
Using Higher-order Transformations to Derive
Variability Mechanism for Embedded Systems

Goetz Botterweck1, Andreas Polzer2, and Stefan Kowalewski2

1 Lero, University of Limerick

Limerick, Ireland

goetz.botterweck@lero.ie
2 Embedded Software Laboratory

RWTH Aachen University

Aachen, Germany

{polzer∣kowalewski}@embedded.rwth-aachen.de

Abstract. One approach to handle the complexity of embedded systems is the

use of models and domain-specific languages (DSLs) like Matlab / Simulink. If

we want to apply such techniques to families of similar systems we have to de-

scribe their variability, i.e., commonalities and differences between the similar

systems. Here, approaches from Software Product Lines (SPL) and variability

modeling might be helpful. In this paper, we discuss three challenges which arise

in this context: (1) We have to integrate mechanisms for describing variability

into the DSL. (2) To efficiently derive products, we require techniques and tool-

support that allow us to configure a particular product and resolve variability in

the DSL. (3) When resolving variability, we have to take into account depen-

dencies between elements, e.g., when removing Simulink blocks we have to re-

move the signals between these blocks as well. The approach presented here uses

higher-order transformations (HOT), which derive the variability mechanisms (as

a generated model transformation) from the meta-model of the DSL.

1 Introduction

Embedded systems are present in our everyday life. For instance, they are integrated

into washing machines (to save energy and water), mobile devices (to simplify our

lives) and in cars (to guarantee our safety).

In many cases, the engineering of embedded systems has to fulfill conflicting goals,

such as reliability and safety on the one hand and the need for cost reductions and

economic efficiency on the other hand. Moreover, the complexity of such systems is

increasing due to the extension of functionality and increased communication with the

environment. One possibility to deal with the complexity, requirements and the cost

pressure is to use model-based development techniques like Matlab / Simulink. The ad-

vantages of such an approach are that connections between system components are

expressed in an intuitive way on a higher abstraction level, which hides implementa-

tion details. Other benefits are support for simulation and increased reuse due to the

component-oriented approach.

In the context of this paper we regard a “system” as a Matlab / Simulink model that

contains components (Blocks) and provides a certain functionality. Nowadays, such

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 107

systems are reused with small, but significant changes between different applications.

Such variability causes additional complexity, which has to be handled. Some well-

known techniques for this are suggested by Software Product Lines (SPL) [1,2]. In

the research presented here, we discuss how these SPL techniques can be applied and

adapted for the domain of model-based development of embedded systems.

The main contributions of this paper are (1) an analysis of Matlab / Simulink mech-

anism for variability, (2) concepts for managing realizing this variability with model

transformations, (3) a mapping mechanism which adjusts the model according to con-

figuration decisions (extension of [3]), and (4) concepts for “pruning”, i.e., the cleanup

of components that are indirectly influenced by configuration decisions.

The remainder of the paper is structured as follows: First, we will give an overview

of our approach (in Section 2). After this we will explain methods of modeling variabil-

ity with Matlab / Simulink (Section 3) and how the suggested variability concepts are

managed (Section 4). Subsequently, we explain the additional pruning methods (Sec-

tion 5) and the implementation with model transformations (Section 6).

2 Overview of the Approach

We address the challenges described in the introduction with a model-driven approach

that relies on higher-order transformations. Before we go into more details, we will

give a first overview of our approach (see Figure 1). The approach is structured into

two levels (1) Domain Engineering and Application Engineering, similar to other SPL

frameworks [2,1]. Please note that we mark processes with numbers (to) and arte-

facts with uppercase letters (and , will be used in later figures). In addition, we

use indexes (e.g., d and a) to distinguish artefacts on Domain Engineering and Appli-

cation Engineering level.

2.1 Domain Engineering

Domain Engineering starts with the consideration of the context and requirements of

the product line during Feature Analysis leading to the creation of a Domain Feature
Model d, which defines the scope and available configuration options of the product

line. Subsequently, in Feature Implementation a corresponding implementation is

created. Initially, this implementation is given in the native Simulink format (*.mdl
files). To access this native implementation in our model-based approach, we have to

convert it into a model. For this we use techniques based on Xtext [4]. (see [5,6] for

more details). As a result we get the corresponding Domain Implementation Model Cd.

