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Abstract. The model-driven engineering community has developed ex-
pressive model transformation techniques based on meta models, which
ease the specification of translations between different model types. Thus,
it is attractive to also apply these techniques for autonomic and self-
adaptive systems at run-time to enable a comprehensive monitoring of
their architectures while reducing development efforts. This requires spe-
cial solutions for model transformation techniques as they are applied at
run-time instead of their traditional usage at development time. In this
paper we present an approach to ease the development of architectural
monitoring based on the incremental model synchronization with triple
graph grammars. We show that the provided incremental synchroniza-
tion between a running system and models for different self-management
capabilities provides a significantly better compromise between perfor-
mance and development costs than manually developed solutions.

1 Introduction

The complexity of today’s software systems impedes the administration of these
systems by humans. The vision of self-adaptive software [1] and Autonomic Com-
puting [2] addresses this problem by considering systems that manage themselves
given high-level goals from humans. The typical self-management capabilities
self-configuration, self-healing, self-optimization or self-protection [2] can greatly
benefit when besides some parameters, e.g. for configuration purposes, also the
architecture of a managed software system can be observed [3].

Each of these capabilities requires its own abstract view on a managed soft-
ware system that reflects the run-time state of the system regarding its archi-
tecture and parameters in the context of the concern being addressed by the
corresponding capability, e.g. performance in the case of self-optimization. Mon-
itoring an architecture of a running system in addition to its parameters requires
an efficient solution to be applicable at run-time and it results in a considerable
increase in complexity. The complexity further increases, as a view has to be usu-
ally decoupled from a running system for system analysis. Otherwise, changes
that occurred during an analysis might invalidate the analysis results, as the
analysis was not performed on a consistent view. Due to the complexity, the de-
velopment of monitoring activities should be eased or even automated. Moreover,
different views on a running system have to be provided efficiently at run-time.

In this context, Model-Driven Engineering (MDE) techniques can in principle
help. MDE provides expressive model transformation techniques based on meta
models which ease the specification of translations between different model types.



Basically and as argued in [4], these techniques could be used at run-time for
run-time models and thus also ease the development of architectural monitoring.

In this paper we propose a model-driven approach that enables a compre-
hensive monitoring of a running system by using meta models and model trans-
formation techniques as sketched in [5], where there was no room for a detailed
discussion of the approach. Different views on a system regarding different self-
management capabilities are provided through run-time models that are derived
and maintained by our model transformation engine automatically. The engine
employs our optimized model transformation technique [6,7] that permits in-
cremental processing and therefore can operate efficiently and online. Further-
more, the approach eases the development efforts for monitoring. For evalu-
ation, the implementation of our approach considers performance monitoring,
checking architectural constraints and failure monitoring that are relevant for
self-optimization, self-configuration, and self-healing capabilities, respectively.

The paper is structured as follows: The proposed approach is presented in
Section 2 and its application in Section 3. The benefits of the approach are
discussed with respect to development costs and performance in Section 4. The
paper closes with a discussion of related work and a conclusion.

2 Approach

To monitor the architecture and parameters of a running software system, our ap-
proach employs Model-Driven Engineering (MDE) techniques. MDE techniques
are employed to handle the monitoring and analysis of a system at the higher
level of models rather than at the API level. Therefore, using MDE techniques,
different models describing certain aspects of or certain views on a running sys-
tem required for different self-management capabilities can be derived and main-
tained at run-time. Thus, models of a managed system and of its architecture
essentially build the interface for monitoring a system. The generic architecture
of our monitoring approach is derived from [5] and depicted in Figure 1.
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Fig. 1. Generic Architecture (cf. [5])
A Managed System provides Sensors that are used to observe the system,
but that are usually at the abstraction level of APIs. These sensors can be used
by any kind of Managing Systems for monitoring activities. Managing systems



can be, e.g., administration tools used by humans or even autonomic managers
in case of a control loop architecture as proposed, among others, by Kephart and
Chess [2]. Since it is difficult to use sensors at such a low level of abstraction, our
approach provides a run-time model of a managed system in the form of a Source
Model to enable a model-based access to sensors. This model is maintained at
run-time and updated if changes occur in the managed system.

