
4th Workshop on
Models@run.time

at MODELS 09
Denver, USA, October 5th 2009

Proceedings

Editors

Nelly Bencomo
Gordon Blair
Robert France

Cédric Jeanneret
Freddy Muñoz

Organization Committee

Nelly Bencomo
Lancaster University, UK

Gordon Blair
Lancaster University, UK

Robert France
Colorado State University, USA

Cédric Jeanneret
University of Zurich, Switzerland

Freddy Muñoz
INRIA, France

Program Committee

Danilo Ardagna
Politecnico di Milano, Italy

Betty Cheng
Michigan State University, USA

Peter J. Clarke
Florida International University, USA

Fabio M. Costa
Federal University of Goias, Brazil

Anthony Finkelstein
University College London, UK

Frank Fleurey
SINTEF, Norway

John Georgas
Northern Arizona University, USA

Jeff Gray
University of Alabama at Birmingham, USA

Oystein Haugen
SINTEF, Norway

Jozef Hooman
Embedded Systems Institute, Netherlands

Gang Huang
Peking University, China

Paola Inverardi
Università dell'Aquila, Italy

Jean-Marc Jezequel
IRISA, France

Stéphane Ménoret
THALES Group, France

Flavio Oquendo
University of Brittany, France

Arnor Solberg
SINTEF, Norway

Thaís Vasconcelos Batista
Federal University of Rio Grande do Norte, Brazil

Additional Reviewers

Franck Chauvel
Peking University, China

Brice Morin
IRISA, France

Daniel Schneider
Fraunhofer IESE, Germany

Rui Silva Moreira
Universidade Fernando Pessoa, Portugal

4th Workshop on Models@run.time at MODELS 09 ii

Preface

Welcome to the 4th Workshop on Models@run.time at MODELS 2009!

This document contains the proceedings of the 4th Workshop on Models@run.time that will
be co-located with the ACM/IEEE 12th International Conference on Model Driven
Engineering Languages and Systems (MODELS). The workshop will take place at the feet of
the Rocky Mountains in Denver, USA, on the 5th of October, 2009. The workshop is
organized by Nelly Bencomo, Robert France, Gordon Blair, Cédric Jeanneret and Freddy
Muñoz.

From a total of 19 papers submitted 4 full papers, 6 posters and 2 demos were accepted. This
volume gathers together all the 12 papers accepted at Models@run.time 09. After the
workshop, a summary of the workshop will be published to complement these proceedings.

We would like to thank a number of people who contributed to this event, especially the
members of the program committee and additional reviewers who provided valuable feedback
to the authors. We also thank to the authors for their submitted papers, making this workshop
possible.

We are looking forward to having fruitful discussions at the workshop!

September 2009

 Nelly Bencomo
 Gordon Blair
 Robert France
 Cédric Jeanneret
 Freddy Muñoz

4th Workshop on Models@run.time at MODELS 09 iii

Content

Session 1: The Use of Computational Reflection

Incremental Model Synchronization for Efficient Run-time Monitoring
Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese and Basil Becker 1

Generating Synchronization Engines between Running Systems and their Model-Based
Views
Hui Song, Yingfei Xiong, Franck Chauvel, Gang Huang, Zhenjiang Hu and Hong Mei 11

Leveraging Models From Design-time to Runtime. A Live Demo.
Brice Morin, Grégory Nain, Olivier Barais and Jean-Marc Jézéquel ... 21

Session 2: Configuration Management

Evolving Models at Run Time to Address Functional and Non-Functional Adaptation
Requirements
Andres J. Ramirez and Betty H.C. Cheng ... 31

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems
Ahmed Elkhodary, Sam Malek and Naeem Esfahani ... 41

Models at Runtime: Service for Device Composition and Adaptation
Nicolas Ferry, Vincent Hourdin, Stephane Lavirotte, Gaëtan Rey, Jean-Yves Tigli and Michel Riveill 51

Poster Session

A Model-Driven Configuration Management Systems for Advanced IT Service
Management
Holger Giese, Andreas Seibel and Thomas Vogel .. 61

Design for an Adaptive Object-Model Framework: An Overview
Hugo Ferreira, Filipe Correia and Ademar Aguiar .. 71

Management of Runtime Models and Meta-Models in the Meta-ORB Reflective
Middleware Architecture
Lucas L. Provensi, Fábio M. Costa and Vagner Sacramento .. 81

Modeling Context and Dynamic Adaptations with Feature Models
Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine Moisan and Jean-Paul Rigault 89

Statechart Interpretation on Resource Constrained Platforms: a Performance Analysis
Edzard Höfig, Peter H. Deussen and Hakan Coşkun .. 99

Using Specification Models for RunTime Adaptations
Sébastien Saudrais, Athanasios Staikopoulos and Siobhan Clarke .. 109

4th Workshop on Models@run.time at MODELS 09 iv

Incremental Model Synchronization for
Efficient Run-time Monitoring

Thomas Vogel, Stefan Neumann, Stephan Hildebrandt,
Holger Giese, and Basil Becker

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{prename}.{surname}@hpi.uni-potsdam.de

Abstract. The model-driven engineering community has developed ex-
pressive model transformation techniques based on meta models, which
ease the specification of translations between different model types. Thus,
it is attractive to also apply these techniques for autonomic and self-
adaptive systems at run-time to enable a comprehensive monitoring of
their architectures while reducing development efforts. This requires spe-
cial solutions for model transformation techniques as they are applied at
run-time instead of their traditional usage at development time. In this
paper we present an approach to ease the development of architectural
monitoring based on the incremental model synchronization with triple
graph grammars. We show that the provided incremental synchroniza-
tion between a running system and models for different self-management
capabilities provides a significantly better compromise between perfor-
mance and development costs than manually developed solutions.

1 Introduction
The complexity of today’s software systems impedes the administration of these
systems by humans. The vision of self-adaptive software [1] and Autonomic Com-
puting [2] addresses this problem by considering systems that manage themselves
given high-level goals from humans. The typical self-management capabilities
self-configuration, self-healing, self-optimization or self-protection [2] can greatly
benefit when besides some parameters, e.g. for configuration purposes, also the
architecture of a managed software system can be observed [3].

Each of these capabilities requires its own abstract view on a managed soft-
ware system that reflects the run-time state of the system regarding its archi-
tecture and parameters in the context of the concern being addressed by the
corresponding capability, e.g. performance in the case of self-optimization. Mon-
itoring an architecture of a running system in addition to its parameters requires
an efficient solution to be applicable at run-time and it results in a considerable
increase in complexity. The complexity further increases, as a view has to be usu-
ally decoupled from a running system for system analysis. Otherwise, changes
that occurred during an analysis might invalidate the analysis results, as the
analysis was not performed on a consistent view. Due to the complexity, the de-
velopment of monitoring activities should be eased or even automated. Moreover,
different views on a running system have to be provided efficiently at run-time.

In this context, Model-Driven Engineering (MDE) techniques can in principle
help. MDE provides expressive model transformation techniques based on meta
models which ease the specification of translations between different model types.

4th Workshop on Models@run.time at MODELS 09 1

Basically and as argued in [4], these techniques could be used at run-time for
run-time models and thus also ease the development of architectural monitoring.

In this paper we propose a model-driven approach that enables a compre-
hensive monitoring of a running system by using meta models and model trans-
formation techniques as sketched in [5], where there was no room for a detailed
discussion of the approach. Different views on a system regarding different self-
management capabilities are provided through run-time models that are derived
and maintained by our model transformation engine automatically. The engine
employs our optimized model transformation technique [6, 7] that permits in-
cremental processing and therefore can operate efficiently and online. Further-
more, the approach eases the development efforts for monitoring. For evalu-
ation, the implementation of our approach considers performance monitoring,
checking architectural constraints and failure monitoring that are relevant for
self-optimization, self-configuration, and self-healing capabilities, respectively.

The paper is structured as follows: The proposed approach is presented in
Section 2 and its application in Section 3. The benefits of the approach are
discussed with respect to development costs and performance in Section 4. The
paper closes with a discussion of related work and a conclusion.

2 Approach

To monitor the architecture and parameters of a running software system, our ap-
proach employs Model-Driven Engineering (MDE) techniques. MDE techniques
are employed to handle the monitoring and analysis of a system at the higher
level of models rather than at the API level. Therefore, using MDE techniques,
different models describing certain aspects of or certain views on a running sys-
tem required for different self-management capabilities can be derived and main-
tained at run-time. Thus, models of a managed system and of its architecture
essentially build the interface for monitoring a system. The generic architecture
of our monitoring approach is derived from [5] and depicted in Figure 1.

Meta Model

Meta Model

Target Model

Source Model

Sensors

Managed System

Managing System

Model Transformation Engine

architectural element

model

defined by

monitoring

uses

TGG Rules

Fig. 1. Generic Architecture (cf. [5])

A Managed System provides Sensors that are used to observe the system,
but that are usually at the abstraction level of APIs. These sensors can be used
by any kind of Managing Systems for monitoring activities. Managing systems

4th Workshop on Models@run.time at MODELS 09 2

can be, e.g., administration tools used by humans or even autonomic managers
in case of a control loop architecture as proposed, among others, by Kephart and
Chess [2]. Since it is difficult to use sensors at such a low level of abstraction, our
approach provides a run-time model of a managed system in the form of a Source
Model to enable a model-based access to sensors. This model is maintained at
run-time and updated if changes occur in the managed system.

Nevertheless, a source model represents all capabilities of the sensors. Conse-
quently, it might be quite complex, which makes it laborious to use it as a basis
for monitoring and analysis activities by managing systems. As the source model
is defined by a Meta Model, it can be accessed by model transformation tech-
niques. Using such techniques, we propose to derive several Target Models from
the source model at run-time. Each target model raises the level of abstraction
w.r.t. the source model and it provides a specific view on a managed system re-
quired for a certain self-management capability. A target model might represent,
e.g., the security conditions or the resource utilization and performance state of
a managed system to address self-protection or self-optimization, respectively.
Thus, a managing system being concerned, e.g., with self-optimization will use
only those target models that are relevant for optimizing a managed system, but
does not have to consider aspects or views that are covered by other capabilities
such as self-protection. Though providing different views on a system, several tar-
get models may represent overlapping aspects. Consequently, several managing
systems work concurrently on possibly different target models (cf. Figure 1).

The different target models are maintained by our Model Transformation
Engine, which is based on Triple Graph Grammars (TGGs) [6, 7]. TGG Rules
specify declaratively at the level of meta models how two models, a source and a
target model of the corresponding meta models, can be transformed and synchro-
nized with each other. Thus, source and target models have to conform to user
defined meta models (cf. Figure 1). A TGG combines three conventional graph
grammars: one grammar describes a source model, the second one describes a
target model and a third grammar describes a correspondence model. A cor-
respondence model explicitly stores the correspondence relationships between
corresponding source and target model elements. Concrete examples of TGG
rules are presented in Section 3 together with the application of our approach.

To detect model modifications efficiently, the transformation engine relies on
a notification mechanism that reports when a source model element has been
changed. To synchronize the changes of a source model to a target model, the
engine first checks if the model elements are still consistent by navigating effi-
ciently between both models using the correspondence model. If this is not the
case, the engine reestablishes consistency by synchronizing attribute values and
adjusting links. If this fails, the inconsistent target model elements are deleted
and replaced by new ones that are consistent to the source model. Thus, our
model transformation technique synchronizes a source and a target model in-
crementally and therefore efficiently, which enables its application at run-time.
Therefore, for each target meta model, TGG rules have to be defined that spec-
ify the synchronization between the source model and the corresponding target

4th Workshop on Models@run.time at MODELS 09 3

model. Based on declarative TGG rules, operational rules in the form of source
code are generated automatically, which actually perform the synchronization.

Thus, our transformation engine reflects changes of the source model in the
target models, which supports the monitoring of a managed system. Therefore,
relevant information is collected from sensors to enable an analysis of the struc-
ture and the behavior of a managed system. As sensors might work in pull or
push oriented manner, updates for a source model are triggered periodically or
by events emitted by sensors, respectively. In both cases it is advantageous if
the propagation of changes to target models could be restricted to a minimum.
Therefore, our model transformation engine only reacts to change notifications
dispatched by a source model. The notifications contain all relevant information
to identify the changes and to adjust the target models appropriately.

Though the model transformation engine is notified immediately about mod-
ifications in the source model, there is no need for the engine to react right away
by synchronizing the source model with the target models. The engine has the
capability to buffer notifications until synchronization is triggered externally.
Hence, the engine is able to synchronize two models that differ in more than one
change and it facilitates a decoupling of target models from the source model,
which enables the analysis of a consistent view based on target models.

Implementation The implementation is based on the autonomic computing
infrastructure mKernel [8], which enables the management of software systems
being realized with Enterprise Java Beans 3.0 (EJB) [9] technology for the
Glassfish1 application server. For run-time management, mKernel provides sen-
sors and effectors as an API. However, this API is not compliant to the Eclipse
Modeling Framework (EMF)2, which is the basis for our model transformation
techniques. Therefore, we developed an EMF compliant meta model for the EJB
domain that captures the capabilities of the API. This meta model defines the
source model in our example and a simplified version of it is depicted in Figure 2.

To synchronize a running managed system with our source model, an event-
driven EMF Adapter has been realized. It modifies the source model incremen-
tally by processing events being emitted by sensors if parameters or the structure
of a system have changed. Additionally, the adapter covers on demand the mon-
itoring of frequently occurring behavioral aspects, like concrete interactions, by
using pull oriented sensors that avoid the profusion of events.

3 Application

This section describes the application of our model-driven monitoring approach.
The meta model for the EJB domain that specifies the source model is depicted
in a simplified version in Figure 2. It is divided conceptually into three levels.
The top level considers the types of constituting elements of EJB-based sys-
tems, which are the results of system development. The middle level covers con-
crete configurations of EJB-based systems being deployed on a server. Finally,
the lower level addresses concrete instances of enterprise beans and interactions

1 https://glassfish.dev.java.net/
2 http://www.eclipse.org/modeling/emf/

4th Workshop on Models@run.time at MODELS 09 4

Fig. 2. Simplified Source Meta Model

Fig. 3. Simplified Architectural Meta Model

Fig. 4. Performance Meta Model

Fig. 5. Simplified Failure Meta Model

containerEjb: Container : CorrContainer server : Server

++ ++
++++

uid : string

sessionBean: SessionBean : CorrComponent

containerEjb: Container : CorrContainer server : Server

module : EjbModule

uid : string = sessionBean.uid

instanceCount: int = sessionBean.instances->size()

component : Component

sessionBean: SessionBean : CorrComponent component: Component

ejbInterface : EjbInterface : CorrConnector connector: Connector

sessionBean: SessionBean : CorrComponent component : Component

ejbInterface : EjbInterface : CorrConnector connector : Connector

component2 : Component

reference : EjbReference : CorrReference

++

++

++

++

++++

++
++

++

++ ++
++

++ ++

++

++

++

Fig. 6. Simplified TGG rules for performance target model

4th Workshop on Models@run.time at MODELS 09 5

among them. For brevity, we refer to [8, 9] to get details on the EJB compo-
nent model and on the three levels. Based on this meta model, a source model
provides a comprehensive view on EJB-based systems, which however might be
too complex for performing analyses regarding architectural constraints, per-
formance and failure states of managed systems. Therefore, for each of these
aspects, we developed a meta model specifying a corresponding target model
and the TGG rules defining the synchronization of the source model with the
target model. Thus, our model transformation engine synchronizes the source
model with three target models aiming at run-time monitoring and analysis of
architectural constraints, performance and failure states.
Architectural Constraints Analyzing architectural constraints requires the
monitoring of the architecture of a running system. Therefore, we developed a
meta model that is depicted in Figure 3 and whose instances reflect simplified
run-time architectures of EJB-based systems. It abstracts from the source meta
model by providing a black box view on EJB modules through hiding enterprise
beans being contained in modules, since modules and not single enterprise beans
are the unit of deployment. To analyze architectural constraints, the Object Con-
straint Language (OCL) and checkers like EMF OCL3 can be used to define and
check constraints that are attached to meta model elements, like it is illustrated
in Figure 3. The constraint states that at most one instance SimEjbModule of a
particular SimEjbModuleType with a certain value for attribute name exists. In
other words, at most one module of the module type named Foo can be deployed.
Performance Monitoring Like the architectural target meta model, the meta
model for target models being used to monitor the performance state of EJB-
based systems also abstracts from the source meta model. Figure 4 shows the
corresponding meta model. It represents session beans as Components and con-
nections among beans as Connectors among components. For both entities, in-
formation about the instance situation is derived from the source model and
stored in their attributes. For each component, e.g., the number of currently
running instances or the number of instances that have been created entirely
are represented by the attributes runningInstances and instanceCount, respec-
tively. For each connector, the number of invocations, the maximum and min-
imum execution time of all invocations and the sum of execution time of all
invocations along the connector are reflected by the attributes invocationCount,
maxTime, minTime and totalTime, respectively. The average execution time of
an invocation along a connector can be obtained by dividing totalTime with in-
vocationCount. Finally, a component provides operations to retrieve aggregated
performance data about all connectors provided by the component (inConnec-
tors), and a Server provides aggregated data about its hosted components.

Based on the structure and attributes of the performance target model, an
analysis might detect which components are bottlenecks and which are only
blocked by others. Such information might be used, e.g., to decide about relo-
cating busy components to other servers or improving the resource configuration.

The four TGG rules that are required to synchronize the source model with
3 http://www.eclipse.org/modeling/mdt/downloads/?project=ocl

4th Workshop on Models@run.time at MODELS 09 6

the performance target model are depicted in a simplified version in Figure 6.
For all of them, nodes on the left refer to the source model, nodes on the right
to the target model, and nodes in the middle constitute the correspondence
model. The elements that are drawn black describe the application context of
the rule, i.e., these elements must already exist in the models before the rule
can be applied. The elements that are drawn not black and marked with ++
are created by the rule. The first rule in Figure 6 is the axiom that creates
the first target model element Server for a Container in the source model. The
correspondence between both is maintained by a CorrContainer that is created
as well and that is part of the correspondence model. Based on the second rule,
for each SessionBean of an EjbModule associated to a Container that is created
in the source model, a Component is created in the target model and associated
to the corresponding Server. Likewise to a CorrContainer, the CorrComponent
maintains the mapping between the SessionBean and the Component. As an
example, this rule shows how element attributes are synchronized. The value
for the attribute uid of a Component is derived directly from the attribute uid
of a SessionBean, while instanceCount is the number of SessionBeanInstance
elements the SessionBean is connected to via the instances link (cf. Figure 2).
Moreover, for more complex cases, helper methods operating on the source model
can be used to derive values for attributes of target model elements. The third
rule is comparable to the second one and it maps an EjbInterface provided by
a SessionBean to a Connector for the corresponding Component. The last rule
creates a link between a Component and a Connector if an EjbReference of the
corresponding SessionBean is associated to the EjbInterface that corresponds to
the Connector. Comparable rules have been created for all target models, which
are not described here for brevity.
Failure Monitoring The last target model is intended for monitoring failures
within managed systems. The corresponding meta model is shown in a simplified
version in Figure 5. Due to lack of space, we omit a further description of it.

4 Evaluation
In this section our approach is evaluated in comparison with two other feasible
solutions that might provide multiple target models for monitoring.
1. Model-Driven Approach: The approach presented in this paper.
2. Non-Incremental Adapter (NIA): This approach retrieves the current

run-time state of a managed system, i.e. a system snapshot, by extracting all
structural and behavioral information directly from sensors in a pull oriented
manner. Then, the different target models are created from scratch.

3. Incremental Adapter (IA): In contrast to the Non-Incremental Adapter,
this approach uses event-based sensors, which inform a managing system
about changes in a managed system in a push oriented manner. These events
are processed and reflected incrementally in different target models.

In the following, our approach is evaluated, discussed and compared to these
alternative approaches by means of development costs and performance.

Having implemented our approach and the NIA, we are able to give concrete
values indicating development costs. Using our approach, we had to specify 20

4th Workshop on Models@run.time at MODELS 09 7

TGG rules to define the transformation and synchronization between the source
and all three target models being described in Section 3. On average, each rule
has about six to seven nodes, which constitutes quite small diagrams for each
rule. However, based on all rules, additional 33371 lines of code including code
documentation have been generated automatically. Manually written code in the
size of 2685 lines was only required for the EMF Adapter (cf. Section 2), that
however does not depend on any target meta model and therefore is generic and
reusable. Consequently, specifying an acceptable number of TGG rules declara-
tively is less expensive and error-prone than writing an imperative program that
realizes an incremental model synchronization mechanism (cf. about 30k lines of
code the IA might potentially require). In contrast, the NIA required only 902
lines of code, which seems to be of the same complexity like the 20 TGG rules.

Finally, the approaches are discussed w.r.t. their run-time performance char-
acteristics. The results of some measurements4 are shown in Table 1. The first
column Size corresponds to the number of beans that are deployed in a server to
obtain different sizes for source and target models. Approximately in the same
ratio as the number of deployed beans increases, the number of events emitted
by mKernel sensors due to structural changes, the number of bean instances,
and the calls among bean instances increase. mKernel sensors allow to moni-
tor structural (S) and behavioral (B) aspects. Behavioral aspects, i.e., concrete
calls, can only be monitored in a pull oriented manner, while structural aspects
can additionally be obtained through a push oriented event mechanism.

Size
NIA Model-Driven Approach

S B n=0 n=1 n=2 n=3 n=4 n=5 B
5 8037 20967 0 163 361 523 749 891 10733
10 9663 43054 0 152 272 457 585 790 23270
15 10811 72984 0 157 308 472 643 848 36488
20 12257 105671 0 170 325 481 623 820 55491
25 15311 142778 0 178 339 523 708 850 72531

Table 1. Performance measurement [ms]
The NIA uses only pull oriented sensors to retrieve all required information to

create the three target models separately, from scratch and periodically. For this
approach, the second and third column shows the consumed time in milliseconds
(ms) to create the three target models. E.g., having deployed ten beans, it took
9663 ms for the structural aspects and 43054 ms for the behavioral aspects.

For our Model-Driven Approach, structural aspects are obtained through
events and behavioral aspects through pull oriented sensors. The fourth to ninth
column show the average time of processing n events, which includes the corre-
sponding adjustments of the source model, and of synchronizing n modifications
of the source model to the three target models incrementally by invoking once
the model transformation engine. E.g., for n = 2 and at a model size of ten, 272
ms are consumed on average for processing two events and for transferring the
corresponding changes in the source model to the three target models on average.
Additionally, we decomposed the average times to find out the ratio of event pro-
cessing times and model synchronization times. On average over all model sizes,
7.2%, 5.9%, 4.4%, 4.8% and 3.7% of the average times are used for model syn-

4 Configuration: Intel Core 2 Duo 3GHz, 3GB RAM, Linux Kernel 2.6.27.11

4th Workshop on Models@run.time at MODELS 09 8

chronization for the cases of n from one to five, respectively. Consequently, most
of the time is spent on event processing, while our model transformation engine
performs very efficiently. The third and last column of Table 1 indicate that for
both approaches the behavioral monitoring is quite expensive. However, this is
a general problem, when complete system behavior should be observed. How-
ever, comparing both approaches, our approach clearly outperforms the NIA as
it works incrementally. Moreover, a manual IA would not be able to outperform
our approach, because, as described above, event processing activities are much
more expensive than model synchronization activities and a manual IA would
have three event listeners, one for each target model, in contrast to the one
our approach requires. To conclude, our approach outperforms the alternative
approaches when development costs and performance are taken into account.

5 Related Work
The need to interpret monitored data in terms of the system’s architecture to
enable a high-level understanding of the system was recognized by [10], who use
only an ADL-based system representation. Model-driven approaches considering
run-time models, in contrast to our one, do not work incrementally to maintain
those models or they provide only one view on a managed system. In [11] a model
is created from scratch out of a system snapshot and it is only used to check
constraints expressed in OCL. The run-time model in [12] is updated incremen-
tally. However, it is based on XML descriptors and it provides a view focused on
the configuration and deployment of a system, but no other information, e.g., re-
garding performance. The same holds for [13] whose run-time model is updated
incrementally, but reflects also only a structural view. All these approaches [11–
13] do not apply advanced MDE techniques like model transformation. In this
context, only first ideas exist, like [14], who apply a QVT-based [15] approach to
transform models at run-time. They use MediniQVT as a partial implementation
of QVT, which performs only offline synchronizations, i.e., models have to be
read from files, and therefore leads to a performance loss. Moreover, it seems that
their source model is not maintained at run-time, but always created on demand
from scratch, which would involve non-incremental model transformations.

Regarding the performance of different model transformation techniques, we
have shown that our TGG-based transformation engine is competitive to ATL-
[16] or QVT-based ones when transforming and synchronizing class and block
diagrams [17]. Though the approach presented in this paper uses different mod-
els, meta-models and therefore different transformation rules, similar results can
be expected for the case study used in this paper.

6 Conclusions & Future Work
This paper presented our approach to support the model-driven monitoring of
software systems. It enables the efficient monitoring by using meta models and
model transformation techniques. The incremental synchronization between a
run-time system and different models can be triggered when needed and there-
fore multiple managing systems can operate concurrently. The presented solu-
tion outperforms feasible alternatives considering development costs and perfor-
mance.

4th Workshop on Models@run.time at MODELS 09 9

The core idea of using model transformation techniques for monitoring and
even for adaptation of autonomic systems has been presented in [5], where there
was no room for a comprehensive discussion. As the results presented in this
paper are promising, we are currently investigating the usage of model transfor-
mation techniques for architectural adaptations.

References
1. Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., et al.: Software

Engineering for Self-Adaptive Systems: A Research Road Map. Number 08031 in
Dagstuhl Seminar Proceedings (2008)

2. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer
36(1) (2003) 41–50

3. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
Proc. of the Workshop on Future of Software Engineering, IEEE (2007) 259–268

4. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: Proc. of the Workshop on Future of Software Engineering,
IEEE (2007) 37–54

5. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-Driven
Architectural Monitoring and Adaptation for Autonomic Systems. In: Proc. of the
6th Intl. Conference on Autonomic Computing and Communications, ACM (2009)
67–68

6. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1) (March 2009)

7. Giese, H., Hildebrandt, S.: Incremental Model Synchronization for Multiple Up-
dates. In: Proc. of the 3rd Intl. Workshop on Graph and Model Transformation,
ACM (2008)

8. Bruhn, J., Niklaus, C., Vogel, T., Wirtz, G.: Comprehensive support for manage-
ment of Enterprise Applications. In: Proc. of the 6th ACS/IEEE Intl. Conference
on Computer Systems and Applications, IEEE (2008) 755–762

9. DeMichiel, L., Keith, M.: JSR 220: Enterprise JavaBeans, Version 3.0: EJB Core
Contracts and Requirements. (2006)

10. Garlan, D., Schmerl, B., Chang, J.: Using Gauges for Architecture-Based Mon-
itoring and Adaptation. In: Proc. of the Working Conference on Complex and
Dynamic Systems Architecture. (2001)

11. Hein, C., Ritter, T., Wagner, M.: System Monitoring using Constraint Checking
as part of Model Based System Management. In: Proc. of 2nd Intl. Workshop on
Models@run.time. (2007)

12. Dubus, J., Merle, P.: Applying OMG D&C Specification and ECA Rules for Au-
tonomous Distributed Component-based Systems. In: Proc. of 1st Intl. Workshop
on Models@run.time. (2006)

13. Morin, B., Barais, O., Jézéquel, J.M.: K@RT: An Aspect-Oriented and Model-
Oriented Framework for Dynamic Software Product Lines. In: Proc. of the 3rd
Intl. Workshop on Models@run.time. (2008) 127–136

14. Song, H., Xiong, Y., Hu, Z., Huang, G., Mei, H.: A model-driven framework for
constructing runtime architecture infrastructures. Technical Report GRACE-TR-
2008-05, GRACE Center, National Institute of Informatics, Japan (2008)

15. OMG: MOF QVT Final Adopted Specification, OMG Document ptc/05-11-01
16. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.

Science of Computer Programming 72(1-2) (2008) 31–39
17. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models.

Technical report, No. 28, Hasso Plattner Institute, University of Potsdam (2009)

4th Workshop on Models@run.time at MODELS 09 10

Generating Synchronization Engines between
Running Systems and Their Model-Based Views

Hui Song1, Yingfei Xiong1,2, Franck Chauvel1, Gang Huang1, Zhenjiang Hu3,
and Hong Mei1

1 Key Laboratory of High Confidence Software Technologies (Ministry of Education)
Peking University, Beijing, China

{songhui06,franck.chauvel,huanggang,meih}@sei.pku.edu.cn
2 Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan

xiong@ipl.t.u-tokyo.ac.jp
3 GRACE Center, National Institute of Informatics, Tokyo, Japan

hu@nii.ac.jp

Abstract. The key point to leverage model-based techniques on runtime
system management is to ensure the correct synchronization between the
running system and its model-based view. In this paper, we present a
generative approach, and the supporting tool, to make systematic the
development of synchronization engines between running systems and
models. We require developers to specify “what kinds of elements to
manage” as a MOF meta-model and “how to manipulate those elements
using the system’s management API” as a so-called access model. From
these two specifications, our SM@RT tool automatically generates the
synchronization engine to reflect the running system as a MOF-compliant
model. We have applied this approach on several practical systems, in-
cluding the JOnAS JEE server.

1 Introduction

The increasing need of continuously available systems (IT systems, e-business,
or critical systems) requires to perform management activities such as configu-
ration, evolution or corrective maintenance at runtime.

Management activities (automated or not) are build on a loop [1]: monitoring
the running system, analyzing the collected data, planning the needed reconfig-
urations, and executing those reconfigurations. For monitoring and executing,
existing platforms such as JEE [2], Fractal[3], and Android [4] provide adequate
facilities through devoted APIs, such as the JMX API [5] for JEE systems. For
analysis and planning, researchers proposed many generic approaches, utilizing
model-based techniques like architecture styles [6, 7], model checking [1], model-
based self-repair [8], or model-based artificial intelligence [9], etc.

The key-point to leverage model-based analysis and planning at runtime is
to obtain a model-based view of a running system and to ensure the proper
synchronization between the system and its model-based view.

However, despite their importance, such synchronization engines are still
hand-crafted in a tedious and error-prone manner. Existing approaches [7, 10, 8,
11] include hand-written synchronization engines. To do so, developers have to
care about how to maintain a model, how to manipulate the system through the

4th Workshop on Models@run.time at MODELS 09 11

management API, and how to propagate the changes between them to ensure
their consistency. All these functionalities have to be considered simultaneously.

The contribution of this paper is to make systematic the development of
such synchronization engines between models and running systems. Our ap-
proach reflects a simple model-driven process: For a specific system, we require
the developers to specify what elements can be managed, and how to manip-
ulate them through the management API. From these two specifications, our
approach automatically generates a synchronization engine that maintains a dy-
namic MOF-compliant model for the running system. This model enables the
standard model-based techniques (like OCL and QVT) to be used for runtime
management. We implement this approach as a tool named SM@RT 4, and apply
it on several practical systems.

The rest of this paper is organized as follows. Section 2 illustrates the diffi-
culty for developing a synchronization engine by hand whereas Section 3 presents
an overview of our generation process. Section 4 and Section 5 explain how de-
velopers specify the system and how to generate the synchronization engine.
Section 6 describes and discusses our case studies. Finally, Section 7 presents
some related approaches and Section 8 concludes the paper.

2 Motivating Example

This section illustrates the complexity of developing a synchronization engine
(SE) between a running systems and its model view.

We choose the JOnAS [12] JEE application server as a running example. A
JOnAS server contains a lot of manageable elements such as EJBs, data sources
(proxies to databases), etc. Each data source maintains a pool of connections
to the underlying database. If the number of cached connections tends to reach
the capacity of the connection pool, the database access may be delayed and the
pool capacity must be enlarged. In the same manner, if the number of cached
connections is always zero, the data source can be removed to release resources.

JOnAS provides a low-level interface (the JMX [5] management API) for
the monitor and execution of manageable elements. But complex analysis and
planning must still be performed by hand or by using external tools. Model-
driven techniques and tools can help such analysis and control tasks. Take the
above management scenario as an example, the administrators could use a model
visualization tool (like GMF [13]) to help better understand the system, or use
OCL constraints to automatically verify the server reconfiguration.

Like other model-based technologies, GMF and OCL can be only applied on
MOF-compliant models (as shown in Figure 1), which is constituted by standard
model elements. But the JMX API represents the running system as a specific
kind of Java objects, the Managed Beans (MBeans). The integration of model-
based techniques thus requires an SE which reflects the running system into
a MOF-compliant model, and ensures a bidirectional consistency between the
system and the model. For instance, in our JEE scenario, the SE must build a
model element for each data sources on the JEE AS. When the management

4
“SM@RT” for Supporting Models at Run-Time: http://code.google.com/p/smatrt

4th Workshop on Models@run.time at MODELS 09 12

agent deletes a model element, the SE must detect this change, identify which
data source this removed element stands for, and finally invoke the JMX API to
remove this data source.