To prepare the derivation of products a higher-order transformation (HOT) is exe-

cuted, which reads the DSL meta-model and generates the derivation transformation ,

which will later be used during Application Engineering.

2.2 Application Engineering

The first step in Application Engineering is Product Configuration , where, based

on the constraints given by the Domain Feature Model d, configuration decisions are

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 108

Feature

Metamodel

Implementation

DSL

Metamodel

generates

ImplementationFeatures

Domain

Feature

Model

Generate

Derivation

Configuration

Processing
Derivation

Application

Implementation

Model

Domain

Implementation

Model

Application

Feature

Model

Ad
Cd

Aa Ca

3

65

Feature Analysis
Feature

Implementation

Additional

Pruning

Operations

7

1 2

Product

Configuration

4

Meta-model

Model

Process

Generated

Process

Legend

D
o

m
a

in
 E

n
g

in
e

e
ri
n

g

Product Line

Requirements

Product

Requirements

Requirements

A
p

p
lic

a
ti
o

n
 E

n
g

in
e

e
ri
n

g
L

a
n
g
u

a
g
e
 E

n
g
.

Requirements

Metamodel

Fig. 1. Overview of the approach.

made, which defines the particular product in terms of selected or eliminated features.

This results in a product-specific configuration which is saved in the Application Fea-
ture Model a. After some further processing , this configuration is used in the Product
Derivation transformation generated earlier by the HOT. This derivation reads the

Domain Implementation Model Cd and – based on the product-specific configuration –

derives a product-specific implementation. After additional pruning operations , the

result is saved as the Application Implementation Model Ca , which can be used in further

processing steps (e.g., Simulink code generation) to create the final executable product.

We will now describe these processes in more detail. We start with the process of

Feature Implementation (in Section 3). We will then explain the required adaptation

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 109

Fig. 2. Implementing Variability within a Matlab / Simulink model.

techniques including the Derivation (Section 4) and the subsequent Pruning Opera-
tions (Section 5).

3 Variability with Matlab / Simulink

Matlab / Simulink is a modeling and simulation tool provided by Mathworks. The tool

provides Blocks which can be represented graphically and Lines which indicate com-

munication. Blocks can contain other blocks, which allows to abstract functionality in

special blocks called Subsystems. A similar technique is used by summarizing multiple

lines into Buses.

In many cases, a feature can be implemented in Matlab / Simulink by a subsystem

which contains the functionality for this particular feature. All necessary information

consumed by the subsystem has to be provided by an interface, called Input ports.

These input ports are normally buses. The information provided by a component are

made available via Output ports, which are again organized buses and some additional

signals.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 110

We identified different possibilities to introduce variability in Matlab / Simulink for

the required Feature Implementation . Predominantly, we use the technique called

negative variability. When applying this technique a model is created, which contains

the union of all features across all possible configurations. When deriving a product-

specific model this “union” model is modified such that features that were selected are

activated and features that were not selected are deactivated or deleted.

To realize such a model in Simulink we can use two different approaches: (1) em-

bedding the variability mechanisms internally (i.e., within the Simulink model) or (2)

manipulating the model, based on variability information described externally (i.e., out-

side of the model).

We will now describe these two different techniques by explaining how common

structures of feature models (Optional feature, Or Group, Alternative Group) can be

implemented. For more information on these structures and feature models see [7,8].

An overview of feature diagram techniques and their formal semantics can be found in

[9].

3.1 Variability mechanisms within the Simulink model

The first option is to realize variability by inserting artificial elements into the Simulink

model. See the example model in Figure 2 where the blocks that implement features

(Feature A, Feature B, Feature C, . . .) have been augmented with additional elements

for variability (Feature A active, Integration, Variant, VP)

Mandatory features are – by definition – present in all variants. Hence, there is

nothing to do for the implementation of mandatory features when deriving a product.

There is no mandatory feature in the example.

Optional features can be realized in Matlab / Simulink models as a triggered subsys-
tem, which is a special block that can be activated using a boolean signal (see Feature A
in Figure 2). By using these mechanisms we are able to activate or deactivate a feature

implementation.

When modelling Alternative (XOR) group and Or group we have to realize similar

variability mechanisms. However, in addition we have to take care of the resulting sig-

nals and how they are fed into subsequent blocks. For alternative features we apply a

Switch block (see the block VPin Figure 2) to choose the right output signal.

