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Abstract. The key point to leverage model-based techniques on runtime
system management is to ensure the correct synchronization between the
running system and its model-based view. In this paper, we present a
generative approach, and the supporting tool, to make systematic the
development of synchronization engines between running systems and
models. We require developers to specify “what kinds of elements to
manage” as a MOF meta-model and “how to manipulate those elements
using the system’s management API” as a so-called access model. From
these two specifications, our SM@RT tool automatically generates the
synchronization engine to reflect the running system as a MOF-compliant
model. We have applied this approach on several practical systems, in-
cluding the JOnAS JEE server.

1 Introduction

The increasing need of continuously available systems (IT systems, e-business,
or critical systems) requires to perform management activities such as configu-
ration, evolution or corrective maintenance at runtime.

Management activities (automated or not) are build on a loop [1]: monitoring
the running system, analyzing the collected data, planning the needed reconfig-
urations, and executing those reconfigurations. For monitoring and executing,
existing platforms such as JEE [2], Fractal[3], and Android [4] provide adequate
facilities through devoted APIs, such as the JMX API [5] for JEE systems. For
analysis and planning, researchers proposed many generic approaches, utilizing
model-based techniques like architecture styles [6, 7], model checking [1], model-
based self-repair [8], or model-based artificial intelligence [9], etc.

The key-point to leverage model-based analysis and planning at runtime is
to obtain a model-based view of a running system and to ensure the proper
synchronization between the system and its model-based view.

However, despite their importance, such synchronization engines are still
hand-crafted in a tedious and error-prone manner. Existing approaches [7, 10, 8,
11] include hand-written synchronization engines. To do so, developers have to
care about how to maintain a model, how to manipulate the system through the



management API, and how to propagate the changes between them to ensure
their consistency. All these functionalities have to be considered simultaneously.

The contribution of this paper is to make systematic the development of
such synchronization engines between models and running systems. Our ap-
proach reflects a simple model-driven process: For a specific system, we require
the developers to specify what elements can be managed, and how to manip-
ulate them through the management API. From these two specifications, our
approach automatically generates a synchronization engine that maintains a dy-
namic MOF-compliant model for the running system. This model enables the
standard model-based techniques (like OCL and QVT) to be used for runtime
management. We implement this approach as a tool named SM@RT 4, and apply
it on several practical systems.

The rest of this paper is organized as follows. Section 2 illustrates the diffi-
culty for developing a synchronization engine by hand whereas Section 3 presents
an overview of our generation process. Section 4 and Section 5 explain how de-
velopers specify the system and how to generate the synchronization engine.
Section 6 describes and discusses our case studies. Finally, Section 7 presents
some related approaches and Section 8 concludes the paper.

2 Motivating Example

This section illustrates the complexity of developing a synchronization engine
(SE) between a running systems and its model view.

We choose the JOnAS [12] JEE application server as a running example. A
JOnAS server contains a lot of manageable elements such as EJBs, data sources
(proxies to databases), etc. Each data source maintains a pool of connections
to the underlying database. If the number of cached connections tends to reach
the capacity of the connection pool, the database access may be delayed and the
pool capacity must be enlarged. In the same manner, if the number of cached
connections is always zero, the data source can be removed to release resources.

JOnAS provides a low-level interface (the JMX [5] management API) for
the monitor and execution of manageable elements. But complex analysis and
planning must still be performed by hand or by using external tools. Model-
driven techniques and tools can help such analysis and control tasks. Take the
above management scenario as an example, the administrators could use a model
visualization tool (like GMF [13]) to help better understand the system, or use
OCL constraints to automatically verify the server reconfiguration.

Like other model-based technologies, GMF and OCL can be only applied on
MOF-compliant models (as shown in Figure 1), which is constituted by standard
model elements. But the JMX API represents the running system as a specific
kind of Java objects, the Managed Beans (MBeans). The integration of model-
based techniques thus requires an SE which reflects the running system into
a MOF-compliant model, and ensures a bidirectional consistency between the
system and the model. For instance, in our JEE scenario, the SE must build a
model element for each data sources on the JEE AS. When the management

4
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agent deletes a model element, the SE must detect this change, identify which
data source this removed element stands for, and finally invoke the JMX API to
remove this data source.

