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Abstract. Increasingly, applications need to dynamically self-reconfigure
as new environmental conditions arise at run time. In order to self-
reconfigure, an adaptive system must determine which target system
configuration will yield the desired behavior based on current execution
conditions. However, it may be impractical to evaluate all potential sys-
tem configurations in a reasonable time frame. This paper presents a
model-based approach that leverages evolutionary computation to au-
tomatically generate, at run time, target system models that balance
tradeoffs between functional and non-functional requirements in response
to run-time monitoring of environmental conditions. Specifically, this
approach generates graph-based representations of architectural models
for potential target system configurations. The current run-time system
models serve to constrain the degree of change and novelty in the newly
generated models. This approach is applied to the dynamic reconfigura-
tion of a set of remote data mirrors, where operational and reconfigura-
tion costs are minimized, while maximizing data reliability and network
performance.

Key words: dynamic reconfiguration, non-functional requirements, evo-
lutionary computation, run-time models.

1 Introduction

It is increasingly important for applications to dynamically adapt as require-
ments change and new environmental conditions arise [1]. In addition, it is im-
portant for adaptive systems to self-reconfigure with little or no human input
to help prevent costly downtimes while code is being modified. To address this
concern, IBM proposed autonomic computing where a system manages itself to
achieve a system administrator’s high-level goals through self-* properties such
as self-configuration and self-optimization [2]. To self-reconfigure, an adaptive
system must automatically determine which target system configuration will
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yield the desired behavior in response to current system and environmental con-
ditions, while also taking into consideration tradeoffs between functional and
non-functional requirements. It may be impractical, however, to evaluate all po-
tential target systems in a reasonable amount of time. This paper presents a
model-based approach that leverages evolutionary computation to generate, at
run time, target system models that balance tradeoffs between functional and
non-functional requirements in response to changing environmental conditions.

Self-adaptive systems comprise three key enabling technologies: monitor-
ing, decision-making, and reconfiguration. Monitoring enables an application
to be aware of its environment to detect conditions that warrant reconfigura-
tion. Decision-making analyzes monitoring information to determine how the
application should be reconfigured. Reconfiguration enables an application to
modify itself to fulfill its requirements. Many self-adaptive systems apply model-
based techniques to determine which target system configuration will yield the
desired system behavior in response to current environmental conditions [3–7].
While powerful, these approaches typically use scenarios identified at design time
to guide self-reconfigurations. Furthermore, as the complexity of adaptive logic
grows, maintaining the set of models and reconfiguration plans may become
unmanageable and potentially inconsistent. Recently, researchers have applied
evolutionary computation techniques to the design of self-adaptive systems [8–
10]. While these approaches enable developers to explore richer sets of behavioral
models that satisfy system requirements, they are only applicable at design time
due to the significant amount of time required to generate these models.

This paper presents Plato-MDE, an evolutionary computation-based approach
for generating target system models at run-time in response to changing re-
quirements and environmental conditions. Each target system model represents
a potential system configuration that may be reached through a sequence of
reconfiguration steps. Plato-MDE evaluates each generated target system model
to determine its suitability given current system conditions. In addition, Plato-
MDE leverages current system models to constrain the degree of change in the
generated target models. As a result, Plato-MDE enables an adaptive system to
implicitly control the complexity and novelty of the reconfiguration itself at run
time. Moreover, rather than prescribing explicit reconfiguration plans at design
time in anticipation of possible reconfiguration scenarios, developers need only
specify the relative importance of each functional and non-functional concern to
apply Plato-MDE.

Plato-MDE supports a model-based approach that leverages information from
run-time system models to optimize the generation of target system models.
In particular, Plato-MDE applies domain-independent evaluation functions to
compare the structure and configuration of each generated target system model
against a current architectural model of the executing system. The structural and
configuration differences identified from this analysis enable Plato-MDE to im-
plicitly constrain the novelty of generated target system models, and thus control
the complexity and cost of the reconfiguration itself. For example, to minimize
reconfiguration costs, Plato-MDE might focus on generating target system mod-



els that are structurally similar to the current system model, thereby reducing
the number of structural changes required to reconfigure the system. Plato-MDE
accomplishes these objectives at run-time by applying genetic algorithms [11] to
automatically balance tradeoffs in functional and non-functioanl requirements.
As a result, Plato-MDE evolves target system models at run-time, where better
solutions tend to eventually dominate the solution space.

