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Abstract. The paper presents a formal specification of the software design 

models used in COMDES-II – a component-based framework for distributed 

control systems, featuring open architecture and predictable operation under 

hard real-time constraints. In this framework, an application is modelled as a 

network of distributed embedded actors that communicate transparently by 

exchanging labeled messages (signals), independent of their allocation on 

network nodes. Actors are configured from prefabricated executable 

components such as modal function blocks controlled by a master state 

machine, whereby actor structure is specified by a data flow model (function 

block network). Accordingly, actor behaviour is specified by composite 

functions representing signal transformations - from input to output signals, and 

system behaviour - by actor-level composite functions representing the overall 

sequence of computation – from system input to system output signals. Input 

and output signals are exchanged with the controlled plant at precisely specified 

time instants in accordance with the concept of Distributed Timed Multitasking, 

resulting in the elimination of transaction I/O jitter. System operation is 

ultimately described by a clocked synchronous model of computation featuring 

communicating actors, atomic (zero-time) execution of input and output actions 

and constant, non-zero execution time of system reactions. 

Keywords: distributed control systems, component-based design of embedded 

software, domain-specific frameworks, correct-by-construction systems 

1 Introduction 

Nowadays, embedded software development is still dominated by conventional design 

methods and manual coding techniques. However, these are not able to cope with 

continuously growing demands for high quality of service, reduced development and 

operational costs, reduced time to market, as well as ever growing demands for 

software safety and dependability. In particular, software safety is severely affected by 

design errors that are typical for informal design methods, as well as implementation 

errors that are introduced during the process of manual coding.  
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This situation has stimulated the development of new software design methods 

based on formal design models (frameworks) specifying system structure and 

behaviour, which can be verified and validated before the generation of the program 

code [1, 2].  Furthermore, model-driven development can be combined with 

component-based design, whereby design models are implemented by means of 

reusable and reconfigurable components. Thus, embedded applications can be 

configured  using repositories of prefabricated and validated components (rather than 

programmed), whereby the configuration specification is stored in data structures 

containing relevant information such as component parameters, input/output 

connections, execution sequences, etc. Hence, it is possible to reconfigure applications 

by updating data structures rather than reprogramming and reloading the entire 

application.  

The main problem that has to be addressed with this method is to develop a 

comprehensive, yet intuitive and open framework for embedded systems. There are a 

considerable number of frameworks developed in the traditional Software Engineering 

domain that employ components with operational interfaces as well as various types of 

port-based objects, e.g. actor frameworks [4-8]. However, it can be argued that the 

architecture of the framework (i.e. models used to specify component functionality, 

interfacing and interaction) should be derived from areas such as Control Engineering 

and System Science, taking into account that modern embedded systems are 

predominantly control and monitoring systems. This approach has been used for some 

time with industrial control systems, whose software is built from component objects 

(function blocks) that implement standard application functions and interact by 

exchanging signals. Accordingly, function blocks are „softwired‟ into function block 

networks that are mapped onto real-time control tasks, e.g. standards IEC 61131-3 [10] 

and IEC 61499 [11].  

Unfortunately, this is a relatively low-level approach, which is inadequate for 

modern embedded applications. These vary from simple controllers to highly complex, 

time-critical and distributed systems featuring autonomous subsystems with 

concurrently running activities (tasks) that have to interact with one another within 

various types of distributed transactions. The above standards do not provide modeling 

techniques and component definitions at this level and do not define concurrency, 

whereby the mapping of function block networks on real-time tasks, as well as task 

scheduling and interaction are considered implementation details that are not a part of 

the standard.  

In order to overcome the above problems, the Control Engineering models must be 

augmented with concepts and techniques developed in the Computer Science domain 

(concurrency, scheduling, communication, state machines, etc.), as advocated by 

leading experts in the area of Embedded Software Design, e.g. [2], [3]. The resulting 

framework must support compositionality and scalability through a well-defined 

hierarchy of reusable and reconfigurable components, including both actors and 

function blocks. On the other hand, it has to adequately specify system behaviour for a 

broad range of sequential, continuous and hybrid control applications.  

