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Abstract The statechart formalism allows for the specification of beha-
viour models of complex, reactive systems. It is employed in the embed-
ded systems domain to specify and verify applications at design time.
By enabling the interpretation of formalised behaviour models one earns
the favourable abilities of application behaviour inspection, control, and
substitution at runtime. One of the major arguments against such an
approach concerns poor interpretation performance and high-resource
overhead. We are answering this argument by showing that it is feasible
to implement a statechart interpreter on a resource-limited platform. We
define the utilised statechart formalism and use it as a base for imple-
menting a resource-efficient interpreter on a 8bit microcontroller with 2
kByte RAM. Performance overhead of key aspects of the interpretation
engine is evaluated using suitable behaviour models and by comparison
with compiled code.
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1 Introduction

Professionals are modelling reactive systems using statecharts for the purpose of
system analysis and quality assurance at system design time. Recently there is an
interest in using such formalised behaviour models to control and describe sys-
tem behaviour at runtime. For runtime evolution of software and communication
protocols such an approach has potential advantages over the direct generation
of system code. Take for example the dynamic re-configuration of embedded
systems without a firmware ”flashing” procedure or shutdown, the possibility to
trace a system state with only minimal performance overhead, or the application
of formal validation methods at runtime to assure that the system is in a valid
state. Although these properties are of interest for researchers and practitioners
� The authors would like to acknowledge the European Commission for funding the
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Networks and Services” within the 7th IST Framework Program.



in the autonomic communication and networking field, the resource usage of the
interpretation mechanisms is critisised. We often heard the argument that the
performance overhead renders the approach unsuitable for resource-constrained
platforms. Contrary to this, we believe that such an approach is feasible even for
embedded hardware platforms. As we found no hard numbers on interpretation
performance, we decided to conduct a study on the performance of a statechart
interpreter on a resource-constrained platform. Our challenge is two-fold: Firstly,
we created a proof-of-concept implementation of such an interpreter. Secondly,
we quantified the performance, enabling us to give a well-grounded answer to
the performance argument.
The paper is structured as follows. We describe related work in section 2, and
give a formal definition of statecharts in section 3. In section 4 we detail the map-
ping of our definition to a runtime mechanism. Subsequently, section 5 describes
the performance characteristics obtained by measuring the implementation. We
conclude with a discussion of our findings in section 6.

2 Related Work

Statecharts were invented more than 20 years ago by D. Harel [1] and are in wide-
spread use as part of UML2 state diagrams. An example for a statechart-based
behaviour model of a simplified car door and passenger room light is depicted
in Figure 1.

Lights and Door

OnOff

open / 
switch_lights_on()

Waiting 

open / 
clear_timer(1)

close 
/ set_timer(1, 5s)

timer1_up /
switch_lights_off()

Open

Closed
Locked

door_closed
! close

Unlocked

lock 
[key = true]

unlock 
[key = true]

door_open
! open

Figure 1. Example behaviour model “Lights & Door”

Employing statecharts for model checking and code generation is common
practice [2,3] and the efficient interpretation of statecharts has also been re-
searched by J. Ebert from a theoretical point of view [4]. First practical usage of
interpreters for similar formalisms emerged in the last years out of the business
process field [5]. An execution standard for statecharts is specified by the W3C
under the name “State Chart XML”[6] with two implementations3 available.

3 A Java version from the Apache Software Foundation (http://commons.apache.
org/scxml) and a C++ engine from QT Labs (http://qt.gitorious.org/qt-labs/
scxml)



In our current work we use statecharts for network and system management
[7] with the goal of equipping network routers with the ability to make autonomic
decisions on an incoming packet stream by interpreting behaviour models [8]. We
also have prior experience with optimisation of Extended Finite State Machines
(EFSM) based automatons for analysing large XML data streams [9] and some of
the optimisations that we are employing were discovered during previous work.

3 Formal Definition of Statecharts

Our formalism follows the definition specified in the annex of the original re-
search paper [1]. We left out the “History Connector” definition, but apart from
that we have a full-fledged statechart, including aggregate states and parallel
components.