We applied Plato-MDE to the dynamic reconfiguration of an overlay net-
work for diffusing data to a collection of remote data mirrors [12]. Specifically,
Plato-MDE was able to evolve target system models that not only maintained
connectivity across the network of remote data mirrors such that data could
be diffused to every node, but also minimized operational and reconfiguration
costs while maximizing data reliability and network performance. Furthermore,
Plato-MDE was able to leverage run-time system models to control the complex-
ity and novelty of the generated target system reconfigurations, thus implicitly
controlling reconfiguration costs at run time. The remainder of this paper is or-
ganized as follows. Section 2 overviews genetic algorithms. Section 3 overviews
Plato-MDE. In Section 4 we present a case study in which we apply Plato-MDE
and provide preliminary results. Section 5 compares Plato-MDE to other self-
adaptation approaches. Lastly, Section 6 summarizes our results and presents
future work.

2 Background: Genetic Algorithms

A genetic algorithm is a stochastic search-based technique for optimization prob-
lems that comprises a population of individuals, each encoding a candidate so-
lution in a chromosome representation [11]. Fitness functions are used in each
iteration of the algorithm to evaluate an individual’s encoded solution. This
fitness information enables a genetic algorithm to select a subset of promis-
ing individuals for further processing. Specifically, the operation of crossover is
used to exchange building blocks between two fit individuals, hopefully creating
offspring with higher fitness values than either parent. The crossover operator
loses genetic variation in a population throughout generations, possibly leading
to premature convergence and suboptimal solutions. In order to counter this ef-
fect, mutation re-introduces genetic variation by randomly changing parts of an
individual’s encoded solution according to specific mutation rates [11]. Gener-
ally, genetic algorithms are executed until the algorithm converges upon a single
solution or the alloted execution time is exceeded.

3 Plato-MDE

Plato-MDE is a genetic algorithm-based approach developed for generating target
system models at run time in response to changing environmental conditions,
while balancing tradeoffs between functional and non-functional requirements.
Plato-MDE extends Plato [13] with a model-based approach that focuses on
generating architectural models and properties of the connectors between the
components at run time. In contrast, Plato did not consider structural differences
between the current application’s architecture and the generated target system



reconfiguration models. This extension enables Plato-MDE to implicitly control
the cost of a reconfiguration at run time. As the data flow diagram (DFD) in
Figure 1 illustrates, several inputs and configurations must be supplied in order
to apply Plato-MDE to the decision-making process of a self-adaptive system.
At a high-level of abstraction, Plato-MDE accepts data from the monitoring
infrastructure and outputs a set of target system models that specify new suitable
reconfigurations. As an initialization step, developers must first configure Plato-
MDE for the application’s domain and specify how the quality of a target system
model should be evaluated. Next, we describe the use of Plato-MDE in detail.
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Fig. 1. Data Flow Diagram for Plato-MDE

Step 1. Initialize Genetic Algorithm. To apply Plato-MDE, a developer
must configure operational parameters that determine how the genetic algorithm
will execute as well as what will be used to assess the quality of the output it
produces. In particular, developers must specify parameters such as population
size, maximum number of generations, and mutation rates for Plato-MDE. The
population size reflects how many potentially different target system models are
being examined at any single point in time. Similarly, the number of generations
limit the amount of time that Plato-MDE may spend generating target system
models. Lastly, mutation rates indicate the degree of randomness that Plato-
MDE will apply to generate target system models. Experimentation is typically
required to discover suitable parameters for different application domains.