These guidelines have been instrumental in developing the framework COMDES-II 

[13]. This is a domain-specific framework for time-critical distributed control 

applications, featuring a hierarchical component model as well as transparent signal-

based communication at all levels of specification. In COMDES-II, an embedded 
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application is composed from actors, which are configured from prefabricated function 

blocks. This is an intuitive and simple model that is easy to use and understand by 

application experts, i.e. control engineers.  

An informal description of the above component models is given elsewhere [13]. 

This paper presents a formal specification of COMDES-II design models focusing on 

two interrelated aspects, i.e. system structure and behaviour. It is organized as follows:  

Section 2 presents a top-down specification of system structure in terms of data flow 

models describing actors and actor interactions, as well the internal structure of actors, 

which are composed of prefabricated function blocks. Section 3 presents a bottom-up 

specification of system behaviour starting with function block behaviour, followed by 

actor behaviour and finally - system behaviour. These are defined as composite 

functions specifying signal transformations - from input to output signals - of function 

blocks, actors and the system itself, respectively. Section 4 presents related research. 

The concluding section summarizes the main features of the framework and their 

implications for a software development process aimed at designing systems that are 

correct by construction. 

2 Specification of System Structure 

2.1 COMDES-II Design Models -  an Introduction  

In COMDES-II, an embedded system is conceived as a composition of active objects 

(actors) that communicate via labelled state messages (signals) encapsulating process 

variables, such as speed, pressure, temperature, etc. Communication is transparent, i.e. 

independent of the allocation of actors on network nodes. Accordingly, the system can 

be modelled by an actor network specifying constituent actors and the signals 

exchanged between them (see e.g. Fig. 1).  
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Fig. 1. COMDES-II actor network – an example: the DC Motor Control System 

An actor is modelled as an integrated circuit consisting of a signal-processing block, 

which is mapped onto a non-blocking (basic) task, as well as input and output signal 

drivers that are used to exchange signals with other actors and the outside world (see 

Fig. 2). Actor tasks are configured from function blocks (FBs) and are modelled by 

function block networks. A function block is a reusable executable component that 
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may have multiple instances within a given configuration. There are four kinds of 

function block: basic, composite, state machine and modal function blocks that can be 

used to implement a broad range of sequential, continuous and hybrid applications. 
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Fig. 2. COMDES-II Controller actor 

Basic function blocks have simple stateless behaviour, which is specified by 

functions defining signal transformations - from input signals to output signals (e.g. a 

PID controller function block). Complex stateful behaviour is implemented with modal 

function blocks (MFBs). These may be viewed as a generalization of stateless function 

blocks: a MFB has a number of operational modes where each mode encapsulates one 

or more FB instances used to execute a control action associated with that mode. A 

modal function block receives indication of current mode from a supervisory state 

machine (SSM), whereby it executes the corresponding control action, in the context of 

a continuous or sequential control actor, e.g. manual/automatic control of DC motor 

rotation speed (see Fig. 3). A function block network may be encapsulated into a 

composite function block, which can be subsequently reused as an integral component.  
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Fig. 3. The Digital control task composed of state machine and modal function blocks 

Signal drivers are a special class of component - these are wrappers providing an 

interface to the system operational environment by executing kernel- or hardware-

dependent functions. Specifically, signal drivers can invoke kernel primitives to 

transparently broadcast and receive signals, independent of the allocation of sender and 

receiver actors on network nodes [14]. 

A detailed informal description of the above component models is given elsewhere 

[13]. The following discussion presents a formal specification of COMDES-II 

components and component configurations. The latter takes into account the two levels 
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of the framework, i.e. system and actor levels, which are treated in a top-down fashion. 