We define a higraph as a structure H = �S, E, s0, θ, σ�, where S is a finite set
of symbolic states, E ⊆ S×S is a set of edges, σ : S → 22S

is a substate function,
and s0 ∈ S is a root state. We call each set of states Q ∈ σ(s) a component of
s. Distinguished components Q1, Q2 ∈ σ(s) are called parallel to each other. A
state s ∈ S is called atomic if σ(s) = ∅ does hold, otherwise it is called composed.
Moreover θ : Θ → S assigns a unique start state to each component of H, where
Θ =def

�
s∈S σ(s) is the set of components of H. We assume that θ(Q) ∈ Q for

each Q ∈ Θ, i. e., the initial state of a component is a member of that component.
We stipulate a number of restrictions; to this end, let us define σ

+(s) to be
the smallest set (w. r. t. ⊆) of symbolic states satisfying

�
Q∈σ(s) Q ⊆ σ

+(s) and
s
� ∈ σ

+(s) ⇒
�

Q∈σ(s�) Q ⊆ σ
+(s).

Then we assume that:

1. Q ∈ σ(s) ⇒ Q �= ∅, i. e., substates of s are non-empty sets (note that this
does not imply that σ(s) = ∅, i. e., we allow atomic states).

2. σ is non-cyclic, i. e., s /∈ σ
+(s) for all s ∈ S.

3. The sets in σ(s) are pairwise disjoint, i. e., Q1, Q2 ∈ σ(s) ∧Q1 ∩Q1 �= ∅ ⇒
Q1 = Q2, for all s ∈ S such that Q1, Q2 ∈ σ(s);

4. that the whole higraph has a tree-like structure, i.e., σ
∗(s1)∩ σ

∗(s1) �= ∅ ⇒
s1 ∈ σ

∗(s2) ∨ s2 ∈ σ
∗(s1).

5. Finally, for the root state s0 we assume that σ
∗(s0) = S, and s0 is the only

state with this property.

For the sake of notational simplicity we moreover define σ
−1(s) =def s

� whenever
s ∈ σ(s�) (note that the expression σ

−1(s) is undefined for s = s0).
Next, we define a statechart as a structure C = �H,V,D, I, ι, ω, γ, α�, such

that H = �S, E, s0, θ, σ�, is a higraph called the skeleton of C. V is a finite set
of variables, D is a set of data, I is a set of events including the empty event
�, ι, ω : E → I are mappings assigning a triggering event ι(e) and an output
event ω(e) to each edge of H, respectively. Moreover γ : E → (V D → {0, 1})
assigns a predicate to each edge of H. Here, V

D denotes the set of total mappings
from V to D, i. e. all assignments of values from D to variables from V . Finally



α : E → (V D → V
D) defines the effect of executing an edge e ∈ E to an

assignment ρ ∈ V
D.

A statechart describes a set of concurrent processes, where parallel processes
are syntactically distinguished as substates Q ∈ σ(s) of some high-level state
s ∈ S. Hence we first need to define what a run-time state of statechart is. An
aggregated state of a statechart C is a minimum (w. r. t. set inclusion) set R ⊆ S

such that
1. s ∈ R & s �= s0 ⇒ σ

−1(s) ∈ R, i. e., if a state s is a member of an
aggregated state, then its corresponding high-level state σ

−1(s) is also;
2. s ∈ R ∧ σ(s) �= ∅ ⇒ (∀Q ∈ σ(s))|R ∩ Q| = 1, i. e., if s is a member of R,

then R contains exactly one state from each component of s.

Note that by definition we have s0 ∈ R for each aggregated state R. Moreover,
there is a uniquely defined initial aggregated state for each statechart C, namely
the aggregated state R0 with θ(Q) ∈ R0 for all s ∈ R0 and Q ∈ σ(s).

In order to fully describe the run-time behaviour of a statechart, we further
need to take into account its current variable vector. Hence, run-time states are
tuples of the form �R, ρ�, where R is an aggregated state and ρ ∈ V

D is a variable
assignment. Let us denote the set of run-time states of C by Σ.

