
A Model-Driven Configuration Management
System for Advanced IT Service Management

Holger Giese, Andreas Seibel, and Thomas Vogel

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{forename}.{surname}@hpi.uni-potsdam.de

Abstract. A popular guideline to manage today’s complex and hetero-
geneous IT systems is the IT Infrastructure Library (ITIL), which pro-
vides a catalogue of best practices for IT Service Management (ITSM).
However, state-of-the-art implementations of ITIL rely on a set of XML-
based standards. To ease manageability and effectively exploit a Config-
uration Management System (CMS), which is the integral part of ITSM,
we suggest in this paper a model-driven CMS by applying Model-Driven
Engineering (MDE). Metamodel based models improve the manageabil-
ity by providing a suitable abstraction, which enables direct user in-
teraction as well as the application of MDE techniques such as model
transformations. Furthermore, vital elements of a model-driven CMS
are runtime models, which capture the managed system. In addition,
this paper reports on a first prototype implementation of a model-driven
CMS that exploits runtime models, their automatic maintenance, model-
based analysis on these runtime models, and automatic adaptation of the
managed system by facilitating changes on runtime models.

1 Introduction

A recent observation is the increase of administration costs due to the increas-
ing complexity and heterogeneity of IT systems whereas these IT systems still
need to be manageable. At the same time, IT systems need to be delivered even
at a higher speed and managed at minimum costs [1], which forces IT system
providers managing them efficiently. A popular guideline to manage today’s com-
plex and heterogeneous IT systems is the IT Infrastructure Library (ITIL) v3
that provides a catalogue of best practices for IT Service Management (ITSM)
containing common definitions by using a common terminology. The integral
part of ITSM is the Configuration Management System (CMS), which is pri-
marily a toolset and storage for Configuration Items (CI). CIs are manageable
elements of the managed system, which can be services, incidents, problems,
hardware, software, buildings, persons, etc. In conclusion, a CMS supports man-
agement which leads to increasing quality and a more economic management of
IT systems.

Several commercial ITIL implementations exist, e.g., IBM Service Manage-
ment [2–5], which can be seen as state-of-the-art in ITSM. These approaches
are quite powerful and comprehensive. Nevertheless, they rely on a set of XML-
based standards and do not leverage the full strength of Model-Driven Engineer-
ing (MDE). On the other side, research approaches do not focus on ITSM as



proposed by ITIL [6–11]. These approaches embrace aspects of runtime models
and autonomic computing in different domains to manage systems autonomi-
cally. However, we think that autonomic computing in ITSM is currently only
partially feasible, e.g., in parts of Service Operation to keep the system running
[12]. Nevertheless, it is an important vision for ITSM.

In this paper we fill this gap by focusing on easing manageability and effec-
tively exploiting a CMS by applying MDE. Meta model based models improve
the manageability by providing a suitable abstraction, which enables direct user
interaction as well as the application of MDE techniques such as model transfor-
mations. Furthermore, vital elements of a model-driven CMS are runtime mod-
els, which capture the managed system. In addition, this paper reports on a first
prototype implementation of a model-driven CMS that exploits runtime models,
their automatic maintenance, model-based analysis on these runtime models, and
automatic adaptation of the managed system by facilitating changes on runtime
models. However, we cannot provide a complete ITSM approach that performs as
competitor for state-of-the-art approaches. Thus, our prototype implementation
focuses on parts of Change Management, Release & Deployment Management
and Service Asset & Configuration Management although the proposed CMS is
open to extensions for other management processes.

The paper is structured as follows: In Section 2 we outline a model-driven
CMS for ITSM by applying MDE, which conforms to ITIL. We show a prototype
implementation facilitating runtime models in Section 3. An application example
is shown in Section 4 and we close the paper with conclusions and future work
in Section 5.

