
Towards XML Transclusions

Angelo Di Iorio, Silvio Peroni, Fabio Vitali
Dept. of Computer Science

University of Bologna
Mura Anteo Zamboni, 7
40127, Bologna, Italy

{diiorio | speroni | fabio}@cs.unibo.it

John Lumley, Tony Wiley
HPLabs Bristol

Filton Road, Stoke Gifford
Bristol BS34 8QZ
United Kingdom

{john.lumley | anthony.wiley}@hp.com

ABSTRACT
The idea of transclusion has been at the same time the
strength and weakness of Xanadu: some people considered
it as an extremely powerful mechanism to get any version
of any fragment of any document in a global shared docu-
ment space, others as a very complex solution too difficult to
be actually implemented and delivered. We believe transclu-
sions are still worth implementing and would allow designers
to build very sophisticated hypermedia applications. On the
other hand, we are aware that the original design of Xanadu
cannot be implemented without uprooting current systems,
protocols and technologies - in primis the World Wide Web
and XML. In fact, there is a great distance between the
original data model of transclusions - strongly based on ex-
ternal referencing mechanisms - and the XML data model
- strongly based on hierarchical structures and embedded
markup.
This paper investigates to what extent the concept of tran-
sclusion can be shaped for the world of XML, and stud-
ies simplified models for building functionalities inspired by
Xanadu. Particular attention is given to the support for
tracing fragments provenance in multi-source documents and
for synchronizing distributed content through transclusions.
The paper also traces a roadmap to actually implement tran-
sclusions for XML - identifying three incremental steps - and
briefly describes some experimental prototypes.

Categories and Subject Descriptors
H.5.4 [INFORMATION INTERFACES AND PRE-
SENTATION (I.7)]: Hypertext/Hypermedia

1. INTRODUCTION
The concept of transclusion is rooted in the early days of
hypertext[13]. A transclusion is a very advanced inclusion,
whose content is not actually copied but stored as a virtual
reference to the original source. There is only one copy of
each fragment in the whole document space and transcluded
data is permanently connected to the original.

Transclusions were the core idea of Xanadu. Xanadu doc-
uments were built on-the-fly from fine-grained references so
that users could access, modify and reuse any fragment from
any document in a safe and controlled way. The implemen-
tation of transclusions relies on external referencing to lo-
cations in a text data stream, through complex addressing
mechanisms. Mark-up information, links and metadata are
expressly distinct from the flow of text in order to guarantee
flexibility and expressiveness.

The world of XML (and SGML) relies on a completely differ-
ent strategy: mark-up is embedded, documents are strictly
hierarchical and assertions about text fragments are made
by wrapping them with elements, enriched by attributes.
Ted Nelson himself pointed out disadvantages of such an
approach in relation with transclusions[12]. The three objec-
tions he raised can be summarized as: (1) SGML approach
interposes a ‘forced’ structure between users and actual con-
tent while editing, (2) SGML approach only supports well-
formed inclusions and does not allow users to change in-
cluded content, (3) SGML approach does not support over-
lap and non-hierarchical relationships.

Thus, these two positions seem to be irreconcilable. The
goal of this paper is to investigate whether and how tran-
sclusions can be implemented for XML documents and trace
a possible course towards that goal.

The preliminary step is to understand what we mean by
‘XML transclusions’. Our goal is not to re-implement a re-
vised version of Xanadu based on XML technologies, rather
to support users in creating and editing composite XML
documents that make some Xanalogical functionalities pos-
sible. In particular, we are interested in: tracing fragment
provenance and remote manipulation. First of all, compos-
ite XML documents would benefit from rich information
about the origin of each fragment. That makes it possible to
identify single contributions in collaboratively edited docu-
ments, to display multiple changes in a single document, to
go back to original resources and navigate documents in a
free and powerful way. The permanent connection between
transcluded content and original sources would also make
possible sophisticated forms of editing. Changes to remote
documents could be propagated through transclusions or -
the other way round - local modifications could actually up-
date remote resources. Yet, such scenarios also require other
tricky issues to be addressed such as content merging, syn-
chronization, access permissions, reliability and so on.

