
 47

Moodle Wave: Reinventing the VLE using Widget
technologies

Scott Wilson , Paul Sharples, Dai Griffiths and Kris Popat,
 University of Bolton, UK

{s.wilson, p.sharples,d.griffiths,k.popat}@bolton.ac.uk

Abstract. Can widget technologies revolutionize the VLE and challenge the
dominant design of elearning? The authors describe an experimental
implementation of the Moodle VLE using the W3C Widget specification and
Google Wave Gadget API to replace existing core features. This raises four
challenges; (1) By replacing most of the functionality of the VLE with simple
reusable applications, the core functionality and design of the VLE is
challenged; (2) by allowing these applications to be extracted and used in
personal learning environments, the hegemony of the institutional system is
challenged; (3) by conducting learning activities in small discrete applications,
the model of student tracking is challenged; (4) synchronous, live updating
applications challenges the model of user behaviour for the VLE.

Keywords: Widgets, Personal Learning Environments, Virtual Learning
Environments, Interoperability

1 Introduction

In the paper “Personal Learning Environments: Challenging the dominant design
of educational systems”, Wilson et al. [1] describe the VLE (Virtual Learning
Environment; also called a Learning Management System) as having become a
dominant design for educational systems; this is a situation which limits choices for
users and institutions, while also presenting a very challenging environment for an
alternative design to gain any traction.

In this paper we describe an approach to challenging the dominant design through
creatively subverting the VLE using highly interactive applications (Widgets) that can
be delivered within the VLE but also embedded by the users into other platforms,
including individually-owned tools and websites. By extending the capabilities of the
VLE in this manner, we can create a new conversation about the VLE that moves us
away from the dominant design, but stay within the comfort zone of lecturers,
managers and students who have become used to the model. Also, rather than attempt
to “create” a Personal Learning Environment (PLE) that is provided to learners, we
instead open up the VLE to be remixed by users to construct their own PLE using
technologies of their choosing.

The approach we took was to extend the Moodle VLE [2] using Wookie Widget
Server (both open source), extended to support the Google Wave Gadgets API[3] and
to provide embed code to let users take Widgets elsewhere. The experimental system

 48

was made publicly available for testing, and existing Moodle users were encouraged
to try it.

2 Architecture & Design

2.1 Design Objectives

The objective for the experiment was to create an instance of Moodle that made
use of the emerging W3C and Google Wave technologies in a way that revolutionizes
the capabilities and use of the VLE platform, while at the same time requiring little or
no modification of the VLE itself. In particular, we wished to deliver a very new kind
of user experience based on synchronous, live-updating collaborative applications,
and to enable these applications to be easily extracted by users so they could use them
in personal platforms, such as Netvibes personal pages.

To realize this design we built on previous work [4, 5] and used Wookie, an open-
source Widget engine, to render the Widgets and place them inside Moodle using
iFrames (Figure 1). As well as providing a clear separation of concerns – allowing
Widgets to be rendered for other platforms – this also provides a measure of security,
as provided that Wookie and Moodle are served from different domains, any Widgets
are unable to access information from within Moodle by accessing the data on the
current page.

 49

Figure 1: Relationship between Moodle and Wookie.

2.2 Standards

The key interoperability standards used were the W3C Widgets family of standards,
and the Google Wave Gadget API. The W3C Widgets Packaging and
Configuration specification [6] defines how Widgets are packaged, and their
metadata. W3C Widgets API and Events [7] defines an API for per-instance
persistence of preferences for Widgets, and access to metadata attributes. The Google
Wave Gadget API [3] defines an API for families of Widget instances that share a
common context, with methods to support shared state information and participants.1

Used together, this package of standards enables authors to create live-updating,
collaborative applications that can be packaged and deployed in a standard fashion,
with no dependency on a particular server platform or container application.

2.3 Components

The experiment involved the use of a standard Moodle distribution (version 1.9). The
customization of this system involved two major components: the Wookie Widget
Server and the Wookie Moodle Block.

The Wookie Widget Server is the component responsible for generating instances
of Widgets, providing Widget APIs, and managing widget state persistence. For this
experiment, the most significant implementation work was updating the Wookie
server to also support the Google Wave Gadget API.

