
VISUAL LANGUAGES AND LOGIC

VLL 09

Corvallis, Oregon, USA

September 20th, 2009

Editors:

PHILIP COX, ANDREW FISH AND JOHN HOWSE

Contents

Preface iii

FRANK RUSKEY (Invited Speaker; abstract)
...A Brief Survey of Venn/Euler Diagrams 1

PAOLO BOTTONI, ANNA LABELLA AND STEFANO KASANGIAN
...More-than-coherent logic for operations on images 2

HARALD STÖRRLE
..A logical model query interface 18

KOJI MINESHIMA, MITSUHIRO OKADA AND RYO TAKEMURA
..................Conservativity for a hierarchy of Euler and Venn reasoning systems 37

JIM BURTON, GEM STAPLETON AND ALI HAMIE
...Transforming Constraint Diagrams 62

PETER COPPIN AND STEPHEN HOCKEMA
.......A Cognitive Exploration of the “Non-Visual” Nature of Geometric Proofs 81

TORSTEN STROBL AND MARK MINAS
...Implementing an Animated Visual λ-Calculus 96

ii

Preface
This volume contains the proceedings of the Second International Workshop on Vis-
ual Languages and Logic (VLL 09), held in Corvallis, Oregon, USA, on the 20th
September 2009, as a satellite event of the 2009 IEEE Symposium on Visual Lan-
guages and Human Centric Computing (VL/HCC 2009). The First International
Workshop on Visual Languages and Logic was held in Coeur d’Aléne, Idaho, USA,
on the 23rd September 2007.

The goal of the VLL Workshop series is to bring together researchers to explore
the current state of research at the intersection of visual languages and logic, includ-
ing topics such as: graphical notations for logics (either classical or non-classical,
such as first or higher order logic, temporal logic, description logic, independence
friendly logic, spatial logic); diagrammatic reasoning; theorem proving; formalisa-
tion (syntax, semantics, reasoning rules); expressiveness of visual logics; visual logic
programming languages; visual specifcation languages; applications; and tool sup-
port for visual logics.

The six papers presented here were each reviewed by three programme commit-
tee members, and provide an insight into some of the interesting combinations of
logic and visualisation currently being investigated.

As anyone who has organised such a meeting knows, success depends on many
people. We wish to thank the members of the Programme Committee, who, despite
being given a very short time to complete their tasks, provided prompt and helpful
feedback.

Thanks are also due to the VL/HCC 2009 organisers for providing the opportu-
nity to run VLL 09, and for their logistic support, and to the Swedish Institute of
Computer Science and Nokia for their sponsorship. Finally, to put on a workshop,
one must have papers and speakers. Accordingly, we would like to thank our guest
speaker, Frank Ruskey, the authors of the papers included here, and the speakers who
will present them.

These proceedings will be published in volume 510 in the CEUR series, pub-
lished electronically and available online at: http://ftp.informatik.rwth-aachen.de/
Publications/CEUR-WS/

Philip Cox1, Andrew Fish2 and John Howse2

20th September 2009

(1) Dalhousie University, Canada
(2) University of Brighton, UK

iii

Programme Committee

• Gerry Allwein, Naval Research Laboratory, USA;

• Omid Banyasad, IBM, Canada;

• Dave Barker-Plummer, Stanford University, USA;

• Paolo Bottoni, Universita di Roma, La Sapienza, Italy;

• Frithjof Dau, University of Wollongong, Australia;

• Mateja Jamnik, University of Cambridge, UK;

• Alexander Knapp, Ludwig-Maximilians Universität, Munich, Germany;

• Bernd Meyer, Monash University, Australia;

• Nathaniel Miller, University of Northern Colorado, USA;

• Mark Minas, Universität der Bundeswehr, Munich, Germany;

• Julia Padberg, Technische Universit¨at Berlin, Germany;

• Ian Pratt-Hartman, University of Manchester, UK;

• Chris Reed, University of Dundee, UK;

• Gem Stapleton, University of Brighton, UK;

• Nik Swoboda, Universidad Politécnica de Madrid, Spain;

• Simon Thompson, University of Kent, UK.

iv

Venn/Euler diagrams

Frank Ruskey
Department of Computer Science

University of Victoria
Victoria, B.C. V8W 3P6

Canada
ruskey@cs.uvic.ca

Abstract

Among the most familiar of all visual aids is the Venn diagram. They were
introduced by John Venn as an alternative to the diagrams that Euler used
in his “Letters to a German Princess”. Euler used his diagrams as a tool for
understanding and reasoning about syllogisms.

In this talk we will review the history of Venn/Euler diagrams, discuss some
of their essential mathematical properties, some of their many uses, some recent
results about them, and some of the fundamental Venn/Euler problems that
remain to be resolved.

The talk will be lavishly illustrated and accessible to the non-specialist.
Among the specific topics to be covered are: What is NOT known about 3-Venn
diagrams(!); What is a minimum area Venn diagram?; How do you draw a Venn
diagram symmetrically?; and can Venn diagrams be drawn (symmetrically) on
the sphere?

1

More-than-coherent logic for operations on
images

Paolo Bottoni1 Anna Labella1 Stefano Kasangian2

1 Dip. di Informatica, Università di Roma “La Sapienza”
2Dip. di Matematica, Università di Milano

Abstract

A model of computation on multi-dimensional words, based on the overlapping op-
eration, induces a categorical structure, to which a new type of logic corresponds,
whose formulae express properties of computations in a language containing all
first order formulae. While the resulting deductive system is strictly less powerful
than (intuitionistic) first order logic, it is more powerful than coherent logic. The
approach is illustrated through an example of an online game of map-colouring.

Keywords Categorical logics, operations on images, overlapping, online coloring.

1 Introduction
We investigate the properties of computations with images via the overlapping oper-
ation [1], as a particular case of interactive, non-deterministic, computations. To this
end, we exploit a categorical structure, called SymcatB, which was studied in [11] to
provide a formal setting for the study of concurrent processes [16] and bisimulations
between them. In particular, SymcatB is the category of symmetric B-categories and
B-functors, where B is a suitable 2-category (see [20]).

In this paper, we observe that a new type of logic can be associated with SymcatB,
in analogy with the association of (intuitionistic) first order logic with Heyting cate-
gories. Indeed, SymcatB is a coherent category [10], a subcategory of which is a
Heyting category. We introduce the notion of ”more-than-coherent logic” to describe
the logic associated with SymcatB. This exploits a full first order language, for which
a logic weaker than intuitionistic logic, but stronger than a coherent logic [10], is de-
fined. In particular, negative formulae behave as the intuitionistic ones.

By associating this logic with the categorical structure, we describe and reason on
computations with images, in which agents make moves by placing copies of private
images, interacting to construct a concurrent state, again defined by an image. Agents
can work concurrently on different parts of the (state) image, without having to act
sequentially on contiguous zones, but taking turns according to paths on a tree labeled
with the names of the executed actions. Overlapping contributions can be managed ex-
ploiting partial orderings imposed on the alphabets from which the pictures are formed.

2

We show how forms of interactive computing can be modelled in this framework
(by generalizing the original algebraic structure in [11], where B was obtained from a
meet-semilattice monoid), as contributions can overlap in any order on any area of an
image, provided that some conditions are met. This kind of computation is intrinsically
non deterministic, as the same apparent result can be obtained with different actions
from the involved agents. Hence, future behaviors can be influenced in different ways.

After mentioning related work in Section 2, in Section 3 we introduce the main def-
initions of pointed image and overlapping operation and propose the main example of
collaborative game and a tentative language to speak about it. Section 4 illustrates the
monoidal category of trees modeling concurrent computations, in particular computa-
tions with images. Section 5 introduces the category of symmetric B-categories in the
sense of [20]. Its coherent structure is studied and the existence of a subcategory which
is a Heyting category is shown. The resulting logical system is presented in Section 6,
and its instantiation to the current problem is proposed in Section 7. Section 8 draws
conclusions and points to future work.

2 Related work
We consider here two research traditions, related to the study of algebraic properties of
languages, notably two-dimensional ones, and to the categorical treatment of process
algebras to describe the behaviour of concurrent agents, respectively.

The algebraic characterization of 2-D languages started with the seminal works of
Kirsch [12] and Dacey [4], aimed at imposing some form of juxtaposition (reduced to
common concatenation in the 1D case) on 2D images. Horizontal and vertical versions
of concatenation were proposed, giving rise to generative models combining horizontal
and vertical rewriting [19]. However, these versions of concatenation are only partial
functions, being applicable only to pictures of compatible sizes. An algebraic char-
acterization has been given as doubly ranked monoids constructed from alphabets of
bidimensional elements, in which each individual operation is associative and compat-
ible with each other [7]. Survey of these topics, with particular emphasis on the notion
of recognisability of picture languages, can be found in [6].

Attachment positions for contour curves were introduced by Shaw to allow com-
position of curves so that the head of an element be attached to the tail of another [18].
Pointed drawings are described in [13] by a string of directions and a pair of depar-
ture and arrival positions. Connected pointed figures equipped with concatenation give
rise to a finitely generated inverse monoid, the set of generators being constituted of
coloured pixels with all possible positions for the arrival and departure points. While
this result concerns the descriptions of figures (shapes in black-and-white images), we
are interested in images, i.e. finite bidimensional structures.

The (im)possibility of recovering concatenation of images in the 2D world by sim-
ply enriching them with attachment points, or by allowing placement only over well-
behaved paths, is studied in [3]. The proposal of pointed pictures [1] avoids such
limitations, as they include information on attachment points, and allows translations
and rotations of the original content of the pictures and of the associated information.

Modeling the behavior of concurrent agents by trees labeled on a monoid of el-

3

ementary moves is standard practice in concurrent computing [16] and has been in-
terpreted in an enriched categorical context in [11]. There, several cases of the base
monoidal structure are considered (free monoid, trace monoid, etc.). In this paper we
consider for the first time a monoid which does not satisfy the left cancelation property.

Lawvere’s algebraic theories [14] are the first categorical description of the mod-
els of a theory, while Lawvere and Tierney’s elementary topos extends Grothendieck’s
(geometric) theory of toposes to the realm of logic, relating them to intuitionistic logic.
Since then, many categorical structures have been investigated from a logical view-
point, by associating with them a language and a deductive system. In particular, co-
herent categories are related to positive first order logic (coherent logic) [10]. Starting
from a coherent category containing a Heyting subcategory, we consider a language
more expressive and a deductive system stronger than the coherent ones.

The application of the language of more-than-coherent logic to interactive compu-
tations, seen as games, can be related to the computability logic proposed by Japaridze [9],
who exploits a wider language, called universal language, including different types of
existential and universal quantifiers. The universal language can indeed refer to indi-
vidual moves, whereas we refer to whole computations. However, we can introduce a
notion of factorization, to consider computations made of single moves.

3 Interactive computations on images
We consider here the problem of describing properties of interactive computations with
images, based on a simplified version of the positional overlapping operation intro-
duced in [1]. In this Section, as an instance of such a computation, we consider an
interactive game based on the 4-colour problem, i.e. the problem of finding a colouring
of a map using up to four colours, so that no two adjacent regions are coloured in the
same way. We first introduce definitions and properties for the overlapping operation.
In particular, overlapping is defined for (n-dimensional) images as an abstraction from
many significant pixel operators as well as visual interaction phenomena, in particular
in interactive construction of diagrams.

3.1 The overlapping operation
Definition 1 [Meet-semilattice]
A meet-semilattice L = (L,≤,∧,⊥) is a partial order w.r.t. ≤, such that ∧ is the
greatest lower bound function and ⊥ denotes the bottom element.

Definition 2 [Complete meet-semilattice]
A complete meet-semilattice L = (L,≤,∧,⊥) is a meet-semilattice, such that for any
non-empty family of elements its greatest lower bound exists.

Remark 1 A complete meet-semilattice has a join for every family that has an upper
bound, given by the meet of all upper bounds.

In the rest of the paper, we consider partially ordered finite alphabets, named V ,
which are complete meet-semilattices with bottom element denoted by τ . We can

4

interpret the order relation on V as an information about transparency of a cell. τ
denotes absolute transparency as well as undefinedness of color assignment to a cell.

Definition 3 [Image and pointed images]

1. An image ι on an alphabet V is a function ι : Zn → V , where Z is the set of
integer numbers and ι is almost everywhere equal to τ .

2. A pointed image (ι,−→xe,−→xt) is an image with two designated entry and exit posi-
tions.

3. PIV is the set of pointed images on V where all the images constantly equal to
τ are identified into ι0, forgetting about their entry and exit positions. We use
PI when V can be left understood.

4. A translation of a pointed image (ι,−→xe,−→xt) by
−→
k , also noted t−→

k
, is a pointed

image (ι′,
−→
x′e,
−→
x′t), where ι′(−→x) = ι(−→x +

−→
k),
−→
x′e = −→xe +

−→
k ,
−→
x′t = −→xt +

−→
k .

The set of pointed images PI is partially ordered: (ι,−→xe,−→xt) ≤ (ι′,
−→
x′e,
−→
x′t) iff

there exists a translation (ι′′,
−→
x′′e ,
−→
x′′t) of (ι′,

−→
x′e,
−→
x′t) such that ι ≤ ι′′ as functions and

−→x e =
−→
x′′e ,
−→xt ≤

−→
x′′t , i.e. (ι′′,

−→
x′′e ,
−→
x′′t) = t

(
−→
x′e−
−→xe)

((ι′,
−→
x′e,
−→
x′t)).

For the definitions above, each image induces a semilattice with the completely
transparent image at the bottom and the original image at the top.

Proposition 1 Let ι0 = (ι0,~0,~0), where ι0 is the image with all pixels transparent.
Then, (PI,≤, ι0) is a meet-semilattice.

The family of overlapping operations •op on PI , is parametric w.r.t. a binary asso-
ciative operation op : V × V → V : (ι,−→xe,−→xt)) •op (ι′,

−→
x′e,
−→
x′t)) = (ι′′,−→xe,

−→
x′′t)) with

(ι′′,−→xe,
−→
x′′t) = (ι,−→xe,−→xt)•op(ι′′′,

−→
x′′′e ,
−→
x′′′t), where (ι′′′,

−→
x′′′e ,
−→
x′′′t) = t

(−→xt−
−→
x′e))

((ι′,
−→
x′e,
−→
x′t))).

Figure 1 illustrates three instantiations of the operation for two pointed images,
where e and t indicate the entry and exit position, respectively, and 0 the origin of
the coordinates. The operation &1 preserves the value of the first argument, &2 the
value of the second, and &3 combines the two values where they are both defined, and
preserves the value of the defined image otherwise. Notice that in all three cases, the
set of positions of the resulting image is the same, as well as the origin and the entry
and exit positions.

3.2 A 4-colour based game
Let a collection of maps K be given to two agents, called the Drawer and the Painter.
The Drawer starts by selecting a subset of regions from one map and challenging the
Painter to colour them according to the 4-colour constraint, using overlapping: once
a region has been painted, the colour of no cell in the region can be changed. After
the Painter has done colouring, the Drawer selects a new set of regions and the game
progresses. The Drawer wins if it can propose a region that the Painter is not able to

5

Figure 1: Instantiations of overlapping between pointed images.

colour, while the Painter wins if it achieves a complete colouring of a map. Drawn
regions are assigned the colour $, indicating that the region needs to receive its final
coloring. We define the alphabets C1 = {a, b, c, d}, C2 = C1 ∪ {$}, C = C2 ∪ {τ}, and
the partial order on C induced by < = {(τ, x) | x ∈ C2} ∪ {($, x) | x ∈ C1}. All the
regions are defined as pointed images with entry and exit position in (1, 1), and with
all symbols transparent except for those in one of the regions of one map. We denote
the set of available regions in a map k as Rk = {1, . . . , nk}. With R, we indicate the
disjoint union of all the regions in K.

Figure 2 shows two maps, each made of six regions, and two colourings satisfying
the 4-colour condition. The three central regions are defined by the same subimages in
the two maps, but receive different colours due to the 4-colour condition.

Figure 2: Two maps coloured in the correct way.

We model the colouring of a region R from a map K with a colour C as a move

6

(K,R,C) ∈ K ×RK × C. We callM[K,R,C] the resulting alphabet of moves. Where
no ambiguity arises, we omit the subscript K,R, C and only refer toM. We partition
M intoMd =MK,R,$ andMp =MK,R,C1 , to indicate that the Drawer can only use
moves with the $ colour and the Painter only ”real” colours. Moreover, a Painter can
perform a move (k, r, c) ∈ Mp for some k, r, and c only if a move (k′, r, $) ∈ Md

has been previously performed by the Drawer, where either k = k′ or r ∈ Rk ∩ Rk′ .
Note that, even if regions are taken from different maps, they are bound to agree on the
already performed moves.

A colouring of a map with n regions is a process with moves of the form (y,R, x),
and the resulting computation is a word onM∗[K,R,C]. Actually, the languages of in-
terest here are languages on the trace monoid M(E) = M∗[K,R,C]/ ≡E [15], where
the dependency relation E is induced by the complement of an independency rela-
tion I such that ∀k ∈ K ∀ri, rj ∈ R ∀ch, cl ∈ C1 ((k, ri, ch), (k, rj , cl)) ∈ I and
((k, ri, $), (k, rj , $)) ∈ I .

For a word ω ∈ M(E), we call α(ω) the set of moves used in ω. In gen-
eral, one distinguishes Drawer and Painter computations, but we omit the distinc-
tion when no ambiguity arises. For a given map k ∈ K, all computations ω satisfy
noReplication(ω) ≡ ∀r ∈ Rk, ch, cl ∈ C[¬∃ω1, ω2(ω = ω1 • ω2)[((k, r, ch) ∈
α(ω1)) ∧ ((k, r, cl) ∈ α(ω2))]], where • denotes concatenation of moves.

Moreover, admissible computations for the Painter satisfy predicate admp(ω) ≡
∀r, ri, rj ∈ Rk [adjk(ri, rj) =⇒ ((k, ri, c) ∈ α(ω) =⇒ ¬(k, rj , c) ∈ α(ω))],
where adjk(ri, rj) indicates that the two regions ri, rj are adjacent in map k.

Each agent can perform any legal computation on a map. For the Painter, this cor-
responds to sequences producing 4-coloured maps, while for the Drawer these are all
possible orders of presentations of regions from a map. After a Drawer’s move (k, r, $),
the Painter can observe only its projection (r, $) ∈ R × C and must replicate with a
move (k′, r, c) from a computation on a map k′ containing r. Analogously, the Drawer
will observe only the projection (r, c) of such a move. Once the Drawer has selected
a map, it has to go on playing with its original choice. In general, sameMap(ω) ≡
∀(k, r, c), (k′, r′, c′) ∈ α(ω)[k = k′]] indicates that a player always selects moves from
the same map, while playk is satisfied if a player’s computation satisfies sameMap,
selecting moves from map k.