Now we are ready to define the behaviour of a statecharts in terms of trans-
itions leading from one run-time state to another. To this end, we define a partial
transition relation a,b−−→ ⊆ Σ ×Σ for each pair of events a, b ∈ I:

�R1, ρ1�
a,b−−→ �R2, ρ2�

⇔def (∃e = �s1, s2� ∈ E)
�
s1 ∈ R1 ∧ s2 ∈ R2

∧ ι(e) = a ∧ ω(e) = b ∧ γ(e)(ρ1) = 1 ∧ α(e)(ρ1) = ρ2

∧ (∀s ∈ R2 \ R1)(∀Q ∈ σ(s))
�
Q ∩R1 = ∅ ⇒ θ(Q) ∈ R2

��

This means, a transition from a run-time state �R1, ρ1� to another run-time
�R2, ρ2� if R1 and R2 contain symbolic states s1 and s2, respectively, connected
by an edge e = �e1, e2� labelled with the input event a and the output event
b. Moreover, the predicate γ(e) applied to ρ1 yields true, and ρ2 is the result
of applying the α(e) to ρ1. Finally, the last line in the formula above ensures
that if a component Q is newly introduced into R2 by the transition, then R2

contains its start state. Using these definitions we can now discuss the statechart
interpreter implementation.

4 Mapping of the Formalism to a Runtime Mechanism

We implemented the interpreter using the C programming language on an Ardu-
ino Duemilanove test board with a 16MHz ATmega328P microcontroller. There
are 32 KByte Flash and 1 KByte EEPROM non-volatile memory available, as
well as 2 KByte of volatile SRAM. We are using the most simple mapping that
still allows to show a working approach. Introduction of more complex features
would greatly improve the usability of the devised mechanism, but add nothing
substantial in terms of evaluating the runtime performance overhead.



4.1 The Behaviour Model

We abstained from defining a syntax for behaviour models and work directly with
an Abstract Syntax Tree (AST) in-memory representation, which we suppose
can be generated from any suitable representation format (e.g., UML2 state
diagrams, or SCXML). For each model the complete AST data is allocated as a
single chunk of memory and the AST structure is constructed with single-byte
references to this data. Prior to interpretation, an additional executor structure
is allocated that holds input and output event queues, as well as data structures
for processing parallel components, and a reference to s0 as the initial starting
point for execution.

4.2 States and Data Space

We restrict S to contain up to 256 symbols encoded by the numbers 0..255. Each
state is represented by a data structure containing fields that allow to bidirec-
tionally navigate the substate tree spanned by σ. For performance reasons we
separate the state data structure into a substate set, a set of parallel components,
and an additional reference to a superstate. Additionally, the structure contains
a set of references to outgoing edges and a so-called flag byte used to indicate
state properties, e.g., θ is implemented as a single bit in the flag byte. Sets are
generally implemented as byte arrays with an additional field that holds set size.
For aggregated states, and states containing parallel components, it is necessary
to evaluate θ to identify the start state of contained component(s), and to ad-
ditionally create data structures that allow for pseudo-concurrent processing of
parallel components.

The variables V are limited to a maximum of 246 read- and writeable entries
per behaviour model and 10 additional global entries shared between all execut-
ing models. Variables are referenced by the numerical values 0..255, where the
values 0..9 refer to global values and 10..255 refer to local ones. The data set D

is limited to 8 bit integer numbers. There is no type system. When data values
are evaluated within boolean expressions, we follow C conventions for assigning
logical values: 0 corresponds to a logical “false”, other values are “true”.

4.3 Edges and Event Processing

E is implemented as a set of data structures, which contain a reference to a
destination state, the triggering event assignment ι, and the output event as-
signment ω. There can be a maximum of 256 edges. Events are numbered from
0..255 and identified by their numerical value – 0 is the special “empty” event
symbol ε. The edge structure also contains references to a guard condition predic-
ate γ and an action mapping α. Due to parallel processing of edges it is possible
for multiple events to be received during a single step of a model. Events are
buffered for input and output in ring-buffers, limited to 10 elements.
The guard condition predicates γ need to be evaluated to decide if an edge should