Nevertheless, a source model represents all capabilities of the sensors. Conse-
quently, it might be quite complex, which makes it laborious to use it as a basis
for monitoring and analysis activities by managing systems. As the source model
is defined by a Meta Model, it can be accessed by model transformation tech-
niques. Using such techniques, we propose to derive several Target Models from
the source model at run-time. Each target model raises the level of abstraction
w.r.t. the source model and it provides a specific view on a managed system re-
quired for a certain self-management capability. A target model might represent,
e.g., the security conditions or the resource utilization and performance state of
a managed system to address self-protection or self-optimization, respectively.
Thus, a managing system being concerned, e.g., with self-optimization will use
only those target models that are relevant for optimizing a managed system, but
does not have to consider aspects or views that are covered by other capabilities
such as self-protection. Though providing different views on a system, several tar-
get models may represent overlapping aspects. Consequently, several managing
systems work concurrently on possibly different target models (cf. Figure 1).

The different target models are maintained by our Model Transformation
Engine, which is based on Triple Graph Grammars (TGGs) [6,7]. TGG Rules
specify declaratively at the level of meta models how two models, a source and a
target model of the corresponding meta models, can be transformed and synchro-
nized with each other. Thus, source and target models have to conform to user
defined meta models (cf. Figure 1). A TGG combines three conventional graph
grammars: one grammar describes a source model, the second one describes a
target model and a third grammar describes a correspondence model. A cor-
respondence model explicitly stores the correspondence relationships between
corresponding source and target model elements. Concrete examples of TGG
rules are presented in Section 3 together with the application of our approach.

To detect model modifications efficiently, the transformation engine relies on
a notification mechanism that reports when a source model element has been
changed. To synchronize the changes of a source model to a target model, the
engine first checks if the model elements are still consistent by navigating effi-
ciently between both models using the correspondence model. If this is not the
case, the engine reestablishes consistency by synchronizing attribute values and
adjusting links. If this fails, the inconsistent target model elements are deleted
and replaced by new ones that are consistent to the source model. Thus, our
model transformation technique synchronizes a source and a target model in-
crementally and therefore efficiently, which enables its application at run-time.
Therefore, for each target meta model, TGG rules have to be defined that spec-
ify the synchronization between the source model and the corresponding target



model. Based on declarative TGG rules, operational rules in the form of source
code are generated automatically, which actually perform the synchronization.

Thus, our transformation engine reflects changes of the source model in the
target models, which supports the monitoring of a managed system. Therefore,
relevant information is collected from sensors to enable an analysis of the struc-
ture and the behavior of a managed system. As sensors might work in pull or
push oriented manner, updates for a source model are triggered periodically or
by events emitted by sensors, respectively. In both cases it is advantageous if
the propagation of changes to target models could be restricted to a minimum.
Therefore, our model transformation engine only reacts to change notifications
dispatched by a source model. The notifications contain all relevant information
to identify the changes and to adjust the target models appropriately.

Though the model transformation engine is notified immediately about mod-
ifications in the source model, there is no need for the engine to react right away
by synchronizing the source model with the target models. The engine has the
capability to buffer notifications until synchronization is triggered externally.
Hence, the engine is able to synchronize two models that differ in more than one
change and it facilitates a decoupling of target models from the source model,
which enables the analysis of a consistent view based on target models.

Implementation The implementation is based on the autonomic computing
infrastructure mKernel [8], which enables the management of software systems
being realized with Enterprise Java Beans 3.0 (EJB) [9] technology for the
Glassfish! application server. For run-time management, mKernel provides sen-
sors and effectors as an API. However, this API is not compliant to the Eclipse
Modeling Framework (EMF)?, which is the basis for our model transformation
techniques. Therefore, we developed an EMF compliant meta model for the EJB
domain that captures the capabilities of the API. This meta model defines the
source model in our example and a simplified version of it is depicted in Figure 2.

