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Abstract. Prototyping distributed applications can be extremely useful
in evaluating a design, and also in understanding the effect of different
parameters on the performance of an application. Architecture Analysis
and Design Language provide adequate syntax and semantics to express
and support distributed embedded systems. This paper studies a gen-
eral methodology and an associated tool for building and translating
AADL systems into a distributed application using network communica-
tion protocol. This allows runtime analysis to fully asses system viability,
to refine and to correct the behavior of the system using BIP. Using our
prototype we analyse the case study MPC in a native platform (PC).

1 Introduction

Distributed applications are used in many safety-critical domains such as space

and avionics. Designing distributed systems demands more attention and rigour

methodology. The produced systems have to conform to many stringent func-

tional and non-functional requirements from multiple contexts.

Ensuring all the requirements and features becomes very hard if the whole

system is hand-coded. Thus, the application code should preferably be gener-

ated automatically from a verifiable and analyzable model. This makes easier

the work of the developer and helps during the stage of code verification. Be-

sides, constructing a verifiable model from the application model using model

transformation is simpler and safer than constructing this model from source

code.

Architecture Description Languages (ADLs) have been proposed to support

the development process of embedded real-time and distributed applications.

This paper presents a definition framework for ADLs. The utility of the definition

is demonstrated by using it to differentiate and compare several existing ADLs.

This will allow us to choose an ADL according to our requirements.

Among the ADLs, AADL [3] is the Architecture Analysis and Design Lan-

guage that allows the modeling of distributed, real-time applications. AADL was

first introduced to model the hardware and software architectures in the avion-

ics domain. An AADL system model consists of components, their interfaces,

the connections between them and properties on various entities of the system

⋆ This work is partially supported by ITEA/Spices and OpenEMBeDD projects
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model. The AADL standard defines a textual as well as graphical form of the

language.

AADL has been designed to build distributed real-time and embedded sys-

tems. AADL can be seen as a collection of many requirements covering many

domains. System designers and developers need to describe both functional and

non-functional requirements. These requirements must then be sorted and en-

forced at the deployment level. We will presents the set of requirements that

must be respected to build distributed systems.

We have shown in [13], how AADL systems can be automatically translated

into BIP [8] (Behavior Interaction Priority), and analyzed using the BIP toolset.

BIP is a language for the description and composition of components as well as

associated tools for analyzing models and generating code on a dedicated middle-

ware. The language provides a powerful mechanism for structuring interactions

involving rendezvous and broadcast.

In this paper, we present an extension of our translation to prototype dis-

tributed applications using BIP and network communication protocol. We begin

with a model built by the application designer, who maps its application entities

onto a hardware architecture. Then, we use AADL into BIP tool to generate

BIP model conforming to AADL semantics. Finally, we use a code generator to

generate an executable model for each systems with communication protocol.

This translation allows simulation of distributed systems specified in AADL in

addition to the application of formal verification techniques developed for BIP,

e.g. deadlock detection, verification of properties, etc.

The translation from distributed AADL systems into BIP is illustrated on

a case study: the Multi-Platform Cooperation (MPC) example provided by J.

Hugues [18]. Using our tool, we were able to run the case study in a native

platform (PC). In order, to debug and evaluate the case study before deploying

it on a distributed embedded platform.

Distributed embedded application code generation from models is not lim-

ited to AADL. In fact, distributed and high-integrity systems are probably the

domain which has the most maturity. OCARINA [17] allows model manipula-

tion, generation of formal models to perform scheduling analysis and generate

distributed applications. OCARINA allows code generation from AADL descrip-

tions to Ada. PolyORB [27] is a middleware toolset that provides distribution

services through standard programming interfaces and communication proto-

cols. However, the generated code from AADL does not take into account the

annex behavior specifications [1].

This paper is organized as follows. Section 2 gives definition and comparaison

between existing ADLs. Section 3 gives an overview of AADL. In section 4,

we explain how to translate AADL systems into distributed application using

network communication protocol. In section 5, we present a MPC case study

and it deploylment into a distributed application. Conclusions close the article

in Section 6.
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2 Architecture Description Languages

Architecture Description Languages (ADLs) have been proposed as modeling

notations to support architecture-based development. An ADL is a language

that provides features for modeling a software system’s conceptual architecture,

distinguished from the system’s implementation. ADLs provide both a concrete

syntax and a conceptual framework for characterizing architectures.