For OR-related features the integration of the results cannot be described for the

general case, but has to be implemented depending on the particular case. In particular

we have to take into the account the case when more than one feature of the group is

selected and present in the implementation. We can implement an integration block for

such cases in different ways. One example, is the case where limit is calculated for a

certain dimension. Then the integration can be done by using a minimum (or maximum)

function. In doing so, the lowest (highest) value is used by the system. As an example

for this see Feature D and Feature E which are combined using an Integration block.

3.2 Variability mechanisms outside of the Simulink model

A second possibility, besides variability within the model, is the direct manipulation of

the model with an external tool. To this end, during product derivation it is necessary

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 111

to analyze the structure of a model file and delete the blocks representing deactivated

features in such a way that a desired configuration is obtained.

When creating the union model it might be necessary to create a model, which

could not be executed as-is within Simulink since the execution semantics of the created

structure is undefined. This is because the variability decisions are still to be made and

we have not yet removed certain elements.

As an example consider the case when we want to combine signals of two alternative

features in an XOR group. In the union model, we might create the blocks for these two

features side-by-side and feed their results into the same inport of the next block. As

long as we configure this model (i.e., when the variability is applied), some parts will

be removed, such that we get a valid and executable Simulink model. However, if we

leave the union model (i.e., no variability applied) we do not realize the exclusion of the

two features (“the X in XOR”). This leads to two signals feeding into on inport, which

is an invalid Simulink model with undefined execution semantics.

In the example in figure Figure 2 this would correspond to connecting the F B Bus
outport of Block Feature B directly to the port F bus of the bus Output Signals, while at

the same time connecting the F C Bus outport of Block Feature C directly to the same

port F bus. If we would try to execute such a model, Simulink would respond with an

error message.

The advantage of this kind of external method is that we do not have to pollute the

domain model with artificial variability mechanisms.

Analyzing both possibilities, we came to the conclusion that a combination of both

is an appropriate way of introducing variability. There are two major requirements

which have to be fulfilled introducing variability methods. On the one hand we have

to keep the characteristics of model based development (e.g., easy testing and simula-

tion, capturing of dependencies possible), on the other hand the derived product should

no longer contain any variability mechanisms. The mechanisms, which we introduced

to realize this are explained in the next section.

4 Managing Variability

In this section we introduce the variability mechanisms we used in Simulink mod-

els and how they are influenced by configuring a corresponding feature tree. For in-

stance the feature tree shown in Figure 3. This feature tree has an optional Feature
A, XOR-grouped Feature B and Feature C, and OR-grouped Feature D and

Feature E. Additionally the requires relation indicates that Feature B needs

Feature A, i.e., whenever 𝐵 is selected 𝐴 has to be selected as well. This struc-

ture defines a set of legal configurations. Each of these configurations contains a list of

selected features.

The mechanism that implements the structure of the feature tree has to fulfill certain

requirements. In particular, it is important to keep the ability of simulating and testing

the model. Therefore, it is necessary to build a model which has correct syntax, even

after the variability mechanisms have been introduced. Additionally, the developer must

have the possibility to introduce new features directly in the model. But due to the fact

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 112

Fig. 3. Feature Tree for the variant Matlab / Simulink model shown in Figure 2.

that there are space and performance requirements the mechanisms have to be removed

if the model is converted into a program executable on an embedded hardware.

To this end we used in general the approach of modeling variability within Simulink

but with blocks which are specially marked as variability blocks. These special blocks

are adopted afterwards according to the desired configuration. This means for obtaining

a configuration, features which are not necessary will be deleted. Additionally signals

between blocks are rerouted to be able to eliminate the variability blocks, which are

not necessary in the derived product. The exact methods for a switch-block, triggered
subsystem and, arbitrary integration mechanism is given in the following paragraphs.

The switch-block is used to express the relation between alternative grouped fea-

tures. Therefore only one of them will give their contribution to the system. Using this,

the developer of the implementation is able to simulate all features simply by choosing

a configuration of the switch which selects to corresponding feature implementation

block.

When deriving the executable product, it is necessary to delete those features that

are not selected in the feature configuration. The output of each selected feature has to

be connected with the port the switch block points to. All other corresponding signals

have to be removed. In the end, no variability mechanism should be left in the model.

The situation is a bit simpler for triggered subsystems, which implement optional

features. During simulation these blocks can be selected easily using trigger-signals.