To synchronize a running managed system with our source model, an event-
driven EMF Adapter has been realized. It modifies the source model incremen-
tally by processing events being emitted by sensors if parameters or the structure
of a system have changed. Additionally, the adapter covers on demand the mon-
itoring of frequently occurring behavioral aspects, like concrete interactions, by
using pull oriented sensors that avoid the profusion of events.

3 Application

This section describes the application of our model-driven monitoring approach.
The meta model for the EJB domain that specifies the source model is depicted
in a simplified version in Figure 2. It is divided conceptually into three levels.
The top level considers the types of constituting elements of EJB-based sys-
tems, which are the results of system development. The middle level covers con-
crete configurations of EJB-based systems being deployed on a server. Finally,
the lower level addresses concrete instances of enterprise beans and interactions

! https://glassfish.dev.java.net/
2 http://www.eclipse.org/modeling/emf/
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among them. For brevity, we refer to [8,9] to get details on the EJB compo-
nent model and on the three levels. Based on this meta model, a source model
provides a comprehensive view on EJB-based systems, which however might be
too complex for performing analyses regarding architectural constraints, per-
formance and failure states of managed systems. Therefore, for each of these
aspects, we developed a meta model specifying a corresponding target model
and the TGG rules defining the synchronization of the source model with the
target model. Thus, our model transformation engine synchronizes the source
model with three target models aiming at run-time monitoring and analysis of
architectural constraints, performance and failure states.

Architectural Constraints Analyzing architectural constraints requires the
monitoring of the architecture of a running system. Therefore, we developed a
meta model that is depicted in Figure 3 and whose instances reflect simplified
run-time architectures of EJB-based systems. It abstracts from the source meta
model by providing a black box view on EJB modules through hiding enterprise
beans being contained in modules, since modules and not single enterprise beans
are the unit of deployment. To analyze architectural constraints, the Object Con-
straint Language (OCL) and checkers like EMF OCL? can be used to define and
check constraints that are attached to meta model elements, like it is illustrated
in Figure 3. The constraint states that at most one instance SimEjbModule of a
particular SimEjbModule Type with a certain value for attribute name exists. In
other words, at most one module of the module type named Foo can be deployed.

Performance Monitoring Like the architectural target meta model, the meta
model for target models being used to monitor the performance state of EJB-
based systems also abstracts from the source meta model. Figure 4 shows the
corresponding meta model. It represents session beans as Components and con-
nections among beans as Connectors among components. For both entities, in-
formation about the instance situation is derived from the source model and
stored in their attributes. For each component, e.g., the number of currently
running instances or the number of instances that have been created entirely
are represented by the attributes runninglnstances and instanceCount, respec-
tively. For each connector, the number of invocations, the maximum and min-
imum execution time of all invocations and the sum of execution time of all
invocations along the connector are reflected by the attributes invocationCount,
mazxTime, minTime and totalTime, respectively. The average execution time of
an invocation along a connector can be obtained by dividing totalTime with in-
vocationCount. Finally, a component provides operations to retrieve aggregated
performance data about all connectors provided by the component (inConnec-
tors), and a Server provides aggregated data about its hosted components.
Based on the structure and attributes of the performance target model, an
analysis might detect which components are bottlenecks and which are only
blocked by others. Such information might be used, e.g., to decide about relo-
cating busy components to other servers or improving the resource configuration.
The four TGG rules that are required to synchronize the source model with