At the top level, the system is described as an actor network - a data flow model  

involving system actors and the global signals exchanged between them, as well as a 

definition of the signals in terms of identifiers and constituent signal variables. At the 

next level, each system actor is described by a function block network, i.e. a data flow 

model involving constituent function blocks and the local signals exchanged.  

2.2 Distributed Control System Specification 

A distributed embedded control system (ECS) is modelled as an actor network: 

ECS  =  <  A, S, C  > , (1) 

where A is the set of system actors, S is the set of system signals and C is the set of 

channels used to exchange signals between actors. The set of system actors A consists 

of environment actors Aenv modelling the plant, and control actors Acon operating in a 

distributed system environment:  

A  =  Aenv    Acon . (2) 

The set of system signals S can be represented as:  

S  =  Sin    Scom    Sout , (3) 

where Sin is the subset of physical input signals, Scom is the subset of signals (messages) 

exchanged over the communication network, and Sout is the set of output physical 

signals. Furthermore, si  S: si  =  < Idi, Vi >, where Idi is a signal identifier and Vi is a 

set of signal variables defined in terms of variable names and the corresponding data 

types: 

Vi = { < s
i
1: type

i
1>, < s

i
2: type

i
2>,  … , <s

i
ki: type

i
ki  > } , (4) 

e.g. signal OStationParameters consisting of PID parameters, such as proportional, 

integral and derivative gain values (see Fig. 2). 

The communication relationship between actors is specified in terms of channels 

that are defined by a source - signal - destination relation: 

C    A    S    2
A  

, (5) 

e.g. one of the channels depicted in Fig. 1, which is specified by the tuple < Sensor, 

Sensor_Speed, {Controller, Vizualization_Unit} > . 

In an actual implementation, control actors will be allocated to network nodes, and 

channels – to the network communication channel and physical I/O channels. The 

subsequent discussion assumes a real-time network with predictable message latency, 

such as CAN, which has been used for the experimental validation of COMDES-II. 

A system control actor can be defined as: 

acon  =  <  X , Lin, NFB, Lout, Y   > , (6) 

where: X is the set of input signals received by the actor, X  S, Lin is an input signal 

latch, NFB is a signal-processing network of function blocks, Lout is an output signal 

latch and Y  is a set of output signals generated by the actor, Y    S.  
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The input latch is used to receive input signals and decompose them into input 

signal variables constituting the set V, which may be viewed as local signals that are 

processed by the function block network. The latter computes output variables 

constituting the set W, which are used to compose the output signals generated by the 

output latch (see e.g. Figs. 2 and 3).  

The I/O latches are composed of communication objects called signal drivers, 

denoted as D
in
 and D

out
. In particular: 

Lin = { D
in

i }; D
in

i :  s
in

i     Vi  , Vi    V , 

Lout = { D
out

i }; D
out

i :  Wi    s
out

i  , Wi    W , 
(7) 

where Vi and Wi denote the constituent variables of the corresponding I/O signals s
in

i 

and s
out

i , respectively.  

The I/O latches are activated at the release and deadline instants of the actor task. 

This is a basic (non-blocking) task, whose internal structure is specified as a function 

block network performing the transformation of input signal variables into output 

signal variables: V      W. 

The FB network is modelled by an acyclic data flow graph (see e.g. Fig. 3), which 

can be defined as follows: 

NFB  =  < B, Z, Con > , (8) 

where B is a set of function blocks (FBs), Z is a set of FB network variables and Con is 

the set of FB network connections.  

A function block performs the signal transformation X  Y, where X is the set of 

FB input variables, X    Z, and Y is the set of FB output variables, Y    Z. 

Specifically, a function block can be defined as: 

FB   =  < X, Y, P, F > , (9) 

where X, Y and P denote input, output and persistent variables, respectively and F is a 

set of functions. 

Input variables X are generated by input drivers or other function blocks, X  Z. 

These are used together with persistent variables to compute output variables Y, 

Y  Z.  Persistent variables P represent the internal state of the function block, which 

is retained from one execution to the next, e.g. various types of controllers, filters, etc. 