The building blocks of an architectural description are (1) components, (2)

connectors, and (3) architectural configurations. Here we give a short description

of these blocks:

– A component in an architecture is a unit of computation or a data store.

– Connectors are architectural links used to model interactions among compo-

nents and rules that govern those interactions.

– Architectural configurations, or topologies, are connected graphs of compo-

nents and connectors that describe architectural structure. This information

is needed to determine whether appropriate components are connected, their

interfaces match, connectors enable proper communication, and their com-

bined semantics result in desired behavior.

A number of ADLs have been proposed for modeling architectures both within

a particular domain and as general-purpose architecture modeling languages.

We specifically consider those languages most commonly referred to as ADLs:

C2 [21, 20], Rapide [15], Darwin [19], UniCon [24], SADL [22, 26], AADL [3].

Several researchers have attempted to shed light on these issues, either by

surveying what they consider existing ADLs [28, 14] or by classifing and com-

paring several existing ADLs in some specific areas [25].

Comparisons between the languages (Figures 1, and 2) are given with respect

to: components, connections, priorities between components, behavior descrip-

tion and support for distributed embedded system.

All the above languages make distinction between a component interface

and an instance of a component that exhibits that interface. All the languages

provide syntax and semantics for component interface specification. All the lan-

guages view a component interface specification as defining a component type,

where there can be multiple instances of components that exhibit that same

interface. All languages allow a hierarchical composition that allows architec-

tures to describe software systems at different levels, by using a collection of

subcomponents and connections between those subcomponents.

C2, Darwin, SADL, and UniCon share much of their vocabulary and refer

to them simply as components; in Rapide they are interfaces; and in AADL

component categories.

In this paper, we are interested by ADL which support distributed embedded

systems, priority for schedulability analysis, behavior using state machine, and

functional and non-functional properties. AADL was first introduced to model

the hardware and software architectures in the avionics and automotives domain,

and it is backed by several industries.
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Component

Interface Implementation Non-functional properties

C2 exported through top and component none

buttom ports; provided implementation

and required

SADL input and output ports component requires component

(iports and oports) implementation modification

Rapide provides, requires, interface; none

action and service implementation

Darwin services (provided and component none

required) implementation

Unicon players component attributes for

implementation schedulability analysis

AADL inputs and outputs ports component time constraints

(event and/or data); implementation schedulability

provide and require; properties

in and out parameters safety level

Fig. 1. Comparison between ADLs

Noticeable about the AADL is its strong syntactic and semantic support for

architectures consisting of components of a limited number of functional cate-

gories. Along with this it allows to add non-functional properties to architectural

components, such as timing, memory consumption and safety properties. In this

way, the model of a system architecture allows specific tools to predict non-

functional properties of the system in early design phases, which makes AADL a

particularly interesting notation for distributed embedded software development.

Compared to other modeling languages, AADL defines low-level abstractions

including hardware descriptions. These abstractions are more likely to help de-

sign a detailed model close to the final product.

3 Architecture Analysis & Design Language

The SAE Architecture Analysis & Design Language (AADL) [3] is a textual

and graphical language used to design and analyze the software and hardware

architecture of performance-critical real-time systems. It plays a central role in

several projects such as Topcased [6], OSATE [4], ASSERT [2], SPICES [5].

A system modelled in AADL v.1 consists of application software mapped to

an execution platform. Data, subprograms, threads, and processes collectively

represent application software. They are called software components. Processor,

memory, bus, and device collectively represent the execution platform. They are

called execution platform components. Execution platform components support

the execution of threads, the storage of data and code, and the communication

between threads. Systems are called compositional components. They permit

software and execution platform components to be organized into hierarchical

structures with well-defined interfaces. Operating systems may be represented

either as properties of the execution platform or can be modelled as software com-

ponents. Behavior specifications [1] can be attached to AADL model elements
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Connectors Priorities Behavior Distributed

C2 interface with each low and high consists of an invariant yes

component via a priority and a set of operations.

separate port; interface The invariant is used to

elementare provided specify properties that must

and required be true of all component states

SADL specifies the supported scheduling of the mathematical none

data types process using a static calculation

priority

Rapide connection; in-line priority information consists of set of yes

for schedulability transitions rule

analysis

Darwin binding; in-line; no priority information using CORBA yes

explicit modeling of for schedulability

component interactions analysis

Unicon connector priority information attributes for yes

for schedulability schedulability analysis

analysis

AADL connector (ports, security level using subprograms; C/C++; yes

parameters, data access) ADA; state machine

Fig. 2. Comparison between ADLs

using an annex. The behavioral annex describes a transition system attached to

subprograms and threads.