Of interest here are alternating games, in which the Painter has to colour regions
exactly in the order in which they are proposed and progress is made only if the Painter
has coloured all of them. We adopt the point of view of an external observer, which
regards the game as a single computation ωo where moves are successions of projec-
tions on R × C of the moves played by the Drawer and the Painter. We introduce a
predicate alt(ωo) which is satisfied if ωo is admissible and, for any prefix ω1 of ωo,
| ω1 |{$} ≥ | ω1 |C1 . Moreover, for a word ωo satisfying alt(ωo), we introduce the
projections prd and prp providing ωd and ωp, respectively, up to the choice of the
map. If the game is played with a fixed number of drawn regions at each turn, we call
alternation step x this number. Alternating games give rise to words of the form ωo

= ad1,1 . . . a
d
1,xa

p
1,1 . . . a

p
1,x . . . a

d
r,1 . . . a

d
r,xa

p
r,1 . . . a

p
r,x. The predicate altx(ωo) is satis-

fied if alt(ωo) and ωo is the unique word describing the alternating game of step x for
which ωd = prd(ωo) and ωp = prp(ωo) are the Drawer’s and Painter’s sequence of

7

Figure 3: The Drawer’s sequences for a game with two maps.

moves, respectively. This corresponds to the case of online colouring [8].
Two predicates can be defined on observer computations, denoting success for the

Drawer or the Painter, respectively, as follows:
succd(ωo) ≡ ∃(r, $) ∈ α(prd(ωo))[¬∃c ∈ C1[(r, c) ∈ α(prp(ωo))]]
succp(ωo) ≡ ∀(r, $) ∈ α(prd(ωo))[∃c ∈ C1[(r, c) ∈ α(prp(ωo))]]
Considering the set of maps K = {k1, k2} of Figure 3, one verifies Fact 1.

Fact 1 The following hold:

1. ∀ωd ∈Md(E)∀ωp ∈Mp(E)∀k ∈ K[(playk(ωd)∧playk(ωp)) =⇒ (∃ωo[ωd =
prd(ωo) ∧ ωp = prp(ωo) ∧ succp(ωo)])]

2. ∀h, k ∈ K[(¬h = k) =⇒ (∃ωd ∈ Md(E), ωp ∈ Mp(E)[(playh(ωd) ∧
playk(ωp)) =⇒ (∃ωo[ωd = prd(ωo) ∧ ωp = prp(ωo) ∧ succd(ωo)])])]

The Drawer’s strategy is to select one map in Figure 3 and present the common
regions indicated with 1, 2, 3 , in this order. After the Painter has selected the third
colour, the Drawer proposes the region identified with 4 in its map. The computation
will result in success for the Painter if the two were moving with respect to the same
map. Otherwise, the Painter will be forced to choose a colour for which no computation
can be successful. From the observer’s point of view, iterations of the game in which
the first three moves of each player are always the same can result into different games.
Such a situation occurs for alternating games of step 1 and 3, but not for any other step.

For any game, the property succp(ω1) ∧ perm(ω1, ω2) =⇒ succp(ω2) holds,
where predicate perm(ω1, ω2) is satisfied if one word can be obtained from the other
by permutation of the positions of the moves.

4 Computing with overlapping
We introduce here the categorical structure needed to describe computations occurring
on images through the use of the overlapping operation. This structure will result into
an instance of a SymcatB-category formally defined in Section 5. The language and
the logical structure associated with SymcatB in Section 6 will provide the proper
solution to the problem of finding a language to speak about collaborative computing
with images and characterise its logics.

8

4.1 The monoidal category of trees
In order to describe the possible evolution of a concurrent process from one state to
another, one exploits a set of computations labeled with elements from a complete
meet-semilattice L, representing possible observations of the behavior of an agent (in
our leading example the overlapping of visible moves performed by the two players).
The elements of L give the extent of the computation. Since for the observer the pro-
cess is a non-deterministic one, a further piece of information is needed to identify
the degree to which two given computations are indistinguishable to observation; in
general, this degree, called agreement, will not be maximal. Such a structure gives
rise to a generalized tree whose paths are computations, glued together via agreement.
This kind of definition can produce also pathological trees as, e.g. the empty one or a
tree where two paths are completely glued together. Actually, this construction can be
carried for any meet-semilattice L [11].

Definition 4 [Trees]

1. An L-tree (or tree) is a triple (X, eX , aX) where X is the set of paths, the extent
map eX : X → L is the labeling of the paths and the agreement aX : X ×X →
L is the gluing between paths, such that, ∀x, y, z ∈ X , it holds that:

(a) aX(x, x) = eX(x)

(b) aX(x, y) ≤ eX(x) ∧ eX(y)

(c) aX(x, y) ∧ aX(y, z) ≤ aX(x, z)

(d) aX(x, y) = aX(y, x)

2. An L-tree-morphism, or simulation, f : X → Y is a function mapping paths
into paths, strictly preserving labeling and non decreasing gluing between them:

(a) eX(x) = eY (f(x))

(b) aX(x, y) ≤ aY (f(x), f(y))

3. L-trees with their morphisms form the category TreeL, or Tree for short.

Figure 4 shows an example of trees, each with two paths, with equal extent, i.e. the
set of words {ac, ab}, but different agreement, as the agreement between the paths in
the left tree is the empty word and that for the right tree is the word labeled a.

? ?

@
@
@

�
�
�
a a

c b

x y

@
@
@R

�
�
�	

a

c b

x y

Figure 4: Two Trees.

9

Example 1 Let A∗ be the free monoid generated by an alphabet A. An A∗-category
X results in an A-labeled tree, with the set of labels ordered according to the prefix
relation.

From a monoid on which the prefix relation induces a complete meet-semilattice
structure (as for a free monoid), one obtains an instance of the theory developed so far.
The same construction can be performed for a trace monoid.

Due to their relevance in our context, we now introduce some further operations
on Tree, in particular cases. We now consider a meet-semilattice which has also a
monoidal structure, according to Definition 5.

Definition 5 [Meet-semilattice with monoidal structure]
A meet-semilattice L = (L,≤,∧,⊥) has a monoidal structure iff it is a monoid
(L, •, 1) such that the following hold:

• h ≤ h′ implies k • h ≤ k • h′ (right monotonicity)

• k • (h ∧ h′) = (k • h) ∧ (k • h′) (right semidistributivity)

• k ≤ k • h (non decreasing property)

Proposition 2 If L = (L,≤,∧,⊥) has a monoidal structure (L, •, 1), then ⊥= 1.

Now we can lift the monoidal structure of L to the level of TreeL.

Proposition 3 Let L be a meet-semilattice with a monoidal structure (L, •, 1). Then
a tensor product ⊗ : TreeL × TreeL → TreeL exists, producing a (non symmetric)
monoidal category (TreeL,⊗, I), where I is the one-path tree with trivial labeling 1.

Remark 2 [11] If • is left-cancellative, the tensor (Tree,⊗, I) is left-closed, i.e. −⊗
Y has a right adjoint Tree(Y,−) for every Y . Monoidal left-closedness would allow
speaking of the “tree leading from one state to another state”, so that, going back in
time along a behavior, one could recover uniquely the remaining part of it from a given
state. However, this property is very strong and not verified for most examples here.

Proposition 4 A homomorphism of meet-semilattice monoids φ : L′ → L induces
two monoidal functors Φ : TreeL′ → TreeL and Φ′ : TreeL → TreeL′ .

Example 2 Given a set A, let A† = (A ∪ {†}). We now let the free monoids A∗† and
A∗ play the roles of L′ and L, respectively, and define a monoidal functor between
them by introducing a function on words in A∗† , deleting instances of † as follows:

DEL(s) =

 ε if s = ε
µ • DEL(s′) if s = µ • s′ and µ 6= †
DEL(s′) if s = † • s′

DEL can be extended to a monoidal functor ∆ from trees labelled with A ∪ {†} to
A-labelled trees, deleting †’s on paths. On the other hand, according to Proposition 4,
given the inclusion homomorphism i : A∗ → A∗† we obtain also a pair of functors,
namely the obvious inclusion functor INC : TreeA∗ → TreeA∗† and the functor
RES : TreeA∗† → TreeA∗ . The latter, given a tree X , erases from it all the paths with
labels containing †. This operation corresponds to what in concurrent process algebra
is called restriction. There is a (strict) mono res : INC(RES(X)) � X .

10

4.2 The case of overlapping operation
For the overlapping operations defined in Section 3 one proves the following:

Proposition 5 Let op : V × V → V be an associative monotonic operation with τ as
unit and satisfying Definition 5; then (PI,≤, •op, ι0) with •op defined point-wise and
coordinate-wise as above, is a meet-semilattice with a monoidal structure.

One can thus define generalized trees on PI as illustrated in Section 4.1.

5 The category SymcatB
We expose here for the sake of completeness the general categorical-theoretic argu-
ments which allow the introduction of the notion of more-than-coherent logic in next
section. The reader more interested in applications than in general theories can skip
this section or, better, substitute everywhere the locally posetal 2-category B with a
meet-semilattice L and SymcatB with TreeL. In Section 7 we will see that for our
purposes we need this particular instance only.

Given a suitable locally posetal 2-categoryB ([20]), one obtains the category SymcatB
where for every pair of objects b and b′ the hom-set hom[b, b′] of morphisms from b to
b′ is assumed to be cocomplete and sups are preserved by composition. We also assume
the existence of an operation on hom-sets, behaving as a meet w.r.t. the order. If B is
generated as the category of relations on a regular category B, the meet operation is
given by the pullback.

Definition 6 [Symmetric categories and functors]

1. [20] A symmetric B-category X =< X, eX , aX > is a set X equipped with an
extent function e : X → B and an agreement function a : X ×X → Mor(B)
satisfying: ∀x, y, z ∈ X: 1) aX(x, x) = eX(x); 2) aX(x, y) ≤ eX(x) ∧ eX(y);
3) aX(x, y) ∧ aX(y, z) ≤ aX(x, z); 4) aX(x, y) = aX(y, x) where ∧ denotes
the meet operation.

2. [20] A B-functor f : X → Y between two B-categories is a function f : X →
Y , satisfying ∀x, y ∈ X: eX(x) = eY (f(x)); aX(x, y) ≤ aY (f(x), f(y))

3. A B-functor f is called strict if the following equation holds: aX(x, y) =
aY (f(x), f(y))

Definition 7 [Cartesian and coherent categories][10]

1. A cartesian category C is regular if it has stable images under pullbacks.

2. A regular category C is coherent if it has stable unions under pullbacks.

In the following, we give a series of results needed to introduce more-than-coherent
logic in Section 6. As the focus of the paper is on logic rather than on categorical
constructions, we omit the proofs.

11

Proposition 6 If B is locally cocomplete, then SymcatB is a coherent category.

Corollary 1 In SymcatB, with every object X , a distributive lattice (Sub(X),∪,∩)
is associated, with ∪ and ∩ the join and meet, respectively. Given a morphism f :
X → Y , an image operator Σf : Sub(X) → Sub(Y) exists, which is left adjoint to
the inverse image operator f∗. The whole structure is stable under pullbacks.

We now consider strict morphisms in SymcatB: strictness is preserved by iden-
tity, composition and pullbacks; images are strict if the original morphisms are. We
call sSymcatB the subcategory of SymcatB where morphisms are strict. B can be
considered as the terminal object in SymcatB as well as in sSymcatB.

Proposition 7 If B is locally cocomplete, then sSymcatB is a Heyting category [10].

In other words, every object X in SymcatB is associated with a pair of categories
Sub(X) and sSub(X): the first one with a coherent structure, the second one, using
only strict monos, with a Heyting structure. In particular, for any morphism f : X → Y
and any strict mono m : X ′ → X , we define ΠfX

′ ≡ {y ∈ Y | ∀x ∈ X(f(x) =
y =⇒ x ∈ X ′)}, which will play the role of universal quantifier (right adjoint to
f∗). From the existence of a universal quantifier one derives the “negative” operators:
X ′ =⇒ X ′′ ≡ Πm(X ′ ∩ X ′′ � X ′), where m : X ′ � X and ¬X ′ ≡ X ′ =⇒ ⊥.

Proposition 8 For X in SymcatB we have functors i : sSub(X) → Sub(X) (in-
clusion) and s : Sub(X) → sSub(X), left-inverse left-adjoint to i. s has also a left
adjoint j.

For every sub-object structure in SymcatB, one defines all the usual set-theoretical
operators including the “negative” ones: negation, implication and universal quantifier.
However, these will have the expected adjunction properties for the strict subobjects
only. In fact, if we apply the definition of ΠfX ′ to non strict monos, the result will
be a strict one, while the correspondence necessary for the adjunction will work only
one-way, i.e., for f∗(Y ′) → X ′, there is a unique Y ′ → ΠfX ′, but the opposite is
not always true. The same happens for negation and implication. As for the positive
operators, they will be the same for both strict and non strict subobjects; only in the
case of strict ones will they coincide with those obtained from connectives/quantifiers
defined from the subobject classifier.

Proposition 9 The following hold: 1) A mono (an epi) in SymcatB is regular if and
only if it is strict. 2) There is an object Ω in SymcatB which classifies strict monos.

Remark 3 In set-theoretical terms, a non-strict mono corresponds to a subobject con-
taining “elements” of an object with both an evaluated membership and an evaluated
equality, in both cases possibly non maximal w.r.t. the object. Ω will classify only strict
subobjects, i.e. it will classify subobjects w.r.t. their membership. However, since it
ignores non-strict monos, it will be completely indifferent to the actual equality. On
the other hand, we are interested in non-strict monos in order to take into account seri-
ously non-determinism in computations; hence we need to consider a variation of both
membership and equality.

12

Actually, under a technical condition, which is satisfied in our case, we can prove
that SymcatB contains a topos, composed of skeletal Cauchy complete (see [21])
symmetric B-categories with strict B-functors between them.

6 More-than-coherent-logic
Given the categorical structure presented in Section 5 we can now introduce, in a stan-
dard way, a new logical system, intermediate between coherent and first order logics.

Definition 8 [Logics]

1. A coherent logic [10] is a sorted language with formulae built on constants >,
⊥, connectives ∧ and ∨, the existential quantifier ∃, the “equality predicate” and
whose deductive system comprehends rules α), β), γ), δ), ζ) and θ) in Table 1.

2. A first order logic [10] is a sorted language containing all formulae of the lan-
guage of coherent logic, plus those built on connectives ¬ and =⇒ and the
universal quantifier ∀, and whose deductive system comprehends all the infer-
ence rules for a coherent logic plus the rules ε) and η) in Table 1 (in this case,
rules in θ) are a consequence of the others, in particular of ε).

3. A more-than-coherent logic is a sorted language containing all the first order
logic formulae, and ewhose deductive system comprehends all the inference
rules of first order logic, except for the second parts of the ε) and η) rules.

We can interpret terms and formulae of the language in the usual way (see [10]),
by fixing a “context”, i.e. a finite set of variables containing those appearing as free
ones; a term is interpreted as a morphism from the product of the interpretations of the
types of the variables in the context to the interpretation of the type of the term, while
a formula is interpreted as a subobject of the product of the interpretations of the types
of the variables in the context. A sequent between two formulae is satisfied iff there is
an instance of the order between the corresponding subobjects.

Theorem 1 If B is locally cocomplete, SymcatB is a model for a more-than-coherent
logic.

Proof: As SymcatB is coherent, we interpret its positive logical operators according
to the rules for a coherent logic. As for the negative ones, we also interpret them using
the Ππ operator for the universal quantifier, Σπ for the existential quantifier, for some
suitable projection π, and the obvious correspondences for the other operators. We are
left to prove the validity of the first part of ε) and of η). To this end, one observes that
formulae involving negative operators are interpreted in strict subobjects. Hence, if φ
is interpreted in X1 and ψ in X2, for the first part of η) we have: X1 → X2 implies
s(X1) → s(X2), because s is a functor. The latter implies s(X1) → Ππ(s(X2)),
because the first part of η) holds in a Heyting category; then composing with X1 →
s(X1) and using the fact that Ππ(s(X2)) = Ππ(X2), we have X1 → Ππ(X2). In the
same way one can prove the first part of ε). 2

13

α) identity φ `~x φ
substitution φ `~x ψ

φ[s/x] `~y ψ[s/x] cut φ `~x ψ ψ `~x χ
φ `~x χ

β) equality > `~x x=x x=y∧φ `~x φ[y/x]

γ) conjunction φ `~x > φ ∧ ψ `~x φ φ ∧ ψ `~x ψ
φ `~x ψ φ `~x χ
φ `~x ψ ∧ χ

δ) disjunction ⊥ `~x φ φ `~x φ ∨ ψ ψ `~x φ ∨ ψ
φ `~x χ ψ `~x χ
φ ∨ ψ `~x χ

ε) implication φ ∧ ψ `~x χ
ψ `~x φ =⇒ χ

ψ `~x φ =⇒ χ
φ ∧ ψ `~x χ

ζ) existential quantifier φ `~x,y ψ
∃yφ `~x ψ

∃yφ `~x ψ
φ `~x,y ψ

η) universal quantifier φ `~x,y ψ
φ `~x ∀yψ

φ `~x ∀yψ
φ `~x,y ψ

θ) distributivity φ ∧ (ψ ∨ χ) `~x (φ ∧ ψ) ∨ (φ ∧ χ)) Frobenius φ ∧ ∃yψ `~x ∃y(φ ∧ ψ)

Table 1: Logical rules

A first order language with all the usual connectives and quantifiers can thus be
associated with SymcatB. Formulae corresponding to strict subobjects (in particular
the negative ones) will enjoy all the rules of a full first order (intuitionistic) logic, while
all the other formulae will enjoy all the rules of a coherent logic plus the first parts of
ε) and η).

7 Formulae on trees
We now give some examples illustrating the use of the language associated with SymcatB
with reference to the category Tree. In fact, we are able to define a first order language
to speak about paths on these trees, i.e. computations in a concurrent framework or, as
seen in Section 3, interactive computations on images.

A complete meet-semilattice L gives rise to a locally-posetal, locally-cocomplete
2-category L, in the way described in Section 5. The category TreeL, of L-labeled
structured computations and simulations between them, coincides with the category
whose objects are symmetric L-categories and whose morphisms are the L-functors
between them. The terminal object in Tree is given by L itself, thought of as a tree
(L, idL,∧). Namely, it has all the elements as paths and the agreement between all of
them is the meet.

14

Operations from Section 4.1 provide some predicates. For example, the mono res :
INC(RES(X)) → X is an interpretation of ∃x[P†(x)], where P†(x) means that
the computation x does not contain an occurrence of the elementary move †. Using
negation, one can also express the occurrence of a given elementary move in every
computation. Analogously, using the tensor product, one can express the factorization
of a computation. In particular, if the tensor product has a right adjoint we are also able
to say that ”p is a computation from a state s to a state s′” using the object [s′, s] and
the image of its unique morphism in the terminal tree. In this case the corresponding
mono is not in general strict.

Strict monomorphisms in TreeL are injective simulations that strictly preserve
agreement. In other words, a strict subtree X ′ of a given tree X contains some of
its paths with the same extent and the same agreement as they have in X . If a formula
is interpreted in such a kind of subobject, it will behave as a first order formula.

