
Model-Based Codesign of Critical Embedded
Systems�

Marco Bozzano1, Alessandro Cimatti1, Joost-Pieter Katoen2,
Viet Yen Nguyen2, Thomas Noll2, and Marco Roveri1

1 Fondazione Bruno Kessler, Italy
{bozzano,cimatti,roveri}@fbk.eu

2 RWTH Aachen University, Germany
{katoen,nguyen,noll}@cs.rwth-aachen.de

Abstract. We present a comprehensive methodology for the specifica-
tion and analysis of critical embedded systems. The methodology is based
on an architectural design language that enables modeling of both soft-
ware and hardware components, timed and hybrid behavior, faulty be-
havior and degraded modes of operation, error propagation and recovery.
The methodology is supported by an integrated platform, implemented
on top of state-of-the-art tools, that provides verification capabilities
ranging from requirements analysis to functional verification, safety as-
sessment, performability evaluation, diagnosis and diagnosability.

1 Introduction

The design of critical embedded systems is a very complex and highly challenging
task, for a number of reasons. First, it requires designing and assembling hetero-
geneous components, implemented either in hardware or in software, and their
interactions. Secondly, it has to take into account functional requirements as well
as several sorts of non-functional requirements, such as (real-)time constraints,
performability and safety requirements.

In this paper we present a comprehensive and tool-supported methodol-
ogy for the design of critical systems, following the component-based paradigm.
Component-based design helps to master design complexity while, at the same
time, allowing for reusability. The key principle is a clear distinction between
component behavior (implementation) and the interactions between the individ-
ual components (interfacing). The internal structure of a component implemen-
tation is specified by its decomposition into subcomponents, together with their
hardware/software bindings and their interaction via connections over ports.

The design methodology is built on top of the SLIM modeling language, an
architectural language inspired by SAE’s AADL [9] (Architecture Analysis and
Design Language) and the related Error Model Annex [10]. SLIM inherits the
most important features of AADL, such as multiway communication, dynamic

� Funded by ESA/ESTEC under Contract No. 21171/07/NL/JD

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 87



reconfiguration of components and port connections, and probabilistic error be-
havior and propagation, while enriching it with constructs to express timed and
hybrid behavior. Moreover, the SLIM language is endowed with a formal seman-
tics that cover all of its aspects in a clear and unambiguous way [3].

The methodology proposed in this work is targeted at the architectural design
of critical embedded systems, and in particular it covers modeling and verifica-
tion of the following aspects: requirements analysis, verification of functional
correctness, safety assessment and fault tolerance measures, quantitative and
performability analysis, and partial observability analysis, including effective-
ness of the FDIR (Fault Detection, Identification and Recovery) components.

The proposed approach is being investigated in the COMPASS project3 (Cor-
rectness, Modeling, and Performance of Aerospace Systems) in the aerospace
domain, and results as a response to an invitation to tender by the European
Space Agency. The techniques described in this work, however, are applicable in
general to every domain where design of critical embedded systems is involved.

The paper is structured as follows. In Section 2 we describe the main features
of the SLIM language; in Section 3 we give an overview of the methodology; in
Section 4 we discuss the COMPASS tool, implementing the methodology, and
finally we draw some conclusions and discuss future directions in Section 5.

2 The SLIM Language

The SLIM language follows the component-based paradigm. In SLIM, it is pos-
sible to refer to both software (e.g. threads and processes) and hardware com-
ponents (e.g. memories and processors) as first-class objects. Each component
is given via its type, describing the interface, and its implementation, describ-
ing the interactions via a finite state automaton. Sets of interacting components
can be grouped into composite components, enabling the modeler to manage
the system’s complexity by introducing a component hierarchy. Communication
is achieved via exchange of messages on event ports, in a rendez-vous manner.
Moreover, components may exchange data through typed data ports (e.g. bool,
integer and real data types). Timed and hybrid behavior can be expressed by
means of real-valued variables with (linear) time-dependent dynamics.