:JOnAS

hsql : JDBCSource
current = 45
capacity = 50

mysql : JDBCSource
current = 0
capacity = 50

jps: EntityBean

dataSource
jdbc
DataSource Synchronization

Engine JOnAS Server

HSQL

MySQL

Java Pet Store
Application

MOF-Compliant Model Running System

StorageBusiness Logics

Monitor

Monitor

Modify

Modify

Fig. 1. A common structure of the synchronization engines

However, such an SE employs a complex mechanism and its development is
therefore time consuming and error-prone. For the above scenario, the SE has
to perform many functionalities: reading and writing models, monitoring and
executing system changes, maintaining the mapping between model elements and
system elements, handling conflicts between changes, and planning the proper
subsequent changes to make the model and system consistent. In addition, SEs
share many commonalities, and developing the SE from scratch is a waste of
time and labor. Actually, except for monitoring and executing system changes,
all the other functionalities are independent to the specific systems, and thus it
is possible to achieve common solutions for them.

3 Approach Overview

We provide a generative approach to assist the development of synchronization
engines. As shown in Figure 2, the inputs of our approach include a system meta-
model specifying what kinds of elements can be managed and an Access Model
specifying how to use the API to monitor and modify those manageable elements.
Our SM@RT tool generates a SE which reflects automatically the running system
into a MOF-compliant model that conforms to the system meta-model.

Scope of the article

SM@RT
GENERATOR

Ru
nn

in
g

Sy
st

em
(J

EE
, F

ra
ct

al
,

An
dr

oi
d)

M
an

ag
em

en
t A

PI

M
O

F-
ba

se
d

M
od

el
(o

f t
he

 R
un

ni
ng

Sy

st
em

)

Synchronization
Engine

System Meta-model
(What to manage?)

generate

Access Model
(How to manage it?)

conforms to

Existing Model-based
Techniques

(Analysis,
Tranforfmation, etc)

Integration With

Fig. 2. Generation of Synchronization Engine: Approach Overview

4th Workshop on Models@run.time at MODELS 09 13

Our approach is applicable on the following premises. First, we require the
target system to provide a management API: our tool does not instrument non-
manageable systems, nor extends inadequate APIs. Second, we reflect a direct
model for the system (that means the model is homogeneous with the system
structure: each model element stands for one system element). If an abstract
model is needed, a model transformation could be used to transform this direct
model into the needed forms, which is beyond the scope of this paper.

4 Modeling Management APIs

In order to generate an SE for a specific system, we need to know what can be
managed in this system, and how to managed it. In this section, we present how
to specify these two kinds of information as models.

According to Sicard et al. [8], a manageable running system is constituted
of managed elements. Managed elements have local states. They could be com-
posed by other managed elements, and they could have connections between
each other. These four concepts can be described using the following four con-
cepts in EMOF meta-model [14], i.e. Class, Attribute, Aggregation, Association,
respectively. Figure 3 is an excerpt of the meta-model we defined for JOnAS.

Fig. 3. The system meta-model of the JEE example

The manageable elements can be manipulated through the management API.
For example, we can use getAttribute method of JMX to fetch the current
opened connections of a data source. For a system, we require developers to
specify how to invoke its management API to manipulate each type of elements,
and we name this as an “access model”. More formally, the access model is a
partial function:

access : MetaElement×Manipulation −→ Code

where MetaElement is the set of all the elements in the system meta-model
(classes, attributes, etc.), Manipulation is the set of all types of manipulations,
which are summarized in Table 1, and Code is a piece of Java code.

Figure 4 shows two sample items in the access model for JOnAS. The first
item defines the common code for getting the values of int-typed attributes. We
obtain an instance of an MEJB remote element (Line 4), and the logic is defined
as an Auxiliary. Then we invoke the getAttribute method provided. The
first parameter is the reference to the current management element. The second
parameter is the property name. The second sample is for adding a new data
source into a server, or “loading a data source according to a specific name”
in the JEE language. We first find the model element added by management

4th Workshop on Models@run.time at MODELS 09 14

Table 1. All kinds of manipulations. For each kind of operation, we list its name, the types of
meta elements it could applied, the parameters it required for execution, and a brief description.
In the table, Property standards for attribute, aggregation and association, and the following “1” or
“*” refers to the single-valued or malti-valued properties, respectively. The Auxiliarys are common
operations defined by users, and can be used during the definition of code, as shown in the example.

name meta element parameter description
Get Property (1) - get the value of the property
Set Property (1) newValue set the property as newValue

List Property (*) - get a list of values of this property
Add Property (*) toAdd add toAdd into the value list of this property
Remove Property (*) toRemove remove toRemove from the list of this property
Lookfor Class condition find an element according to condition

Identify Class other check if this element equals to other

Auxiliary Package - user-defined auxiliary operations

Fig. 4. Invoking JMX interface

1 // Sample 1, get the value for any kind of attributes
2 MetaElement=AnyClass :: AnyIntTypedSingleValuedAttribute ,
3 Manipulation=Get , Code=BEGIN
4 Management mgmt=$sys:: auxiliary.getMainEntry ();
5 Integer res=(Integer) mgmt.getAttribute($sys::this ,$meta:: prpt_name);
6 $sys:: result=rest.intValue ();
7 END
8 // Sample 2, add a new data source
9 MetaElement=JOnASServer :: jdbcDataSource , Manipulation=Add

10 Code: BEGIN
11 String dbName=$model :: newAdded.name;
12 Object [] para = {dbName ,Boolean.TRUE};
13 String [] sig = {"java.lang.String","java.lang.Boolean"};
14 Management mgmt=$model :: auxiliary.getMainEntry ();
15 $sys:: newAdded =(ObjectName)mgmt.invoke(dbserver , "loadDataSource", para , sig);
16 END

agents, and get the data source name (Line 11) from this element. Finally we
use this name to invoke the loadDataSource operation (Lines 12-15).

When defining how to manipulate the systems, developers may need system
information (like “what is the current system element”, Line 5), system type
information (like the property name, Line 5), and the inputted information by
the external management agent (like the appointed name for the to-be-created
data source, Line 11, such information is preserved in the corresponding model
element). We defined three kinds of specification variables, the system, meta and
model variables, to stand for the above three kinds of information, in order to
keep developers from the details about the generation and the SE.

5 Generating the Synchronization Engine

This section presents the SEs we generated to maintain the causal links between
model and system. We first explain how the generated SEs work, and then
introduce how we generate the engines.

The first question for a synchronization mechanism is “when and where to
synchronize”. Since the model is the interaction point between the system and
the management agent (MA), synchronization should be triggered before MA
read the model and after they write the model. In addition, for each reading
or writing, the MA only cares about part of the model. And thus, we only

4th Workshop on Models@run.time at MODELS 09 15

synchronize the involved part of model with the running system. Such on-demand
synchronization preserves correctness and increases performance.

Fig. 5. Structure of the generated SE

Figure 5 shows the structure of our SE, implementing the on-demand syn-
chronization approach we discussed before. The model we provide is in an in-
memory form conforming with Ecore [13]. Each model element is represented
by a Java object in the type of EObject. External management agents read or
write this model by invoking the standard get or set methods on these model
elements. The Model Listener listens to these model operations. For a reading
operation, the listener interrupts the operation, asks the planner to do synchro-
nize, and finally resume the original operation with the refreshed model. For a
writing operation, it waits until the operation finished, and asks the planner to
synchronize this modified model with the system. The Mapping pool maintains
a one-to-one mapping between the model elements and the system elements, as
a reference for the synchronization. The Model and System proxies are used
to read the current model and system, and write the required changes (i.e. the
synchronization result) back. The Exception Catcher implements a simple
conflict handling strategy, i.e. when a conflict causes failures during the model
or system manipulation, it catches the thrown exceptions and warns the man-
agement agent. Based on these auxiliary parts, the central planner execute a
set of synchronization strategies:

SynchStrategy : ModOp×MOFElem→ (ModOp
⋃
SysOp

⋃
MapOp)∗

Each strategy defines that when a specific kind of model operations (get, set,
etc.) happened on a specific part of the model (model elements, single-valued
attributes, etc.), the engine will execute a sequence of operations. These opera-
tions manipulate the model, the system, and the mapping pool, in order to make
them consistent.

Due to the space limitation, we do not explain each strategy, but use the
following sample to illustrate how they work. For the JOnAS sample, in the
beginning, the model contains only one element standing for the JOnAS server.
The management agent invokes get method on this root element to see its
data sources. The model listener interrupts this get operation, and informs the
planner. Follow the synchronization strategy for get operations on multi-valued
aggregations, the planner performs the following operations: It first checks the
mapping pool to see that root stands for the JOnAS server, and then invoke

4th Workshop on Models@run.time at MODELS 09 16

list on this server (See Table 1), which returns a set of ObjectNames pointing
to the current data sources. The planner then invokes the create operation on
the model proxy to create a new model element for each of these data sources,
and refresh the mapping pool for these new model elements. Finally, the original
get operation continues, and returns a set of newly created model elements.

Our SM@RT tool automatically generates the above SEs. The tool has two
parts, a common library and a code generation engine. The common library
implements mapping pool, the exception catcher, and the planner, with the
synchronization strategies hard-coded inside. The code generation engine is an
extension of the Eclipse Modeling Framework (EMF), and it generates the model
listener, model proxy, and system proxy specific to the target system. Specifically,
it generates a Java class for each of the MOF classes in the system meta-model,
implementing the EObject interface defined by Ecore. Then it overrides the
model processing methods in EObject, inserting the logic for listening operations
and launching the synchronization planner. Finally, it wraps the pieces of API
invocation code in the access model into a set of system manipulation methods,
which constitutes the system proxy.

6 Case Studies

We applied our SM@RT tool to generate SEs for several practical systems, and
performed several runtime management scenarios on these models, utilizing ex-
isting MOF-based model-driven techniques.

6.1 Reflecting JOnAS JEE systems

Our first case study is the full version of the running example we used before.
We reflect all the 21 kinds of JEE manageable elements (including applications,
EJBs, data sources, transaction services, etc.) as a MOF-compliant model, and
visual it to provide a graphical management tool for JOnAS administrators.

We first define the system meta-model and the access model for JOnAS as
explained in the previous sections. The resulting system meta-model contains 26
classes, 249 attributes, 21 aggregations and 9 associations. The resulting access
model defines 28 pieces of code like the sample in Figure 4.

From the system meta-model and the access model, the SM@RT tool au-
tomatically generates the SE for JOnAS as a Java library. We connected this
library with GMF to visualize the reflected model (just in the same way as
visualizing any common Ecore models), as shown in Figure 6.

In this snapshot, the rectangles stand for the JOnAS manageable elements
and the lines stand for the association between these elements. From this dia-
gram, we see that there are two applications running on the pku server, which
runs on one JVM, and contains several resources, including a data source named
HSQL1. We select the data source, and the property view on the right side shows
its attribute values. All the elements, associations and attributes depict the cur-
rent system state. That means if we select this model element again (that causes
GMF to refresh the attributes), some attribute values may change, and if we se-
lect the canvas (that causes GMF to refresh the root element), some elements

4th Workshop on Models@run.time at MODELS 09 17

Fig. 6. A snapshot of the visualized model of JOnAS

may disappear and new elements may appear. We can also directly use this di-
agram to change the system. For example, if we increase the JDBCMaxConnPool

from 100 to 200, the underlying pool will be enlarged consequently. If we create
a new model element in the type of J2EE Application, and set its fileName

attribute as the address of an EAR file, the synchronization engine deploys this
EAR file into the system, and some new model elements will appear in the dia-
gram, standing for the modules and EJBs inside this newly-added application.

6.2 Other case studies

Table 2. Summary of experiments

target system API meta-model access model generated contrast techs
(elements) (items) (LOC) (LOC) (LOC)

JOnAS JMX 305 28 310 18263 5294 GMF
Java classes BCEL 29 13 124 10518 3108 UML2
Eclipse GUI SWT 31 23 178 11290 - EMF
Android Android 29 9 67 8732 - OCL

Table 2 summarizes all the case studies we have undertaken. For each case, we
give the target system and its management API, the numbers of elements in the
system meta-model, the items in the access model and the total lines of code in
these items. After that, we list the sizes of the generated synchronization engines.
For the first two cases, we also list the size of the hand-written synchronization
engines for comparison. Finally, we list the model-driven techniques we applied
upon the generated SEs. The second case is a reproduction of the Jar2UML tool5,
which reflects the class structure in a Jar file as a (read-only) UML model. The
third case supports dynamic configuration of an Eclipse window, like changing
a button’s caption or a label’s background color. The fourth case is about using
OCL rules to check the package structure of Android mobile phone systems.

5
http://ssel.vub.ac.be/ssel/research/mdd/jar2uml, a use case of MoDisco [11]

4th Workshop on Models@run.time at MODELS 09 18

6.3 Discussion

Feasibility The case studies above illustrate the feasibility of our approach: it
generates SEs for a wide range of systems, and the generated SEs enable existing
model-driven techniques for runtime management.

Generation Benefits Our generation approach improves the development effi-
ciency of SEs. Among the complex functionalities of SEs (see Section 2), we
only require developers to care about the monitoring and controlling of the sys-
tem. Specifically, we reduce 94.1% hand-written code for the JOnAS case (310
vs. 5294 LOC), and 98% for the Java case (62 vs. 3108 LOC).

Synchronization Performance The performance of the generated SE is accept-
able. For the JOnAS case, we deploy the JOnAS server and the synchronization
engine on a personal computer with 3.0GHz CPU and 2.0GB memory. We spend
3.17 seconds in average to show the diagram shown in Figure 6, with 98 manage-
able elements in total, and we spend less than one second to refresh an element or
change an attribute. The performance is similar to the default web-based man-
agement tool, the JOnAS Admin. For the Android case, we spend 1.7 seconds
to perform the OCL adaptation rule.

7 Related Work

Many researchers are interested on model-based runtime management. The rep-
resentative approaches include “runtime software architecture” [6, 15], “models
at runtime” [16], etc. Currently, these approaches focus on the problems and
ideas of model-based management, and implement their ideas on specific sys-
tems and models. Alternatively, we focus on the reflection of models for different
systems, and try to provide automated support.

Some researchers also focus on reflecting different systems into standard mod-
els. Sicard et al. [8] employ “wrappers” to reflect systems states into Fractal
models. Researchers of MoDisco Project [11] focus on developing “discoverers”
to discover MOF-compliant models from systems. The “wrappers” and “discov-
erers” are similar to our SEs, but our work support developers in constructing
SEs from a higher level, not by directly writing code in ordinary programming
language. Another difference between our work and MoDisco is that our SEs
support writing the model changes back to the system.

Bencomo et al. [17] also use model-to-text generation to automate system
management. But currently they generate the configuration files specific to the
Gridkit platform, while we try to generate SEs for various systems.

Our synchronization mechanism is related to the approaches on model syn-
chronization [18]. The difference is that these approaches use the same model
processing interface to manipulate the two participants of synchronization, but
we try to integrate ad hoc management APIs into the synchronization process.

8 Conclusion

To efficiently leverage the use of model-based techniques at runtime, it is nec-
essary to have a model-based view of the running system. In this paper, we

4th Workshop on Models@run.time at MODELS 09 19

report our initial attempt towards the automated generation of synchronization
engines that reflect running systems into model-based views. We require devel-
oper to specify “what to manage on the system” as a MOF meta-model, and
specific “how to use the related API to do so” as an access model. From these
specifications, we automatically generate the synchronization engine that reflects
the system as a direct MOF compliant model. We have successfully applied our
approach on several practical systems, and enabled several typical model-based
techniques at runtime. As future work, we plan to give more support for devel-
opers to specify the running systems and their APIs. We also plan to perform
further analysis such as model checking to ensure a deeper correctness and com-
pleteness of the generated causal link.

References

1. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
Future of Software Engineering (FOSE) in ICSE. (2007) 259–268

2. Shannon, B.: Java Platform, Enterprise Edition 5, Specifications (April 2006)
3. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.: The Fractal

Component Model and its Support in Java. Software Practice and Experience
36(11-12) (2006) 1257–1284

4. DiMarzio, J.: Android: A Programmers Guide. McGraw-Hill Osborne Media (2008)
5. Hanson, J.: Pro JMX: Java Management Extensions. (2004)
6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software

evolution. In: ICSE. (1998) 177–186
7. Garlan, D., Cheng, S., Huang, A., Schmerl, B.R., Steenkiste, P.: Rainbow:

Architecture-based self-adaptation with reusable infrastructure. Computer 37(10)
(2004) 46–54

8. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based man-
agement: the self-repair case. In: ICSE ’08: Proceedings of the 30th international
conference on Software engineering, New York, NY, USA, ACM (2008) 101–110

9. Chauvel, F., Barais, O., Borne, I., Jézéquel, J.M.: Composition of qualitative
adaptation policies. In: Automated Software Engineering Conference (ASE 2008).
(2008) 455–458 Short paper.

10. Batista, T., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in
Component-Based Systems. In: Software Architecture: 2nd European Workshop,
EWSA 2005, Pisa, Italy, June 13-14, 2005: Proceedings, Springer (2005)

11. MoDisco Project http://www.eclipse.org/gmt/modisco/
12. JOnAS Project. Java Open Application Server http://jonas.objectweb.org
13. Budinsky, F., Brodsky, S., Merks, E.: Eclipse Modeling Framework, project ad-

dress: http://www.eclipse.org/modeling/emf
14. Catalog of OMG Modeling and Metadata Specifications http://www.omg.org/

technology/documents/modeling_spec_catalog.htm
15. Huang, G., Mei, H., Yang, F.: Runtime recovery and manipulation of software

architecture of component-based systems. Auto. Soft. Eng. 13(2) (2006) 257–281
16. France, R., Rumpe, B.: Model-driven development of complex software: A research

roadmap. In: Future of Software Engineering (FOSE) in ICSE ’07. (2007) 37–54
17. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: Supporting the

model driven development of reflective, component-based adaptive systems. In:
ICSE. (2008) 811–814

18. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In: MoDELS. (2006) 543–557

4th Workshop on Models@run.time at MODELS 09 20

Leveraging Models From Design-time to Runtime.

A Live Demo.?

Brice Morin1, Grégory Nain1, Olivier Barais1,2, and Jean-Marc Jézéquel1,2

1 INRIA, Centre Rennes - Bretagne Atlantique
Brice.Morin@inria.fr | Gregory.Nain@inria.fr

2 IRISA, Université Rennes1
barais@irisa.fr | jezequel@irisa.fr

Abstract. This paper describes a demo which leverages models at design-
time and runtime in the context of adaptive system, some details about
the underlying approach as well as some implementation details. Our tool
allows deploying and dynamically recon�guring component-based applica-
tions, in a guided and safe way, based on the OSGi platform. It combines
re�exive and generative programming techniques, based on models, to
achieve this goal.

1 An Overview of the Demo

The demonstration illustrates our tool-chain on a simple HelloWorld application.
In this section, we brie�y present the di�erent tools of the chain, as well as the
scenario to be demonstrated during the workshop. More details about the tools
are given in Sections 3 and 4 and in previous publications [1,2,3].

1.1 Quick Overview of the Tool-chain

Our tool leverages models at design-time but also at runtime in order to deploy
and dynamically recon�gure component-based applications. We rely on the SCA
(Service Component Architecture, see http://www.eclipse.org/stp/sca/) editor to
graphically design architectural models in the Eclipse IDE. We have extended
this editor with code generation capabilities. This way, we can generate at design-
time all the platform-speci�c infrastructure we need to be able to leverage models
at runtime. We currently target OSGi [4] and Fractal/FraSCAti [5] as runtime
platforms.

In the remainder, we will particularly focus on the OSGi version of the tool.
Once all the infrastructure has been generated, it is possible to start the tool
responsible for managing adaptive systems. This tool is based on [1,2] and is an
extension of the early prototype [3], demonstrated last year at the workshop [6],

? The research leading to these
results has received funding from the European Community's Seventh Framework
Program FP7 under grant agreements 215412 (DiVA, http://www.ict-diva.eu/) and
215483 (S-Cube, http://www.s-cube-network.eu/).

4th Workshop on Models@run.time at MODELS 09 21

for managing Fractal-based systems. Unlike pure OSGi or Spring DM (see Sec-
tion 2), this tool leverages models both for the initial deployment and for sub-
sequent dynamic recon�gurations, preventing programmers from writing low-level
recon�guration scripts.

1.2 Components to be Manipulated during the demo

The HelloWorld application manipulates three kinds of component types: Client,
Server and VoiceServer. It can be composed of any number of Client component
instances and any number of (Voice)Server component instances, collaborating
according to di�erent schemes. The demo will manipulate up to 34 component
instances and 33 bindings (connections) among these components.

Server components provide the IHelloWorld interface and optionally require
[0..1] a VoiceServer. Depending on their real implementation, the Server compo-
nents may �say hello� in di�erent languages: English, Spanish, etc, by returning
the corresponding String and optionally ask a voice server to actually say �hello�,
�hola�, etc.

Client components have two required ports, both typed with the IHelloWorld
interface:

� default: a single mandatory required port [1..1]
� others: a multiple optional required port [0..*]

Each client component is associated with a GUI: a window composed of a
button and a text area. By clicking on the button, the client component simply
asks the default server to say hello and, if any, all the other servers to also say
hello. The results are printed in the text area, as illustrated in Figure 1.

Fig. 1. Two clients after the initial deployment and a recon�guration

Using these two types of components, it is possible to de�ne an arbitrary
number of valid and invalid con�gurations. For example, a con�guration where a
client component is not connected to a default server is invalid, since the default
port is mandatory.

4th Workshop on Models@run.time at MODELS 09 22

1.3 Scenario

We now outline the scenario to be demonstrated at the workshop.

Models At design-time At design-time, we will brie�y introduce the SCA
graphical editor and show how con�gurations are designed. Then, we will auto-
matically generate all the code we need for the remainder of the demo.

Models At Runtime At runtime, we will demonstrate how the initial con�gu-
ration is deployed and perform several attempts of model-driven recon�gurations,
with valid and invalid con�gurations. Moreover, we will show how our tool man-
ages unpredicted changes at runtime e.g., when a component is directly uninstalled
at the platform level.

1. Start: It displays a simple GUI to be able to load con�gurations
2. Load the initial con�guration: Using the GUI, load the initial con�gura-

tion (architectural model composed of two clients and two servers). It displays
the GUI associated with the two clients.

3. Say Hello: Click on the �sayHello� button of each client. Depending on the
way clients are connected with servers, this will produce a di�erent result.

4. Load another con�guration and Say Hello: This con�guration is valid
and actually produces a recon�guration of the system (e.g., one client disap-
pear, the other uses the servers in a di�erent way).

5. Load another con�guration: This con�guration is not valid (default port
not connected). This does not produce a recon�guration of the system.

6. Servers crash! The server components are manually (via the OSGi textual
console) removed from the system. The tool detects this change and noti�es
the user that the current con�guration is no more consistent.

7. Load another con�guration: If the con�guration is valid, the system will
be recon�gured into a consistent con�guration.

2 Background

This section brie�y introduces the di�erent technologies related to our tool and
highlights their limitations.

2.1 OSGi
The OSGi (Open Services Gateway initiative) consortium is composed of famous
companies from di�erent domains: automotive industry (BMW, Volvo), mobile
industry (Nokia), e-Health (Siemens), SmartHome (Philips), etc. It provides a
service-oriented, component-based environment for developers and o�ers stan-
dardized ways to manage the software lifecycle. See http://www.osgi.org for more
details about OSGi.

Typically, an OSGi bundle (component) is responsible for managing its depen-
dencies by itself. It can try to set its dependencies when it is starting, by searching
required services from the OSGi service registry, or by registering to the OSGi
event mechanism to be noti�ed when required services appear or disappear. For
example, the following code fragment sets the helloworld reference when the client
component starts.

4th Workshop on Models@run.time at MODELS 09 23

1 /*
2 * Client Component , in OSGi
3 */
4 public class Client implements BundleActivator , IClient {
5

6 private BundleContext context;
7 private IHelloWorld helloworld;
8

9 public void start(BundleContext context) {
10 this.context = context;
11

12 // registering the component as IClient
13 context.registerService(IClient.class.getName (), this , null);
14

15 // setting the helloworld reference
16 ServiceReference [] refs = context.getAllServiceReferences(null ,
17 "(objectClass="+IHelloWorld.class.getName ()+")");
18 helloworld = (IHelloWorld)context.getService(refs [0]);
19 }
20 }

OSGi provides very �exible and powerful mechanisms for managing the life-
cycle of components. However, since the dependencies should be handled inside
the components themselves, it is very di�cult to separate the business logic from
the adaptive logic and implement complex adaptation policies involving several
collaborating components.

2.2 Spring DM

Spring DM (Dynamic Modules) allows managing con�gurations of OSGi-based
applications by deploying the initial con�guration from a XML �le, dynami-
cally adding, removing, and updating modules in a running system. Moreover,
it has the ability to deploy multiple versions of a module simultaneously. See
http://www.springsource.org/osgi for more information on Spring DM.

Typically, a Spring bean (component) is a POJO with getters and setters for
the reference that can be accessed and setted. Unlike OSGi, components are not
responsible for setting their dependencies by themselves. On the contrary, these
references are set from the outside, by calling the appropriate getters/setters. For
example, the following code fragment illustrates the Client component.

1 /*
2 * Client Component , in Spring
3 */
4 public class Client implements IClient {
5

6 private IHelloWorld helloworld;
7

8 public IHelloWorld getHelloworld (){
9 return helloworld;
10 }
11

12 public void setHelloworld(IHelloWorld helloworld){
13 this.helloworld = helloworld;
14 }
15 }

The initial runtime con�guration is instantiated, deployed and started by load-
ing the XML �le describing this initial con�guration, similarly to an ADL (Ar-
chitecture Description Language). This �le mainly describes the component types

4th Workshop on Models@run.time at MODELS 09 24

(factories) needed to instantiate component instances (beans in the Spring termi-
nology), and how beans are wired together.

Spring DM does not allow the declarative updating of this XML �le in or-
der to dynamically recon�gure the system. On the contrary this should be done
programmatically by modifying the properties of the components and calling the
modifyConfiguration(ServiceReference ref, Dictionary props)method pro-
vided by the Con�guration plugin, or directly calling the getters/setters provided
by the components.

This is a major drawback since the initial con�guration and the subsequent
recon�gurations are not handled in a consistent way. On the one hand, the initial
con�guration is instantiated from a declarative speci�cation describing the overall
con�guration of the system. On the other hand, the dynamic recon�gurations are
realized in an imperative style, which requires the developer to set the dependen-
cies in a programmatic way. In the case of a large recon�guration, this requires to
implement a long script describing how all the properties are updated. Moreover,
it is very di�cult to understand or validate the new con�guration a priori, since
no explicit representation (model or XML �le) of this new con�guration exists.

3 An Overview of SC@rt

This section describes SC@rt (SCA at runtime), to be demonstrated (live demo)
during the workshop. The main objective of our approach is to leverage models
at design-time in order to support the initial deployment of the system, but also
at runtime, to provide a high-level support for dynamic recon�gurations.

3.1 Designing Architecture with the SCA Editor

The �rst step consists in designing the component types to be manipulated by
the application, in the SCA editor. Here, we only manipulate two types: client
and server. This diagram simply consists of non-connected components describing
their provided and required ports.

Then, it is possible to de�ne di�erent con�gurations of the hello world ap-
plication. In practice, this consists in creating a new diagram, and copy/pasting
component types from the type diagram in order to instantiate component in-
stances. These instances can then be connected together on compatible ports.
Figure 2 illustrates one possible con�guration.

3.2 Generating the Code of Component Types

After the type diagram has been designed, we propose to generate the code of the
type components. These type components are factories responsible for instanti-
ating component instances. We have extended the SCA editor so that the code
generation is simply invoked by a right click on the diagram. The code of the
factory is rather systematic and only varies on some well identi�ed points. We use
String Template (see http://www.stringtemplate.org/) to generate this code.

3.3 Leveraging Architecture Models to Deploy and Recon�gure the

System

Figure 3 illustrates our causal connection between an architectural model and a
running system, based on our previous works [1,2].

4th Workshop on Models@run.time at MODELS 09 25

Fig. 2. One possible con�guration of the Hello World application

The key idea is to keep an architectural model synchronized with the running
system [6]. This re�ection model, is updated by observers integrated in the ex-
ecution platform (Figure 3, 1) when signi�cant changes appears in the running
system (addition/removal of components/bindings).

When a target architectural model is de�ned (e.g., by modifying a copy of
the re�ection model), it is �rst validated using classic design-time validation tech-
niques, such as invariant checking or simulation. This new model, if valid, repre-
sents the target con�guration the running system should reach.

Then, we generate a recon�guration script by �rst comparing the source con-
�guration (the re�ection model) with the target con�guration (Figure 3, 3) and
generating an ordered set of recon�guration commands. This set of commands
describes a safe recon�guration script (no life-cycle errors or dangling bindings)
which is submitted (Figure 3, 4) to the running system in order to actually recon-
�gure it. Note that when a new component is added into the model, we generate,
compile and package some parts of its code at runtime (the Activator and the
MANIFEST.MF)3. This way, component instances are handled as OSGi bundle,
making it possible to properly install, uninstall, start and stop them.

Finally, the re�ection model is automatically updated when the recon�gura-
tion commands are correctly executed. Commands not correctly executed do not
update the re�ection model and are logged so that they can be post-processed
e.g., to implement a roll-back. If all the commands are correctly executed, the
updated re�ection model becomes equivalent to the target model (Figure 3, 1).

3 the business logic of the component is already present and compiled in the factory
components

4th Workshop on Models@run.time at MODELS 09 26

Architecture
Metamodel

Reflection
model

Running
System

Component-based execution platform

Target
model

Generated platform-specific
reconfiguration commands

Causal
connection

validation

M2

M1

M0

1

2

3

4

conforms to

Fig. 3. Strong synchronization from runtime to model. Delayed synchronization (after
validation) from model to runtime

4 Implementation Details

This section gives some implementation details of the prototype we have described.

4.1 Recon�guration Commands

The dynamic recon�guration process is based on the Command design pattern.
Basically, we represent a recon�guration script as a list of commands, as explained
in [1,2]. These commands are ordered according to their priority: i) remove bind-
ing, ii) remove component, iii) add component and iv) add binding.

We de�ne the parameter of each command as public attributes. The check

method is responsible for verifying that the parameters of the command have been
well initialized. The execute method actually performs an atomic recon�guration
on the running system (e.g. add a component). Finally, the doAckmethod is called
when the command has successfully been executed.

1 public abstract class PlatformCommand {
2

3 private boolean ack = false ;
4

5 abstract public int getPriority ();
6

7 // Checks the consistency of the command
8 abstract public boolean check ();
9

10 // Executes the command i.e., a performs a runtime adaptation
11 abstract public void execute ();
12

13 public boolean ack(){
14 return ack;
15 }
16

17 /* Acknowledge the command i.e., update the reflection model
18 Should be overriden by concrete commands. */
19 public void doAck (){

4th Workshop on Models@run.time at MODELS 09 27

20 ack = true;
21 }
22 }

4.2 OSC@rt: Models@Runtime over OSGi

The current prototype does not directly use SCA models at runtime. Instead, it
uses architectural models conforming to a core architecture metamodel described
in [3], to reduce the memory overhead at runtime implied by the causally con-
nected model. However, we have de�ned a bi-directional model transformation
between SCA and our metamodel, in Kermeta [7].

The main class of this prototype is the OSGiCausalLink class illustrated (frag-
ment) in the following scripts.

public class OSGiCausalLink implements BundleActivator , CausalLink ,
EventHandler , BundleListener {

private art.System system; //the reflection model
private art.System updateModel; //a new model to switch to

private Checker checker;

public void reconfigure () {
i f (checker.check(updateModel)){

computeMatch(system , updateModel);
getCommands ();
for(PlatformCommand cmd : commands){

cmd.execute ();
}

Timer timer = new Timer ();
AckTimerTask att = new AckTimerTask ();
att.commands = commands;
timer.schedule(att , ackPeriod);

}
}

The main method of the OSGiCausalLink class is reconfigure. This method
loads a new architectural model and leverages this model to automatically adapt
the running system. This prevents the programmer from writing long imperative
recon�guration scripts. This method �rst performs a model comparison between
the re�ection model and the new model to determine the commonalities (what has
not changed) and the di�erences between these two models (what has been added
or removed). Then, by analyzing the result of the model comparison, a sequence of
recon�guration commands is instantiated and �nally executed. A separate thread
(AckTimerTask) checks whether all the commands have been acknowledged within
a given period, or not.

private void addBinding(TransmissionBinding b, ComponentInstance client) {
AddBindingOSGi cmd = new AddBindingOSGi ();
cmd.b = b;
cmd.client = client;
commands.add(cmd);

}

private void doAddBinding(TransmissionBinding b, ComponentInstance client) {
client.getBinding ().add((TransmissionBinding)b);

}

4th Workshop on Models@run.time at MODELS 09 28

The addBinding method shows how a command is instantiated. When a new
binding is detected in the model, we simply instantiate and initialize the right
command. Note that, at this point, the re�ection model has not been updated. In
other words, the new binding has not been actually added to the re�ection model.
The binding will be added to the re�ection model, in the doAddBinding method,
only when the command will be properly acknowledged.

public void handleEvent(Event event) {
PlatformCommand cmd = (PlatformCommand)event.getProperty("command");

i f (event.getTopic ().startsWith("binding/ok/")){
TransmissionBinding b = (TransmissionBinding)event.getProperty("binding");
doAddBinding(b, ((AddBindingOSGi)cmd).client);
cmd.doAck();

}
else i f (event.getTopic ().startsWith("binding/nok/")){

TransmissionBinding b = (TransmissionBinding)event.getProperty("binding");
System.err.println("Problem when binding "+b);

}
...