This will take effect on the simulation. If the corresponding feature is selected then the

trigger-port has to be activated. When deriving an executable program, whenever the

corresponding feature is deactivated, the subsystem has to be deleted. If it is activated

nothing has to be done.

The mechanism to join the signals of OR-grouped features are not so easy to adopt.

In the case of simulating the system the developer has to activate the desired features.

This can be done either by using triggered subsystems to implement the features or just

by disconnecting their signals with the block which joins the signals.

In case of deriving a real product two cases have to be distinguished. If only one

feature is selected the other feature and the block joining the signals can be deleted. If

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 113

more than one feature is selected the feature which are not selected can be deleted. But

in this case the integration mechanism is still necessary.

5 Pruning

Dealing with blocks implementing features and the mechanisms to express variability

is not the only adaptation which has to be done. There are additional components in

the Simulink model which have to be changed as well, depending on the choices in the

configuration

Especially, the interfaces for input or output signals which provide the information

and supply the result from and to other systems have to be considered here. These

blocks are interrelated with the configuration. They are necessary to define access to

the signals. Therefore all signals provided from other systems are listed and treated in a

way that the information is available in a common way. For instance the information for

an input port is stored, renamed and mapped to internal representations which realizes

the concrete representation.

Most of the signals, which are provided in the interface blocks are only needed for

one feature. If this feature is not present the corresponding signals can be cleared out to

optimize the implementation.

Buses that contains more than one signal have to be adopted in a similar fashion,

i.e., only the required signals should remain within the buses. Hence, we have to prune

out signals which are no longer needed because the corresponding features are to be

removed.

These adoptions are not only necessary on the highest level of the model but also

for subsystems. In general, it is possible that features are not visible at the highest level,

for instance when subsystems are used to implement features. Since these subsystems

use the same techniques as the main model of the whole system, it is necessary to adopt

their interfaces and buses recursively in a similar fashion.

6 Implementation

The implementation discussed here (see Figure 4) is a technical realization of the ap-

proach shown earlier (see Figure 1).

The technical implementation follows the same structure, with Domain Engineering

(Processes to) and Application Engineering (processes to). We will now

discuss the model transformations in more detail.

6.1 Generating the derivation transformation

The higher-order transformation (HOT) Metamodel2Derivation.atl reads

the meta-model of the DSL and generates a model transformation , which is able to

copy instances of this DSL.

Some excerpts of Metamodel2Derivation.atl are shown in Listing 1. The

transformation is generated as an ATL query which concatenates the output as one

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 114

Feature

Metamodel

Implementation

DSL

Metamodel

generates

D
o
m

a
in

 E
n
g
in

e
e
ri
n
g

ImplementationFeatures

Domain

Feature

Model

Metamodel2De-

rivation.atl

Derive-

Implementation-

Visibility.atl

DeriveImple-

mentation.atl

Application

Implementation

Model

Domain

Implementation

Model

Application

Feature

Model

Ad

M
a
p
p
in

g
s

Bd Cd

Ai Ci

3

65

Product Line

Requirements

Product

Requirements

Feature Analysis
Feature

Implementation

Requirements

A
p
p
lic

a
ti
o
n
 E

n
g
in

e
e
ri
n
g

L
a
n
g
u
a
g
e
 E

n
g
.

Requirements

Metamodel

Additional

Pruning

Operations

7

1 2

Product

Configuration

4

Meta-model

Model

Process

Generated

Process

Legend

Fig. 4. Technical model workflow.

large string. For instance, the helper function generateCopyRules() (see List-

ing 1, lines 4–8) generates copy rules for all meta-classes in the meta-model. Details

of each copy rule (e.g., the rule, from and to part) are generated by the function

Class.toRuleString() (see Listing 1, lines 10–21) and other functions which

were omitted for space reasons.

Examples of how the resulting transformation looks like, will be discussed in the

next section.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 115

1 query Metamodel2Derivation =

2 [. .]

3

4 helper def : generateCopyRules () : String =

5 ECORE !EClass
6 −>allInstancesFrom (’IN’)

7 −>sortedBy (o ∣o .cname ())

8 −>iterate (e ; acc : String = ’’ ∣ acc + e .toRuleString ()) ;

9

10 helper context ECORE !EClass def : toRuleString () : String =

11 if not self . ”abstract” and self−>inclusionCondition () then
12 ’rule ’ + self−>cname () + ’ {\n’ +

13 ’ from s : SOURCEMETA!’ + self−>cname () +

14 self−>inputConstraint () + ’\n’ +

15 ’ to t : TARGETMETA!’ + self−>cname () +

16 ’ mapsTo s (’ +

17 self−>contentsToString () + ’)\n’ +

18 ’}\n\n’
19 else
20 ’’
21 endif ;

22 [. .]