2 Model-Driven Configuration Management System
In this section, we first outline a common CMS extracted from ITIL and state-
of-the-art implementations (cf. [2–5]). Based on these insights, we propose ap-
plications of MDE. This implies the application of runtime models, management
models and MDE techniques to automate several processes.
2.1 Common Structure of a Configuration Management System
Additionally to CIs, a CMS contains logical dependencies between CIs that have
to be captured as well as information that is required by management processes,
such as Change Management or Release & Deployment Management. Manag-
ing CIs in the CMS is the task of Service Asset & Configuration Management.
Consequently, it is tightly coupled to the CMS. Figure 1 shows a CMS within
the context of ITSM. A CMS consists of a federated Configuration Management
Database (CMDB) and a set of Managed Data Repositories (MDRs), which
are technically CMDBs. An MDR focuses on a specific domain of the managed
system, e.g., database servers or certain applications and thus contains detailed
information about CIs in that domain. MDRs gather information about CIs from
different sources within the managed system, e.g., through management inter-
faces. The federated CMDB is responsible for providing all relevant CIs of the
managed system and their logical dependencies at a higher level of abstraction.

Each MDR federates its CIs to the federated CMDB where a coherent and
consistent set of CIs is reconciled. The CIs of the federated CMDB do not need



to capture all details about the managed elements but at least basic informa-
tion and references to the related CIs in the MDRs, where detailed information
about them are captured. Furthermore, the federated CMDB provides interfaces,
which are used by management tools to query and update CIs and management
information.

Management 
Inferface

Management 
Inferface

MDR

CMDB

MDR

Change 
Management

Tools

Release & Deployment 
Management

Tools

Service Asset & 
Configuration Management

Tools

...

Management 
Inferface

Query/Update

Query/Update

Query/Update

Federation & Reconciliation

Management 
Inferface

CMSITSM

System

Fig. 1. A Common CMS within the Context of ITSM

2.2 Application of Model-Driven Engineering

Based on these insights, we suggest to apply techniques known from MDE in the
sequel of this section. MDE is considered as the integration of metamodel based
models and MDE techniques such as transformation, synchronization, merge,
comparison, and analysis on models.

Management Tools Management tools can use management models as an un-
derlying formalism, which enables management tools to provide model editors
with a suitable concrete syntax to facilitate management by providing well-
defined abstractions of the information to be managed. This is beneficial when-
ever the information that needs to be managed is complex and a visual represen-
tation would facilitate its understanding and management. Within management
tools MDE techniques can be applied without any limitations. If multiple repre-
sentations of management models are beneficial, transformation, synchronization
or merging are suitable applications. The analysis of models can be applied for
advanced reasoning. The outcome can be used in dashboards or reports, which
supports decision making. In general, management tools can benefit from MDE
as software engineering does from model-based Integrated Development Environ-
ments (IDE).

Federated CMDB A runtime model is applicable within a federated CMDB
capturing the managed system. Thus, CIs that are part of the IT infrastructure
of the managed system have to be captured in the runtime model. In addition,
the runtime model has at least to capture well-defined interconnections between
its CIs and changeable configuration properties that influence the operation of
the item in the managed system. We further call such a runtime model a configu-
ration model. Logical dependencies between CIs can be captured within the con-
figuration model or in an explicit dependency model which should be managed



automatically by means of model analysis or at least manually. For each man-
agement process, an appropriate management model is beneficial, which has to
capture all required management information and the ability to capture relation-
ships to CIs of the configuration model. For example, a management model for
Change Management might capture detailed information about planned changes
that contain relationships to CIs that are part of the configuration model and
on which the planned changes have to be performed.

MDR A runtime model is also applicable to MDRs which, however, only cap-
tures a specific subset of CIs of the managed system. Moreover, this runtime
model is usually vendor specific, which means that it contains vendor specific
information which is not captured in the configuration model of the federated
CMDB. We further call the MDR runtime model a vendor specific configuration
model.

Query/Update Connecting a management tool to the federated CMDB can
be conducted by just copying the required models into the management tool
or by applying a transformation/merge that provides a more comprehensive
model tailored to the underlying management process. A transformation/merge
combines several models of the federated CMDB into a single model that can
be further used in a model editor with suitable concrete syntax. Furthermore,
the changes that are made to the models in the management tool have to be
transformed back to the models of the federated CMDB. This task is called
update.