}

We rely on the standard EventAdmin service provided by OSGi to acknowledge
commands. When a command properly execute, an event containing the command
is posted on the appropriate topic e.g., �binding/ok�. When receiving this event
(handleEvent(Event event)), we simply call the doAck method of the command
and update the re�ection model (e.g., by calling the doAddBinding method).
When a command does not execute properly, and event is posted on another topic
(e.g., on �binding/nok�). In this case, the command is not acknowledged and the
re�ection model is not updated. In this case, the AckTimerTask generates a report
specifying which commands have been acknowledged and which commands have
not.

public void bundleChanged(BundleEvent event) {
Bundle b = event.getBundle ();

i f (event.getType ()== BundleEvent.UNINSTALLED) {
ComponentInstance cpt = runtime2model.get(b);
system.getRoot ().getSubComponent ().remove(cpt);
runtime2model.remove(b);

}
else i f (event.getType ()== BundleEvent.STOPPED){

ComponentInstance cpt = runtime2model.get(b);
cpt.getBinding ().clear ();
removeAllDanglingBindings(cpt);

}
}

Our causal link implements the standard BundleListener interface speci�ed
in the OSGi standard. This way, we are automatically noti�ed when components
are stopped or uninstalled. When a component is stopped, we clear all its depen-
dencies and clear all the dependencies of all the components using this stopped
component, by calling the removeAllDanglingBindings, and remove all the asso-
ciated bindings from the re�ection model. Then, if the component is uninstalled,
we simply remove it from the re�ection model.

4th Workshop on Models@run.time at MODELS 09 29

5 Conclusion

This paper has presented our tool-chain, to be demonstrated at the workshop.
This tool chain leverages models at design-time but also at runtime to deploy
and dynamically recon�gure component-based applications, in a guided and safe
way. At design-time, we use the SCA editor to design the architecture, and code
generation techniques to produce all the infrastructure we need at runtime. At
runtime, the recon�guration process is totally driven by the design models. Before
adaptation, we check that the target con�guration is valid. In this case, we gen-
erate the corresponding recon�guration script, based on the command pattern.
Our tool also handles (in a limited way) unpredicted events, and is able to update
the re�ection model accordingly and noti�es the user when this model becomes
invalid.

In future work, we plan to improve the adaptation process by considering more
constraints during the generation of commands. Currently, commands are ordered
in a very simple way in order to avoid common errors like dangling bindings.
We would like to consider other constraints, speci�ed by the architect, such as
Component A should be stopped before Component B, etc.

References

1. Morin, B., Barais, O., Nain, G., Jézéquel, J.M.: Taming Dynamically Adaptive Sys-
tems with Models and Aspects. In: ICSE'09: 31st International Conference on Soft-
ware Engineering, Vancouver, Canada (May 2009)

2. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg, A., Dehlen, V., Blair,
G.: An aspect-oriented and model-driven approach for managing dynamic variabil-
ity. In: MODELS'08: ACM/IEEE 11th International Conference on Model Driven
Engineering Languages and Systems, Toulouse, France (October 2008)

3. Morin, B., Barais, O., Jézéquel, J.M.: K@rt: An aspect-oriented and model-oriented
framework for dynamic software product lines. In: 3rd International Workshop on
Models@Runtime, at MoDELS'08, Toulouse, France (oct 2008)

4. The OSGi Alliance: OSGi Service Platform Core Speci�cation, Release 4.1 (May
2007) http://www.osgi.org/Speci�cations/.

5. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.: The FRACTAL
Component Model and its Support in Java. Software Practice and Experience, Spe-
cial Issue on Experiences with Auto-adaptive and Recon�gurable Systems 36(11-12)
(2006) 1257�1284

6. N. Bencomo, G. Blair, R.F.: Proceedings of the international workshops on mod-
els@run.time (2006-2008)

7. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented
meta-languages. In L. Briand, S.K., ed.: Proceedings of MODELS/UML'2005. Volume
3713 of LNCS., Montego Bay, Jamaica, Springer (October 2005) 264�278

4th Workshop on Models@run.time at MODELS 09 30

Evolving Models at Run Time to Address
Functional and Non-Functional Adaptation

Requirements?

Andres J. Ramirez and Betty H.C. Cheng

Michigan State University
Department of Computer Science and Engineering,
3115 Engineering Building, East Lansing, MI 48824

{ramir105,chengb}@cse.msu.edu

Abstract. Increasingly, applications need to dynamically self-reconfigure
as new environmental conditions arise at run time. In order to self-
reconfigure, an adaptive system must determine which target system
configuration will yield the desired behavior based on current execution
conditions. However, it may be impractical to evaluate all potential sys-
tem configurations in a reasonable time frame. This paper presents a
model-based approach that leverages evolutionary computation to au-
tomatically generate, at run time, target system models that balance
tradeoffs between functional and non-functional requirements in response
to run-time monitoring of environmental conditions. Specifically, this
approach generates graph-based representations of architectural models
for potential target system configurations. The current run-time system
models serve to constrain the degree of change and novelty in the newly
generated models. This approach is applied to the dynamic reconfigura-
tion of a set of remote data mirrors, where operational and reconfigura-
tion costs are minimized, while maximizing data reliability and network
performance.

Key words: dynamic reconfiguration, non-functional requirements, evo-
lutionary computation, run-time models.

1 Introduction

It is increasingly important for applications to dynamically adapt as require-
ments change and new environmental conditions arise [1]. In addition, it is im-
portant for adaptive systems to self-reconfigure with little or no human input
to help prevent costly downtimes while code is being modified. To address this
concern, IBM proposed autonomic computing where a system manages itself to
achieve a system administrator’s high-level goals through self-* properties such
as self-configuration and self-optimization [2]. To self-reconfigure, an adaptive
system must automatically determine which target system configuration will

? This work has been supported in part by NSF grants CCF-0541131, CNS-0551622,
CCF-0750787, CNS-0751155, IIP-0700329, and CCF-0820220, Army Research Of-
fice W911NF-08-1-0495, Ford Motor Company, and a grant from Michigan State
University’s Quality Fund.

4th Workshop on Models@run.time at MODELS 09 31

yield the desired behavior in response to current system and environmental con-
ditions, while also taking into consideration tradeoffs between functional and
non-functional requirements. It may be impractical, however, to evaluate all po-
tential target systems in a reasonable amount of time. This paper presents a
model-based approach that leverages evolutionary computation to generate, at
run time, target system models that balance tradeoffs between functional and
non-functional requirements in response to changing environmental conditions.

Self-adaptive systems comprise three key enabling technologies: monitor-
ing, decision-making, and reconfiguration. Monitoring enables an application
to be aware of its environment to detect conditions that warrant reconfigura-
tion. Decision-making analyzes monitoring information to determine how the
application should be reconfigured. Reconfiguration enables an application to
modify itself to fulfill its requirements. Many self-adaptive systems apply model-
based techniques to determine which target system configuration will yield the
desired system behavior in response to current environmental conditions [3–7].
While powerful, these approaches typically use scenarios identified at design time
to guide self-reconfigurations. Furthermore, as the complexity of adaptive logic
grows, maintaining the set of models and reconfiguration plans may become
unmanageable and potentially inconsistent. Recently, researchers have applied
evolutionary computation techniques to the design of self-adaptive systems [8–
10]. While these approaches enable developers to explore richer sets of behavioral
models that satisfy system requirements, they are only applicable at design time
due to the significant amount of time required to generate these models.

This paper presents Plato-MDE, an evolutionary computation-based approach
for generating target system models at run-time in response to changing re-
quirements and environmental conditions. Each target system model represents
a potential system configuration that may be reached through a sequence of
reconfiguration steps. Plato-MDE evaluates each generated target system model
to determine its suitability given current system conditions. In addition, Plato-
MDE leverages current system models to constrain the degree of change in the
generated target models. As a result, Plato-MDE enables an adaptive system to
implicitly control the complexity and novelty of the reconfiguration itself at run
time. Moreover, rather than prescribing explicit reconfiguration plans at design
time in anticipation of possible reconfiguration scenarios, developers need only
specify the relative importance of each functional and non-functional concern to
apply Plato-MDE.

Plato-MDE supports a model-based approach that leverages information from
run-time system models to optimize the generation of target system models.
In particular, Plato-MDE applies domain-independent evaluation functions to
compare the structure and configuration of each generated target system model
against a current architectural model of the executing system. The structural and
configuration differences identified from this analysis enable Plato-MDE to im-
plicitly constrain the novelty of generated target system models, and thus control
the complexity and cost of the reconfiguration itself. For example, to minimize
reconfiguration costs, Plato-MDE might focus on generating target system mod-

4th Workshop on Models@run.time at MODELS 09 32

els that are structurally similar to the current system model, thereby reducing
the number of structural changes required to reconfigure the system. Plato-MDE
accomplishes these objectives at run-time by applying genetic algorithms [11] to
automatically balance tradeoffs in functional and non-functioanl requirements.
As a result, Plato-MDE evolves target system models at run-time, where better
solutions tend to eventually dominate the solution space.

We applied Plato-MDE to the dynamic reconfiguration of an overlay net-
work for diffusing data to a collection of remote data mirrors [12]. Specifically,
Plato-MDE was able to evolve target system models that not only maintained
connectivity across the network of remote data mirrors such that data could
be diffused to every node, but also minimized operational and reconfiguration
costs while maximizing data reliability and network performance. Furthermore,
Plato-MDE was able to leverage run-time system models to control the complex-
ity and novelty of the generated target system reconfigurations, thus implicitly
controlling reconfiguration costs at run time. The remainder of this paper is or-
ganized as follows. Section 2 overviews genetic algorithms. Section 3 overviews
Plato-MDE. In Section 4 we present a case study in which we apply Plato-MDE
and provide preliminary results. Section 5 compares Plato-MDE to other self-
adaptation approaches. Lastly, Section 6 summarizes our results and presents
future work.

2 Background: Genetic Algorithms

A genetic algorithm is a stochastic search-based technique for optimization prob-
lems that comprises a population of individuals, each encoding a candidate so-
lution in a chromosome representation [11]. Fitness functions are used in each
iteration of the algorithm to evaluate an individual’s encoded solution. This
fitness information enables a genetic algorithm to select a subset of promis-
ing individuals for further processing. Specifically, the operation of crossover is
used to exchange building blocks between two fit individuals, hopefully creating
offspring with higher fitness values than either parent. The crossover operator
loses genetic variation in a population throughout generations, possibly leading
to premature convergence and suboptimal solutions. In order to counter this ef-
fect, mutation re-introduces genetic variation by randomly changing parts of an
individual’s encoded solution according to specific mutation rates [11]. Gener-
ally, genetic algorithms are executed until the algorithm converges upon a single
solution or the alloted execution time is exceeded.

3 Plato-MDE

Plato-MDE is a genetic algorithm-based approach developed for generating target
system models at run time in response to changing environmental conditions,
while balancing tradeoffs between functional and non-functional requirements.
Plato-MDE extends Plato [13] with a model-based approach that focuses on
generating architectural models and properties of the connectors between the
components at run time. In contrast, Plato did not consider structural differences
between the current application’s architecture and the generated target system

4th Workshop on Models@run.time at MODELS 09 33

reconfiguration models. This extension enables Plato-MDE to implicitly control
the cost of a reconfiguration at run time. As the data flow diagram (DFD) in
Figure 1 illustrates, several inputs and configurations must be supplied in order
to apply Plato-MDE to the decision-making process of a self-adaptive system.
At a high-level of abstraction, Plato-MDE accepts data from the monitoring
infrastructure and outputs a set of target system models that specify new suitable
reconfigurations. As an initialization step, developers must first configure Plato-
MDE for the application’s domain and specify how the quality of a target system
model should be evaluated. Next, we describe the use of Plato-MDE in detail.

Initialize
Genetic

Algorithm

Mutate
Models

Select
Models

Crossover
Models

Evaluate
Model
Fitness

Developer Reconfiguration
Preferences

pop. size,
mutation rate

reconfiguration
concerns

Fitness Functions

Monitors

Target System
Models

randomized
models

recombined
models"best" models

evolved
models

models annotated
with fitness

random models
environmental
observations

evaluation
criteria

weighting
scheme

(1) (2)

(3) (4) (5)

Fig. 1. Data Flow Diagram for Plato-MDE

Step 1. Initialize Genetic Algorithm. To apply Plato-MDE, a developer
must configure operational parameters that determine how the genetic algorithm
will execute as well as what will be used to assess the quality of the output it
produces. In particular, developers must specify parameters such as population
size, maximum number of generations, and mutation rates for Plato-MDE. The
population size reflects how many potentially different target system models are
being examined at any single point in time. Similarly, the number of generations
limit the amount of time that Plato-MDE may spend generating target system
models. Lastly, mutation rates indicate the degree of randomness that Plato-
MDE will apply to generate target system models. Experimentation is typically
required to discover suitable parameters for different application domains.

The first step in Plato-MDE, highlighted in Figure 1 as (1), creates a popula-
tion of random individuals. In Plato-MDE, each individual encodes a graph-based
model representation of the target application’s architecture. Specifically, the ap-
plication is abstracted to a set of components and their interconnections, both
annotated with sets of reconfigurable properties that describe their configura-
tions and state. For example, a property in a networked application may specify
whether a link is active or not and which communication protocol is currently

4th Workshop on Models@run.time at MODELS 09 34

selected. This representation, similar to architectural models, is appropriate for
abstracting relevant details of the executing system [3, 5, 7].

Step 2. Evaluate Model Fitness. Fitness functions, akin to utility func-
tions, are used to map an individual’s encoded solution to a numerical value
proportional to its overall quality [11]. As Figure 1 illustrates in (2), Plato-MDE
applies fitness functions to assess the suitability of a particular target system
model based on current system conditions supplied by the application’s moni-
toring infrastructure. Plato-MDE applies domain-dependent fitness functions to
evaluate target system models from a domain-specific perspective, such as ap-
proximating the performance and reliability of a specific network based on a
protocol’s configuration. In addition, Plato-MDE applies domain-independent fit-
ness functions to evaluate target system models from structural and behavioral
perspectives. For instance, Plato-MDE can approximate reconfiguration costs
by identifying the structural and configurational changes between the current
system model and the generated target system reconfiguration. Therefore, to
minimize reconfiguration costs at run time, Plato-MDE could assign higher fit-
ness values to target system models whose structure and configuration are most
similar to the current system model.

Developers may also supply a weighting scheme that will be associated with
specific fitness functions to indicate the relative importance of different recon-
figuration priorities. Moreover, developers can also introduce high-level code to
rescale the weighting scheme of individual fitness functions if requirements are
likely to change while the application executes. Updating reconfiguration prior-
ities at run time enables Plato-MDE to generate different reconfiguration plans
that address changes in requirements.

Step 3. Selection. A selection strategy determines which individuals in
the population should be explored further in future generations. As step (3)
in Figure 1 illustrates, Plato-MDE applies a tournament selection strategy [11]
to determine which target system models to compare. Specifically, two target
system models are selected at random from the population and their relative
fitness value is compared. Whichever target system model has a higher fitness
value survives and moves onto the next generation. This selective pressure, sim-
ilar to natural selection in living organisms, drives Plato-MDE to concentrate its
search towards more promising target system models that are suitable for cur-
rent system conditions. Once the maximum number of generations are executed,
the most fit target system model is selected as the result.

Step 4. Crossover. The goal of the crossover operator is to construct new
solutions by recombining key building blocks from existing solutions in the cur-
rent population [11]. Similarly, as Figure 2 illustrates, Plato-MDE applies a cus-
tomized crossover operator that works on architectural models by exchanging
the key elements between two target system models, referred to as parents, to
produce two potentially new offspring target system models at run time. Specif-
ically, the Plato-MDE crossover operator generates two new target system mod-
els by randomly exchanging the components, interconnections, and properties of
both parents and recombining them into offspring individuals. As a result, the

4th Workshop on Models@run.time at MODELS 09 35

crossover operator enables Plato-MDE to combine elements of good solutions to
form even better solutions.

Parent A Parent B

Offspring AB Offspring BA

(a) Crossover Operator (b) Mutation Operator

Offspring AB'

component
connector
parent A Legend:

connector
parent B

mutated
connector

Fig. 2. Crossover and Mutation operators in Plato-MDE

Step 5. Mutation. The goal of the mutation operator is to introduce vari-
ation into the population and prevent premature convergence [11]. As Figure 1
shows in step (5), Plato-MDE applies a custom mutation operator to randomly
change properties of components and interconnections in an architectural model.
Specifically, the mutation operator accepts an architectural model as input and
randomly reassigns component and interconnection properties. For example, Fig-
ure 2(b) shows how a previously nonexistent interconnection has been created
between two components (dashed line) in the architectural model. As a result,
the mutation operator enables Plato-MDE to explore additional target system
models at run time that cannot be generated solely through the crossover oper-
ator.

4 Case Study

This section presents a case study where we use Plato-MDE within a simulated
industrial application whose primary objective is to diffuse data to a set of 25
remote data mirrors [12] across dynamic and unreliable networks. In this appli-
cation, Plato-MDE generates target system models of an overlay network used
to diffuse data to every remote data mirror. In contrast to previous experi-
ments [13], this case study leverages run-time system models to constrain the
degree of change involved in a particular reconfiguration. Note that the experi-
ment presented in this section was executed on a MacBook Pro with a 2.53GHz
Intel Core 2 Duo Processor and 4GB of RAM. In addition, we performed 30 trials
of the experiment, for statistical purposes, and present the averaged results.

4.1 Remote Data Mirroring
Remote data mirroring is a technique for duplicating and storing data at one or
more secondary sites to physically isolate copies from failures that may affect
the primary copy [12]. A key benefit of remote data mirroring is that important

4th Workshop on Models@run.time at MODELS 09 36

data continues to be accessible even if one copy is lost or becomes unreachable.
Designing and deploying remote data mirror solutions, however, is a complex
task due to the competing objectives of maximizing performance while minimiz-
ing operational costs and data loss potential [12]. For instance, each network
link used to propagate data incurs an operational cost and is characterized by
measurable throughput, latency, and loss rates. Moreover, each network link dis-
tributes data in one of two propagation modes. In synchronous propagation the
secondary site receives and applies each write before the write completes at the
primary site [12]. In asynchronous propagation, updates are batched and peri-
odically distributed to secondary sites. While synchronous propagation provides
better data reliability than asynchronous propagation, it tends to consume large
amounts of network bandwidth in the process. In contrast, asynchronous prop-
agation fails to provide the same level of reliability as synchronous propagation,
but tends to achieve better network performance.

In this case study we apply Plato-MDE to dynamically reconfigure a set of
25 remote data mirrors diffusing data across a dynamic and unreliable network.
In particular, Plato-MDE must maintain connectivity across the network of re-
mote data mirrors while minimizing operational and reconfiguration costs, and
maximizing data reliability and network performance.

4.2 Applying Plato-MDE to Remote Data Mirroring
In Plato-MDE, every individual in the population encodes an architectural model
that specifies potential reconfigured target systems. For this case study, each
component in the encoded architectural models represents a remote data mirror
capable of producing data at a specific rate. Similarly, every interconnection
in the encoded architectural models represents an overlay network link capable
of propagating data between remote data mirrors. Therefore, in addition to
specifying whether each connection is active or inactive, each connection is also
associated with one of seven possible propagation methods [13]. It is important
to note that with n overlay network links and m propagation methods, over
2

n(n−1)
2 ∗mn potential configurations exist. Thus, with a complete overlay network

of 25 remote data mirrors, approximately 7300 ∗ 2300 potential target system
models exist, far too many configurations to exhaustively evaluate in a reasonable
amount of time.

Plato-MDE extracts data from the application’s monitoring infrastructure to
maintain an architectural model of the executing system. Many different met-
rics can be gathered, however, for this case study, the monitoring infrastructure
measures the throughput, latency, bandwidth, and data loss rates of each overlay
network link that can be used to propagate data between remote data mirrors.
Plato-MDE leverages this current system model to evaluate each generated target
system model and approximate the effects of different network configurations.
To this end, we applied a set of domain-dependent fitness functions to evaluate
network configurations in terms of operational costs, network performance, and
data reliability. Plato-MDE also applied simple model checks to ensure gener-
ated system models did not violate either budget or connectivity constraints.
In addition, domain-independent fitness functions compute the degree of change

4th Workshop on Models@run.time at MODELS 09 37

between pairs of architectural models by identifying the structural and con-
figurational changes between them, enabling Plato-MDE to implicitly control
reconfiguration costs.

4.3 Experimental Results
The goal for the initial overlay network design was to minimize operational
costs, possibly at the expense of incurring poor network performance and data
reliability. To generate this type of network, we supplied Plato-MDE with a
vector of reconfiguration priorities where all coefficients were set to zero except
for cost. As Figure 3(a) illustrates, Plato-MDE produced a spanning tree overlay
network where every node is connected but no link redundancy is provided. This
overlay network design minimizes operational costs by activating the minimum
number of network links required to maintain connectivity and enable remote
data mirrors to diffuse data. However, this overlay network design does not
provide much data reliability. In particular, a single link failure in the overlay
network would disconnect the set of remote data mirrors and data may be lost.

0 1

2

3

4 5

6

7 8

9

10

11 12

13

14

15

16

17

18

19

20 21 2223

24

0 1

2

3

4 5

6

7 8

9

10

11 12

13

14

15

16

17

18

19

20 21 2223

24

(a) Initial Overlay Network Design (b) Target Overlay Network Design

new network linknetwork linkremote data mirrorLegend:

Fig. 3. Source and Target Network Design Models.

Next, we randomly selected an active link propagating data in the initial
overlay network and set its operational status to faulty. This network link state
corresponds to a link failure, thereby disconnecting the network of remote data
mirrors and prompting Plato-MDE to reconfigure the overlay network. While
Plato-MDE could have been invoked with the same vector of reconfiguration
priorities to generate another overlay network design that re-establishes connec-
tivity across the set of remote data mirrors while minimizing operational costs,
the reconfiguration priorities were rescaled in an attempt to prevent future link
failures from disconnecting the set of remote data mirrors. Specifically, the new
vector of reconfiguration priorities changed the importance of minimizing opera-
tional costs to 12%, maximizing network performance to 12%, maximizing data
reliability to 38%, and target model similarity to 38%. With this new vector of
reconfiguration priorities, Plato-MDE produced target system models that reused
the underlying network structure while adding redundant links and setting most
propagation methods to synchronous mode.

4th Workshop on Models@run.time at MODELS 09 38

Figure 3(b) shows an example overlay network design produced by Plato-
MDE to re-establish connectivity within the set of remote data mirrors. This
target system model satisfies the two primary design concerns specified in the
vector of reconfiguration priorities: increased data reliability and reduced recon-
figuration overhead. By increasing the importance of data reliability, Plato-MDE
generated overlay networks with redundant links and set most propagation meth-
ods in the overlay network links to synchronous mode. Figure 3 also illustrates
how the target overlay network reuses a significant portion of the underlying
initial network. While Plato [13] would generate target system models without
taking into account the complexity or cost of the reconfiguration, Plato-MDE
preserved most of the initial network’s structure to implicitly reduce the cost of
reconfiguration at run time. Plato-MDE took approximately 30 seconds or less to
begin converging upon suitable target system reconfigurations, which is within
the acceptable time frame for remote data mirroring.

5 Related Work
Several approaches for enabling self-adaptive behavior leverage architectural
models at run time to evaluate system conditions and select the most suitable re-
configuration in response to current environmental conditions. For instance, the
C2 framework [7] applies software architectural models to plan, coordinate, and
implement reconfigurations at run time. In addition, both the Performance Man-
agement Framework (PMF) [5] and the Rainbow Adaptation Framework [3, 4]
instantiate architectural models with run-time monitoring information to deter-
mine when and how to reconfigure a system. While Plato-MDE adopts a similar
approach for determining how the application should be reconfigured, several
key differences exist. For instance, Plato-MDE is capable of generating any tar-
get system model reachable through a series of reconfiguration steps. In contrast,
C2 [7] relies on a repository of pre-generated target models, and PMF [5] and
Rainbow [3, 4] generate new target models through predetermined combinations
of their reconfiguration steps. Furthermore, C2 [7], PMF [5], and Rainbow [3, 4]
encode their reconfiguration priorities at design time. Plato-MDE, on the other
hand, can update reconfiguration preferences at run time to address changes in
requirements and environmental conditions. Lastly, while PMF [5] and Rain-
bow [3, 4] evaluate the utility of target reconfigurations to predict their impact
upon the system, Plato-MDE also leverages this utility information to guide the
search towards more promising target system models.

6 Conclusions
We have presented Plato-MDE, a model-based approach that leverages evolu-
tionary computation to generate, at run time, target system models that balance
tradeoffs between functional and non-functional requirements in response to cur-
rent system conditions. Plato-MDE extends Plato [13] with domain-independent
model-based fitness functions that analyze the structural differences between
current and target system models to implicitly control reconfiguration costs at
run time. We have successfully applied Plato-MDE to the dynamic reconfigu-
ration of a set of remote data mirrors, where generated target system models

4th Workshop on Models@run.time at MODELS 09 39

enable data diffusion among remote data mirrors by maintaining network con-
nectivity while minimizing costs and maximizing network performance and data
reliability. Future directions for this work include exploring how to decentralize
the architecture of Plato-MDE to reduce potential performance bottlenecks.

References

1. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Betty H.C. Cheng: Composing adap-
tive software. Computer 37(7) (2004) 56–64

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

3. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10)
(2004) 46–54

4. Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the
presence of multiple objectives. In: Proceedings of the 2006 International Workshop
on Self-adaptation and Self-Managing Systems, New York, NY, USA, ACM (2006)
2–8

5. Caporuscio, M., Marco, A.D., Inverardi, P.: Model-based system reconfiguration
for dynamic performance management. Journal of Systems and Software 80(4)
(September 2007) 455–473

6. Mikalsen, M., Paspallis, N., Floch, J., Stav, E., Papadopoulos, G.A., Chimaris, A.:
Distributed context management in a mobility and adaptation enabling middleware
(madam). In: SAC’06: Proc. of the 2006 ACM symposium on Applied Computing,
New York, NY, USA, ACM (2006) 733–734

7. Oreizy, P., Gorlick, M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An Architecture-Based Approach to
Self-Adaptive Software. IEEE Intelligent Systems 14(3) (1999) 54–62

8. Goldsby, H.J., Betty H.C. Cheng, McKinley, P.K., Knoester, D.B., Ofria, C.A.:
Digital evolution of behavioral models for autonomic systems. In: Proceedings of
the fifth IEEE International Conference on Autonomic Computing, Washington,
DC, USA, IEEE Computer Society (2008) 87–96 (Best Paper Award)

9. Goldsby, H.J., Betty H.C. Cheng: Automatically generating behavioral models
of adaptive systems to address uncertainty. In: Proceedings of the 11th Interna-
tional Conference on Model Driven Engineering Languages and Systems, Berlin,
Heidelberg, Springer-Verlag (2008) 568–583 (Distinguised Paper Award)

10. Knoester, D.B., Ramirez, A.J., Cheng, B. H.C., McKinley, P.K.: Evolution of ro-
bust data distribution among digital organisms. In: Proceedings of the 11th annual
conference on Genetic and Evolutionary Computation (GECCO ’09), Montreal,
Canada (July 2009) 137–144 (Nominated for Best Paper)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge, MA, USA (1992)

12. Ji, M., Veitch, A., Wilkes, J.: Seneca: Remote mirroring done write. In: USENIX
2003 Annual Technical Conference, Berkeley, CA, USA, USENIX Association (June
2003) 253–268

13. Ramirez, A.J., Knoester, D.B., Cheng, B. H.C., McKinley, P.K.: Applying genetic
algorithms to decision making in autonomic computing systems. In: Proceed-
ings of the Sixth International Conference on Autonomic Computing (ICAC’09),
Barcelona, Spain (June 2009) 97–106 (Best Paper Award)

4th Workshop on Models@run.time at MODELS 09 40

On the Role of Features in Analyzing the Architecture of

Self-Adaptive Software Systems

Ahmed Elkhodary, Sam Malek, Naeem Esfahani

Department of Computer Science

George Mason University

{aelkhoda, smalek, nesfaha2}@gmu.edu

Abstract. In traditional software families, feature-orientation has been shown

effective for bridging the semantic gap between a software system’s

requirements and its architecture. Over the past few years, the emergence of

self-adaptive software systems, which are significantly more challenging to

build than traditional systems, has gained the attention of the software

engineering research community. In this paper, we show that using features at

runtime could alleviate some of the key challenges of building such systems.

The underlying insights are that: (1) features allow representation of the

engineer’s knowledge about some facets of the system that can be used to

enhance the adaptation logic, and (2) features can serve as an abstraction to deal

with the heterogeneity of the underlying architectural models, analytical

algorithms, and implementation platforms. We describe the role of features in a

self-adaptive framework that we have developed, entitled FeatUre-oriented Self-

adaptatION (FUSION). We also report on our preliminary experience with

FUSION that demonstrates the benefits of using features in different stages of

self-adaptation.

Keywords: Self-Adaptive Systems, QoS Analysis, Feature-Oriented Modeling

1 Introduction

Feature-orientation has shown to be an effective paradigm for achieving systematic

evolution and large-scale reuse in traditional software families [1-3]. In particular, it

leverages feature modeling as an intuitive formalism to bridge the semantic gap

between end-user requirements and software architecture.

From an end-user’s perspective, a feature model decomposes the system’s

requirements into meaningful units of functionality, known as features. A feature

serves as an abstraction that is independent of how the functionality is realized by the

system. From a software architectural perspective, feature modeling abstracts low-

level architectural variability into coarse-grained features that are easier to manage. In

turn, it maximizes the reuse potential in the construction of software families. It also

helps to ensure the validity of software family members, since features have a

4th Workshop on Models@run.time at MODELS 09 41

mapping to the low-level architectural constructs and each mapping is functionally

validated by the engineer.

In parallel with and largely unaffected by advances in feature-orientation and

software product line research, we have witnessed the emergence of self-adaptive

systems [4]. Such systems are capable of changing their behavior at runtime to achieve

certain functional and QoS goals, which are often specified by the users. Building self-

adaptive software systems is significantly more challenging than traditional software

systems. In particular, finding the right abstractions that can bridge the gap between

end-user goals on one end and their dynamic realization in the software architecture on

the other end is challenging.

Given the central role feature-orientation has played in the development of

traditional software systems, it is natural to believe its importance to only grow in the

even more complex domain of self-adaptive systems. Features are often used during

the requirements engineering phase to model the variation points in the software

system. At design-time, the engineer develops a mapping for each feature to part of the

underlying software architecture that realizes it. This mapping often crosscuts the

different parts of the architecture [5]. We advocate an additional role for features that

manifests itself at runtime. We believe features provide an appropriate abstraction for

modeling the adaptation points (i.e., runtime variability) in the software system [12].

Particularly, features are used in our approach to incorporate the engineer’s knowledge

of some facets of the system (e.g., the semantic relationship between functional

capabilities, QoS properties of concern), which augment the traditional software

architectural models to mitigate the challenges of achieving self-adaptation.

In this paper, we describe the role of features in a self-adaptive framework that we

have developed, entitled FeatUre-oriented Self-adaptatION (FUSION). Our

preliminary experience with FUSION has shown the advantages of using features in

the different stages of self-adaptation:

• Features are intuitively understood by both end-users and engineers, making them a

convenient medium for eliciting adaptation preferences.

• FUSION’s analysis operates on a feature-based representation of the system,

decoupling it from the heterogeneity of architectural and analytical models,

application domain, and implementation platform.

• Features allow FUSION to correlate results obtained from multiple analytical

models to discover interactions and conflicts in the system.

• FUSION uses inter-feature relationships to reduce the configuration space

significantly and make the analysis efficient.

• By encapsulating the engineer’s knowledge in the mapping of features to the

architecture and enforcing feature model constraints, FUSION ensures correct

functioning of the system during and after the adaptation.

The rest of this paper is organized as follows. Section 2 uses a motivating example

to present some of the key challenges our approach intends to resolve. Section 3

provides a high-level overview of the FUSION framework. Section 4 describes

FUSION’s underlying feature-oriented model. Sections 5 to 8 describe respectively

how features affect the monitoring, analysis, planning, and execution activities in

FUSION. Finally, the paper concludes with an overview of our future research.

4th Workshop on Models@run.time at MODELS 09 42

2 Challenges

We illustrate the concepts in this paper using an online Travel Reservation System

(TRS). Fig. 1c shows the software architecture of TRS using the traditional component

and connector view. TRS aims to provide the best airline ticket prices in the market.

To make a price quote for the user, TRS takes trip information from the users, and

then discovers and queries the appropriate travel agent services. The travel agents

reply with their price quotes, which are sorted and presented in an ascending order. In

addition to the functional goals, the system is required to attain a number of QoS goals

such as performance, reliability and security. To that end, solutions for each QoS

perspective were developed, e.g., caching for performance, redundancy for reliability,

and checkpoints for security.