As example of a non ‘well behaved” formula, take ∃x∃x′[e(f(x)) = del(e(f(x′)))],
where the type of both x and x′ has been interpreted in X and f is a functional symbol
interpreted in a non-strict morphism f : X → Y1. In concurrent process parlance, this
means that we have a simulation of the process represented by X via the process rep-
resented by Y , which is more deterministic than X , and we state the existence of two
computations in X which are simulated by computations in Y with the same extent, up
to some extra labels in the second one. Due to non determinism, the subobject of Y
corresponding to this formula is not strict, i.e. we can find two computations satisfying
the condition, but their agreement could be smaller than the one they have when they
are simulated in Y .

In order to show the limitations of the deductive system of more-than-coherent logic
with respect to first-order logic, consider the formula ∀y[∃x∃x′[e(f(x)) = del(e(f(x′)))∧
a(f(x), y) = ⊥]], with x typed in X and y typed in Y , suppose it to be true for the
given X and Y , and that we interpret it w.r.t. the context Y . Then there will be a
mono from Y to its interpretation. If we now remove the universal quantification, the
new formula will be still interpreted as subobject of Y , but since it corresponds to a
non-strict one there will be no mono from Y to such a subobject. This fact falsifies the
second part of rule η).

Coming back to our main example in Section 3, we can easily prove:

Proposition 10 The following hold:

1. PI is a meet-semilattice with monoidal structure on V .

2. An intrinsic first order language exists, equipped with a more-than-coherent
logic, to speak about non deterministic computations with images.

The same happens in particular for the trace monoid M(E). As a consequence,
once one defines all the terms and predicates mentioned in Section 3.2 using the oper-
ations defined onM(E), all the formulae appearing there are formulae of a first order
language equipped with a more-than-coherent logic. This fact shows the use of the pro-
posed language for computing with images, in particular in cooperative or interactive
processes, with reference to online coloring.

1We will abuse notation a bit here and identify syntactical and semantical symbols.

15

8 Conclusions
Computation on multidimensional words is becoming standard practice for multimedia
applications, as well as for representing evolution of distributed states. Ad hoc methods
are usually devised for different numbers of dimensions or for modelling semantics.

We have proposed a categorical setting for describing such computations based on
the ubiquitous operation of overlapping. This gives an interesting enriched categori-
cal structure, accommodating a new type of logical system, called more-than-coherent
logic, with the expressive power of first-order logic, but a weaker deductive system.

This supports reasoning on composition of different contributions where each in-
termediate state is ”more defined” than the previous one. In particular, such a logical
structure can be used to filter out moves which cannot contribute to reaching a desired
final state. In [2], filters were used to explore the power of the overlapping operation,
allowing the simulation of several rewriting mechanisms. Since more-than-coherent
logic naturally emerges from the properties of the overlapping operation, this logic
seems to provide a good setting for reasoning about different interactive phenomena
involving images, and we plan to investigate its properties more deeply.

The overlapping operation can be parameterized to any number of dimensions and
different types of value composition, preserving the required properties for a monoidal
structure. Moreover, pointed words introduce a natural notion of synchronization
where agents can cooperate in the construction of words defining the result of a com-
putation only on designated positions. The overlapping operation exploited here is a
point-wise one. An exploration of the structure underlying other types of operations
may uncover different types of logic. As an example, grey-scale image morphology has
been related to computations on complete lattices [17] and to fuzzy logic [5]. More-
over, it would be interesting to combine reasoning on computations with reasoning on
their results, for example composing filtering on computations and on results.

References
[1] Bottoni, P. and A. Labella, Pointed pictures, JVLC 18 (2007), pp. 523–536.

[2] Bottoni, P. and A. Labella, Cooperative construction of pointed pictures, Rom. J.
of IST (to appear).

[3] Bottoni, P., G. Mauri and P. Mussio, From strings to pictures and back, Rom. J.
of IST 6 (2003), pp. 87–104.

[4] Dacey, M. F., The syntax of a triangle and some other figures., Pattern Recogni-
tion 2 (1970), pp. 11–31.

[5] Deng, T.-Q. and H. J. A. M. Heijmans, Grey-scale morphology based on fuzzy
logic, J. of Math. Im. and Vis. 16 (2002), pp. 155–171.

[6] Giammarresi, D. and A. Restivo, Two-dimensional languages, , III, Springer,
1997 pp. 215–267.

16

[7] Grammatikopoulou, A., Prefix picture sets and picture codes,
web.auth.gr/cai05/papers/21.pdf.

[8] Halldórsson, M. M. and M. Szegedy, Lower bounds for on-line graph coloring,
TCS 130 (1994), pp. 163–174.

[9] Japaridze, G., Introduction to computability logic, Annals of Pure and Applied
Logic 123 (2003), pp. 1 – 99.

[10] Johnstone, P., “Sketches of an elephant,” Oxford Science Publications, 2002.

[11] Kasangian, S. and A. Labella, Observational trees as models for concurrency,
MSCS 9 (1999), pp. 687–718.

[12] Kirsch, R., Computer interpretation of english text and picture patterns, IEEE
Trans. EC 13 (1964), pp. 363–376.

[13] Latteux, M., D. Robilliard and D. Simplot, Figures composées de pixels et
monoı̈de inversif, Bull. Belg. Math. Soc. 4 (1997), pp. 89–111.

[14] Lawvere, F., Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci.
U.S.A. 50 (1963), pp. 869–872.

[15] Mazurkiewicz, A. W., Trace theory, in: Advances in Petri Nets, LNCS 255, 1986,
pp. 279–324.

[16] Milner, R., “Communication and concurrency,” Prentice Hall International, 1989.

[17] Ronse, C., Why mathematical morphology needs complete lattices, Signal Pro-
cessing 21 (1990), pp. 129 – 154.

[18] Shaw, A., The formal picture description scheme as a basis for picture processing
systems, Inf. and Cont. 14 (1969), pp. 9–52.

[19] Siromoney, R. and K. Krithivasan, Parallel context-free grammars, Inf. and Con.
24 (1974), pp. 155–162.

[20] Walters, R., Sheaves and Cauchy-complete categories, Cahiers de Topologie et
Geometrie Diff. 22 (1981), pp. 283–286.

[21] Walters, R., Sheaves on sites as Cauchy-complete categories, J. Pure Appl. Alge-
bra 24 (1982), pp. 95–102.

17

A logical model query interface∗

Harald Störrle
Institute of Informatics
University of Munich

Munich, Germany

August 17, 2009

Abstract

This paper presents the Logical Query Facility (LQF), a high level program-
ming interface to query UML models. LQF is a Prolog library built on top of the
Model Manipulation Toolkit (MoMaT, cf. [8]). It provides a set of versatile pred-
icates that reflects the notions modelers use when reasoning about their models
which makes it easy to formulate queries in a natural way. In order to demon-
strate the capabilities of LQF in comparison to OCL, we have implemented it as a
plug in to the popular MagicDraw UML CASE tool [3], and evaluated LQF with
a benchmark suite of frequent model queries.

1 Introduction

1.1 Motivation
Over the last decade, model based and model driven development have turned into
mainstream approaches in large scale industrial software engineering projects.1 Visual
languages like UML, EPCs, BPMN, DSLs, etc. play a more and more prominent role
in such settings, and as a consequence, models have grown much larger (see cf. [9] and
Fig. 1).

Another consequence is that more and more people are involved directly in model-
ing activities. Today, most modelers in large scale projects are not software engineers,
but domain experts. In fact, the integration of domain experts is a crucial success factor
in medium to large scale software development efforts. Thus, providing an interactive
query facility for modelers is dearly needed in many if not all modeling projects.

From experience we know, however, that many modelers are challenged by the
complexity of modeling languages already. Often, they can’t (or won’t) cope with yet
another, complicated language for queries (such as OCL or QVT), let alone query APIs.
But the query facilities provided by many tools (full-text search and predefined queries)

∗Thanks to Alexander Knapp for generously sharing his OCL expertise.
1Since 2004, the author has participated in two such projects as lead methodologist and modeling coach.

1

18

M
od

el
 E

le
m

en
ts

Views (“Diagrams“)

medium
scale

large
scale

very large
scale

ultra large
scale

102

108

106

104

1 102 104

SAP R/3 EPC-Reference model

106

UML 2 meta model

FMK/Konsens BIENE

Corporate Data Model
Bayerische Landesbank

DRV ibizaVAA

LF/3 Data model

small
scale

(c) 2006-2009, H. Störrle

TBL

KBS

BG Phoenics

#8

Galileo

#10

Arcus

SNF/AEF

Model Element:
Instance of a meta class
in a meta model

View (“Diagram“):
Individual compound of
model elements possibly
shared between different
views

View type:
Class of views with unique
set of common constraints

Name:
Project in which model was
created, numbers indicate
anonymised data

Diversity:
Number of different view
types in a mode as follows

Legend

<2 <4 <8 <16 <32

Name

Figure 1: Real life models may become very large (cf. [9]).

19

are not expressive and flexible enough. This paper reports on our attempt to provide a
better query facility which is expressive enough for all queries yet much easier to use.

1.2 Related work
Currently, there are four distinct types of UML model query facility: (1) tool specific
queries, (2) application programming interfaces, (3) visual query facilities, and (4)
abstract query facilities like OCL.

tool specific facilities Full text search and predefined queries are easy to use, but very
limited in terms of expressiveness. For instance, a text search cannot find model
structures or patterns, and sets of predefined queries cannot be easily extended.
In our experience from industrial modeling projects, this type of query facility is
too limited for many tasks.

APIs In contrast, an Application Programming Interface (API) offers complete con-
trol over a model and unrestricted expressiveness for querying. However, most
CASE tools’ APIs are very complex and are built on mainstream programming
languages like Java (MagicDraw), C# (Enterprise Architect), or Visual Basic
(Rational Rose). So, substantial commitment and effort is required before an
end user can use such an API.

visual queries There are also visual query facilities like Query Models [6, 7] and
VMQL [10]. Unfortunately, the Query Models approach has never been im-
plemented; VMQL has been implemented, but there are no evaluations of its
practical value yet.

logic based queries Today, the Object Constraint Language (OCL, [4]) is the de-facto
standard language for complex annotations of UML models (such as consistency
conditions, pre- and post-conditions). So, one could say that OCL is the “gold
standard” of logic based UML query languages. However, OCL lacks several
features essential for querying.

We will analyze OCL’s deficiencies for querying in detail in the next section as the
starting point for our own work.

1.3 Approach
As we have said before, OCL is the de-facto standard for expressing complex properties
of UML models but it suffers from several shortcomings as a language for end user
model querying. Analyzing these deficiencies will help us define a better query facility.

Pattern Matching OCL provides no pattern matching facilities, e. g., name matching
using wild cards. For most users concerned with ad hoc queries, the full power
of regular expressions are probably not required. Most of the time, it will be
sufficient to allow * and ? in names to match any number of characters and a
single character, respectively. Defining such a function is very hard with OCL.

20

Conceptual Abstraction When expressing queries in OCL, the modeler needs to nav-
igate through concepts defined in the UML meta model which requires substan-
tial expertise. Also, since the concepts used in the UML meta model have little to
do with the notions a modeler uses when reasoning about models, a conceptual
mismatch arises that interferes with using OCL.

Type System OCL is strongly typed, which many people perceive as disruptive in
interactive tasks (such as ad-hoc querying). Moreover, the OCL type system
lacks type variables, providing only a limited form of subtyping polymorphism,
but no parametric polymorphism (cf. [1]).

Notation Size & Complexity OCL has a rich and complex syntax with more than 50
keywords and standard library functions, plus all the usual operators and con-
stants for arithmetics, boolean logic etc., which implies a considerable learning
effort for any user.

Summing up, OCL lacks essential query facilities like pattern matching, it fails
to provide a useful abstraction layer on top of the meta model, and its syntax and
type system are not very helpful either. All in all, its complexity renders it effectively
unusable for the average modeler. As an attempt to overcome these limitations, we
have designed the Logical Query Facility (LQF) advancing our own prior work (see
[8]).

We pursue three goals with LQF. Firstly, LQF should be universal, that is, it should
allow all types of queries, including full text search. Secondly, LQF should be expres-
sive, i. e., as many queries as possible should be expressible in LQF, including those
predefined in typical CASE tools. Thirdly, LQF should be simple, that is, we aim to
make LQF much simpler to use than OCL or an API. To this end, LQF provides a set
of predicates that state important model properties in terms modelers are accustomed
to rather than in terms of the underlying meta model (as OCL does).

2 The Logical Query Facility
In this section we will describe the LQF, the MoMaT framework on which it builds,
and the MQLogic tool implementing LQF.

2.1 The MoMaT framework
The Model Manipulation Toolkit (MoMaT) is a framework for processing models such
as UML models using Prolog. It has been described eg. in [8], and we summarise it
here only so that this paper is more self contained.

MoMaT represents model elements as individual facts and models as sets of facts,
i. e., a Prolog Database. Consider the example shown in Fig. 3. It shows a simple
UML class diagram (top), and its representation as a Prolog module with a set of facts,
one for each model element. The blue italic numbers serve as identifiers of model
elements. These identifiers are completely arbitrary; any string could be used, or, in
fact, the original object identifiers provided for model elements by most contemporary

21

modeling tools. Every fact describing one model element is described using the me/2
predicate. Fig. 2 shows how the arguments of theis predicate are to be interpreted.

me(class-42, [name-'A', ...]).
Each model element
is represented by
a Prolog fact me.

The element properties are
described as a list of tag-value pairs.

tag: an arbitrary Prolog atom

value: an arbitrary Prolog atom or term

separator: an uninterpreted binary infix functor

an arbitrary Prolog atom: unique id

an arbitrary Prolog atom or term: type

an uninterpreted binary infix functor: separator

Type and name of the element together are
used as the (typed) element identifier.

Figure 2: Schematic Prolog representation of a single model element.

The Prolog representation of models is created automatically by the MX tool (cf.
[2]). MX is a standalone tool that processes the files used to store models. Since
MX is highly configurable, it can process a very wide range of file formats, that is
different versions of UML, XMI, MOF/EMF/ECORE, and different tool manufacturers
interpretations of them, but also BPMN/BPEL, and ADL. So far, MX has been used
with MagicDraw, EnterpriseArchitect, VisualParadigm, and Adonis. Extending this
range is usually a matter of hours. Thus, MX (and MoMat, and LQF) may process a
wide variety of models today, and, with a little extra effort, potentially any modeling
language.

The Prolog representation shown in Fig. 3 is identical for every source language or
file format. The first argument contains the model element type (its meta class, in UML
terminology), and and identifier. Both are arbitrary Prolog atoms. The second argument
of me/2 is an unordered list of tag-value pairs, both of which may be arbitrary Prolog
expressions, including complex terms, lists, and so on. Note that this representation
is purely syntactic: a new modeling language with a different set of concepts (meta
classes) is treated just the same and does not require any changes to MoMaT.

This representation alone allows to manipulate models using arbitrary Prolog pred-
icates. For instance, querying for all attributes with type string in model m1 from
Fig. 3, we would have to load the output of MX into a Prolog system (“consult the file”
in Prolog terminology), and issue a small query at the command line prompt:

?- consult(’m1’).
?- m1:me(property-ID, Attributes),

memberchk(type-string, Attributes).

The query returns all identifiers of model elements of type property (the UML jar-
gon for attribute) in the scope of module m1, that have the pair type-string among
their attributes. In this case, the answer is the set of identifiers 1 and 7. To under-
stand this type of expression, a user needs to know a number of Prolog conventions
and syntactic elements.

22

CD m1

Person

name: string
age: int

*

get_job(Occupation) : void

Occupation

required_education: string

1

:-module(m1, [me/2,model/2]).
 model(cd-1, [type-class_diagram, name-m1,language-'UML 2',
 version-'2.2']).
 me(model-1, [name-'Data',ownedMember-ids([2,3,5,7,10,12,15]),
 level-analysis, author-stoerrle, qa-approved]).
 me(class-2, [name-'Organisation',isAbstract-true,
 ownedMember-ids([14])]).
 me(class-3, [name-'Department',ownedMember-ids([4])]).
 me(generalization-4, [to-id(2),from-id(3),isSubstitutable-true]).
 me(class-5, [name-'SmallDepartment',ownedMember-ids([6])]).
 me(generalization-6, [to-id(3),from-id(5),isSubstitutable-true]).
 me(class-7, [name-'Person',ownedMember-ids([8,9,13,16,19])]).
 me(property-8, [name-name,visibility-private,
 multiplicity-interval(0,*),type-string]).
 me(property-9, [name-age,visibility-private,
 multiplicity-interval(0,*),type-int]).
 me(class-10, [name-'Occupation',ownedMember-ids([11,17])]).
 me(property-11, [name-required_education,visibility-private,
 multiplicity-interval(0,*),type-string]).
 me(association-12, [memberEnd-ids([13,14])]).
 me(property-13, [type-id(2),visibility-private,association-id(12),
 multiplicity-interval(1,1),type-id(2)]).
 me(property-14, [type-id(7),visibility-private,association-id(12),
 multiplicity-interval(1,1),type-id(7)]).
 me(association-15, [memberEnd-ids([17,16])]).
 me(property-16, [type-id(10),visibility-private,association-id(15),
 multiplicity-interval(0,*)]).
 me(property-17, [type-id(7),visibility-private,association-id(15),
 multiplicity-interval(1,1)]).
 me(operation-18, [name-'get_job',ownedMember-ids([19]]),
 visibility-'public']).
 me(parameter-19, [visibility-'public',type-id(10)]).

model properties
author: stoerrle
qa: approved
level: analysis

1 1Organisation

SmallDepartment

Department

2 10

3

5

7

14

12

13

4

6

8

9

17

19

19

11

16

15

Figure 3: A simple UML model (top), and its representation in Prolog (bottom). The
blue italic numbers serve as identifiers of model elements; for easier reference we
have added them in the UML model, close to the respective element. Many of the
model element’s properties are default values (e. g., visibilities, multiplicities and
isSubstitutable). The layout of the Prolog representation has been improved
for readability. The notation :-module is the syntax SWI Prolog uses to define a
module.

23

Modules A module in the Prolog system we use is a flat name space. Elements in this
name space may be accessed by prefixing a predicate by the module name and a
colon.

Facts A Prolog fact is an identifier followed by a bracketed sequence of arguments
which are separated by commas. A fact is terminated by a full stop. The pred-
icate- is defined as an infix operator, so type-string really is identical to
-(type, string).

Variables In Prolog, all identifiers starting with a capital letter are logical variables.
The underscore character denotes the anonymous variable.

Queries Stating a fact prompts Prolog to try and find a variable binging that makes
this fact true relative to the currently known facts.

Lists Lists are enclosed in square braces, the list elements are separated by commas.

While this type of access brings the full power of Prolog to UML models, it re-
quires considerable knowledge both of Prolog and the respective modeling language.
MoMaT provides an abstraction layer that makes it easier to deal with complex opera-
tions on models of different kinds. However, since MoMaT provides the full spectrum
of operations, it has proved to be too complex for just querying, and definitely too dif-
ficult to learn for the casual user. LQF, on the other hand, provides a restricted and
specialised set of operators that makes this possible.