1 The Google Wave platform consists of several different protocols and APIs; the Wave Gadget

API is only a small subset of this platform. We did not implement the Wave Federation
Protocol or Robots API. This means that, for example, Moodle does not become part of a
Wave federation, and courses do not become wavelets; only the mode of interaction with
widgets is made available.

 50

The Wookie Moodle Block is a small PHP plugin for the Moodle VLE that uses
the “blocks” extension mechanism offered by Moodle that allows course
administrators to add content to course sidebars. The implementation did not make
any changes to the core Moodle VLE at all, only using the Block extension system.

While Moodle is responsible for its usual core functions of managing courses and
users, the Wookie Moodle Block is responsible for communicating with Wookie to
request instances of Widgets, and then delegate rendering of applications to Widgets
rendered by Wookie Widget Server. Running instances of Widgets then communicate
with the Wookie Widget Server’s AJAX API and receive push events using its Comet
service. This architecture is depicted in Figure 2.

Figure 2: Detailed architecture

3 Implementation

3.1 Setup and configuration

We installed Moodle 1.9, Wookie Server, Tomcat, and MySQL on an Ubuntu server;
this server was not dedicated to the experiment, but was instead a shared development
server running a number of applications and websites. However, it performed very
well under test.

3.2 Implementing the Wave Gadget API

It was relatively simple to map the Wave Gadget API onto our prior
implementation of Widget shared state persistence (see [4,5]). We also used the

 51

Moodle Block identifier as a way to generate a contextual identifier for managing
shared states – the instance of the block within the course provides a common context
for a shared state.

We were also able to create participants by passing user profile information to
Wookie when instantiating Widgets. However, Moodle v1.9 does not have an events
system we could use to remove participants, which meant that our test courses had
large numbers of users, many of which were largely inactive. This was itself quite
useful for testing purposes.

3.3 Widgets

For our prototype we converted the demonstration Google Wave Gadgets
developed by Google2 and installed them in Wookie. This involved minor changes to
the way the applications were packaged, to make them conform to the W3C Widgets
specification. Otherwise no major changes were required. The Widgets chosen were a
Sudoku game and “fridge magnet poetry”; some other ‘test’ widgets were converted,
but only to check the API implementation was working correctly. The Google
Widgets, while not perhaps profound examples, are nevertheless useful in
demonstrating the features of live-updating collaborative Widget applications.

In addition to the Google Widgets, we also developed two of our own Widgets
using the Wave Gadget API. One of these was a chat/wall Widget called Natter
(updated from a previous version that used our own shared state APIs), a voting
Widget called You Decide, and a word-making game called WaveWord. Developing
these Widgets was relatively straightforward.

The following screenshot (Figure 3) shows all of these Widgets in action within a
single Moodle course.

2 See http://code.google.com/apis/wave/samples/index.html

 52

Figure 3: Screenshot showing live system

3.4 Embedding

As well as using the Widgets within the VLE, we also made it possible to take the
Widgets, including all their contextual information, and embed them in other systems.
Each Widget in the VLE also has a small “embed” icon underneath. Clicking this icon
reveals a HTML code snippet that the user can place on another site (Figure 4).

 53

Figure 4 - Example of embed code

3.5 Live testing

Once the experimental system was in place, we invited participants to register and
try out the experience. On June 12th, 2009, we announced the system in a blog post[8],
on Twitter, in the Moodle developer forum, and on the Google Wave developer
forum. Within a few hours we had acquired quite a few users. Initial issues with
email-based registration meant giving out a default account for guests, and so we
don’t have exact figures on the number of users. However, we estimate that around
200 users tested the system in the initial 7 days (12th-19th June); these comprised 124
named accounts, and at least 90 distinct IP addresses using the “moodler” public test
user.

We were pleased to note that despite the system being open for public test, there
were no performance, security or stability issues with the system, which ran with only
a single restart, which was to update the Wookie code to a newer release. Users noted
no major problems; one user reported an AJAX error, probably caused by a dropped
connection, for one of the Widgets on one occasion.

Overall the performance results were very promising, as the prototype itself was
running on a shared development server (running several other applications), with no
special optimization in place (e.g. level two cacheing was not enabled for the
database, and there was no special tweaking of our webserver for better Comet

 54

performance). This gives us confidence that a large-scale demonstrator could be
attempted to explore the performance boundaries of the system.