23

The core of this paper discusses three approaches for imple-
menting XML transclusions, in section 4. These solutions
use different syntaxes and are progressively expressive and
powerful. Before that, we briefly review the recent litera-
ture about transclusions and XML. The paper also mentions
some prototypes we are developing.

2. TRANSCLUSIONS AND XML
The two most recent research efforts for implementing tran-
sclusions are outside the XML universe. Nelson and his
team proposed Transliterature[11] a revision of the original
Xanadu project built on newer technologies. Transliteral
documents are dynamically built on top of transcluded frag-
ments, so that rich and fine-grained connections between
documents are permanently available. Two prototypes are
worth mentioning: Transquoter, that allows users to hide,
highlight and surf multi-source quotations and XanaduS-
pace, that provides users a 3D view of the overall document
space and shows some of the advanced surfing and display-
ing functionalities envisioned for such inter-connected doc-
uments.

Kolbitsch at al.[8] investigated transclusions for HTML, pre-
senting a prototype that allows users to select content from
web pages and transclude them into new documents. Tran-
sclusions directives are stored as in-line elements and very
complex URLs. Interesting issues are still open about con-
tent addressing and merging, especially considering that web
pages may change often and may have complex (and badly-
formed) internal structures.

The closest solution to transclusions in the XML universe
is XInclude[10]. XInclude is a W3C standard for merging
XML documents, by writing inclusion directives and retriev-
ing other (parts of) documents. The focus of XInclude is
on well-formed XML fragments. Although even text frag-
ments can be included (parse="text"), XInclude does not
allow users to include bad-formed fragments or ranges. That
makes it impossible to implement fully-fledged transclusions.
Simplified forms of transclusions are possible through XIn-
clude anyway. XIPr[17] is an implementation of XInclude
in XSLT 2.0, very efficient and simple to be integrated in
other XML applications. XSLT technologies could be also
used straightforwardly for simplified transclusions: a general
approach is discussed in [5].

XLink[3] could also be cited as a way to transclude pieces
of content. The @show and @actuate attributes allow users
to define hot-links, that are similar to transclusions apart
from implementation details. On the other hand, such a
solution is only partial and XLink does not seem to succeed
as expected.

XLink is a relative recent effort, rooted in a very long ex-
perience in the hypermedia research. Since the early 90s
researchers of the Open Hypermedia community have been
designing systems that let users to add sophisticated links to
a wide range of documents, merging original content and ex-
ternal interventions. Chimera[1], Microcosm[6] and DLS[2]
are only few representatives of these systems. More recently
Tzagarakis et al.[16] presented CB-OHS (Component-Based
Open Hypermedia Systems), an extensible infrastructure for
managing complex and distributed hypermedia elements.

The design and implementation of CB-OHS follows the ‘phi-
losophy of the primacy of structure over data’[16]. This is
a key feature of the Open Hypermedia approach, strongly
related with the idea of transclusions: the separation be-
tween the relationships and the information they relate to.
It makes possible to handle data separately, to create links
pointing to read-only reasorces, to create multiple and over-
lapped links on the same content and so on.

3. A CASE-STUDY: COLLABORATIVE RE-
VIEWS

The idea of transcluding fragments from and to XML doc-
uments is still under-developed. Hereinafter we discuss a
road-map to make that development possible, by using a
case study throughout the paper.

Let us suppose we are building a system for supporting mul-
tiple users to write collaborative reviews about movies. It
would be useful to let reviewers quote fragments from other
reviews, keep trace of their source and maintain a ‘live’ chan-
nel between connected fragments. In fact, a review process
can be improved by quoting opposite criticism, by letting
reviewers access related reviews, by automatically updating
distributed reviews with new material and by fostering dis-
cussion among reviewers. It is worth noting that such an
idea is both rooted in the early days of hypermedia (the
essence itself of hypermedia is the inter-connection between
documents) and central in the recent trend of the World
Wide Web (one of the milestones of the so-called Web 2.0 is
just collaboration).