2.2 The LQF predicates
The Logical Query Facility (LQF) provides a small set of powerful and generic pred-
icates on top of MoMaT. The LQF predicates capture the properties and relationships
of model elements in the terms modelers are accustomed to rather than in terms of the
underlying meta model (as OCL does). See Table 1 for a complete reference of the
LQF-predicates currently defined. Note that most arguments may be either unbound,
bound to items, or bound to sets of items. Predicates from associated on also have
an additional optional last parameter indicating the number of steps (default is 1).

As a first example, consider again the query we defined in the previous section
to determine the string-typed attributes in model m1. Using LQF, this query may be
rewritten as

exists(property, ID, [type-string])

Now consider a more complex example. Assume, we want to check that two model
elements E1 and E2 are associated. Using OCL this requires us to navigate from E1 and
E2 to their respective ownedMembers, and find an association containing them both.
In order to find the opposite end of an association partner, a different OCL statement
is needed, and in order to get pairs of associated model elements, yet another OCL
statement is needed.

In contrast, the LQF predicate associated/2 may be instantiated in all three
ways, i. e., with both E1 and E2 bound (“check association between them”), with just

24

one of them bound (“get the other end of an association”), or none of them bound (“find
associated pairs of elements”). Additionally, the LQF predicate provides an option to
check whether the association is indirect, that is, via a given number of steps (including
“any”). Also, it is defined on pairs of elements as well as on sets of elements (for n-ary
associations). Finally, it may be used for all kinds of model elements, whereas OCL
would require one definition for every pair of element types.

Similar options and usage modes are provided by all other LQF predicates. The
predicates concerned with relationships also have an additional optional last parameter
indicating the length of the path of the relationship type (“steps”), ranging from 1
(default) to * (any number of steps). For instance, is a(A,B) asserts that there is a
generalization relationship between model elements A and B, while is a(A, B, 3)
asserts that there is a chain of at most three generalizations between A and B. Similarly,
is a(A, B, *) asserts that there is a chain of generalizations between A and B, and
it may be of arbitrary length.

2.3 The MQLogic Tool
In order to explore our approach further, we have implemented MQLogic, a prototype
plug in to the popular MagicDraw UML CASE tool (cf. [3]). It uses the MX model
converter [2], some of the infrastructure of the MQ model query tool [11], SWI-Prolog
and the JPL Java-Prolog-Bridge library (see www.swi-prolog.org). The LQF
predicates are implemented as a set of SWI-Prolog modules. Fig. 4 shows an overview
of the structure of MQLogic. See Fig. 5 for a screenshot of MQLogic.

This chart is annotated with the steps involved in creating and executing a query.
We will start with the steps marked by white circles.

First, the user creates or obtains a model and starts the MQLogic system from
within MagicDraw.

The model is exported by MagicDraw and stored as a XMI-file in the local file
system.

Using the MX tool (cf. [2]), the XMI file is converted into a set of prolog facts.

Steps

and

are performed completely automatically. Note that

modifies
only the format, but leaves the semantic contents of the model completely unchanged.
After changes to the model the user must refresh its Prolog representation which repeats
steps

and

.
In order to execute a LQF query, the following steps must be executed (marked

with numbered black circles in Fig. 4).

 The user inputs an ordinary Prolog query as plain text to the MQLogic input win-
dow, using the predicates defined by LQF (see Table 1).

 The query is sent as-is to the Prolog engine via the JPL Java-to-Prolog bridge.

 The query is executed as-is, dynamically using LQF predicates.

25

Table 1: The predicates defined by LQF.

exists(TYPE, ID, PROPS)

There is an element of type TYPE identified by ID with the properties listed in PROPS as Key-Value
pairs. Note that at least one of the Key or the Value must be instantiated.

sub type of(SUPERTYPE, SUBTYPE)

In the underlying modeling language, SUBTYPE is more special than SUPERTYPE.

attribute of(TYPE, ID, Value)

In the underlying modeling language, SUBTYPE is more special than SUPERTYPE.

name(ID, NAME)

The element identified by ID has the qualified name NAME.

match(VAL, PATTERN)

Value VAL matches the pattern PATTERN (both parameters must be instantiated).

distinct(IDS) All elements in IDS are distinct.

occurs in(ID, D)

The element identified by ID occurs in the diagram identified by D.

associated(ID-SET)

All elements in ID-SET are part of an nary association, where n ≥ |ID-SET|.
rel(ID, ID’, RTYPE)

There is a relationship of type RTYPE between the element(s) identified by ID1 and the element(s)
identified by ID2. If both ID1 and ID2 are sets, all pairs of identifiers must be in the relationship.

is a(ID, ID’)

There is a generalization relationship between the element(s) identified by ID and the element(s) iden-
tified by ID’. If both ID and ID’ are sets, all pairs of identifiers must be in the relationship.

depends(ID, ID’)

There is a dependency relationship between the element(s) identified by ID and the element(s) identified
by ID’. If both ID and ID’ are sets, all pairs of identifiers must be in the relationship.

connected(ID, ID’)

There is any kind of connection between the element(s) identified by ID and the element(s) identified
by ID’. If both ID and ID’ are sets, all pairs of identifiers must be connected.

precedes(ID, ID’)

There is a sequential ordering relationship between the element(s) identified by ID and the element(s)
identified by ID’ (e. g., before/after, incoming/outgoing etc.). If both ID and ID’ are sets, all pairs of
identifiers must be in the relationship.

calls(ID, ID’)

There is a calling relationship between the element(s) identified by ID and the element(s) identified by
ID’. If both ID and ID’ are sets, all pairs of identifiers must be in the relationship.

contains(ID, ID’)

There is a whole-part relationship between the element(s) identified by ID and the element(s) identified
by ID’ (e. g., class/attributes, package/members, state/substate etc.). If both ID and ID’ are sets, all
pairs of identifiers must be in the relationship.

26

 The results are presented back to the user. Currently, this feedback is restricted
to simple values such as (qualified) names of model elements.

MagicDrawTM

MQLogic

Java-Prolog-
Bridge

Java-Prolog-
Bridge

create

search

Model facts

Query predicate

create

use dynamically

Results

views

LQF
Query

Model Base

Source Model

Prolog

Prolog

export

transform

XMI

send

LQF

report

Figure 4: Overview of our prototype implementation of MQLogic.

3 Evaluation
Since MQLogic allows us to run arbitrary Prolog queries against the model, we may
issue every computable query. So, in terms of expressiveness, LQF is equally powerful
as any API offered by any UML tool (assuming unrestricted read access to the complete
model by the respective API). Similarly, any computable function may theoretically be
expressed in OCL, so there is not difference in terms of expressiveness between these

27

Results

Queries

180 mm x 147 mm

Commands:
 - run query
 - refresh XMI
 - refresh rules
 - abort execution

Commands

Bindings in
one result

Figure 5: Screenshot of the MQLogic prototype running in MagicDraw.

three alternatives. Now, the crucial question is, whether creating and/or understanding
queries in LQF is easier than in OCL. In order to find out, we tested the MQLogic tool.
Over the last years we have collected a suite of the ten most popular queries (beyond
full text search) people have wanted to run against their models (see Fig. 6). We will
use them as a benchmark to evaluate predefined APIs, LQF and OCL, contrasting how
they represent these queries. Due lack of space, we will discuss only the first six queries
in this paper.

• text search with pattern matching

• search for particular attribute values

• unconnected nodes/subgraphs

• all transitive super classes

• counting elements of given types

• undefined attributes

• elements of a given type

• structural patterns

• invisible model elements

• references to an element

Figure 6: Some of the most frequent types of queries in industrial modeling projects.

28

3.1 Text search with pattern matching
Probably the most frequent query is to do a full text search for a given string over a
complete model. Most (though not all) CASE tools offer this functionality. A sample
application might be “Find all occurrences of ’foobar’ in any attribute of any model
element.” In LQF, this is a rather simple expression.

exists(_, Element, [Attr-Val]),
match(Val, ’*foobar*’).

Recall that all variables are written with leading capitals except the underscore
which is the anonymous variable. Analogously, we could ask for an element whose
name is restricted by a wild card pattern. For instance, when looking for all occurrences
of the factory-pattern, we might ask for “All classes whose name ends with ’Factory’”.
In LQF, this may be expressed as follows.

exists(class, C, [name-N]),
match(N, ’*Factory’).

To our knowledge, such queries can’t be expressed in OCL.

3.2 Search for undefined attributes or particular values
One of the most common queries is to ask for “unfinished work”, for instance, any
attributes that should be filled but are not. For instance, operations of classes may
or may not have a visibility. So, when looking for operations that lack a value for
“visibility”, in LQF we would have to say

exists(operation, Element, Attributes),
not(member(visibility, Attributes)).

while we could not express this in OCL.
Since most tools do not distinguish between attributes that are left empty on pur-

pose and attributes that have not yet been filled, it is common to set attributes of the
latter kind with a dummy default value like ’??’ or ’ToDo’, indicating unfinished busi-
ness (if an automatic default is not available, it may be replaced by manual work).
Then, a full text search could find such markers. However, it must also be possible to
restrict the search scope and the the text search must be guaranteed to access all fields.
Unfortunately, these preconditions are rarely met (we know of no such example). Thus,
querying for such values across all types of attributes is a convenient way of checking
for unfinished business. To our knowledge, this can’t be expressed in OCL. In LQF,
the query would read

exists(_, Element, [Attribute-’??’]);
exists(_, Element, [Attribute-’ToDo’]).

29

3.3 All elements of a given type
The first query from our benchmark that may be expressed in OCL is a query for all
elements of a given type, say, classes, in a given model. Using LQF, this query could
be expressed as exists(class, C, []). In OCL, we would have to use the
allInstances construct, as in Class.allInstances().

context Package
self.packagedElement->select (t | t.oclIsTypeOf(Class)).

Both queries are of approximately similar complexity, but it is already clear that the
second query requires knowledge of the UML meta model (i. e., the meta association
packagedElement), but also that the OCL syntax is rather complex (i. e., the dif-
ference between the . and the -> operator, and the keywords self, select and
oclIsTypeOf). This type of query is also easily expressed in many tools’ query
facilities using predefined queries.

3.4 All transitive super classes
Collecting all (transitive) super classes of a class named “Contract” amounts to com-
puting a fixed point, which is a rather challenging task for the ordinary modeler (and
for quite a computer science graduate, too). Expressing this in OCL adds an additional
level of syntactic complexity, as the following code demonstrates.

def:
superClasses_1_1(baseClass: Class) : Set(Class) =

if self.hasGeneralization()
then self.generalization.general.

oclAsType(Class)->asSet())
else Set{}
endif

def:
superClasses_n_1(baseClasses: Set(Class)) : Set(Class) =

baseClasses->forAll(bc | superClasses_1_1(bc))
->flatten()->asSet()

def:
superClasses_n_n(baseClasses: Set(Class)) : Set(Class) =

let next = superClasses_n_1(baseClasses)
in if next.equals(baseClasses)

then return baseClasses
else return superClasses_n_n(next)
endif

We first define superClasses_1_1 to compute the set of direct super classes
of a single class, the simplest case. In the next step, we lift this function to sets of base

30

classes, defining superClasses_n_1. The flatten operator transforms sets of
sets of items into sets of items. Finally, chains of inheritance relationships are com-
puted by superClasses_n_n, which also includes an implicit occurs check. Our
query for the super classes of Contract can thus be expressed as follows.

let baseClass = self.packagedElement
->select(x | x.oclIsTypeOf(Class)
->select(x | x.name = ’Contract’)
->asOrderedSet->at(1)

in superClasses_1_1(baseClass)

With LQF, all this complexity is encapsulated in the is a predicate so the respective
query is rather simple.

exists(class, Sub, [name-’Contract’]),
exists(class, Super, []),
is_a(Sub, Super, steps=*).

There are three reasons for this succinctness. First, the notion of “is a superclass of”
used to characterize the query in natural language is present in LQF, but not in OCL.
Creating such an abstraction in OCL requires considerable work and expertise. Second,
the OCL syntax is rather complex, thus difficult to master. Third, OCL’s type system
intervenes, forcing us to include type casting operations like asOrderedSet().

Note also, that in the case of OCL, we would have to define similar functions for
every single type of relationship that may occur transitively. In LQF, on the other hand,
the rel predicate covers all type of relationships. Additionally, the most frequent
cases (generalization, calling, precedence etc.) are also provided with convenience
predicates.

So, while we could hide the complexity of the fixed point computations in OCL
behind suitable library functions created by experts, there would have to be a large set
of similar functions for different types and usage modes. Six years after the last OCL
version was finalized, no such library seems to exist. And even if it did exist, the user
still would have to learn a large set of functions with complex syntax.

3.5 Structural patterns
Consider next the query for a particular structure, e. g.: “Collect all actors associated
to at least two different Use Cases.” This query represents a large class of queries for
local model structures and are useful for design pattern mining. In OCL, this query
may be expressed as follows.

context Package
def:
actorUseCaseAssoc(a: Actor, u: UseCase) : Bool =
let types : set(Element) =
self.packagedElement->asSet()->
select(assoc | assoc.isKindOf(Association)).

31

ownedElement.type->asSet().
in let participants : set(Element) = {a, u}.
in types.intersection(participants) = participants

def:
actorWithTwoUCs(a: Actor) : Bool =
self.packagedElement->asSet()-> select(ucs |

ucs.isKindOf(UseCase))
->collect(uc | actorUseCaseAssoc(a, uc))
->count() > 1

def:
allActorsWithTwoUCs() : Set(Actor)=
self.packagedElement->asSet()->
select(a | a.isKindOf(Actor))
->collect(a | actorWithTwoUCs(a))-> asSet()

endpackage

In LQF, this query would read as follows (this is also the query we show in Fig. 5).

exists(actor, Actor,[]),
exists(useCase, UC_1,[]),
exists(useCase, UC_2,[]),
distinct([U1, U2]),
associated([Actor,UC_1]),
associated([Actor,UC_2]).

3.6 OCL-APIs
While the OCL as such does not offer much to support querying. In that respect, it is
fairly well comparable to MoMaT without LQF as an additional abstraction layer on
top of it. It seems that no such query API exists for OCL. In fact, it seems that there
are few OCL APIs for whatever purpose publicly available.

One notable exception is the UML, however, which defines 77 auxiliary functions
and helpful abbreviations for defining OCL queries. These include a number that may
improve writing queries in OCL, for instance

• allParents() returning the transitive closure of the Generalization relation-
ship;

• general abbreviates generalization.general;

• <EXPR>[<TYPE>] abbreviates <EXPR>.oclAsType(<TYPE>)where <EXPR>
is any OCL expression and <TYPE> is any meta class (type cast in QVT);

• opposite abbreviates access to the opposite end of a (binary) association.

32

This collection of OCL predicates and shorthands is not really an API, it has not
been designed to facilitate end user queries. It is just the collection that happened
to be helpful when defining the constraints of the UML standard document. So, it
is not complete or orthogonal. For instance, there is no predicate for the transitive
closure of the aggregation relationship, allParents lacks an occurs check, there is
no predicate to collect all inherited features, and so on. Also, many of the features of
LQF like pattern matching, and predicate overloading are not defined. Still, using these
auxiliary predicates makes OCL much better usable than pure OCL, as our experiments
have shown (see next Section).

4 Experimental evaluation of LQF
While we believe our approach is obviously better than OCL, we are biased of course,
compromising our judgment. Our claim of superiority is mostly concerned with the
usability, most notably the understandability of LQF as a model query language. Ob-
viously, such a claim can only be examined empirically. We have therefore devised a
questionnaire with a set of tasks to help answer these questions. A complete account of
these experiments, unfortunately, would be beyond the scope of this paper and will be
submitted elsewhere. Without going into the details, we only summarize our findings
here.

The experiment consisted in a questionnaire where subjects were asked to match
queries described in natural language and queries described in OCL and LQF, the lat-
ter being our two experimental conditions. In a second task, subjects were asked to
judge as correct or not pairs of given matches of a natural language query and a query
expressed in OCL or LQF. Next, subjects were asked to compare the time and effort it
took them to complete OCL and LQF tasks, and their personal opinion of the under-
standability of the respective languages. Finally, some of the subjects participated in
structured interviews to further elaborate on their experiences and feelings concerning
the tasks.

Unsurprisingly, we could demonstrate that subjects made many more mistakes us-
ing OCL than they did using LQF, for all tasks, and for all categories of errors. Sub-
jects also consistently judged their effort with OCL tasks much higher than LQF tasks
and generally found LQF much better understandable than OCL (which was gener-
ally judged as very difficult to understand). These findings were also confirmed by
post-experiment interviews. Interestingly, the occupation of the subjects (students, IT
professionals, scientists) and their prior knowledge of OCL did not influence these
results substantially.

As we have said, none of these findings were surprising, quite the opposite. An
interesting phenomenon occurred, however, when adding another experimental condi-
tion besides OCL and LQF, namely, OCL plus the convenience functions defined en
passant in the UML standard (see [5]). We called this query language “OCL+UML”.

The error rates of OCL+UML were slightly lower than those of LQF, and similarly,
the subjective judgments were slightly better. However, when controlling for prior OCL
knowledge, the relation between LQF and OCL+UML flipped, both in error rates and
judgments. That is: subjects with no prior OCL exposure performed better on LQF

33

than on OCL+UML, and subjects with OCL exposure performed better on OCL+UML
than on LQF. In most cases, the exposure was a rather substantial MDA course the
students acting as subjects had just finished.

5 Discussion

5.1 Summary
This paper presents the Logical Query Facility (LQF), a very high-level Prolog API
suitable for querying UML models ad-hoc by end-users. We have implemented the
MQL tool, a plug in to the popular MagicDraw CASE tool implementing LQF. It allows
to access all languages supported by MagicDraw, i.e., all of UML, a variety of UML
profiles, and BPMN. Executing a query in MQL amounts to translating a UML model
into a Prolog rule base, and executing the LQF-based query predicate on it. LQF builds
on the MoMaT system (see [8]). It shares some of the infrastructure of VMQL [10],
but follows a distinct approach defining its own language, and providing its own tool.

5.2 Contribution
Our approach attempts to achieve universality, expressiveness, and simplicity (cf. Sec-
tion 1.2). We have evaluated the universality and expressiveness of our approach
against these goals by collecting a test suite of common queries and checking that all
of these queries can be expressed in LQF. We have evaluated the simplicity of our ap-
proach by contrasting the OCL and LQF representations of these queries. It is obvious
that LQF expressions are much simpler and shorter than corresponding OCL expres-
sions. We have tried to confirm this finding by a controlled experiment. Although our
results seem to confirm our hypothesis, we do not have sufficiently many data points
yet to truly support our claim. Further experimentation is clearly called for.

LQF offers two advantages over OCL, today’s de-facto standard for querying UML
models. First, it shields the modeler from the complexity of the UML meta model
so that a modeler may express queries using familiar concepts. Second, it provides
a very small, yet powerful interface as all predicates may be used in different usage
modes (i. e., different patterns of instantiating parameters). As our experiments have
demonstrated, this interface is truly easy to understand.