3.1 AADL Components

Software Components AADL has the following categories of software com-

ponents: subprogram, data, thread and process.

A subprogram component represents an execution entry-point in the source

text. Subprograms can be called from threads and from other subprograms.

These calls are handled sequentially by the threads. The data component type

represents a data type in the source text that defines a representation and inter-

pretation for instances of data. A thread represents a sequential flow of control

that executes instructions within a binary image produced from source text. A

thread always executes within a process. A scheduler manages the execution of

a thread. A process represents a virtual address space. Process components are

an abstraction of software responsible for executing threads.

Hardware Components Execution platform components represent hardware

and software that is capable of scheduling threads, interfacing with an external

environment, and performing communication for application system connections.

AADL processor components are an abstraction of hardware and software

that is responsible for scheduling and executing threads. In other words, a pro-

cessor may include functionality provided by operating systems. A device com-

ponent represents an execution platform component that interfaces with the

external environment. A device can interact with application software compo-

nents through their ports. A bus components are used to describe all kinds of

networks, buses, etc. A Memory components are used to represent any storage

device: RAM, hard disk, etc.
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Systems A system is the top-level component of the AADL hierarchy of com-

ponents. A system component represents a composite component as an assembly

of software and execution platform components. All subcomponents of a system

are considered to be contained in that system.

3.2 Connections

A connection is a linkage that represents communication of data and control

between components. This can be the transmission of control and data between

ports of different threads or between threads and processor or device components.

4 From AADL to Distributed Implementation Using BIP

4.1 The BIP Component Framework

BIP (Behavior Interaction Priority) is a framework for modeling heterogeneous

real-time components [8]. The BIP framework consists of a language and a toolset

including a frontend for editing and parsing BIP programs and a dedicated plat-

form for model validation. The platform consists of an Engine and software

infrastructure for executing models. It allows state space exploration and pro-

vides access to model-checking tools of the IF toolset [12] such as Aldebaran [11],

as well as the D-Finder tool [10]. This permits to validate BIP models and en-

sure that they meet properties such as deadlock-freedom, state invariants and

schedulability. The BIP language allows hierarchical construction [16] of com-

posite components from atomic ones by using connectors and priorities. Several

case studies were carried out such as an MPEG4 encoder [23], TinyOS [9], and

DALA [7].

4.2 Transformation from AADL to BIP

The AADL models are transformed into BIP automatically by using our AADL

to BIP translation tool described in [13]. The supported development process is

shown in the Figure 3.

The model construction methodology applied to AADL models, opens the

way for enhanced analysis and early error detection by using BIP verifications

techniques. Once the model has been generated, three model checking techniques

for verification can be applied:

D-Finder: is an interactive tool for checking deadlock-freedom for component-

based systems by using a static analysis method. It takes as input BIP programs

and applies proof strategies to eliminate potential deadlocks by computing in-

creasingly stronger deadlocks.

Model checking by Aldebaran: The second technique of verification is model-

checking by using the tool Aldebaran [11]. Exhaustive exploration by the BIP

exploration engine generates a Labeled Transition System (LTS) which can be

analyzed by model checking. e.g, Aldebaran takes as input the LTS generated

from BIP and checks for deadlock-freedom and other temporal properties.
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Fig. 3. Verification cycle

Model checking with observers: The third technique of verification is by using

BIP observers to express and check requirements. Observers allow us to express

in a much simple manner most safety requirements. We apply this technique

to verify some properties as verification of communication, and verification of

thread deadline.