A system such as TRS needs to be self-adaptive to deal with unexpected situations,

such as traffic spikes or security attacks. Therefore, the self-adaptation logic of TRS

needs to select from the available adaptation choices. For instance, enable caching to

improve performance during a traffic spike or enable authentication to prevent a

security attack. To do so, heterogeneous analytical models are required. For example,

security engineers may use attack graphs [6] to prevent intrusions and find the best

counter measures, while performance engineers may use queuing network models to

assess the latency goals. For a complex system engineers may need to connect

analytical models of multiple layers of abstraction (i.e., network, software, user, etc.)

to characterize software behavior.

Therefore, applying the existing models of adaptation in the development of self-

adaptive systems, such as TRS, is challenged by the following:

Challenge 1: There is no effective mechanism for identifying the interactions and

conflicts among the goals in a system using the results obtained from several

independent analytical models. For instance, consider the conflict between

Fig. 1. Travel Reservation System: (a) goals, (b) features, thick border indicates a

feature that is enabled, (c) software architecture corresponding to the enabled features.

4th Workshop on Models@run.time at MODELS 09 43

authentication and the quality of price quotes in TRS. Business Tier component waits

for a limited time to receive quotes from the Travel Agent components before timing

out. Since the authentication protocol introduces an additional delay, a heavy

authentication protocol may force more timeouts on the Business Tier, and hence

reduce the number of quotes received by TRS. Building analytical models that could

relate the interaction among the system’s capabilities and their impact on the system’s

conflicting goals is often infeasible, as they require representation of complex real-

world entities, such as users, networks, service providers, and so on.

Challenge 2: To satisfy multiple goals, self-adaptation logic needs to search in a

configuration space that is equivalent to the combined complexity of all analytical

models involved. As an example, consider how TRS would make use of �

authentication components for authenticating the network traffic between its M

software components, which may be deployed on P different hardware platforms. In

this case, analyzing the impact of authentication alone on the system’s goals would

require exploring a space of (M
P
 possible deployments)

 � possible ways of authentication
 = M

�P

possible configurations. Such problem is computationally expensive to solve at

runtime for any sizable system. This is while authentication is only one concern out of

many in any typical system.

Challenge 3: Ensuring the correct functioning of the software system during and

after the adaptation is a challenging task. This is often dependent on the application

and cannot be represented effectively in the general purpose architectural modeling

languages. For instance, consider the problem of representing a constraint in TRS that

requires the same authentication protocol to be used on the end-to-end execution flow

from the Web Portal all the way to the Travel Agent and back (depicted in Fig. 1c).

Prior to switching to a new protocol, the system is required to negotiate new

credentials among all of the components involved in the execution flow. The fact that

this authentication protocol crosscuts multiple components is difficult to abstract and

represent at the architectural level.

Challenge 4: Effecting a new architecture for a running system may require making

changes at the different levels of system stack (e.g., application, middleware, and

network). For instance, when a specific authentication protocol is used at the

application layer, security engineers may recommend the use of certain IP services at

the network layer. In addition, since the recommended IP services come with a

performance hit, the engineers may prefer to leave that as an option.

These four challenges have been the prime motivation for our work. As discussed in

the remainder of this paper, by adopting a feature-oriented approach, we are able to

mitigate these challenges.

3 Overview of Feature-Oriented Self-Adaptation

Changes in the system or its environment trigger the process of self-adaptation. Fig.

2 depicts a high-level overview of FUSION’s four main activities: Monitor, Analyze,

Plan and Execute. These activities are consistent with existing self-adaptive

framework’s that are based on the feedback control loop reference model [4,7].

4th Workshop on Models@run.time at MODELS 09 44

However, unlike the majority of existing approaches [8-11] that base the analysis and

adaptation on the architectural models, we adopt a feature-based model of adaptation.

At runtime, these activities are performed in the following logical flow:

• Monitor: Collects data through instrumentation of the running system. If a

functional failure or a violation of QoS objective is detected, it correlates the data

into symptoms that can be analyzed.

• Analyze: When a problem is detected, it searches for a configuration that resolves it.

It may perform a trade-off analysis between multiple conflicting goals.

• Plan: Chooses a path of adaptation steps towards the target configuration. The path

has to abide by the system constraints. In addition, adaptation steps must not cause

further failures in the system.

• Execute: Takes the required actions to effect the changes delineated in the plan.

This may require adding, removing, and replacing the components and the way they

are interconnected in the running architecture.

 In the remainder of this paper we describe how using feature-orientation affects

and improves the behavior of these activities. Each activity addresses one of

challenges introduced in Section 2. The Feature Based Models, shown in the middle

of Fig. 2, is how the engineer’s knowledge of the system’s characteristics and its

domain is captured and provided for the activities.

4 Feature-Based Models

A feature is an abstraction of a capability provided by the system. A feature may

affect either the system’s functional (e.g., ticket discounts) or non-functional (e.g.,

authentication protocol) properties.

Conceptually, features elicited for runtime variability serve a different purpose than

traditional ones. The main motivation behind a runtime feature is to account for

variability in the system’s execution context rather than the end-user requirements.

That is, to give the system enough flexibility to cope with an environment where no

one solution works perfectly at all times. The goal is to identify critical features

required for the system given such variability in the context.

The proposed features are in essence variation points in the architecture rather than

requirements. Exposing them as

features makes them independent

of a particular implementation

platform or application domain.

For example, in a rule-based

system a feature may correspond

to a set of rules, in a service-

oriented system it may

correspond to a set of services in

a workflow, in an adaptive

system it may correspond to a set

Fig. 2. High-level overview of FUSION.

4th Workshop on Models@run.time at MODELS 09 45

of adaptation strategies, and so forth.

Fig. 1b shows a particular realization

of features: a feature is an abstract

representation of an architectural

variant. As depicted in Fig. 1b,

features map to a subset of the

system’s software architecture. In

other words, features crosscut the

system’s software architecture.

4.1 Runtime Variability

Fig. 1b shows a simple feature model for TRS. There are four features in the system

and one common core. The features in the example use two kinds of relationships:

dependency, and mutual exclusion. The dependency relationship indicates that a

feature requires the presence of another feature. For example, enabling the Evidence

Generation feature requires having the Core feature enabled as well. Mutual exclusion

is another relationship, which implies that if one of the features in a mutual group is

enabled, the others must be disabled. For example, Per-Request Authentication and

Mid-Frequency Authentication cannot be enabled at the same time as they belong to

the same mutual group. Feature modeling supports several other types of inter-feature

relationships [1] that we do not discuss for brevity.

In FUSION, at runtime we use the feature model to identify the current system

configuration in terms of a feature-selection string. In a feature-selection string,

enabled features are set to “1”; disabled features are set to “0”. For example, one

possible configuration of TRS would be “1101”, which means that all features from

Fig. 1b are enabled except Per-Request Authentication (i.e., F3).

The adaptation of a system in FUSION is modeled as a transition from one feature-

selection string to another (more details in section 7). Each transition takes one of the

three forms: enable and disable an optional feature, or swap two mutually exclusive

features. Fig. 3 shows three transitions that take the TRS system from feature selection

“1010” to “0101”.

4.2 Goals

In FUSION, system failure is defined as inability to satisfy one or more system

goals. We have adopted a simple, yet very expressive, approach for modeling the

system’s goals. A goal has a utility function for which a system quality metric can be

optimized. The metric is a measurable quantity (e.g., response time) that can be

obtained from a running system. The utility function expresses the engineer’s

preferences for the metric. For instance, G1 (Price Quote Response Time) in Fig. 1a

specifies a response time metric value to be collected from sensors in the system. The

corresponding utility function specifies the user’s preferences for different values of

price quote response time.

Fig. 3. Feature-based adaptation.

4th Workshop on Models@run.time at MODELS 09 46

FUSION calculates the system’s expected utility for a new feature selection �� for
the system as follows:

�Ug �Mg�F'��
g∈G

, where U returns the utility associated with achieving a given metric M of goal g.

A utility function can be used to express hard constraints. In that case the utility

function would be a step-function such as the utility of G4 depicted in Fig. 1a. A utility

function may take on more advanced forms (e.g., sigmoid curve), and express more

complex preferences, such as G1, G2, and G3.

FUSION places one constrain on the specification of utility functions: they need to

return zero for the range of metric values that are not acceptable to the user. When a

utility associated with a goal reaches zero, FUSION considers that goal to be violated

and initiates adaptation

5 Monitor

As mentioned in challenge 1 of Section 2, quantifying the impact of adaptation

choices on the system’s conflicting goals are typically difficult (e.g., recall the trade-

off between the authentication protocol and the quality of price quotes). We believe

this difficulty is partially due to the gap between the system’s goals and the low-level

units of adaptation (e.g., add/remove component) at the architecture-level. In other

words, the adaptation occurs through low-level architectural changes, while the goals

are high-level concerns. Achieving a particular goal may require a series of low-level

changes at the architecture level. As a result, identifying the impact of low-level

changes on the system’s goals becomes extremely difficult.

In FUSION, the units of adaptation are features, which are inherently less granular

than low-level architectural constructs. In turn, since Monitor collects the data at a

higher level (i.e., feature level), it is significantly easier to observe and identify the

conflicts among goals. In particular, the monitored data in FUSION can be used to

determine two kinds of interactions:

1. Goal interactions with respect to one feature. A goal interaction occurs when two

goals are affected by enabling a feature. For instance, F1 (Evidence Generation)

has a positive effect on G4 (Accountability) and negative effect on G1 (Price

Quote Response Time), since Evidence Generation adds a mediator component to

witness the exchange of messages between TRS and travel agents.

2. Feature interactions with respect to one goal. A feature interaction occurs when

enabling two features modifies the behavior of one or both features. For example,

enabling both features F1 (Evidence Generation) and F3 (Per-Request

Authentication) has a negative ramification on G1 (Price Quote Response Time)

that is beyond the individual impact of each. Per-Request Authentication changes

the behavior of Evidence Generation, since it causes additional overhead in

mediating exchange of authentication credentials between TRS and travel agents.

4th Workshop on Models@run.time at MODELS 09 47

6 Analyze

Analyze conducts runtime analysis to find a configuration of the system that

resolves the violated goals. As mentioned in challenge 2 of Section 2, performing such

analysis at the architectural-level is often computationally very expensive for any

sizable system. FUSION uses features to encode the engineer’s knowledge of the

adaptation choices that are practical. In turn, Analyze operates on the feature selection

space, which is significantly smaller than the architecture selection space.

For instance, in the TRS example, the engineer has exposed only the authentication

strategies that are foreseen to be useful as features. Fig. 1b shows the two

authentication strategies that are modeled as features in the TRS: F3 and F4. This

automatically reduces the configuration space from M
�P

 (recall example of challenge

 2) to 2
F
, where F is the number of variant features that affect the authentication

concern in the system. Clearly it is reasonable to assume that M >> 2 and �×P >> F

for any sizable system.

In addition, using the inter-feature relationships (e.g., mutual exclusions,

dependencies) we can further reduce the feature selection space. For instance, Fig. 1b

shows a mutual exclusive relationship between F3 and F4. This relationship captures

the engineer’s application knowledge that applying two authentication protocols to the

same execution scenario is not a valid configuration. Such relationships reduce the

space of valid feature selections significantly.

We can further scope down the analysis to only the features that affect the violated

goals. Analyze first finds features that have a significant impact (positive or negative)

on the violated goal. It then finds any other goals that are affected by the selected

features. As a result, FUSION’s feature-based analysis is significantly more efficient

than the alternative of assessing all of the system goals for the entire space of

adaptation choices at the architectural level.

7 Plan

As you may recall from challenge 3 in Section 2, adaptation planning is a major

source of difficulty, due to its application dependent nature. This is one of the key

shortcomings of existing self-adaptation frameworks, which either ignore or revert to

ad-hoc techniques during the planning stage. In FUSION, the engineer models this

knowledge in terms of features and their dependencies. This is used to devise a plan

that ensures the system’s correct functioning during and after the adaptation.

Fig. 3 shows an adaptation plan in FUSION, which consists of a series of

transitions from the current feature selection to a new one. Since many paths can be

traversed to reach a target feature selection, Plan uses the feature model to pick a path

that abides by feature model constrains in every intermediate step. In TRS for

example, enabling F3 and F4 at the same time produces a feature selection that violates

the mutual exclusion relationship in the feature model. If two features are mutually

exclusive, the system should never be in a state were both features are enabled.

Similarly, a dependent feature should not be enabled without its prerequisite. In other

4th Workshop on Models@run.time at MODELS 09 48

words, the path should not cause transition to an invalid feature selection that could

jeopardize the system’s functionality.

In addition, guided by utility functions, Plan can pick a path that minimizes

violation of goals as much as possible. For instance, suppose that enabling F1 causes

5% decrease in the utility of G1. If G1 is already 1% away from violating its constraint,

enabling F1 right away will cause a violation. In such a case, the adaptation plan first

enables another feature, suppose F2, to increase G1’s utility (e.g. up to more than 5%

away from the constraint) before enabling F1.

8 Execute

Execute carries out the process of changing the system’s configuration. However,

as mentioned in challenge 4 of Section 2, effecting a new architecture may require

making changes at different levels of system stack (e.g., application, middleware,

network). FUSION uses features as platform-independent effectors. Each feature is

associated with a feature mapping, which relates the feature to a part of the running

system. A feature mapping is a set of rules that specify the changes that need to take

place in the lower levels of system stack. For mutual exclusive features, one mapping

is created for each mutual group.

Fig. 4 shows how FUSION integrates with the system using a feature mapping

interface. In part (a), the feature mapping interacts with multiple platforms at the

application level. In part (b), the feature mapping rules extend to different levels of

system stack. In both cases, the role of Execute is limited to invoking one feature-

mapping interface at a time (i.e., enable/disable/swap a feature) regardless of how and

where changes are taking place. For example, enabling a feature may correspond to

delopying new components in the application, selecting a new resource allocation

policy in the middleware, switching off certain network interfaces, and so on. The

feature mapping interface invokes effectors in the running system to apply the changes

as specified.

Fig. 4. FUSION uses feature-mapping to integrate with (a) heterogeneous

implementation platforms, and (b) different levels of system stack.

4th Workshop on Models@run.time at MODELS 09 49

9 Conclusion

We described the role of features in a self-adaptive framework, called FUSION. We

showed how feature modeling alleviates some of the key challenges of building self-

adaptive systems. The underlying insight guiding our research is that: (1) by using

features to incorporate the engineer’s knowledge of some aspects of the system we can

enhance the adaptation logic, and (2) features can serve as an abstraction to deal with

the heterogeneity of the underlying architectural models, analytical algorithms, and

implementation platforms. As part of our future work we intend to empirically

evaluate and compare the FUSION framework against other self-adaptation

frameworks. In particular we plan to quantitatively assess the benefits and drawbacks

of using feature abstractions for self-adaptation in the context of real-world

applications.

Acknowledgments. This work is partially funded by contract W9132V-07-C-0006

with US Army Geospatial Center, as well as grant CCF-0820060 from National

Science Foundation. We would like to thank Mark Pullen for his guidance and support

in this research.

References
1. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-

Based Software Architectures, Addison-Wesley Professional, 2004.

2. Kang, K.C., et al.: Feature-oriented domain analysis (FODA) feasibility study. Carnegie-

Mellon University, Pittsburgh, PA, Software Engineering Institute, 1990.

3. Kang, K.C., et al.: FORM: A feature-oriented reuse method with domain-specific reference

architectures. In: Annals of Software Engineering, vol. 5, 1998, pp. 143–168.

4. Cheng, B. H. C. et al., Software Engineering for Self-Adaptive Systems: A Research

Roadmap. In: Software Engineering for Self-Adaptive Systems, Lecture Notes on

Computer Science Hot Topics, 2009, pp. 1-26.

5. Lee, K., Kang, K., Kim, M., Park, S.: Combining feature-oriented analysis and aspect-

oriented programming for product line asset development. In: 10th International Software

Product Line Conference, 2006, pp. 10 pp.-112.

6. Foo, B., Wu, Y., Mao, Y., Bagchi, S., Spafford, E.: ADEPTS: adaptive intrusion response

using attack graphs in an e-commerce environment. In: Dependable Systems and

Networks, 2005. DSN 2005. Proceedings International Conference on, 2005, pp. 508-517.

7. Andersson, J., de Lemos, R., Malek., S., and Weyns, D.: Modeling Dimensions of Self-

Adaptive Software Systems. In: Software Engineering for Self-Adaptive Systems, Lecture

Notes on Computer Science Hot Topics, 2009.

8. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-

Based Self-Adaptation with Reusable Infrastructure, Oct. 2004.

9. Oreizy, P., et al.: An Architecture-Based Approach to Self-Adaptive Software. In: IEEE

Intelligent Systems, vol. 14, 1999, pp. 54--62.

10. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: International

Conference on Software Engineering, 2007, pp. 259-268.

11. Malek, S., Mikic-Rakic, M., Medvidovic, N.: An extensible framework for autonomic

analysis and improvement of distributed deployment architectures. In: Proceedings of the

workshop on Self-managed systems, ACM New York, NY, USA, 2004, pp. 95-99.

12. Lee, J., Kang, K.: “A feature-oriented approach to developing dynamically reconfigurable

products in product line engineering,” Software Product Line Conference, 2006 10th

International, 2006, pp. 10 pp.-140.

4th Workshop on Models@run.time at MODELS 09 50

Models at Runtime: Service for Device
Composition and Adaptation

Nicolas Ferry1,2, Vincent Hourdin1,3, Stéphane Lavirotte1, Gaëtan Rey1,
Jean-Yves Tigli1,†, Michel Riveill1 ?

{ferry, hourdin, lavirott, rey, tigli, riveill}@polytech.unice.fr

1 Laboratoire I3S (Université de Nice - Sophia Antipolis / CNRS) 930 route des
Colles - B.P. 145 06903 Sophia-Antipolis Cedex - France

2 CSTB, 290, route des Lucioles, B.P. 209 06904 Sophia-Antipolis Cedex - France
3 MobileGov, 2000, route des Lucioles - 06901 Sophia Antipolis - France

† currently delegated as INRIA researcher in the team PULSAR

Abstract. Our works on software architectures for highly dynamic en-
vironments, such as ubiquitous computing, led us to consider models at
runtime. Indeed, the biggest challenge of these environments is adapta-
tion, and its reactivity is a key concern. In this paper, we describe models
of our dynamic service composition and adaptation approach, and the
benefits of the use of metamodels. We explore how metamodels can be
used at runtime, to enforce conformity of transformations results, when
adaptation is seen as model transformation.

1 Introduction

Ubiquitous computing, as described by Mark Weiser [1], relies on computers
present everywhere, at any times and in any things. Indeed with recent years
advance in mobile communication technologies and the miniaturization of com-
puter hardware, processing units are becoming invisible and a part of the envi-
ronment. Software infrastructure appears dynamically populated by functional-
ities of those devices. The topology of this infrastructure is also dynamic, due
to arbitrary node mobility. So that the software infrastructure of an ubiquitous
application is not known a priori.

One of the biggest challenges of highly dynamic environments, like in ubiqui-
tous or pervasive computing, is to handle the modifications of the infrastructure
at runtime. Indeed, these systems have to adapt continuously to their environ-
ment [2]. An important constraint is that the adaptation process is driven by the
environment and not by the application. Reactivity is a major concern, compared
to other systems: the adaptation process must quickly be launched, in reaction
to changes in the environment, and must finish before new changes happen.

However, before we can create an “universal application” able to alter its
behavior and functionalities in reaction to changes of the environment, a first
challenge is to maintain its predefined functionalities despite those variations,

? This work is part of the Continuum Project (French research) ANR-08-VERS-005

4th Workshop on Models@run.time at MODELS 09 51

without knowing what kind of device are going to be discovered. A continuity of
service has to be ensured to mobile users in environments with variable dynamics
and heterogeneous resources.

Such adaptation is equivalent to a program transformation which is a kind
of model transformation [3]. But in the field of ubiquitous computing it must be
a highly reactive transformation, forcing model-checking to happen at runtime,
as we will study in the following section (Sect. 2).

In Sect. 3, we present our runtime approach as well as involved models and
metamodels. Furthermore, we introduce our adaptation mechanism as a model
transformation from an application to another. Then, in Sect. 4, we explain how
adaptation is decomposed into three transformations between different models
of the approach. Finally, (Sect. 5), we explain how metamodels could help us to
check the validity of the adaptation process and the executing application.

2 Reactivity

Reactivity is a key concern of ubiquitous computing, both for adaptation trigger-
ing and for adaptation time. We consider that adaptive applications are always
in one of the three states presented in Fig. 1. States (1) and (3) are normal
execution states of the application, where it is consistent with its environment.
It means that the application’s behavior is based on what is relevant in its envi-
ronment and this is the expected behavior for a particular situation. During the
transitional state (2) the application is in its adaptation (transformation) phase
and unavailable. It is considered in an inconsistent state because the application
is not in line with its environment. Moreover, the time spent in this state, related
to the speed of the adaptation process, has to be consistent with the dynamic
of the changing environment. In other words, it is essential that:

• the system does not stay in the previous state (1) too much time before
reacting to environment changes,
• the system is not unavailable for too long while adapting,
• adaptation is fast in order to obtain an application consistent with the envi-

ronment. Otherwise, the system could become unstable and may never reach
a normal execution state before new evolutions occurs in its environment.

Fig. 1. The three states of an adaptive application

The complexity of the adaptation mechanism must be as low as possible and
based on mechanisms that do not try to consider the whole environment (which

4th Workshop on Models@run.time at MODELS 09 52

can be assimilated to the world) but only what is relevant to the application.
The surroundings of the application should be sensed to a sufficient degree to
achieve the necessary adaptation.

In some cases, adaptive systems must offer bounded response times. To get
an application from one state to another, adaptation must also be consistent
with the inherent dynamic of the application. Various studies have suggested
response times supposed adequate to users on various systems. In the field of
HCI, Berard [4] proposed that the latency of a device must be at least two times
less than the user latency which is 100ms. In the area of domotics we consider
that an acceptable lag is about 1s. For robotics or ubiquitous systems, latency
depends on a cycle based on three steps: perception, processing, action. For the
cycle, we consider that an acceptable lag is about 100ms. Thus, adaptation has
to be triggered briefly, as much as it has to be effective quickly.

In the next section, we propose an approach for self-adaptive application in
the field of ubiquitous computing based on models, in which adaptation is a
reactive mechanism.

3 Our Runtime Approach

Our vision of ubiquitous systems rely on three layers: the environment, accessible
through the software infrastructure, the application, as a composition of service
and the adaptation mechanism. In this section, we present these layers’ models,
with their associated meta-models.

3.1 Services for Devices: a Software Infrastructure

For many years, service oriented architectures (SOA) have been used in home
automation, mobile and ubiquitous computing to represent as services the sets of
functionalities offered by devices. They offer lots of features discussed in [5] such
as encapsulation, dynamicity, discoverability and interoperability. They evolved
from standard SOA to SOA for device (SOAD) by adding two main features:
decentralized reactive discovery and asynchronous communications.

Decentralized reactive discovery has been popularized by projects such as
SLP 1 or Jini. It suppresses the need of a service registry tracking active services
in a network domain. Services advertise their presence and clients create search
requests using multicasted or broadcasted messages. Asynchronous communica-
tions used by SOAD like Jini are events notifications, providing reactivity to
devices often interacting with humans or the environment.

In addition, when Web technologies are used to implement SOAD, interoper-
ability between all entities is enabled, whether they are heterogeneous devices or
simple software services. Only two implementations of Web services for devices
currently exist: UPnP2 and DPWS3. Figure 2 represents a model of a UPnP

1 The Service Location Protocol.
2 Universal Plug and Play Forum: http://www.upnp.org/
3 Device Profile for Web Services. http://www.ws4d.org/

4th Workshop on Models@run.time at MODELS 09 53

Fig. 2. An infrastructure model Fig. 3. Infrastructure Metamodel

architecture (what we use as software infrastructure), with four devices, and
some details about the services they offer. Next to it, Fig. 3 represents the meta-
model of the UPnP the infrastructure. All environmental quantity that can be
used in the application is obtained through the use of services present in the
infrastructure and conform to this metamodel.

Evolutions of WSOAD allow to create reactive dynamic distributed applica-
tions, suitable for ubiquitous computing environments. Using services for devices,
any modification occurring in the software infrastructure can be integrated at
runtime into the model of the software infrastructure. Thus, the application can
react quickly to those unpredictive variations.

3.2 Dynamic Service Composition

To create applications from this infrastructure of services for devices, we use the
Service Lightweight Component Architecture (SLCA) [6]. It allows to dynami-
cally orchestrate and compose services for devices using lightweight component
assemblies executing in containers. The container provides minimal technical
services, also known as non-functional concerns helpers. Obviously, we created
external tools that can generate client components from Web services for devices
descriptions. We call them proxy components.

Containers manage assemblies of components fully dynamically and we use
models such as Fig. 4 to manage them at runtime. Component types can be
loaded and unloaded, component instances and bindings between them can be
added or removed at runtime. Proxy components are generated, loaded and in-
stantiated dynamically and automatically, following the presence of services of

4th Workshop on Models@run.time at MODELS 09 54

Fig. 4. A SLCA model Fig. 5. SLCA Metamodel

the infrastructure. There is a direct mapping between the infrastructure meta-
model and the application (SLCA) metamodel. Moreover, this mapping is highly
reactive.

Applications or new functionalities are created from existing services on the
infrastructure by managing an assembly of components. Proxy components are
combined together or with purely functional components to transform infor-
mation. SLCA components and services for devices communicate mostly using
event-based communication patterns, which, more than decoupling entities and
increasing dynamicity, enables the reaction to infrastructure changes efficiently.

Figure 5 represents the metamodel of this composition architecture, for a
container and its internal dynamic assembly of components.

3.3 Auto-adaptation

Now that applications are created from the dynamic infrastructure, we need
to adapt their behavior to changes of their environment in a reactive way. We
created a paradigm called Aspect of Assembly [5] that allows us to adapt com-
posite services according to specified rules. Aspects of assembly (AA) are pieces
of information describing how an assembly of components will be structurally
modified, thus keeping black-box property of components. Modifications include
adding components and bindings between them. Since the mapping between the
infrastructure and the application is done dynamically, an expert user, in order to
build an application, has to write and select a set of AAs. Aspects of Assembly
consist of two parts, like regular aspects found in Aspect-Oriented Program-
ming (AOP) [7]: pointcut and advice. Pointcuts describe to which components
the modifications described by advices have to be weaved (applied).

If some of the required components expressed in a pointcut are not avail-
able, the advice won’t be weaved until they become all available. Since service
discovery is a reactive process and that containers notifications are events too,

4th Workshop on Models@run.time at MODELS 09 55

AAs can be weaved in response to the appearance of a service on the infras-
tructure. Moreover, AA composition provides associativity, commutativity and
idempotence properties when several aspects are enabled to be weaved at the
same time [5].

Pointcut are defined as sets of filters on base assembly meta data — for example
component ID or types (see Fig. 7). Those filters construct lists of parameters,
called the joinpoints, satisfying the list of variables of the associated advice. They
are the set of components on which the advice will be weaved. For each generated
list, the advice is duplicated, and the variables are syntactically replaced in the
advice to match the base assembly joinpoints. For our experiments, we choose
for convenience to express filters in using some simple pattern matching on
component instances names.

Advice in AA is not a piece of code which will be weaved into components.
It defines a set of component instances and links that will be weaved inside a
targeted assembly of components. Advices are specified in a DSL using interac-
tion specification defined in [5]. A link or connector between two components
consists of an input event and an output method from components. More than
links, rules can create assemblies thanks to some predefined operators which are
components with a well-known semantic like a condition (if) or indetermin-
ism (parallel) (see Fig. 7). Finally all those specifications are translated into
a set of elementary modifications—add or remove components and links—with
respect to blackbox properties of COTS components.

As we have seen, AAs are written as a pointcut and an advice. They can
be written and added to the system at design-time or at runtime. Checking
that an AA is conform to its metamodel (Fig. 7) is easy. However, at runtime,
new informations are available, like joinpoints and the status of the application,
making the checking more complicated and more relevant for a situation.

In the following section we will present how AAs are weaved and how this
can be compared to a highly reactive model transformation.

4 Aspects of Assembly Weaving Process

The weaving process can be seen as an horizontal endogenous model-to-model
transformation [8]. It re-factors an SLCA application into another.

With this approach, the transformation is done at runtime. While the adap-
tation is being done, the application is in transitional state, but can still be
used. Only the adaptation mechanism is busy during this lapse of time. This is
a major concern for service continuity and for application’s reactivity in ubiq-
uitous computing. Moreover, in potentially very large systems, using the AOP
approach allows designers to write adaptation rules focusing only on a part of
the system, reducing the complexity of the adaptation process. Since aspects can

4th Workshop on Models@run.time at MODELS 09 56

Fig. 6. Aspects of Assembly model Fig. 7. Aspects of Assembly Metamodel

be duplicated in several places, the number of aspects to consider may be lower
than in other approach. The complexity of the adaptation mechanism is reduced
to provide a better reactivity.

Other works have explored the use of models at runtime for aspect-based
adaptation [9,10]. They need the dynamicity to validate new adaptation rules
at runtime, before making them automatic scripts. But because our mechanism
is build on less steps (especially model transformations) we seem more able to
be reactive. In fact there are only few works on highly reactive mechanism for
adaptation in ubiquitous systems. OpenORB [11] proposes a way to adapt a
system at runtime in a very reactive way but it does not consider the whole clas-
sical mechanism for context-awareness. CORTEX [12] also addresses the concern
of reactivity but as OpenORB, it does not manage potential conflicts between
several adaptations.

4.1 The Weaving Process

In this section we study more precisely the weaving process that can be de-
composed into three steps (Fig. 8). First, pointcut matching is a function that
has a set of components from the initial assembly and pointcuts from a set of
selected AA as input. Its goal is to find the components, called joinpoints, on
which advices will be woven. Based on pointcut matching results, an advice can
be weaved several times in the same weaving process.

The second step is called the advice factory. It generates instances of advices,
replacing variable components in advices of selected aspects by joinpoints given
by the first step. Instances of advices describe modifications to be weaved in an
actual assembly of components.

Finally, the composition engine merges all instances of advices with the initial
assembly in order to generate a single instance of advice that will be weaved as
the final assembly. This merging mechanism is able to resolve conflicts between

4th Workshop on Models@run.time at MODELS 09 57

various instance of advices [5]. Thus we can build applications by composing
several aspects of assembly at the same time, at runtime.

Fig. 8. Detailed weaving process

In order to be more reactive, the weaver can be triggered in two ways. The
first is user-driven and changes the set of AAs given as input to the weaver, by
selecting/deselecting or adding/removing aspects of assembly at runtime. When
the set of AAs is modified, the weaver is triggered, leading to adaptation if an
added AA can be applied or if a removed AA was. The second way of triggering
adaptation is driven by infrastructure changes. When a new device appears or
disappears in the environment, its proxy component is dynamically instantiated
in or removed from the assembly. The adaptation process is triggered and only
AAs that are able to apply according to newly available components are applied.

An important point for the reactivity of such a mechanism is that the system
doesn’t requires any information about the state of the software infrastructure.
With a dynamic of its own, the infrastructure imposes his pace. The inclusion of
this type of triggering mechanism allows us to build opportunistically from an
infrastructure services and devices, applications with a “bottom-up” approach.
Applications are built in line with their infrastructure in a reactive way.

4.2 Synthesis

Our approach allows us to build applications able to adapt at runtime to their
software infrastructure. Moreover, coupling the event paradigm and AOP allows
us to transform our applications and our models in a very reactive way. Our
approach is decentralized and distributed since each weaver is associated to a
composite service and deals with AAs in order to consider only relevant part of
the environment. This caused a sharp reduction of adaptation’s complexity.

We validated our approach with some experiments on the cost in time of a
weaving process on randomly generated component assemblies. Some of those
results can be found in [13]. As result of these experiments, we found that with
two AAs conflicting we are able to weave about 40 components (e.g to merge

4th Workshop on Models@run.time at MODELS 09 58

20 instance of advice) in 100ms. Without conflicts we are able to compose more
than 100 components (e.g. to compose 50 instance of advice) in 100ms.

5 The Contribution of Metamodels

More than a reactive model-to-model endogenous transformation [8] at runtime,
our adaptation process can be seen as a parametrized transformation. All se-
lected and applicable AAs are parameters that define the transformation taking
place. Without these parameters, the transformation does not involve any mod-
ification of the initial assembly. In fact, this transformation is decomposed into
three low cost transformations (Fig. 9) to be done at runtime.

Fig. 9. The adaptation process as three transformations

1. The first transforms the software infrastructure model, conform to the in-
frastructure metamodel, into a component assembly conform to the SLCA
metamodel. This is an horizontal model-to-model and one-to-one exogenous
transformation.

2. The second transforms the application obtained in 1. into instances of ad-
vices which are the sub-assemblies to weave in the final application. These
instances are also conforming to the SLCA metamodel. This transformation
is parametrized by a set of selected AAs conform to the AA metamodel. This
is an horizontal one-to-many parametrized endogenous transformation.