[10]. Simple function blocks may not have internal state, e.g. arithmetic function 

blocks, comparators.  Output variables are computed by functions f  F that are 

defined as y = f(x, p), where y  Y, x  X and p  P. 

The variables constituting the set Z may be viewed as local signals associated with 

the function block network: 

Z = V    I    W , (10) 

where the input signal variables V are generated by input drivers and processed by 

function blocks; internal variables I are generated and processed by function blocks; 

output signal variables W are generated by function blocks and used by output drivers 

to compose output signals (see e.g. Fig. 3). 

FB network connections are used to wire function blocks with input and output 

signal drivers, and with each other. The corresponding set can be specified as a union 
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of subsets denoting input, internal and output connections: Con = Conin   Conint  

Conout . These are defined as source - local signal - destination relations as follows: 

Conin    Lin    V    B , 

Conint    B    I    B , 

Conout    B    W    Lout , 

(11) 

e.g. the connection represented by the tuple < SSM, mode, MFB >  shown in Fig. 3. 

3 Specification of System Behaviour 

3.1 COMDES-II Model of Computation – an Introduction 

System operation is specified in terms of distributed transactions executed in 

accordance with a model of computation known as Distributed Timed Multitasking 

[12, 13], which is presently supported by the distributed real-time kernel HARTEXμ 

[14]. The distributed transaction involves a number of actors that execute transaction 

phases by invoking sequences of function blocks within the corresponding actor tasks. 

Actors interact with each other by exchanging labelled state messages (signals) using 

dedicated communication objects (signal drivers) that provide for transparent one-to-

many communication between the actors involved.  

Distributed Timed Multitasking (DTM) combines the concepts of Timed 

Multitasking [5] and transparent signal-based communication. With this model, it is 

assumed that signal drivers are short pieces of code that are executed atomically in 

logically zero time at precisely specified time instants, which is typical for control 

applications. Specifically, input signal drivers are executed when the actor task is 

released, and output drivers - when the task deadline arrives or when the task comes to 

an end, if it has no deadline (see Fig. 4). Consequently, task I/O jitter is effectively 

eliminated as long as the task comes to an end before its deadline. 

 

 

Fig. 4. Actor execution under Distributed Timed Multitasking 

Jitter-free operation can be extended to distributed systems, e.g. a phased-aligned 

transaction involving the actors Sensor (S), Controller (C) and Actuator (A) from 

Fig. 1, which are triggered by a periodic timing event, such as a synchronization (sync) 

message denoting the initial instant of the transaction period (T), with deadline D ≤ T 
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(see Fig. 5). In this case, input and output signals are generated at transaction start and 

deadline instants, resulting in the elimination of transaction I/O jitter. 
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Fig. 5. Jitter-free execution of distributed transactions 

The following discussion presents a formal specification of system operation, taking 

into account the adopted model of computation and the model of system structure 

developed in the preceding section.  

3.2 Specification of Function Block Behaviour 

Function block operation is specified with simple and/or composite functions from FB 

input variables x(k) to FB output variables y(k), x  X, y  Y, assuming periodic 

execution of system actors and constituent function blocks, which are invoked at time 

instants kT, k = 1, 2,  …... , where T is the execution period of the host actor. 

Basic function blocks implement standard signal-processing functions, such as:  

y(k) = f(x(k)) - with simple FBs implementing various kinds of 

mathematical operations, comparators, etc. 

(12) 

y(k) = f(x(k), p(k-1), p(k-2), … p(k-l)) - with FBs having persistent state, (13) 

where the state is defined in terms of one or more persistent variables p(k-1), p(k-2), 

…., p(k-l), retained from previous periods 1, 2 …, l and updated during each period (as 

specified by the concrete FB algorithm, e.g. the discrete-time versions of filters, 

various control algorithms, etc. [10]).  

