Using Specification Models for RunTime
Adaptations*

Sébastien Saudrais', Athanasios Staikopoulos?, and Siobhan Clarke?

! Embedded Systems Laboratory, ESTACA, France sebastien.saudrais@estaca.fr
2 DSG, Trinity College of Dublin, Ireland

{athanasios.staikopoulos,siobhan.clarke}@cs.tcd.ie

Abstract. For a myriad of reasons, modern applications face constant change
to their requirements and working environment, requiring them to adapt ac-
cordingly. Increasingly, such adaptation is even required during runtime. In
Model-Driven Engineering (MDE) approaches, models are first-class enti-
ties in the development of applications, though they have not, to date, been
sufficiently taken advantage of in runtime adaptation specification. In many
existing approaches, designers are required to consider the execution model
when specifying any runtime adaptation, forcing them to understand the dif-
ferent formalisms of both the execution model and the specification model.
The focus of this paper is to show how runtime models to monitor an appli-
cation’s execution can be derived efficiently from the specification, and how
they support the designer in considering the application’s execution in the
same formalism as the specification.

1 Introduction

Model-Driven Engineering (MDE) promotes the use of models throughout the de-
velopment of software. The underlying idea is to promote models as the primary
artefacts of software development, making executable code a pure derivative of those
models. Models containing adaptation specifications are an increasingly important
and frequently encountered part of the development process. This is especially true
for modern applications that need to adapt at runtime to cope with constant changes
to their requirements and operating environments. Such changes have to be consid-
ered at the specification phase, and the models validated before they are transformed
to real code. However, despite the importance of specification models, they have, to
date, been ignored during the execution of the software. Once the code is generated,
the specification models are no longer used with the potential loss of information
that would be especially valuable during adaptation specification.

A further difficulty emerges during the process of adapting the execution. While
the adaptation may be based on a specification model, the actual adaptation is
necessarily performed either by hand on the application’s code, or requires a com-
plete regeneration of the system since it is unlikely to match the old specifications.
Working directly with the application’s code means a move to a different formalism
from that of the specification. This change between formalisms has a number of dis-
advantages. The first is that the adaptations performed in the new formalism must
be validated against those in the specification model. An automatic generation of
the entire module that is to be adapted can ease this checking, but this needs to be
coupled with a reverse-engineering technique to reproduce the specification model.
The second disadvantage is that while the software architect knows the specifica-
tion formalism, he is not always familiar with the implementation’s one(s). If there

* This work has been carried out within the FP7 project ALIVE IST-215890, which
is funded by the European Community. The authors would like to acknowledge the
contributions of their colleagues from ALIVE Consortium (http://www.ist-alive.eu)

are adaptation problems at runtime, he has to be able to understand the second
formalism in order to solve the errors, or work closely with an implementation team
member. Either approach is likely to be difficult where an application’s execution
context often changes, requiring manual adaptation at runtime. It would be easier
for the architect to visualise a snapshot of the actual execution in the specification
formalism.

The approach proposed in this paper takes advantage of the specification models
during the execution. A runtime model is generated from the specifications, which
supports the monitoring of the execution required to supply sufficient information
to apply adaptations directly on the specification models of the software. The run-
time model contains the information needed to trigger the adaptation and is created
based on the adaptations defined at the specification. At runtime, when an adapta-
tion needs to be performed, the specification models are updated to correspond to
the actual execution and the adaptation is performed on the up-to-date specifica-
tion models. The new configuration of the application is, finally, generated from this
new specification models. The approach allows a designer to use a single language
(the specification language) to design the software and to interact with it during the
execution. Our approach is applied within the ALIVE project[1], which is funded
by the EU under Framework 7. ALIVE’s objective is to enrich service-oriented ar-
chitectures with coordination and organisation mechanisms often seen in human
and other societies. The remainder of the paper is organised as follows: Section 2
presents the different metamodels and how runtime models are generated. Section
3 illustrates the approach with the ALIVE Crisis Management scenario. Section 4
compares our approach with related work and discusses the advantages of runtime
models. Finally Section 5 concludes.