Simulation & Debugging: In addition to the verifications, we can simulate or

tests prototype implementations by creating an executable system. We can use

an interactive simulation and debugger to verify each interaction step by step

and to know which state or port is activated. These analysis allow to fully asses

system viability, to refine and to correct the behavior of system.

Code generator: The code generator takes as input a model, generated by the

parser, and transforms it to a C++ application code. The application is an

executable model of the original BIP program. Code is generated for each atomic

component, connectors and priorities, i.e., the code is modular and preserves the

structure of the initial model.

4.3 Prototyping Distributed Implementation

Building distributed systems is a very tedious task since the application has to

be verifiable and statically analyzable. The AADL fits these two requirements

and allows the designer to describe different aspects of his distributed application

(number of processors, number of threads in each processors, connection between

threads...).

Requirement: Requirements for prototyping distributed embedded system can

be seen as a collection of many requirements covering many domains. System

designers and developers need to describe both functional and non-functional

requirements. AADL support the different steps of system construction. Sup-

ported entities and extensible property sets allow one to build full models and

adapt them to the application context. Furthermore, analysis tools can process

the models to assess its viability.

Therefore, we list the following requirements for a prototyping process:
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1. Data types and related functions to operate on them

2. Supporting runtime entities (threads) and interactions between them (through

ports and connections)

3. Association of subprograms to threads

4. Mapping of threads onto processes and binding processes to hardware entities

to form the deployed system.

5. Binding connections to buses to form the deployed system.

AADL allows us to refine the description of each entity to detail more pre-

cisely its behavior or some non-functional attributes. This allows us to have a

library of reusable components and helps in prototyping by refining and extend-

ing them.

Deployement: The deployement we describe here supports all of the require-

ments discussed above. We begin with a model built by the application designer,

who maps its application entities onto a hardware architecture. Then, we use

AADL into BIP tool to generate BIP model conforming to AADL semantics. Fi-

nally, this architecture is tested for soundness, any mismatch in the application

is reported by the analysis BIP tool chain.

AADL is expressive enough to detail the deployment view of the application:

threads, processors, buses, threads on each process; properties refine the type

of tasks (periodicity, priority), and their associated implementation. We defined

our distribution model as a set of sender/receiver. It is supported by an AADL

architectural model that defines the location of each system and the payload of

the message exchanged as a thread-port name plus possible additional data.

Figure 4 shows the steps for generating from a distributed AADL system’s

description an executable distributed application as follow:

1. Identify each system and a connector’s mapped to the bus.

2. Generate for each AADL system its corresponding description in BIP, and

for each connector’s mapped to the bus a communication protocol.

3. Compile BIP system’s and generate an executable for each system with com-

munication protocol.

4. Run and debug the distributed application.

Our protocol supports communication between two or more computers. It

provide a full-duplex communication channel between processes that do not

necessarily run on the same computer. We consider channels for data exchange

among multiple threads in one or more processes are managed by the BIP Engine,

if processes are running on one computer. Otherwise, if processes are running

on different computers connected by a network, we use a network communi-

cation protocol. Before sending data through network to a server, we initially

converted into encoded version before being transported (suitable for network

transfer). After receiving data (Sever side), it can be converted back.

Most network communication protocols use the client server model. These

terms refer to the two machines which will be communicating with each other.

One of the two machines, the client, connects to the other machine, the server,
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Fig. 4. Deployment

typically to make a request for information. Notice that the client needs to know

of the existence of and the address of the server, but the server does not need

to know the address of the client prior to the connection being established.

Our protocol use sockets. Sockets are associated with the concept of network

communication in the form of client-server programming; a pair of processes of

which one will be a client and one a server. The client process will send requests

to the server. Of course, when creating a socket, we have to specify the type

of communication that will be needed, since different modes of communication

requires different protocols.

The steps involved in establishing a communication protocol on the client

side are as follows: (1) Create a communication protocol; (2) Connect the com-

munication to the address of the server; (3) Send and receive data.

The steps involved in establishing a communication protocol on the server

side are as follows: (1) Create a communication protocol; (2) Bind the commu-

nication to an address. For a server, an address consists of a port number on

the host machine; (3) Listen for connections; (4) Accept a connection. This call

typically blocks until a client connects with the server; (5) Send and receive data.