A composite function block (CFB) encapsulates a FB network whose behaviour is 

described with one or more functions such as y(k) = f(x(k)) , where f is a composite 

function specifying the transformation of signals from CFB inputs to CFB outputs, 

which is defined in terms of the functions executed by the constituent function blocks.  

Assuming that the CFB encapsulates a sequence of r function blocks, this function can 

be represented as:  

f  =  fr ◦ fr-1 ◦ .... ◦ f1 , or using another notation:  y(k) = fr ( fr-1 ( ... ( f1(x(k)))...))  (14) 
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In the general case, this function will have a different expression for each particular 
configuration of the FB network, which has to be always modelled by an acyclic data 
flow diagram. However, cycles are allowed at actor level but these are effectively 
broken by one-period delays due to the adopted clocked synchronous model of 
computation (see below). 

The supervisory state machine (SSM) implements the reactive aspect of actor 

behaviour, in separation from the transformational (signal processing) aspect, which 

is delegated to the modal function block. The SSM generates two output signals - m 

and u, meaning mode and mode-updated, which are specified by the corresponding 

functions: 

m(k)  =  f (m(k-1), e(k), pr(e(k)) - a mode transition function, and 

u(k)  - a Boolean function, which is defined as follows: 

u(k)  =  true when m(k) ≠ m(k-1), i.e. when a mode transition has taken place,  

u(k) = false when m(k) = m(k-1), and no transition has taken place. 

(15) 

In the above expression e(k) denotes a transition trigger, i.e. an event specified as a 

Boolean expression involving binary input signals that are present at time kT, T is the 

period of the host actor, and pr(k) is the priority of the event triggering the transition 

from m(k-1) to m(k). 

The modal function block (MFB) implements the signal processing aspect of actor 

behaviour by executing constituent function blocks within the corresponding modes of 

operation. These compute control signals yi, i = 1, 2, …, r, by invoking signal 

transformation functions f1, f2, …., fr – from input to output signals. Subsets of these 

functions are selected for execution, depending on the mode and mode-updated input 

signals indicated by the state machine function block, such that:  

yi  Ap , yi(k) =  fi(x(k)) , and yi  Aq, q  p,  yi(k) =  yi(k-1) - when m(k) = p  

and  u(k) = true; 

yi , yi(k) =  yi(k-1) -  when u(k) = false , 

(16) 

where Ap denotes the control action, i.e. the subset of control signals generated in mode 

p, and fi is the function executed by the corresponding function block(s) in order to 

generate the signal yi, yi  Ap. For instance, the control signal voltage of Fig.3 will be 

generated by a PID function block if mode has been updated to automatic. 

The composition of supervisory state machine and modal function block operates as 

a periodically executed event-driven state machine whose operational semantics and 

implementation are presented in [15]. This state machine is invoked within a 

periodically executing host actor but a state transition takes place only when the 

corresponding transition trigger is present, much in the same way as event-driven state 

machines triggered by external interrupts. 

3.3 Specification of Actor Behaviour 

Actors generate reactions to execution triggering events in the form:  

e    Ye ,  (17) 
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where Ye  Y, Ye being the set of output signals generated by the actor in response to 

the execution trigger e. The latter may be a local timing event ↑(kT), a global timing 

event ↑sync(kT) generated by a periodic synchronization message or an external event 

↑xtrigger , where xtrigger is one of the actor input signals (e.g. a message arrival event)1.  

Actor output signals y  Y are specified by functions of input signals x  X that are 

latched by input drivers at the time of input tin. With periodic actors triggered by local 

or global timing events tin = kT, k = 0, 1, 2, …  

Output signals are composed of output signal variables generated by the actor FB 

network, which has a zero logical execution time (LET). Hence, the output signal 

variables are logically related to the input time instant kT: 

w(k)  =  φ(v(k)) , (18) 

where φ is a composite function – from input signal variables v  V to output signal 

variables w  W that constitute actor input signals x and output signals y, respectively. 