The first step in Plato-MDE, highlighted in Figure 1 as (1), creates a popula-
tion of random individuals. In Plato-MDE, each individual encodes a graph-based
model representation of the target application’s architecture. Specifically, the ap-
plication is abstracted to a set of components and their interconnections, both
annotated with sets of reconfigurable properties that describe their configura-
tions and state. For example, a property in a networked application may specify
whether a link is active or not and which communication protocol is currently



selected. This representation, similar to architectural models, is appropriate for
abstracting relevant details of the executing system [3, 5, 7].

Step 2. Evaluate Model Fitness. Fitness functions, akin to utility func-
tions, are used to map an individual’s encoded solution to a numerical value
proportional to its overall quality [11]. As Figure 1 illustrates in (2), Plato-MDE
applies fitness functions to assess the suitability of a particular target system
model based on current system conditions supplied by the application’s moni-
toring infrastructure. Plato-MDE applies domain-dependent fitness functions to
evaluate target system models from a domain-specific perspective, such as ap-
proximating the performance and reliability of a specific network based on a
protocol’s configuration. In addition, Plato-MDE applies domain-independent fit-
ness functions to evaluate target system models from structural and behavioral
perspectives. For instance, Plato-MDE can approximate reconfiguration costs
by identifying the structural and configurational changes between the current
system model and the generated target system reconfiguration. Therefore, to
minimize reconfiguration costs at run time, Plato-MDE could assign higher fit-
ness values to target system models whose structure and configuration are most
similar to the current system model.

Developers may also supply a weighting scheme that will be associated with
specific fitness functions to indicate the relative importance of different recon-
figuration priorities. Moreover, developers can also introduce high-level code to
rescale the weighting scheme of individual fitness functions if requirements are
likely to change while the application executes. Updating reconfiguration prior-
ities at run time enables Plato-MDE to generate different reconfiguration plans
that address changes in requirements.

Step 3. Selection. A selection strategy determines which individuals in
the population should be explored further in future generations. As step (3)
in Figure 1 illustrates, Plato-MDE applies a tournament selection strategy [11]
to determine which target system models to compare. Specifically, two target
system models are selected at random from the population and their relative
fitness value is compared. Whichever target system model has a higher fitness
value survives and moves onto the next generation. This selective pressure, sim-
ilar to natural selection in living organisms, drives Plato-MDE to concentrate its
search towards more promising target system models that are suitable for cur-
rent system conditions. Once the maximum number of generations are executed,
the most fit target system model is selected as the result.

Step 4. Crossover. The goal of the crossover operator is to construct new
solutions by recombining key building blocks from existing solutions in the cur-
rent population [11]. Similarly, as Figure 2 illustrates, Plato-MDE applies a cus-
tomized crossover operator that works on architectural models by exchanging
the key elements between two target system models, referred to as parents, to
produce two potentially new offspring target system models at run time. Specif-
ically, the Plato-MDE crossover operator generates two new target system mod-
els by randomly exchanging the components, interconnections, and properties of
both parents and recombining them into offspring individuals. As a result, the



crossover operator enables Plato-MDE to combine elements of good solutions to
form even better solutions.
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Fig. 2. Crossover and Mutation operators in Plato-MDE

Step 5. Mutation. The goal of the mutation operator is to introduce vari-
ation into the population and prevent premature convergence [11]. As Figure 1
shows in step (5), Plato-MDE applies a custom mutation operator to randomly
change properties of components and interconnections in an architectural model.
Specifically, the mutation operator accepts an architectural model as input and
randomly reassigns component and interconnection properties. For example, Fig-
ure 2(b) shows how a previously nonexistent interconnection has been created
between two components (dashed line) in the architectural model. As a result,
the mutation operator enables Plato-MDE to explore additional target system
models at run time that cannot be generated solely through the crossover oper-
ator.