be traversed (hence the name “guard condition”). They are specified within the
model AST and can be constructed from variable or constant references (nota-
tionally depicted using a $ sign), boolean operators (!, ∧, ∨), and comparison
operators (=, <, >, ≤, ≥). Evaluation precedence is implicitly given through
the AST hierarchy.
The action bindings α are implemented as code that is statically bound to the
runtime mechanism before the interpretation of a behaviour model commences.
An action binding is a conventional function call with an arbitrary number of
input and output parameters, and represents fixed capabilities of a device that
are orchestrated using statechart logic. It is implemented by a structure holding
a function pointer plus an ordered set of variable references. Parameters need to
be de-referenced inside of the action function and can be used to read or write
the variable value. A specific set of actions considers timers. We created three
timers that can be set with a delay value using set timer(id,delay ) to deliver
the specific events 8..10 once the delay time passes. Timers can be cleared using
clear timer(id ) which suppresses dispatching of the timer event.
Explaining the processing algorithm goes beyond the scope of this paper. For an
understanding of the intricacies refer to the paper by J. Ebert [4]. In a nutshell:
For each input event all active components in a statechart are evaluated for
triggered edges. If a triggered edge has a matching guard condition, the assigned
action is executed and an output event send. The state(s) are then changed and
another evaluation iteration is run with the next input event. These steps are
repeated until all active components reach end states. It is worth mentioning
that all ε edges are traversed before the next input event is taken from the input
queue. Also, specific handling functionality needs to be executed on entering and
exiting parallel states to maintain data structures for active components.

5 Performance Analysis

We found that the experimental platform has sufficient resources for the state-
chart interpreter code, which uses less than 8 KBytes of Flash memory. In this
section we describe the evaluation results using the experimental platform.
Latency measurements have been conducted using in-line timestamps, the slight
delay that has been introduced by this is negligible for the overall result. The em-
ployed timestamping mechanism has an accuracy of approx. 4 µs. Stack memory
measurements were conducted by dumping the stack pointer during runtime.
Performance of these routines is uncritical as such experiments only measured
memory consumption, not latency.

5.1 Memory Overhead

To analyse stack performance, we exercised the behaviour model shown in Fig.
1. We used the following sequence to measure the normalised4 stack alloca-
tion as shown in Fig. 2: key ← false, door open, door close, lock, door open,
4 Showing only the additional bytes consumed during interpretation of the model



door close, key ← true, lock, door open, key ← false, unlock, door open,
key ← true, unlock, door open, door close, wait for the lights to turn off. The
interpreter executes a single step method to iteratively advance the statechart.
This method uses 25 bytes stack when processing input events and 23 bytes
when processing ε events. Peaks in the stack usage are due to evaluation of the
key guard conditions on the edges between the Locked and Unlocked states.
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Figure 2. Stack usage during interpretation of Light & Door model

5.2 Conditional Expression Evaluation

The expression evaluator is implemented as a tree walker that recursively tra-
verses a binary tree of statement tokens (variables, constants, and operators).
We used three expressions to measure performance “$0 < 15” (interpreted in 24
µs), “($0 < 15) ∧ ($1 = $2)” (56 µs), and “(($0 < 15) ∧ ($1 = $2)) ∧ ((30 >

$4) ∨ ($3 = $5))” (116 µs). This approach has a remarkable performance over-
head: A hard-coded C version of any of these expressions executes in less than
4 µs. As seen in Fig. 2 the evaluation of conditional expressions is depicted as
peaks in the stack usage. By sampling stack size during evaluation we found that
the expression evaluator uses an additional 11 bytes per recursive iteration, e.g.,
Expression C uses a total of 44 bytes stack memory during evaluation.

5.3 Simple Edge Matching

We are measuring the time that our implementation needs to react with a single
output event to a single input event using the traversal of a single edge. There
can be more than one outgoing edge assigned to a single state, so we are also
interested in the latency of the interpreter when processing multiple edges. We
are using 30 behaviour models with an increasing number of edges for a single
state. Each edge is triggered by a specific event 1..30 and sends a correspond-
ing output event 101..130. Each model is then supplied with exactly one event,
activating the edge that is triggered by the highest event. This is done to force
the interpreter into exhibiting worst-case behaviour (it checks each edge before
finding the edge that matches). The results, along with an illustration of the
experimental models, can be seen in Fig. 3. To put the measurements into per-
spective, we also added the time that a conventional “switch” statement needs
to deliver the same result.



300 5 10 15 20 25

200

0

40

80

120

160

Number of Transitions For a Single State

D
e
la

y
 [
!
s
]

Interpreter

"switch" statement

Test

e
1
 

! e101 e
2
 ! e102

e
n
 ! e100 + n

...

