
Design Complexity Management in Embedded System
Design

Johan Ersfolk1,2, Johan Lilius2, Jari Muurinen3, Ari Salomäki3, Niklas Fors2, and

Johnny Nylund2

1 Turku Centre for Computer Science, Turku, Finland
2 Department of Information Technologies

Åbo Akademi University, Turku, Finland

FirstName.LastName@abo.fi
3 Nokia Devices, Finland

FirstName.LastName@nokia.com

Abstract. Research on embedded system design typically focus on design space

exploration in the architecture platform space and the goal is to obtain an optimal

implementation of the system. In the mobile phone industry the design problem is

often quite different. The goal is not to design a new system but to add a use case

to an existing product or to a family of products. In this case it is important to be

able to quickly find possible performance problems caused by the simultaneous

use of the new use case in conjunction with existing use cases on all platforms.

In this paper we address this problem by 1. proposing a structure for the design

space, 2. an automated algorithm that generates performance models by combin-

ing use case models, and 3. an approach for performance optimization by adding

flow control elements into the system design.

1 Introduction

Existing embedded system design methodologies focus on design space exploration in

the architecture platform space. That is to say, they assume that the set of applications

is fixed and a suitable architecture for this set of applications needs to be explored. In

the mobile phone industry the design problem is often quite different and the situation

is usually that there is a number of fixed platforms for which new applications are being

developed using libraries of existing software components. This often leads to a situa-

tion where the concurrent execution of a set of applications needs to be simulated on a

number of architecture platforms in order to analyse the resource sharing between the

applications. In order to make the evaluation of such designs efficient there is a need for

exploring how existing design methodologies and tools can be extended with function-

ality that addresses the problem of efficiently combining software components. In this

paper we approach this issue with a model driven approach using our metamodeling

tool Coral [1].

The design flow depicted in figure 1 highlights the communication between a sys-

tem architect and the teams working on the different subsystems. The typical scenario

in which this design flow is instantiated is when a set of new use cases needs to be

implemented. This would involve for example adding video playback (a use case) and

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 93

Estimation/

 Prediction

Component

Implementat

ion

Component

 verification
 &

Optimize

Integration
e
s
ti
m

a
te

s

Learn Learn Learn

D
e
c
o
m

o
s
itio

n

B
u
d
g
e
t

e
n
h
a
n
c
e

a
s
s
e
t

Architect/ system design

Fig. 1. A design flow and its feedback loops

video recording capabilities (a second use case) to a phone. The design will not proceed

by trying to build a new system from scratch, but instead the goal is to find the minimal

changes to an existing architecture to implement the new use cases.

The design would proceed approximately like this. The system architect takes the

new use case and decomposes the system into subsystems. For the existing system the

subsystems are available as assets in a library, from which relevant performance data

can be obtained. For the required new subsystems, the system architect requests esti-

mates from the designer team responsible for the technical subsystem (e.g. for the video

encoding from the media subsystem team). Using these estimates the system architect

can start evaluating the system model for its performance. At this point in the design

flow it is important to obtain quick results. Therefore the individual elements in the sys-

tem model are often quite abstract and focus only on the performance characteristics.

It is a key requirement to be able to evaluate different use case combinations quickly.
Most often all use cases are not used at the same time, e.g. video playback might not

be used at the same time with a voice call, if the phone does not support video calls,

but video playback might happen at the same time as a file download. Therefore, it

is important to know which use cases can be used in combination and to analyze the

combinations for potential performance bottlenecks. The performance bottlenecks are

typically caused by use cases sharing resources. In some cases it is not possible to run

a specific use case combination on a platform which means that the platform needs to

be modified. More often the problem of sharing a resource is due to stochastic behavior

of data streams and badly tuned mechanisms for handling the resource contentions. In

order to resolve resource conflicts and find the optimal parameters for the system the

system architect can use different flow control mechanisms. In section 5 we describe

different techniques and how these can be used.

When the system architect has found parameters that fullfill the performance re-

quirements the design flow continues based on this validated information. The obtained

values are given back to the designers as a budget, to use in the implementation of

the subsystem. The verification of the implementation will give some feedback to the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 94

system architect, which may lead him to make changes to the design. Once the compo-

nent is deemed ready it is integrated into the final product. At this stage the component

becomes an asset, which means that the component has been deployed in a finished

product, and proven to work in conjunction with the other components in the use cases.