The Natter chat Widget also provided a means for us to capture comments from
testers. The reaction was very positive; below is a small selection of comments
received from testers.

- Very cool. I've got two browers open and see my poetry changes live!!
- This is fun!
- sat here in schiphol - if they get this wave tech right it will be incredible
- I like this effort
- thanks for writing poetry with me
- It is very interesting I am gonna read this weekend some articles I took from

Waveprotocol.org Just to understand the way it works
- I think wave is phenomenal! Can't wait ...
- This is a very nice demonstration of Google Wave and integrated into Moodle.

Well done guys!
- great stuff!
- This looks like it could be useful - need to get our VLE team on it
- this looks great much less static that the usual moodle stuff
- can't wait to see more detailed documentation for how this is done - thanks for

putting this demo up,
- good work … Moodleusers luv ya baby!!!
- how cool!
- very inspiring!
- I love it...can anybody help me to do this? add wave in moodle?
- This looks good!
- is there a whiteboard app?
- do you know where I can download the source?
- Writing from the natter widget, embedded in my blog. Nice the way the

highlights push it off the page. Now, let's see it appear over on the Moodle
site...ah, here it is ☺

4 Analysis

What does it mean to have a “Moodle Wave”? While the technical work on
integration did not bring about any particular surprises, the end result is a very
different user experience from the conventional Moodle VLE.

4.1 Replacing VLE functionality

It was expected by the team that the use of Widgets, particularly those using the Wave
Gadget API to provide live collaboration, would be a satisfactory replacement for the
built-in tools of the VLE, such as chats, forums, and quizzes. This was certainly the
case; and we believe that almost the entire toolset of a VLE can be readily replaced

 55

with this type of Widget. Martin Dougiamas, the original developer of Moodle, made
the following comment after the Google Wave video was released by Google[9]:

“Moodle (and similar systems) are (like it or not!) more about the *management*

of learning at a higher level than this, a system of control and authentication that
supports institutional policy and practice.

However, what I do think will happen is that many of the activities in Moodle will
be replaced by services like these” [10]

This has significant implications for the VLE. If the majority of the features of the

platform are readily outsourced to – possibly superior – external tools, then this
requires a rethink of what defines a VLE.

For example, a version of Moodle that was developed with the assumption that it
would be connected up with a Widget server would presumably not have large
numbers of pre-developed PHP modules, but instead focus on areas outside the
concern of individual Widgets, such as course and user management, integration and
reporting to institutional systems such as the student record system, and perhaps
integrating tools for structuring activities around Widgets, such as LAMS[11].

Would this more limited product profile make it easier for developers to create
new, perhaps more innovative VLE-type products, at a more affordable price? Or
would it instead make a case for bypassing standalone VLEs and instead integrate
Widgets into more generic systems such as Sharepoint?

A counter-argument could be made that the existence of “cut and paste”
embedding of widgets via JavaScript into the VLE is already possible, and has not
had such an effect. However, there are considerable differences in the affordances of
this approach versus the one we describe here. However a discussion of this point is
beyond the scope of this paper.

4.2 New modes of interaction

Rather than just being a like-for-like replacement, the Widgets update in real-time
without any page refresh, and this affects user behavior. Rather than clicking links to
launch tools or to view content, the Widgets encourage more of a “monitoring” mode
of operation, with users navigating to a course page, then leaving it open in the
background, occasionally bringing it into focus to see if any new conversations were
happening in the chat widget, or the voting results had changed.

This was visible in the activity reports for Moodle, which is conventionally used to
see student activity. Rather than the usual histogram of page views seen in live
courses, this showed a sparse distribution of visits to course pages. This may be an
artifact of the type of informal testing we conducted, and so we identify this a
hypothesis for testing in future pilots using the system.

 56

4.3 Micro-tracking

Another consequence of Widgets is that far less tracking information is available at a
micro-level, as interactions with Widgets are not made available to the VLE. This
implies that a new model for tracking will need to be developed for such systems; this
may be a useful opportunity to reconsider tracking in more sophisticated terms than
page views and hits. For example, it may be useful to separate out measures of
attention, using something like APML[12], and measures of user effort, using
something like User Labor Markup Language (ULML[13]).