2 From Specification to Runtime

Our approach uses the adaptation rules defined during the specification directly
when needed at runtime. For the purposes of this paper, we assume these adap-
tation rules have been proven during the specification of the application and are
understandable by the architect. We use the adaptation rules to generate runtime
models that will monitor the application and launch an adaptation when needed.
Only a subset of the information contained in the adaptation rules is required to
produce the runtime models. This subset is composed of the model elements that
need to be monitored to trigger the adaptation and those that need to be read to
perform the adaptation. An overview of the approach is presented in Figure 1. The
runtime models are generated from the specification models and the enabling con-
ditions of the adaptation rules. During execution, the runtime models monitor the
application’s code. When an adaptation is triggered, the adaptation rules and the
runtime models are used to provide a snapshot of the application containing only
the part involved in the targeted adaptation. The adaptation is then performed on
the specification models obtained from this snapshot. A new configuration of the
code is obtained from the new version of the specification models using the same
code generation techniques used in the initial generation of the software. In the next
section, we define a metamodel for runtime based on adaptation rules. An algorithm
is then presented to automatically generate the runtime models. Finally we explain
how the adaptation can be performed.

2.1 Adaptation Rules

Adaptations specify the appropriate reaction to changes that can occur at run-
time and that have an impact on the software. An adaptation rule is composed of a

Adaptation rules

Initial Adapted
Specification Specification
models models
Effect
Generate
\ 4
) W Produce
Runtime
Models Snapshot
A
Execution
Monitored by
Fig. 1. Approach overview.
EnablingCondition | 1.1 J/ hasEffect
H Condition H AdaptationRulg] [Effect
1.*
| Expression
1.*
| | ComposedOf
[Comparison [Occurrence I Nbof [Statement Uses | 0..*

Fig. 2. Adaptation rules concepts.

condition and an effect. The condition contains the information triggering the adap-
tation: for example, an occurrence/absence of an event, a comparison of an object
with a value or a number of occurrences of an event. The effect explains how the
adaptation is performed and is written in the model transformation language used
to specify the adaptation. It explains how the adaptation is applied and which part
of the application is involved in the adaptation. Figure 2 presents the (simplified)
metamodel of the adaptation rules in our approach. The condition is a superset of
the possible conditions and can be extended by other types. The effect part only
contains the expressions, i.e. the elements of the specification models involved in the
adaptation. These elements will be manipulated and updated by the adaptation.

2.2 Runtime Models

Runtime models contain the information needed to support an adaptation when it
must be performed. They link the implementation, the specification models and the
adaptation rules. We have defined a generic metamodel to represent the different
relations between these three elements. The runtime models have the same objec-
tive as the condition part of the adaptation rules: triggering the adaptation. As
illustrated in Figure 3, the runtime metamodel has as base the metamodel of the
adaptation rules relating to the conditions and is extended with information about
the platform to monitor the software. The left part of the metamodel corresponds
to the enabling condition and the right part to the link with the platform. Each
adaptation rule has different triggers of the same type as the enabing condition and
so can be extended with other types of conditions. The class FElement references
the elements of the specification model. For each element to be monitored, the cor-
responding implementation is obtained through an AccessPoint. The access point
provides the means to access the value of the element in the implementation, for
example, via a method to access the value or an exchange of messages. Only some
of the possible types of access points are presented is the metamodel, method and

Adaptaton il
f Adeptation nle hos —“
1.1
Hag 1.1

—

Element

elementsToUpdate

OrRightPart 1.1 Value/ 1.1

(R —
1.1 0. ..

P
,| has A
——o| H Trigger
1.1
. [I [|
Andi tPart
1.1
L = . W) I
Hor ! ! H And ! !’ﬂ Comparison (ﬂ Occurrence }](0.‘1
I I [[INbOccurrencel———1

OrLeftPart

T 01

NbComparison

Fig. 3. Runtime metamodel.

message, but extensions can be easily made depending on the requirements of the
software.

The runtime metamodel is also used for the snapshot through the class snapshot.
The purpose of a snapshot model is to give an updated view of the software and
links elements of the specification to the platform. It contains only a set of elements
involved in the effect part of the adaptation corresponding to the right part of the
Figure 3: the Element and AccessPoint.

2.3 Generation of the Runtime Models

Our approach includes an automated process to apply the adaptation rules on the
specification models during the execution. The architect may also add new adap-
tation rules during the execution that will need to be incorporated in the runtime
model without human intervention. The runtime model is automatically generated
from the specification, the adaptation rules and the platform specifications. The
generation algorithm has two steps. The first step is to select the different classes
from the specification that are used by the adaptation rules. For each enabling
condition, the set of elements required for monitoring is identified. The trigger is
created using the enabling condition of each adaptation rules. The set of elements
is then reduced to avoid duplicate elements. This step is designed to ensure that
the runtime model contains only the elements required to support adaptation, and
is therefore smaller and more efficient to process than would be a runtime model of
the complete specification.