:JOnAS

hsql : JDBCSource
current = 45
capacity = 50

mysql : JDBCSource
current = 0
capacity = 50

jps: EntityBean

dataSource
jdbc
DataSource Synchronization
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Fig. 1. A common structure of the synchronization engines

However, such an SE employs a complex mechanism and its development is
therefore time consuming and error-prone. For the above scenario, the SE has
to perform many functionalities: reading and writing models, monitoring and
executing system changes, maintaining the mapping between model elements and
system elements, handling conflicts between changes, and planning the proper
subsequent changes to make the model and system consistent. In addition, SEs
share many commonalities, and developing the SE from scratch is a waste of
time and labor. Actually, except for monitoring and executing system changes,
all the other functionalities are independent to the specific systems, and thus it
is possible to achieve common solutions for them.

3 Approach Overview

We provide a generative approach to assist the development of synchronization
engines. As shown in Figure 2, the inputs of our approach include a system meta-
model specifying what kinds of elements can be managed and an Access Model
specifying how to use the API to monitor and modify those manageable elements.
Our SM@RT tool generates a SE which reflects automatically the running system
into a MOF-compliant model that conforms to the system meta-model.
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Our approach is applicable on the following premises. First, we require the
target system to provide a management API: our tool does not instrument non-
manageable systems, nor extends inadequate APIs. Second, we reflect a direct
model for the system (that means the model is homogeneous with the system
structure: each model element stands for one system element). If an abstract
model is needed, a model transformation could be used to transform this direct
model into the needed forms, which is beyond the scope of this paper.

4 Modeling Management APIs

In order to generate an SE for a specific system, we need to know what can be
managed in this system, and how to managed it. In this section, we present how
to specify these two kinds of information as models.

According to Sicard et al. [8], a manageable running system is constituted
of managed elements. Managed elements have local states. They could be com-
posed by other managed elements, and they could have connections between
each other. These four concepts can be described using the following four con-
cepts in EMOF meta-model [14], i.e. Class, Attribute, Aggregation, Association,
respectively. Figure 3 is an excerpt of the meta-model we defined for JOnAS.

Fig. 3. The system meta-model of the JEE example

The manageable elements can be manipulated through the management API.
For example, we can use getAttribute method of JMX to fetch the current
opened connections of a data source. For a system, we require developers to
specify how to invoke its management API to manipulate each type of elements,
and we name this as an “access model”. More formally, the access model is a
partial function:

access : MetaElement×Manipulation −→ Code

where MetaElement is the set of all the elements in the system meta-model
(classes, attributes, etc.), Manipulation is the set of all types of manipulations,
which are summarized in Table 1, and Code is a piece of Java code.

Figure 4 shows two sample items in the access model for JOnAS. The first
item defines the common code for getting the values of int-typed attributes. We
obtain an instance of an MEJB remote element (Line 4), and the logic is defined
as an Auxiliary. Then we invoke the getAttribute method provided. The
first parameter is the reference to the current management element. The second
parameter is the property name. The second sample is for adding a new data
source into a server, or “loading a data source according to a specific name”
in the JEE language. We first find the model element added by management



Table 1. All kinds of manipulations. For each kind of operation, we list its name, the types of
meta elements it could applied, the parameters it required for execution, and a brief description.
In the table, Property standards for attribute, aggregation and association, and the following “1” or
“*” refers to the single-valued or malti-valued properties, respectively. The Auxiliarys are common
operations defined by users, and can be used during the definition of code, as shown in the example.

name meta element parameter description
Get Property (1) - get the value of the property
Set Property (1) newValue set the property as newValue

List Property (*) - get a list of values of this property
Add Property (*) toAdd add toAdd into the value list of this property
Remove Property (*) toRemove remove toRemove from the list of this property
Lookfor Class condition find an element according to condition