While we cannot be sure that our sample of queries is truly representative for all
application contexts, it surely is sufficient to contrast the different approaches. Obvi-
ously, all text based query facilities for visual query languages suffer from the media
gap between query and model. To which degree this impedes querying is currently an
open question.

5.3 Future work
There are a number of promising routes for future work. First of all, LQF lacks means
to access the diagrammatic aspect of models, i. e., visual features of diagrams such as

34

relative position, size, and so on. Also, accessing the meta model in the same way as
the model would allow parameterization over concepts.

Then, MQLogic is just a prototype. It currently lacks features for visualization of
query results, debugging support, and productivity features like syntax highlighting,
auto completion and so on.

Finally, the syntax seems to be suboptimal. Whether the improvements come from
visual notations like VMQL (cf. [10]) or controlled natural language constructs can
only be determined empirically.

References
[1] Luca Cardelli and Peter Wegner. On Understanding Types Data Abstraction, and

Polymorphism. ACM Computing Surveys, 17(4), December 1985.

[2] Josef Edenhauser. MX – Model Exchange Tool. Master’s thesis, Innsbruck Uni-
versity, 2008.

[3] No Magic, Inc. USERS MANUAL (version 16.5), 2009. available online at http:
//www.magicdraw.com.

[4] OMG. UML 2.0 OCL Specification (ptc/03-10-14). Technical report, Object
Management Group, October 2003. available at www.omg.org/docs/ptc/
03-10-14.pdf.

[5] OMG. OMG Unified Modeling Language (OMG UML), Superstructure, V2.2
beta (ptc/08-05-04). Technical report, Object Management Group, May 2008.
Available at www.omg.org, downloaded on March 6th, 2009.

[6] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Query Models. In Thomas
Baar, Alfred Strohmeier, Ana Moreira, and Stephen J. Mellor, editors, Proc. 7th

Intl. Conf. Unified Modeling Language (�UML�’04), number 3273 in LNCS,
pages 98–112. Springer Verlag, 2004.

[7] Dominik Stein, Stefan Hanenberg, and Rainer Unland. On Relationships between
Query Models. In A. Hartman and D. Kreische, editors, Proc. Eur. Conf. Model
Driven Architecture – Foundations and Applications (ECMDA-FA 2005), number
3748 in LNCS, pages 77–92. Springer Verlag, 2005.

[8] Harald Störrle. A PROLOG-based Approach to Representing and Querying
UML Models. In Philip Cox, Andrew Fish, and John Howse, editors, Intl.
Ws. Visual Languages and Logic (VLL’07), volume 274 of CEUR-WS, pages
71–84. CEUR, 2007. Available at ftp.informatik.rwthaachen.de/
Publications/CEUR-WS.

[9] Harald Störrle. Large Scale Modeling Efforts. A Survey on Challenges and Best
Practices. In IASTED Intl. Conf. Software Engineering (SE’2007), pages 382–
389. IASTED, 2007.

35

[10] Harald Störrle. VMQL: A Generic Visual Model Query Language. In Martin
Erwig, Robert DeLine, and Mark Minas, editors, Proc. IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC’09). IEEE Computer
Society, 2009. to be published.

[11] Mathias Winder. MQ – Eine visuelle Query-Schnittstelle für Modelle, 2009.
Bachelor thesis, Innsbruck University.

36

Conservativity for a hierarchy of
Euler and Venn reasoning systems

Koji Mineshima, Mitsuhiro Okada, and Ryo Takemura

Department of Philosophy, Keio University,
2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.

{minesima,mitsu,takemura}@abelard.flet.keio.ac.jp

Abstract

This paper introduces a hierarchy of Euler and Venn diagrammatic reasoning
systems in terms of their expressive powers in topological-relation-based formal-
ization. At the bottom of the hierarchy is the Euler diagrammatic system intro-
duced in Mineshima-Okada-Sato-Takemura [13, 12], which is expressive enough
to characterize syllogistic reasoning in terms of unification and deletion rules. At
the top of the hierarchy is a Venn diagrammatic system such as Swoboda-Allwein’s
Euler/Venn diagrammatic system [23]. In order to understand the hierarchy uni-
formly, we introduce an algebraic structure, which also provides another descrip-
tion of our unification rule of Euler diagrams. We prove that each system S’ of
the hierarchy is conservative over any lower system S with respect to validity—in
the sense that S’ is an extension of S, and the semantic consequence relations of S
and S’ are equivalent for diagrams of S. Furthermore, we prove that a region-based
Venn diagrammatic system is conservative over our topological-relation-based Eu-
ler diagrammatic system with respect to provability.

1 Introduction

Euler diagrams were introduced by Euler (1768) [1] to represent logical relations
among the terms of a syllogism by topological relations among circles. Given two
Euler diagrams which represent the premises of a syllogism, the syllogistic inference
can be naturally replaced by the task of manipulating the diagrams, in particular of
unifying the diagrams and extracting information from them. For example, the well-
known syllogism named “Barbara,” i.e.,All A areB and AllB areC; therefore AllA
areC, can be represented diagrammatically as in Fig. 1.

Another well-known diagrammatic representation system for syllogistic reasoning
is Venn diagrams. In Venn diagrams a novel syntactic device, namelyshading, to
represent emptiness plays a central role in place of the topological relations of Euler
diagrams. Because of their expressive power and their uniformity in formalizing the
manipulation of combining diagrams simply as the superposition of shadings, Venn
diagrams have been very well studied. Cf. Venn-I, II systems of Shin [19], Spider

37

A
B

D1 R

B
C

D2	

A

B

C

?

A
C

E

Fig.1 Barbara with Euler diagrams

A B

Dv
1 ?

B C

Dv
2?

A B

C
R

A B

C
	

A B

C
?

A

C
Ev

Fig.2 Barbara with Venn diagrams

diagrams SD1 and SD2 of [9], [14], etc. For a recent survey, see [20]. However, the
development of systems of Venn diagrams is obtained at the cost of clarity of Euler
diagrams. As Venn [25] himself already pointed out, when more than three circles
are involved, Venn diagrams fail in their main purpose of affording intuitive and sen-
sible illustration. (For some discussions on visual disadvantages of Venn diagrams,
see [8, 5]. See also [18] for our cognitive psychological experiments comparing lin-
guistic, Euler diagrammatic, and Venn diagrammatic representations.) Recently,Euler
diagrams with shadingwere introduced to make up for the shortcoming of Venn dia-
grams: E.g., Euler/Venn diagrams of [23, 24]; Spider diagrams ESD2 of [14] and SD3
of [10]. However, their abstract syntax and semantics are still defined in terms of re-
gions, where shaded regions of Venn diagrams are considered as “missing” regions.
That is, the idea of theregion-basedEuler diagrams is essentially along the same line
as Venn diagrams.

We may point out the following complications of region-based formalization of
diagrams:

1. In region-based diagrams, logical relations among circles are represented not
simply by topological relations, but by the use of shading or missing regions,
which makes the translations of categorical sentences uncomfortably complex.
For example,All A are B is expressed by a region-based diagram through a
translation to the statementThere is nothing which isA but notB as seen inDv

1

of Fig. 2.

2. The inference rule ofunification, which plays a central role in Euler diagram-
matic reasoning, is defined by way of the superposition of Venn diagrams. For
example, when we unify two region-based Euler diagrams as inD1 andD2 of
Fig.1, they are first transformed into Venn diagramsDv

1 andDv
2 of Fig.2, respec-

tively; then, by superposing the shaded regions ofDv
1 andDv

2 , and by deleting
the circleB, the Venn diagramEv is obtained, which is transformed into the
region-based Euler diagramE . In this way, processes of deriving conclusions are

38

often madecomplex, and hence less intuitive, in the region-based framework.

In contrast to the studies in the tradition of region-based diagrams, we proposed a
novel approach in [13, 12] to formalize Euler diagrams in terms of topological relations.
Our system has the following features and advantages:

1. Our diagrammatic syntax and semantics are defined in terms oftopological re-
lations, inclusion and exclusion relations, between two diagrammatic objects.
This formalization makes the translations of categorical sentences natural and
intuitive. Furthermore, our formalization makes it possible to represent a dia-
gram by a simple ordered (or graph-theoretical) structure.

2. Our unificationof two diagrams is formalized directly in terms of topological
relations without making a detour to Venn diagrams. Thus, it can directly cap-
ture the inference process as illustrated in Fig. 1. We formalize the unification
in the style of Gentzen’s natural deduction, a well-known formalization of log-
ical reasoning in symbolic logic, which is intended to be as close as possible
to actual reasoning (Gentzen [3]). This makes it possible to compare our Euler
diagrammatic inference system directly with natural deduction system. Through
such comparison, we can apply well-developed proof-theoretical approaches to
diagrammatic reasoning. See [13] for such proof-theoretical analyses.

From a perspective of proof-theory, the contrast between the standpoints of the
region-based framework and the topological-relation-based framework can be under-
stood as follows: At the level of representation, the contrast is analogous to the one
between disjunctive (dually, conjunctive) normal formulas and implicational formu-
las; at the level of reasoning, the contrast is analogous to the one between resolution
calculus style proofs and natural deduction style proofs.

From a perspective of cognitive psychology, our system is designed not just as an
alternative of usual linguistic/symbolic representations; we make the best use of ad-
vantages of diagrammatic representations so that inherent definiteness or specificity
of diagrams can be exploited in actual reasoning. See [18] for our experimental re-
sult, which shows that our Euler diagrams are more effective than Venn diagrams or
linguistic representations in syllogism solving tasks.

We roughly review our topological-relation-based Euler diagrammatic representa-
tion systemEUL in Section 2. (We also review our inference systemGDS in Appendix
A.) AlthoughEUL is weaker in its expressive power than usual Venn diagrammatic sys-
tems (e.g. Shin’s Venn-II [19], which is equivalent to the monadic first order logic in
its expressive power),EUL is expressive enough to characterize basic logical reasoning
such as syllogistic reasoning, see [12]. OurEUL-diagrams can be abstractly seen as
algebraic (or graph-theoretical) structure, where inclusion relations between diagram-
matic objects are reflexive transitive ordering relations, and exclusion relations are ir-
reflexive symmetric relations. Based on this observation, in Section 3, we introduce
EUL-structure, which provides another description and a verification of our unification
rule of Appendix A. In Section 4, based on theEUL-structure, we introduce a hierarchy
of Euler and Venn diagrammatic reasoning systems as seen in Fig. 3.
The most elementary systemEUL considers only circles and points as diagrammatic
objects;EUL is extended by considering intersection regionsX ∩ Y , union regions

39

EUL

k
EUL with ∩

3

3
EUL with ∪
k

EUL with ∩,∪
6

EUL with ∩,∪,
6

Venn

Fig.3 Hierarchy of Euler and Venn systems

X ∪ Y , and complement regionsX as diagrammaticobjects, respectively, as well as
linking of points; Venn diagrams can be put at the top of the hierarchy of these ex-
tended systems. The algebraic structure thus obtained for Venn diagrams is essentially
the directed acyclic graph of Swoboda-Allwein [23]. We prove that each systemS′

of the hierarchy is conservative over any lower systemS with respect to validity—
in the sense thatS′ is an extension ofS, and the semantic consequence relations of
S andS′ are equivalent for diagrams ofS. Moreover, we prove that a region-based
Venn diagrammatic system is conservative over our topological-relation-based Euler
diagrammatic system with respect to provability. We also give a procedure to transform
a topological-relation-basedEUL-diagram through anEUL-structure to a semantically
equivalent region-based Venn diagram.

2 A diagrammatic representation system (EUL) for Eu-
ler circles and its set-theoretical semantics

In this section, we review our diagrammatic representation systemEUL of [13, 12].

2.1 Diagrammatic syntax ofEUL

The following definition of diagrams is slightly different from that of [13, 12] in that
(1) we regard inclusion relation@ as reflexive in this paper; (2) we exclude fromEUL-
diagrams only the empty diagram, on which no topological relation holds.

Definition 2.1 An EUL-diagram is a plane (R2) with a finite number, at least one, of
named simple closed curves(denoted byA, B,C, . . .) andnamed points(denoted
by a, b, c, . . .), where each named simple closed curve or named point has a unique
and distinct name.EUL-diagrams are denoted byD, E ,D1,D2,
An EUL-diagram consisting of at most two objects is called aminimal diagram. Min-
imal diagrams are denoted byα, β, γ,

In what follows, a named simple closed curve is called anamed circle. More-
over, named circles and named points are collectively calledobjects, and denoted by
s, t, u, We use a rectangle to represent a plane for anEUL-diagram.1

1Several Euler diagrammatic representation systems impose some additional conditions for well-formed
diagrams. E.g., at most two circles meet at a single point, no tangential meetings or concurrency etc. Cf.
e.g., [22]. However, for simplicity of the definition, those are all considered to be well-formed inEUL.

40

We define the following binary topological relations between diagrammatic ob-
jects2:

Definition 2.2 EUL-relations are the following binary relations between diagram-
matic objects:

A @ B “the interior ofA is inside ofthe interior ofB,”

A ⊢⊣ B “the interior ofA is outside ofthe interior ofB,”

A ◃▹ B “there is an intersection between the interior ofA and the interior ofB,”

b @ A “b is inside ofthe interior ofA,”

b ⊢⊣ A “b is outside ofthe interior ofA,”

a ⊢⊣ b “a is outside ofb (i.e. a is not located at the point ofb).”

We call◃▹-relationcrossingrelation.
EUL-relations⊢⊣ and◃▹ are symmetric, while@ is not. In this paper, we consider

@-relation as reflexive by allowings @ s for each objects.

Proposition 2.3 Let D be anEUL-diagram. For any distinct objectss and t of D,
exactly one of theEUL-relationss @ t, t @ s, s ⊢⊣ t, s ◃▹ t holds.

Observe that, by Proposition 2.3, for a givenEUL-diagramD, the set ofEUL-
relations holding onD is uniquely determined. We denote the set byrel(D). We also
denote bypt(D) the set of named points ofD, by cr(D) the set of named circles ofD,
and byob(D) the set of objects ofD.

Although in this section,ob(D) = pt(D) ∪ cr(D), in Section 4, diagrammatic ob-
jects are extended, in addition to named circles and points, by introducing intersection,
union, and complement regions respectively.

The following properties, as well as Proposition 2.3, characterizeEUL-diagrams.

Lemma 2.4 LetD be anEUL-diagram. Then for any objects (named circles or points)
s, t, u ∈ ob(D), we have the following:

1. (Transitivity) If s @ t, t @ u ∈ rel(D), thens @ u ∈ rel(D).

2. (⊢⊣-downward closedness)If s ⊢⊣ t, u @ s ∈ rel(D), thenu ⊢⊣ t ∈ rel(D).

3. (Point determinacy)For any pointx ofD, exactly one ofx @ s andx ⊢⊣ s is in
rel(D).

4. (Point minimality)For any pointx (̸≡ s) ofD, s @ x ̸∈ rel(D).

Equivalence betweenEUL-diagrams is defined as follows. (See [13] for a more
detailed explanation.)

Definition 2.5 When any two objects of the same name appear in different diagrams
(planes), we identify them up to isomorphism. AnyEUL-diagramsD andE such that
ob(D) = ob(E) aresyntactically equivalentwhenrel(D) = rel(E).

2Wefollow Gergonne [4] for our notations on topological relations@ and⊢⊣.

41

Example 2.6(Equivalence of diagrams) For example, diagramsD1, D2, D3, and
D4 of Fig. 4 are equivalent sincerel(D1) = rel(D2) = rel(D3) = rel(D4) =
{A ◃▹ B,A ◃▹ C,B ◃▹ C, a ⊢⊣ A, a @ B, a ⊢⊣ C}. In the description of a set of
relations, we usually omit the reflexive relations @ s for each objects.

A B

•a

C

D1

A B

•a

C

D2

A B

•a

C

D3

A B

•a
C

D4

A B

•a

C

D5

A B

•a
C

D6

Fig.4 Equivalence ofEUL-diagrams.

On the other hand,D1 andD5 (resp. D1 andD6) are not equivalent since different
EUL-relations hold on them:A @ C holds onD5 in place ofA ◃▹ C of D1 (resp.
C @ A andC @ B hold onD6 in place ofA ◃▹ C andC ◃▹ B of D1). Cf. Example
4.5 and 4.7 of Section 4, whereD1,D2,D3, andD4 are distinguished.

Our equation of diagrams may be explained in terms of a kind of “continuous trans-
formation (deformation)” of named circles, which does not change any of theEUL-
relations in a diagram. (See [13] for an explanation.)

In what follows, the diagrams which are syntactically equivalent are identified, and
they are referred by a single name.

Remark 2.7 (Expressive power ofEUL) Our equation of diagrams in the basic sys-
tem EUL may seem to be counterintuitive since seemingly distinctive diagrams
D1,D2,D3,D4 of Example 2.6 are identified.3However, this slightly rough equa-
tion makes the description of unification of diagrams much simpler; see Appendix A.
Furthermore, it is shown thatEUL is expressive enough to characterize basic logical
reasoning such as syllogistic reasoning; see [12]. In Section 4, we consider some ex-
tensions ofEUL, whereD1,D2,D3, andD4 are distinguished by regarding intersection
and union regions respectively as diagrammatic objects. See, in particular, Examples
4.5 and 4.7. Note that, by introducing new diagrammatic objects in a representation
system,EUL-relations for these new objects are augmented, so that the system be-
comes more expressive. At the level of diagrammatic syntax, this means that more
fine-grained distinctions between diagrams are made possible.

2.2 Set-theoretical semantics ofEUL

Our semantics is distinct from usual ones, e.g., [6, 8, 24, 10] in that diagrams are
interpreted in terms of binary relations. In order to interpret theEUL-relations@ and
⊢⊣ uniformly as the subset relation and the disjointness relation, respectively, we regard
each point ofEUL as a special circle which does not contain, nor cross, any other
objects.

3This isalso pointed out in Fish-Flower [2] as an drawback of the relation-based approach.

42

Definition 2.8 A model M is a pair(U, I), whereU is a non-empty set (the domain
of M), andI is an interpretation function which assigns to each named circle or point
a non-empty subset ofU such thatI(a) is a singleton for any named pointa, and
I(a) ̸= I(b) for any pointsa, b of distinct names.

Note that we assign a non-empty set to each named circle. This condition is es-
sential for our completeness. See the paragraph on the constraint for consistency in
Appendix A and footnote 7 there.

Definition 2.9 Let D be anEUL-diagram. M = (U, I) is a model ofD, written as
M |= D, if the following truth-conditions (1) and (2) hold: For all objectss, t of D,
(1) I(s) ⊆ I(t) if s @ t holds onD, and (2) I(s) ∩ I(t) = ∅ if s ⊢⊣ t holds onD.

Note that whens is a named pointa, for somee ∈ U , I(a) = {e}, and the above
I(a) ⊆ I(t) of (1) is equivalent toe ∈ I(t). Similarly, I(a) ∩ I(t) = ∅ of (2) is
equivalent toe ̸∈ I(t).