Since the system architect has an overall responsibility over the design process,

he needs powerful and efficient (i.e. rapid) tools, based on dedicated analysis models,

to support him in his design work. In section 4 we explain how such models can be

obtained automatically. The requirement for the automatic use case combination is that

the models have a specific structure, and such structuring mechanisms will be presented

in section 3. In section 6 we shortly present a front-end tool (EFCO Tool) to CoFluent

Studio [2].

Due to space limitations many pictures and details have to be omitted. A more

thorough description of the approach can be found in [3, 4].

2 Related Work

There is a large number of tools and methods for design space exploration and it is not

possible to mention all of them here. We will focus on the most relevant approaches

and we will also describe the approach used in CoFluent Studio and compare it to our.

In [5] several different methodologies intended to be used in the field of system-level

design are discussed and compared.

The Y-chart approach [6] separates the application models from the architecture

instance models. A set of architecture instance models can be evaluated against a set

of application models and the models can be reused separately in other projects. For

a given architecture instance a performance model needs to be created. Performance

analysis for a specific architecture instance can then be done after the set of applica-

tions have been mapped to the architecture instance. The results from this performance

analysis can be used to make improvements on the architecture instance, the appli-

cations themselves or on the mapping between application and architecture instance.

This process can then be repeated until an architecture that satisfies all constraints is

found. The Y-chart approach does not specifically deal with software reuse in any way.

If effectively separates architecture design from application design, but it does not guar-

antee that the applications can be reused easily for architectures or combined with other

applications. What the Y-chart approach does for software reuse is that it specifies a

structured method to map a set of applications to an architecture and simulate the re-

sults.

Another approach that focus even more on component reuse in the hardware part

of the system is Platform-based design [7]. Platform-based design is an approach to

embedded system design where refined specifications meet with abstractions of possible

architecture implementations [7]. Platform-based design identifies well defined layers

in the design process where the abstractions and refinements are done. Each abstraction

layer must give enough information about lower levels of abstraction upwards, so that

design space exploration can take place. Furthermore, constraints from higher levels of

abstraction need to be passed down to lower levels of abstraction so that the refinement

process can take place between layers. The difference to our aproach is that the set

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 95

of applications is assumed to be fixed and that a suitable architecture for this set of

applications needs to be explored.

CoFluent Studio [2, 8] is an embedded system design tool that enables performance

analysis of hardware/software systems, by using the Y-chart approach. Consistent with

the Y-chart approach, CoFluent Studio separates the functional model of the system

from the architectural model of the system. By separately describing an application

model and a platform model, and then mapping the two models together, an architecture

model can be obtained. CoFluent Studio supports simulation of these models through

automatically generating a SystemC test bench for performance analysis.

Functional design in CoFluent Studio is done by specifying a functional model of

the complete system using a combination of a graphical notations and C code. The

functional model can graphically be represented using structural and behavioral com-

ponents called “functions”. Structural functions can contain other structural functions

as well as behavioral functions. Behavioral functions specify a set of operations and

their temporal ordering for a specific functional behavior. Communication between dif-

ferent functions is described using different communication components, which include

communication channels, shared variables and events. The CoFluent functional model

describes the systems behavior and timing without platform constraints and can be used

to simulate the system without a platform. This can be used to analyze shared resources

without being distracted by problems related to mapping. Our approach makes use of

the methodology in CoFluent Studio but refines it by hiding details from the designer

and by providing tools for use case combination and flow control.

The Architecture Analysis and Design Language (AADL) [9] is used to model the

software and hardware architecture of embedded real-time systems. It contains con-

structs for modeling both software and hardware components and is used for analysis

such as schedulability and flow control. Compared to our approach, our models could

be exported to AADL and be used for analysis instead of the simulator generated by

CoFluent Studio.

Real Time Calculus (RTC) [10] is an interesting approach to investigate schedula-

bility and resource usage of real-time systems. RTC could be used instead of simulation

to analyse our models. Multi-mode RTC could be used to analyse flow control. RTC is

used to get similar information about the system as we are interested in.