Federation & Reconciliation Transformation is applicable to federating the
vendor specific configuration model of each MDR into a partial configuration
model within the federated CMDB. A partial configuration model is a subset
of the configuration model of the federated CMDB. The configuration model is
derived by reconciling partial configuration models by applying model merge.

2.3 Vision of Autonomic IT Service Management
Considering the application of MDE, we can increase the level of autonomy in
ITSM to make progress in closing the control loop for autonomic computing in
ITSM. The CMS is able to automatically derive a runtime model in the form of
a configuration model and the other direction can be reached by automatically
propagating changes back into the system based on changes of the configuration
model. We approach both directions in our prototypical implementation in the
following section. Thus, a model-driven CMS fulfills the pre-requisite to auto-
nomic computing in ITSM. To increase the autonomy, an autonomic manager
is required, which automatically decides and derives changes based on findings
of a model analysis. The analysis is performed on the configuration model and
on models capturing Service Level Agreements (SLAs) or Key Performance In-
dicators (KPIs) and it discovers malfunctions in the managed systems that have
to be resolved by subsequent changes. However, as proposed in [12], full auton-
omy in ITSM is currently only feasible in Service Operation considering small
changes that are used to keep the system running at a certain quality level. More
pervasive changes that are defined in Service Transition tends to be related to
evolution and thus are currently quite difficult to be automated.



3 Prototypical Implementation
In an undergraduate seminar we started implementing several aspects of the
model-driven CMS, as proposed in the previous section. Currently, we have im-
plemented an MDR for Enterprise Java Beans 3.0 (EJB) servers and applica-
tions, a federated CMDB based on Eclipse CDO1, and simple management tools
for Service Asset & Configuration Management, Change Management and Re-
lease & Deployment Management, which are implemented within Eclipse and
EMF2.

3.1 MDR for EJB Servers and EJB Applications
The vendor specific configuration model of the MDR represents all EJB servers3

that can be discovered in the IT infrastructure and the EJB applications hosted
by these servers. Each server provides the mKernel [13] extension, which is used
as an interface for managing deployed EJB applications. Beside the existence of
the servers, the vendor specific configuration model also captures details about
EJB modules, that are hosted on the server, like the enterprise beans and their in-
terconnections that are part of the EJB modules. In certain intervals or whenever
changes within EJB-based applications occur, the vendor specific configuration
model is updated accordingly by facilitating the mKernel extension.

3.2 Federated CMDB based on Eclipse CDO
The federated CMDB implementation is based on Eclipse CDO, which is in gen-
eral an EMF model repository based on a database persistence layer. Thus, the
federated CMDB is a structured model repository that stores EMF models in a
database. Our configuration model reflects the architecture of the managed sys-
tem containing software components4, connectors between software components
and hardware components with links between them as interconnections and de-
ployment relationships between components. All of these elements are considered
as CIs of the managed system. Additionally, all components can be related with
configuration properties and are related with logical dependencies. In general,
our configuration model has similarities to a UML deployment diagram. In addi-
tion to the configuration models, we foster an asset model within the federated
CMDB. The asset model defines configuration variability of all authorized CIs
of the managed system. The CIs in the asset model can be considered as types
of the CIs in the configuration models. We further distinguish between as-is
configuration models, which reflect snapshots of the actual configuration of the
managed system, and to-be configuration models, which define snapshots of the
authorized configuration of the managed system.

3.3 Service Asset & Configuration Management Tool
Service Asset & Configuration Management is essential to a CMS. Therefore,
we have implemented a tool that provides up-to-date as-is configuration models
gathered from vendor specific configuration models of diverse MDRs at different
points in time. Our implementation is able to apply the federation of multiple
1 Connected Data Objects; http://www.eclipse.org/modeling/emft/?project=cdo
2 Eclipse Modeling Framework; http://www.eclipse.org/emf
3 Currently, we support only the Glassfish v2 server; https://glassfish.dev.java.net/
4 EJB servers, modules, and enterprise beans are represented as a software component.



MDRs and the reconciliation of partial configuration models into a coherent and
consistent as-is configuration model within the federated CMDB. The whole
sequence is shown in Figure 2.