Remark 2.10 (Semantic interpretation of◃▹-relation) By Definition 2.9, theEUL-
relation ◃▹ does not contribute to the truth-condition ofEUL-diagrams. Informally
speaking,s ◃▹ t may be understood asI(s) ∩ I(t) = ∅ or I(s) ∩ I(t) ̸= ∅, which is
true in any model. Cf. also Remark 2.7.

Definition 2.11 An EUL-diagramE is a semantically valid consequenceof EUL-
diagramsD1, . . . ,Dn, written asD1, . . . ,Dn |= E , when the following holds: For any
modelM , if M |= D1 and . . . andM |= Dn, thenM |= E .

See Appendix A and [13] for our Generalized Diagrammatic Syllogistic inference
systemGDS, whose completeness holds with respect to the semantics of this section.

3 EUL-structure

In this section, we introduce an algebraic structure calledEUL-structure forEUL-
diagrams.

Definition 3.1 An EUL-structure (D, p(D),@,⊢⊣) is a partially ordered structure,
whereD is a set whose cardinality#D ≥ 1, andp(D) ⊆ D:

1. @ is a reflexive transitive ordering relation onD.

2. ⊢⊣ is an irreflexive symmetric relation onD.

3. (⊢⊣-downward closedness) For anys, t, u ∈ D, s ⊢⊣ t andt A u imply s ⊢⊣ u.

4. (Point determinacy) For anys ∈ D andx ∈ p(D), x @ s or x ⊢⊣ s.

5. (Point minimality) For anys ∈ D andx ∈ p(D) such thats ̸≡ x, not(s @ x).

43

Cf. Lemma2.4. Observe that the above properties (i), (ii), and (iii) imply that,
for any distinct pair of elements ofD, at most one of the relations@ and⊢⊣ holds (cf.
Proposition 2.3); because if both of them hold, says @ t ands ⊢⊣ t, the property (iii)
impliess ⊢⊣ s, which contradicts the irreflexivity of⊢⊣-relation.4

As seen in Section 2.1, given anEUL-diagramD, the setrel(D) of relations holding
on it is uniquely determined by Proposition 2.3.rel(D) can be regarded as anEUL-
structure.

Proposition 3.2 Let D be anEUL-diagram. The set ofEUL-relations rel(D) gives
rise to anEUL-structure(ob(D), pt(D),@,⊢⊣).

For example,rel(D1), rel(D5) andrel(D6) of Fig. 4 in Example 2.6 are expressed
graphically as follows: Here the ordering relations@ are expressed by→-edges.

A C B

a

6

rel(D1)

A

C

B

a

6

6

rel(D5)

A

C

B

a

6
Y >

rel(D6)

Observethat there is no edge for◃▹-relation.
Now we describe the unification rule of Definition A.1 of Appendix A in terms of

a graph-theoretical representation ofEUL-diagrams, which may assist with the under-
standing and motivation of our unification rule.

Proposition 3.3 LetD be anEUL-diagram, andα be a minimal diagram. The set of
EUL-relations rel(D + α), which is obtained by unifyingD and α, gives rise to an
EUL-structure.

Proof. In order to describe graphically the unification ofEUL-diagramsD andα, we
focus on the shared object ofD andα, sayA, and express theEUL-structure ofrel(D)
as follows:

X

A

6

Z/z

6
Y/y W

rel(D)

→-edge denotes@-relation

⊢⊣-edge denotes⊢⊣-relation

No edge for◃▹-relation

“· · · ” denotes one of@,A,⊢⊣, ◃▹

The variablesX, Y, Z, W (resp.y, z) are representative circles (resp. points) which are
possibly related toA. When it makes no difference whether a possibly related object
is circle or point, we denote the object asY/y (instead of simply writings). Each
dotted line between objects expresses that there may be one of the relations@, A,⊢⊣, ◃▹
between the objects. Note that there is no edge for each◃▹-relation, as seen between
A andW . We omit the trivial transitive edgeZ → X to avoid notational complexity.
In the following description of each unification rule forD andα, we give a graphical

4Note that,by the properties (i)–(iii), anEUL-structure(D, p(D),@,⊢⊣) is anevent structureof Nielsen-
Plotkin-Winskel [15].

44

representation oftheEUL-structures ofrel(D) in the left-hand graph, andrel(D+α) in
the right-hand graph. We begin withU3-rule sinceU1 andU2 rules are rather untypical
cases:

U3 Under the constraint ofU3-rule, there is no circleZ such thatZ @ A holds, and
no circleW such thatA ◃▹ W holds, which is expressed by× in the graph of
rel(D). According toU3-rule of Definition A.1,rel(D+(b @ A)) is represented
by the graph on the right.

X

A

6

×Z/z

6
Y/y ×W

rel(D)

X

A

6

z

6
Y/y

b

I

K

rel(D + (b @ A))

It is easily seen thatrel(D + (b @ A)) is anEUL-structure: I.e., the augmented
edges do not violate the properties ofEUL-structure.

Note also that, without the constraint, i.e., if there is a circleZ or W as above,
in order to preserve Point determinacy, we should fix a relation betweenb and
Z (resp.W) to @ or ⊢⊣. However, neither of them is sound with respect to our
formal semantics ofEUL.

U4 Under the constraint ofU4-rule, there is no circleX such thatA @ X holds, no
circleY such thatA ⊢⊣ Y holds, and no circleW such thatA ◃▹ W holds, which
is expressed by× in the graph ofrel(D). According toU4-rule of Definition
A.1, rel(D + (b ⊢⊣ A)) is represented by the right hand graph below.

×X

A

Z/z

6
×Y/y ×W

rel(D)

A

Z/z

6
y

b

rel(D + (b ⊢⊣ A))

It is easily seen thatrel(D + (b ⊢⊣ A)) is anEUL-structure: I.e., the augmented
edges do not violate the properties ofEUL-structure.

Without the constraint, i.e., if there is a circleX, Y or W as above, in order
to preserve Point determinacy, we should fix a relation betweenb andX (resp.
Y,W) to @ or ⊢⊣ in rel(D + (b ⊢⊣ A)). However, none of them is sound with
respect to our semantics ofEUL.

U5 Under the constraint ofU5-rule, there is no pointz such thatz @ B holds. Ac-
cording toU5-rule of Definition A.1,rel(D + (A @ B)) is represented by the
right hand graph below.

45

X

B

6

×Z/z

6
Y/y W

rel(D)

X

B

6

Z

6
Y/y W

A

K

I

rel(D + (A @ B))

Without the constraint, i.e., if there is a pointz as above, in order to preserve
Point determinacy, we should fix a relation betweenz andA to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U6 Under the constraint ofU6-rule, there is no pointy such thaty ⊢⊣ A holds. Ac-
cording toU6-rule of Definition A.1,rel(D + (A @ B)) is represented by the
right hand graph below.

X

A

6

Z/z

6
×Y/y W

rel(D)

X

A

6

Z/z

6
Y W

B

��

rel(D + (A @ B))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andB to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U7 Under the constraint ofU7-rule, there is no pointy such thaty ⊢⊣ A holds. Ac-
cording toU7-rule of Definition A.1,rel(D + (A ⊢⊣ B)) is represented by the
right hand graph below.

X

A

6

Z/z

6
×Y/y W

rel(D)

X

A

6

Z/z

6
Y W

B

rel(D + (A ⊢⊣ B))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andB to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U8 Under the constraint ofU8-rule, there is no point inD. According toU8-rule of
Definition A.1,rel(D + (A ◃▹ B)) is represented by the right hand graph below.

X

A

6

×Z/z

6
×Y/y W

rel(D)

X

A

6

Z

6
Y W

B

rel(D + (A ◃▹ B))

46

Without the constraint, i.e., if there is a pointy or z as above, in order to preserve
Point determinacy, we should fix a relation betweeny (resp.z) andB to @ or⊢⊣.
However, none of them is sound with respect to our semantics ofEUL.

U1 Under the constraint ofU1-rule, there is no pointy in D other thanb. According
to U1-rule, rel(D + (b @ A)) is represented by the right hand graph below.

X

b

6

×Y/y

rel(D)

X

b

6
Y

�
A

rel(D + (b @ A))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andA to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U2 Under the constraint ofU2-rule, there is no pointy in D other thanb. According
to U2-rule, rel(D + (b ⊢⊣ A)) is represented by the right hand graph below.

X

b

6

×Y/y

rel(D)

X

b

6
Y

A

rel(D + (b ⊢⊣ A))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andA to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

In U9, U10 rules of Definition A.1, the unified diagramsD andα share two cir-
cles, which makes the graphical description ofrel(D) complicated. In order to avoid
notational complexity, we omit irrelevant objects and edges, which are retained after
the application ofU9 andU10 rule, respectively.

U9 Under the constraint ofU9-rule, there is no objects such thats @ A ands ⊢⊣ B
hold onD, i.e., in the following description ofrel(D), the dotted line between
Y/y andA should not be→, and the dotted line betweenZ/z andB should not
be⊢⊣. According toU9-rule of Definition A.1,rel(D + (A @ B)) is represented
by the right hand graph below.

X

B

6

Z/z

6
A Y/y

rel(D)

X
�

B

6

�

Z/z

6

�
A - Y/y

rel(D + (A @ B))

47

Observethat, after the unification, some of the dotted lines ofrel(D) are fixed to
→ or⊢⊣ in rel(D+(A @ B)) according to Definition A.1. We need to check that
rel(D + (A @ B)) is anEUL-structure; for example, if the dotted line between
A andX in rel(D) is A ⊢⊣ X (or A ← X), after the application ofU9-rule,
there are two incompatible edges⊢⊣ (resp.←) and→ betweenA andX, which
violates the irreflexivity of the⊢⊣-relation of EUL-structure. It is shown that,
because of our constraint forU9-rule, the dotted line betweenA andX is ◃▹
(i.e., no edge) or→. Observe that, if we haveA ⊢⊣ X in rel(D), by the⊢⊣-
downward closedness ofrel(D), we haveZ/z ⊢⊣ B in rel(D), which contradicts
the constraint. If we haveA ← X in rel(D), by the transitivity ofrel(D), we
haveA ← B in rel(D), which contradicts the presupposition ofU9-rule, i.e.,
there is no edge betweenA andB in rel(D). Thus the dotted line betweenA
andX should be◃▹ (i.e., no edge) or→, either of which is compatible with the
edgeA → X in rel(D + (A @ B)). Similarly, it is shown that the other dotted
lines of rel(D) are compatible with the edges ofrel(D + (A @ B)). Then it is
easily checked thatrel(D + (A @ B)) satisfies Definition 3.1, and hence it is an
EUL-structure.

U10 Under the constraint ofU10-rule, there is no objects such thats @ A ands @ B
hold onD, i.e., in the following graph ofrel(D), the dotted line betweenZ ′/z′

andA (and also betweenZ/z andB) should not be→. According toU10-rule,
rel(D + (A ⊢⊣ B)) is represented by by the right hand graph below.

B

Z ′/z′

6
A

Z/z

6

rel(D)

B

Z ′/z′

6
A

Z/z

6

rel(D + (A ⊢⊣ B))

We show that there are no incompatible edges inrel(D + (A ⊢⊣ B)). For the
dotted line betweenZ/z andB, it is not→ by the constraint forU10-rule. Fur-
thermore, assume to the contrary that we haveZ/z ← B in rel(D). Then, by
the transitivity ofrel(D), we haveA ← B in rel(D), which contradicts the pre-
supposition ofU10-rule, i.e., there is no edge betweenA andB. Hence the
dotted line betweenZ/z andB should be◃▹ (i.e., no edge) or⊢⊣, either of which
is compatible with the edgeZ/z ⊢⊣ B in rel(D + (A ⊢⊣ B)). Similarly, it is
shown that the other two dotted lines ofrel(D) are compatible with the edges of
rel(D + (A ⊢⊣ B)). Then it is easily checked thatrel(D + (A ⊢⊣ B)) satisfies
Definition 3.1, and hence it is anEUL-structure.

For a givenEUL-structure(D, p(D), @,⊢⊣), it can be shown that there is anEUL-
diagramD such thatrel(D) is equivalent to(D, p(D),@,⊢⊣).

4 A hierarchy of EUL-diagrams and Venn diagrams

The representation systemEUL is extended by introducing new diagrammatic objects,
intersection, union, and complement regions, respectively. Extended systems are strat-

48

ified in terms of their expressive powers.
In what follows, we do not mention named points explicitly, since any named point

of EUL can be regarded as a special circle, which does not contain, nor cross, any
other objects. If we allow a point (as a special circle) to cross other circles, it amounts
to adopting linking between points, although it is slightly restricted compared with
usual linking as in Shin [19], among others.5

We first extendEUL by considering intersection regions as diagrammatic objects.
Regionsof an EUL-diagram are defined recursively as usual, which are closed under
intersection, union, and complement, provided that each is non-empty in a diagram.
See, e.g., [10].

Definition 4.1 A non-empty regionr of anEUL-diagramD is anintersection region
when, for some{A1, . . . , An} ⊆ cr(D), r =

∩
1≤i≤n in(Ai), wherein(Ai) is the

interior of circleAi. An EUL-diagrams with intersectionsD is an EUL-diagram
where each intersection regionr =

∩
1≤i≤n in(Ai) has the name⊓1≤i≤nAi, which is

sometimes denoted by⊓An for short. (In particular whenn = 1, ⊓A1 = A1.)

Note that, in anEUL-diagram with intersections, a region may have two names:
For example, whenA @ B holds onD, circleA has another name,A ⊓B.

We define an algebraic structure forEUL-diagrams with intersections.

Definition 4.2 An EUL-structure with greatest lower bounds (glbs) (D, @,⊢⊣
,⊓) is an EUL-structure, where for any subset{A1, . . . , An} ⊆ D such that
¬∃1≤j,k≤n(Aj ⊢⊣ Ak holds onD), there is the greatest lower bound⊓1≤i≤nAi.

Although we regard named points as special named circles, the operation⊓ is not
applied to them.

Lemma 4.3 LetD be anEUL-diagram with intersections. The set of relationsrel(D)
gives rise to anEUL-structure with glbs.

Lemma 4.4 (EUL ≺ EUL+⊓) Let (D, @,⊢⊣) be anEUL-structure. It is extended, by
introducing glbs, to anEUL-structure with glbs(D⊓, @,⊢⊣,⊓).

Proof. The domainD⊓ is defined as follows:

D⊓ := D ∪ {⊓1≤i≤nAi | ¬∃1≤j,k≤n(Aj ⊢⊣ Ak holds onD)}

@ and ⊢⊣ relations onD are preserved onD⊓ and they are extended for any
⊓1≤i≤nAi ∈ D⊓ as follows: LetX, Y ∈ D⊓.

⊓An @ ⊓An

X @ ⊓An iff X @ Ai for all 1 ≤ i ≤ n
⊓An @ X iff Ai @ X for some1 ≤ i ≤ n
X ⊢⊣ Y iff X ⊓ Y ̸∈ D⊓

5Weexclude a crossing relationc ◃▹ d between distinct named points, since it amounts toc = d or c ̸= d
(cf. Remark 2.10) but we always assumec ̸= d in our framework.

49

It is immediate that thus constructed(D⊓,@,⊢⊣,⊓) is an EUL-structure, which
satisfies Definition 3.1, and⊓An is the glb of Definition 4.2.

See alsoExample 4.17.
WhenD is anEUL-diagram, we denoteD⊓ an EUL-diagram with intersections

whose algebraic structure is constructed from theEUL-structurerel(D) by Lemma
4.4. We say that the diagramD⊓ is obtained from D.

By introducing intersection regions as diagrammatic objects,EUL with intersec-
tions are more expressive than the basicEUL of Section 2.1. Let us see the following
example.

Example 4.5 (EUL-diagrams with intersections) The three diagramsD1,D2, and
D3 of Fig. 4 in Example 2.6, which are identified in the originalEUL, are distin-
guished when they are regarded asEUL-diagrams with intersections. The difference
among the three diagrams is more clearly seen by drawing theirEUL-structures with
glbs. (Here, for reasons of simplicity, we omit the pointa and abbreviate⊢⊣-relation by
stipulating thatX ⊢⊣ Y holds whenX ⊓ Y ̸∈ rel(D⊓).)

A B C

A⊓B

6 3
A⊓C

k 3
B⊓C

6k

A⊓B⊓C

k 63

rel(D⊓
1)

A C B

A⊓C
63

B⊓C
6k

A⊓B
=A⊓B⊓C

k 3

rel(D⊓
2)

A B C

A⊓B

6 3
A⊓C

k 3
B⊓C

6k

rel(D⊓
3)

In a similar way as intersections, by considering union regions as diagrammatic
objects we have another extension ofEUL.

Definition 4.6 An EUL-diagrams with unions D is an EUL-diagram where each
union regionr =

∪
1≤i≤n in(Ai) has the name⊔1≤i≤nAi, provided that it is con-

nected.

EUL-structures with least upper bounds (lubs)for EUL-diagrams with unions
are defined in a similar way asEUL-structures with glbs.

EUL with unions is also more expressive thanEUL.

Example 4.7 (EUL-diagrams with unions) D1 andD4 of Fig. 4 in Example 2.6
are distinguished when they are regarded asEUL-diagrams with unions. TheEUL-
structures with lubs for these two diagrams are represented by the following different
structures.

A⊔B⊔C

A⊔B

3
A⊔C

6
B⊔C

k

A

6 3

B

k 3

C

6k

rel(D⊔
1)

A⊔B
=A⊔B⊔C

A⊔C

3
B⊔C

k

A
6

C

k 3
B
6

rel(D⊔
4)

50

Definition 4.8 An EUL-diagram with intersections and unions D is an EUL-
diagram with intersections where union regions also have names.

Note that we only consider intersection (resp. union) regions of circles, and we
exclude other regions such as(A ∩B) ∪ (C ∩D).

EUL-structure with glbs and lubs are defined by combiningEUL-structure with
glbs andEUL-structure with lubs.

By considering the complement region of each circle as a diagrammatic object, we
further introduceEUL-diagrams with intersections, unions, and complements.

Definition 4.9 An EUL-diagram with intersections, unions, and complementsD is
anEUL-diagram with intersections and unions, where each complementA of a circle
A, i.e., the exterior ofA, has the nameA.

EUL-structures forEUL-diagrams with∩,∪, are definedas follows.

Definition 4.10 An EUL-structure with glbs, lubs, and complements(D, @,⊢⊣
,⊓,⊔,) is an EUL-structurewith glbs and lubs(D, @,⊢⊣,⊓,⊔) where, for each
A ∈ D which is not of the form⊓Cj nor ⊔Cj (j ≥ 2), the complementA of A is
defined inD.

Although we regard named points as special named circles, the operations⊓,⊔,
and are notapplied to points.

Lemma 4.11 LetD be anEUL-diagram with∩,∪, . Theset of relationsrel(D) gives
rise to anEUL-structure with glbs, lubs, and complements.