The generated BIP code provides a framework that will directly call user

code when necessary. This allows a rapid and flexible design of the distributed

system and does not restrict the user implementations.

5 Case study: MPC (Multi-Platform Cooperation)

This case study has been inspired J. Hugues [18]. Figure 5 shows the software

view of our case study. This model holds three system (Partitions); each is a

spacecraft with different roles:

– Spacecraft 1 is a leader spacecraft that contains a periodic thread, which

sends its position to Spacecraft 2 and Spacecraft 3.
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Fig. 5. Software view of the MPC case study

– Spacecraft 2 and Spacecraft 3 are follower spacecraft. They receive the po-

sition sent by Spacecraft 1 with a sporadic thread (Receiver thread), up-

date their own position and sends the position to the Reader thread. A

Reader thread in these two spacecraft reads periodically the position value

from the Receiver thread and store it in a protected object. A third thread

“watches and reports” all elements at that position (e.g., earth observation).

This model gathers typical elements from distributed systems, with a set of

periodic tasks devoted to the processing of incoming orders (Watcher thread),

Reader thread to store these orders (Protected Object), and sporadic threads

to exchange data (Receiver thread). These entities work at different rates and

should all respect their deadlines so that the Watcher thread can process all

observation orders in due time.

The software view only represents how the processing is distributed onto dif-

ferent entities (threads) and gathered as AADL processes to form partitions. The

next step is to map this view onto a physical hardware view, so that Processor

resources can be associated to each Partition.

Figure 6 is a graphical representation of the deployment view of the system.

It only shows the global architecture of the application (number of partition

and their mapping to hardware components). It indicates that each partition is

bound to a specific Processor and how the communication between partitions

occurs, using different buses.

These two views are expressed using the same modeling notation. They can

be merged to form the complete system: interacting entities in the software

view represent the processing logic of the system, whereas the hardware view

completes the system deployment information by allocating resources.

5.1 AADL Models

MPC case study is built by creating software component and mapping entities

onto a hardware architecture. The flexibility of AADL allows us to partially
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Fig. 6. Hardware view of the MPC case study

define components and use them in other components. This is very useful during

the first steps of prototyping where every detail of the system is not yet clear.

Details can be added to these components either by means of AADL properties

or by component extension, without having to redefine all other components.

Data Types AADL data components model the messages that are exchanged

among the Partitions of a distributed application or inside one of these Parti-

tions. To express the kind of a data type, we use AADL data component as

shown in the listing 1.1.

Subprograms Subprograms encapsulate the behavioral aspects of a distributed

application. They are modeled using the subprogram AADL component. The

implementation of a subprogram may be written entirely by the user by indi-

cating the source file or the pre-built libraries that contain the implementation.

Listing 1.2 shows the subprogram called Update.

�

data Record Type
end Record Type ;

data implementation Record Type . Impl
subcomponents

X : data behavior : : i n t e g e r ;
Y : data behavior : : i n t e g e r ;
Z : data behavior : : i n t e g e r ;

end Record Type . Impl ;


� �
Listing 1.1. MPC data type

�
subprogram Update

features

Data Sink : in parameter Record Type ;
Protected : out parameter Record Type ;

end Update ;

subprogram implementation Update . impl
properties

Source Language => C;
Source Name => ”Update ” ;
Source Text => ”mpc . cpp ” ;

end Update . impl ;


� �
Listing 1.2. MPC subprogram

AADL subprograms can be modeled in several other ways. AADL2BIP allows

three type of subprograms implementation by adding an external source file

(C/C++), or by adding annex behavior specification, or by using subprogram

calls sequence. All this gives the programmer more flexibility when prototyping

his system.