Consider now that reviewers are writing their comments
about ‘Australia’, starring Nicole Kidman and Hugh Jack-
man1. The film is one of the most controversial of the early
2009. David wrote a quite positive review: “Baz Luhrmann’s
Australia is good, but not a masterpiece”.2 Brad has an op-
posite opinion: “A major miscalculation if there ever was
one”3. Assume that Brad replied to David quoting his orig-
inal note. In fact, a third reviewer - say Mike - might be
interested in quoting both these opinions, even by citing a
different comment by a fourth reviewer (for instance, Re-
becca saying “I actually regret having seen the film through
to the end.”4). Figure 1 shows a possible view of such a
composite review, highlighting multiple contributions5.

The multi-contribution view is only one of the applications
of such an advanced quoting. Users might also be given the
possibility to surf to the original review, in order to col-
lect more information about the movie. Moreover, perma-
nent connections between fragments could be enriched with
metadata (stating, for instance, that the remote review is
‘positive’ or ’negative’), so that advanced search could be
performed over the network of documents. Note also that

1http://www.australiamovie.com/
2http://www.theaustralian.news.com.au/story/0,25197,24670334-
601,00.html
3http://www.ropeofsilicon.com/article/movie-review-
australia-2008
4http://movies.about.com/od/australia/fr/austral-
review.htm
5The picture, shown in the following page, contains the final
rendering of the document rather than its internal (XML)
markup

24

Figure 1: A possible view of Mike’s review, high-
lighting multiple contributions

such a composite view makes it possible to rebuild links be-
tween all reviews (even the first two) from the document
itself, without requiring remote documents to be available.

Last, but not least, connections across fragments can be
used as ‘channels to make documents communicate’. Such
an approach can be considered as a simplified form of tran-
sclusions: transclusion as a ‘live and bidirectional channel’
between pieces of content. The term ‘channel’ stresses the
fact that such a mechanism would allow automatic updates
of content, in both directions: from a remote review to all re-
views including that fragment and from a transcluded frag-
ment to the original review it belongs to. Yet, the auto-
matic update of content opens tricky issues of synchroniza-
tion, conflict resolution, priority, content merging and so on.
On the other hand, it opens fascinating perspectives for col-
laborative documents accessing and editing.

The natural candidate to mark-up these composite docu-
ments is XML. It is standard, universally supported and
very powerful. Surprisingly enough, none of the XML appli-
cations we are aware of provides users all these Xanalogical
functionalities together. The problem is paradoxically the
same hierarchical structure of XML, that makes impossible
to address and overlap fine-grained transclusions[12]. The
question is now at a different level: to what extent XML
transclusions can be implemented? Is it possible to create a
fully-fledged Xanalogical environment even for XML docu-
ments and use it for ‘collaborative reviews’?6

4. CHARTING A COURSE FOR XML TRAN-
SCLUSIONS

Intermediate results are also interesting, leading to a full im-
plementation of XML transclusions. This section first dis-
cusses some partial objectives - that can be achieved today
- and then focuses on long-term developments.

4.1 Step 1: Embedding simplified forms of XML
transclusions

An extension of XInclude can support simplified forms of
XML transclusions. Let us encode the use-case reviews as
DocBook documents, whose quotations are actually XIn-

6Note that many other scenarios would benefit such col-
laborative reviews approach. Just think about the creation
of multi-source reports in a company that collect informa-
tion from existing resources, internal documents and exter-
nal publications.

clude inclusions. Figure 2 and 3 show simplified source codes
for Mike’s review (including Brad’s and Rebecca’s reviews)
and Brad’s one (including David’s).

<para>Just read Brad’s review: "<xi:include

href="brad.xml" xpointer="..." parse="..."/>".