Listing 1. Metamodel2Derivation.atl, transformation (3), excerpt.

6.2 Executing the derivation transformation

The generated derivation transformation DeriveImplementation.atl realizes a

principle called “negative variability” [10] (also known as a “150% model”). With neg-

ative variability the domain model, here the Domain Implementation Model Cd contains

the union of all potential product-specific models.

Hence, the derivation transformation has to selectively copy the elements, filtering

out those that should not be included, copying only those which will become part of the

product-specific model, here the Application Implementation Model Cd.

This selective copying is realized using the following mechanisms:

– For each meta-class in the DSL there is one copy rule. For instance, the rule Block
(see Listing 2, lines 9–19) will copy instances of the meta-class Block.

– Each copy rule contains a condition that refers to an .isVisible() helper func-

tion, which controls whether an element is “visible” for the particular product and,

hence, is copied or not. For instance, when processing the source element s the rule

Block checks whether s.isVisible() (see Listing 2, line 12).

– To avoid inconsistent references, the following check is performed: Whenever

references are processed, it is checked if the referenced elements are visi-

ble, as well. For instance, when copying references to .generalization,

.ownedAttribute, and .ownedOperation the visibility is checked (see

Listing 2, lines 16–18).

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 116

1 module DeriveImplementation ;

2

3 create TARGET : TARGETMETA from SOURCE : SOURCEMETA , CONFIG :

CONFIGMETA ;

4

5 helper context SOURCEMETA !Block def : isVisible () : Boolean =

6 true ;

7 [. .]

8

9 rule Block {
10 from s : SOURCEMETA !Block (

11 thisModule .inElements−>includes (s) and
12 s .isVisible ()

13)

14 to t : TARGETMETA !Block mapsTo s (

15 name <− s .name ,

16 subsystemblockbody <− s .subsystemblockbody−>
select (o ∣o .isVisible ()) ,

17 normalblockbody <− s .normalblockbody−>
select (o ∣o .isVisible ()) ,

18 scopeblockbody <− s .scopeblockbody−>
select (o ∣o .isVisible ())

19)

20 }
21 [. .]

Listing 2. DeriveImplementation.atl, transformation (6), excerpt.

– The visibility functions determine whether instances of a certain meta-class

will be copied. For instance, Block.isVisible() (see Listing 2, lines 5–

6) calculates this for each instance of Block. In the initial version of

DeriveImplementation.atl which is automatically generated from the

meta-model all visibility functions default to true.

– In a second transformation, DeriveImplementationVisibility.atl
Listing 3 these visibility functions are manually redefined. These functions access

the product configuration and determine, which elements go into the product and

which do not. Later on, these will be overloaded over the default visibility func-

tions, by using ATL’s superimpose mechanisms.

The selective copying is controlled by the function s.isVisible() de-

fined in DeriveImplementationVisibility.atl . This function reads the

Application Feature Model a and decides how this influences the filtering of

elements in the Domain Implementation Model.

For this decision to be made, it is necessary to know how the various features in

the feature model (d and a) are related to the corresponding elements in the Mat-

lab / Simulink implementation model.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 117

1 module DeriveArchitectureDetermineVisibility ;

2

3 create TARGET : TARGETMETA from SOURCE : SOURCEMETA , CONFIG :

CONFIGMETA ;

4

5 −− t r u e i f B lock i s r e f e r e n c e d by a s e l e c t e d f e a t u r e
6 helper context SOURCEMETA !Block def : isSelected () : Boolean =

7 [. .]

8

9 −− t r u e i f B lock i s r e f e r e n c e d by an e l i m i n a t e d f e a t u r e
10 helper context SOURCEMETA !Block def : isDeselected () : Boolean =

11 [. .]

12

13 helper context SOURCEMETA !Block def : isVisible () : Boolean =

14 if self .isSelected () then
15 if self .isDeselected () then
16 true .debug (’feature conflict for block’ + self .name)

17 else
18 true
19 endif
20 else
21 if self .isDeselected () then
22 false
23 else
24 true −− d e f a u l t t o v i s i b l e
25 endif
26 endif ;

27 [. .]