Lemma 4.12 (EUL+⊓+⊔ ≺ EUL+⊓+⊔+) Let (D2, @,⊢⊣,⊓,⊔) be an EUL-
structure with glbs and lubs. It is extended, by introducing complements, to anEUL-
structure with glbs, lubs, and complements(Dc,@,⊢⊣,⊓,⊔,).

Proof. The domainDc is defined by adding complementA for eachA ∈ D2 which
is not of the form⊓Cj nor⊔Cj (j ≥ 2), and by extending glbs (of the form(⊓Bj) ⊓
(⊓Ai)) andlubs (of the form(⊔Bj) ⊔ (⊔Ai)) in a similar way as Lemma 4.4.
@ and⊢⊣ relations onD2 are preserved onDc and they are extended as follows:
For anyA,B ∈ Dc not of the form⊓Cj nor⊔Cj (j ≥ 2),

A ⊢⊣ A
A @ B iff B @ A in D2

A @ B andB @ A iff A ⊢⊣ B in D2

For anyX, Y ∈ Dc of the form (⊓Bj) ⊓ (⊓Ai) (resp. (⊔Bj) ⊔ (⊔Ai)), @ and⊢⊣
relationsare extended to be closed under⊓ and⊔ in a similar way as Lemma 4.4.

See alsoExample 4.17.

Euler/Venn diagrams of Swoboda-Allwein [23] are obtained by adding shading of
minimal regions and linking of points toEUL-diagrams with∩,∪, . 6

6There aresome differences between our system and Swoboda-Allwein’s system: (i) we allow one circle
to cross with another circle any number of times; (ii) we allow union regions as diagrammatic objects, which
does not increase expressive power as compared to Swoboda-Allwein’s system; (iii) we do not allow a circle
to be completely shaded given our definition of semantics, where each circle denotes a non-empty set.

51

EUL-structures forEuler/Venn diagrams, which we callVenn-structures, are the
directed acyclic graphs DAGs of Swoboda-Allwein [23].

Lemma 4.13 (EUL+⊓+⊔+ ≺ Venn) Let (Dc, @,⊢⊣,⊓,⊔,) be an EUL-
structure with glbs, lubs, and complements. It is extended to a Venn-structureDv of
Swoboda-Allwein [23] by introducing shading and linking.

WhenD is anEUL-diagram, we denote byDv (resp. D⊓,D⊔,D2, Dc) an Eu-
ler/Venn diagram (resp.EUL-diagram with intersections, unions, intersections and
unions, intersections and unions and complements) whose algebraic structure is con-
structed from theEUL-structurerel(D) by Lemma 4.4, 4.12, and 4.13. We say that the
diagramDv (resp.D⊓,D⊔,D2, Dc) is obtained from D.

Various extensions ofEUL introduced so far can be summarized by the following
EUL-hierarchy:

EUL

k
EUL with ∩

3

3
EUL with ∪

k
EUL with ∩,∪

6
EUL with ∩,∪,

6
Venn

Fig.5 EUL-hierarchy

Note that the semantics ofEUL of Section 2.2 is essentially the same as the seman-
tics of Venn diagrams (e.g. [10, 19]), where the interpretation functionI of circles is
naturally extended to interpret regions:I(⊓Xi) =

∩
I(Xi), I(⊔Xi) =

∪
I(Xi), and

I(A) = U \ I(A). Note that the denotations of intersections, unions, and complements
are not assumed to be non-empty, while those of circles and points are non-empty.

Thus whenD∗ is a diagram obtained from anEUL-diagram D for ∗ ∈
{⊓,⊔, 2, c, v}, D andD∗ are semantically equivalent since any relation ofD is pre-
served inD∗ by constructions given in Lemmas 4.4, 4.12, and 4.13:

Lemma 4.14 LetD be anEUL-diagram. For each∗ ∈ {⊓,⊔, 2, c, v}, let D∗ be a
diagram obtained fromD. For any modelM , M |= D∗ if and only ifM |= D.

Based on Lemma 4.14, it is shown that each system ofEUL-hierarchy is conser-
vative over any lower system with respect to validity. We denote byD a sequence of
diagramsD1, . . . ,Dn.

Proposition 4.15 (Semantic conservativity)LetS′ andS be any systems of theEUL-
hierarchy such thatS′ is an extension ofS. LetD, E be diagrams ofS, andD∗, E∗ be
diagrams ofS′ obtained fromD, E for ∗ ∈ {⊓,⊔, 2, c, v}. ThenD∗ |= E∗ iff D |= E .

52

In parallelto the extensions of representation systemEUL, we can obtain extended
inference systems ofGDS of Appendix A. It can be shown that each extended system
is a conservative extension of the most elementaryGDS with respect to provability. In
particular, for Euler/Venn diagrammatic inference system of Swoboda-Allwein [24],
we have the following conservativity theorem:

Theorem 4.16 (Conservativity) Let D and E be EUL-diagrams such thatD has a
model. IfEv is provable fromDv in Euler/Venn diagrammatic system, thenE is prov-
able fromD in GDS.

Proof. Let Dv ⊢ Ev in Euler/Venn diagrammatic inference system. By soundness
(cf. [24]) we have, for any modelM , M |= Dv ⇒M |= Ev. AssumeM |= D. Then
we haveM |= Dv by Lemma 4.14. Thus we haveM |= Ev, that is,M |= E . Hence,
by the completeness (Theorem A.2) ofGDS, we haveD ⊢ E in GDS.

The constructionsof extensions ofEUL-structures given in Lemma 4.4, 4.12, and
4.13 provide a procedure to transform anEUL-diagram to a Venn diagram. Let us see
the following example:

Example 4.17 Let D be an EUL-diagram such that rel(D) =
{A ◃▹ B,A ⊢⊣ C, C @ B}. By transforming theEUL-structure rel(D) through
anEUL-structure with glbsrel(D)⊓, we obtain a Venn-structurerel(D)v. In rel(D)⊓

andrel(D)v below, we omit⊓ symbol and writeAB for A⊓B. In rel(D)v, we further
omit lubs and⊢⊣-relation, and represent arrows by lines in a hierarchical structure.
By extracting minimal unshaded regions (ABC, ABC, AB C, ABC, AB C) from
rel(D)v, we obtain a Venn diagramDv, which is semantically equivalent to the original
EUL-diagramD.

A B

C

D

EUL-diagram

A B

C=
BC

AB

D⊓

EUL-diagram with∩
A

C

B

Dv

Venndiagram

A

B

C
6

rel(D)

B

AB
6

3
A C = BC

6

rel(D)⊓
AB

=ABC

C =BC

=AC
=AB
=ABC

AB

=AB C

ABC A B C

AC =A AB B =B C BC A C

B A C

rel(D)v

In thispaper, we introduced a hierarchy of Euler and Venn diagrammatic reasoning
systems in terms of their expressive powers in our topological-relation-based formal-
ization. Because of the space limitation in this paper, we discuss our extensions ofEUL
mainly at the level of representation and semantics. This is why our conservativity re-
sults for these systems (Proposition 4.15) are kept at the level of semantics. We leave

53

our explicit formalization of diagrammatic inference systems forEUL-diagrams with
intersections, with unions, with complements, respectively, as future work.

References

[1] L. Euler, Lettresà une Princesse d’Allemagne sur Divers Sujets de Physique et
de Philosophie, Saint-Pétersbourg: De l’Acad́emie des Sciences, 1768. (English
Translation by H. Hunter, 1997,Letters of Euler to a German Princess on Different
Subjects in Physics and Philosophy, Thoemmes Press, 1997.)

[2] A. Fish and J. Flower, Abstractions of Euler Diagrams, Electronic Notes in Theo-
retical Computer Science, 134, 77-101, 2005.

[3] G. Gentzen, Investigations into logical deduction. In M. E. Szabo, ed.,The col-
lected Papers of Gerhard Gentzen, 1969. (Originally published as Unter suchungen
uber das logische Scliessen,Mathematische Zetischrift39 (1935): 176-210, 405-
431.)

[4] J. D. Gergonne, Essai de dialectique rationelle,Annales de math́ematiques pures
et appliq́ees, 7, 189-228, 1817.

[5] J. Gil, J. Howse, E. Tulchinsky, Positive Semantics of Projections in Venn-Euler
Diagrams,Journal of Visual Languages and Computing, 13(2), 197-227, 2002.

[6] E. Hammer,Logic and Visual Information, CSLI Publications, 1995.

[7] E. Hammer and N. Danner, Towards a model theory of diagrams, in G. Allwein and
J. Barwise, eds.,Working Papers on Diagrams and Logic, Bloomington: Indiana
University, 1993.

[8] E. Hammer and S.-J. Shin, Euler’s visual logic,History and Philosophy of Logic,
19, 1-29, 1998.

[9] J. Howse, F. Molina, J. Taylor, SD2: A Sound and Complete Diagrammatic Rea-
soning System,2000 IEEE International Symposium on Visual Languages, 127-134,
2000.

[10] J. Howse, G. Stapleton, and J. Taylor, Spider Diagrams,LMS Journal of Compu-
tation and Mathematics, Volume 8, 145-194, London Mathematical Society, 2005.

[11] B. Meyer, Diagrammatic evaluation of visual mathematical notations, inDia-
grammatic Representation and Reasoning, P. Olivier, M. Anderson, and B. Meyer
(Eds.), Springer, 261-277, 2001.

[12] K. Mineshima, M. Okada, Y. Sato, and R. Takemura, Diagrammatic Reasoning
System with Euler Circles: Theory and Experiment Design,Diagrams 08, LNAI,
Vol. 5223, Springer, 188-205, 2008.

[13] K. Mineshima, M. Okada, and R. Takemura, A Diagrammatic Reasoning System
with Euler Circles, 2009, to be submitted.

[14] F. Molina, Reasoning with extended Venn-Peirce diagrammatic systems, Ph. D
Thesis, University of Brighton, 2001.

54

[15] M. Nielsen, G. Plotkin, and G. Winskel, Petri Nets, Event Structures and Do-
mains, Part I,Theoretical Computer Science, Vol. 13, No. 1, pages 85-108, 1980.

[16] C. S. Peirce,Collected Papers IV, Harvard University Press, 1897/1933.

[17] D. Prawitz,Natural Deduction, Almqvist & Wiksell, 1965 (Dover, 2006).

[18] Y. Sato, K. Mineshima, R. Takemura, and M. Okada, How can Euler diagrams
improve syllogistic reasoning?, poster presented at CogSci 2009, Amsterdam, at the
VU University Amsterdam, July 29th to August 1st, 2009.

[19] S.-J. Shin,The Logical Status of Diagrams, Cambridge University Press, 1994.

[20] G. Stapleton, A survey of reasoning systems based on Euler diagrams,Euler
2004, Electronic Notes in Theoretical Computer Science, 134(1), 127-151, 2005.

[21] G. Stapleton, J. Masthoff, J. Flower, A. Fish, and J. Southern, Automated Theo-
rem Proving in Euler Diagram Systems,Journal of Automated Reasoning, volume
39 , issue 4, 431-470, 2007.

[22] G. Stapleton, P. Rodgers, J. Howse, J. Taylor, Properties of Euler diagrams,ECE-
ASST 7, 2-16, 2007.

[23] N. Swoboda and G. Allwein, Using DAG transformations to verify Euler/Venn
homogeneous and Euler/Venn FOL heterogeneous rules of inference,Software and
System Modeling, 3(2), 136-149, 2004.

[24] N. Swoboda and G. Allwein, Heterogeneous reasoning with Euler/Venn diagrams
containing named constants and FOL,Euler Diagrams 2004, ENTCS, Volume 134,
Elsevier, 153-187, 2005.

[25] J. Venn,Symbolic Logic, Macmillan, 1881.

A Diagrammatic inference systemGDS

In this section, we review Generalized Diagrammatic Syllogistic inference system
GDS of [13, 12], which consists of two inference rules:unificationanddeletion. In
order to motivate our definition ofunification, let us consider the following question:
Given the following diagramsD1,D2 andD3 of Fig.6, what diagrammatic information
onA,B andc can be obtained? (In what follows, in order to avoid notational complex-
ity in a diagram, we express each named point, say•c, simply by its namec.) Fig. 6
represents a way of solving the question.

In Fig. 6, at the first step, two diagramsD1 andD2 are unified to obtainD1 + D2,
where pointc in D1 andD2 are identified, andB is added toD1 so thatc is inside of
B andB overlaps withA without any implication of a relationship betweenA andB.
We formalize such cases, where two given diagrams share one object, byU1–U8 rules
of group (I) of Definition A.1. At the second step,D1 + D2 is combined with another
diagramD3 to obtain(D1 +D2) +D3. Note that the diagramsD1 +D2 andD3 share
two circlesA andB: A ◃▹ B holds onD1 + D2 andA @ B holds onD3. Since
the semantic information ofA @ B onD3 is more accurate than that ofA ◃▹ B on
D1 + D2, according to our semantics ofEUL (recall thatA ◃▹ B means just “true” in

55

A

c

D1

B

c

D2
R 	

A

B

D3

A

c

B

D1 + D2
R �

A
B

c

(D1 + D2) + D3

Fig.6 Unification

B
A A

c

D4 D5

Fig.7 Indeterminacy

C
a

B

D6

C B

D7

A
B

D8

A B

D9

Fig.8 Inconsistency

our semantics), one keeps the relationA @ B in the unified diagram(D1 +D2) +D3.
We formalize such cases, where two given diagrams share two objects, byU9–U10
rules of group (II) of Definition A.1. Observe that the unified diagram(D1 +D2)+D3

of Fig. 6 represents the information of these diagramsD1,D2, andD3, that is, their
conjunction.

We impose two kinds of constraints on unification. One is theconstraint for de-
terminacy, which blocks the disjunctive ambiguity with respect to locations of named
points. For example, two diagramsD4 andD5 in Fig. 7 are not permitted to be unified
into one diagram since the location of the pointc is not determined (it can be inside
B or outsideB). The other is theconstraint for consistency, which blocks represent-
ing inconsistent information in a single diagram. For example, the diagramsD6 and
D7 (resp.D8 andD9) in Fig. 8 are not permitted to be unified since they contradict
each other. Recall that each circle is interpreted by non-empty set in our semantics of
Definition 2.8, and henceD8 andD9 are also incompatible.7

We formalize our unification8 of two diagrams by restricting one of them to be
a minimal diagram, except for one rule called thePoint Insertion-rule. Our com-
pleteness (Theorem A.2) ensures that any diagramsD1, . . . ,Dn may be unified, under
the constraints for determinacy and consistency, into one diagram whose semantic in-
formation is equivalent to the conjunction of that ofD1, . . . ,Dn. We give a formal
description of inference rules in terms ofEUL-relations: Given a diagramD and a
minimal diagramα, the set of relationsrel(D + α) for the unified diagramD + α is
defined. It is easily checked that the setrel(D + α) satisfies the properties of Lemma
2.4 according to our constraints for determinacy and consistency, and hence locations
of points are determined in a unified diagram. (See also Section 3, where we give a

7 In placeof our syntactic constraint, it is possible to allow unification of inconsistent diagrams such as
D6 andD7 (resp. D8 andD9) by extendingGDS with an inference rule corresponding to the absurdity
rule of Gentzen’s natural deduction system: We can infer any diagram from a pair of inconsistent diagrams.
(For natural deduction systems, see, for example, [3, 17].) Such a rule is introduced in, for example, [10]
for spider diagrams; [7] for Venn diagrams; [23, 24] for Euler/Venn diagrams. However, such a rule requires
linguistic symbol, say⊥, or some arbitrary convention to represent inconsistency, and hence we prefer our
syntactic constraint in our framework of a diagrammatic inference system.

8The following definition of inference rules ofGDS is slightly different from that of [13, 12] since we
regard@-relation as reflexive relation in this paper.

56

graph-theoretical representationof unification.)
For a better understanding of our unification rule, we also give a schematic dia-

grammatic representation and a concrete example of each rule. In the schematic rep-
resentation of diagrams, to indicate the occurrence of some objects in a context on a
diagram, we write the indicated objects explicitly and indicate the context by “dots” as
in the diagram to the right below.9 For example, when we need to indicate onlyA and
c on the left hand diagram, we could write it as shown on the right.

B
F

A

E

D

c

b

A
c

Definition A.1 Axiom, unification, anddeletionof GDS are defined as follows.

Axiom:

A1: For any circlesA andB, any minimal diagram whereA ◃▹ B holds is an axiom.

A2: Any EUL-diagram which consists only of points is an axiom.

Unification: We denote byD+α the unified diagram ofD with a minimal diagramα.
D+α is defined whenD andα share one or two objects. We distinguish the following
two cases: (I) WhenD andα share one object, they may be unified toD + α by rules
U1–U8 according to the shared object and the relation holding onα. Each rule of (I)
has a constraint for determinacy. (II) WhenD andα share two circles, if the relation
which holds onα also holds onD, D + α is D itself; otherwise, they may be unified
toD + α by rulesU9 or U10 according to the relation holding onα. Each rule of (II)
has a constraint for consistency. Moreover, there is another unification rule called the
Point Insertion-rule (III).

(I) The caseD andα share one object:

U1: If b @ A holds onα andpt(D) = {b}, thenD andα may be unified to a diagram
D + α such that the setrel(D + α) of relations holding on it is the following:

rel(D) ∪ {b @ A} ∪ {A ◃▹ X | X ∈ cr(D)}

U1 is applied as follows:

b

D R

A

b

α
	U1

A

b

D + α

C B

b

D1 R

A

b

D2	U1
C

b

B

A

D1 + D2

9Note thatthe dots notation is used only for abbreviation of a given diagram. For a formal treatment of
such “backgrounds” in a diagram, see, for example, Meyer [11].