The second step is to identify the access point in the implementation. This step
will use information from the specification and platform specifications. The access
point is attached to the element in the runtime model and needs code to be generated
before it can access the implementation. As software modules do not have a single
implementation language, the different access points can be implemented in different
languages. The runtime model is updated with values obtained through the access
point during the monitoring process. The actual implementation of the runtime
model is done using Kermeta [2]. Kermeta offers calls to Java classes with interfaces
to other languages. For each access point, a Kermeta method is created with the
intermediate code in Java, if needed, to make the link with the implementation. This
access point can be regenerated at runtime if the access point is changing during
the execution.

2.4 Adaptation at Runtime

Once the runtime model is generated, its monitoring capabilities are executed and
the runtime models are automatically updated. When an adaptation is triggered,
the specification models are updated with the actual values contained in the run-
time model and a snapshot is created. The process of creating the snapshot is based
on the same algorithm as the generation of the runtime models but where only the
current adaptation’s effect’s expressions are considered. Once the snapshot of all
useful information is created, the adaptation can be performed on the specification
models using the adaptation rules. Once the adaptation is performed, the new im-
plementation is generated using the same method as for the first generation of the
implementation.

The architect can also use the snapshot process to create a visualisation of the
actual execution. This visualisation may consider only a subset of the application
and some adaptation rules. The snapshot process is used in this case to support the
architect adding new adaptations that take account of the actual execution of the
software. A new runtime model is then generated to incorporate the new enabling
conditions of the added adaptation rules.

3 Evaluation: Crisis Management Case Study

In this section we show how runtime models are exploited in a use case from the
ALIVE project that describes a crisis management scenario defined by Thales[3]. We
first present a high-level summary of the specification used in ALIVE applications.
We then apply our approach on the example.

3.1 ALIVE’s Specification

Three metamodels describe the ALIVE layered architecture: organisation, coor-
dination and services. Each one has a different level of abstraction and its own
adaptation rules. Model transformations are defined from the metamodels and are
bi-directional between the different layers.

The organisation level provides context for the two other levels, supporting an
explicit representation of the organisational structure of the application. It presents
the roles involved in the organisation and their inter-relations. Each role has a set of
objectives for which it is responsible. The coordination level uses the organisation
level as a starting point, and provides coordination plans to achieve the objectives
of the organisation. As agents can play different roles in an organisation, the coor-
dination metamodel has also the concept of actors capturing the goals of an agent
playing a specific role. The coordination plans describes the interaction between the
actors. For example, a payment objective will be refined by cash, paper payment
or electronic payment. The service level supports the semantic description of ser-
vices and the selection of the most appropriate service for a given task. It connects
the executing environment and the two other levels, which are input to the service
level. It contains agents and the different services. The agents are connected to the
actors of the coordination. The services are refinements of the coordination actions,
for example, the electronic payments become different services from each bank that
offers an electronic payment.

The adaptation rules of the different levels are based on the occurrence of specific
events or properties. An adaptation is triggered if certain conditions are verified.
Properties from all three levels may trigger an adaptation to an ALIVE application.
Depending on the level where the adaptation trigger occurs, the adaptation will
have a different impact on the application. Adaptations affecting the service level

will be performed without impacting the two others. An adaptation that impacts
the coordination level is also likely to impact the service level. An adaptation at the
organisation level is likely to impact all three levels. The same language is used by
the three levels to express the adaptations.

3.2 Initial Specification

The use case describes a system to handle emergency situations.The organisation
includes a police station, first-aid station, emergency centre and fire station. The
main objective of the fire station is to evacuate people. Other objectives of the
different roles are to identify the emergency location, to provide an ambulance
service and to regulate traffic. These objectives are delegated through the arrows
to the other roles as depicted on the top part of Figure 4. The coordination level
describes a plan to achieve the evacuation objective in different steps: selection of
the transport vehicle, provision of an itinerary to the accident location, collection of
injured people, provision of an itinerary to the hospital. This plan is a generic one
that can be used and refined by the service level. The middle part of the Figure 4
shows the coordination level.

