SMashup Personal Learning Environments

Mohamed Amine Chatti:, Matthias Jarke:, Zhaohui Wang:, and Marcus Specht:

tInformatik 5 (Information Systems), RWTH Aachen University
{fchatti,jarke,wangg}@dbis.rwth-aachen.de,
2Open University of the Netherlands, Netherlands
marcus.specht@ou.nl

Abstract. Mashups have become the driving force behind the development of Personal Learning Environments
(PLE). Creating mashups in an ad hoc manner is, however, for end users with little or no programming
background not an easy task. In this paper, we leverage the possibility to use Semantic Mashups (SMashups) for
a scalable approach to creating mashups. We present the conceptual and technical details of PLEF-Ext as a
flexible framework for mashup-driven end-user development of PLEs. PLEF-Ext uses the Service Mapping
Description (SMD) approach to adding semantic annotations to RESTful Web services, and leverages the SMD
annotations to facilitate the automatic data mediation and user-friendly creation of learning mashups.

1 Introduction

Recently, the mashup concept has emerged as a core technology of the Web 2.0 and social software
movement. A mashup indicates a way to create new (Web) applications by combining existing data
and services from several sources. In the past few years, Web mashups have become a popular
approach towards creating a new generation of customizable Web applications. The popularity of
Web mashups has mainly been driven by the increasing popularity of lightweight RESTful Web
services, AJAX, and JSON that build core technologies in the Web 2.0 movement. Mashup
development has also become a very popular re- search topic in TEL. Many TEL researchers
recognized the value of mashups and have already adopted the mashup concept for Personal
Learning Environment (PLE) development. The idea behind mashup PLEs is to let learners create
their very own learning mashups that leverage components and content generated by learning
service providers and other learners around the Web. Yet, most of the proposed mashup PLE
approaches are based on widgets. In this paper, we go a step further toward supporting the mashup
of RESTful services and the use of semantic approaches to deal with service integration and
mediation within mashup PLEs. We propose a mashup PLE framework, called PLEF-Ext, that enables
a user-friendly creation, management, sharing, and reuse of learning mashups.

The paper proceeds as follows. In Section 2, we discuss how mashups can provide a powerful tool to
build PLEs. In Section 3, we provide an overview of some popular and representative mashup
development tools and frameworks, and summarize the main problems in mashup development
today, focusing specifically on the data mediation and integration challenges. In Section 4, we
highlight the benefits of using semantic mashups for a scalable and flexible mashup development.
Section 5 presents the Semantic Mapping Description (SMD) approach to adding semantic
annotations to RESTful Web services and shows the benefits of adopting a semantic mashup
approach based on SMD. We follow in Section 6 with the conceptual and technical details of PLEF-
Ext, a mashup PLE frame- work that can help learners share, find, integrate, reuse, and easily remix
learning services based on a semantic description of the same. And finally, we summarize our
findings in Section 7.

2 Mashup Personal Learning Environments

A Personal Learning Environment (PLE) is a learner's gate to knowledge. From a technical point of
view, a PLE can be viewed as a self-defined collection of services, tools, and devices that help learners
build their Personal Knowledge Networks (PKN), encompassing tacit knowledge nodes (i.e. people)
and explicit knowledge nodes (i.e. information). Thus, mechanisms that support learners in building
their PLEs become crucial. Mashups provide an interesting solution to developing PLEs. We
differentiate between two types of mashups:

e Mashups by aggregation simply assemble sets of information from different sources side
by side within a single interface. Mashups by aggregation do not require advanced
programming skills and are often a matter of cutting and pasting from one site to another.
Personalized start pages, which are individualized assemblages of feeds and widgets, fall into
this category.

e Mashups by integration create more complex applications that integrate different
application programming interfaces (APIs) in order to combine data from different sources.
Unlike mashups by aggregation, the development of mashups by integration needs
considerable programming expertise.