3. Finally, the last transformation merges all the instances of advices into a
single application also conform to the SLCA metamodel. This is a many-to-
one horizontal endogenous model transformation.

As we have seen, our mechanism for adaptation in ubiquitous environment
is a set of highly reactives models transformation at runtime. The introduction
of metamodels defining the three levels of our approach has allowed us in the
first place to abstract the work already undertaken and to ease its reusability.
Secondly, the ANR RNTL FAROS project has enabled us to validate our meta-
models and to check models conformity at design-time. We are now working on
setting up mechanisms to check the conformity at runtime of our applications
through those metamodels.

4th Workshop on Models@run.time at MODELS 09 59

6 Conclusion

We presented our approach for dynamic service composition and adaptation
based on aspects of assembly, that is equivalent to a highly reactive model
transformation at runtime. Models allow us to check the conformity of appli-
cations, infrastructure, and adaptation parameters at design-time. Incidentally,
what would be the impact of such checks at runtime on the reactivity of our
approach? Moreover, how can we benefit from our three-step transformation to
check partial conformity of models during the whole adaptation process? Finally,
we will explore runtime aspect-oriented modelling (AOM) and its reactivity.

References

1. Weiser, M.: The computer for the twenty-first century. Scientific American 265(3)
(Sep 1991) 94–104

2. Berry, D., Cheng, B., Zhang, J.: The four levels of requirements engineering for and
in dynamic adaptive systems. In: 11th International Workshop on Requirements
Engineering Foundation for Software Quality (REFSQ). (2005)

3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Syst. J. 45(3) (2006) 621–645

4. Crowley, J., Coutaz, J., Bérard, F.: Perceptual user interfaces: things that see.
Communications of the ACM 43(3) (2000)

5. Tigli, J.Y., Lavirotte, S., Rey, G., Hourdin, V., Cheung-Foo-Wo, D., Callegari, E.,
Riveill, M.: WComp Middleware for Ubiquitous Computing: Aspects and Com-
posite Event-based Web Services. Annals of Telecommunications (AoT) 64(3–4)
(Apr 2009) 197–214

6. Hourdin, V., Tigli, J.Y., Lavirotte, S., Rey, G., Riveill, M.: SLCA, composite
services for ubiquitous computing. In: Proceedings of the 5th International Mobility
Conference, Singapore Chapter of ACM (2008)

7. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., marc Loingtier,
J., Irwin, J.: Aspect-oriented programming. In: ECOOP, SpringerVerlag (1997)

8. Mens, T., Czarnecki, K., Gorp, P.V.: A taxonomy of model transformations, Ger-
many, Internationales Begegnungs und Forschungszentrum für Informatik (2005)

9. Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jézéquel, J.: Modeling and Vali-
dating Dynamic Adaptation. In: 3rd International Workshop on Models@ Runtime
(MODELS.08), France, Springer (2008)

10. Morin, B., Fleurey, F., Bencomo, N., Jezequel, J., Solberg, A., Dehlen, V., Blair, G.:
An aspect-oriented and model-driven approach for managing dynamic variability.
In: 11th International Conference on Model Driven Engineering Languages and
Systems (MODELS), Springer (2008)

11. Grace, P., Coulson, G., Blair, G., Porter, B.: A distributed architecture meta-model
for self-managed middleware. In: Proceedings of the 5th workshop on Adaptive
and reflective middleware (ARM’06), ACM (2006)

12. Verissimo, P., Cahill, V., Casimiro, A., Cheverst, K., Friday, A., Kaiser, J.: Cortex:
Towards supporting autonomous and cooperating sentient entities. In: Proceedings
of European Wireless. (2002) 595–601

13. Ferry, N., Lavirotte, S., Tigli, J.Y., Rey, G., Riveill, M.: Context Adaptative Sys-
tems based on Horizontal Architecture for Ubiquitous Computing. In: International
Mobility Conference, France, ACM (September 2009)

4th Workshop on Models@run.time at MODELS 09 60

A Model-Driven Configuration Management
System for Advanced IT Service Management

Holger Giese, Andreas Seibel, and Thomas Vogel

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{forename}.{surname}@hpi.uni-potsdam.de

Abstract. A popular guideline to manage today’s complex and hetero-
geneous IT systems is the IT Infrastructure Library (ITIL), which pro-
vides a catalogue of best practices for IT Service Management (ITSM).
However, state-of-the-art implementations of ITIL rely on a set of XML-
based standards. To ease manageability and effectively exploit a Config-
uration Management System (CMS), which is the integral part of ITSM,
we suggest in this paper a model-driven CMS by applying Model-Driven
Engineering (MDE). Metamodel based models improve the manageabil-
ity by providing a suitable abstraction, which enables direct user in-
teraction as well as the application of MDE techniques such as model
transformations. Furthermore, vital elements of a model-driven CMS
are runtime models, which capture the managed system. In addition,
this paper reports on a first prototype implementation of a model-driven
CMS that exploits runtime models, their automatic maintenance, model-
based analysis on these runtime models, and automatic adaptation of the
managed system by facilitating changes on runtime models.

1 Introduction

A recent observation is the increase of administration costs due to the increas-
ing complexity and heterogeneity of IT systems whereas these IT systems still
need to be manageable. At the same time, IT systems need to be delivered even
at a higher speed and managed at minimum costs [1], which forces IT system
providers managing them efficiently. A popular guideline to manage today’s com-
plex and heterogeneous IT systems is the IT Infrastructure Library (ITIL) v3
that provides a catalogue of best practices for IT Service Management (ITSM)
containing common definitions by using a common terminology. The integral
part of ITSM is the Configuration Management System (CMS), which is pri-
marily a toolset and storage for Configuration Items (CI). CIs are manageable
elements of the managed system, which can be services, incidents, problems,
hardware, software, buildings, persons, etc. In conclusion, a CMS supports man-
agement which leads to increasing quality and a more economic management of
IT systems.

Several commercial ITIL implementations exist, e.g., IBM Service Manage-
ment [2–5], which can be seen as state-of-the-art in ITSM. These approaches
are quite powerful and comprehensive. Nevertheless, they rely on a set of XML-
based standards and do not leverage the full strength of Model-Driven Engineer-
ing (MDE). On the other side, research approaches do not focus on ITSM as

4th Workshop on Models@run.time at MODELS 09 61

proposed by ITIL [6–11]. These approaches embrace aspects of runtime models
and autonomic computing in different domains to manage systems autonomi-
cally. However, we think that autonomic computing in ITSM is currently only
partially feasible, e.g., in parts of Service Operation to keep the system running
[12]. Nevertheless, it is an important vision for ITSM.

In this paper we fill this gap by focusing on easing manageability and effec-
tively exploiting a CMS by applying MDE. Meta model based models improve
the manageability by providing a suitable abstraction, which enables direct user
interaction as well as the application of MDE techniques such as model transfor-
mations. Furthermore, vital elements of a model-driven CMS are runtime mod-
els, which capture the managed system. In addition, this paper reports on a first
prototype implementation of a model-driven CMS that exploits runtime models,
their automatic maintenance, model-based analysis on these runtime models, and
automatic adaptation of the managed system by facilitating changes on runtime
models. However, we cannot provide a complete ITSM approach that performs as
competitor for state-of-the-art approaches. Thus, our prototype implementation
focuses on parts of Change Management, Release & Deployment Management
and Service Asset & Configuration Management although the proposed CMS is
open to extensions for other management processes.

The paper is structured as follows: In Section 2 we outline a model-driven
CMS for ITSM by applying MDE, which conforms to ITIL. We show a prototype
implementation facilitating runtime models in Section 3. An application example
is shown in Section 4 and we close the paper with conclusions and future work
in Section 5.

2 Model-Driven Configuration Management System
In this section, we first outline a common CMS extracted from ITIL and state-
of-the-art implementations (cf. [2–5]). Based on these insights, we propose ap-
plications of MDE. This implies the application of runtime models, management
models and MDE techniques to automate several processes.
2.1 Common Structure of a Configuration Management System
Additionally to CIs, a CMS contains logical dependencies between CIs that have
to be captured as well as information that is required by management processes,
such as Change Management or Release & Deployment Management. Manag-
ing CIs in the CMS is the task of Service Asset & Configuration Management.
Consequently, it is tightly coupled to the CMS. Figure 1 shows a CMS within
the context of ITSM. A CMS consists of a federated Configuration Management
Database (CMDB) and a set of Managed Data Repositories (MDRs), which
are technically CMDBs. An MDR focuses on a specific domain of the managed
system, e.g., database servers or certain applications and thus contains detailed
information about CIs in that domain. MDRs gather information about CIs from
different sources within the managed system, e.g., through management inter-
faces. The federated CMDB is responsible for providing all relevant CIs of the
managed system and their logical dependencies at a higher level of abstraction.

Each MDR federates its CIs to the federated CMDB where a coherent and
consistent set of CIs is reconciled. The CIs of the federated CMDB do not need

4th Workshop on Models@run.time at MODELS 09 62

to capture all details about the managed elements but at least basic informa-
tion and references to the related CIs in the MDRs, where detailed information
about them are captured. Furthermore, the federated CMDB provides interfaces,
which are used by management tools to query and update CIs and management
information.

Management
Inferface

Management
Inferface

MDR

CMDB

MDR

Change
Management

Tools

Release & Deployment
Management

Tools

Service Asset &
Configuration Management

Tools

...

Management
Inferface

Query/Update

Query/Update

Query/Update

Federation & Reconciliation

Management
Inferface

CMSITSM

System

Fig. 1. A Common CMS within the Context of ITSM

2.2 Application of Model-Driven Engineering

Based on these insights, we suggest to apply techniques known from MDE in the
sequel of this section. MDE is considered as the integration of metamodel based
models and MDE techniques such as transformation, synchronization, merge,
comparison, and analysis on models.

Management Tools Management tools can use management models as an un-
derlying formalism, which enables management tools to provide model editors
with a suitable concrete syntax to facilitate management by providing well-
defined abstractions of the information to be managed. This is beneficial when-
ever the information that needs to be managed is complex and a visual represen-
tation would facilitate its understanding and management. Within management
tools MDE techniques can be applied without any limitations. If multiple repre-
sentations of management models are beneficial, transformation, synchronization
or merging are suitable applications. The analysis of models can be applied for
advanced reasoning. The outcome can be used in dashboards or reports, which
supports decision making. In general, management tools can benefit from MDE
as software engineering does from model-based Integrated Development Environ-
ments (IDE).

Federated CMDB A runtime model is applicable within a federated CMDB
capturing the managed system. Thus, CIs that are part of the IT infrastructure
of the managed system have to be captured in the runtime model. In addition,
the runtime model has at least to capture well-defined interconnections between
its CIs and changeable configuration properties that influence the operation of
the item in the managed system. We further call such a runtime model a configu-
ration model. Logical dependencies between CIs can be captured within the con-
figuration model or in an explicit dependency model which should be managed

4th Workshop on Models@run.time at MODELS 09 63

automatically by means of model analysis or at least manually. For each man-
agement process, an appropriate management model is beneficial, which has to
capture all required management information and the ability to capture relation-
ships to CIs of the configuration model. For example, a management model for
Change Management might capture detailed information about planned changes
that contain relationships to CIs that are part of the configuration model and
on which the planned changes have to be performed.

MDR A runtime model is also applicable to MDRs which, however, only cap-
tures a specific subset of CIs of the managed system. Moreover, this runtime
model is usually vendor specific, which means that it contains vendor specific
information which is not captured in the configuration model of the federated
CMDB. We further call the MDR runtime model a vendor specific configuration
model.

Query/Update Connecting a management tool to the federated CMDB can
be conducted by just copying the required models into the management tool
or by applying a transformation/merge that provides a more comprehensive
model tailored to the underlying management process. A transformation/merge
combines several models of the federated CMDB into a single model that can
be further used in a model editor with suitable concrete syntax. Furthermore,
the changes that are made to the models in the management tool have to be
transformed back to the models of the federated CMDB. This task is called
update.

Federation & Reconciliation Transformation is applicable to federating the
vendor specific configuration model of each MDR into a partial configuration
model within the federated CMDB. A partial configuration model is a subset
of the configuration model of the federated CMDB. The configuration model is
derived by reconciling partial configuration models by applying model merge.

2.3 Vision of Autonomic IT Service Management
Considering the application of MDE, we can increase the level of autonomy in
ITSM to make progress in closing the control loop for autonomic computing in
ITSM. The CMS is able to automatically derive a runtime model in the form of
a configuration model and the other direction can be reached by automatically
propagating changes back into the system based on changes of the configuration
model. We approach both directions in our prototypical implementation in the
following section. Thus, a model-driven CMS fulfills the pre-requisite to auto-
nomic computing in ITSM. To increase the autonomy, an autonomic manager
is required, which automatically decides and derives changes based on findings
of a model analysis. The analysis is performed on the configuration model and
on models capturing Service Level Agreements (SLAs) or Key Performance In-
dicators (KPIs) and it discovers malfunctions in the managed systems that have
to be resolved by subsequent changes. However, as proposed in [12], full auton-
omy in ITSM is currently only feasible in Service Operation considering small
changes that are used to keep the system running at a certain quality level. More
pervasive changes that are defined in Service Transition tends to be related to
evolution and thus are currently quite difficult to be automated.

4th Workshop on Models@run.time at MODELS 09 64

3 Prototypical Implementation
In an undergraduate seminar we started implementing several aspects of the
model-driven CMS, as proposed in the previous section. Currently, we have im-
plemented an MDR for Enterprise Java Beans 3.0 (EJB) servers and applica-
tions, a federated CMDB based on Eclipse CDO1, and simple management tools
for Service Asset & Configuration Management, Change Management and Re-
lease & Deployment Management, which are implemented within Eclipse and
EMF2.

3.1 MDR for EJB Servers and EJB Applications
The vendor specific configuration model of the MDR represents all EJB servers3

that can be discovered in the IT infrastructure and the EJB applications hosted
by these servers. Each server provides the mKernel [13] extension, which is used
as an interface for managing deployed EJB applications. Beside the existence of
the servers, the vendor specific configuration model also captures details about
EJB modules, that are hosted on the server, like the enterprise beans and their in-
terconnections that are part of the EJB modules. In certain intervals or whenever
changes within EJB-based applications occur, the vendor specific configuration
model is updated accordingly by facilitating the mKernel extension.

3.2 Federated CMDB based on Eclipse CDO
The federated CMDB implementation is based on Eclipse CDO, which is in gen-
eral an EMF model repository based on a database persistence layer. Thus, the
federated CMDB is a structured model repository that stores EMF models in a
database. Our configuration model reflects the architecture of the managed sys-
tem containing software components4, connectors between software components
and hardware components with links between them as interconnections and de-
ployment relationships between components. All of these elements are considered
as CIs of the managed system. Additionally, all components can be related with
configuration properties and are related with logical dependencies. In general,
our configuration model has similarities to a UML deployment diagram. In addi-
tion to the configuration models, we foster an asset model within the federated
CMDB. The asset model defines configuration variability of all authorized CIs
of the managed system. The CIs in the asset model can be considered as types
of the CIs in the configuration models. We further distinguish between as-is
configuration models, which reflect snapshots of the actual configuration of the
managed system, and to-be configuration models, which define snapshots of the
authorized configuration of the managed system.

3.3 Service Asset & Configuration Management Tool
Service Asset & Configuration Management is essential to a CMS. Therefore,
we have implemented a tool that provides up-to-date as-is configuration models
gathered from vendor specific configuration models of diverse MDRs at different
points in time. Our implementation is able to apply the federation of multiple
1 Connected Data Objects; http://www.eclipse.org/modeling/emft/?project=cdo
2 Eclipse Modeling Framework; http://www.eclipse.org/emf
3 Currently, we support only the Glassfish v2 server; https://glassfish.dev.java.net/
4 EJB servers, modules, and enterprise beans are represented as a software component.

4th Workshop on Models@run.time at MODELS 09 65

MDRs and the reconciliation of partial configuration models into a coherent and
consistent as-is configuration model within the federated CMDB. The whole
sequence is shown in Figure 2.

Management
InterfaceMDR

Service Asset &
Configuration
Management

CMDB

1. federate MDRs

MDR Management
Interface

1.1 gather state

1.2 create vendor
specific configuration model

1.3 federate

2. reconcile MDRs

2.1 reconcile
partial configuration models

2.2 merge reconciled as-is configuration model
with previous as-is configuration model and
management models

Fig. 2. Sequence Diagram of Federation and Reconciliation

First, each MDR or a subset of them is triggered to federate its vendor spe-
cific configuration model. This implies gathering the current state of the system
through mKernel management interfaces. Based on the gathered state, a ven-
dor specific configuration model is created which is subsequently automatically
transformed into a partial configuration model.5 Whenever all partial configura-
tion models are available in the federated CMDB, the reconciliation is triggered
which has to merge the partial configuration models into a new as-is configu-
ration model. Afterwards, related management models and all elements of the
previous as-is configuration model, i.e. logical dependencies which were not dis-
covered by MDRs, are merged into the reconciled as-is configuration model.6

We further defined several KPIs in the context of Service Asset & Config-
uration Management, e.g., we measure the degree of discrepancy between the
latest to-be and as-is configuration model, which is the number of coverages be-
tween the to-be configuration model and the as-is configuration model divided
by the number of considered elements in the to-be configuration model. There-
fore, we have specified a simple KPI model that is used to manage the KPIs
and analysis rules to execute the KPIs. The KPIs are analyzed by applying the
analysis rules to the KPI model, the to-be configuration model and the as-is
configuration model. The outcome is visualized in a report that is created with
Eclipse BIRT7. Another example is a KPI that measures the number of configu-
ration misuses in the latest as-is configuration model by using the same analysis
technique. Therefore, we first check for inconsistencies between the latest as-is
configuration model and the asset model and subsequently count the number of

5 The feasibility of model transformations and synchronization at runtime has already
been shown in [14].

6 Reconciliation of multiple MDRs is not implemented because we currently only sup-
port a single MDR.

7 Business Intelligence and Reporting Tools; http://www.eclipse.org/birt/phoenix

4th Workshop on Models@run.time at MODELS 09 66

inconsistencies that were found. We can also create analyses based on multiple
as-is configuration models. The outcome is a report that maps the results for
each analysis of an as-is configuration model on a timescale.
3.4 Change Management Tool
Changes to the system are indispensable due to several reasons: unsatisfied SLAs,
changing requirements to the service realized through the managed system, etc.
Thus, an appropriate tool for Change Management requires to define changes
that have to be performed on the managed system. We have implemented a
change management tool that is able to model changes directly on a configu-
ration model that is queried from the federated CMDB. Therefore, the latest
as-is configuration model of the federated CMDB is queried and then manually
changed with a model editor. The resulting as-is configuration model is then sent
back to the federated CMDB as an authorized to-be configuration model.8 The
whole sequence is shown in the sequence diagram of Figure 3.

Change
Management

2. model changes

CMDB

3. add authorized to-be configuration model

1. query latest as-is configuration model

Fig. 3. Sequence Diagram of Applying Changes

3.5 Release & Deployment Management Tool
Release & Deployment Management is about planing, defining and rolling out
sets of changes, e.g., a release9 into the managed system. Therefore, the lat-
est authorized to-be configuration model is queried from the federated CMDB
and compared to the latest as-is configuration model using EMF Compare10.
This comparison results in a model based on the EMF Compare metamodel
that is afterwards transformed to an enhanced change model that is tailored to
our domain. This change model supports the definition of basic operations such
as (un)deployment, setting or changing configuring properties, etc. The change
model is then propagated to all MDRs for execution. Each MDR consequently
executes the change model by interpreting the operations as API calls for the
connected mKernel management interfaces. The whole sequence is shown in
Figure 4. Note that not all sub-processes of this management process are imple-
mented since we were focusing on the automatic execution of changes that have
been specified in the configuration model. Supported changes of the mKernel
management interface are (un)deployment of EJB modules, changing configura-
tion properties, and finally the creation and removal of interconnections amongst
beans.
8 Actually, the changes have to be validated and tested before they are deployed to

the managed system. However, this was not the focus of the project.
9 A release is a set of changes.

10 http://www.eclipse.org/modeling/emft/?project=compare

4th Workshop on Models@run.time at MODELS 09 67

Management
InterfaceMDR

Release &
Deployment
Management

1. deploy changes

CMDB

2. get authorized to-be configuration model
& latest as-is configuration model

3. create change model

MDR

4. execute change model

System
Manager

Management
Interface

5. execute
operations

Fig. 4. Sequence Diagram of Deploying Changes

4 Application Example

Based on our prototype, this section describes a concrete example for the Release
& Deployment Management (see Section 3.5). The dark-shaded elements in the
ConfigurationModel in Figure 511 depicts the latest as-is configuration of a man-
aged shopping system. In the current state, the shopping system is composed
of a server Server1 hosting an EJB module WarehouseComponent. This mod-
ule packages the enterprise beans WarehousingBean and ShipmentBean, each of
which provides a connector. The light-shaded elements of the ConfigurationModel
reflect the authorized changes that should be executed. These changes were man-
ually modeled during the Change Management (see Section 3.4). These changes
consist of a deployment of the module ShoppingCartComponent containing a
ShoppingCartBean and of attaching the ShoppingCartBean to the connectors
provided by the WarehousingBean and ShipmentBean. Thus, the Configuration-
Model reflected by the dark and light-shaded elements is the to-be configuration
model of the shopping system.

Starting the roll out of changes, the authorized to-be and the latest as-is con-
figuration model are queried from the CMDB (see Figure 4 in Section 3.5). To
obtain the authorized changes, both models are compared using EMF Compare
(see Activity 1 in Figure 5), which results in a EMF Compare Model reflecting
the differences between both models. However, this model is generic and only
contains syntactical information about changes. Therefore, we automatically de-
rive a semantically rich change model from the EMF Compare Model through
a model transformation using appropriate transformation rules for the EJB do-
main (see Activity 2 in Figure 5). In our example, the transformation results
in a ChangeModel as depicted in Figure 5. It reflects the authorized changes of
deploying the ShoppingCartComponent and of attaching the ShoppingCartBean
to two connectors, which has been described above.12 Finally, the ChangeModel
and the to-be configuration model are sent to the responsible MDR that abstract

11 This configuration model uses a simplified metamodel and is shown as abstract
syntax.

12 Usually we use unique IDs in the ChangeModel for identifying the related components
and connectors in the operations. For sake of readability, we use unique names here.

4th Workshop on Models@run.time at MODELS 09 68

from the management interface provided by mKernel. This MDR inteprets both
models and derives operations from both, which are finally executed using the
mKernel API.

Component
name = Server1
type = JEE.Server

Component
name = ShoppingCartComponent

type = JEE.Module

Connector
name = ShoppingCart
type = JEE.EJB.Interface

Component
name = WarehouseComponent

type = JEE.Module

Component
name = WarehousingBean

type = JEE.EJB

Component
name = ShoppingCartBean

type = JEE.EJB

Component
name = ShipmentBean

type = JEE.EJB

Connector
name = Warehousing

type = JEE.EJB.Interface

Connector
name = Shipment

type = JEE.EJB.Interface

< hosts hosts >

hosts> hosts>

provides>

uses > < provides

< provides

ConfigurationProperty
name = ShipmentProvider

value = "UPS"

Operations

AttachConnector
component = ShoppingCartBean

connector = Warehousing

AttachConnector
component = ShoppingCartBean

connector = Shipment

DeployComponent
component =

ShoppingCartComponent

EMFCompare
Model

1

2 ChangeModel

ConfigurationModel

configuration>

Fig. 5. Models for Release & Deployment Management

5 Conclusion & Future Work

We have outlined a common CMS supporting ITSM, as proposed by ITIL v3
and state-of-the-art implementations. Based on a common CMS, we suggested
possible applications of MDE and further showed a prototype implementation of
a model-driven CMS with basic management tool support. The prototype imple-
mentation provides a federated CMDB based on Eclipse CDO, an MDR for EJB
servers, EJB applications and basic tool support for Service Asset & Configu-
ration Management, Change Management and Release & Deployment Manage-
ment. The prototype further implements a closed control loop that automatically
derives a runtime model (as-is configuration models) from the managed system
and also automatically applies configuration changes to the system based on
change models, which are automatically derived from an adapted runtime model
(to-be configuration model).

As future work we want to further elaborate our approach to validate our
hypothesis of improving the efficiency of ITSM by providing a model-driven
CMS. We further plan to implement additional MDRs to improve the coverage
of the configuration model of the federated CMDB and further implement rec-
onciliation of partial configuration models. We further want to add additional
management tools for other management processes and refine the existing ones.
Another future direction is to improve the autonomy of the model-driven CMS
by providing an autonomic manager that to some extent supports Service Op-
eration with simple policies.

4th Workshop on Models@run.time at MODELS 09 69

Acknowledgment We thank Alexander Krasnogolowy, Mark Liebetrau, Steven
Reinisch, Janek Schumann, Martin Sprengel, and Sebastian Waetzoldt for their con-
tributions to the prototype implementation and Gregor Gabrysiak for reviewing this
paper.

References

1. Salehie, M., Tahvildari, L.: Autonomic computing: emerging trends and open prob-
lems. In: Proc. of the Workshop on Design and Evolution of Autonomic Application
Software, ACM (2005) 1–7

2. Lindquist, D., Madduri, H., Paul, C.J., Rajaraman, B.: Ibm service management
architecture. IBM Syst. J. 46(3) (2007) 423–440

3. Ward, C., Aggarwal, V., Buco, M., Olsson, E., Weinberger, S.: Integrated change
and configuration management. IBM Syst. J. 46(3) (2007) 459–478

4. Brittenham, P., Cutlip, R.R., Draper, C., Miller, B.A., Choudhary, S., Perazolo,
M.: It service management architecture and autonomic computing. IBM Syst. J.
46(3) (2007) 565–581

5. Johnson, M.W., Hately, A., Miller, B.A., Orr, R.: Evolving standards for it service
management. IBM Syst. J. 46(3) (2007) 583–597

6. Garlan, D., Schmerl, B., Chang, J.: Using Gauges for Architecture-Based Mon-
itoring and Adaptation. In: Proc. of the Working Conference on Complex and
Dynamic Systems Architecture. (2001)

7. Caporuscio, M., Marco, A.D., Inverardi, P.: Model-based system reconfiguration
for dynamic performance management. Journal of Systems and Software 80(4)
(2007) 455 – 473

8. Akkerman, A., Totok, A., Karamcheti, V.: Infrastructure for Automatic Dynamic
Deployment of J2EE Applications in Distributed Environments. In: Proc. of the
3rd Intl. Working Conference on Cmponent Deployment, Springer (2005) 17–32

9. Hnetynka, P.: A model-driven environment for component deployment. In: 3rd
ACIS Intl. Conference on Software Engineering Research, Management and Appli-
cations. (2005) 6–13

10. Hein, C., Ritter, T., Wagner, M.: System Monitoring using Constraint Checking
as part of Model Based System Management. In: Proc. of the 2nd Intl. Workshop
on Models@run.time. (2007)

11. Morin, B., Barais, O., Jézéquel, J.M.: K@RT: An Aspect-Oriented and Model-
Oriented Framework for Dynamic Software Product Lines. In: Proc. of the 3rd
Intl. Workshop on Models@run.time. (2008) 127–136

12. Gacek, C., Giese, H., Hadar, E.: Friends or Foes? – A Conceptual Analysis of Self-
Adaptation and IT Change Management. In: Proc. of the Workshop on Software
Engineering for Adaptive and Self-Managing Systems, ACM (2008)

13. Bruhn, J., Niklaus, C., Vogel, T., Wirtz, G.: Comprehensive support for manage-
ment of Enterprise Applications. In: Proc. of the 6th ACS/IEEE International
Conference on Computer Systems and Applications, IEEE (2008) 755–762

14. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-Driven
Architectural Monitoring and Adaptation for Autonomic Systems. In: Proc. of the
6th Intl. Conference on Autonomic Computing and Communications, ACM (2009)
67–68

15. Robert, S., et al.: Deliverable d5.1a: Model based system management state of the
art. Technical report, ModelPlex: Modeling solution for complex software systems,
https://www.modelplex.org (2007)

4th Workshop on Models@run.time at MODELS 09 70

Design for an Adaptive Object-Model Framework

An Overview

Hugo Sereno Ferreira1,2, Filipe Figueiredo Correia2, and Ademar Aguiar1,2

1 INESC Porto
2 Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n

{hugo.sereno, filipe.correia, ademar.aguiar}@fe.up.pt

Abstract. The Adaptive Object-Model (AOM) architectural pattern
has been significantly documented in literature, but there is not yet
enough documentation explaining how to design and build a full AOM-
based system. A AOM framework would need to address an additional
number of issues that go well beyond individual software patterns. In
this paper, we propose a design for a AOM framework that addresses
several issues of building AOM-based systems, namely: integrity, run-
time co-evolution, persistency, user-interface generation, communication
and concurrency. We borrow concepts from distributed version-control
systems. We show how applications based on a concrete realization of
this framework, called Oghma, helps to avoid a traditional two-level do-
main classification, reduces accidental complexity, and directly exposes
confined model evolution to the end-user.

Key words: Adaptive Object-Models; Frameworks; Software Design

1 Introduction

The industrialization of software development has been increasingly faced with
the growth of software complexity. A considerable effort in development is also
repeatedly applied to the same tasks, despite all the effort in research of reuse
techniques and good practices, thus suggesting that reuse may need to be per-
formed even more and at higher-levels. Hiding these inherent complexities of
technological concerns by creating abstractions as been a recurrent reaction, at
the cost of widening the existing gap between specification and implementation
artifacts [9]. To make these abstractions useful not only for modeling, docu-
mentation, analytical and reasoning purposes [5, 12], models have to be made
executable, by systematic transformation [15] or interpretation [14] of problem-
level abstractions (i.e. specifications) into implementations (i.e. algorithms).

4th Workshop on Models@run.time at MODELS 09 71

1.1 System Variability and Evolution

The difficulty of acquiring, inferring, capturing and formalizing software require-
ments is a recurrent problem in software engineering. This is because not only
those processes are dependent upon the stakeholders’ perspectives, but also be-
cause requirements often change faster than implementations. Since evolving
software requires a considerable effort, as the implementation progresses, a strong
resistance against changing the requirements is developed. What seems to be dis-
missed is that not only some business domains rely on constant adaptation of
their own processes, but also that new knowledge is incrementally acquired as
development unfolds, leading to new insights and expectations from software. If
it is known a priori that the systems being developed are incomplete by design,
won’t there be benefits in designing for incompleteness? [11] Even so, current
practices often focus on quick functional change, disregarding conceptual design,
leading to a Big Ball of Mud, and eventually facing total reconstruction with
a significant impact in economy [8]. Successful software needs to increase its
resilience to change [13].

1.2 Framework for Adaptive Object-Models

Approaches to the use of models have traditionally been generative, automat-
ically refining models into code artifacts during development. However, such
techniques are based upon two premises: (a) that changes are always introduced
by developers, within the development environment, and (b) that a full compile
cycle (e.g. shutting down the system) is affordable. When these premises fail
to hold, generative approaches may reveal insufficient, thus leading to the use
of runtime domain models [14]. The systematic search for higher levels of ab-
stractions — both to improve analysis and increase reuse — associated with the
pervasive adoption of object-oriented models, converged to a common architec-
tural style called the Adaptive Object-Model (AOM) [19, 18], which is founded
on a growing collection of AOM-related patterns [7, 17, 16]. As patterns, they
usually occur not as reusable components, but as perceived abstractions within
the design of each particular system. In this paper, whenever referring to a pat-
tern we use a SmallCase typographical style.

Frameworks are both reusable designs and implementations, that orchestrate
the collaboration between core entities of a system. While they establish part
of the system’s behavior, they are deliberately open to specialization by provid-
ing hooks and specialization points. The framework dictates the architecture of
the underlying system, defining its overall structure, key responsibilities of each
component, and the main thread of control. It captures design decisions com-
mon to its application domain, thus emphasizing design reuse over code reuse.
Patterns differ from frameworks because (a) are more abstract, (b) have smaller
architectural elements, and (c) are less specialized [10].

Section 2 will provide a general overview of a framework which supports the
development of AOM-based systems, and then proceed to detail each concern
independently. Section 3 focus on its use within industry. Section 4, will draw
some conclusions and present remaining issues to be addressed in the future.

4th Workshop on Models@run.time at MODELS 09 72

single processclient-server

Controller

Warehouse

Communications

Controller

Application

Persistency

Application

Controller

Warehouse

Persistency

distributed

Application

Controller

Warehouse

Persistency

Application

Controller

Warehouse

Fig. 1. Three possible component configurations of the framework: (a) client-server,
where several processes are controlled by a centralized server, (b) single-process, only
allowing a single running application, and (c) distributed, which takes advantage of
the data-replication mechanisms from the underlying persistency engines.

2 Oghma: Architecture and Design

Oghma, which components are depicted in Fig. 1, is a framework to develop
AOM-based systems, that balances adaptability and reuse. It supports the cre-
ation of models resembling MOF [1] and UML [2], and aims at covering the
entire cycle of system creation and evolution. It also allows the introduction
of changes to the system during runtime, thus providing a particular kind of
confined end-user development.