4 Case Study

This section presents a case study where we use Plato-MDE within a simulated
industrial application whose primary objective is to diffuse data to a set of 25
remote data mirrors [12] across dynamic and unreliable networks. In this appli-
cation, Plato-MDE generates target system models of an overlay network used
to diffuse data to every remote data mirror. In contrast to previous experi-
ments [13], this case study leverages run-time system models to constrain the
degree of change involved in a particular reconfiguration. Note that the experi-
ment presented in this section was executed on a MacBook Pro with a 2.53GHz
Intel Core 2 Duo Processor and 4GB of RAM. In addition, we performed 30 trials
of the experiment, for statistical purposes, and present the averaged results.

4.1 Remote Data Mirroring
Remote data mirroring is a technique for duplicating and storing data at one or
more secondary sites to physically isolate copies from failures that may affect
the primary copy [12]. A key benefit of remote data mirroring is that important



data continues to be accessible even if one copy is lost or becomes unreachable.
Designing and deploying remote data mirror solutions, however, is a complex
task due to the competing objectives of maximizing performance while minimiz-
ing operational costs and data loss potential [12]. For instance, each network
link used to propagate data incurs an operational cost and is characterized by
measurable throughput, latency, and loss rates. Moreover, each network link dis-
tributes data in one of two propagation modes. In synchronous propagation the
secondary site receives and applies each write before the write completes at the
primary site [12]. In asynchronous propagation, updates are batched and peri-
odically distributed to secondary sites. While synchronous propagation provides
better data reliability than asynchronous propagation, it tends to consume large
amounts of network bandwidth in the process. In contrast, asynchronous prop-
agation fails to provide the same level of reliability as synchronous propagation,
but tends to achieve better network performance.

In this case study we apply Plato-MDE to dynamically reconfigure a set of
25 remote data mirrors diffusing data across a dynamic and unreliable network.
In particular, Plato-MDE must maintain connectivity across the network of re-
mote data mirrors while minimizing operational and reconfiguration costs, and
maximizing data reliability and network performance.

4.2 Applying Plato-MDE to Remote Data Mirroring
In Plato-MDE, every individual in the population encodes an architectural model
that specifies potential reconfigured target systems. For this case study, each
component in the encoded architectural models represents a remote data mirror
capable of producing data at a specific rate. Similarly, every interconnection
in the encoded architectural models represents an overlay network link capable
of propagating data between remote data mirrors. Therefore, in addition to
specifying whether each connection is active or inactive, each connection is also
associated with one of seven possible propagation methods [13]. It is important
to note that with n overlay network links and m propagation methods, over
2

n(n−1)
2 ∗mn potential configurations exist. Thus, with a complete overlay network

of 25 remote data mirrors, approximately 7300 ∗ 2300 potential target system
models exist, far too many configurations to exhaustively evaluate in a reasonable
amount of time.

Plato-MDE extracts data from the application’s monitoring infrastructure to
maintain an architectural model of the executing system. Many different met-
rics can be gathered, however, for this case study, the monitoring infrastructure
measures the throughput, latency, bandwidth, and data loss rates of each overlay
network link that can be used to propagate data between remote data mirrors.
Plato-MDE leverages this current system model to evaluate each generated target
system model and approximate the effects of different network configurations.
To this end, we applied a set of domain-dependent fitness functions to evaluate
network configurations in terms of operational costs, network performance, and
data reliability. Plato-MDE also applied simple model checks to ensure gener-
ated system models did not violate either budget or connectivity constraints.
In addition, domain-independent fitness functions compute the degree of change



between pairs of architectural models by identifying the structural and con-
figurational changes between them, enabling Plato-MDE to implicitly control
reconfiguration costs.

4.3 Experimental Results
The goal for the initial overlay network design was to minimize operational
costs, possibly at the expense of incurring poor network performance and data
reliability. To generate this type of network, we supplied Plato-MDE with a
vector of reconfiguration priorities where all coefficients were set to zero except
for cost. As Figure 3(a) illustrates, Plato-MDE produced a spanning tree overlay
network where every node is connected but no link redundancy is provided. This
overlay network design minimizes operational costs by activating the minimum
number of network links required to maintain connectivity and enable remote
data mirrors to diffuse data. However, this overlay network design does not
provide much data reliability. In particular, a single link failure in the overlay
network would disconnect the set of remote data mirrors and data may be lost.
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Fig. 3. Source and Target Network Design Models.