The resulting hierarchical system model, also referred to as nominal model,
describes the system behavior under normal operation. This is complemented
by an error model which expresses how the system can fail. Moreover, a subset
of the nominal components may be designated as dealing with error diagnosis
and recovery; they are referred to as FDIR (Fault Detection, Identification and
Recovery). The error model expresses how faults may affect normal operation
and may lead the system into a degraded mode of operation. It is modeled as
a probabilistic finite state automaton, where transitions may occur due to error
events which may be annotated with a rate that indicates the expected number
of occurrences per time unit. Transitions can also occur because of error propaga-
tions from other components. The nominal and error models are linked through
3 http://compass.informatik.rwth-aachen.de

2

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 88

stefanv
Rectangle



a so-called fault injection. A fault injection expresses the effect of the occurrence
of the corresponding error on the nominal model. Multiple fault injections are
possible. The process of integrating the nominal models with the error models
and the fault injections, is called model extension [4]. Finally, in order to enable
modeling of partial observability and analysis of FDIR components, the SLIM
language allows the modeler to explicitly define a set of observables.

We refer to [3] for a more detailed description of the language, a discussion
of the similarities and extensions with respect to AADL, and a simple example
(a processor failover system). Moreover, [3] presents a formal semantics for all
the language constructs, based on networks of event-data automata (NEDA).

3 Methodology

The methodology discussed in this paper is inspired by the framework described
in [1], which provides a unifying view of different aspects of system engineer-
ing, within the context of model checking. In order of increasing complexity, the
first problem that we consider is system functional correctness. Functional re-
quirements are traditionally expressed in temporal logic, e.g. Computation Tree
Logic (CTL) or Linear Temporal Logic (LTL). Technologically, model check-
ing techniques are used to exhaustively explore every possible system behavior,
providing a formal guarantee that a given requirement is obeyed.

Safety analysis investigates the behavior of a system in degraded conditions,
that is, when some parts of the system are not working properly due to mal-
functions. It includes hazard analysis, whose goal is to identify all the hazards
of the system and ensure that the system meets the safety requirements that
are required for its deployment and use. Examples of hazard analysis techniques
are Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA).
Model-based safety analysis is in turn based on model checking techniques [4].

Quantitative analysis and performability aim at evaluating system perfor-
mance with respect to timed and probabilistic requirements. They also include
probabilistic versions of safety and diagnosability measures. The related require-
ments can be expressed in Continuous Stochastic Logic (CSL). The implemen-
tation of these analyses is based on probabilistic model checking techniques.

Diagnosis can be seen as the problem of safety analysis carried out at run-
time. It is usually performed on systems which provide limited run-time sensing,
and under the hypothesis of partial observability. Diagnosis starts from the ob-
served run time behavior of a system, and tries to provide an explanation (in
terms of hidden states). In particular, diagnosis is often the problem of iden-
tifying the set of possible causes of a specific unexpected or faulty behavior.
Probabilistic information can be taken into account, in order to search for the
most likely explanation. Another related problem is diagnosability, i.e., the anal-
ysis, at design time, of diagnosis capabilities. Finally, the problem of synthesis
consists in the automatic generation of controllers from specifications. The latter
problem has been tackled by planning techniques based on model checking.

3

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 89

stefanv
Rectangle



Finally, requirements validation is used to check correctness and completeness
of a set of properties. Requirements validation is performed before the system
architectural design starts, and has the goal of ensuring the quality of system re-
quirements. In particular, our approach enables checking for logical consistency,
i.e., freedom from contradictions. Moreover, it is possible to check whether a
given set of properties is strict enough to rule out unwanted behavior, and not
too strict to disallow for certain desirable behavior.

4 Tool Support

The methodology is supported by an integrated toolset, which is built on top of
existing state-of-the-art tools for formal verification, based on model checking. In
particular, the toolset builds upon the NuSMV [7] symbolic model checker, the
MRMC [6] probabilistic model checker, and the RAT [8] requirements analysis
tool. The architecture of the tool set is shown in Fig. 1. The toolset takes as
input a model written in the SLIM language, and a set of property patterns,
used to instantiate formal requirements. Depending on the context, instantiated
properties are expressed in CTL, LTL or CSL temporal logics.
A few building blocks

− FMEA Tables

Extension
Model

SAFETY
ANALYSIS
− Dynamic Fault Trees

Slim2SMV

Instantiator
Slim Property

Table
Symbol

Sigref2MRMCSMV2SigrefNuSMV MRMC

RAT

Instantiator
Property

REQUIREMENTS
VALIDATION
− Property Assurance
− Property Simulation

CORRECTNESS
VERIFICATION
− Property verification
− Simulation

DIAGNOSABILITY
ANALYSIS
− FDIR effectiveness measures
− Synthesis of Observability Requirements

SMV2Slim

Viewer
Fault Tree

Viewer
Trace

SigRef

PERFORMABILITY
ANALYSIS
− Performability measures
− Probabilistic fault trees

Slim

Model

Property

Pattern

Fig. 1. Architecture of the toolset.

take care of perform-
ing model extension, trans-
lating the SLIM input
model into NuSMV and
MRMC formats when
needed, and visualize
traces and fault trees.