Furthermore, the framework leverages the infrastructure used to support sys-
tem evolution to provide additional features, such as auditing over the system’s
usage, and time-traveling to an arbitrary point along its evolution (i.e. to set the
system in a past state).

Oghma includes a set of interchangeable components designed to have an high
degree of flexibility — it supports several types of persistency engines, including
relational, object-oriented, key-value and document-oriented, and architecture
styles, such as single-process, client-server, and distributed.

2.1 Core — Structural

Fig. 2 depicts the design of the structural core of Oghma, resembling the Type-
Square [19] pattern: (a) ObjectType, which is refined into Entities (that rep-
resent classes) and Interfaces, (b) Instance, which complies to a given Entity,
(c) PropertyType, which is refined into RelationNodes and Attribute-Types,
and (d) Property which complies to its PropertyType. Each Relation-Node, be-
sides specifying cardinality, navigability and role, must be connected to another
node, thus establishing a RelationType. In order for a RelationType to have
properties (similar to the Associative Class in UML) it can relate to an Entity.
Entities can also inherit from other Entities and/or multiple Interfaces.
Model-defined Entities and Instances can be made Types and Objects of the
underlying programming language through the use of Plugins.

4th Workshop on Models@run.time at MODELS 09 73

meta-level

Instance

Entity

Property

PropertyType

AttributeType

RelationTypeInterface

ObjectType

assoc

0..1

implements
0..*

inherits
0..1

1

1
Navigability
Cardinality
Role

RelationNode

Fig. 2. Core design of the structural meta-model.

2.2 Core — Behavioral

Fig. 3 depicts Expression as the central concept of the behavioral core, extend-
ing the Rule Object pattern [17]. Expressions are stated in a Domain Specific
Language and may be evaluated using an Interpreter [10] or a Virtual Ma-
chine. They’re widely used to define: (a) ObjectType invariants, (b) derivation
rules in PropertyTypes and Views, (c) body of Methods, (d) guard-conditions
of Operations, etc. As such, they play an important role in assuring seman-
tic integrity during model evolution (see Section 2.7). Structural rules, such as
the cardinality and uniqueness of a PropertyType are translated to ObjectType
invariants. Methods, which are used-defined Batches of Operations, may be in-
voked manually, or triggered by Events, thus allowing the specification of State
Machines.

2.3 Controller

As seen in Fig. 1, the Controller serves as a entry layer for the GUI and Com-
munications components, and it’s key responsibility is to orchestrate the several
other components in the framework by establishing a thread of control. It boot-
straps the system by loading the meta-model, and the necessary versions of the
domain-model from the Warehouse. It manages data requests by interacting with
the Warehouse. It also provides several hooks to the framework through Chains
of Responsibility and Plugins (e.g. interoperability with third-party systems
by allowing subscribers to intercept requests).

2.4 Warehousing and Persistency

Because of the evolutive nature of the model, mapping to a classic relational
database through the use of ORMs complexifies co-evolution. Warehousing (Fig.
1) hides the details of persistency from the Controller, exposing and consum-
ing data and meta-data (i.e. Things), and managing versioning (i.e. through

4th Workshop on Models@run.time at MODELS 09 74

Core - Behavioral

PropertyType

ObjectType

Method Expression

invariant

body

Create
Update
Delete
Manual

<<enum>>
Event

1..*

derived by

0..*

Entity

Operation

guard

Condition

1..*

Fig. 3. Core design of the behavioral meta-model.

Versions and States). Its behavior can be extended and modified through
inheritance and composition, as by the Decorator [10] pattern. Transient
memory-only, direct data-base access, lazy and journaling strategies (e.g. using
Caches [10]) are just a few examples of existing (and sometimes simultaneous)
configurations. Also, Things are always regarded as opaque, key-valued objects.

2.5 Communications

This design allows to assemble several types of communication stacks. If a client-
server HTTP-based stack is chosen, Oghma currently provides a RESTful API
for communication between the Server Controller and Client Controller
through a pair of HTTP Bridge and Server Dispatcher acting as Proxies [10].
Every Thing is addressable by its unique identifier as a resource. The contents of
States and Changesets are serialized in XML. Simple queries can be expressed
directly in the URL; those more complex require POST methods.

By specialization of the communication layer, other types of technology can
be used for bridging the controllers (e.g .NET Remoting). For example, in the
case of a single-user stack, the Client Controller would interact directly with
the Server Controller. A different approach from the client-server architec-
ture is to use distributed key-value databases (e.g. CouchDB), to handle both
persistency and communication. Here, every application would assume direct
access to the Controller, delegating the responsibility of disseminating contents
to the underlying data warehouse.

2.6 Integrity

The Structural Integrity of the run-time model is asserted through rules
stated in the meta-model. For example, Instances should conform to their
specified Entity (e.g. they should only hold Properties which PropertyType
belong to its Entity). Nonetheless, evolving the model may corrupt structural
integrity, such as when moving a mandatory PropertyType to its superclass (e.g.
if it doesn’t have a default value, it can render some Instances non-compliant).

4th Workshop on Models@run.time at MODELS 09 75

Operations

Operation State

Create Delete Update Relate Unrelate

1..*
Batch

* {ordered}

Merge

Method produces

Fig. 4. Data and meta-data are manipulated through Operations, similarly to the
Command [10] pattern, which produces new States of Things.

Some model evolutions can be solved by foreseeing integrity violations and ap-
plying prior steps to avoid them (e.g. one could first introduce a default value
before moving the PropertyType to its superclass).

Some steps of a particular evolution may also violate model integrity, al-
though the end result would be valid. For example if a PropertyType is manda-
tory, one cannot delete its Properties without deleting itself and vice-versa.
This problem is solved by the use of Changesets, and only enforcing integrity
at the end.

Semantic Integrity, on the other hand, is much harder to ensure since it’s
not encoded as rules in the meta-model. One cannot just look to the results of
an arbitrary evolution and infer the steps which have lead to it. Consider the
scenario where an AttributeType age is renamed to date-of-birth, recalcu-
lated according to the current date, and moved to it’s superclass Person. Would
we rely on the direct comparison of the initial and final models, a possible solu-
tion would be to delete the attribute age in Employee and create the attribute
date-of-birth in Person. However, the original meaning of the intended evolu-
tion (e.g. that we wanted to store birth-dates instead of ages) would be missed.
To solve this problem, Oghma makes use of Migrations [7], providing and stor-
ing sequences of model-level operations that cascade into instance-level changes.

2.7 Evolution

Allowing collaborative co-evolution of model and data by the end-user intro-
duces a new set of concerns not usually found in classic systems. They are (a)
how to preserve model and data integrity, (b) how to reproduce previously in-
troduced changes, (c) how to access the state of the system at any arbitrary
point in the past, and (d) how to allow concurrent changes. These concerns can
be summarized into traceability, reproducibility, auditability, disagreement and
safety, and are commonly found on version-control systems.

Typically, evolution is understood as the introduction of changes to the
model. Yet, the presented design doesn’t establish a difference between chang-
ing data or meta-data; both are regarded as evolutions of Things, expressed as

4th Workshop on Models@run.time at MODELS 09 76

ChangeSet Operation

State

Version

base

provides

has
1..*

1..*

Merged
Container

<<interface>>
IContainer

1..*

background

overlay

Mergespawn

base

changes

State

1..*

ObjectType Instance

Identifier {unique}
Metalevel

Thing
1..*

has

Fig. 5. (a) Merging mechanism used to validate and apply operations stored in a
Changeset. (b) Data and meta-data are both viewed as Things and States.

Operations over States, and performed by the same underlying mechanisms as
depicted in Fig. 4. To provide enough expressivity such that semantic integrity
can be preserved during co-evolution, model-level Batches operate simultane-
ously over data and meta-data.

Sequences of Operations are encapsulated as ChangeSets, following the His-
tory of Operations pattern [7], along with meta-information such as user,
date and time, base version, textual observations, and data hashes. Whenever
the framework validates or commits a ChangeSet, the Controller uses the merge
mechanism depicted in Fig. 5 (similarly to the System Memento pattern [7]),
which dynamically overlays the modifications onto the base version by orderly
applying each Operation, allowing for behavioral rules to be evaluated, and
finally resulting in a new version.

If all changes to the data and model are preserved, one can easily recover past
information. This not only solves the aforementioned issues, but it also brings
to information systems the same notions of versioning that changed the scenario
of collaboration in wikis and software development.

2.8 User-Interface

Oghma provides a run-time adaptive UI, by inspection and interpretation of
the model and using a set of pre-defined heuristics and patterns. While detailing
every heuristic applied is outside the scope of this paper, an overview is provided.

A set of grouped entry-points are presented to the user through the GUI.
Groups correspond to Packages and entry-points to selected ObjectTypes. When
choosing an entry-point, a list of the associated instances is presented, showing
several details in distinct columns, inferred from special annotations made in
the model; along with generic search mechanisms. ObjectTypes have two de-
fault views: edition and visualization. During edition, Oghma uses heuristics to
render each Property by inspecting the cardinality, navigability and role of both
nodes of a RelationType. The result is a different input panel, according to the

4th Workshop on Models@run.time at MODELS 09 77

property in question: text-fields, text-areas, combo-boxes, tree-views, lists, em-
bedded forms, etc.. Visualization is defined using Views — virtual Instances
where every Property is derived — and are subsequently transformed through
templates before being presented to the user. Mechanisms as clipboard (using ob-
ject identifiers), undo and redo (using Operations) are orthogonally supported.
Custom panels, either for special types (e.g. dates) or model-chunks (e.g. user
administration), can also be loaded as Plugins.

The user workflow resembles those when using version-control systems. User
changes are not immediately applied; instead, Operations are stored into the
user Changeset, and sent to the Server Controller, allowing it to assert in-
tegrity and provide feedback on behavioral rules. When a user chooses to, it
can commit its work to the server, by reviewing the list of Operations and
additionally submitting a descriptive text about his work.

Awareness is also addressed through several feedback techniques: graphics
that show the history of changes either in a particular ObjectType, by user or
globally; alerts to the user for simultaneous pendent changes in the same objects,
and presenting reconciliation screens when conflicts are detected; etc.

3 Oghma in the Industry

Oghma has been implemented in C# using the Microsoft .NET Framework v3.5,
although the design here presented doesn’t depend on a specific technology.

3.1 Use Cases

Oghma was already used to create production-level applications: (a) Locvs, an
Information System for Management of Architectonic and Archaeological Her-
itage, and (b) Zephyr, a tool for document records management [3, 4]. Of par-
ticular interest is Locvs, whose domain model currently consists of more than
300 classes, and has gone through more than 1000 model versions, 12k instance-
level commits, and 200k Things, throughout approximately 2 years of usage and
evolution. It is deployed in dozens of machines using a client-server architec-
ture. Performance tests have lead it to currently use SQLite as a storage and
Full-Text Search engine. A custom-made DSL for specifying behavior was also
implemented. This application will be a valuable asset to further research the
role of AOMs in the development of large-scale information systems.

3.2 Lessons Learned

The development and usage of Oghma targeting adaptive applications allows us
to elicit some lessons. First, the skills needed to deal with this type of architec-
ture aren’t trivial to find, and developers are not necessarily at ease to work at
these levels of abstraction. From a framework standpoint, there’s also a thin bal-
ance between a framework that makes the creation of new systems a quick and
easy process, and one that is flexible enough to cover a wide scope of systems.

4th Workshop on Models@run.time at MODELS 09 78

Because it’s very tempting to make the framework address all use-cases using an
adaptive and model-driven approach, there is a risk of the final models becoming
as elaborate and complex as a full-blown programming language. In this sense,
hooks are a key issue, as they are not always easy to foresee, but they establish
the border line between what should be regarded as part of the framework and
what is particular behavior of a specific instantiation.

Nonetheless, the conduction of small model experiences seem to show it’s easy
to quickly build a functional prototype which can be shown to the customer, thus
providing very early feedback before refining it into a production-level applica-
tion. Not only the costumer involvement in this process is also increased due
to the end-user development capabilities offered by the framework, but it also
reduces the burden of up-front design by allowing an incremental approach to
formalization of the underlying business model.

4 Conclusions

Adaptive Object-Models and application frameworks are both solutions for a
common problem: to increase software reuse. They try to minimize the effort
of developing and evolving a software system. A AOM is a meta-architecture
for domain variability; frameworks focus on providing code and design reuse. In
this paper, they are combined and presented as a conceptual framework design
which allows the creation of AOM-based systems, along with some details of a
particular implementation being used within an industrial environment: Oghma.

Leveraging the concept of adaptability, end-users are empowered to intro-
duce (confined) changes to the model at run-time. This choice raised several is-
sues, such as traceability, reproducibility, auditability, disagreement and safety,
which were addressed in the framework by borrowing concepts from distributed
version-control systems. One of the side-effects of unifying data and meta-data
evolution was that the classical two-level domain classification, where types are
static entities, is diluted, thus reducing accidental complexity of applications [6].
For example, a user can edit an enumeration, or add a new specialization of a
class, by directly editing the model, hence preserving the classification levels.

Yet, several open-issues remain to be addressed. While automatic run-time
generated user-interfaces may not be on pair with custom-made ones regarding
usability, they seem to be consistent and based on a strict set of metaphors,
supporting a quick learning process by users. Nonetheless, which mechanisms
should the framework provide to improve usability and customization of GUIs,
while retaining the capability of automatically generating them?

Furthermore, no studies on the performance, robustness, usability, evolv-
ability, maintainability, consistency, composability, scalability and several other
software quality attributes regarding Adaptive Object-Models, in comparison to
classical systems, were published yet, and even less regarding AOM frameworks.

In the design proposed in this paper, we’ve addressed data and meta-data
evolution through an unified architecture. However, the whole framework de-
pends on the definition of a well-known meta-model. Operations that support

4th Workshop on Models@run.time at MODELS 09 79

model evolution are thus dependent on this definition. How often would the
meta-model change, and how can we easily cope with its evolution? Should the
abstraction be raised yet another level, or is a self-compliant meta-model enough
to provide mechanisms for its own evolution?

Finally, this paper provides only an overview of the framework. There are
several issues that should be taken into account when implementing it. Such de-
tails are outside of the scope of the work developed so far, but they are expected
to be addressed in future work.

5 Acknowledgments

We would like to thank both FCT and ParadigmaXis, S.A. for sponsoring this
research through the grant SFRH / BDE / 33298 / 2008.

References

1. MOF version 2.0. http://www.omg.org/spec/MOF/2.0/, Accessed on 2009/08/06.
2. UML version 2.2. http://www.omg.org/spec/UML/2.2/, Accessed on 2009/08/06.
3. Locvs. Technical report, ParadigmaXis, S.A. produced to CMP, 2009.
4. Zephyr. Technical report, ParadigmaXis, S.A. produced to CMP, 2009.
5. J. Arlow, W. Emmerich, and J. Quinn. Literate modelling—capturing business

knowledge with the uml. The Unified Modeling Language: UML’98, 1999.
6. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models.

2008.
7. H. Ferreira, F. Correia, and L. Welicki. Patterns for data and metadata evolution

in adaptive object-models. Proceedings of the 15th Conference on PLoP, 2008.
8. B. Foote and J. Yoder. Big ball of mud. PLoP’00, 2000.
9. R. France and B. Rumpe. Model-driven development of complex software: A re-

search roadmap. International Conference on Software Engineering, Jan 2007.
10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-

Wesley Professional, 1995.
11. R. Garud, S. Jain, and P. Tuertscher. Incomplete by design and designing for

incompleteness. Organization Studies, Jan 2008.
12. J. Krogstie, A. Opdahl, and G. Sindre. Advanced information systems engineering:

19th international conference. Jan 2007.
13. D. Riehle and E. Dubach. Why a bank needs dynamic object models. OOPSLA

Workshop on Metadata and Active Object Models, 1998.
14. D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe. The architecture of a

uml virtual machine. Jan 2001.
15. M. Voelter. A catalog of patterns for program generation. 2003.
16. L. Welicki, J. Yoder, and R. Wirfs-Brock. A pattern language for adaptive object

models: Part i-rendering patterns. hillside.net.
17. L. Welicki, J. Yoder, R. Wirfs-Brock, and R. Johnson. Towards a pattern language

for adaptive object models. OOPSLA ’07: Companion to the 22nd ACM SIGPLAN
conference on OO programming systems and applications companion, Oct 2007.

18. J. Yoder, F. Balaguer, and R. Johnson. Adaptive object-models for implementing
business rules. Urbana.

19. J. Yoder, F. Balaguer, and R. Johnson. Architecture and design of adaptive object-
models. ACM SIGPLAN Notices, Jan 2001.

4th Workshop on Models@run.time at MODELS 09 80

Management of Runtime Models and
Meta-Models in the Meta-ORB Reflective

Middleware Architecture ?

Lucas Luiz Provensi, Fábio Moreira Costa, and Vagner Sacramento

Institute of Computing, Federal University of Goiás
Campus Samambaia, UFG, 74690-815, Goiânia-GO, Brazil

{lucas,fmc,vagner}@inf.ufg.br
http://www.inf.ufg.br

Abstract. In the Meta-ORB reflective middleware architecture, run-
time models provide the necessary meta-information to instantiate spe-
cialized platform configurations and to construct the reflective self-representation
of base-level systems. Other kinds of useful meta-information may also
be provided by the system’s runtime model, such as policies that al-
low the middleware to adapt itself automatically. Evolving the middle-
ware meta-model and extending its infrastructure to handle new kinds of
model-based constructs may be considerably complex and would require
re-implementation of several parts of the middleware. In this paper we
present an approach for the management of runtime models and meta-
models, aiming to simplify the evolution of the middleware so that it can
support new kinds of constructs defined in its meta-model.

Key words: runtime models, meta-modeling, reflective middleware

1 Introduction

Distributed computing systems, especially those used for real-time applications,
often suffer from dynamic changes in their execution environment and require-
ments, affecting, e.g., available bandwidth and network loss rates. Reflective
middleware has been proposed as a way to handle such changes without dis-
rupting the system or its applications. Such platforms are capable of inspecting
and adapting their internal structure and behavior at runtime, providing an in-
dependent software layer which is ideal to implement the self-management and
self-adaptation capabilities needed to handle dynamic requirements [1].

In this paper we review the Meta-ORB reflective middleware platform [2]
and discuss how its evolution can be facilitated by the management of models
and meta-models at runtime. Autonomic self-adaptation is proposed as a way to
enable transparent middleware evolution, a feature that was not fully supported
? This work was partly funded by FAPEG, The Research Support Foundation of the

State of Goiás, Brazil (Call 02/2007; Process number: 200810267000147), and by the
HP Technology for Teaching Higher Education Grant.

4th Workshop on Models@run.time at MODELS 09 81

in previous versions of the platform. This feature was introduced in the current
version of the platform, called MetaORB.NET [3]. It enables new functionality
and constructs to be dynamically added to the platform, as well as existing ones
to be replaced or removed. The approach is based on the reflective manipulation
of model and meta-model elements.

The paper is structured as follows. Section 2 discusses the Meta-ORB meta-
model and the use of run-time models to instantiate specialized middleware
configurations, as well as their use to build the reflective self-representation of
base-level entities. Section 3 discusses middleware evolution in terms of its three-
level architecture: meta-model, model and system entities. Section 4 discusses
related work and Section 5 presents concluding remarks and future work.

2 Meta-ORB Model and Meta-model

The Meta-ORB architecture combines meta-information management techniques,
which enable the definition of specialized platform configurations, with compu-
tational reflection, which enables dynamic adaptation. Meta-information, in the
scope of our work, describes the structure and semantics of entities in a computa-
tional system. This description is used for static configuration of the middleware
(by instantiating its components at load time) and for its dynamic adaptation
(via runtime component-based reconfiguration).

In the Meta-ORB architecture, meta-information is specified in a model,
according to an explicit meta-model. This explicit meta-model represents the
platform’s type system and is maintained in a repository that can be used for
the definition, storage and retrieval of models that represent specialized config-
urations of the middleware and its applications. Once the definition of an entity
(a component and its interfaces, for instance) is obtained from the type reposi-
tory, it may be used to build a runtime model of the entity, allowing its dynamic
instantiation by specialized factories and, if necessary, the construction of its re-
flective self-representation, used for dynamic introspection and reconfiguration.

The main constructs defined in the meta-model are components, that encap-
sulate functionality and can interact (and be composed) through well defined
interfaces, and binding objects, that encapsulate interaction behavior, and can
be defined in terms of internal components and other binding objects (a com-
plete description of all meta-model constructs can be found in [2]). Figure 1
shows the creation of a component, where its definition is obtained from the
type repository and parsed into a model that is used by the component factory
as a blueprint to instantiate the component and its interfaces. The same process
is performed by binding factories to instantiate binding objects.

The same meta-information contained in component and binding definitions
can also be used to build the self-representation maintained by meta-objects
that reify components and bindings. Figure 2 shows the construction of the self-
representation of a binding object. First, the meta-object obtains the definition of
the binding from the type repository. This definition contains meta-information
that describes the internal configuration of the binding in terms of internal com-

4th Workshop on Models@run.time at MODELS 09 82

Type Repository

Component
Factory

Component
Runtime Model

Component DefinitionRuntime Component

Fig. 1. Creating a component using a runtime model as the blueprint.

ponents and nested bindings. The meta-information is then combined with in-
formation maintained by the middleware at runtime, such as the location of
each of the endpoints that participate in the binding. The result is compiled
into a graph maintained by the meta-object, which contains information about
the internal configuration of the binding in each of its endpoints. Once the self-
representation is built, meta-objects can be used, via their meta-interfaces, to
inspect and adapt the corresponding entities of the base-level system.

Base Level

Meta-level

Binding

Meta-
Object

Causal
Connection

Type Repository
Binding
Definition

Fig. 2. Building the self-representation for a binding object.

The meta-information used by factories and meta-objects basically refers to
the structure of the base-level entities: required and provided interfaces of com-
ponents and the internal configuration of components and bindings. However,
the platform’s meta-model allows the addition of other kinds of meta-information
to the definition of entities in order to describe their runtime behavior. One ex-
ample is the definition of QoS constraints, which can be added as annotations
to the definition of interfaces. Such annotations may indicate, for instance, the
maximum acceptable delay for a media flow passing through the interface. This
information in turn can be used in the negotiation process that will determine
the type of binding that will be used to connect two or more interfaces.

4th Workshop on Models@run.time at MODELS 09 83

More recently, the concept of adaptation policy was introduced in the meta-
model [3]. As well as QoS constraints, policies describe desirable behavior for the
entities they refer to. Policies provide the middleware with meta-information to
determine, at runtime, when and how the platform should adapt itself in response
to changes in the execution environment or requirements. The introduction of
this and other behavioral concepts results in changes to the middleware that af-
fect meta-model, model and base-level entities likewise. However, as such changes
are not related to structure, they do not alter the main constructs of the meta-
model (components, interfaces and bindings). The management of middleware
evolution thus becomes easier, making it possible to apply meta-model changes
without disrupting execution, as will be discussed in the next section.

3 Middleware Evolution

Adding new behavioral features, such as self-adaptation, requires several changes
to the middleware, comprising three of the four levels described by the Meta-
Object Facility (MOF) [4]. First, the middleware meta-model (Level 2) should
be extended with constructs to describe the new features. Then, these new fea-
tures should be incorporated into new and existing middleware models (Level
1). Finally, runtime entities (Level 0) may need to be modified (or created) to
interpret the new features that are now part of the runtime model.

As an example, Figure 3 illustrates the changes made to Meta-ORB in or-
der to add self-adaptation support. Firstly, package policies was added to the
meta-model, with constructs for the definition of adaptation policies and their
associations with other meta-model elements. Then, existing models were mod-
ified according to the new meta-model, e.g., each binding definition can now be
associated with adaptation policies. Finally, the binding factory (which is at level
0) was modified to interpret binding definitions associated with policies, and a
new component, the Adaptation Manager, was created to manage the application
of the policies. Each of these steps will be discussed in more detail next.

baseIdl

mediaQoS

interfaces
components
AndBindings

Binding

Adaptation
Policy

Binding Definition

Binding
Factory

Adaptation
Manager

policies

meta-model
model

base level

Fig. 3. Middleware extensions to support adaptation policies.

4th Workshop on Models@run.time at MODELS 09 84

3.1 Meta-model Extension

Extending the meta-model (level 2) is probably the less painful work for the
designer of new features, although such extensions usually affect other levels
(levels 1 and 0), where the treatment is more complex. The meta-model itself is
described using a meta-meta-model (level 3), allowing the meta-modeling of new
concepts in accordance with a common language used to describe meta-models
(known as the MOF model). Thus, the designer can use a modeling tool and a
well-known language to make the necessary changes to the meta-model, making
this task as easy as modeling any level 1 system.

In its current implementation [5], the meta-model of Meta-ORB was de-
fined using EMF (Eclipse Modeling Framework) [6]. EMF is a plug-in for the
Eclipse platform that facilitates the construction of tools and applications based
on structured data models that are defined using a subset of the MOF model.
The framework allows the manipulation of the middleware meta-model using
graphical plug-ins for Eclipse or other compatible modeling tools. It also al-
lows the generation of the core implementation of the type repository. This core
implementation consists of Java classes that represent each of the meta-model
constructs.

3.2 Model Transformation

Changes to the meta-model should be reflected in the middleware model. This
means that the type repository must be (partly) re-generated to recognize the
new features, enabling the definition, modification and access to meta-information
elements that represent them.

With this extended repository, it is possible to define new types either pro-
grammatically or through the generated Eclipse graphical plug-in. Types cre-
ated in the repository can be serialized into XMI, a programming language-
independent format [7], and stored in local files. When necessary, the middleware
model can be reloaded from these files into memory.

To retrieve the types, remote instances of the platform can access the type
repository using a Web service, as shown in Figure 4. The service takes a type,
which is a runtime instance of an EMF EObject (1), serializes it into XMI (2)
and returns it to the remote platform (3). The remote platform is free to take
the type and convert it into local objects using the appropriate programming
language constructs in order to build a runtime model that provides useful meta-
information to the middleware (4). For instance, factories can use the model to
instantiate entities at runtime (5).

Changes to the meta-model do not affect the way the repository is accessed
(via the Web service). However, with the new implementation of the repository
(generated after the meta-model extension), model elements defined using the old
meta-model (which were serialized and stored in local files) may no longer be re-
loadable due to incompatibilities between the meta-models. To avoid redefining
the middleware model completely, the designer can edit the model manually
(using the serialized XMI files) or use some model transformation technique [8]

4th Workshop on Models@run.time at MODELS 09 85

Factory

4

MetaORB Model

Type Definitions

Type Repository

TR Web Service

TR Client

1

Type
XMI

2

Type
XMI

Type
EObject

3

Parsed Type

5

Fig. 4. Type Repository Web Service.

(and a tool compatible with EMF models) to adjust the model to the new meta-
model. Adjusting the model manually can be a daunting task, depending on the
extent of the changes made to the meta-model. It is generally less difficult to
define rules to transform the model described in accordance with the previous
meta-model into a model that conforms to the new meta-model.

3.3 Updating Runtime Entities

As seen in Section 2, the middleware makes extensive use of meta-information
contained in the type repository. Special entities of the middleware core, such as
component and binding factories, are capable of interpreting this meta-information
at runtime. Thus, changes to the meta-model that affect existing types, as well
as the introduction of new types, require modification of these entities or the
creation of new ones to handle the new types at runtime.

The creation of new core middleware entities follows the normal procedure
defined by the Meta-ORB platform, which consists in defining the type of the
entity in the repository and implementing its primitive code in the host pro-
gramming language (in the case of primitive components and bindings). The
new entity can then be dynamically instantiated using an appropriate factory.
An entity whose type has changed, however, may not be immediately replaced
by a new entity, as the system may be running and the entity may still be in use
and referenced by other entities of the middleware.

To this end, the repository uses type versioning: a change in a type implies
the creation of a new version of this type. Operation UpdateToVersion() was thus
added to the specialized factories of the platform, allowing the dynamic update
of entities that have new type versions. This operation gets the new version of
the type from the repository and uses the reflective framework of the platform to
dynamically adapt the entity in accordance with its new version. In the case of
primitive components or bindings, which cannot be adapted through structural

4th Workshop on Models@run.time at MODELS 09 86

reflection, the factory re-instantiates its internal implementation preserving its
existing interfaces and adding new ones if necessary.

4 Related Work

In Meta-ORB, meta-modeling and computational reflection are key aspects,
which means that middleware evolution is subject to the evolution of its meta-
model. At this point, our work relates to other works focused on meta-model
evolution, such as [9], which presents an approach for automatic and gradual
evolution of generic meta-models. Our approach, however, is more focused on
the evolution of a meta-model to provide new sources of meta-information for
the middleware. It does not address aspects such as the characterization of the
relationships between meta-models and the automatic co-adaptation of models.

Our work is also related to other middleware approaches that use runtime
models as a source of meta-information, such as [10] and [11]. Both use architec-
tural runtime models to automatically drive middleware adaptation. However,
these works do not define an explicit meta-model as in Meta-ORB. We believe
that an explicit meta-model is important for middleware evolution and, with the
help of meta-modeling tools such as EMF, it is possible to modify this meta-
model as easily as modifying any (level 1) model. In the Meta-ORB platform, the
meta-model is also used to generate the type repository implementation, which
is an important tool for the management of meta-information.

5 Concluding Remarks and Future Work

In this paper, we presented our approach for managing models and meta-models
in the Meta-ORB reflective middleware platform. We also discussed the way it
can facilitate middleware evolution. The paper shows how changes made to the
meta-model can be reflected in the middleware model and consequently affect
the entities that form a (base-level) runtime middleware configuration.

One of the main limitations of this work refers to the possibility of modi-
fying only meta-types that do not structurally affect the middleware program-
ming model. This means that it is not possible to redefine the meta-model con-
cepts of component, interface and binding, as this would imply a complete re-
implementation of the middleware core based on these modified concepts. Thus,
only changes aimed at providing new types of behavioral meta-information are
considered, not affecting the structural part of its programming model. The
ability to evolve the middleware programming model still needs further study.

Another important aspect that was not addressed in this work is the creation
of an integrated toolkit for defining and manipulating models and meta-models,
which can even include a model transformation tool. There are works, such as
[12], which propose frameworks for in-place model transformation based on EMF
and can be employed for this purpose. In this way, the middleware designer would
be able to use the same tool to modify the meta-model, create transformation
rules and automatically adapt existing models.

4th Workshop on Models@run.time at MODELS 09 87

As seen in Section 4, several proposals suggest the use of runtime models to
provide information that is important for the autonomy of middleware platforms.
The models can hold useful information about the middleware architecture, as
well as information about how it must operate. In this paper, we argue that
maintaining an explicit and unified meta-model, combined with an infrastructure
to support the modeling and meta-modeling of middleware configurations, is an
important improvement. This offers a structured and more natural way to evolve
the concepts employed in the runtime models used by the middleware.

Finally, as reported in [3], we have successfully used this approach to add
autonomic adaptation capabilities to improve the support for a class of mul-
timedia applications in Meta-ORB. We are currently investigating the use of
meta-model extension to enhance Meta-ORB’s support for other classes of dis-
tributed applications, especially as part of a larger grid and cloud computing
infrastructure.

References

1. Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parla-
vantzas, N.: Reflection, Self-awareness and Self-healing in Open ORB. In: WOSS
’02: Proceedings of the first workshop on Self-healing systems, New York, NY,
USA, ACM (2002) 9–14

2. Costa, F.M.: Combining Meta-Information Management and Reflection in an Ar-
chitecture for Configurable and Reconfigurable Middleware. PhD thesis, University
of Lancaster (2001)

3. Provensi, L.L., Costa, F.M., Sacramento, V.: Self-adaptive Middleware for Dig-
ital Ink Based Applications. In: ARM ’08: Proceedings of the 7th workshop on
Reflective and adaptive middleware, New York, NY, USA, ACM (2008) 29–34

4. Object Management Group: Meta Object Facility (MOF) Core Specification.
"http://www.omg.org/spec/MOF/2.0/", accessed in September, 2009 (2006)

5. Costa, F., Provensi, L., Vaz, F.: Using Runtime Models to Unify and Structure
the Handling of Meta-information in Reflective Middleware. LECTURE NOTES
IN COMPUTER SCIENCE 4364 (2007) 232

6. The Eclipse Foundation: Eclipse Modeling Framework Project (EMF). "http:
//www.eclipse.org/modeling/emf/", accessed in September, 2009 (2009)

7. Object Management Group: XML Metadata Interchange (XMI). "http://www.
omg.org/spec/XMI/2.1.1/", accessed in September, 2009 (2007)

8. Bézivin, J.: From object composition to model transformation with the MDA. In:
Proceedings of TOOLS’USA. (2001) 350–354

9. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. Lecture Notes
in Computer Science 4609 (2007) 600

10. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-Based Self-adaptation with Reusable Infrastructure. IEEE Computer
37(10) (Oct. 2004) 46–54

11. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E., ICT, S.,
Trondheim, N.: Using architecture models for runtime adaptability. IEEE software
23(2) (2006) 62–70

12. Biermann, E., Ehrig, K., Kohler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
definition of in-place transformations in the eclipse modeling framework. Lecture
Notes in Computer Science 4199 (2006) 425

4th Workshop on Models@run.time at MODELS 09 88

Modeling Context and Dynamic Adaptations
with Feature Models

Mathieu Acher1, Philippe Collet1, Franck Fleurey2, Philippe Lahire1, Sabine
Moisan3, and Jean-Paul Rigault3

1 University of Nice Sophia Antipolis, I3S Laboratory (CNRS UMR 6070), France
{acher,collet,lahire}@i3s.unice.fr

2 SINTEF, Oslo, Norway
franck.fleurey@sintef.no

3 INRIA Sophia Antipolis Mediterranée, France
{moisan,jpr}@sophia.inria.fr

Abstract. Self-adaptive and dynamic systems adapt their behavior ac-
cording to the context of execution. The contextual information exhibits
multiple variability factors which induce many possible configurations of
the software system at runtime. The challenge is to specify the adapta-
tion rules that can link the dynamic variability of the context with the
possible variants of the system. Our work investigates the systematic use
of feature models for modeling the context and the software variants,
together with their inter relations, as a way to configure the adaptive
system with respect to a particular context. A case study in the domain
of video surveillance systems is used to illustrate the approach.