In general, the difference between our approach and other related approaches is that

our model describes and focus on the use cases of the system as the main modelling

concept. Our model is also designed to allow easy combination and evaluation of use

cases and provides an automated method to do this. Another difference is that we are

not searching for an optimal platform for the system but investigating how to enable

new use cases on an existing platform.

3 Asset management

In order to make the design phase efficient we need support for managing reusable

assets and methods for combining these with new components that make up the new

system. The goal with asset management is to provide a better way to support the life-

cycle management of product families and the strategic decision making by enabling

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 96

Fig. 2. The structural metamodel (left), the behavioral metamodel (middle) and the platformmeta-

model (right). The metamodel has been simplified in order to increase readability.

quick evaluation of new product features in order to give feedback for the business

decisions.

We provide a set of structuring concepts encoded into a metamodel. The metamodel

can be split into 3 parts. The Structural Model is used to delineate parts of the system

according to particular responsibilities (e.g. the multimedia subsystem), the Behavioral
Model is used to describe the functionality of the system and the Platform Model de-
scribes the hardware architecture of the system. These can also be seen as a hierarchy,

where the structural model is at the highest level and the platform model at the bottom,

but note that a structural relationship of inclusion does not necessarily imply a corre-

sponding relationship on the platform level, since the same subsystem can be mapped

onto different platform elements. In this paper we concentrate on describing the behav-

ioral model as it is central to our modeling approach. More detailed information about

the models can be found in [3, 4].

Although we use the term behavioral to characterize the part of the metamodel

used to structure the functionality of the design, we do not propose a new approach to

describe the functionality of atomic elements, but rely on the approach of the underlying

simulation tool for this (e.g. the Timed-Functional approach of CoFluent studio is used

in our tool).

The behavioral metamodel (c.f. Figure 2) supports a use case driven decomposition

approach. The decomposition has as a starting point a use case. A use case describes a

general functional scenario of a system, it looks at the system from the point of view

of the end-user. Thus a use case is very generic like “video playback”. Typically this

is too generic and the use case has to be refined into use case modes. A use case mode

describes a specific way the use case will be implemented. For the video playback we

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 97

could have 3 modes: video playback from internal memory, over 3G or over Wire-

less Lan. Typically a phone might support internal memory and 3G, and the Wireless

streaming would be an option for a more high-end phone, depending on which Features
the radio subsystem contains. The use case mode is decomposed into Features and Ser-
vices. Services act as the elements at the lowest level of granularity and are used to

compose features. A Feature can then be composed of other Features and Services.

It could be argued that this distinction is ad-hoc and driven by what is possible to

do in the CoFluent Studio tool, but there is a however a more abstract characterization

of the concepts by looking at the communication characteristics of the concepts.

– A use case defines the structure and the dynamics of the communication with ex-

ternal actors.

– A use case mode defines a particular instance of a use case, and fixes the communi-

cation network topology. A use case mode can contain detailed descriptions of the

internal structure of the network.

– A feature describes dynamic communication aspects between nodes.

– A service defines the node level routing.

We still need 3 other concepts into our meta-model:

DataLinks represent functional communication elements. The types of communi-

cation elemenents we use exactly corresponds to the elements in CoFluent Studio. A

channel is a communication channel which must have a specific type. A variable is a

shared variable between Features or Services, and it must also have a specific type. An

event is a trigger for a communication element and has no type definition.

Parameters are values that have to be specified in the use case, but usually are given

concrete meaning on the level of feature or service. Typical example parameters would

be the frame-size of a picture, frame-rate. Parameters are not separately represented as

an entity in the metamodel, but are instead given as attributes.

Actors are used to create external inputs for the simulation model. Currently the

tool implements very simple actors, like a file-reader, and random number generators.

In the future we plan to include network simulators for TCP/IP and other protocols. A

more detailed description of the actor mechanism can be found in [4].

4 Use-case based evaluation

Under the assumption that the design of all systems is structured according to the meta-

model presented in the previous section, the design of a new system can now proceed

as follows. The new system will consist of an old system structured as a set of use cases

and a set of new uses cases. Then the first questions to be answered is whether the new

use cases can be run on the given platform. This is standard fare. However the challenge

comes when there is a need to support new use cases concurrently with the old ones.