With actors having purely transformational behaviour, φ can be defined like a CFB 

function, e.g.:  

φ  = fr ◦  fr-1 ◦ ….. ◦ f1 , (19) 

where fi are basic and/or composite signal-transformation functions executed by 

constituent function blocks, i = 1, 2, …, r. 

With complex actors built from supervisory state machines coupled to modal 

function blocks, each mode generates certain control signals specified by the 

corresponding functions, for example: 

w1(k)  =  φ
1
 (v(k))   - generated in mode 1 

w2(k)  =  φ
2
 (v(k))   - generated in mode 2 

............................. 

ws(k) = φ
s
 (v(k))   - generated in mode s 

(20) 

In this case, for each φ
i 
, φ

i 
 =  fi ◦ m , where m is the mode transition function of the 

SSM function block and  fi(v(k)) is the signal transformation function executed by the 

modal function block when the supervisory state machine has indicated that m(k) = i. 

In the general case:  

φ
i 

  =  fi  ◦  m  ◦  g , 
(21) 

where g denotes a pre-processing function. The latter is executed by a pre-processing 

(basic or composite) function block, generating a transition-trigger signal for the 

supervisory state machine (e.g. various types of arithmetic, comparators, counters, etc.) 

The output variables generated by the actor task are used to compose output signals, 

which are latched into the output drivers at the time of output: 

y(tout)  = φ(x(tin)) , tout =  tin+ D = kT + D, k = 0, 1, 2, … ; 0 ≤ D ≤ T , (22) 

Hence:   

y(kT + D)  = φ(x(kT)) , (23) 

                                                           
1 Bold symbols denote actor-level events and input/output signals. 

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 52



 

and the actor as a whole has a clocked synchronous semantics [19], chracterized by a 

non-zero logical execution time (LET).  

In the special case of actor without deadline, it is assumed that D = 0, and tin = tout = 

kT. Hence: y(k) = φ(x(k)), and the actor has a perfect synchronous semantics (zero 

LET). This is the case with intermediate actors of phase-aligned transactions, where 

the deadline is usually associated with the last actor, which has to generate the control 

signal at the transaction deadline instant (see next section). 

3.4 Specification of System Behaviour 

System operation is specified in terms of distributed transactions, such as the 

transaction shown in Fig. 5, assuming: 1) Periodic phase-aligned transactions involving 

non-blocking basic tasks, such as the one shown in Fig. 5, which are typical for 

distributed control applications [18]; 2) Non-blocking signal-based communication; 

3) Distributed Timed Multitasking, which is an extension of Timed Multitasking for 

distributed transactions. 

Under these assumptions, a periodic phase-aligned transaction with a period Ttrans 

can be represented as a sequence of transaction phases, involving a number of actors, 

which are executed in response to a global timing event ↑sync(kTtrans) represented by 

the arrival of a synchronisation (sync) message generated by a sync master node: 

↑sync(kTtrans)    y1 ;   y1  =  φ1 (x1) , 

↑x2    y2  ;       y2  =  φ2 (x2) , 

..................... 

↑xn    yn  ;       yn  =  φn (xn) , 

(24) 

where: x1 = xin , x2 = y1,  x3 = y2 ,…,  xn = yn-1,  yn = yout . 

Hence, transaction execution can be modelled with a composite function:  

Φ  =  φn ◦  φn-1 ◦ ….. ◦ φ1 , (25) 

where φi is the function implemented by the i-th actor, i = 1, 2, …., n.  

Taking into account Distributed Timed Multitasking, transaction execution can be 

represented as a transformation from input signals xin(tin) to output signals yout(tout), 

where tin and tout are determined by the transaction period Ttrans and deadline Dtrans : 

↑sync(kTtrans)    yout , 

yout (kTtrans + Dtrans)  =  Φ(xin (kTtrans)); Dtrans  ≤  Ttrans . 
(26) 

For the particular example illustrated by Figures 1 and 5, the behaviour of the 

control system can be represented in the form:  

Voltage(kTtrans + Dtrans) =  Φ(pulses(kTtrans)), Φ = φactuator ◦ φcontroller ◦ φsensor . 