1 Introduction

Dynamic Adaptive Systems (DAS) are software systems which have to dynam-
ically adapt their behavior in order to cope with a changing environment. A
DAS needs to be able to sense its environment, to autonomously select an ap-
propriate configuration and to efficiently migrate to this configuration. Handling
these issues at the programing level proves to be challenging due to both the
large number of contexts and the large number of software configurations which
have to be considered. The use of modeling and the exploitation of models at
runtime provide solutions to cope with the complexity and the dynamic nature
of DAS [1].

DAS have similarities with Software Product Lines (SPLs). The basic idea
of SPL engineering is to design and implement a products family from which
individual products can be systematically derived [2]. An SPL is typically spec-
ified as a set of variation points together with their alternatives. The products
are derived by selecting different sets of alternatives associated to the varia-
tion points. SPLs are usually modeled using feature models which provide an
intuitive way for stakeholders to express the variation points, alternatives and
constraints between these alternatives. Depending on how the feature models are
linked to the SPL artefacts (e.g. models), the product derivation can be more or
less automated.

Just like an SPL, an important characteristic of a DAS is its variability. SPL
techniques can be applied to model the variability in a DAS but do not provide

4th Workshop on Models@run.time at MODELS 09 89

any solution to model when the system and how the appropriate configuration
should be chosen according to the environment. To tackle this issue, an emerging
approach is to use Dynamic SPLs [3] which try to achieve the self-modification
of a system by dynamically (re)binding variation points at runtime. Modeling a
DAS not only requires the modeling of variability in the system. It also needs
models of its environment and some adaptation rules that specify which config-
uration of the DAS should run in each specific context.

The contribution of this paper is to propose an approach based on SPL tech-
niques not only for specifying the variability in the DAS but also the variability
in its environment. The idea is to model the DAS and its environment as two
different SPLs and then to link them in order to capture adaptation. In prac-
tice, the DAS and its environment are modeled using two independent feature
models. They are then connected by dependency constraints that specify how
the DAS should adapt to changes in its environment. The use of feature models
allows one to present homogeneously the system, its environment and the asso-
ciated constraints. The feasibility of the approach has been evaluated through
a case study of a digital video processing application. To ensure its usability,
the proposed approach has been built on top of the Domain Specific Modeling
Language (DSML) for adaptive systems proposed in [4].

The paper is structured as follows. Section 2 first introduces the DSML-based
approach on top of which the contribution is built, then recalls the basics of
feature models. It also introduces our case study and finally details how the pro-
posed approach leverages feature models to revisit the DSML-based approach.
Section 3 details how feature models are used to model the context, the adap-
tive system and the adaptation rules. Section 4 compares the approach to related
work. Section 5 concludes and addresses future work.

2 From DSML to Feature Models

2.1 A DSML for Modeling Adaptation

In [5], the authors propose to combine the use of models at runtime and aspect-
oriented modeling techniques to implement DAS. The proposed approach is
based on an adaptation model connected to a set of alternatives implemented as
aspects. At runtime, a reasoning engine processes the adaptation model and se-
lects the functionality which matches the context. The adaptation of the system
is implemented by weaving the corresponding aspects in a model kept causally
connected with the running system. The adaptation model is made of four main
elements:
Variants They make references to the available variability for the application.

Depending on the complexity of the system, it can be a simple list of variants
or a data structure like a hierarchy.

Constraints They specify constraints on variants to be used over a configu-
ration. For example, the use of a particular functionality (variant model)
might require or exclude others. These constraints reduce the total number
of configurations by rejecting invalid configurations.

4th Workshop on Models@run.time at MODELS 09 90

Context The context model is a minimal representation of the environment
of the adaptive application to support the definition of adaptation rules. It
only considers elements of the environment relevant for expressing adapta-
tion rules. These elements are updated by sensors deployed on the running
system.

Rules These rules specify how the system should adapt to its environment. In
practice, these rules are relations between the values provided by the sensors
and the variants that should be used.

Fig. 1. Excerpt of the adaptation DSML

Until then, two different formalisms have been experimented for capturing the
adaptation rules. In [5], the adaptation model is based on event-condition-action
(ECA) rules. In [4], the adaptation model combines a set of hard-constraints
and optimization rules. Both of these approaches rely on a model capturing the
variability in the system and the variability in the context. Fig. 1 presents an
excerpt of the adaptation DSML used in the last approach [4]. The root class for
the DSML is VariabilityModel. On the left, it contains a set of variables which
model the context of the DAS. On the right, it contains a set of Dimensions and
Variants which models the variability in the system. The classes VariantCon-
straint and ContextConstraint are used to express hard-constraints between the
system and its context. Finally, the classes Rule and Property are used to choose
the best solution among the acceptable configurations in a particular context.

2.2 Feature Models

Feature models (FMs) are perhaps the most common formalism used to model
SPL commonalities and variabilities [6,7,8]. A FM can capture different kinds of
variability, ranging from high-level requirement variability to software variabil-
ity. SPL variants are configured by selecting a set of features that satisfy FM
constraints. Every member of an SPL is represented by a unique combination

4th Workshop on Models@run.time at MODELS 09 91

of features and a FM compactly defines all features in an SPL and their valid
combinations. It is basically an AND-OR graph with constraints which organizes
hierarchically a set of features while making explicit the variability.

A configuration of a FM is a set of concrete features. An SPL is the set
of all configurations that are valid for the FM which represents the SPL. A
configuration is valid if the selection of all features contained in the configuration
and the deselection of all other concrete features is allowed by FM. The semantics
of FM is defined as follow: i) if a feature is selected, so should be its parent; ii)
if a parent is selected, all the mandatory child features of its And group, exactly
one of its Xor group(s), and at least one of its Or group(s) must be selected;
iii) cross-tree constraints relating features (e.g. feature dependencies) must hold.
For brevity’s sake, we do not exemplify here FMs; the reader will find examples
in Section 3.

2.3 Video Surveillance Case Study

Throughout the paper we propose to compare the systematic use of FMs with
the DSML-based approach for modeling the adaptive system with a case study
of Video Surveillance (VS) systems.

The purpose of VS is to analyze image sequences to detect interesting situ-
ations or events. The corresponding results may be stored for future processing
or may raise alerts to human observers (detecting intrusion, counting objects
or events, tracking people or vehicles, recognizing specific scenarios, etc.). At
the implementation level, a typical VS processing chain starts with image ac-
quisition, then segmentation of the acquired images, clustering to group image
regions into blobs, classification of possible objects, and tracking these objects
from one frame to the other. The final steps depend on the precise task (see
Fig. 2).

SPL of
Segmentation SPL of

Classification

SPL of Frame
to Frame
Analysis

SPL of
Task

Dependent

Segmentation Classification
Frame to

Frame
Analysis

Task
DependentAcquisition

Variants

Base

Fig. 2. A processing chain of the VS system and the SPLs

An important issue is that each kind of task has to be executed in a partic-
ular context. This context includes many different elements: information on the
objects to recognize (size, color, texture, etc.), nature and position of the sensors
(especially video cameras), etc. The number of different tasks, the complexity of
contextual information, and the relationships among them induce many possible
variants at the specification level, especially on the context side. The first activ-
ity of a VS application designer is to sort out these variants to precisely specify

4th Workshop on Models@run.time at MODELS 09 92

the function to realize and its context. In our case study, the underlying software
architecture is component-based. The processing chain consists of any number
of components that transform data before passing it to other components. As a
result, the designer has to map this specification to software components that
implement the needed algorithms. The additional challenge is to manage the
dynamic variability of the context to cope with possible runtime change of im-
plementation triggered by context variations (e.g. lighting conditions, changes
in the reference scene, etc.).

2.4 Revisiting the Approach with Feature Models

In comparison with the DSML approach previously described [4], we propose a
more intuitive and more compact notation for the adaptation models. One of the
major benefits of the DSML is to provide the ability to simulate and validate
the adaptation model at design-time. Part of our objective is thus to keep a
similar expressiveness so that existing simulation and validation techniques can
be reused.

The key idea is to model the context and the software variants as two fam-
ilies (i.e. SPLs). The context model is represented as an SPL of context where
each member of the SPL describes one valid state of the context. The software
system is also an SPL and should adapt itself with respect to a contextual in-
formation. In SPL terminology, adaptation to context changes corresponds to
product derivation or product configuration (i.e. the choice of a member of the
SPL). In our case, we use a FM both for modeling the SPL of context and the
set of possible variants. As previously described, the specification of constraints
between features is possible. The constraints on variants can thus be directly
expressed in the FM formalism. Moreover, the inter relations between context
elements and software variants specify the adaptation rules. They are also repre-
sented with constraints between features of the context FM and features of the
software variants FM. Using FMs, a configuration of the context corresponds
to the actual contextual information where the software operates. At runtime,
context changes mean that the context FM has a new configuration. A config-
uration of the software variants is an effective software system considering that
all variants are then comprehensively integrated. The concept of configuration
in FM formalism also helps to clarify the semantics relation between the two
models: each configuration of the context should correspond to a configuration
of the software system.

3 Modeling Context and Adaptation

3.1 Modeling Software Variants

All steps of the VS processing chain correspond to software components that the
designer must correctly assemble to obtain a processing chain. A mandatory task
is to acquire images. Then, for each step, many variants exist, along different
dimensions (see Fig. 2). The first challenge is thus to model the software variants.

4th Workshop on Models@run.time at MODELS 09 93

Fig. 3. SPL of the VS system

For instance, there are various Classification algorithms with different ranges
of parameters, using different geometrical models of physical objects, with dif-
ferent strategies to identify relevant image blobs. Another example is depicted
in Fig. 3 where the subtree of the FM whose root is Segmentation represents a
family of segmentation algorithms. For each combination of subfeatures of Seg-
mentation, we assume that there is a corresponding component. As an example, if
TraversalAlgorithm, Grid Step, With Window, Kernel Function, Edge, Color features are
selected, a fully parameterized component can be derived. Another component
would be derived if the Region and Grey features are selected (instead of Edge and
Color). Additional constraints are used to express dependencies between features:

GridStep or WithWindow excludes Edge (C1)
GridStep excludes Ellipse (C2)

Edge excludes Density (C3)

The constraint C1 means that if the features GridStep or WithWindow are
selected, then it is not possible to select Edge. Note that the constraints do not
necessary relate features of the same kind of algorithms (e.g. the constraint C2

states that if the feature GridStep of a segmentation algorithm is selected, then the
feature Ellipse of a classification algorithm is not selected). These constraints are
expressed in propositional logics and correspond to the hard-constraints defined
in the DSML (see Section 2.1). (A excludes B is a shortcut to express A implies
not B).

Models at runtime may deal with values, which can be for example provided
by sensors. To be able to handle them we need to use an extended formalism of
basic FMs that propose adding extra-functional information to the feature using
attributes [9]. A feature attribute has a a domain and possibly an assignment
value when the feature is selected. For instance, threshold is an attribute of the
feature Segmentation whose type is an integer in Fig. 3. Another example is the
attribute of the feature TimeOfDay which can take the value night or day in Fig. 4.
An attribute corresponds to the Property concept defined in the DSML.

4th Workshop on Models@run.time at MODELS 09 94

3.2 Modeling Context

At present, there is a set of configurations available for each category of com-
ponent in order to achieve each task of the processing chain. The contextual
information is needed to reason at runtime on the effective choices of compo-
nents. For instance, lighting changes can have an impact on the parametrization
(i.e. configuration) of some components of the processing chain. Our approach is
to represent the context model also as a FM. In Fig. 4, a contextual information
that needs to be defined is the Objects of interest(s) to be detected, together with
their properties.

Fig. 4. SPL of the context

Then, Scene is the feature with the largest sub-tree; it describes the scene
itself (its topography, the nature and location of cameras) and many other envi-
ronmental properties (only some of them are shown on the figure). The elements
of the FM may be related together with intra constraints which can reduce the
configuration space.

3.3 Modeling Adaptation

The purpose here is to define the adaptation logics that defines the behaviour of
the software system considering the context. In our approach and terminology,
it means that the SPL system should change its configuration. As the available
context information is also a configuration that affects the SPL configuration,
we propose to inter relate the two FMs with adaptation rules. Adaptation rules
are defined with the constraint language of FMs (i.e. propositional logic-based
language). Abstract syntax rules consist of a Left hand side (LHS) and Right
hand side (RHS). Both of them address features possibly connected with “and”,
“or”, “not”. With this mechanism, simple ECA rules can be expressed. The LHS
represents the condition part and is an expression based on the context informa-
tion. The action is a change in the configuration of variants (RHS of the rules).

4th Workshop on Models@run.time at MODELS 09 95

LightingConditions

TimeOfDay
Night
Day

NaturalLight
ArtificialLight

Indoors
Outdoors

LightingNoise

Shadows
HeadLight

Flashes

Scene

VSContext

(a) Initial context

TraversalAlgorithm

KernelFunction
Edge
Region

GridStep
WithMask
WithWindow

Classification

Contour
Density

Segmentation

VSSystem

ShadowElimination

LightingAnalysis

HeadLightDetection
DetectRapidChanges

(b) Initial system

LightingConditions

TimeOfDay
Night
Day

NaturalLight
ArtificialLight

Indoors
Outdoors

LightingNoise

Shadows
HeadLight

Flashes

Scene

VSContext

(c) New context

TraversalAlgorithm

KernelFunction
Edge
Region

GridStep
WithMask
WithWindow

Classification

Contour
Density

Segmentation

VSSystem

ShadowElimination

LightingAnalysis

HeadLightDetection
DetectRapidChanges

(d) SPL after reconfiguration

Fig. 5. Configurations of the VS system with respect to context changes
As an example, the following adaptation rule:

Night and HeadLight implies HeadLightDetection (AR0)

states that if the contextual information describes that the Night and HeadLight
are active, then the feature HeadLightDetection which corresponds to a component
of the platform is integrated in the software system.

Some other adaptation rules are defined as follow:
not LightingNoise implies Region (AR1)

LightingNoise implies Edge (AR2)
ArtificialLight implies DetectRapidChanges (AR3)

Flashes or HeadLight implies Contour (AR4)

The Fig. 5(a) depicts an excerpt of the initial context configuration where
the VS system operates. (The green icon in the box states that a feature is
selected while the red cross means that the feature is deselected). One can notice
that the system is executed in an Outdoor environment during the Day. The
corresponding configuration of the VS system is represented in Fig. 5(b). As the
feature LightingNoise is not selected in the context, the feature Region is selected
in the VS system applying the rule AR1.

An adaptation of the VS system is required with respect to context changes
depicted in Fig. 5(c). Here, the system should run during the Night and the

4th Workshop on Models@run.time at MODELS 09 96

light is now Artificial. Additionally, the HeadLights (e.g. of the vehicles) should be
taken into account. Applying the different rules (AR0, AR2, AR3 and AR4), the
adaptive system is then configured (see Fig. 5(d)).

4 Related Work
Feature Modeling. As in our running example, a few other approaches use
multiple FMs during the SPL development. Kang et al. define four layers, each
containing a number of FMs [6]. The paper discusses these layers and their FMs
on a structural level and provides guidelines for building FMs. Some layers de-
fined in their papers, like operating environment or capability, can be part of
the contextual information. In [7], FMs are used to model decisions taken by
different stakeholders at different stages of the software development. Hartmann
et al. introduce context variability model (CVM) to represent context informa-
tion of software products [10]. The combination of the CVM and another FM
results in a so-called Multiple Product Line FM. All above-mentioned papers do
not explicitly present their work as suited to self-adaptive or dynamic systems.
The configuration of the FMs is rather static and does not evolve over time.
In [11], Fernandes et al. propose to model context-aware systems. As in our ap-
proach, the authors use FMs to represent the context and the software system.
A domain-specific language is also designed and allows the developer to specify
context rules. Nevertheless, the formalism and notation used to represent FMs
are not standard ; their work can be seen as an hybrid approach between the
DSML-based and the FM-based approaches.
Adaptation Modeling. Beyond the approach presented in [4] and discussed
in the beginning of the paper, a number of techniques have been proposed in
the literature to capture and express adaptation. These techniques can be cat-
egorized under two families. The first one is the most commonly used and is
based on event-guard-action type of rules [5, 12]. In these approaches the con-
text and the configurations are related by a set of rules, which express how
the evolution of the context should affect the running configuration of the ap-
plication. The second family of approaches relies on the optimization of some
utility functions [13,3] associated to the system. In these approaches, changes in
the environment trigger an optimization process that evaluates possible alterna-
tive configurations and adapt the system to maximize the utility of the running
configurations. The FM notation proposed in this paper is very well suited to
represent event-guard-action type of rules as these rules can be captured as con-
straints across the FMs. For optimization based-techniques, a possible solution
would be the use of attributes in the FMs in order to represent the information
needed by the optimization process. This will be investigated as future work.

5 Conclusion and Future Work
This paper addresses the reconfiguration of Dynamic Adaptive Systems and pro-
poses to reason at the model level in order to compute the new configuration
according to context changes. We have shown that the concepts in the DSML
are expressible with the FM formalism. The concept of configuration is natu-
rally present in FMs: the valid combination of variants or context elements is

4th Workshop on Models@run.time at MODELS 09 97

defined by the semantics of the FMs. As a result, there is no need to define an
ad-hoc semantics or constraint checking techniques. The context elements are
no longer represented as Boolean variables and the user can structure hierar-
chically domain concepts. Besides, it is possible to express constraints between
the elements of the context model, invariants and adaptation in the FM formal-
ism. The uniform representation of the context model and the software system
makes possible to express relations between the two models. The DSML-based
approach and the FM-based approach can complement each other. On the one
hand, the FM-based approach can take advantage of simulation and validation
checking proposed in [5, 4]. On the other hand, the DSML-based approach can
use the infrastructure, tools, techniques, etc. associated to FMs. As part of our
future work, we intend i) to address the validation and simulation directly at the
level of FMs and ii) to leverage the expressiveness of the FM-based approach
(e.g. using attributes). We also plan on achieving a better separation of concerns
thanks to a set of operators allowing to extract a subset of the context model;
we believe that the context that may influence the runtime execution of the
system is most of the time only a part of it. Finally, our long term goal is to con-
nect state-of-the-art adaption engines to our models and provide an end-to-end
software solution.
References

1. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J., Solberg, A., Dehlen, V., Blair, G.:
An Aspect-Oriented and Model-Driven approach for managing dynamic variability.
In: Model Driven Engineering Languages and Systems conference. (2008)

2. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag (2005)

3. Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to
build adaptive systems. In: Software Product Line Conference. (2006)

4. Fleurey, F., Solberg, A.: A domain specific modeling language supporting specifi-
cation, simulation and execution of dynamic adaptive systems. In: Model Driven
Engineering Languages and Systems conference. (2009)

5. Fleurey, F., Delhen, V., Bencomo, N., Morin, B., Jézéquel, J.M.: Modeling and
validating dynamic adaptation. In: Proceedings of the 3rd International Workshop
on Models@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

6. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software
Engineering 5(1) (1998) 143–168

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2) (2005) 143–169

8. Batory, D.S.: Feature models, grammars, and propositional formulas. In Obbink,
J.H., Pohl, K., eds.: SPLC. Volume 3714 of LNCS., Springer (2005) 7–20

9. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated reasoning on feature
models. LNCS, CAiSE 2005 3520 (2005) 491–503

10. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model
multiple product lines for software supply chains. In: SPLC ’08, IEEE (2008) 12–21

11. Fernandes, P., Werner, C.M.L.: Ubifex: Modeling context-aware software product
lines. In Thiel, S., Pohl, K., eds.: SPLC (2), Limerick, Ireland (2008) 3–8

12. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. In: WADS ’05: Pro-
ceedings of the workshop on Architecting dependable systems, ACM (2005) 1–7

13. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Softw. 23(2) (2006) 62–70

4th Workshop on Models@run.time at MODELS 09 98

Statechart Interpretation on Resource
Constrained Platforms: a Performance Analysis

Edzard Höfig1, Peter H. Deussen1, and Hakan Coşkun2 �

1 Fraunhofer Institute for Open Communication Systems, Berlin, Germany
{edzard.hoefig|peter.deussen}@fokus.fraunhofer.de

2 Faculty IV, Department of Design and Testing of Communication-Based Systems,
Technical University of Berlin, Germany coskun@cs.tu-berlin.de

Abstract The statechart formalism allows for the specification of beha-
viour models of complex, reactive systems. It is employed in the embed-
ded systems domain to specify and verify applications at design time.
By enabling the interpretation of formalised behaviour models one earns
the favourable abilities of application behaviour inspection, control, and
substitution at runtime. One of the major arguments against such an
approach concerns poor interpretation performance and high-resource
overhead. We are answering this argument by showing that it is feasible
to implement a statechart interpreter on a resource-limited platform. We
define the utilised statechart formalism and use it as a base for imple-
menting a resource-efficient interpreter on a 8bit microcontroller with 2
kByte RAM. Performance overhead of key aspects of the interpretation
engine is evaluated using suitable behaviour models and by comparison
with compiled code.

Key words: Statechart, Interpretation, Behaviour Model, Performance
Analysis

1 Introduction

Professionals are modelling reactive systems using statecharts for the purpose of
system analysis and quality assurance at system design time. Recently there is an
interest in using such formalised behaviour models to control and describe sys-
tem behaviour at runtime. For runtime evolution of software and communication
protocols such an approach has potential advantages over the direct generation
of system code. Take for example the dynamic re-configuration of embedded
systems without a firmware ”flashing” procedure or shutdown, the possibility to
trace a system state with only minimal performance overhead, or the application
of formal validation methods at runtime to assure that the system is in a valid
state. Although these properties are of interest for researchers and practitioners
� The authors would like to acknowledge the European Commission for funding the

Integrated Project EFIPSANS ”Exposing the Features in IP version Six protocols
that can be exploited/extended for the purposes of designing/building Autonomic
Networks and Services” within the 7th IST Framework Program.

4th Workshop on Models@run.time at MODELS 09 99

in the autonomic communication and networking field, the resource usage of the
interpretation mechanisms is critisised. We often heard the argument that the
performance overhead renders the approach unsuitable for resource-constrained
platforms. Contrary to this, we believe that such an approach is feasible even for
embedded hardware platforms. As we found no hard numbers on interpretation
performance, we decided to conduct a study on the performance of a statechart
interpreter on a resource-constrained platform. Our challenge is two-fold: Firstly,
we created a proof-of-concept implementation of such an interpreter. Secondly,
we quantified the performance, enabling us to give a well-grounded answer to
the performance argument.
The paper is structured as follows. We describe related work in section 2, and
give a formal definition of statecharts in section 3. In section 4 we detail the map-
ping of our definition to a runtime mechanism. Subsequently, section 5 describes
the performance characteristics obtained by measuring the implementation. We
conclude with a discussion of our findings in section 6.

2 Related Work

Statecharts were invented more than 20 years ago by D. Harel [1] and are in wide-
spread use as part of UML2 state diagrams. An example for a statechart-based
behaviour model of a simplified car door and passenger room light is depicted
in Figure 1.

Lights and Door

OnOff

open /
switch_lights_on()

Waiting

open /
clear_timer(1)

close
/ set_timer(1, 5s)

timer1_up /
switch_lights_off()

Open

Closed
Locked

door_closed
! close

Unlocked

lock
[key = true]

unlock
[key = true]

door_open
! open

Figure 1. Example behaviour model “Lights & Door”

Employing statecharts for model checking and code generation is common
practice [2,3] and the efficient interpretation of statecharts has also been re-
searched by J. Ebert from a theoretical point of view [4]. First practical usage of
interpreters for similar formalisms emerged in the last years out of the business
process field [5]. An execution standard for statecharts is specified by the W3C
under the name “State Chart XML”[6] with two implementations3 available.

3 A Java version from the Apache Software Foundation (http://commons.apache.
org/scxml) and a C++ engine from QT Labs (http://qt.gitorious.org/qt-labs/
scxml)

4th Workshop on Models@run.time at MODELS 09 100

In our current work we use statecharts for network and system management
[7] with the goal of equipping network routers with the ability to make autonomic
decisions on an incoming packet stream by interpreting behaviour models [8]. We
also have prior experience with optimisation of Extended Finite State Machines
(EFSM) based automatons for analysing large XML data streams [9] and some of
the optimisations that we are employing were discovered during previous work.

3 Formal Definition of Statecharts

Our formalism follows the definition specified in the annex of the original re-
search paper [1]. We left out the “History Connector” definition, but apart from
that we have a full-fledged statechart, including aggregate states and parallel
components.

We define a higraph as a structure H = �S, E, s0, θ , σ�, where S is a finite set
of symbolic states, E ⊆ S×S is a set of edges, σ : S → 22S

is a substate function,
and s0 ∈ S is a root state. We call each set of states Q ∈ σ(s) a component of
s. Distinguished components Q1, Q2 ∈ σ(s) are called parallel to each other. A
state s ∈ S is called atomic if σ(s) = ∅ does hold, otherwise it is called composed.
Moreover θ : Θ → S assigns a unique start state to each component of H, where
Θ =def

�
s∈S σ(s) is the set of components of H. We assume that θ(Q) ∈ Q for

each Q ∈ Θ, i. e., the initial state of a component is a member of that component.
We stipulate a number of restrictions; to this end, let us define σ

+(s) to be
the smallest set (w. r. t. ⊆) of symbolic states satisfying

�
Q∈σ(s) Q ⊆ σ

+(s) and
s
� ∈ σ

+(s) ⇒
�

Q∈σ(s�) Q ⊆ σ
+(s).

Then we assume that:

1. Q ∈ σ(s) ⇒ Q �= ∅, i. e., substates of s are non-empty sets (note that this
does not imply that σ(s) = ∅, i. e., we allow atomic states).

2. σ is non-cyclic, i. e., s /∈ σ
+(s) for all s ∈ S.

3. The sets in σ(s) are pairwise disjoint, i. e., Q1, Q2 ∈ σ(s) ∧Q1 ∩Q1 �= ∅ ⇒
Q1 = Q2, for all s ∈ S such that Q1, Q2 ∈ σ(s);

4. that the whole higraph has a tree-like structure, i.e., σ
∗(s1)∩ σ

∗(s1) �= ∅ ⇒
s1 ∈ σ

∗(s2) ∨ s2 ∈ σ
∗(s1).

5. Finally, for the root state s0 we assume that σ
∗(s0) = S, and s0 is the only

state with this property.

For the sake of notational simplicity we moreover define σ
−1(s) =def s

� whenever
s ∈ σ(s�) (note that the expression σ

−1(s) is undefined for s = s0).
Next, we define a statechart as a structure C = �H,V,D, I, ι, ω, γ,α �, such

that H = �S, E, s0, θ , σ�, is a higraph called the skeleton of C. V is a finite set
of variables, D is a set of data, I is a set of events including the empty event
�, ι,ω : E → I are mappings assigning a triggering event ι(e) and an output
event ω(e) to each edge of H, respectively. Moreover γ : E → (V D → {0, 1})
assigns a predicate to each edge of H. Here, V

D denotes the set of total mappings
from V to D, i. e. all assignments of values from D to variables from V . Finally

4th Workshop on Models@run.time at MODELS 09 101

α : E → (V D → V
D) defines the effect of executing an edge e ∈ E to an

assignment ρ ∈ V
D.

A statechart describes a set of concurrent processes, where parallel processes
are syntactically distinguished as substates Q ∈ σ(s) of some high-level state
s ∈ S. Hence we first need to define what a run-time state of statechart is. An
aggregated state of a statechart C is a minimum (w. r. t. set inclusion) set R ⊆ S

such that
1. s ∈ R & s �= s0 ⇒ σ

−1(s) ∈ R, i. e., if a state s is a member of an
aggregated state, then its corresponding high-level state σ

−1(s) is also;
2. s ∈ R ∧ σ(s) �= ∅ ⇒ (∀Q ∈ σ(s))|R ∩ Q| = 1, i. e., if s is a member of R,

then R contains exactly one state from each component of s.

Note that by definition we have s0 ∈ R for each aggregated state R. Moreover,
there is a uniquely defined initial aggregated state for each statechart C, namely
the aggregated state R0 with θ(Q) ∈ R0 for all s ∈ R0 and Q ∈ σ(s).

In order to fully describe the run-time behaviour of a statechart, we further
need to take into account its current variable vector. Hence, run-time states are
tuples of the form �R,ρ �, where R is an aggregated state and ρ ∈ V

D is a variable
assignment. Let us denote the set of run-time states of C by Σ.

Now we are ready to define the behaviour of a statecharts in terms of trans-
itions leading from one run-time state to another. To this end, we define a partial
transition relation a,b−−→ ⊆ Σ ×Σ for each pair of events a, b ∈ I:

�R1, ρ1�
a,b−−→ �R2, ρ2�

⇔def (∃e = �s1, s2� ∈ E)
�
s1 ∈ R1 ∧ s2 ∈ R2

∧ ι(e) = a ∧ ω(e) = b ∧ γ(e)(ρ1) = 1 ∧ α(e)(ρ1) = ρ2

∧ (∀s ∈ R2 \ R1)(∀Q ∈ σ(s))
�
Q ∩R1 = ∅ ⇒ θ(Q) ∈ R2

��

This means, a transition from a run-time state �R1, ρ1� to another run-time
�R2, ρ2� if R1 and R2 contain symbolic states s1 and s2, respectively, connected
by an edge e = �e1, e2� labelled with the input event a and the output event
b. Moreover, the predicate γ(e) applied to ρ1 yields true, and ρ2 is the result
of applying the α(e) to ρ1. Finally, the last line in the formula above ensures
that if a component Q is newly introduced into R2 by the transition, then R2

contains its start state. Using these definitions we can now discuss the statechart
interpreter implementation.

4 Mapping of the Formalism to a Runtime Mechanism

We implemented the interpreter using the C programming language on an Ardu-
ino Duemilanove test board with a 16MHz ATmega328P microcontroller. There
are 32 KByte Flash and 1 KByte EEPROM non-volatile memory available, as
well as 2 KByte of volatile SRAM. We are using the most simple mapping that
still allows to show a working approach. Introduction of more complex features
would greatly improve the usability of the devised mechanism, but add nothing
substantial in terms of evaluating the runtime performance overhead.

4th Workshop on Models@run.time at MODELS 09 102

4.1 The Behaviour Model

We abstained from defining a syntax for behaviour models and work directly with
an Abstract Syntax Tree (AST) in-memory representation, which we suppose
can be generated from any suitable representation format (e.g., UML2 state
diagrams, or SCXML). For each model the complete AST data is allocated as a
single chunk of memory and the AST structure is constructed with single-byte
references to this data. Prior to interpretation, an additional executor structure
is allocated that holds input and output event queues, as well as data structures
for processing parallel components, and a reference to s0 as the initial starting
point for execution.

4.2 States and Data Space

We restrict S to contain up to 256 symbols encoded by the numbers 0..255. Each
state is represented by a data structure containing fields that allow to bidirec-
tionally navigate the substate tree spanned by σ. For performance reasons we
separate the state data structure into a substate set, a set of parallel components,
and an additional reference to a superstate. Additionally, the structure contains
a set of references to outgoing edges and a so-called flag byte used to indicate
state properties, e.g., θ is implemented as a single bit in the flag byte. Sets are
generally implemented as byte arrays with an additional field that holds set size.
For aggregated states, and states containing parallel components, it is necessary
to evaluate θ to identify the start state of contained component(s), and to ad-
ditionally create data structures that allow for pseudo-concurrent processing of
parallel components.

The variables V are limited to a maximum of 246 read- and writeable entries
per behaviour model and 10 additional global entries shared between all execut-
ing models. Variables are referenced by the numerical values 0..255, where the
values 0..9 refer to global values and 10..255 refer to local ones. The data set D

is limited to 8 bit integer numbers. There is no type system. When data values
are evaluated within boolean expressions, we follow C conventions for assigning
logical values: 0 corresponds to a logical “false”, other values are “true”.