Emergency
Centre

Emergency location

First Aid

Organisation level Station [—Ambulance service— FireStation |—Regulate Traffic—{ Police Station

Itinerary to
closest
hospital

Choice of
transport
vehicle

Itinerary to
accident
location

Loading
people

Coordination level

; Ambulance ltinerary Police Station Emergency
Service level softare centre

Fig. 4. Initial specification of the crisis management scenario.

During an accident, the fire station makes decisions relating to the evacuation of
people. The evacuation plan is called at the service level. Specific services are used:
an ambulance, the emergency centre, itinerary software and the police station. The
bottom part of the Figure 4 shows the different services in play.

Adaptation rules are defined to handle common failures that can happen to this
type of application: traffic jams, engine failure, escalation of the danger level. For
example, a first adaptation may concern engine failure. Depending on the position
of the ambulance and on the level of risk for rescued people, different choices can
be made: ambulance change, people transfer or ambulance repair. This adaptation
concerns only the service level. A second adaptation may concern a failure relating
to difficulties encountered by the rescue personnel in achieving their objectives. The
ambulance has a problem and no other terrestrial vehicle, as needed by the plan,
is available. Alternative transport has to be considered, either by air or by sea and
a new plan has to be given to the service level. This adaptation concerns both
the coordination and the service levels. A last adaptation may be triggered when
the coordination level is unable to find a new plan when the ambulance fails. The
organisation level needs to adapt to the situation and may incorporate new roles.
In this case, private companies can be added, like private helicopters, to evacuate
people. While this adaptation will impact the three levels, some parts of each level
can be reused, like the abstract plan and different services.

3.3 Runtime Models

The runtime model obtained from the specifications to support the second adap-
tation presented above is depicted on Figure 5. The enabling condition from the
adaptation has the occurrence of the message ambulance_blocked and the occur-
rence of the properties no_repairable and no_terrestrial_vehicule_available. The trig-
ger is added to the runtime model. The next step in the creation of the runtime
model is to link with the implementation. For the purpose of the evaluation, we
are using the Thales simulation workbench to simulate the different services. For
each of the three elements, the corresponding access point is provided according to
the platform specification. The ambulance provides its status and position through
the methods Ambulance_position and Ambulance_status. The emergency centre pro-
vides the transports’ availability through Transport_Availability. The methods are
implemented in Java and interact with the workbench.

Trigger
Occurrence | Element [No_terrestrial| Method |Transport Availability
RuleA2
AND Elemen
T courrence Not_repairable| Method - e Status
) Trigger
Trigger
Trigger
ND Method

Trigger Occurrence Element | Ambulance_blocked Ambulance_position

Fig. 5. Runtime model.

Once the adaptation is triggered, a snapshot of the part of the application of
interest to the adaptation is made. The create_plan_aerial_evecuation call needs
nothing at the coordination level as a new plan is created. Once the evacuation plan
is created, the status of different aerial transport is needed to select one available
to execute the plan. The snapshot contains two elements helicopter and their access
point. The specification models are updated using both the runtime model and the
snapshot model, and the adaptation is performed.

The new configuration is then produced from the adapted specification models as

shown on Figure 6. The plan is modified and the services helicopter! and helicopter2
are added.

Choice of
transport
vehicle

Coordination level O
. : Itinerary : " Emergency
Service level Helicopter 1 Helicopter 2 Police Station

Fig. 6. New specification.

Itinerary to
evacuation

Choice of
aerial
transport

Loading
people

hospital

4 Discussion and Related Work

Discussion Our hypothesis related to the efficiency of this approach is based on
an assumption that only a subset of the application is subject to adaptation. The
approach generates a runtime model based on only those elements required to sup-
port adaptation, thereby reducing its size relative to the full application, making
it more efficient to work with. Given this, our approach is therefore well-suited for
applications where a big part of the specification is static (in other words, not ex-
pected to require adaptation over the execution of the application) and mainly used
to understand the objectives of the application. A good example of this is ALIVE’s
organisation level. The static part of ALIVE applications do not, therefore, require
permanent monitoring at runtime. In applications where adaptation rules cover a
bigger part of the specification, the runtime model will be a correspondingly bigger
proportion of the full specification, reducing the extent of the efficiencies. Further
experiments are needed to identify the maximum coverage percentage that will still
result in efficiency benefits in the monitoring process. The evaluation runtime model
contains 10 elements to monitor when the specification models contain 50 elements.
The snapshot models need an average of 10 elements to update.