In the general case, the distributed system may consist of multiple subsystems 

executing distributed transactions with different rates of activation (multi-rate system), 

e.g. a multi-loop distributed control system. Accordingly, subsystem actors are 

allocated onto network nodes, and subsystem channels – onto the physical 
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communication channel(s). This raises the issue of concurrent execution of transaction 

tasks/communications within the corresponding operational domains.  

Following the adopted model of computation (Fig. 4), actor tasks are executed in a 

dynamic priority-driven scheduling environment provided by node-resident kernels, 

which are instances of the HARTEXμ timed multitasking kernel [14]. Communication 

takes place in a real-time network supporting predictable interactions, such as CAN. 

Transparent signal-based communication is supported by a dedicated protocol 

provided by the HARTEXμ kernel. With this protocol, signal drivers are executed 

atomically at precisely specified time instants that are fixed on the time axis. This 

makes it possible to eliminate the undesirable effects of task preemption and network 

communication, i.e. transaction I/O jitter, as long as transaction (end-to-end) response 

times are less than the corresponding end-to-end deadlines. This requirement can be 

checked using response time analysis developed for distributed real-time systems, e.g. 

the analysis method and tool presented in [18]. 

4 Related research 

COMDES-II is a follow-on version of COMDES-I [12]. It employs an actor-based 

system model, whereby actors are conceived as units of concurrency as well as 

functionality (e.g., sensor, controller, actuator, etc.), whereas in the previous version a 

system is composed from function units encapsulating multiple threads of control. It 

also incorporates a different, i.e. composite state machine model emphasizing the 

separation of reactive and transformational (signal-processing) behaviour. 

In COMDES-II, system operation is described by the Distributed Timed 

Multitasking (DTM) model of computation, which has been inspired by the original 

Timed Multitasking model [5] and is similar to the LET model adopted in the xGiotto 

language [6]. However, both of these models use port-based communication between 

actors, whereas DTM employs broadcast communication with labeled state messages 

(signals). This solution rules out artifacts such as ports, message queues, mailboxes, 

operational interfaces, etc., and provides for transparent interactions that are 

independent of the allocation of the actors on network nodes. Furthermore, the above 

frameworks use flat actor models with actors programmed in a conventional fashion, 

whereas COMDES-II actors are configured from prefabricated executable components 

– function blocks. 

The adopted communication mechanism is characterized by complete separation of 

computation and communication, as recommended in [9], since signal drivers are 

executed in separation from actor tasks and from each other. That is not the case with 

port-based objects, where ports are usually defined as communication objects whose 

methods are invoked within task I/O drivers in a conventional call-return manner, see 

e.g. [5]. Consequently, the communication pattern is „hardwired‟ in the code of I/O 

drivers and cannot be reconfigured without reprogramming.  

The presented model of computation bears certain similarities with the models used 

in synchronous languages [20], and in particular: atomic execution of input and output 

actions; clocked operation similar to the execution pattern used in LUSTRE and 

SIGNAL; compositional data flow models inspired by the Control Engineering domain. 
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At the same time, there are substantial differences that have to be highlighted in 

order clearly differentiate the two models:   

─ Synthetic, component-based approach using prefabricated executable components 

vs. a conventional language-based approach used in synchronous languages  

─ True actor-level concurrency vs. conceptual concurrency, which is „compiled 

away‟ during program compilation  

─ Constant non-zero reaction time vs. instantaneous (zero-time) reaction assumed by 

perfectly synchronous systems. 

The last feature facilitates the engineering of distributed systems and eliminates 

problems related to fixpoints, instantaneous loops, etc., which have been major issues 

with synchronous systems. Furthermore, the synchronous model does not address the 

problem of task and transaction jitter because of the very nature of the synchrony 

hypothesis, whereas it is practically eliminated with the COMDES model of distributed 

computation. 