It is therefore important to be able to analyze use case combinations using different

parameters rapidly. To this end we have developed a simple graph merging algorithm

that given two use case modes (or features) creates a new model, that contains the be-

havior of both use case modes. The new model will contain shared elements and can

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 98

Fig. 3. Video playback use case

Fig. 4. Voice call use case

therefore be analyzed for problems in resource contention. The detailed description of

the algorithm can be found in [3].

As a simple example we use two use cases: video playback and voice call. Figures 3

and 4 show the separate use cases using the notation in the EFCO tool and figure 5

shows the combined use case. The evaluation problem comes down to the sharing of

the TCP/IP and WLAN features. This model can now be used to evaluate how the

combined use cases can coexist on the given platforms.

As we combine use cases such that common functionality is merged there is a need

to add mechanisms for routing messages through the system. This is done by adding a

header to messages and adding routers to the design before the simulation use cases are

generated and exported to CoFluent Studio. We need routers in two different situations,

1) for sending data through the choosen use case mode, e.g. transmit over WLAN or

GSM and 2) for deciding to which use case a message belongs, e.g. if the message

from the WLAN feature belongs to the video decoder or audio decoder use case. The

routers analyse the headers and sends the messages in the correct direction without

modifying the messages or adding delay. The routers abstract away the implementation

of routing messages through the use case as the architect is only interested in analyzing

the performance.

Fig. 5. Combined voice call and video playback use case

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 99

5 Flow control

A central observation that can be made is that in the presented approach the traditional

distinction between a platform independent and a platform dependent model does not

properly exist. Indeed the goal is that all the assets used in the models contain as much

platform dependent information as possible. The reason why this is possible is because

the hardware dependent values are going to remain stable throughout the life-time of a

product family, or their changes can be predicted through discussions with the silicon

vendors. The advantage of this is that a single use case can be verified very much on its

own. The only real issue that is left and that needs the platformmapping is the resolution

of resource contention. This is the topic of this section of the paper.

When several use cases are running concurrently there is often a need to control the

resource usage of some critical parts of the system. Problems with resource sharing are

typically a result from a task using a resource, such as a processor or a communication

channel, for long time intervals or of high buffer levels which lead to long message

delays. Buffer delays can be a problem when the buffer is shared between use cases,

it is then possible that a critical message gets stuck in the back of the message queue.

Such problems could be solved by giving some messages higher priority but this would

be a static solution and it would not take the state of the system into account.

In the example use case in the previous section components such as the video de-

coder might need control mechanisms that prevent its buffers from overflowing or un-

derflowing. This kind of control is needed as most systems contain components with

stochastic behavior and therefore adds burstiness or jitter to the system. Examples of

such components are communication networks, DMAs, storage systems etc. In the ex-

ample use case the TCP/IP and WLAN components will shape the data flow and it is

essential for the simulation results that the behavior of such components can be modeled

and that the impact of these is considered in the simulation.

Furthermore, two use cases might also share a resource such as a processor due to

the mapping. In this case flow control can be used to restrict the processor usage of

one or both of the tasks, the desition of which tasks are allowed to use the processor

can be made based on such properties as buffer level. As an example consider a task

with bursty input, the task will alternate between periods of high activity and periods of

being idle, this will in turn affect the execution of the other tasks running concurrently

on the processor. The other tasks will experience periods when these get more or less

processor time. Depending on the length of the periods and on the execution times of

the tasks, some tasks might miss deadlines during the periods when the first task is

active. This problem can be solved by restricting the processor usage of the first task,

e.g. by suspending the task when its output buffer has reached a certain level, as a result

the execution of the task will not follow the burstiness of the input stream anymore but

instead the periods can be made shorter and the processor usage more even. In order to

find the optimal parameters for the system the designer can try different flow control

mechanisms.

In our approach the designer can add flow control constructs to the system in order

to balance the resource contention. In its simplest form flow control is a sender and

a receiver feature where the receiver monitors a buffer and sends feedback messages

to the sender when the buffer has reached one of the defined levels. The sender then

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 100

Fig. 6. An example of flow control

suspends or resumes its services depending on the content of the feedback message.