Identify Class other check if this element equals to other

Auxiliary Package - user-defined auxiliary operations

Fig. 4. Invoking JMX interface

1 // Sample 1, get the value for any kind of attributes
2 MetaElement=AnyClass :: AnyIntTypedSingleValuedAttribute ,
3 Manipulation=Get , Code=BEGIN
4 Management mgmt=$sys:: auxiliary.getMainEntry ();
5 Integer res=( Integer) mgmt.getAttribute($sys::this ,$meta:: prpt_name );
6 $sys:: result=rest.intValue ();
7 END
8 // Sample 2, add a new data source
9 MetaElement=JOnASServer :: jdbcDataSource , Manipulation=Add

10 Code: BEGIN
11 String dbName=$model :: newAdded.name;
12 Object [] para = {dbName ,Boolean.TRUE};
13 String [] sig = {"java.lang.String","java.lang.Boolean"};
14 Management mgmt=$model :: auxiliary.getMainEntry ();
15 $sys:: newAdded =( ObjectName)mgmt.invoke(dbserver , "loadDataSource", para , sig);
16 END

agents, and get the data source name (Line 11) from this element. Finally we
use this name to invoke the loadDataSource operation (Lines 12-15).

When defining how to manipulate the systems, developers may need system
information (like “what is the current system element”, Line 5), system type
information (like the property name, Line 5), and the inputted information by
the external management agent (like the appointed name for the to-be-created
data source, Line 11, such information is preserved in the corresponding model
element). We defined three kinds of specification variables, the system, meta and
model variables, to stand for the above three kinds of information, in order to
keep developers from the details about the generation and the SE.

5 Generating the Synchronization Engine

This section presents the SEs we generated to maintain the causal links between
model and system. We first explain how the generated SEs work, and then
introduce how we generate the engines.

The first question for a synchronization mechanism is “when and where to
synchronize”. Since the model is the interaction point between the system and
the management agent (MA), synchronization should be triggered before MA
read the model and after they write the model. In addition, for each reading
or writing, the MA only cares about part of the model. And thus, we only



synchronize the involved part of model with the running system. Such on-demand
synchronization preserves correctness and increases performance.

Fig. 5. Structure of the generated SE

Figure 5 shows the structure of our SE, implementing the on-demand syn-
chronization approach we discussed before. The model we provide is in an in-
memory form conforming with Ecore [13]. Each model element is represented
by a Java object in the type of EObject. External management agents read or
write this model by invoking the standard get or set methods on these model
elements. The Model Listener listens to these model operations. For a reading
operation, the listener interrupts the operation, asks the planner to do synchro-
nize, and finally resume the original operation with the refreshed model. For a
writing operation, it waits until the operation finished, and asks the planner to
synchronize this modified model with the system. The Mapping pool maintains
a one-to-one mapping between the model elements and the system elements, as
a reference for the synchronization. The Model and System proxies are used
to read the current model and system, and write the required changes (i.e. the
synchronization result) back. The Exception Catcher implements a simple
conflict handling strategy, i.e. when a conflict causes failures during the model
or system manipulation, it catches the thrown exceptions and warns the man-
agement agent. Based on these auxiliary parts, the central planner execute a
set of synchronization strategies:

SynchStrategy : ModOp×MOFElem→ (ModOp
⋃
SysOp

⋃
MapOp)∗

Each strategy defines that when a specific kind of model operations (get, set,
etc.) happened on a specific part of the model (model elements, single-valued
attributes, etc.), the engine will execute a sequence of operations. These opera-
tions manipulate the model, the system, and the mapping pool, in order to make
them consistent.

Due to the space limitation, we do not explain each strategy, but use the
following sample to illustrate how they work. For the JOnAS sample, in the
beginning, the model contains only one element standing for the JOnAS server.
The management agent invokes get method on this root element to see its
data sources. The model listener interrupts this get operation, and informs the
planner. Follow the synchronization strategy for get operations on multi-valued
aggregations, the planner performs the following operations: It first checks the
mapping pool to see that root stands for the JOnAS server, and then invoke



list on this server (See Table 1), which returns a set of ObjectNames pointing
to the current data sources. The planner then invokes the create operation on
the model proxy to create a new model element for each of these data sources,
and refresh the mapping pool for these new model elements. Finally, the original
get operation continues, and returns a set of newly created model elements.