Most of the state-of-the-art mashup PLE solutions only focus on the first type of mashups, i.e.
mashups by aggregation. These solutions mainly support learners in juxtaposing content from
different sources (mainly feeds and widgets) into a single interface. Examples include PLEF?,
MUPPLE?, and - although not designed as educational technology - Personalized Start Pages such as
iGoogle? and Netvibes*. In the next section, we discuss the current status of mashup development
with a focus on the second type of mashups, i.e. mashups by integration.

3 Mashup Development

The Internet and its related technologies have created an interconnected world in which we can
easily exchange and reuse information in unforeseen, unexpected ways. Web services are emerging
as a major technology for deploying automated interactions between distributed and heterogeneous
applications [2]. In the Web 2.0, services based on the representational state transfer (REST)
paradigm [3] are increasingly popular for Web development. RESTful services often take the form of
RSS/Atom feeds and AJAX based lightweight services, which explains their greater success compared
to heavyweight services, which are based on the Web Services Description Language (WSDL) and
SOAP. The output formats of RESTful services, often in the form of Extensible Markup Language
(XML) or the more lightweight form JavaScript Object Notation (JSON), make RESTful services ideal
for AJAX-based mashups.

Developing mashups is however not an easy task. In general, mashup development is still very much
an ad hoc activity. Mashups are often generated manually using normal Web development
technologies such as HTML, CSS and JavaScript [4]. Creating a mashup in a manual manner is a very
time consuming task and impossible for the typical Web user [5]. A key difficulty in creating mashups
is data mediation between the services to be mashed up. Typically, in order to create a mashup, the
user would need to understand not only how to write code but also the APIs and descriptions of data
formats of all the services that need to be included in the mashup [6].

To lower the barrier of creating a Web mashup, leading companies are now actively developing
different mashup building tools and platforms, that require little to no programming knowledge from
the user. Yahoo! PipesS, Microsofts Popfly® and Google Mashup Editor” are some well-known
examples of mashup platforms that users have largely adopted. In general, these platforms provide a
higher level of abstraction and use visual programming techniques to facilitate the creation of
mashups. For instance, Yahoo! Pipes provides a visual editor to wire different graphical elements to
each other, based on different kinds of data processing operations such as regular expressions,

1 http://eiche.informatik.rwth-aachen.de:3333/PLEF/index.jsp
2 http://mupple.org

3 http://www.google.com/ig

4 http://www.netvibes.com/

5 http://pipes.yahoo.com/

6 http://www.popfly.com/

7 http://code.google.com/gme/

filters, sorting or looping instructions. Similarly, Microsoft Popfly provides a Web-based GUI, where
the user can connect different Web services to each other by dragging the blocks representing them
into the main display and drawing wires to connect those services. Google Mashup Editor (GME)
provides a higher level JavaScript API for manipulating data programmatically. A detailed description
and comparison of these and other mashup development tools is provided in [7].

Google Mashup Editor has not been designed to be used by end users without background in
programming. It is more suitable for amateur and professional mashup programmers. And, other
mashup editors, such as Yahoo! Pipes and Microsoft Popfly, that are intended for non-professional
mashup developers suffer from two main limitations.

First, most of the mashup tools are restricted to services that have standard types of outputs, such as
RSS or ATOM. These mashup tools are particularly capable at processing and creating new feeds. A
common feature is (1) pull data from external RSS and Atom feeds, (2) filter, sort, and combine many
feeds into one, (3) grab the output as RSS, JSON, KML, and other formats, and (4) include the result as
a widget in other Web sites.

Second, the usage scope of these mashups tools is often limited to services that are internal to the
company where the mashup tool was developed (Yahoo! Pipes, for example, adds Yahoo! Maps to any
pipe containing GeoData). And, in most cases these mashup tools are restricted to a set of few of
popular services such as Flickr, Digg, or popular map, traffic or weather services.

As a consequence, a plethora of existing (RESTful) services cannot be used by these mashup tools. If
one of the companies behind the aforementioned mashup tools, for some reason, would be willing to
add a new external service to their supported service pool, it would be necessary to implement a new
wrapper in order to accommodate the new service. This is, however, not a scalable solution due to
the rate at which new services are coming online [6]. Moreover, it would be extremely difficult to
work with a service whose inputs and outputs are in a different format. This makes it difficult to
address issues related to data interoperability, integration, and mediation [5].