Except for tuning the buffer levels, such constructs affect the resource contention as it

can give the resource to a task that really needs it at the moment. In general the desision

to add flow control to the design is based on the designers experience, therefore, the

proposed approach does not consider how to get the optimal system but describes a

methodology how to design a system and what kind of tools the designer needs. By

using different types of flow control the designer can solve problems related to shared

resources which in some cases means that he can avoid to make modifications to the

platform.

In figure 6 a system running an audio and a video decoder is presented, the system

has a general purpose processor (PE1) which in this case handles the network interface

and feeds the streams to the decoders, the general purpose processor also runs the op-

erating system. The actual decoding is performed on a digital signal processor (PE2).

As the input streams are received over a network and because the sender serves sev-

eral client simultaneously, the input streams are bursty. The resource sharing we need

to simulate is 1) the sharing of the network and 2) sharing of the processor used for

decoding the audio and video streams.

The goal of the system architect is to find the parameters that ensure that the playout

buffers of the audio and video decoders does not underflow. If either decoder process is

late, i.e. the level of the playout buffer is low, it should get more processor time than the

other tasks. For this purpose the buffers are controlled using a flow control mechanism

which changes execution rate of the tasks depending on the level of the playout buffer. In

figure 6 the feedback channels are illustrated with dashed arrows. What can be ensured

with this type of simulation is that if we add a specific flow control, the system will work

as long as the input streams are within the limits we have specified regarding burstiness

and jitter.

In this example the flow control is simple in that sense that it directly controlls

the output buffer of the sender feature. Often this is not the case, in many applica-

tions control messages travel in the same channels as other messages and the messages

might pass through several features, as an example consider a sender and receiver com-

municating through a network. This will affect such aspects as the delay of feedback

messages and the delay before the impact can be measured after changing the state of

a feature. If there are several buffers between a sender and a receiver, the level of the

receivers input buffer might continue to rise for some time after the sender has been

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 101

suspended. Such properties can be analyzed when simulating the system with different

parameters and by monitoring buffer levels and message delays.

During the simulation stage buffer levels and message delays at different parameter

settings can be measured for the use case combinations. The designer obtains useful

information about the control mechanisms needed for specific use case combinations.

It is essential that flow control parameters can be easily modified and that the structure

of the flow control mechanisms are general enough that the design does not need to be

changed when changing type of flow control. This enables the designer to try several

setups rapidly and find a solution that satisfies the requirements.

In our metamodel flow control controlls the features by suspending and resuming

the services in these. In the generated CoFluent project a controller is added to the

output of a feature and the services of the feature is connected to the controller by sus-

pend/resume control signals. A controller is a service that forwards data in zero time if

the output channel is not full and it has no buffer space on its input. This is important

as adding a controller should not add buffer space or delay to the system. Further, the

controller has an input port for feedback messages and an output port for setting the

state of the other services of the feature. The feedback messages are produced by an ob-

server located in the receiver feature. The observer records buffer levels and number of

messages received and sends feedback messages according to the flow control protocol

choosen. The observer has similar features as the controller as it does not add delay of

buffer space to the system. Feedback messages are handled as any other message and

can in some cases travel on the same channels as the data, it is only at the sender or

receiver features where the messages need to be routed to the corrects data source/sink.

This simple structure of flow control allows different feedback based flow control types

without changing the structure of the model.

The basic flow control types we have implemented in the EFCO-tool are Water-

mark based flow control, Xon/Xoff, Window based flow control and Credit based flow

control. These basic flow control mechanisms are based on existing protocols used in

computer communication.

Watermark based flow control The Watermark based flow control makes its deci-

sions based on available buffer space at the receiver. The sender can decrease/increase

its transmission rate depending on if the buffer has reached its low or high water marks.

The transmit rate can be changed for example by changing the priority of the sending

process.

The Xon/Xoff protocol is similar to watermark based flow control but is simpler as

it either signals the sender to stop or continue sending jobs based on the input buffer

size of the receiver. The controller in the sender feature receives the feedback message

and suspends/resumes its services depending on the content of the message.