3 http://www.eclipse.org/modeling/mdt/downloads/?project=ocl



the performance target model are depicted in a simplified version in Figure 6.
For all of them, nodes on the left refer to the source model, nodes on the right
to the target model, and nodes in the middle constitute the correspondence
model. The elements that are drawn black describe the application context of
the rule, i.e., these elements must already exist in the models before the rule
can be applied. The elements that are drawn not black and marked with ++
are created by the rule. The first rule in Figure 6 is the axiom that creates
the first target model element Server for a Container in the source model. The
correspondence between both is maintained by a CorrContainer that is created
as well and that is part of the correspondence model. Based on the second rule,
for each SessionBean of an EjbModule associated to a Container that is created
in the source model, a Component is created in the target model and associated
to the corresponding Server. Likewise to a CorrContainer, the CorrComponent
maintains the mapping between the SessionBean and the Component. As an
example, this rule shows how element attributes are synchronized. The value
for the attribute uid of a Component is derived directly from the attribute wid
of a SessionBean, while instanceCount is the number of SessionBeanInstance
elements the SessionBean is connected to via the instances link (cf. Figure 2).
Moreover, for more complex cases, helper methods operating on the source model
can be used to derive values for attributes of target model elements. The third
rule is comparable to the second one and it maps an EjbInterface provided by
a SessionBean to a Connector for the corresponding Component. The last rule
creates a link between a Component and a Connector if an EjbReference of the
corresponding SessionBean is associated to the EjbInterface that corresponds to
the Connector. Comparable rules have been created for all target models, which
are not described here for brevity.

Failure Monitoring The last target model is intended for monitoring failures
within managed systems. The corresponding meta model is shown in a simplified
version in Figure 5. Due to lack of space, we omit a further description of it.

4 Evaluation

In this section our approach is evaluated in comparison with two other feasible
solutions that might provide multiple target models for monitoring.

1. Model-Driven Approach: The approach presented in this paper.

2. Non-Incremental Adapter (NIA): This approach retrieves the current
run-time state of a managed system, i.e. a system snapshot, by extracting all
structural and behavioral information directly from sensors in a pull oriented
manner. Then, the different target models are created from scratch.

3. Incremental Adapter (IA): In contrast to the Non-Incremental Adapter,
this approach uses event-based sensors, which inform a managing system
about changes in a managed system in a push oriented manner. These events
are processed and reflected incrementally in different target models.

In the following, our approach is evaluated, discussed and compared to these

alternative approaches by means of development costs and performance.
Having implemented our approach and the NIA, we are able to give concrete

values indicating development costs. Using our approach, we had to specify 20



TGG rules to define the transformation and synchronization between the source
and all three target models being described in Section 3. On average, each rule
has about six to seven nodes, which constitutes quite small diagrams for each
rule. However, based on all rules, additional 33371 lines of code including code
documentation have been generated automatically. Manually written code in the
size of 2685 lines was only required for the EMF Adapter (cf. Section 2), that
however does not depend on any target meta model and therefore is generic and
reusable. Consequently, specifying an acceptable number of TGG rules declara-
tively is less expensive and error-prone than writing an imperative program that
realizes an incremental model synchronization mechanism (cf. about 30k lines of
code the IA might potentially require). In contrast, the NIA required only 902
lines of code, which seems to be of the same complexity like the 20 TGG rules.

Finally, the approaches are discussed w.r.t. their run-time performance char-
acteristics. The results of some measurements? are shown in Table 1. The first
column Size corresponds to the number of beans that are deployed in a server to
obtain different sizes for source and target models. Approximately in the same
ratio as the number of deployed beans increases, the number of events emitted
by mKernel sensors due to structural changes, the number of bean instances,
and the calls among bean instances increase. mKernel sensors allow to moni-
tor structural (S) and behavioral (B) aspects. Behavioral aspects, i.e., concrete
calls, can only be monitored in a pull oriented manner, while structural aspects
can additionally be obtained through a push oriented event mechanism.