A second potential limitation is the feasibility of performing the adaptation on
the models at runtime. If the application is centralised, different transformation
languages can be used but as modern applications are often distributed, including
ALIVE applications, the adaptation may also be distributed. Few transformation
languages focus on ensuring a light execution footprint, which may be problematic
in a distributed setting. The current version of our runtime models is implemented
using Kermeta but it requires at least a Java virtual machine. A more optimal
approach would be a transformation language than can be interfaced with multiple
implementation languages but without any constraints on the execution platform.

Related Work Many approaches adapt applications using a different formalism
than the specification. In such approaches, the adaptation module can be seen as a
runtime model because it has its own representation of the execution. However, the
gap between the specification and the execution requires a re-test of the adaptation
even though it has already been proven at the specification phase. For example,
Pickering et al [4] propose an approach to manage complex systems with runtime
models. The systems management is defined in specification models that are trans-
formed to runtime models in a specific infrastructure, IBM WebSphere and so are
expressed in a different language than the specification. Rainbow [5] provides an
adaptation framework based on an abstract architectural model to monitor runtime
properties to accommodate resource variability, system faults, etc. In our approach,
runtime model is built on dynamic parts of the specification models and not on an
abstract model to apply adaptations.

Other approaches are in a position to use the specification models at runtime
because of the specific platform they provide. For example, Fractal [6] monitors the
execution and performs the adaptation using the reflexivity of its own language.
The ALIVE approach uses standard languages, and therefore assumes different lan-
guages at the implementation level. The Diva [7] approach considers both design
and runtime phases of development. At design time, an application is modelled
using a base model (containing the common/core functionalities), a set of variant
models (capturing the adaptive application variability) and an adaptation model
(specifying which variants should be used according the rules and current context
of the executing system). At runtime, the models are processed by model composers
that produce the system’s configuration. The application is fully monitored and is
based on the reflexivity of the underlying language.

5 Conclusion

In this paper, we presented an approach to using specification models to derive
efficient runtime models that support runtime adaptation. We defined a metamodel
for runtime models based on adaptation rules. Runtime models are automatically
generated from the specification. Adaptation is performed at runtime using the
specification models. The approach is designed to address two main objectives. This
first is to use the same formalism for adaptation both at design and runtime. This
reduces the potential for introduction of errors, by avoiding the transformation to
another formalism, and aids the architect’s understanding of the execution without
requiring him to learn additional languages. The second objective is to optimise the
efficiency of the runtime models. This is achieved as the runtime models monitor
only the parts of the application that are involved in adaptation. A snapshot is taken
of only those elements of interest to the adaptation. A full snapshot is available when
the architect wants to have an overview of the system or wants to introduce new
adaptation rules. The automation of the generation of runtime models supports
this addition of new adaptation rules. We illustrated an evaluation of the approach
through application on a case study.

References

1. ALIVE: Coordination, organisation and model driven approaches for dynamic, flexible,
robust software and services engineering, http://www.ist-alive.eu/

2. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented
meta-languages. In L. Briand, S.K., ed.: Proceedings of MODELS/UML’2005. Volume
3713 of LNCS., Montego Bay, Jamaica, Springer (October 2005) 264-278

3. Aldewereld, H., Dignum, F., Penserini, L., Dignum, V.: Norm dynamics in adaptive
organisations. In Boella, G., Pigozzi, G., Singh, M.P., Verhagen, H., eds.: NORMAS.
(2008) 1-15

4. Brian Pickering, Sylvain Robert, S.M., Mengusoglu, E.: Model-driven management
of complex systems. In: Proceedings of the 3rd International Workshop on Mod-
els@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

5. Huang, A.C., Garlan, D., Schmerl, B.: Rainbow: Architecture-based self-adaptation
with reusable infrastructure. In: ICAC ’04: Proceedings of the First International Con-
ference on Autonomic Computing, Washington, DC, USA, IEEE Computer Society
(2004) 276-277

6. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An open component
model and its support in java. In Crnkovic, 1., Stafford, J.A., Schmidt, H.W., Wallnau,
K.C., eds.: CBSE. Volume 3054 of Lecture Notes in Computer Science., Springer (2004)
7-22

7. Fleurey, F., Delhen, V., Bencomo, N., Morin, B., Jezequel, J.M.: Modeling and val-
idating dynamic adaptation. In: Proceedings of the 3rd International Workshop on
Models@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