A different type of flow control is Window based flow control. In this type of flow

control the senders is allowed to transmit a given number (window size) of messages

before acknowledgments are needed. This means that it is the number of messages

between the sender and the receiver that is controlled and not the number of elements

in a specific buffer. Window flow control is widely used; one example of a refinement

of it is the sliding window protocol used in TCP.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 102

Fig. 7. Overview of the EFCO tool

A similar protocol is the Credit based flow control. Here the receiver gives credit

to the sender which indicates the number of messages the sender is allowed to send, the

sender consumes this credit while sending messages.

The flow control protocols described here are abstract simulation tools that gives

the designer guidelines to how parts of the system needs to be controlled in order to

make the whole system stable. The approach does not specify how the flow control

should be implemented in a real system, instead this is left to the designer. In real

systems flow control could be implemented within a single application be having the

application suspend/resume itself depending on some criteria, in this case adding flow

control would only make local changes to the application and not to the system. Another

solution is to implement flow control support in the operating system, it would then be

possible to have the scheduler make its decitions based the state of the use cases.

6 EFCO Tool

The EFCO tool is built on the Coral framework [1]. Figure 7 gives an overview of the

tool, and shows the three most important parts of the tool. These are all part of the Coral

modeler, and only support for the EFCO modeling language was needed to implement

in them. The outline editor (to the left) shows the current loaded models in a tree-like hi-

erarchy, both libraries and projects are loaded and shown in this editor. Elements in this

tree-view can be selected, copied and pasted, and also dragged and dropped into other

parts of the tool. The diagram editor (right top) shows a diagrammatic representation of

different parts of the models loaded in the outline editor. Elements from one model in

the outline editor can be dragged and dropped into the diagram editor of another model.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 103

For example, a library element can be dragged from a library in the outline editor into

a diagram of a project, which effectively combines the instantiated library element into

the project. The property editor (right bottom) presents different editable properties of

the currently selected element.

The EFCO tool implements the use case based metamodel and provides a set of tools

for manipulating it. It supports import from and export to CoFluent Studio projects, this

is important as services are the lowest level of detail handled in the EFCO tool and the

implementation of these must be done in CoFluent Studio. The EFCO tool does not

include any simulation tools and therefore the projects must be exported to CoFluent

Studio, this because EFCO tool has only been implemented as a tool for reusing and

combining components in an efficient way. What EFCO tool provides to the design is

tools for managing use cases. It provides the nodes as a tree which enables easy reuse

on any level of the design. It is possible to reuse whole use cases but also features and

services. The tool also implements use case combination tools, the combining of com-

ponents should be done in such a way that common smaller components are recognized

and not duplicated, and mappings to architecture elements should also be reused if they

have already been created. If a design already contain platform mapping the tool also

keeps the mapping as it is usually only new use cases that should be mapped and the

existing use cases will not be modified if not neccessary.

Before exporting the project to a CoFluent Project the use case is translated in to

a SimulationUseCase. A SimulationUseCase contains everything needed to simulate

different modes and combinations of the system, compared to a UseCase it breaks the

structure suitable for reuse and implements components needed for simulating the sys-

tem. To be able to simulate a UseCase created in EFCOTool it needs to be exported back

to CoFluent Studio, before the exporting of the new UseCase can be done, it needs to

be transformed into a SimulationUseCase. When transforming a UseCase into a Simu-
lationUseCase, all routers needed for simulating the UseCase are automatically added

to the model. Additional generic parameters are also added, one for every SubUseCase
and one for choosing between different UseCaseModes in a SubUseCase or UseCase.
Information regarding the architecture part of the model is also gathered to make the

exporting mechanism easier.

There are currently two different types of routers, namely UseCaseRouters and Use-
CaseModeRouters. An UseCaseRouter is needed if, for example, a project element has

more than one connection from the same output to project elements in different Sub-
UseCases. The generic parameter that is automatically created for each SubUseCase,
can be used to enable or disable SubUseCases when simulating the model. When dis-

abling a SubUseCase, all data to that SubUseCase is routed to a discard channel in

the UseCaseRouter. An UseCaseModeRouter, on the other hand, is needed if there are

more than one connection from the same output in a project element to other project

elements in the same UseCase or SubUseCase. Choosing the active UseCaseMode in

a simulation is done via a generic parameter, which is automatically created when the

UseCaseModeRouter is created.