Our SM@RT tool automatically generates the above SEs. The tool has two
parts, a common library and a code generation engine. The common library
implements mapping pool, the exception catcher, and the planner, with the
synchronization strategies hard-coded inside. The code generation engine is an
extension of the Eclipse Modeling Framework (EMF), and it generates the model
listener, model proxy, and system proxy specific to the target system. Specifically,
it generates a Java class for each of the MOF classes in the system meta-model,
implementing the EObject interface defined by Ecore. Then it overrides the
model processing methods in EObject, inserting the logic for listening operations
and launching the synchronization planner. Finally, it wraps the pieces of API
invocation code in the access model into a set of system manipulation methods,
which constitutes the system proxy.

6 Case Studies

We applied our SM@RT tool to generate SEs for several practical systems, and
performed several runtime management scenarios on these models, utilizing ex-
isting MOF-based model-driven techniques.

6.1 Reflecting JOnAS JEE systems

Our first case study is the full version of the running example we used before.
We reflect all the 21 kinds of JEE manageable elements (including applications,
EJBs, data sources, transaction services, etc.) as a MOF-compliant model, and
visual it to provide a graphical management tool for JOnAS administrators.

We first define the system meta-model and the access model for JOnAS as
explained in the previous sections. The resulting system meta-model contains 26
classes, 249 attributes, 21 aggregations and 9 associations. The resulting access
model defines 28 pieces of code like the sample in Figure 4.

From the system meta-model and the access model, the SM@RT tool au-
tomatically generates the SE for JOnAS as a Java library. We connected this
library with GMF to visualize the reflected model (just in the same way as
visualizing any common Ecore models), as shown in Figure 6.

In this snapshot, the rectangles stand for the JOnAS manageable elements
and the lines stand for the association between these elements. From this dia-
gram, we see that there are two applications running on the pku server, which
runs on one JVM, and contains several resources, including a data source named
HSQL1. We select the data source, and the property view on the right side shows
its attribute values. All the elements, associations and attributes depict the cur-
rent system state. That means if we select this model element again (that causes
GMF to refresh the attributes), some attribute values may change, and if we se-
lect the canvas (that causes GMF to refresh the root element), some elements



Fig. 6. A snapshot of the visualized model of JOnAS

may disappear and new elements may appear. We can also directly use this di-
agram to change the system. For example, if we increase the JDBCMaxConnPool

from 100 to 200, the underlying pool will be enlarged consequently. If we create
a new model element in the type of J2EE Application, and set its fileName

attribute as the address of an EAR file, the synchronization engine deploys this
EAR file into the system, and some new model elements will appear in the dia-
gram, standing for the modules and EJBs inside this newly-added application.

6.2 Other case studies

Table 2. Summary of experiments

target system API meta-model access model generated contrast techs
(elements) (items) (LOC) (LOC) (LOC)

JOnAS JMX 305 28 310 18263 5294 GMF
Java classes BCEL 29 13 124 10518 3108 UML2
Eclipse GUI SWT 31 23 178 11290 - EMF
Android Android 29 9 67 8732 - OCL

Table 2 summarizes all the case studies we have undertaken. For each case, we
give the target system and its management API, the numbers of elements in the
system meta-model, the items in the access model and the total lines of code in
these items. After that, we list the sizes of the generated synchronization engines.
For the first two cases, we also list the size of the hand-written synchronization
engines for comparison. Finally, we list the model-driven techniques we applied
upon the generated SEs. The second case is a reproduction of the Jar2UML tool5,
which reflects the class structure in a Jar file as a (read-only) UML model. The
third case supports dynamic configuration of an Eclipse window, like changing
a button’s caption or a label’s background color. The fourth case is about using
OCL rules to check the package structure of Android mobile phone systems.

5
http://ssel.vub.ac.be/ssel/research/mdd/jar2uml, a use case of MoDisco [11]



6.3 Discussion

Feasibility The case studies above illustrate the feasibility of our approach: it
generates SEs for a wide range of systems, and the generated SEs enable existing
model-driven techniques for runtime management.