And Rebecca’s review is even worse: she actually

"<xi:include href="rebecca.xml" xpointer="..."

parse="..."/>".</para>

Figure 2: XInclude instructions in mike.xml

<para>I have to fully disagree with David. How

can you say that ‘<xi:include href="david.xml"

xpointer="..." parse="..."/>’? I would rather

define it ‘a major miscalculation if there

ever was one’</para>

Figure 3: XInclude instructions in brad.xml

An XInclude processor transforms mike.xml into a final doc-
ument where all inclusions are resolved and content frag-
ments are merged together. The (partial) result we want
to achieve enriches that document with detailed informa-
tion about the origin of each fragment. It is crucial that all
inclusions traversed to reach the content are stored in the
document.

XInclude supports two types of inclusions: (i) text fragments
(parse="text" and xpointer addresses a sequence of char-
acters) or (ii) XML elements (parse="xml" and xpointer

addresses a well-formed XML fragment). The second case
obviously requires that the source documents already con-
tain the XML elements to be included. In the example, all
quotations are encoded through the DocBook quote element
in brad.xml, rebecca.xml and david.xml.

A first solution consists of introducing in the output new ele-
ments wrapping the included content. For instance, we could
use a new element <xi:included> decorated with metadata
about the inclusion. With that information, we can build
applications to let users access metadata, surf to original
content, identify contributions, update content, etc.

There are two main drawbacks to such an approach. Firstly,
any tool processing the final document has to know about
the element xi:included. It is then impossible to directly
reuse legacy tools such as DocBook converters or renderers.
Tools that directly process children of unknown elements
(basically ‘ignoring’ the presence of xi:included) could be
used as well, but we cannot take such a ‘transparent’ be-
havior for granted. A second issue is related to the way
users define inclusions. Consider a fifth reviewer quoting
fragments from (the expanded view of) mike.xml : how can
she/he set the xpointer attribute of inclusion instructions?
She/he has to also consider the xi:included elements and
write very complex expressions, unless XPointer addresses
are filtered to ‘ignore’ those elements. In any case, a tan-
gled and error-prone management of internal addresses is
required. A detailed discussion about these issues can be
found in[7], along with a possible solution based on Archi-
tectural Forms[15]. A running prototype is also presented
in the same paper.

25

The basic idea of Architectural Forms is to extend the at-
tribute set for an element to express semantic information.
Since attributes (that belong to a different namespace) can
be added to SGML and XML elements without impacting
the document’s integrity and without interfering with other
applications, Architectural Forms can be exploited to mix
information in a transparent manner.

The same approach can be applied to inclusions. The idea
presented in [7] is to process all inclusions and ‘embed’ in-
formation in qualified attributes (belonging to a reserved
namespace), so that the main structure of the XML docu-
ment is not altered. The presence of these attributes does
not impact the basic processing, parsing and integrity of the
document. On the other hand, full expressive information
about inclusions is available. Figure 4 shows such a solution
applied to the use case.

<para>Just read Brad’s review: "<quote

xi:inclusion_history="brad.xml#xpointer(...)">I have

to fully disagree with David. How can you say that

‘<quote xi:inclusion_history="brad.xml#xpointer(),

david.xml#xpointer(...)"> Australia is good,but not

a masterpiece </quote>’? I would rather define it

‘a major miscalculation if there ever was one’

</quote>". And Rebecca’s review is even worse: she

actually "<quote xi:inclusion_history="rebecca.xml

#xpointer(...)">regret having seen the film through

to the end</quote>".</para>

Figure 4: Resolving and embedding inclusions in
mike.xml

The attribute xi:inclusion_history is an extension prop-
erty of the XInclude standard to record data about inclu-
sions. The example uses that attribute to store information
about nested inclusions and spread that information all over
the XML tree. Consider, for instance, the quotation ‘Aus-
tralia is good, but not a masterpiece’: the document knows
that it has been included from brad.xml but it was actually
originated in david.xml. Thus, all copies of a given fragment
are very well connected in a complex network of inclusions,
available to both users and applications.