Listing 3. DeriveImplementationVisibility.atl, transformation (5), excerpt.

This is represented by the Mapping d between the Domain Feature Model d and the

Domain Implementation Model Cd implemented as a model which contains as elements

dependencies. These dependencies relate features and the corresponding implementa-

tion, with a link mechanisms available from the meta-model. Using this meta-model

we are able to map a feature given in the configuration model to a block given in the

implementation model.

To implement pruning operations we are currently experimenting with and imple-

menting new user-defined methods. These methods will adopt the copy rules in such a

way that the methods given in Section 5 are realized. These pruning operations are in-

fluenced by the configuration and the mapping of features. However, they affect model

components which are only indirectly referenced by the mapping model.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 118

7 Related Work

Several projects deal with Product Derivation. The ConIPF project provides a methodol-

ogy for product derivation [11]. ConIPF concentrates on the formalization of derivation

knowledge into a configuration model. Deelstra et al. provide a conceptual framework

for product derivation [12].

When dealing with variability in domain-specific languages a typical challenge is

the mapping of features to their implementations. Here, Czarnecki and Antkiewicz [13]

used a template-based approach where visibility conditions for model elements are de-

scribed in OCL. In earlier work [14,15], we used mapping models and model transfor-

mations in ATL [16] to implement similar mappings. Heidenreich et al. [17] present

FeatureMapper, a tool-supported approach which can map features to arbitrary EMF-

based models [18].

Voelter and Groher [10] used aspect-oriented and model-driven techniques to im-

plement product lines. Their approach is based on variability mechanisms in openAr-

chitectureWare [19] (e.g., XVar and XWeave) and demonstrated with a sample SPL of

home automation applications.

In earlier work [20,5], the authors have experimented with other mechanisms

for negative variability (pure::variants Simulink connector [21] and openArchitecture-

Ware’s Xvar mechanism [19]) to realize variability in Embedded Systems. The mecha-

nisms were applied to microcontroller-based control systems and evaluated with a prod-

uct line based on the Vemac Rapid Control Prototyping (RCP) system.

The approach presented here can be seen as an integration and extension of

work from Weiland [22] and Kubica [23]. Both presented mechanisms to adopt Mat-

lab / Simulink-models based on feature trees. Weiland implemented a tool which influ-

ences certain variability points in a Simulink model. However, variability mechanisms

are not removed during variability resolution. The approach given by Kubica constructs

a new Simulink model for a derived product.

Tisi et al. provide an literature review on higher-order transformations [24] includ-

ing a classification of different types of HOT. Oldevik and Haugen [25] use higher-

order transformations to implement variability in product lines. Wagelaar [26] reports

on composition techniques for model transformations.

8 Conclusion

In this paper we presented an approach to introduce and adopt variability in a model-

based domain specific language (Matlab / Simulink) for developing embedded systems.

With our approach we are able to simulate and test variable Simulink-models by

introducing mechanisms to manage variability and additionally derive models which

contains only the product specific components. This provides us with memory and com-

putation time efficient models.

All model transformations were implemented in the ATLAS Transformation Lan-

guage (ATL) [16]. The original version was developed with ATL 2.0. We are currently

experimenting with ATL 3.0 and its improved support for higher-order transformations.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 119

Using this technique we are able to reuse previous work which implements the trans-

formation from a domain specific language and a abstract variability mechanism. This

approach is expanded by new methods to decided whether a feature is active and new

domain specific methods are needed to adopt the implementation model.

9 Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303 1

to Lero – the Irish Software Engineering Research Centre, http://www.lero.ie/.

The higher-order transformation (in the overview) was inspired by an ATL case study

by Dennis Wagelaar.

