, leaving a token at a
new place notEarlyq·p. The other transition, called tooEarly

q·p, has a pre-arc

from place matchp, an inhibitor-arc from place notEarlyq·p, and a post-arc with
an inhibitor-arc to place invalidMatch. Therefore, this transition will prevent a
scenario matching if point p occurs, but not transition onT imeq·p which only
becomes enabled after a time α since point q’s occurrence. Fig. 10(c) and 10(d)
illustrates this construction.

Construction of TPN components for restrictions over inequality rela-

tions. Consider two points q and p, such that p 6≡ q. By definition these points
have different matching, then necessarily, either q occurs before p, or p occurs
before q. Therefore, both cases must be considered. For this, we apply the rules
explained above for taking care of precedence relations.
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b

p

<10

a

q

(a) V TS scenario 1

invalidMatch

matchpmatchq

q.ptooLatetrapAll

[10, )

(b) TPN 1

b

p

>=2

a

q

(c) V TS scenario 2

invalidMatch

matchpnotEarlymatchq

q.ptooEarly

q.p
q.ponTime

[2,

[0,0]

(d) TPN 2

Fig. 10. TPN components for time restrictions over precedence relations

4.2 Construction of the TPN for the whole scenario

Scenario matching We add a place, namely, validMatch, and two transitions,
namely, accept and reject. Transition accept, immediately fires if all points
have been matched, and only if place invalidMatch is empty, putting a token
in validMatch. Transition reject, fires as soon as invalidMatch is reached, remov-
ing all tokens (if any) from validMatch. This transition is needed to wait for
occurrences of forbidden events in the future. Fig. 11 illustrates this construc-
tion.

b

p

a

q

(a) V TS scenario (b) TPN

Fig. 11. TPN component for scenario matching.

Fusion of TPNs. Now, we introduce the fusion operation, to obtain a TPN
by combining two or more TPNs. This operation is based on set union; so if two
combined TPNs share places and transitions, these will appear once in the final
construction. The fusion operation between two TPNs, N1 and N2, is denoted as
N1⊕N2. Fig. 12 illustrate fusion operation. Resulting fusion of TPNs Fig. 12(a)
and Fig. 12(b) is presented in Fig. 12(c).
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notYetp4

matchp4

START2

matchp1

trapAll trapSTART2

p4START2

(a) TPN N1

matchp4

[14,
invalidMatch

matchp1

trapAll

p1.p4tooLate

(b) TPN N2

notYetp4

matchp4

START2

[14,
invalidMatch

matchp1

trapAll trapSTART2

p4START2

p1.p4tooLate

(c) TPN N1 ⊕ N2

Fig. 12. TPNs’ fusion sample

Definition 5. Given a scenario S, we define the TPN of S, denoted TS , as the

fusion of the component TPNs constructed as explained above.

Example. Fig. 13 shows the resulting TPN for the V TS scenario initially pre-
sented at Fig. 5(e)8. For this scenario, the TPN results from the fusion of the
following components:

– Matching points: for points p4 (Fig. 12(a)) and p1.

– Unmatched event: for events START2 and LAUNCH.

– Forbidden events: for the forbidden event of START2 labeling the precedence
relation from point p1 to p4.

– Temporal restrictions: for time restriction of < 14 labeling the precedence re-
lation from point p1 to p4 (Fig. 12(b)).

– Scenario Matching.

START2

p4

<
1
4

LAUNCH

p1

(a) V TS

notYetp4 matchp4

START2

empty

loop

START2

[14,

invalid

Match

START2

validMatch[0,0]

[0,0]

notYetp1

matchp1

LAUNCH

LAUNCH

(b) TPN

Fig. 13. TPN for scenario: Job2 starts before 14.

8 In Fig. 13(b) transition names have been omitted in order to keep the figure small
and readable.
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5 Model Checking V TS

The problem of checking whether a system under analysis (SUA) modeled as
a TPN N satisfies a V TS scenario S is solved in the following way. The algo-
rithm presented in Sec. 4 translates S into a TPN (observer) TS which recognizes
matching traces. TS is composed with the SUA N to check whether a matching
execution exists, by using available model checking tools for TPNs. Specifically,
the model-checking problem consists in verifying whether there exists an execu-
tion that reaches a state where place validMatch of TS is marked, and remains
marked thereafter.

Property 6. Given N and S then: N‖TS is bounded iff N is bounded.

Property 7. Given N , S with ΣS ⊆ ΣN , and a trace σ over ΣN ∪ {λ} then:

σ is a trace of N‖TS iff σ is trace of N .

Therefore, we are sure that the composition of N with the TPN TS of the
scenario preserves the traces of the SUA.

Theorem 8 (Model checking V TS). Given N and S with ΣS ⊆ ΣN , then:

N ² S iff there exists a time-divergent execution sequence ρ of N‖TS such that,

∃k ∈ N. ∀k′ ≥ k. mρk′
(validMatch) = 1.