In practice, xi:inclusion_history was never given great
importance and it was never really supported by the XIn-
clude implementations. In fact, the prototype presented in
[7] uses a different syntax. Syntactic details are not relevant
here: what is really important is that record of inclusions are
hidden within documents and can be activated on-demand.
That information can be exploited to build the aforemen-
tioned simplified form of XML transclusions, allowing users
to navigate transclusion metadata, to retrieve original con-
tent, to highlight multiple contributions and to automati-
cally update content.

There many reasons why such a solution is only a partial
step towards our goal. First of all, it only applies to the
inclusion of well-formed XML, since qualified attributes -
meant to be added to the included infoset - can be only
added on elements. One of the consequences is that no in-
formation about ‘dangling’ inclusions is eventually stored in
the document. The term ‘dangling inclusion’ indicates an
inclusion that failed because content was not available. It

may happen for different reasons: errors in the document
address or in the internal location of a fragment, temporary
or permanent disconnectivity, permission issues and so on.
Solutions exploiting XML comments or decoration of pre-
ceding/following siblings might be investigated but seem to
be tortuous and awkward.

The second - and more important - issue is that such a model
does not allow a lot of very common inclusions. Consider,
for instance, a reviewer interested in quoting only few words
of an existing quotation, or a sentence that partially spans
over two paragraphs, or an interval that spans over a bad-
formed XML fragment. Such selections can be supported
only by exploiting external referencing mechanisms, that go
beyond the scope of the strictly hierarchical organization of
XML.

4.2 Step 2: Externalizing XML transclusions
A further step to overcome the aforementioned limitations
consists of storing data about transcluded content in exter-
nal and ad-hoc data structures, instead of embedding that
information in the document itself. The prototype presented
in [7] exports a module handling such externalization, al-
though only some transclusions are actually supported. Fig-
ure 5 shows the example document mike.xml represented
through externalized transclusions.

<ted:out-of-band>

<ted:transclusion

transclusion-id="d6e7"

source="brad.xml#xpointer(...)"/>

<ted:transclusion

transclusion-id="d9e11"

source="david.xml#xpointer(...)"/>

</ted:out-of-band>

<para>Just read Brad’s review: "I have to fully

disagree with David. How can you say that

‘Australia is good, but not a masterpiece’?I would

rather define it ‘a major miscalculation if there

ever was one’". And Rebecca’s review is even worse:

she actually "regret having seen the film through

to the end".</para>

Figure 5: Resolving and externalizing inclusions in
brad.xml

The content - even the transcluded one - is stored as a plain
stream of text while the ted:out-of-band data-structure
contains pointers to text fragments and metadata about
each fragment. Several advantages of such a representa-
tion can be outlined. First of all, it contains rich infor-
mation about the nesting of transclusions as well as rich
metadata about original sources, without interfering with
users and applications that interact with the document. In
fact, all transclusions data are stored externally and can be
ignored by transclusion-unaware processors. The position
of the ted:out-of-band data-structure is also worth dis-
cussing: it can be placed within the XML document itself
(for instance, as a first child of the root) or even in a com-
pletely external file. The first approach produces a single
self-contained resource that can be moved from one system
to another without requiring any management of relative

26

links; on the other hand, it adds extra structures to the orig-
inal XML tree. The second approach is completely trans-
parent and decoupled from the document tree-structure but
it requires applications to process links and set of resources.
Both these approaches are valid, according to users needs
and preferences.

However, the main strength of such an externalized solution
is its capability of defining transclusions that span over text
fragments, ranges or even overlapped transcluded content.
While Architectural Forms only work for transcluding well-
formed XML fragments - as information is embedded into
attributes of the transcluded elements - external pointers
may refer to any location in the document, through proper
XPointer expressions. For instance, it is possible to iden-
tify a transcluded fragment by simply indicating a pointer
to the start- and end- offset of that fragment, and without
altering the document itself. Note also that this approach al-
lows users to store information about dangling transclusions
(whose content is not available because of network errors or
simply because of different regimes in accessing content) by
simply adding a reference to the point where the transcluded
content was supposed to be. There is no ‘intruder’ structure
in the XML tree but very rich information is available about
nested or empty transclusions.