References

1. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. The SEI series

in software engineering. Addison-Wesley, Boston, MA, USA (2002)

2. Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering : Foundations,

Principles, and Techniques. Springer, New York, NY (2005)

3. Beuche, D., Weiland, J.: Managing flexibility: Modeling binding-times in simulink. [27]

289–300

4. Eclipse-Foundation: Xtext http://www.eclipse.org/Xtext/.

5. Polzer, A., Botterweck, G., Wangerin, I., Kowalewski, S.: Variabilitt im modellbasierten

engineering von eingebetteten systemen. In: 7. Workshop Automotive Software Engineering,

collocated with Informatik 2009, Luebeck, Germany (September 2009)

6. Botterweck, G., Polzer, A., Kowalewski, S.: Interactive configuration of embedded systems

product lines. In: International Workshop on Model-driven Approaches in Product Line

Engineering (MAPLE 2009), colocated with the 12th International Software Product Line

Conference (SPLC 2008). (2009)

7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature oriented domain analysis

(FODA) feasibility study. SEI Technical Report CMU/SEI-90-TR-21, ADA 235785, Soft-

ware Engineering Institute (1990)

8. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison Wesley, Reading, MA,

USA (2000)

9. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a formal se-

mantics. In: Requirements Engineering Conference, 2006. RE 2006. 14th IEEE Interna-

tional. (2006) 136–145

10. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and model-driven

software development. In: 11th International Software Product Line Conference (SPLC

2007), Kyoto, Japan (September 2007)

11. Hotz, L., Wolter, K., Krebs, T., Nijhuis, J., Deelstra, S., Sinnema, M., MacGregor, J.: Con-

figuration in Industrial Product Families - The ConIPF Methodology. IOS Press (2006)

12. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a case

study. The Journal of Systems and Software 74 (2005) 173–194

13. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on

superimposed variants. In: GPCE’05, Tallinn, Estonia (September 29 - October 1 2005)

14. Botterweck, G., Lee, K., Thiel, S.: Automating product derivation in software product line

engineering. In: Proceedings of Software Engineering 2009 (SE09), Kaiserslautern, Ger-

many (March 2009)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 120

15. Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architectures.

In: Proceedings of the twenty-second IEEE/ACM international conference on Automated

software engineering (ASE 2007), Atlanta, GA, USA (2007) 469–472

16. Eclipse-Foundation: ATL (ATLAS Transformation Language) http://www.eclipse.
org/m2m/atl/.

17. Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: Mapping features to models. In:

ICSE Companion ’08: Companion of the 13th international conference on Software engi-

neering, New York, NY, USA, ACM (2008) 943–944

18. Eclipse-Foundation: EMF - Eclipse Modelling Framework http://www.eclipse.
org/modeling/emf/.

19. openarchitectureware.org: Official open architecture ware homepage http://www.
openarchitectureware.org/.

20. Polzer, A., Kowalewski, S., Botterweck, G.: Applying software product line techniques in

model-based embedded systems engineering. In: 6th International Workshop on Model-

based Methodologies for Pervasive and Embedded Software (MOMPES 2009), Workshop at

the 31st International Conference on Software Engineering (ICSE 2009), Vancouver, Canada

(May 2009)

21. Pure::systems: pure::variants Connector for Simulink http://www.mathworks.com/
products/connections/product_main.html?prod_id=732.

22. Weiland, J., Richter, E.: Konfigurationsmanagement variantenreicher simulink-modelle. In:

Informatik 2005 - Informatik LIVE!, Band 2, Koellen Druck+Verlag GmbH, Bonn (Septem-

ber 2005)

23. Kubica, S.: Variantenmanagement modellbasierter Funktionssoftware mit Software-

Produktlinien. PhD thesis, Universität Erlangen-Nürnberg, Institut für Informatik (2007)

Arbeitsberichte des Instituts für Informatik, Friedrich-Alexander-Universität Erlangen

Nürnberg.

24. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model

transformations. [27] 18–33

25. Oldevik, J., Haugen, O.: Higher-order transformations for product lines. In: 11th Interna-

tional Software Product Line Conference (SPLC 2007), Washington, DC, USA, IEEE Com-

puter Society (2007) 243–254

26. Wagelaar, D.: Composition techniques for rule-based model transformation languages. In

Vallecillo, A., Gray, J., Pierantonio, A., eds.: ICMT. Volume 5063 of Lecture Notes in Com-

puter Science., Springer (2008) 152–167

27. Paige, R.F., Hartman, A., Rensink, A., eds.: Model Driven Architecture - Foundations and

Applications, 5th European Conference, ECMDA-FA 2009, Enschede, The Netherlands,

June 23-26, 2009. Proceedings. In Paige, R.F., Hartman, A., Rensink, A., eds.: ECMDA-

FA. Volume 5562 of Lecture Notes in Computer Science., Springer (2009)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 121