Experimental Models

Figure 3. Delay of edge matching processes

The latency for a simple edge transition is approx. 64 µs, which includes event
processing, timer handling, edge selection, and edge execution. It is approxim-
ately a factor 10 slower than a conventional switch statement which executes at
around 6 µs. Latency increases linearly with approx. 3 µs for each edge up to
152 µs for 30 edges. The “switch” statement has a constant delay independent
of the given event. The reason for the linear increase is the need to check each
of the edges for a possible match.
The usage of dynamic action bindings instead of static function calls also has an
impact on the latency of action execution due to the way parameters are passed
to function code. We created models that trigger an action using a single edge
from a single state and altered the number of parameters (0..10) passed to the
action. The additional delay introduced amounts to an average of approx. 3 µs

per additional parameter. For conventional function calls we believe that an ad-
ditional delay exists as well, but we found that the measured latency differences
are within the precision range of the employed timing mechanism for the number
of arguments studied (delay differs < 4 µs).

5.4 Processing of Aggregates and Parallel Components

The two major features that differentiate statecharts from EFSM are aggrega-
tion and the ability to specify parallel components. To measure performance of
aggregation handling we used a series of models with an increasing number of
nested states (from a single state to an aggregate with a nesting depth of 30)
where the most deeply nested state had an edge that matched on a given input
event. The parallel component processing was analysed using 30 models which
contained a superstate with an increasing number of parallel components, each
triggering on the same input event. The results are displayed along with the
experimental models in Fig. 4. We found it necessary to differentiate between
the first input event and subsequent events5 processed in the same state. This is
due to additional functionality executed when entering an aggregated state or a
state that contains parallel components. Fig. 4(A) shows an average delay of 12.5

5 in the diagram labelled as 2nd event, representative for all subsequent events



µs per additional nested state for an event that triggers entering the aggregate.
Once the aggregate has been entered, the delay for processing subsequent events
is independent of the nesting level. This is different for parallel components, as
shown in Fig. 4(B). Entering a state with parallel components has an average
latency of approx. 52 µs per parallel component. There is an average overhead
of approx. 26 µs per active component for each subsequent event. To compare
the latency overhead with conventional constructs, we also show the delay of a
“for-loop” sequentially processing the input event. In this case, the overhead is
at approx. 2 µs per additional iteration.
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6 Conclusion

The results confirm our initial assumption: It is possible to implement a state-
chart interpreter on a severely resource-constrained platform. We had no prob-
lem fitting the interpreter into non-volatile memory, though the available heap
memory establishes clear constraints on the complexity of the behaviour mod-
els. Heap memory was large enough to hold any of the experimental models we
applied for performance assessment, but we found that models with about 100
states are the limit. Stack memory is unlikely to be exhausted: Models would
need to use a very deep conditional expression token tree.
On the performance side, we found that the interpreter clearly adds a processing
overhead. In the best case execution latency is about a factor 10 longer than with
compiled code. Performance depends largely on the structure of the interpreted



models, main factors are: the number of edges leaving a state, the nesting depth
for aggregates, the number of parallel components, and the usage of guard condi-
tions. Also, the ratio between the time the interpreter spends in action functions
and the time spent in statechart interpretation plays an important role: If action
functions are sufficiently complex, the overhead caused by the statechart engine
is much smaller. On the other hand, if system behaviour is completely modelled
using a statechart, the interpretation overhead becomes very large.

The interpreter performance can still be improved, mainly by using a better
expression evaluator, but also by optimisation of the edge evaluation code (e.g.,
grouping triggering events, combining guard conditions). Even with ingenious
optimisations, some overhead cannot be purged: In the worst case, any statechart
interpreter needs to evaluate all outgoing edges for a single state, including the
outgoing edges of parent states, and there will always be an overhead for event
processing and handling aggregates, as well as parallel components. Therefore
we conclude that our approach is adequate for reactive systems, which are idle
most of the time. It does not seem to be suitable for systems that need the
fastest possible reaction time due to the introduced interpretation delay, which
can easily amount to 1 ms. Such a value is unacceptable for most real-time
applications. Regarding high-throughput systems, successful applications should
be possible but will depend on the underlying platform performance and the
utilised behaviour model complexity.
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