The EFCOTool also supports the ability to automatically run several executable

CoFluent Studio simulation models, with certain specific parameter values. This is

called a BatchMode run, and it is located in the BatchMode tab in the property edi-

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 104

tor area of the EFCOTool. To be able to run a BatchMode in EFCOTool, a XML-file

(that follows a XML-schema) needs to be created. This XML-file contains all infor-

mation describing the different simulations, along with their parameter and simulation

configurations. The batchmode tool is important for the design space exploration as the

designer can analyse a large number of parameters and use case modes and combination

without interacting with the tools. The designer can then after the batchmode run check

the simulation results for feasible solutions.

7 Conclusions and Future Work

In this paper we have introduced an approach that uses a hierarchy of concepts that

help structure the components/assets that are needed for composing the new product

and map these to requirements on the business level. This approach uses the use case as

the fundamental high-level design concept and structures the design so that it is easy to

store design assets into libraries. This also enables use of the automated algorithm for

creating new performance analysis models based on a set of use cases which allows for

automatic combination of features and their evaluation of different platforms. Further,

an approach for finding parameters to control the resource contention in the system by

allowing features to have flow control constructs was also introduced. Such properties

are important for exploring what kind of control a set of use cases need in order to

work properly. Except from optimizing performance such construct can solve resource

sharing problems and it might be possible to avoid to modify a platform.

Currently the approach is tied to the CoFluent Studio tool, but in principle any

SystemC evaluation framework can be used, since the algorithms are all implemented

on the level of the meta-model. As future work we will experiment with how real-time

calculus [10] could be used to calculate bounds of the system. This is useful in case

of realtime systems as the simulation can never show every possible special case; if

the bound can be calculated it is possible to show that no task will miss a dealine.

Simulation will still be useful for studying the performance of the system. Flow control

can also be studied using RTC, one suitable method that can be used is multimode

RTC [11]. It is also possible to directly describe the flow control mechanisms using

RTC as long as we are only interested in the best case or the worst case, examples of

this can be found in literature concerning network calculus [12] which has been used to

analyze networks that are based on window buffer protocols.

References

1. Lundkvist, T., Porres, I.: Coordination of Model Transformation Engines and Visual Editors.

In Peltonen, J., ed.: Proceedings of NW-MODE’09. (2009) 269–283

2. Cofluent design homepage, available at http://www.cofluentdesign.com (2009)

3. Fors, N.: Efficient combination of reusable components in embedded system de-

sign. Master’s thesis, Åbo Akademi University, Faculty of Technology (2008)

http://research.it.abo.fi/research/ese/projects/efco/fors.pdf.

4. Nylund, J.: Efcotool - a tool to efficiently combine and reuse components in embedded

system design. Master’s thesis, Åbo Akademi University, Faculty of Technology (2008)

http://research.it.abo.fi/research/ese/projects/efco/nylund.pdf.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 105

5. Živković, V.D., Lieverse, P.: An overview of methodologies and tools in the field of system-

level design. In: Embedded processor design challenges: systems, architectures, modeling,

and simulation-SAMOS, New York, NY, USA, Springer-Verlag New York, Inc. (2002) 74–

88

6. Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.A.: A methodology to design

programmable embedded systems - the y-chart approach. In: Embedded Processor De-

sign Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS, London, UK,

Springer-Verlag (2002) 18–37

7. Sangiovanni-Vincentelli, A.: Defining platform-based design. EE Design (2002)

8. Calvez, J.P.: Embedded Real-Time Systems. A Specification and Design Methodology. John

Wiley and Sons (1993)

9. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis and design language (aadl):

An introduction. Technical report, CMU/SEI (2006)

10. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing system properties

in platform-based embedded system designs. In: DATE ’03: Proceedings of the conference

on Design, Automation and Test in Europe, Washington, DC, USA, IEEE Computer Society

(2003) 10190

11. Phan, L.T.X., Chakraborty, S., Thiagarajan, P.S.: A multi-mode real-time calculus. In: RTSS

’08: Proceedings of the 2008 Real-Time Systems Symposium, Washington, DC, USA, IEEE

Computer Society (2008) 59–69

12. Le Boudec, J.Y., Thiran, P.: Network calculus: a theory of deterministic queuing systems for

the internet. Springer-Verlag New York, Inc., New York, NY, USA (2001)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 106