4.4 Embedding – the fuzzy boundary between institutional and personal systems

While the ability to embed Widgets from the VLE into other systems was not a
significant aspect of this experiment, it was noted that several people had embedded
Widgets from the example course into blog posts. One of the issues with embedding
is that what for some people may be a “private” space could very easily spread into
the public domain if participants embed Widgets from a course into public sites. The
current architecture offers no practical means of enforcing restrictions on embedding,
and so this would require policies and user education. A related issue is that it is hard
to track where Widgets are being embedded; this could be addressed by placing
tracking information into generated embed codes, which may also offer a solution to
unauthorized public sharing. Striking an effective balance between enabling
individuals to use PLEs, and supporting the rights of others will be one of the key
challenges to be addressed.

5 Conclusions and Future Work

Our experiment demonstrates that it is feasible to embed live-updating
collaborative applications within a VLE that can also be easily shared and embedded
in personal technologies, and that this can be done using open standards and
specifications. The Wookie technology supporting this experiment has been shown to
be robust enough to support open testing, and is ready for a larger-scale demonstrator.

However the challenges raised by this work are significant and will need to be
addressed. In particular the tracking and monitoring functionality in VLEs – often
posited as one of the key features of such systems – may be rendered partially or
completely ineffective by Widgets. This should be examined in future studies, as if it
is shown to be the case, existing tracking systems will need to be redesigned to cope.

We believe the approach taken in this work is going to be compelling for both
students and teachers alike, and that this will challenge assumptions of what a “VLE”
is and its relationship with other technologies. Eventually this could break down the
dominant design of VLEs and open up institutions to more innovation in education
technology.

 57

References

Acknowledgments. The work on this publication has been sponsored by the
TENCompetence Integrated Project that is funded by the European Commission's 6th
Framework Programme, priority IST/Technology Enhanced Learning. Contract
027087

[1] Wilson, S., Liber, O., Johnson, M., Beauvoir, P., Sharples, P., and Milligan, C.
(2007). Personal Learning Environments: Challenging the Dominant Design of
Educational Systems. Journal of e-Learning and Knowledge Society 3(2), 27-38.

[2] Moodle.org: open source community-based tools for learning.
http://www.moodle.org

[3] Wave Gadgets API Reference. Retrieved from
http://code.google.com/apis/wave/extensions/gadgets/reference.html on 20th June,
2009.

[4] Wilson, S., Sharples, P., and Griffiths, D. Extending IMS Learning Design
services using Widgets: Initial findings and proposed architecture. in Current
Research on IMS Learning Design and Lifelong Competence Development
Infrastructures 2007. Barcelona: Universitat Pompeu Fabra, Grup de Tecnologies
Interactives.

[5] Wilson, S., Sharples, P., and Griffiths, D. Distributing education services to
personal and institutional systems using Widgets. Workshop on Mash-Up Personal
Learning Environments (MUPPLE’08) at the 3rd European Conference on
Technology Enhanced Learning (EC-TEL08). 2008. Maastricht.

[6] Widgets 1.0: Packaging and Configuration. W3C Working Draft, 28 May 2009.
Retrieved from http://www.w3.org/TR/widgets/ on 20th June, 2009

[7] Widgets 1.0: API and Events. W3C Working Draft, 23 April 2009. Retrieved from
http://www.w3.org/TR/widgets-apis/ on 20th June, 2009.

[8] http://www.cetis.ac.uk/members/scott/blogview?entry=20090612190435

[9] Google Wave Developer Preview (video), Google I/O Conference 2009. Retrieved
from http://wave.google.com/ on 20th June, 2009.

[10] Dougiamas, M. (2009). Comment on Moodle Developer Forum. Retrieved from:
http://moodle.org/mod/forum/discuss.php?d=124670&parent=548854 on 20th June
2009.

[11] Learning Activity Management System; LAMS Foundation, retrieved from
http://www.lamsfoundation.org/ on 20th June, 2009.

 58

[12] Attention Profiling Markup Language. Retrieved from http://www.apml.org/ on
20th June, 2009.

[13] Arikan, B., and Erdogan, E. (2008). User Labor: A framework for sustaining user
labor across the web. Retrieved from http://userlabor.org on 20th June, 2009.