On the other hand, such an approach opens very tricky
issues of content merging and manipulation of references.
The main problem is related to the ‘bad-formedness’ of in-
cluded fragments. External references - and in particular
XPointer expressions - allow users to also include any piece
of an XML tree. Consider, for instance, a user selecting the
last sentence of a paragraph and the first one of the follow-
ing paragraph (a possible HTML source code: ‘concluding
paragraph</p><p>And starting a new one’). Several ques-
tions arise from that simple selection: which is the best way
to include that fragment into a new document? Is it a plain
string (without the p elements), or does it generate two para-
graphs or is it a completely different structure? The adop-
tion of an externalized approach require us to address these
issues and to build a general and flexible document archi-
tecture for manipulating fine-grained fragments. The con-
sistence of external data structures is another very difficult
issue to face. Consider as example the implementation of
an editor for such documents: it requires any edit operation
to be propagated to the external data structure in a consis-
tent way. Even small changes require a complex network of
statements and relations to be updated and manipulated.

4.3 Step 3: Further generalization and exter-
nalization via RDF and EARMARK

The previous approach can be improved, although it is enough
to provide users with a fully-fledged Xanalogical environ-
ment. The idea is to exploit existing XML standards: in-
stead of using ad-hoc data structures and operations, XML
transclusions could be described through RDF (and OWL)
statements. RDF is a language for representing informa-
tion about resources in the World Wide Web[9], that allows
users to make any assertion on any identifiable resource:
statements on any fragment of text, multiple statements on
the same resource and overlapped statements are all possi-
ble in RDF. The additional benefit of RDF lies on its stan-
dardization: expressing transclusions in RDF would allow

us to exploit legacy tools of the Semantic Web community
and to create sophisticated services of searching and rea-
soning over transcluded content. Nevertheless, the adoption
of RDF leaves still open all the very complex issues related
to consistent update and manipulation of externalized tran-
sclusions.

We finally propose a further generalization of RDF to in-
tegrate in a single approach advantages of both embedded
markup (a la XML, presented as a first step of our roadmap)
and external annotations. A detailed discussion of that
proposal - called EARMARK (Extreme Annotational RDF
Markup) - can be found in [14]. EARMARK derived from
the analysis of some limitations of RDF. The main prob-
lem is that RDF assertions need URIs to address resources:
statements only apply to whole documents, fragments pro-
vided with an identifier, or fragments addressable by some
URI schema. The XPointer standard (actually, the full
XPointer schema of XPointer [4]) makes it possible to re-
fer to arbitrary pieces of text and XML documents. The
adoption of that standard in conjunction with RDF would
solve all the URI-related issues. The problem is that the
XPointer full schema has never been confirmed by the W3C
and its approval seems remote.

The second interesting aspect of RDF is the fact that all
URIs are considered ‘opaque’ strings regardless of the type
of resource they refer to. It is very difficult to differenti-
ate an assertion about a text fragment from an assertion
about an element, to differentiate classes of assertions and
relations among assertions. The solution we propose, EAR-
MARK, defines an ontologically sound model that formal-
izes the concepts of the XPointer schema, and a natural way
to express externally both RDF assertions and embedded
markup constructs in the same framework. We also imple-
mented a first prototype translating documents from and to
EARMARK format, RDF and embedded XML. Although
the implementation of EARMARK is at a very early stage,
such a ‘semantic layer on top of transclusion’ is very flexible
and promising.

5. CONCLUSIONS
Transclusions have contributed to shape the most successful
hypermedia projects, although they were never fully imple-
mented. After several years from their invention - dated
back to the early 60s - they still keep the original attractive-
ness and potentialities. The challenge for the community is
now to adapt the original Xanalogical design to the current
technologies and systems, in particular to the World Wide
Web and XML.