The concept of Semantic Mashups (SMashups) [8] addresses these limitations by proposing the
semantic annotation of Web services as a solution to the service integration and mediation
challenges.

4 Semantic Mashups (SMashups)

The challenges of service interoperability, reuse, integration, and mediation have led to several
proposals for Semantic Web services. Several research projects have looked at semantics for
traditional (WSDL or SOAP) Web services to help address heterogeneity, reuse, and mediation
challenges, and the community took a step toward supporting semantics for Web services by
adopting Semantic Annotation for WSDL (SAWSDL)® as a W3C recommendation in 2007. The
SAWSDL specification enables semantic annotations for Web services using and building on the
existing extensibility framework of WSDL [2, 9]. In SAWSDL, se- mantic annotations describing
inputs, outputs, operation, interfaces, and faults, are embedded as properties in the WSDL [5].

Recently, driven primarily by the popularity of lightweight RESTful Web services, AJAX, and JSON
that build core technologies in the Web 2.0 movement, attention has shifted to using semantics to
annotate RESTful Services. For instance, [5, 6] proposed a framework called Semantic Annotation of
REST (SA-REST) to add semantics to RESTful services. SA-REST builds upon the authors' original
ideas in WSDL-S [10], which was the primary input of the W3C recommendation SAWSDL.

The key difference between SAWSDL and SA-REST is that unlike SAWSDL, where annotations are

8 http://www.w3.0rg/2002/ws/sawsdl/

added directly in the WSDL of the service, SA-REST annotations have to be embedded into the HTML
page that describes the service. Consequently, SA-REST uses microformat-based approaches such as
RDFa? and Gleaning Resource Descriptions from Dialects of Languages (GRDDL)° to add and capture
annotations via properties of HTML elements [6].

The major drawbacks of an SA-REST approach to add semantic annotations to RESTful services are
threefold:

First, semantic annotation with SA-REST requires the use of microformats. Microformats, however,
come in many different competing forms. And, even the process of adding semantics with
standardized microformats such as RDFa or GRDDL is not straightforward. For instance, to annotate
a HTML page with GRDDL the service provider needs (1) to embed the annotations in any, not
necessarily standardized, microformat, (2) add the URL of the GRDDL profile to the head element in
the HTML document, and (3) add to the head element a link tag that contains the URL of an XSLT that
translates the GRDDL profile into SA-REST specific RDF triples [5]. The complexity of these
microformats makes it hard for SA-REST to be adopted by service providers for the semantic
annotation of their RESTful services.

Second, the annotation of a concept (e.g. input, output, operation) in SA-REST is a way to tie together
the concept to a class that exists in an ontology [5]. SA-REST, thus, presumes an agreement among all
service providers on a common ontology. This is however not realistic, since it would be impossible
to get all service providers to agree on a single ontology to describe their concepts.

Third, besides linking a concept to an ontology class, data mediation in SA-REST requires the
specification of a lifting and lowering schemas, that is mapping of the data structure that represents
the input and output of a given service to the data structure of the ontology. The use of lifting and
lowering schemas means, on the one hand, extra complicated work for the service provider to work
with XSLTs or XQueries to specify and keep up-to-date its lifting and lowering schemas, and, on the
other hand, higher server workload and additional server-side code in order to deal with parsing and
applying the lifting and lowering mappings between the services to be mashed up and the ontology.

Recently, Kris Zyp [11] has proposed a more lightweight and standards-based approach to adding
semantics to RESTful services, called Semantic Mapping Description (SMD).

5 Service Mapping Description (SMD)

In this section, we discuss the Service Mapping Description (SMD) approach to adding semantic
annotations to RESTful Web services. SMD is a flexible and simple JSON representation describing
Web services. A wide array of web services can be described with SMD including RESTful services
and JSON-RPC services. SMD uses JSON Schema to provide a definition for a variety of available
services, and document how to call the services, what parameters are expected, and what to expect in
return [11]. Figure 1 shows the Yahoo! search service semantically annotated with SMD.