Generation Benefits Our generation approach improves the development effi-
ciency of SEs. Among the complex functionalities of SEs (see Section 2), we
only require developers to care about the monitoring and controlling of the sys-
tem. Specifically, we reduce 94.1% hand-written code for the JOnAS case (310
vs. 5294 LOC), and 98% for the Java case (62 vs. 3108 LOC).

Synchronization Performance The performance of the generated SE is accept-
able. For the JOnAS case, we deploy the JOnAS server and the synchronization
engine on a personal computer with 3.0GHz CPU and 2.0GB memory. We spend
3.17 seconds in average to show the diagram shown in Figure 6, with 98 manage-
able elements in total, and we spend less than one second to refresh an element or
change an attribute. The performance is similar to the default web-based man-
agement tool, the JOnAS Admin. For the Android case, we spend 1.7 seconds
to perform the OCL adaptation rule.

7 Related Work

Many researchers are interested on model-based runtime management. The rep-
resentative approaches include “runtime software architecture” [6, 15], “models
at runtime” [16], etc. Currently, these approaches focus on the problems and
ideas of model-based management, and implement their ideas on specific sys-
tems and models. Alternatively, we focus on the reflection of models for different
systems, and try to provide automated support.

Some researchers also focus on reflecting different systems into standard mod-
els. Sicard et al. [8] employ “wrappers” to reflect systems states into Fractal
models. Researchers of MoDisco Project [11] focus on developing “discoverers”
to discover MOF-compliant models from systems. The “wrappers” and “discov-
erers” are similar to our SEs, but our work support developers in constructing
SEs from a higher level, not by directly writing code in ordinary programming
language. Another difference between our work and MoDisco is that our SEs
support writing the model changes back to the system.

Bencomo et al. [17] also use model-to-text generation to automate system
management. But currently they generate the configuration files specific to the
Gridkit platform, while we try to generate SEs for various systems.

Our synchronization mechanism is related to the approaches on model syn-
chronization [18]. The difference is that these approaches use the same model
processing interface to manipulate the two participants of synchronization, but
we try to integrate ad hoc management APIs into the synchronization process.

8 Conclusion

To efficiently leverage the use of model-based techniques at runtime, it is nec-
essary to have a model-based view of the running system. In this paper, we



report our initial attempt towards the automated generation of synchronization
engines that reflect running systems into model-based views. We require devel-
oper to specify “what to manage on the system” as a MOF meta-model, and
specific “how to use the related API to do so” as an access model. From these
specifications, we automatically generate the synchronization engine that reflects
the system as a direct MOF compliant model. We have successfully applied our
approach on several practical systems, and enabled several typical model-based
techniques at runtime. As future work, we plan to give more support for devel-
opers to specify the running systems and their APIs. We also plan to perform
further analysis such as model checking to ensure a deeper correctness and com-
pleteness of the generated causal link.

References

1. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
Future of Software Engineering (FOSE) in ICSE. (2007) 259–268

2. Shannon, B.: Java Platform, Enterprise Edition 5, Specifications (April 2006)
3. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.: The Fractal

Component Model and its Support in Java. Software Practice and Experience
36(11-12) (2006) 1257–1284

4. DiMarzio, J.: Android: A Programmers Guide. McGraw-Hill Osborne Media (2008)
5. Hanson, J.: Pro JMX: Java Management Extensions. (2004)
6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software

evolution. In: ICSE. (1998) 177–186
7. Garlan, D., Cheng, S., Huang, A., Schmerl, B.R., Steenkiste, P.: Rainbow:

Architecture-based self-adaptation with reusable infrastructure. Computer 37(10)
(2004) 46–54

8. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based man-
agement: the self-repair case. In: ICSE ’08: Proceedings of the 30th international
conference on Software engineering, New York, NY, USA, ACM (2008) 101–110

9. Chauvel, F., Barais, O., Borne, I., Jézéquel, J.M.: Composition of qualitative
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