The contribution of this paper is manifold: (i) a preliminary
discussion of simplified forms of transclusions, viable for the
world of XML, (ii) a roadmap to actually implement XML
transclusions and (iii) a brief presentation of early proto-
types we are developing in that direction.

There are actually other crucial issues not discussed in this
work: content merging, synchronization and access rights.
They all require a much deeper analysis and experientation
we haven’t done yet. Our impression, however, is that ex-
ternalizing transclusions pave the way towards these goals.
In fact, a flexible and fine-grained model makes it possible

27

to integrate multi-source and multi-author fragments. An
orthogonal step will be designing a distributed architecture
that propagates changes - in both directions - and that han-
dles access permissions.

In conclusion, a lot fascinating challenges await us on the
horizon. It is our intention to foster the discussion within
the community and to actually integrate Xanalogical func-
tionalities in a renewed generation of Xanadu-like systems.

6. REFERENCES
[1] K. M. Anderson, R. N. Taylor, and E. J. Whitehead,

Jr. Chimera: hypermedia for heterogeneous software
development enviroments. ACM Trans. Inf. Syst.,
18(3):211–245, 2000.

[2] L. Carr, D. De Roure, W. Hall, and G. Hill. The
Distributed Link Service: A Tool for Publishers,
Authors and Readers. The Web Journal, (1), 1995.

[3] S. DeRose, E. Maler, and D. Orchard. XML Linking
Language (XLink) Version 1.0.
http://www.w3.org/TR/xlink/, 2001. W3C
Recommendation.

[4] S. J. DeRose, E. Maler, and R. Daniel. XPointer
xpointer() Scheme. World Wide Web Consortium,
Working Draft WD-xptr-xpointer-20021219, December
2002.

[5] B. DuCharme. Transclusion with XSLT 2.0.
http://www.xml.com/pub/a/2003/07/09/xslt.html,
2003.

[6] W. Hall, H. Davis, and G. Hutchings. Rethinking
Hypermedia: The Microcosm Approach. Kluwer
Academic Publishers, Norwell, MA, USA, 1996.

[7] A. D. Iorio and J. Lumley. From XML Inclusions to
XML Transclusions. To appear in the Proceedings of
ACM Hypertext 09.

[8] J. Kolbitsch and H. Maurer. Transclusions in an
HTML-based environment. Journal of Computing and
Information Technology, 14(2):161–174, 2006.

[9] F. Manola and E. Miller. RDF Primer.
http://www.w3.org/TR/rdf-primer/, 2004. W3C
Recommendation.

[10] J. Marsh, D. Orchard, and D. Veillard. XML
Inclusions (XInclude) Version 1.0.
http://www.w3.org/TR/xinclude/, 2006. W3C
Recommendation.

[11] T. H. Nelson. Transliterature: A Humanist Format for
Re-Usable Documents and Media. http://translit.org/.

[12] T. H. Nelson. Embedded markup considered harmful.
World Wide Web J., 2(4):129–134, 1997.

[13] T. H. Nelson. Xanalogical structure, needed now more
than ever: parallel documents, deep links to content,
deep versioning, and deep re-use. ACM Comput.
Surv., page 33, 1999.

[14] S. Peroni and F. Vitali. EARMARKing documents for
arbitrary, overlapping and out-of-order annotations.
To appear in the Proceedings of ACM DocEng 09.

[15] J. K. Truss. International Organization for
Standardization. A.3 Architectural Form Definition
Requirements (AFDR). In In ISO/IEC 10744:1997,
Annex A, SGML Extended Facilities, pages
1601–1608, 1997.

[16] M. Tzagarakis, D. Avramidis, M. Kyriakopoulou,
m. c. schraefel, M. Vaitis, and D. Christodoulakis.
Structuring primitives in the callimachus
component-based open hypermedia system. J. Netw.
Comput. Appl., 26(1):139–162, 2003.

[17] E. Wilde. XIPr: XInclude Processor.
http://dret.net/projects/xipr/, 2007.

28