Similar to SA-REST, SMD facilitates data mediation between the services to be mashed up, since it
provides a thorough description of how a service can be invoked, the type of data that should be
passed to the service and what will be returned from it. The main advantage of SMD, as compared to
SA-REST, is that it is based on JSON. JSON is a lightweight data interchange format whose simplicity
has resulted in widespread use among Web developers. JSON offers two major advantages over XML.
First, JSON-encoded data is less verbose than the equivalent data in XML. XML uses duplicate start
and end tags to wrap data values. A JSON object, by contrast, is simply a series of comma-separated
name:value pairs wrapped in curly braces. This yields better performance of the JSON-based Web

9 http://www.w3.org/TR/xhtml-rdfa-primer/
10 http://www.w3.org/TR/grddl/

applications because JSON data downloads more quickly than XML data.

JSON's second benefit is that it's easy to parse using any programming language, and its structures
map more directly onto the data structures used in modern programming languages. Because it is
essentially a string representation of a JavaScript object (hence the name), browsers can parse JSON
data simply by calling the JavaScript "eval" function. Any field of the JSON object can then be directly
accessed by name.

"SMDVersion": "2.0", [f version level of the SMD being used
"transport™: "JSONP", [/ transport mechanism; can also be “POST", "GET", “REST", or “TCP/IP"
"envelope": "URL", // how a service message string is created from the provided parameters

[/ can also be “PATH®, “JSON", “"JSON-RPC-1.0% "or “ISON-RPC-2.0"
"target": "http://yahoo.com”,
"additionalParameters”: true,
"parameters": |
{"name"; "output", "optional": false, "default": "json"},

1]
"callbackParamName": "callback"”,

"sorviess™: {
"Yahoo! Web Search": {
e *: "http://search.yahooapis.com/WebSearchService/V1/webSearch”, [/ UAL for method call requests
!) [/ service inputs: parameters to be
{"name": "guery”, "type": "string”, "optional™: false}, /[specified for the service calls
!f
8 s § [/ Service outputs (expected type of value returned from the method call)

"type": "object”,
"properties”: {
"ResultSet"”: {
"type": "object”,
"properties": {
"Result": {
"type": "array”,
"items™; |
“type": "object",
“properties™: |
“Title": {"type": "string"},
“Summary”: {"type"”: "string" },
"Url": {"type": "string™},
1

Fig. 1. Semantic Annotation of RESTful Web Services with SMD

JSON is also the basis of a very powerful technique for building client-based (in-browser) mashups,
namely JSON with Padding (JSONP), which was created as a workaround to the Same-Origin Policy
(SOP) problem. In Web 2.0, Asynchronous JavaScript and XML (AJAX) is becoming the driving force
behind mashups. In AJAX, data is retrieved using the XMLHttpRequest function, which is an API that
lets client-side JavaScript make HTTP connections to a server. The SOP, however, prevents the AJAX
code from making an XMLHttpRequest call to a URL that is not on the same domain as the current
page, because of the cross-domain attacks that could result.

The normal way around SOP is to have the Web server behave as a proxy. The Web page then
requests data from the Web server it originates from, and the Web server handles making the remote
call to the third-party server and returning the results to the Web page. Although widely used, this
technique isn't scalable.

Another way to overcome the SOP limitation is to insert a dynamic script element in the Web page,

one whose source is pointing to the service URL in the other domain and gets the data in the script
itself. It works because the same-origin policy doesn't prevent the insertion of dynamic script

10

elements into the Web page and treats the scripts as if they were loaded from the domain that
provided the Web page. This is actually how JSONP works: load the JSON response within a <script>
tag. In order to do this, the name of a callback function is specified as an input argument of the call
itself. The remote server will then wrap the JSON response in a call to that function. When the
browser finishes downloading the new contents of the <script> tag, the callback function executes.
This approach requires the remote Web service to behave as a JSONP service; that is a Web service
with the additional capability of accepting a callback function name as a request parameter and
supporting the wrapping of the returned JSON data in a user-specified function call [1]. Popular
service providers such as Google and Yahoo! already support this technique.