Threads Threads are active parts of a distributed application. A Partition must

contain at least one thread. The thread’s interface consists of ports. In this case

study we use two type of threads:
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– Periodic threads, i.e., triggered by a time event (Period). Listing 1.3 shows

the AADL model of the periodic thread Sender thread that is located in

the Partition1. This thread sends a data of type Record Type. The dispatch

protocol of the thread and its period are specified using standard AADL

properties. In the thread implementation, we describe the behavior of the

thread by giving the subprogram that models its activity.
�

thread Sender Thread
features

Data Source : out event data port Record Type ;
Data ac t iva t e : in event data port Record Type ;

properties

Dispatch Protoco l => Per iod i c ;
Period => 100 Ms;

end Sender Thread ;

thread implementation Sender Thread . Impl
c a l l s Main : {

Wrapper : subprogram Sender Thread Wrapper . impl ;
} ;

connections

parameter Wrapper . Data Source −> Data Source ;
parameter Data ac t iva t e −> Wrapper . Data act ivat e ;

end Sender Thread . Impl ;


� �
Listing 1.3. MPC sender thread

– Sporadic threads. In this case, they are triggered by an incoming event. The

AADL model of the sporadic thread Receiver thread is located in Spacecraft 2

and Spacecraft 3 and is triggered by the reception of a position sent from

Spacecraft 1 by thread Sender thread.

Processes Processes are the AADL components used to model the Partitions

of distributed applications. Listing 1.4 shows the AADL model of the process

called Sender Process.
�

process Sender Proces s
features

Data Source : out event data port Record Type ;
end Sender Proces s ;

process implementation Sender Proces s . Impl
subcomponents

Sender : thread Sender Thread . Impl ;
connections

event data port Sender . Data Source −> Data Source ;
end Sender Proces s . Impl ;


� �

Listing 1.4. MPC Process: Spacecraft 1

5.2 Deployment

The generation of BIP code helps us to rapidly prototype the MPC case study

and make it to a distributed application using our communication protocol be-

tween each partition. The prototype helped us to analyse the case study in a

native platform (PC) in order to easily debug and evaluate it before running it

on an embedded platform.

The separation between software and hardware in AADL allows the program-

mer to model all the software parts of his application and test it with a native

platform (generally a PC). If the tests are successful, the same software part can

be reused with the actual hardware AADL. In addition, going from one hardware
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AADL BIP

Spacecraft 1 Spacecraft 2 Spacecraft 3

Components 20 4 8 8

Connectors 21 8 18 18

Lines of code 350 250 600 600

Fig. 7. Comparison between AADL & BIP

Fig. 8. Simulation of Spacecraft 1 Fig. 9. Simulation of Spacecraft 2

architecture to another is reduced (most of the time) to the modification of the

values of some few AADL properties.

In the MPC case study, we generate for each AADL partition mapped to the

processor, its corresponding description in BIP, and for each connection mapped

to the bus a network communication protocol (sender/receiver). We compile BIP

partitions and we generate an executable model. Then, we put every executable

in the native platform (PC). First, we launch a receiver executable and then

the sender executable. When the network protocol communication is initialized

between the sender and receiver, the exchange of data is started.

Once the executable model has been launched, interactive simulation and

debugging is useful for understanding the working of the distributed application.

This helped us to verifies each interaction step by step, to know which state or

port is activated, and to see the value of data received/sended. In addition, we

use observers which moves to an error state if the period of a thread exceeds

its deadline. These analysis allow to fully asses system viability, to refine and to

correct the behavior of a system.

Figure 7 summarizes the size of lines of code, number of components and con-

nectors in AADL and respectively the BIP code for the MPC case study. We split

the BIP in three parts because we generate for each Spacecraft a corresponding

BIP description system. Figures 8 and 9 show a fragment of the simulation of

Spacecraft 1 and Spacecraft 2 in the distributed platform.
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6 Conclusion

In this article, we proposed a prototyping process to model and build distributed

embedded systems. We select AADL to implement this prototype. AADL allows

a clear modeling structure and provides all the required information to configure

a local application as well as distributed application.

We showed the requirements and assessments for prototyping distributed em-

bedded system using our tools chain. In addition, we provide a general method-

ology for building and translating distributed embedded systems into an ex-

ecutable implementation by using network communication protocol. The exe-

cutable application is tested for soundness, any mismatch in the application is

reported by the analysis BIP tool chain. We provide also MPC case study, which

is tested and analysed on a native platform.

In the future we are continuing to work on:

– Communication between processes can have different delay characteristics

depending on the underlying communication network. The prototyping en-

vironment should support different delay characteristics for communication

between different processes so that realistic prototypes can be built.

– Real-time clocks. This will allow real-time distributed algorithms to be im-

plemented, and timing properties to be studied.
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