The following anal-
yses are supported. Re-
quirements validation
is used to analyse the
quality (correctness and
completeness) of the
requirements, and is car-
ried out by the RAT
tool. Correctness ver-
ification focuses on ver-
ification of functional
requirements, and is im-
plemented on top of
NuSMV; NuSMV implements standard symbolic model checking techniques such
as BDD-based and SAT-based (bounded) model checking, as well as SMT (Sat-
isfiability Modulo Theory)-based techniques to deal with hybrid models. Safety
analysis supports two of the most popular hazard analysis techniques, namely
FTA and FMEA, that are carried out by FSAP [5], a plugin of NuSMV. Di-
agnosability analysis focuses on the evaluation of the effectiveness of the FDIR

4

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 90

stefanv
Rectangle



sub-system; these functionalities are built on top of NuSMV and FSAP. Finally,
performability analysis evaluates a SLIM model with respect to probabilistic re-
quirements; it is implemented on top of MRMC. For more information on the
toolset, its architecture, and the analyses that are supported, we refer to [2].

5 Conclusions

In this paper we have presented a comprehensive methodology and a toolset
for the specification and analysis of critical embedded systems, that focuses on
system features such as (real-)time and faulty behavior, degraded modes of oper-
ation, diagnosis and performability. The methodology and toolset are currently
being evaluated on industrial-size case studies from the aerospace domain, that
will provide a substantial insight into their applicability and effectiveness.

Our methodology is applicable to any domain where, e.g., timing, system
performance and safety are at stake. Examples are avionics, transportation, in-
cluding railways and automotive, power plants, and the medical domain. Our
approach is based on a general purpose architectural language, and it is espe-
cially targeted at modeling and analyzing systems designs at the architectural
level. It can be complemented by specific implementation-level languages to deal
with the most implementation-oriented features of system design.

The toolset is under active development and evaluation. A thorough experi-
mental evaluation is planned, based on a comprehensive set of case studies.

Finally, some of the modifications to the AADL language that have been in-
corporated into SLIM, have been brought into the AADL standardization bodies
for evaluation and proposed as a possible extension of the standard.

References

1. P. Bertoli, M. Bozzano, and A. Cimatti. A Symbolic Model Checking Framework
for Safety Analysis, Diagnosis, and Synthesis. In Model Checking and Artificial
Intelligence, volume 4428 of LNCS, pages 1–18. Springer, 2007.

2. M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri.
The COMPASS Approach: Correctness, Modelling and Performability of Aerospace
Systems. In Proc. SAFECOMP’09. Springer, 2009.

3. M. Bozzano, A. Cimatti, V. Y. Nguyen, T. Noll, J. P. Katoen, and M. Roveri.
Codesign of Dependable Systems: A Component-Based Modeling Language. In
Proc. MEMOCODE ’09, 2009.

4. M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA Safety Analysis Platform.
International Journal on Software Tools for Technology Transfer, 9(1):5–24, 2007.

5. The FSAP/NuSMV-SA platform. http://sra.fbk.eu/tools/FSAP.
6. The MRMC model checker. http://wwwhome.cs.utwente.nl/ zapreevis/mrmc/.
7. The NuSMV model checker. http://nusmv.fbk.eu.
8. RAT: Requirements Analysis Tool. http://rat.fbk.eu.
9. Architecture Analysis and Design Language (AADL) V2. SAE Draft Standard

AS5506 V2, International Society of Automotive Engineers, Mar. 2008.
10. Architecture Analysis and Design Language Annex (AADL), Volume 1, Annex E:

Error Model Annex. SAE Standard AS5506/1, SAE International, June 2006.

5

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 91

stefanv
Rectangle