The simplicity of JSON as a lightweight data interchange format and the power of JSONP as a flexible
technique for client-based (in-browser) mashups, make SMD much better suited to SMashups than
SA-REST.

6 PLEF-Ext: SMashup PLEs with SMD

PLEF-Ext provides a flexible framework that can help learners easily extend their PLEs with new
learning services. Driven by the SMashup concept, PLEF-Ext supports learners in sharing, finding,
integrating, managing, reusing, and remixing semantically annotated RESTful learning services with
minimum effort. PLEF-Ext uses SMD for the semantic description of the services. An abstract
architecture of PLEF-Ext is provided in Figure 2. PLEF-Ext encompasses five main modules:

Fig. 2. PLEF-Ext Abstract Architecture

e The Service Discovery Module (iSearch) provides a tag-based search mechanism that
enables learners to locate learning services remixed and shared by peers within PLEF-Ext.

11

e The Service Integration Module (iPull) makes it possible for the learner to easily plug in a
new SMD-annotated external learning service into her PLE, by just specifying the URLs of the
service and its SMD.

e The Service Adaptation Module (iAdapt) enables the learner to adapt a service to her needs,
by just specifying the parameters and return values of the service.

e The Service Aggregation Module (iMix) lets learners compose a mashup query in a drag-
and-drop fashion.

e The Service Management Module (MyStuff) supports the learner in managing (i.e. add,
remove, edit, tag) her learning services within PLEF-Ext.

PLEF-Ext is built upon a client-server architecture. However, in contrast to traditional mashup
environments, where the majority of computation-intensive processing will occur on the server
(mashups are created using server-side proxies), the client in PLEF-Ext is much fatter. That is, the
mashups will be built and run on the client-side, using the computing power of the client device.
Coupled with JSONP services that expose their data in JSON and wrap it in function call, the client
(browser) can make requests for data from the different services and use the fetched data to build in-
browser mashups. In order to achieve this, the client in PLEF-Ext is assisted with an extensive user
interface library of widgets and panels provided by SmartGWT!! and powerful GWT?2 libraries to
perform a wide range of actions, such as parsing of the fetched JSON data and asynchronous server
communication through HTTP or remote procedure calls (RPCs).

‘Service
Provider 1

HttpReguest

&

T ———

Mashup Vi ewer

Hﬂpﬁetu_q

JSONP Response p_ﬂ

Service Selector

" RESTRI

‘Service
Provider 2

E
i ETI

_.\1

'I'

I “piLHImpRequast [GWT APC ar GWT Requestbuildert
14 LY 1 [
- [Services for mashup | I SMD1 4 SMD2