Management 
InterfaceMDR

Service Asset & 
Configuration 
Management

CMDB

1. federate MDRs

MDR Management 
Interface

1.1 gather state

1.2 create vendor
specific configuration model

1.3 federate 

2. reconcile MDRs

2.1 reconcile
partial configuration models

2.2 merge reconciled as-is configuration model
with previous as-is configuration model and
management models

Fig. 2. Sequence Diagram of Federation and Reconciliation

First, each MDR or a subset of them is triggered to federate its vendor spe-
cific configuration model. This implies gathering the current state of the system
through mKernel management interfaces. Based on the gathered state, a ven-
dor specific configuration model is created which is subsequently automatically
transformed into a partial configuration model.5 Whenever all partial configura-
tion models are available in the federated CMDB, the reconciliation is triggered
which has to merge the partial configuration models into a new as-is configu-
ration model. Afterwards, related management models and all elements of the
previous as-is configuration model, i.e. logical dependencies which were not dis-
covered by MDRs, are merged into the reconciled as-is configuration model.6

We further defined several KPIs in the context of Service Asset & Config-
uration Management, e.g., we measure the degree of discrepancy between the
latest to-be and as-is configuration model, which is the number of coverages be-
tween the to-be configuration model and the as-is configuration model divided
by the number of considered elements in the to-be configuration model. There-
fore, we have specified a simple KPI model that is used to manage the KPIs
and analysis rules to execute the KPIs. The KPIs are analyzed by applying the
analysis rules to the KPI model, the to-be configuration model and the as-is
configuration model. The outcome is visualized in a report that is created with
Eclipse BIRT7. Another example is a KPI that measures the number of configu-
ration misuses in the latest as-is configuration model by using the same analysis
technique. Therefore, we first check for inconsistencies between the latest as-is
configuration model and the asset model and subsequently count the number of

5 The feasibility of model transformations and synchronization at runtime has already
been shown in [14].

6 Reconciliation of multiple MDRs is not implemented because we currently only sup-
port a single MDR.

7 Business Intelligence and Reporting Tools; http://www.eclipse.org/birt/phoenix



inconsistencies that were found. We can also create analyses based on multiple
as-is configuration models. The outcome is a report that maps the results for
each analysis of an as-is configuration model on a timescale.
3.4 Change Management Tool
Changes to the system are indispensable due to several reasons: unsatisfied SLAs,
changing requirements to the service realized through the managed system, etc.
Thus, an appropriate tool for Change Management requires to define changes
that have to be performed on the managed system. We have implemented a
change management tool that is able to model changes directly on a configu-
ration model that is queried from the federated CMDB. Therefore, the latest
as-is configuration model of the federated CMDB is queried and then manually
changed with a model editor. The resulting as-is configuration model is then sent
back to the federated CMDB as an authorized to-be configuration model.8 The
whole sequence is shown in the sequence diagram of Figure 3.

Change 
Management

2. model changes

CMDB

3. add authorized to-be configuration model

1. query latest as-is configuration model

Fig. 3. Sequence Diagram of Applying Changes

3.5 Release & Deployment Management Tool
Release & Deployment Management is about planing, defining and rolling out
sets of changes, e.g., a release9 into the managed system. Therefore, the lat-
est authorized to-be configuration model is queried from the federated CMDB
and compared to the latest as-is configuration model using EMF Compare10.
This comparison results in a model based on the EMF Compare metamodel
that is afterwards transformed to an enhanced change model that is tailored to
our domain. This change model supports the definition of basic operations such
as (un)deployment, setting or changing configuring properties, etc. The change
model is then propagated to all MDRs for execution. Each MDR consequently
executes the change model by interpreting the operations as API calls for the
connected mKernel management interfaces. The whole sequence is shown in
Figure 4. Note that not all sub-processes of this management process are imple-
mented since we were focusing on the automatic execution of changes that have
been specified in the configuration model. Supported changes of the mKernel
management interface are (un)deployment of EJB modules, changing configura-
tion properties, and finally the creation and removal of interconnections amongst
beans.
8 Actually, the changes have to be validated and tested before they are deployed to

the managed system. However, this was not the focus of the project.
9 A release is a set of changes.