Next, we randomly selected an active link propagating data in the initial
overlay network and set its operational status to faulty. This network link state
corresponds to a link failure, thereby disconnecting the network of remote data
mirrors and prompting Plato-MDE to reconfigure the overlay network. While
Plato-MDE could have been invoked with the same vector of reconfiguration
priorities to generate another overlay network design that re-establishes connec-
tivity across the set of remote data mirrors while minimizing operational costs,
the reconfiguration priorities were rescaled in an attempt to prevent future link
failures from disconnecting the set of remote data mirrors. Specifically, the new
vector of reconfiguration priorities changed the importance of minimizing opera-
tional costs to 12%, maximizing network performance to 12%, maximizing data
reliability to 38%, and target model similarity to 38%. With this new vector of
reconfiguration priorities, Plato-MDE produced target system models that reused
the underlying network structure while adding redundant links and setting most
propagation methods to synchronous mode.



Figure 3(b) shows an example overlay network design produced by Plato-
MDE to re-establish connectivity within the set of remote data mirrors. This
target system model satisfies the two primary design concerns specified in the
vector of reconfiguration priorities: increased data reliability and reduced recon-
figuration overhead. By increasing the importance of data reliability, Plato-MDE
generated overlay networks with redundant links and set most propagation meth-
ods in the overlay network links to synchronous mode. Figure 3 also illustrates
how the target overlay network reuses a significant portion of the underlying
initial network. While Plato [13] would generate target system models without
taking into account the complexity or cost of the reconfiguration, Plato-MDE
preserved most of the initial network’s structure to implicitly reduce the cost of
reconfiguration at run time. Plato-MDE took approximately 30 seconds or less to
begin converging upon suitable target system reconfigurations, which is within
the acceptable time frame for remote data mirroring.

5 Related Work
Several approaches for enabling self-adaptive behavior leverage architectural
models at run time to evaluate system conditions and select the most suitable re-
configuration in response to current environmental conditions. For instance, the
C2 framework [7] applies software architectural models to plan, coordinate, and
implement reconfigurations at run time. In addition, both the Performance Man-
agement Framework (PMF) [5] and the Rainbow Adaptation Framework [3, 4]
instantiate architectural models with run-time monitoring information to deter-
mine when and how to reconfigure a system. While Plato-MDE adopts a similar
approach for determining how the application should be reconfigured, several
key differences exist. For instance, Plato-MDE is capable of generating any tar-
get system model reachable through a series of reconfiguration steps. In contrast,
C2 [7] relies on a repository of pre-generated target models, and PMF [5] and
Rainbow [3, 4] generate new target models through predetermined combinations
of their reconfiguration steps. Furthermore, C2 [7], PMF [5], and Rainbow [3, 4]
encode their reconfiguration priorities at design time. Plato-MDE, on the other
hand, can update reconfiguration preferences at run time to address changes in
requirements and environmental conditions. Lastly, while PMF [5] and Rain-
bow [3, 4] evaluate the utility of target reconfigurations to predict their impact
upon the system, Plato-MDE also leverages this utility information to guide the
search towards more promising target system models.

6 Conclusions
We have presented Plato-MDE, a model-based approach that leverages evolu-
tionary computation to generate, at run time, target system models that balance
tradeoffs between functional and non-functional requirements in response to cur-
rent system conditions. Plato-MDE extends Plato [13] with domain-independent
model-based fitness functions that analyze the structural differences between
current and target system models to implicitly control reconfiguration costs at
run time. We have successfully applied Plato-MDE to the dynamic reconfigu-
ration of a set of remote data mirrors, where generated target system models



enable data diffusion among remote data mirrors by maintaining network con-
nectivity while minimizing costs and maximizing network performance and data
reliability. Future directions for this work include exploring how to decentralize
the architecture of Plato-MDE to reduce potential performance bottlenecks.
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