5 Conclusion 

The paper presents the formal specification of COMDES-II - a domain-specific 

framework for distributed embedded control systems, which combines open 

architecture and predictable behaviour under hard real-time constraints. The 

framework employs a hierarchical system model combining the concepts of both actor 

and function block: an embedded system is composed from autonomous system agents 

(actors), which are configured from prefabricated executable components – function 

blocks. Actors interact by exchanging signals, i.e. labeled messages with state message 

semantics, rather than using I/O ports or operational interfaces. This feature facilitates 

system reconfiguration and provides for transparent communication between actors, 

resulting in flexible and truly open distributed systems. Signal-based communication is 

also used for internal interactions involving constituent function blocks. That is why 

system configuration is specified by data flow models at all levels of specification. 

Consequently, actor behaviour is represented as a composition of component functions, 

and system behaviour – as a composition of actor functions. A synchronous model of 

computation is applied at the component level. A clocked synchronous model of 

execution is applied at the actor and system levels, i.e. Distributed Timed Multitasking. 

The presented software architecture has important implications for software safety 

and predictability, as well as the entire software development process. In this case, 

applications are configured from prefabricated and validated (trusted) components, 

following strict composition rules that are derived from the syntax and static semantics 

of the framework. The behaviour of software components and applications is 

rigorously specified via a hierarchy of formal models that constitute the behavioural 

semantics of the framework. On the other hand, the use of timed multitasking makes it 

possible to engineer highly predictable systems operating in a flexible, dynamic 

scheduling environment.  

This has been demonstrated in a number of experiments used to validate the 

framework, e.g. distributed computer control systems involving physical and computer 

models of plants, such as electric DC motor, production cell, steam-boiler, turntable 
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machine, etc. It has also been applied in an industrial case study - a medical ventilator 

control system [17]. In all cases, the use of the framework helped reduce development 

time and increase software quality. This was quite obvious with some of the systems 

mentioned above, e.g. the production cell control system, which was developed in a 

relatively short time and became operational without extensive testing and debugging. 

However, in order to guarantee that an application is correct by construction, it has 

to be proven correct with respect to the required functional and timing behaviour. That 

is only possible if a precise and unambiguous system model is developed, whose 

particular features would desirably facilitate the process of analysis. In COMDES-II 

that is accomplished through formal design models emphasizing the principle of 

separation of concerns, i.e. separate treatment of computation and communication, 

functional and timing behaviour, reactive and transformational behaviour, etc. Thus, 

different aspects of system behaviour can be verified in separation using appropriate 

techniques and tools. Functional behaviour can be analyzed using tools such as 

Simulink (with continuous systems) and Uppaal (with discontinuous systems), 

following semantics-preserving transformation of system design models into the 

corresponding analysis models, whereas timing behaviour can be verified through 

numerical response-time analysis. 

In particular, Simulink can be used to analyse system behaviour via simulation. That 

is facilitated by the similarity between COMDES-II design models and Simulink 

analysis models representing the controller part of the system, both of which are 

discrete-time data flow models. Consequently, it is possible to export a COMDES-II 

design model to the Simulink environment, by wrapping COMDES-II components into 

S-functions and wiring them together, following the interconnection pattern of the 

original design model. This analysis method has been successfully experimented with 

the medical ventilator case study, whereby the COMDES-II design of the control 

system has been exported to Simulink and subsequently validated via numerical 

simulation.  

The envisioned development process will make it possible to engineer embedded 

applications that are correct by construction. This will hopefully eliminate design 

errors, which are difficult and costly to repair. On the other hand, implementation 

errors will be eliminated through an automated configuration process supported by an 

integrated toolchain [16], which is based on meta-models that have been derived from 

the formal design models presented in this paper. Ultimately, the elimination of both 

design and implementation errors will considerably enhance software safety, which is 

of paramount importance for the overall safety of embedded applications.  
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