Hﬂpﬁequest

Y

Fig. 3. SMashup Process in iMix

11 http://code.google.com/p/smartgwt/
12 http://code.google.com/webtoolkit/

12

In the following, we discuss in more details the functionalities of the Smashup module iMix. Figure 3
demonstrates the SMashup process in iMix. We suppose that the services to be mashed up are [SONP
services. Their SMDs, however, are available on remote servers that return pure JSON data without
wrapping it in a function call (since SMD is a relatively new concept, it is not supported yet by third-
party service providers. For this work we are using SMDs that we created for popular JSONP services
such as Google data APIs, Yahoo! search, geonames, delicious, and flickr). In this case, in order to
work around the SOP security problem, we need to create a proxy on our local server. To note that if
third-party service providers would in the future adopt SMD and would be able to return the SMD
data via JSONP, the proxy server can be omitted and interaction with remote resources will be done
from the client-side, solely via JSONP. This would then make the PLEF-Ext architecture much simpler.
In order to mashup two RESTful Web services with iMix, a learner first needs to select the services to
be mashed up. The client then makes HTTP calls (XMLHttpRequests) to the local server (proxy
server) and have it go fetch the SMD data from the remote servers (step 1 in Figure 3). This can be
achieved in GWT either with GWT RPC or direct HTTP using GWT RequestBuilder. The local server
downloads the JSON-encoded SMDs from the remote servers (step 2) and passes it back to the client
(step 3). When the client retrieves the SMDs from the local server, a JSON parser (GWT JSONParser)
is applied to extract the descriptions of the services from their SMDs (i.e. service inputs, outputs, and
request type) and display the descriptions to the learner in the SMashup Editor. The SMashup Editor
is the key component of iMix. As mentioned earlier, a key diffculty in creating mashups is data
mediation between the services to be mashed up. The main role of the SMashup Editor is to use
semantic annotations to enable automatic data mediation without any programming knowledge from
the learner side. The learner would only need to perform drag-and-drop actions using the Smashup
Editor to define the smashup steps: (1) construct the query URL at which to invoke service 1, (2)
construct the query URL at which to invoke service 2 and specify the mashup parameters (e.g. the
outputs of service 1 that should be inputs for service 2), and (3) specify the outputs of service 2 (i.e.
mashup result). Once the smashup steps have been defined, the learner can start the execution of the
real mashup. At this point, the client invokes service 1 via JSONP to gather the data that are needed
for the mashup (step 4 and 5) and invokes service 2 via JSONP to get the final result of the mashup
(step 6 and 7), which will be shown to the learner in the mashup viewer (step 8).

7 Conclusions

In this paper, we discussed the challenge of PLE extensibility and how mashups can provide a
powerful tool to achieve this challenge. We outlined the limitations in current mashup development
platforms and tools, and discussed the benefits of Semantic Mashups (SMashups) as a flexible and
scalable approach to creating mashups. We also discussed the Service Mapping Description (SMD)
approach to adding semantic annotations to RESTful Web services. We finally presented the
conceptual and technical details of PLEF-Ext as a mashup PLE framework that leverages SMD-based
semantic annotations of RESTful Web services for user-friendly learning mashups. All of these efforts
have been made available on the PLEF-Ext project homepage!3. We welcome feedback from
colleagues and users on both their experiences with the system and new ways they would suggest to
leverage semantic mashup techniques to help learners build and extend their PLEs.

References

1. 0 Ozses, S., Ergul, S.: Cross-domain communications with jsonp (2009)

2. Benslimane, D., Dustdar, S., Sheth, A.P.: Services mashups: The new generation of web applications. IEEE
Internet Computing 12(5) (2008) 13-15

3. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures, Chapter 5:
Representational State Transfer (REST). PhD thesis, University of California, Irvine (2000)

4. Taivalsaari, A., Mikkonen, T.: Mashups and modularity: Towards secure and reusable web applications. In:
23rd IEEE/ACM International Conference on Automated Software Engineering - Workshop Proceedings (ASE

13 http://eiche.informatik.rwth-aachen.de:3333 /PLEF-Ext/

13

Workshops 2008), 15-16 September 2008, L'Aquila, Italy, IEEE (2008) 25-33
5. Lathem,], Gomadam, K., Sheth, A.P.: Sa-rest and (s)mashups : Adding semantics to restful services. In:

Proceedings of the First IEEE International Conference on Semantic Computing (ICSC 2007), September 17-19,
2007, Irvine, California, USA. (2007) 469-476

6. Sheth, A.P.,, Gomadam, K., Lathem,]J.: Sa-rest: Semantically interoperable and easier-to-use services and
mashups. IEEE Internet Computing 11(6) (2007) 91-94

7. Taivalsaari, A.: Mashware: The future of web applications. Technical report, Sun Microsystems Laboratories
(2009)

8. Sheth, A.P., Verma, K, Gomadam, K.: Semantics to energize the full services spectrum. Commun. ACM 49(7)
(2006) 55-61

9.Verma, K., Sheth, A.P.: Semantically annotating a web service. IEEE Internet Computing 11(2) (2007) 83-85

10. R.AKkkiraju,]J.Farrell,].Miller, M.Nagarajan, M.Schmidt, A.Sheth, Verma, K.: Web service semantics - wsdl-s
(2005)

11. Zyp, K.: Service mapping description proposal (2008)

14