Size NIA Model-Driven Approach
S B |n=0|n=1|n=2|n=3|n=4|n=5| B
5 [8037]20967 | 0 [163]361]523|749[891 (10733
10 [ 9663 | 43054 | 0 |[152 272457585790 (23270
0
0

15 [10811| 72984 157|308 | 472 | 643 | 848 136488
20 |12257|105671 170 | 325|481 | 623 | 820 |55491
25 |15311]142778| 0 |178 339|523 | 708|850 |72531

Table 1. Performance measurement [ms]
The NIA uses only pull oriented sensors to retrieve all required information to

create the three target models separately, from scratch and periodically. For this
approach, the second and third column shows the consumed time in milliseconds
(ms) to create the three target models. E.g., having deployed ten beans, it took
9663 ms for the structural aspects and 43054 ms for the behavioral aspects.
For our Model-Driven Approach, structural aspects are obtained through
events and behavioral aspects through pull oriented sensors. The fourth to ninth
column show the average time of processing n events, which includes the corre-
sponding adjustments of the source model, and of synchronizing n modifications
of the source model to the three target models incrementally by invoking once
the model transformation engine. E.g., for n = 2 and at a model size of ten, 272
ms are consumed on average for processing two events and for transferring the
corresponding changes in the source model to the three target models on average.
Additionally, we decomposed the average times to find out the ratio of event pro-
cessing times and model synchronization times. On average over all model sizes,
7.2%, 5.9%, 4.4%, 4.8% and 3.7% of the average times are used for model syn-

4 Configuration: Intel Core 2 Duo 3GHz, 3GB RAM, Linux Kernel 2.6.27.11



chronization for the cases of n from one to five, respectively. Consequently, most
of the time is spent on event processing, while our model transformation engine
performs very efficiently. The third and last column of Table 1 indicate that for
both approaches the behavioral monitoring is quite expensive. However, this is
a general problem, when complete system behavior should be observed. How-
ever, comparing both approaches, our approach clearly outperforms the NIA as
it works incrementally. Moreover, a manual /A would not be able to outperform
our approach, because, as described above, event processing activities are much
more expensive than model synchronization activities and a manual IA would
have three event listeners, one for each target model, in contrast to the one
our approach requires. To conclude, our approach outperforms the alternative
approaches when development costs and performance are taken into account.

5 Related Work

The need to interpret monitored data in terms of the system’s architecture to
enable a high-level understanding of the system was recognized by [10], who use
only an ADL-based system representation. Model-driven approaches considering
run-time models, in contrast to our one, do not work incrementally to maintain
those models or they provide only one view on a managed system. In [11] a model
is created from scratch out of a system snapshot and it is only used to check
constraints expressed in OCL. The run-time model in [12] is updated incremen-
tally. However, it is based on XML descriptors and it provides a view focused on
the configuration and deployment of a system, but no other information, e.g., re-
garding performance. The same holds for [13] whose run-time model is updated
incrementally, but reflects also only a structural view. All these approaches [11-
13] do not apply advanced MDE techniques like model transformation. In this
context, only first ideas exist, like [14], who apply a QVT-based [15] approach to
transform models at run-time. They use Medini@Q VT as a partial implementation
of QVT, which performs only offline synchronizations, i.e., models have to be
read from files, and therefore leads to a performance loss. Moreover, it seems that
their source model is not maintained at run-time, but always created on demand
from scratch, which would involve non-incremental model transformations.

Regarding the performance of different model transformation techniques, we
have shown that our TGG-based transformation engine is competitive to ATL-
[16] or QVT-based ones when transforming and synchronizing class and block
diagrams [17]. Though the approach presented in this paper uses different mod-
els, meta-models and therefore different transformation rules, similar results can
be expected for the case study used in this paper.

6 Conclusions & Future Work

This paper presented our approach to support the model-driven monitoring of
software systems. It enables the efficient monitoring by using meta models and
model transformation techniques. The incremental synchronization between a
run-time system and different models can be triggered when needed and there-
fore multiple managing systems can operate concurrently. The presented solu-
tion outperforms feasible alternatives considering development costs and perfor-
mance.



The core idea of using model transformation techniques for monitoring and
even for adaptation of autonomic systems has been presented in [5], where there
was no room for a comprehensive discussion. As the results presented in this
paper are promising, we are currently investigating the usage of model transfor-
mation techniques for architectural adaptations.
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