10 http://www.eclipse.org/modeling/emft/?project=compare



Management 
InterfaceMDR

Release & 
Deployment 
Management

1. deploy changes

CMDB

2. get authorized to-be configuration model
& latest as-is configuration model

3. create change model

MDR

4. execute change model

System
Manager

Management 
Interface

5. execute
operations

Fig. 4. Sequence Diagram of Deploying Changes

4 Application Example

Based on our prototype, this section describes a concrete example for the Release
& Deployment Management (see Section 3.5). The dark-shaded elements in the
ConfigurationModel in Figure 511 depicts the latest as-is configuration of a man-
aged shopping system. In the current state, the shopping system is composed
of a server Server1 hosting an EJB module WarehouseComponent. This mod-
ule packages the enterprise beans WarehousingBean and ShipmentBean, each of
which provides a connector. The light-shaded elements of the ConfigurationModel
reflect the authorized changes that should be executed. These changes were man-
ually modeled during the Change Management (see Section 3.4). These changes
consist of a deployment of the module ShoppingCartComponent containing a
ShoppingCartBean and of attaching the ShoppingCartBean to the connectors
provided by the WarehousingBean and ShipmentBean. Thus, the Configuration-
Model reflected by the dark and light-shaded elements is the to-be configuration
model of the shopping system.

Starting the roll out of changes, the authorized to-be and the latest as-is con-
figuration model are queried from the CMDB (see Figure 4 in Section 3.5). To
obtain the authorized changes, both models are compared using EMF Compare
(see Activity 1 in Figure 5), which results in a EMF Compare Model reflecting
the differences between both models. However, this model is generic and only
contains syntactical information about changes. Therefore, we automatically de-
rive a semantically rich change model from the EMF Compare Model through
a model transformation using appropriate transformation rules for the EJB do-
main (see Activity 2 in Figure 5). In our example, the transformation results
in a ChangeModel as depicted in Figure 5. It reflects the authorized changes of
deploying the ShoppingCartComponent and of attaching the ShoppingCartBean
to two connectors, which has been described above.12 Finally, the ChangeModel
and the to-be configuration model are sent to the responsible MDR that abstract

11 This configuration model uses a simplified metamodel and is shown as abstract
syntax.

12 Usually we use unique IDs in the ChangeModel for identifying the related components
and connectors in the operations. For sake of readability, we use unique names here.



from the management interface provided by mKernel. This MDR inteprets both
models and derives operations from both, which are finally executed using the
mKernel API.

Component
name = Server1
type = JEE.Server

Component
name = ShoppingCartComponent

type = JEE.Module

Connector
name = ShoppingCart
type = JEE.EJB.Interface

Component
name = WarehouseComponent

type = JEE.Module

Component
name = WarehousingBean

type = JEE.EJB

Component
name = ShoppingCartBean

type = JEE.EJB

Component
name = ShipmentBean

type = JEE.EJB

Connector
name = Warehousing

type = JEE.EJB.Interface

Connector
name = Shipment

type = JEE.EJB.Interface

< hosts hosts >

hosts> hosts>

provides>

uses > < provides

< provides

ConfigurationProperty
name = ShipmentProvider

value = "UPS"

Operations

AttachConnector
component = ShoppingCartBean

connector = Warehousing

AttachConnector
component = ShoppingCartBean

connector = Shipment

DeployComponent
component = 

ShoppingCartComponent

EMFCompare
Model

1

2 ChangeModel

ConfigurationModel

configuration>

Fig. 5. Models for Release & Deployment Management

5 Conclusion & Future Work

We have outlined a common CMS supporting ITSM, as proposed by ITIL v3
and state-of-the-art implementations. Based on a common CMS, we suggested
possible applications of MDE and further showed a prototype implementation of
a model-driven CMS with basic management tool support. The prototype imple-
mentation provides a federated CMDB based on Eclipse CDO, an MDR for EJB
servers, EJB applications and basic tool support for Service Asset & Configu-
ration Management, Change Management and Release & Deployment Manage-
ment. The prototype further implements a closed control loop that automatically
derives a runtime model (as-is configuration models) from the managed system
and also automatically applies configuration changes to the system based on
change models, which are automatically derived from an adapted runtime model
(to-be configuration model).