6 Case studies

To carry out our tests, we resort to a tool chain that allows us to link the
V TS scenarios with AADL models. Based on a property expressed as a V TS

conditional scenario, we use the tool presented in [11] to generate the related
V TS existential scenarios, that are then translated into TPNs. For this last step,
we have developed a tool that implements the translation algorithm described in
Sec. 4. On the other hand, the TPN representing the AADL models have been
constructed manually9. Finally we use the composition of both resulting TPNs
as input to the tool Tina, which generates the reachability graph preserving
LTL. To check whether the model satisfies the property, we encode Thm. 8
as an LTL model-checking problem and use the selt application of the Tina
tool-box. For the case studies we analyzed, because selt is unable to determine
whether an execution is time-divergent, we either relied on the strongly non-

Zeno [15] hypothesis of the SUA or performed semi-automatic verification. We
discuss in the conclusions an approach for automatizing the procedure derived
from Thm. 8.

6.1 AADL Mode Change Protocol

In AADL systems, components can operate in different modes, where each of
them is associated with a configuration of the component. Changes between
modes are triggered by events. A more detailed description can be found in [6].

9 In the future we plan to use OCARINA [10] or TOPCASED (through FIACRE [3])
to generate them automatically.
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Fig. 14. TPN of the model driver

Fig. 14 shows the TPN of a driver system (extracted from [6]). V TS can
be used to analyze and verify different kinds of properties. The mode-change
protocol should ensure that the maximum delay between a mode-change request
and the entry in the new mode is lower than a specified value. Fig. 15(a) shows a
conditional scenario for the verification of this property at the request of event a.
Fig. 15(b) expresses the correlation between the driver events with the environ-
ment ones. For example, part of this conditional scenario establishes that if a
change to mode SOM2 occurs, a corresponding input event event a triggering
the mode-change must have occurred. Fig. 15(c) presents a conditional scenario
where the antecedent defines an environment behavior by which a certain driver
property (the consequent) must be verified. It is important to notice that with
V TS we avoid modelling the environment as a (hand-coded) TPN composed
with the driver model as proposed at [6], by including its behavior in the sce-
nario as its antecedent. All these scenarios were verified to hold.

1

[5, 15]

eventTr_a hyperEnterSOM2

11[0, 10]

hyperLeavingSOM1

1

(a) Requirement 1

1

¬ eventTr_a, eventTr_b, eventTr_c
hyperEnterSOM3hyperEnterSOM2

1

1

event_a

1

event_c

1

1¬ eventTr_b

eventTr_a,

eventTr_b,

eventTr_c

(b) Requirement 2

event_cevent_a

1

[0
,
1
0
]

¬ event_b

eventTr_a

1

eventTr_c

1

1

[0
,
2
0
]hyperEnterSOM2

11[5, 15]

hyperEnterSOM3

11[15, 20]1

¬ event_b ¬ event_b

(c) Requirement 3

Fig. 15. V TS Conditional Scenarios for verifying Mode-Change example
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6.2 AADL Flows Specification

AADL flow specifications are used to describe externally observable sequences
of connections through component ports. Flow specifications can be annotated
with properties, such as latency, whose verification depend on the properties of
the involved components, ports, etc., such as execution times, periods, deadlines,
communication delays, etc. Quantitative analysis of flow properties is addressed
in [8] and implemented in OSATE. The proposed technique, is based on case-
by-case analysis according to the architecture of the sub-components. Here, we
propose using V TS scenarios for checking flow latency. We believe the advantages
of our approach are twofold. First, it is independent of the architecture of the
SUA. Second, it allows specifying non-linear flows, currently not available in
AADL. As a case study, we use the example provided in [8]. The TPN of the
3-task system with a periodic sensor and aperiodic tasks and actuator is shown
in Fig. 16(a). The V TS scenario for the flow specification is shown in Fig. 16(b).
This scenario asserts two properties at once: whenever the sensor produces an
output, then (1) the flow is realized, and (2) its latency is less than or equal to
48. Notice that our approach gives a tighter latency than the one in [8].
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Fig. 16. Flow latency example (taken from [8])

7 Conclusions and Future Works

This paper proposes an approach for checking complex properties on AADL spec-
ifications by relying on the visual language V TS for expressing them. To make
it practical, we devised a procedure for generating TPNs from V TS to enable its
connection with available IDEs for AADL, such as OSATE and TOPCASED,
which integrate TPN-based verification tools.

V TS scenarios proved to be adequate to intuitively express complex prop-
erties of AADL models. We also incorporate the idea of using them to describe
flows in a more general and independent way. Besides its concrete practical ap-
plication to AADL-centric system design, the translation presented in this work
provides an alternative way to verifying V TS requirements in addition to the
one based upon timed automata reachability analysis [1].
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Several future research directions are envisaged. First, we plan to generate
TOPCASED tool-independent intermediate modeling language FIACRE [3] in-
stead of TPN directly. This will allow model-checking V TS with a larger number
of tools integrated by the TOPCASED consortium. Second, we will explore more
deeply the connection between V TS and AADL flows. The purpose of this is to
investigate whether AADL flow specifications could be extended to cope with
non-linear flows. Last but not least, to fully automatize the approach resulting
from Thm. 8, a verification procedure which takes into account time-divergence
should be implemented for TPNs, adapting, for instance, the algorithms pro-
posed in [15] for timed Büchi automata.
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