4.3 Edges and Event Processing

E is implemented as a set of data structures, which contain a reference to a
destination state, the triggering event assignment ι, and the output event as-
signment ω. There can be a maximum of 256 edges. Events are numbered from
0..255 and identified by their numerical value – 0 is the special “empty” event
symbol ε. The edge structure also contains references to a guard condition predic-
ate γ and an action mapping α. Due to parallel processing of edges it is possible
for multiple events to be received during a single step of a model. Events are
buffered for input and output in ring-buffers, limited to 10 elements.
The guard condition predicates γ need to be evaluated to decide if an edge should

4th Workshop on Models@run.time at MODELS 09 103

be traversed (hence the name “guard condition”). They are specified within the
model AST and can be constructed from variable or constant references (nota-
tionally depicted using a $ sign), boolean operators (!, ∧, ∨), and comparison
operators (=, <, >, ≤, ≥). Evaluation precedence is implicitly given through
the AST hierarchy.
The action bindings α are implemented as code that is statically bound to the
runtime mechanism before the interpretation of a behaviour model commences.
An action binding is a conventional function call with an arbitrary number of
input and output parameters, and represents fixed capabilities of a device that
are orchestrated using statechart logic. It is implemented by a structure holding
a function pointer plus an ordered set of variable references. Parameters need to
be de-referenced inside of the action function and can be used to read or write
the variable value. A specific set of actions considers timers. We created three
timers that can be set with a delay value using set timer(id,delay) to deliver
the specific events 8..10 once the delay time passes. Timers can be cleared using
clear timer(id) which suppresses dispatching of the timer event.
Explaining the processing algorithm goes beyond the scope of this paper. For an
understanding of the intricacies refer to the paper by J. Ebert [4]. In a nutshell:
For each input event all active components in a statechart are evaluated for
triggered edges. If a triggered edge has a matching guard condition, the assigned
action is executed and an output event send. The state(s) are then changed and
another evaluation iteration is run with the next input event. These steps are
repeated until all active components reach end states. It is worth mentioning
that all ε edges are traversed before the next input event is taken from the input
queue. Also, specific handling functionality needs to be executed on entering and
exiting parallel states to maintain data structures for active components.

5 Performance Analysis

We found that the experimental platform has sufficient resources for the state-
chart interpreter code, which uses less than 8 KBytes of Flash memory. In this
section we describe the evaluation results using the experimental platform.
Latency measurements have been conducted using in-line timestamps, the slight
delay that has been introduced by this is negligible for the overall result. The em-
ployed timestamping mechanism has an accuracy of approx. 4 µs. Stack memory
measurements were conducted by dumping the stack pointer during runtime.
Performance of these routines is uncritical as such experiments only measured
memory consumption, not latency.

5.1 Memory Overhead

To analyse stack performance, we exercised the behaviour model shown in Fig.
1. We used the following sequence to measure the normalised4 stack alloca-
tion as shown in Fig. 2: key ← false, door open, door close, lock, door open,
4 Showing only the additional bytes consumed during interpretation of the model

4th Workshop on Models@run.time at MODELS 09 104

door close, key ← true, lock, door open, key ← false, unlock, door open,
key ← true, unlock, door open, door close, wait for the lights to turn off. The
interpreter executes a single step method to iteratively advance the statechart.
This method uses 25 bytes stack when processing input events and 23 bytes
when processing ε events. Peaks in the stack usage are due to evaluation of the
key guard conditions on the edges between the Locked and Unlocked states.

6000 100 200 300 400 500

50

0

10

20

30

40

Number of stack samples (~time)

A
llo

ca
ti

on
 (

b
yt

es
)

Waiting for timeout

Stack used by step execution method

Evaluation of conditional expressions

Figure 2. Stack usage during interpretation of Light & Door model

5.2 Conditional Expression Evaluation

The expression evaluator is implemented as a tree walker that recursively tra-
verses a binary tree of statement tokens (variables, constants, and operators).
We used three expressions to measure performance “$0 < 15” (interpreted in 24
µs), “($0 < 15) ∧ ($1 = $2)” (56 µs), and “(($0 < 15) ∧ ($1 = $2)) ∧ ((30 >

$4) ∨ ($3 = $5))” (116 µs). This approach has a remarkable performance over-
head: A hard-coded C version of any of these expressions executes in less than
4 µs. As seen in Fig. 2 the evaluation of conditional expressions is depicted as
peaks in the stack usage. By sampling stack size during evaluation we found that
the expression evaluator uses an additional 11 bytes per recursive iteration, e.g.,
Expression C uses a total of 44 bytes stack memory during evaluation.

5.3 Simple Edge Matching

We are measuring the time that our implementation needs to react with a single
output event to a single input event using the traversal of a single edge. There
can be more than one outgoing edge assigned to a single state, so we are also
interested in the latency of the interpreter when processing multiple edges. We
are using 30 behaviour models with an increasing number of edges for a single
state. Each edge is triggered by a specific event 1..30 and sends a correspond-
ing output event 101..130. Each model is then supplied with exactly one event,
activating the edge that is triggered by the highest event. This is done to force
the interpreter into exhibiting worst-case behaviour (it checks each edge before
finding the edge that matches). The results, along with an illustration of the
experimental models, can be seen in Fig. 3. To put the measurements into per-
spective, we also added the time that a conventional “switch” statement needs
to deliver the same result.

4th Workshop on Models@run.time at MODELS 09 105

300 5 10 15 20 25

200

0

40

80

120

160

Number of Transitions For a Single State

D
e
la

y
 [
!
s
]

Interpreter

"switch" statement

Test

e
1

! e101 e
2
 ! e102

e
n
 ! e100 + n

...

Experimental Models

Figure 3. Delay of edge matching processes

The latency for a simple edge transition is approx. 64 µs, which includes event
processing, timer handling, edge selection, and edge execution. It is approxim-
ately a factor 10 slower than a conventional switch statement which executes at
around 6 µs. Latency increases linearly with approx. 3 µs for each edge up to
152 µs for 30 edges. The “switch” statement has a constant delay independent
of the given event. The reason for the linear increase is the need to check each
of the edges for a possible match.
The usage of dynamic action bindings instead of static function calls also has an
impact on the latency of action execution due to the way parameters are passed
to function code. We created models that trigger an action using a single edge
from a single state and altered the number of parameters (0..10) passed to the
action. The additional delay introduced amounts to an average of approx. 3 µs

per additional parameter. For conventional function calls we believe that an ad-
ditional delay exists as well, but we found that the measured latency differences
are within the precision range of the employed timing mechanism for the number
of arguments studied (delay differs < 4 µs).

5.4 Processing of Aggregates and Parallel Components

The two major features that differentiate statecharts from EFSM are aggrega-
tion and the ability to specify parallel components. To measure performance of
aggregation handling we used a series of models with an increasing number of
nested states (from a single state to an aggregate with a nesting depth of 30)
where the most deeply nested state had an edge that matched on a given input
event. The parallel component processing was analysed using 30 models which
contained a superstate with an increasing number of parallel components, each
triggering on the same input event. The results are displayed along with the
experimental models in Fig. 4. We found it necessary to differentiate between
the first input event and subsequent events5 processed in the same state. This is
due to additional functionality executed when entering an aggregated state or a
state that contains parallel components. Fig. 4(A) shows an average delay of 12.5

5 in the diagram labelled as 2nd event, representative for all subsequent events

4th Workshop on Models@run.time at MODELS 09 106

µs per additional nested state for an event that triggers entering the aggregate.
Once the aggregate has been entered, the delay for processing subsequent events
is independent of the nesting level. This is different for parallel components, as
shown in Fig. 4(B). Entering a state with parallel components has an average
latency of approx. 52 µs per parallel component. There is an average overhead
of approx. 26 µs per active component for each subsequent event. To compare
the latency overhead with conventional constructs, we also show the delay of a
“for-loop” sequentially processing the input event. In this case, the overhead is
at approx. 2 µs per additional iteration.

300 5 10 15 20 25

1600

0

400

800

1200

(B) Number of Parallel Components

D
el

ay
 [
μs

] 1st Event
2nd Event

"for loop" statement

300 5 10 15 20 25

450

0

100

200

300

(A) Depth of sub-state containment

D
e
la

y
 [
!
s
] 1st Event

2nd Event

en ! e100 + n

Test

...

Test
e1 !
 e101

Test
e2 !
 e102

Testen !
 e100 + n

...
Experimental Models
for Aggregates

Experimental
Models for Parallel
Components

Figure 4. Event delay characteristics for processing of aggregated states (A) and par-
allel components (B) with the employed experimental models

6 Conclusion

The results confirm our initial assumption: It is possible to implement a state-
chart interpreter on a severely resource-constrained platform. We had no prob-
lem fitting the interpreter into non-volatile memory, though the available heap
memory establishes clear constraints on the complexity of the behaviour mod-
els. Heap memory was large enough to hold any of the experimental models we
applied for performance assessment, but we found that models with about 100
states are the limit. Stack memory is unlikely to be exhausted: Models would
need to use a very deep conditional expression token tree.
On the performance side, we found that the interpreter clearly adds a processing
overhead. In the best case execution latency is about a factor 10 longer than with
compiled code. Performance depends largely on the structure of the interpreted

4th Workshop on Models@run.time at MODELS 09 107

models, main factors are: the number of edges leaving a state, the nesting depth
for aggregates, the number of parallel components, and the usage of guard condi-
tions. Also, the ratio between the time the interpreter spends in action functions
and the time spent in statechart interpretation plays an important role: If action
functions are sufficiently complex, the overhead caused by the statechart engine
is much smaller. On the other hand, if system behaviour is completely modelled
using a statechart, the interpretation overhead becomes very large.

The interpreter performance can still be improved, mainly by using a better
expression evaluator, but also by optimisation of the edge evaluation code (e.g.,
grouping triggering events, combining guard conditions). Even with ingenious
optimisations, some overhead cannot be purged: In the worst case, any statechart
interpreter needs to evaluate all outgoing edges for a single state, including the
outgoing edges of parent states, and there will always be an overhead for event
processing and handling aggregates, as well as parallel components. Therefore
we conclude that our approach is adequate for reactive systems, which are idle
most of the time. It does not seem to be suitable for systems that need the
fastest possible reaction time due to the introduced interpretation delay, which
can easily amount to 1 ms. Such a value is unacceptable for most real-time
applications. Regarding high-throughput systems, successful applications should
be possible but will depend on the underlying platform performance and the
utilised behaviour model complexity.

References

1. Harel, D.: On visual formalisms. Communications of the ACM 31(5) (May 1988)
2. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating uml state

machines. ACIS Int. Conf. on Software Engineering Research, Management and
Applications (2004) 331–338

3. Raghunathan, B., Hartrum, T.: The automated transformation of statecharts from
a formal specification to object-oriented software. 48th Midwest Symposium on
Circuits and Systems (2005) 319– 322

4. Ebert, J.: Efficient interpretation of state charts. Fundamentals of Computation
Theory 710 (Jan 1993) 212–221

5. Sánchez, M., Barrero, I., Villalobos, J., Deridder, D.: An execution platform for
extensible runtime models. Proc. models@run.time workshop (2008) 107–116

6. W3C: State Chart XML (SCXML): State machine notation for control abstraction.
http://www.w3.org/TR/scxml/

7. Höfig, E., P.H.Deussen: Document-based network and system management. Proc.
2nd International Conference on Autonomic Computing and Communication Sys-
tems (Jun 2008)

8. Höfig, E., Coskun, H.: Intrinsic monitoring using behaviour models in ipv6 networks.
to be presented at the IEEE Modelling Autonomic Communication Environments
(MACE) Workshop (October 2009)

9. Hinnerichs, A., Höfig, E.: An efficient mechanism for matching multiple patterns
on xml streams. Proc. IASTED Int. Conf. on Software Engineering (2007) 164–170

4th Workshop on Models@run.time at MODELS 09 108

Using Specification Models for RunTime
Adaptations�

Sébastien Saudrais1, Athanasios Staikopoulos2, and Siobhán Clarke2

1 Embedded Systems Laboratory, ESTACA, France sebastien.saudrais@estaca.fr
2 DSG, Trinity College of Dublin, Ireland

{athanasios.staikopoulos,siobhan.clarke}@cs.tcd.ie

Abstract. For a myriad of reasons, modern applications face constant change
to their requirements and working environment, requiring them to adapt ac-
cordingly. Increasingly, such adaptation is even required during runtime. In
Model-Driven Engineering (MDE) approaches, models are first-class enti-
ties in the development of applications, though they have not, to date, been
sufficiently taken advantage of in runtime adaptation specification. In many
existing approaches, designers are required to consider the execution model
when specifying any runtime adaptation, forcing them to understand the dif-
ferent formalisms of both the execution model and the specification model.
The focus of this paper is to show how runtime models to monitor an appli-
cation’s execution can be derived efficiently from the specification, and how
they support the designer in considering the application’s execution in the
same formalism as the specification.

1 Introduction

Model-Driven Engineering (MDE) promotes the use of models throughout the de-
velopment of software. The underlying idea is to promote models as the primary
artefacts of software development, making executable code a pure derivative of those
models. Models containing adaptation specifications are an increasingly important
and frequently encountered part of the development process. This is especially true
for modern applications that need to adapt at runtime to cope with constant changes
to their requirements and operating environments. Such changes have to be consid-
ered at the specification phase, and the models validated before they are transformed
to real code. However, despite the importance of specification models, they have, to
date, been ignored during the execution of the software. Once the code is generated,
the specification models are no longer used with the potential loss of information
that would be especially valuable during adaptation specification.

A further difficulty emerges during the process of adapting the execution. While
the adaptation may be based on a specification model, the actual adaptation is
necessarily performed either by hand on the application’s code, or requires a com-
plete regeneration of the system since it is unlikely to match the old specifications.
Working directly with the application’s code means a move to a different formalism
from that of the specification. This change between formalisms has a number of dis-
advantages. The first is that the adaptations performed in the new formalism must
be validated against those in the specification model. An automatic generation of
the entire module that is to be adapted can ease this checking, but this needs to be
coupled with a reverse-engineering technique to reproduce the specification model.
The second disadvantage is that while the software architect knows the specifica-
tion formalism, he is not always familiar with the implementation’s one(s). If there
� This work has been carried out within the FP7 project ALIVE IST-215890, which

is funded by the European Community. The authors would like to acknowledge the
contributions of their colleagues from ALIVE Consortium (http://www.ist-alive.eu)

4th Workshop on Models@run.time at MODELS 09 109

are adaptation problems at runtime, he has to be able to understand the second
formalism in order to solve the errors, or work closely with an implementation team
member. Either approach is likely to be difficult where an application’s execution
context often changes, requiring manual adaptation at runtime. It would be easier
for the architect to visualise a snapshot of the actual execution in the specification
formalism.

The approach proposed in this paper takes advantage of the specification models
during the execution. A runtime model is generated from the specifications, which
supports the monitoring of the execution required to supply sufficient information
to apply adaptations directly on the specification models of the software. The run-
time model contains the information needed to trigger the adaptation and is created
based on the adaptations defined at the specification. At runtime, when an adapta-
tion needs to be performed, the specification models are updated to correspond to
the actual execution and the adaptation is performed on the up-to-date specifica-
tion models. The new configuration of the application is, finally, generated from this
new specification models. The approach allows a designer to use a single language
(the specification language) to design the software and to interact with it during the
execution. Our approach is applied within the ALIVE project[1], which is funded
by the EU under Framework 7. ALIVE’s objective is to enrich service-oriented ar-
chitectures with coordination and organisation mechanisms often seen in human
and other societies. The remainder of the paper is organised as follows: Section 2
presents the different metamodels and how runtime models are generated. Section
3 illustrates the approach with the ALIVE Crisis Management scenario. Section 4
compares our approach with related work and discusses the advantages of runtime
models. Finally Section 5 concludes.

2 From Specification to Runtime

Our approach uses the adaptation rules defined during the specification directly
when needed at runtime. For the purposes of this paper, we assume these adap-
tation rules have been proven during the specification of the application and are
understandable by the architect. We use the adaptation rules to generate runtime
models that will monitor the application and launch an adaptation when needed.
Only a subset of the information contained in the adaptation rules is required to
produce the runtime models. This subset is composed of the model elements that
need to be monitored to trigger the adaptation and those that need to be read to
perform the adaptation. An overview of the approach is presented in Figure 1. The
runtime models are generated from the specification models and the enabling con-
ditions of the adaptation rules. During execution, the runtime models monitor the
application’s code. When an adaptation is triggered, the adaptation rules and the
runtime models are used to provide a snapshot of the application containing only
the part involved in the targeted adaptation. The adaptation is then performed on
the specification models obtained from this snapshot. A new configuration of the
code is obtained from the new version of the specification models using the same
code generation techniques used in the initial generation of the software. In the next
section, we define a metamodel for runtime based on adaptation rules. An algorithm
is then presented to automatically generate the runtime models. Finally we explain
how the adaptation can be performed.

2.1 Adaptation Rules

Adaptations specify the appropriate reaction to changes that can occur at run-
time and that have an impact on the software. An adaptation rule is composed of a

4th Workshop on Models@run.time at MODELS 09 110

Initial
Specification
models

Adaptation rules

Runtime
Models

Execution

Condition

Effect

Adapted
Specification
models

Generate

Monitored by

Produce
Snapshot

Adapt

Fig. 1. Approach overview.

Fig. 2. Adaptation rules concepts.

condition and an effect. The condition contains the information triggering the adap-
tation: for example, an occurrence/absence of an event, a comparison of an object
with a value or a number of occurrences of an event. The effect explains how the
adaptation is performed and is written in the model transformation language used
to specify the adaptation. It explains how the adaptation is applied and which part
of the application is involved in the adaptation. Figure 2 presents the (simplified)
metamodel of the adaptation rules in our approach. The condition is a superset of
the possible conditions and can be extended by other types. The effect part only
contains the expressions, i.e. the elements of the specification models involved in the
adaptation. These elements will be manipulated and updated by the adaptation.

2.2 Runtime Models

Runtime models contain the information needed to support an adaptation when it
must be performed. They link the implementation, the specification models and the
adaptation rules. We have defined a generic metamodel to represent the different
relations between these three elements. The runtime models have the same objec-
tive as the condition part of the adaptation rules: triggering the adaptation. As
illustrated in Figure 3, the runtime metamodel has as base the metamodel of the
adaptation rules relating to the conditions and is extended with information about
the platform to monitor the software. The left part of the metamodel corresponds
to the enabling condition and the right part to the link with the platform. Each
adaptation rule has different triggers of the same type as the enabing condition and
so can be extended with other types of conditions. The class Element references
the elements of the specification model. For each element to be monitored, the cor-
responding implementation is obtained through an AccessPoint. The access point
provides the means to access the value of the element in the implementation, for
example, via a method to access the value or an exchange of messages. Only some
of the possible types of access points are presented is the metamodel, method and

4th Workshop on Models@run.time at MODELS 09 111

Fig. 3. Runtime metamodel.

message, but extensions can be easily made depending on the requirements of the
software.

The runtime metamodel is also used for the snapshot through the class snapshot.
The purpose of a snapshot model is to give an updated view of the software and
links elements of the specification to the platform. It contains only a set of elements
involved in the effect part of the adaptation corresponding to the right part of the
Figure 3: the Element and AccessPoint.

2.3 Generation of the Runtime Models

Our approach includes an automated process to apply the adaptation rules on the
specification models during the execution. The architect may also add new adap-
tation rules during the execution that will need to be incorporated in the runtime
model without human intervention. The runtime model is automatically generated
from the specification, the adaptation rules and the platform specifications. The
generation algorithm has two steps. The first step is to select the different classes
from the specification that are used by the adaptation rules. For each enabling
condition, the set of elements required for monitoring is identified. The trigger is
created using the enabling condition of each adaptation rules. The set of elements
is then reduced to avoid duplicate elements. This step is designed to ensure that
the runtime model contains only the elements required to support adaptation, and
is therefore smaller and more efficient to process than would be a runtime model of
the complete specification.

The second step is to identify the access point in the implementation. This step
will use information from the specification and platform specifications. The access
point is attached to the element in the runtime model and needs code to be generated
before it can access the implementation. As software modules do not have a single
implementation language, the different access points can be implemented in different
languages. The runtime model is updated with values obtained through the access
point during the monitoring process. The actual implementation of the runtime
model is done using Kermeta [2]. Kermeta offers calls to Java classes with interfaces
to other languages. For each access point, a Kermeta method is created with the
intermediate code in Java, if needed, to make the link with the implementation. This
access point can be regenerated at runtime if the access point is changing during
the execution.

4th Workshop on Models@run.time at MODELS 09 112

2.4 Adaptation at Runtime

Once the runtime model is generated, its monitoring capabilities are executed and
the runtime models are automatically updated. When an adaptation is triggered,
the specification models are updated with the actual values contained in the run-
time model and a snapshot is created. The process of creating the snapshot is based
on the same algorithm as the generation of the runtime models but where only the
current adaptation’s effect’s expressions are considered. Once the snapshot of all
useful information is created, the adaptation can be performed on the specification
models using the adaptation rules. Once the adaptation is performed, the new im-
plementation is generated using the same method as for the first generation of the
implementation.

The architect can also use the snapshot process to create a visualisation of the
actual execution. This visualisation may consider only a subset of the application
and some adaptation rules. The snapshot process is used in this case to support the
architect adding new adaptations that take account of the actual execution of the
software. A new runtime model is then generated to incorporate the new enabling
conditions of the added adaptation rules.

3 Evaluation: Crisis Management Case Study

In this section we show how runtime models are exploited in a use case from the
ALIVE project that describes a crisis management scenario defined by Thales[3]. We
first present a high-level summary of the specification used in ALIVE applications.
We then apply our approach on the example.

3.1 ALIVE’s Specification

Three metamodels describe the ALIVE layered architecture: organisation, coor-
dination and services. Each one has a different level of abstraction and its own
adaptation rules. Model transformations are defined from the metamodels and are
bi-directional between the different layers.

The organisation level provides context for the two other levels, supporting an
explicit representation of the organisational structure of the application. It presents
the roles involved in the organisation and their inter-relations. Each role has a set of
objectives for which it is responsible. The coordination level uses the organisation
level as a starting point, and provides coordination plans to achieve the objectives
of the organisation. As agents can play different roles in an organisation, the coor-
dination metamodel has also the concept of actors capturing the goals of an agent
playing a specific role. The coordination plans describes the interaction between the
actors. For example, a payment objective will be refined by cash, paper payment
or electronic payment. The service level supports the semantic description of ser-
vices and the selection of the most appropriate service for a given task. It connects
the executing environment and the two other levels, which are input to the service
level. It contains agents and the different services. The agents are connected to the
actors of the coordination. The services are refinements of the coordination actions,
for example, the electronic payments become different services from each bank that
offers an electronic payment.

The adaptation rules of the different levels are based on the occurrence of specific
events or properties. An adaptation is triggered if certain conditions are verified.
Properties from all three levels may trigger an adaptation to an ALIVE application.
Depending on the level where the adaptation trigger occurs, the adaptation will
have a different impact on the application. Adaptations affecting the service level

4th Workshop on Models@run.time at MODELS 09 113

will be performed without impacting the two others. An adaptation that impacts
the coordination level is also likely to impact the service level. An adaptation at the
organisation level is likely to impact all three levels. The same language is used by
the three levels to express the adaptations.

3.2 Initial Specification

The use case describes a system to handle emergency situations.The organisation
includes a police station, first-aid station, emergency centre and fire station. The
main objective of the fire station is to evacuate people. Other objectives of the
different roles are to identify the emergency location, to provide an ambulance
service and to regulate traffic. These objectives are delegated through the arrows
to the other roles as depicted on the top part of Figure 4. The coordination level
describes a plan to achieve the evacuation objective in different steps: selection of
the transport vehicle, provision of an itinerary to the accident location, collection of
injured people, provision of an itinerary to the hospital. This plan is a generic one
that can be used and refined by the service level. The middle part of the Figure 4
shows the coordination level.

Choice of
transport
vehicle

Itinerary to
accident
location

Loading
people

Itinerary to
closest
hospital

Emergency
Centre

FireStationFirst Aid
Station

Emergency location

Ambulance service Police StationRegulate Traffic

Ambulance Itinerary
softare Police Station Emergency

centre

Organisation level

Coordination level

Service level

Fig. 4. Initial specification of the crisis management scenario.

During an accident, the fire station makes decisions relating to the evacuation of
people. The evacuation plan is called at the service level. Specific services are used:
an ambulance, the emergency centre, itinerary software and the police station. The
bottom part of the Figure 4 shows the different services in play.

Adaptation rules are defined to handle common failures that can happen to this
type of application: traffic jams, engine failure, escalation of the danger level. For
example, a first adaptation may concern engine failure. Depending on the position
of the ambulance and on the level of risk for rescued people, different choices can
be made: ambulance change, people transfer or ambulance repair. This adaptation
concerns only the service level. A second adaptation may concern a failure relating
to difficulties encountered by the rescue personnel in achieving their objectives. The
ambulance has a problem and no other terrestrial vehicle, as needed by the plan,
is available. Alternative transport has to be considered, either by air or by sea and
a new plan has to be given to the service level. This adaptation concerns both
the coordination and the service levels. A last adaptation may be triggered when
the coordination level is unable to find a new plan when the ambulance fails. The
organisation level needs to adapt to the situation and may incorporate new roles.
In this case, private companies can be added, like private helicopters, to evacuate
people. While this adaptation will impact the three levels, some parts of each level
can be reused, like the abstract plan and different services.

4th Workshop on Models@run.time at MODELS 09 114

3.3 Runtime Models

The runtime model obtained from the specifications to support the second adap-
tation presented above is depicted on Figure 5. The enabling condition from the
adaptation has the occurrence of the message ambulance blocked and the occur-
rence of the properties no repairable and no terrestrial vehicule available. The trig-
ger is added to the runtime model. The next step in the creation of the runtime
model is to link with the implementation. For the purpose of the evaluation, we
are using the Thales simulation workbench to simulate the different services. For
each of the three elements, the corresponding access point is provided according to
the platform specification. The ambulance provides its status and position through
the methods Ambulance position and Ambulance status. The emergency centre pro-
vides the transports’ availability through Transport Availability. The methods are
implemented in Java and interact with the workbench.

Ambulance_position

RuleA2

AND

AND

Occurrence

Occurrence

Occurrence

Not_repairable

No_terrestrial

Ambulance_blocked

Ambulance_Status

Transport_Availability

Trigger

Trigger Element

Element

Element

Trigger

Trigger

Trigger

Method

Method

Method

Fig. 5. Runtime model.

Once the adaptation is triggered, a snapshot of the part of the application of
interest to the adaptation is made. The create plan aerial evecuation call needs
nothing at the coordination level as a new plan is created. Once the evacuation plan
is created, the status of different aerial transport is needed to select one available
to execute the plan. The snapshot contains two elements helicopter and their access
point. The specification models are updated using both the runtime model and the
snapshot model, and the adaptation is performed.

The new configuration is then produced from the adapted specification models as
shown on Figure 6. The plan is modified and the services helicopter1 and helicopter2
are added.

Choice of
transport
vehicle

Itinerary to
evacuation
point

Loading
people

Itinerary to
closest
hospital

Ambulance Itinerary
software Police Station Emergency

CentreHelicopter 1

Coordination level

Service level

Choice of
aerial

transport

Loading
people

Itinerary to
closest
hospital

X

Helicopter 2

Fig. 6. New specification.

4th Workshop on Models@run.time at MODELS 09 115

4 Discussion and Related Work

Discussion Our hypothesis related to the efficiency of this approach is based on
an assumption that only a subset of the application is subject to adaptation. The
approach generates a runtime model based on only those elements required to sup-
port adaptation, thereby reducing its size relative to the full application, making
it more efficient to work with. Given this, our approach is therefore well-suited for
applications where a big part of the specification is static (in other words, not ex-
pected to require adaptation over the execution of the application) and mainly used
to understand the objectives of the application. A good example of this is ALIVE’s
organisation level. The static part of ALIVE applications do not, therefore, require
permanent monitoring at runtime. In applications where adaptation rules cover a
bigger part of the specification, the runtime model will be a correspondingly bigger
proportion of the full specification, reducing the extent of the efficiencies. Further
experiments are needed to identify the maximum coverage percentage that will still
result in efficiency benefits in the monitoring process. The evaluation runtime model
contains 10 elements to monitor when the specification models contain 50 elements.
The snapshot models need an average of 10 elements to update.

A second potential limitation is the feasibility of performing the adaptation on
the models at runtime. If the application is centralised, different transformation
languages can be used but as modern applications are often distributed, including
ALIVE applications, the adaptation may also be distributed. Few transformation
languages focus on ensuring a light execution footprint, which may be problematic
in a distributed setting. The current version of our runtime models is implemented
using Kermeta but it requires at least a Java virtual machine. A more optimal
approach would be a transformation language than can be interfaced with multiple
implementation languages but without any constraints on the execution platform.

Related Work Many approaches adapt applications using a different formalism
than the specification. In such approaches, the adaptation module can be seen as a
runtime model because it has its own representation of the execution. However, the
gap between the specification and the execution requires a re-test of the adaptation
even though it has already been proven at the specification phase. For example,
Pickering et al [4] propose an approach to manage complex systems with runtime
models. The systems management is defined in specification models that are trans-
formed to runtime models in a specific infrastructure, IBM WebSphere and so are
expressed in a different language than the specification. Rainbow [5] provides an
adaptation framework based on an abstract architectural model to monitor runtime
properties to accommodate resource variability, system faults, etc. In our approach,
runtime model is built on dynamic parts of the specification models and not on an
abstract model to apply adaptations.

Other approaches are in a position to use the specification models at runtime
because of the specific platform they provide. For example, Fractal [6] monitors the
execution and performs the adaptation using the reflexivity of its own language.
The ALIVE approach uses standard languages, and therefore assumes different lan-
guages at the implementation level. The Diva [7] approach considers both design
and runtime phases of development. At design time, an application is modelled
using a base model (containing the common/core functionalities), a set of variant
models (capturing the adaptive application variability) and an adaptation model
(specifying which variants should be used according the rules and current context
of the executing system). At runtime, the models are processed by model composers
that produce the system’s configuration. The application is fully monitored and is
based on the reflexivity of the underlying language.

4th Workshop on Models@run.time at MODELS 09 116

5 Conclusion

In this paper, we presented an approach to using specification models to derive
efficient runtime models that support runtime adaptation. We defined a metamodel
for runtime models based on adaptation rules. Runtime models are automatically
generated from the specification. Adaptation is performed at runtime using the
specification models. The approach is designed to address two main objectives. This
first is to use the same formalism for adaptation both at design and runtime. This
reduces the potential for introduction of errors, by avoiding the transformation to
another formalism, and aids the architect’s understanding of the execution without
requiring him to learn additional languages. The second objective is to optimise the
efficiency of the runtime models. This is achieved as the runtime models monitor
only the parts of the application that are involved in adaptation. A snapshot is taken
of only those elements of interest to the adaptation. A full snapshot is available when
the architect wants to have an overview of the system or wants to introduce new
adaptation rules. The automation of the generation of runtime models supports
this addition of new adaptation rules. We illustrated an evaluation of the approach
through application on a case study.

References

1. ALIVE: Coordination, organisation and model driven approaches for dynamic, flexible,
robust software and services engineering, http://www.ist-alive.eu/

2. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented
meta-languages. In L. Briand, S.K., ed.: Proceedings of MODELS/UML’2005. Volume
3713 of LNCS., Montego Bay, Jamaica, Springer (October 2005) 264–278

3. Aldewereld, H., Dignum, F., Penserini, L., Dignum, V.: Norm dynamics in adaptive
organisations. In Boella, G., Pigozzi, G., Singh, M.P., Verhagen, H., eds.: NORMAS.
(2008) 1–15

4. Brian Pickering, Sylvain Robert, S.M., Mengusoglu, E.: Model-driven management
of complex systems. In: Proceedings of the 3rd International Workshop on Mod-
els@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

5. Huang, A.C., Garlan, D., Schmerl, B.: Rainbow: Architecture-based self-adaptation
with reusable infrastructure. In: ICAC ’04: Proceedings of the First International Con-
ference on Autonomic Computing, Washington, DC, USA, IEEE Computer Society
(2004) 276–277

6. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An open component
model and its support in java. In Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau,
K.C., eds.: CBSE. Volume 3054 of Lecture Notes in Computer Science., Springer (2004)
7–22

7. Fleurey, F., Delhen, V., Bencomo, N., Morin, B., Jezequel, J.M.: Modeling and val-
idating dynamic adaptation. In: Proceedings of the 3rd International Workshop on
Models@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

4th Workshop on Models@run.time at MODELS 09 117

	Workshop Committees
	Preface
	Content
	Incremental Model Synchronization for Efficient Run-time Monitoring
	Generating Synchronization Engines between Running Systems and their Model-Based Views
	Leveraging Models From Design-time to Runtime. A Live Demo.
	Evolving Models at Run Time to Address Functional and Non-Functional Adaptation Requirements
	On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems
	Models at Runtime: Service for Device Composition and Adaptation
	A Model-Driven Conﬁguration Management Systems for Advanced IT Service Management
	Design for an Adaptive Object-Model Framework: An Overview
	Management of Runtime Models and Meta-Models in the Meta-ORB Reflective Middleware Architecture
	Modeling Context and Dynamic Adaptations with Feature Models
	Statechart Interpretation on Resource Constrained Platforms: a Performance Analysis
	Using Specification Models for RunTime Adaptations