As future work we want to further elaborate our approach to validate our
hypothesis of improving the efficiency of ITSM by providing a model-driven
CMS. We further plan to implement additional MDRs to improve the coverage
of the configuration model of the federated CMDB and further implement rec-
onciliation of partial configuration models. We further want to add additional
management tools for other management processes and refine the existing ones.
Another future direction is to improve the autonomy of the model-driven CMS
by providing an autonomic manager that to some extent supports Service Op-
eration with simple policies.



Acknowledgment We thank Alexander Krasnogolowy, Mark Liebetrau, Steven
Reinisch, Janek Schumann, Martin Sprengel, and Sebastian Waetzoldt for their con-
tributions to the prototype implementation and Gregor Gabrysiak for reviewing this
paper.

References

1. Salehie, M., Tahvildari, L.: Autonomic computing: emerging trends and open prob-
lems. In: Proc. of the Workshop on Design and Evolution of Autonomic Application
Software, ACM (2005) 1–7

2. Lindquist, D., Madduri, H., Paul, C.J., Rajaraman, B.: Ibm service management
architecture. IBM Syst. J. 46(3) (2007) 423–440

3. Ward, C., Aggarwal, V., Buco, M., Olsson, E., Weinberger, S.: Integrated change
and configuration management. IBM Syst. J. 46(3) (2007) 459–478

4. Brittenham, P., Cutlip, R.R., Draper, C., Miller, B.A., Choudhary, S., Perazolo,
M.: It service management architecture and autonomic computing. IBM Syst. J.
46(3) (2007) 565–581

5. Johnson, M.W., Hately, A., Miller, B.A., Orr, R.: Evolving standards for it service
management. IBM Syst. J. 46(3) (2007) 583–597

6. Garlan, D., Schmerl, B., Chang, J.: Using Gauges for Architecture-Based Mon-
itoring and Adaptation. In: Proc. of the Working Conference on Complex and
Dynamic Systems Architecture. (2001)

7. Caporuscio, M., Marco, A.D., Inverardi, P.: Model-based system reconfiguration
for dynamic performance management. Journal of Systems and Software 80(4)
(2007) 455 – 473

8. Akkerman, A., Totok, A., Karamcheti, V.: Infrastructure for Automatic Dynamic
Deployment of J2EE Applications in Distributed Environments. In: Proc. of the
3rd Intl. Working Conference on Cmponent Deployment, Springer (2005) 17–32

9. Hnetynka, P.: A model-driven environment for component deployment. In: 3rd
ACIS Intl. Conference on Software Engineering Research, Management and Appli-
cations. (2005) 6–13

10. Hein, C., Ritter, T., Wagner, M.: System Monitoring using Constraint Checking
as part of Model Based System Management. In: Proc. of the 2nd Intl. Workshop
on Models@run.time. (2007)

11. Morin, B., Barais, O., Jézéquel, J.M.: K@RT: An Aspect-Oriented and Model-
Oriented Framework for Dynamic Software Product Lines. In: Proc. of the 3rd
Intl. Workshop on Models@run.time. (2008) 127–136

12. Gacek, C., Giese, H., Hadar, E.: Friends or Foes? – A Conceptual Analysis of Self-
Adaptation and IT Change Management. In: Proc. of the Workshop on Software
Engineering for Adaptive and Self-Managing Systems, ACM (2008)

13. Bruhn, J., Niklaus, C., Vogel, T., Wirtz, G.: Comprehensive support for manage-
ment of Enterprise Applications. In: Proc. of the 6th ACS/IEEE International
Conference on Computer Systems and Applications, IEEE (2008) 755–762

14. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-Driven
Architectural Monitoring and Adaptation for Autonomic Systems. In: Proc. of the
6th Intl. Conference on Autonomic Computing and Communications, ACM (2009)
67–68

15. Robert, S., et al.: Deliverable d5.1a: Model based system management state of the
art. Technical report, ModelPlex: Modeling solution for complex software systems,
https://www.modelplex.org (2007)