57

U2: If b ⊢⊣ A holdsonα andpt(D) = {b}, thenD andα may be unified to a diagram
D + α such that the setrel(D + α) of relations holding on it is the following:

rel(D) ∪ {b ⊢⊣ A} ∪ {A ◃▹ X | X ∈ cr(D)}

U2 is applied as follows:

b

D R

A
b

α
	U2

A
b

D + α

B

b

C

D1

B

b

C

A

D1 + D2

A
b

R 	U2 D2

U3: If b @ A holds onα andA ∈ cr(D), and ifA @ X or A ⊢⊣ X holds for all circle
X in D, thenD andα may be unified to a diagramD + α such that the set of
relationsrel(D + α) is the following:

rel(D) ∪ {b @ X | A @ X ∈ rel(D)} ∪ {b ⊢⊣ X | A ⊢⊣ X ∈ rel(D)}
∪ {b ⊢⊣ x | x ∈ pt(D)}

U3 is applied as follows:

A

D R

A

b

α	U3

A

b

D + α

A

B

C

D1 R

A

b

	U3 D2

A

b

B

C

D1 + D2

U4: If b ⊢⊣ A holdson α andA ∈ cr(D), and ifX @ A holds for all circleX in D,
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {b ⊢⊣ X | X @ A ∈ rel(D)} ∪ {b ⊢⊣ x | x ∈ pt(D)}

U4 is applied as follows:

A

D R

A
b

α	U4

A
b

D + α

B

A

D1 R

A
b

D2	U4

B

A

b

D1 + D2

58

U5: If A @ B holds onα andB ∈ cr(D), and if x ⊢⊣ B holds for allx ∈ pt(D),
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {A @ X | B @ X ∈ rel(D)}
∪ {A ◃▹ X | X @ B or X ◃▹ B ∈ rel(D)}
∪ {A ⊢⊣ X | X ⊢⊣ B ∈ rel(D)} ∪ {x ⊢⊣ A | x ∈ pt(D)}

U5 is applied as follows:

B

D R

A

B

α	U5

A

B

D + α

C

B

E
F

D1 R

A

B

	U5 D2

A C

B

E
F

D1 + D2

U6: If A @ B holds onα andA ∈ cr(D), and if x @ A holds for allx ∈ pt(D),
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {X @ B | X @ A ∈ rel(D)} ∪ {x @ B | x ∈ pt(D)}
∪ {X ◃▹ B | A @ X or A ⊢⊣ X or A ◃▹ X ∈ rel(D)}

U6 is applied as follows:

A

D R

A

B

α	U6

A

B

D + α

C
A

E

D1 R

A

B

	U6 D2

E
C

A

B

D1 + D2

U7: If A ⊢⊣ B holdson α andA ∈ cr(D), and if x @ A holds for allx ∈ pt(D),
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {X ⊢⊣ B | X @ A ∈ rel(D)} ∪ {x ⊢⊣ B | x ∈ pt(D)}
∪ {X ◃▹ B | A @ X or A ⊢⊣ X or A ◃▹ X ∈ rel(D)}

U7 is applied as follows:

A

D R

A B

α	U7

A B

D + α

A

a

C

E

D1

A B

R 	U7 D2

A

a

C

E

B

D1 + D2

59

U8: If A ◃▹ B holds onα andA ∈ cr(D), and if pt(D) = ∅, thenD andα may
be unified to a diagramD + α such that the set of relationsrel(D + α) is the
following:

rel(D) ∪ {X ◃▹ B | X ∈ cr(D)}

U8 is applied as follows:

A

D R

A B

α	U8

A B

D + α

C

A
E

D1 R

A B

	U8 D2

C

A
E

B

D1 + D2

(II) WhenD andα share two circles, they may be unified toD + α by the following
U9 andU10 rules.

U9: If A @ B holds onα andA ◃▹ B holds onD, and if there is no objects such that
s @ A ands ⊢⊣ B hold onD, thenD andα may be unified to a diagramD + α
such that the set of relationsrel(D + α) is the following:(
rel(D) \ {Y ◃▹ X | Y @ A andB @ X ∈ rel(D)} \ {X ◃▹ Y | X @ A andY ⊢⊣ B ∈ rel(D)}

)
∪ {Y @ X | Y @ A andB @ X ∈ rel(D)} ∪ {X ⊢⊣ Y | X @ A andY ⊢⊣ B ∈ rel(D)}

U9 is applied as follows:

A B

RD

A

B

	U9
α

A
B

D + α

A B
CE

D1 R

A

B

	U9 D2

A

B

C

E

D1 + D2

U10: If A ⊢⊣ B holdsonα andA ◃▹ B holds onD, and if there is no objects such that
s @ A ands @ B hold onD, thenD andα may be unified to a diagramD + α
such that the set of relationsrel(D + α) is the following:(
rel(D)\{X ◃▹ Y | X @ A andY @ B ∈ rel(D)}

)
∪{X ⊢⊣ Y | X @ A andY @ B ∈ rel(D)}

U10 is applied as follows:

A B

RD

A B

	U10 α

A B

D + α

A B

C FE

U10D1 R

A B

	 D2

A

C
E

B

F

D1 + D2

60

(III) Point Insertion: If, for any circlesX,Y and for any2 ∈ {@, A,⊢⊣, ◃▹}, X2Y ∈
rel(D1) iff X2Y ∈ rel(D2) holds, and ifpt(D2) is a singleton{b} such thatb ̸∈
pt(D1), thenD1 andD2 may be unified to a diagramD1 + D2 such that the set of
relationsrel(D1 +D2) is the following:

rel(D1) ∪ rel(D2) ∪ {b ⊢⊣ x | x ∈ pt(D1)}

Point Insertion is applied as follows:

A
a

c

C

B

A b
C

B

D1 D2R 	

A
a

c
b

C

B

D1 + D2

Deletion: Whent is anobject ofD, t may be deleted fromD to obtain a diagramD− t
under the constraint thatD − t has at least one objects.

The notion ofdiagrammatic proofs (or, d-proofs)is defined inductively as tree
structures consisting of unification and deletion steps. The provability relation be-
tweenEUL-diagrams is defined as usual. We denote byD a sequence of diagrams
D1, . . . ,Dn.

Theorem A.2 (Soundness and completeness ofGDS [13]) Let D, E be EUL-
diagrams, and letD have a model. E is a semantically valid consequence ofD
(D |= E), if, and only if, there is a d-proof ofE fromD (D ⊢ E) in GDS.

61

Transforming Constraint Diagrams

Jim Burton∗ Gem Stapleton†

Ali Hamie‡

Visual Modelling Group
University of Brighton, Brighton, UK

August 17, 2009

Abstract

Constraint diagrams were proposed by Kent for the purposes of formal soft-
ware specification in a visual manner. They have recently been formalized and
generalized, making them more expressive. This paper presents a collection of
transformations that can be applied to the so-called unitary α fragment of con-
straint diagrams. The transformations can be used to define inference rules in a
more succinct manner than in earlier systems. We establish that the transforma-
tions are sufficient to transform any given unitary α-diagram into any other unitary
α-diagram. Therefore, they are sufficient for formalizing any inference rules be-
tween such diagrams.

1 Introduction
Visual languages play an important role in the design and implementation of software.
For example, the Unified Modelling Language (UML) [20] is now an industry standard
visual notation designed specifically for use by software engineers and is used through-
out the software development process, from capturing domain requirements through to
implementation. Under some circumstances (such as in a safety critical environment;
see, for example, [19]) it is desirable, perhaps even essential, to produce formal models
of software. In part, such application areas serve to motivate the need for the precise
specification of the UML at both a syntactic and semantic level; the pUML group was
set up with this goal in mind [18].

Part of the creation of a formal model is likely to involve specifying constraints such
as system invariants and operation contracts which, within the UML, is achieved by
using the Object Constraint Language (OCL) [22]. The OCL is the only purely textual
part of the UML and, therefore, does not fit with the UML’s diagrammatic theme.
Building on the formal diagrammatic reasoning systems of Shin [13], Hammer [1] and
∗ j.burton@brighton.ac.uk
† g.e.stapleton@brighton.ac.uk
‡ a.a.hamie@brighton.ac.uk

62

others, Kent introduced constraint diagrams [11] which are designed to complement
the visual components of the UML and to specify constraints like the (symbolic) OCL.
Constraint diagrams can also be used independently of the UML.

In figure 1 there is a constraint diagram which expresses an invariant that we might
wish to place on a video rental store system: there is a member that can only borrow
films that are in the collections of the stores which they have joined. The semantics of
constraint diagrams will be explained more fully later, but the blob acts as an existential
quantifier, the arrows allow us to make statements about binary relations and the closed
curves represent sets (or classes).

canBorrow

collectionjoined

Member. Film

Store

Figure 1: A constraint diagram.

At first glance, constraint diagrams appear intuitive and, perhaps, unambiguous, but
it was not until a formalization of their semantics was attempted that a range of ambi-
guities was noticed [8]. Indeed, only when a formalization was eventually obtained [5]
did the complexity of interpreting these diagrams become apparent. Whilst in many
examples constraint diagrams are “well-matched to meaning” [9] there are also many
situations where their intuitiveness breaks down. This led to the development of gen-
eralized constraint diagrams [14]. Both of these constraint diagram notations share a
common fragment, which is considered in this paper. For this fragment, we set up a
transformation system which forms the basis of a reasoning system for both constraint
diagrams and generalized constraint diagrams.

There are various ways in which reasoning will need to be performed when using
formal methods. First, there is reasoning about the model; for example, when one
wishes to show that the model is consistent or that the post-condition of one operation
implies the precondition of another. Secondly, a programmer will need to use some
informal reasoning to determine an appropriate implementation that conforms to the
specification. Thirdly, at a later stage, one might also wish to formally prove that
the implementation does indeed conform to the model. Formal reasoning has been
investigated for constraint diagrams [4, 16] but as yet no inference rules have been
defined for generalized constraint diagrams.

An aim of this paper is to define a transformation system for so-called unitary α-
diagrams which can be used to subsequently define inference rules for either constraint
diagrams or generalized constraint diagrams. Section 2 provides a brief overview of
unitary diagrams. We also present a formalization of the syntax of unitary diagrams in

63

section 2. Our transformations are defined in section 3, focusing separately on those
which remove syntax and those which add syntax. Finally, in section 4, we show how
the transformations can be used as a basis for inference rules.

2 Unitary Diagrams
We follow a typical approach of formally defining the syntax at an abstract level [10].
In this way, we disregard the many aspects of drawn diagrams that are irrelevant to their
semantic meaning, such as the shape and relative location of curves. To aid intuition,
we include a informal presentation of the concrete syntax, since this is used to guide
the work, but all formal aspects are conducted at the abstract level.

2.1 Concrete Syntax
The concrete syntax of a visual language defines, in our case, diagrams as drawn im-
ages. We proceed to sketch the concrete syntax of so-called unitary constraint dia-
grams. We make occasional reference to semantics to aid the readers’ understanding.
For the purposes of this paper, the semantics are not particularly important, which is
why we do not include their precise formalization.

Unitary constraint diagrams consist of closed curves (some of which may be la-
belled) drawn in the plane and which represent sets. The spatial relationships between
the curves makes assertions about the relationships between the represented sets. For
example, the diagram in figure 1 contains six curves, three of which are labelled. The
placement of one curve inside another makes a subset assertion, whilst non-overlapping
curves make a disjointness assertion. So, Member and Film are disjoint, for example.

In the regions formed by the curves we can place graphs, whose nodes are either all
dots or all asterisks; these graphs are called existential spiders and universal spiders re-
spectively. Existential spiders represent the existence of an element. In figure 1, there is
one existential spider that has exactly one node placed inside Member . For simplicity
of presentation, we will assume there are no universal spiders, although the transforma-
tions we define can easily be extended to cope with their inclusion. Similarly, we also
assume that the existential spiders are placed in single zones; this constraint to single
zones gives what are called α-diagrams [16]. The curves in a diagram subdivide the
plane into minimal regions: such a region is a connected component of the plane less
the images of the curves. In figure 1, there are seven minimal regions. Of particular
importance is the notion of a zone in a diagram, d. A zone is a set of minimal regions
that can be described as being inside some (possibly no) curves but outside the rest
of the curves in d. Semantically, a zone represents the set which is the intersection of
the sets represented by the curves it is inside less the union of the sets represented by
the curves that it is outside. In figure 1, every minimal region is also a zone and there
are no zones that are not also minimal regions. However, this need not be the case:
sometimes, zones consist of more than one minimal region and such zones are said to
be disconnected. Zones can be shaded. The use of shading places an upper bound on
the cardinality of the represented sets: in a shaded zone, all of the elements must be
represented by spiders.

64

Finally, arrows are used to make statements about binary relations: the set of ele-
ments (or element) represented by the arrow’s source is related to precisely the set of
elements represented by the arrow’s target under the relation represented by the arrow’s
label. For example, in figure 1 the arrow labelled joined sourced on the existential spi-
der, e, asserts that the set of elements to which e is related under the relation joined is
a subset of Store. In addition, if we restrict the domain of collection to Store then we
obtain a subset of Film which includes all of the films that can be borrowed by e.

So far, we have described unitary diagrams which consist of curves, spiders placed
in zones or sets of zones, shading, and arrows. Further examples of unitary diagrams
can be seen throughout the paper; we discuss the syntax of d1 when presenting the
formalization below. We refer the reader to [5] for further examples and more precise
details on the concrete syntax and the semantics of constraint diagrams, and to [14]
for similar information on generalized constraint diagrams. For the purposes of this
paper, it is the formal, abstract, syntax that is important and the next section includes
those details necessary for our transformations to be defined. Unitary diagrams can be
joined together using logical connectives, such as ∧, to make compound diagrams; it is
unitary diagrams for which we define transformations.

We have placed a restriction on spiders so that they can only have one node, mean-
ing that they are placed inside single zones. This restriction yields α-diagrams which
form a fragment of (non-unitary) generalized constraint diagrams that is not reduced in
expressive power: given any generalized constraint diagram there exists a semantically
equivalent diagram that contains only spiders placed inside single zones. However,
there are constraint diagrams that are not semantically equivalent to any α-diagram,
but only if they contain universal spiders. That is given a constraint diagram contain-
ing only existential spiders, one can reduce it to an α-diagram,as in [16]. We note that
excluding universal spiders does decrease the expressive power but, as stated above,
our work easily adapts to the case where they are permitted.

2.2 Abstract Syntax
Our formal definition of the syntax of unitary diagrams adapts that in [14]. In the
abstract syntax we identify labelled curves with their labels; curve labels are drawn
from the set LC. Further, at the abstract level, the unlabelled curves are formalized
as elements of an arbitrary (but specified) set UC. We consider the elements of UC to
correspond directly to the unlabelled curves of drawn diagrams. In a drawn diagram, a
zone can be described by the curves that contain it and the curves that do not contain
it. We use this insight to formalize zones at an abstract level.

Definition 2.1. A zone is a pair, (in, out) where in ∩ out = ∅ and in∪out ⊆ LC∪UC.

The set of all zones is denoted Z . To illustrate the concept, the shaded zone in
figure 2 can be described by z = ({A}, {B, uc}) where uc denotes the unlabelled
curve. There are two spiders placed in this zone; we cannot formalize a spider by
identifying it with the zone in which it is placed. However, this provides the basis of
their formalization: a spider will essentially be defined as a number together with a
zone. In our example, the two spiders are written as s1(z) and s2(z).

65

.
A

d1 d2

.
B

l

.
A

.
l

Figure 2: Formalizing the syntax.

Definition 2.2. A spider is of the form si(z) where i is a natural number and z is a
zone. The habitat of si(z) is z and we say that si(z) inhabits z.

The set of all spiders is denoted S. We now proceed to formalize arrows. To
identify the arrows in a drawn diagram, it is sufficient to state their source and target,
together with their label. For example, in figure 2, the arrow can be described by the
triple (l, s1(z), uc) (recall, uc is the unlabelled curve and z = ({A}, {B, uc})). We
draw arrow labels from a fixed set AL.

Definition 2.3. An arrow end is either a curve drawn from LC ∪UC or a spider drawn
from S. An arrow is an ordered triple (l, s, t) where l ∈ AL, and s and t are arrow
ends called the source and target respectively.

Definition 2.4. A unitary diagram is a tuple, d = (Z,Z∗, S,A), which satisfies the
following:

1. Z = Z(d) is a finite set of zones such that for each pair of zones (in1, out1) and
(in2, out2) in Z(d) we have in1 ∪ out1 = in2 ∪ out2. That is, the zones are all
described using the same curves. We define C(d) = in1 ∪ out1.

2. Z∗ = Z∗(d) is a set of shaded zones such that Z∗(d) ⊆ Z(d). That is, all of the
shaded zones are in the diagram.

3. S = S(d) is a finite set of spiders such that for each spider si(z) ∈ S(d),
z ∈ Z(d). That is, spiders are placed in zones of the diagram.

4. A = A(d) is a set of arrows such that for each arrow (l, s, t) in A(d), s and t
are in S(d) ∪ C(d). That is, arrows are sourced and targeted on components of
the diagram.

So, d1 in figure 2 is formalized as the tuple (Z,Z∗, S,A) where:

1. Z is comprised of the following zones.

• ({A}, {B, uc}),
• ({A,B}, {uc}),
• ({B}, {A, uc}),

66

• ({B, uc}, {A}),
• ({uc}, {A,B}),
• (∅, {A,B, uc})

2. Z∗ = {({A}, {B, uc})},

3. S = {s1({A}, {B, uc}), s2({A}, {B, uc})}, and

4. A = {(l, s1({A}, {B, uc}), uc)}.

Semantically, d1 asserts that the set A − B contains at least two elements, x and y,
through the use of the two existential spiders, the shading asserts that there are no more
elements in that set (i.e. |A − B| = 2), and that x is related to some set of elements,
say x.l, under the relation l such that x.l ∩ A = ∅. The diagram d2 makes a weaker
statement, asserting that there are at least two elements in A, at least one of which is
related to some set of elements, under l, that is disjoint from A. In fact, we can deduce
d2 from d1 and, if we had a set of sound and (possibly) complete inference rules then
we could prove that d2 does indeed follow semantically from d1.

3 Transformations
To facilitate elegant definitions of inference rules for unitary diagrams, we define di-
agram transformations, which are purely syntactic and represent the addition or re-
moval of a piece of syntax. For example, we can remove the curve B from d1 in
figure 2, transforming it into d2; this remove curve transformation will be formalized
below. The transformations defined will be applicable under specified syntactic con-
ditions, which are not related to sound reasoning, but are intended to merely constrain
the transformation to ensure the result of its application is a diagram. The benefit of
making transformations which are purely syntactic and unrelated to reasoning is that
this facilitates their use in a wide number of (reasoning) contexts.

3.1 Transformations that remove syntax
We start with the simplest transformation, that which removes an arrow.

Transformation 1. Remove arrow

We can transform a diagram by removing an arrow. In figure 3, the arrow, a, labelled r
is removed from d1 to give d2.
Formal definition Let d1 be a unitary diagram such that there exists an arrow a in
A(d1). The diagram d2 can be obtained from d1 removing a using the remove arrow
transformation, denoted d1

−a−→ d2, where d2 = (Z(d1), Z∗(d1), S(d1), A(d1)−{a}).

67

.
A

d1 d2

-a

r .
A

Figure 3: Transforming a diagram by removing an arrow.

Transformation 2. Remove shading

We can transform a diagram by removing the shading from a zone. In figure 4, the
shading is removed from the zone ({B}, {A}) in d1 to give d2.

A

d1 d2

-z*

A
B B

Figure 4: Transforming a diagram by removing shading from a zone.

Formal definition Let d1 be a unitary diagram and let z be a zone such that z ∈
Z∗(d1). The diagram d2 can be obtained from d1 using the remove shading transfor-

mation, denoted d1
−z∗−→ d2, where d2 = (Z(d1), Z∗(d1)− {z}, S(d1), A(d1)).

Transformation 3. Remove spider

Our next transformation removes a spider from a unitary diagram. We need to provide
a constraint (i.e. a precondition) on when this transformation can be applied in order to
ensure that the result is a diagram. To formally define the remove spider transformation,
we need to refer to the set of arrows sourced on, or targeting, a spider. Later, we also
need to identify curves that are the source or target of an arrow. Here, we provide some
notation that is convenient for identifying these sets.

Definition 3.1. Let d be a unitary diagram and let s be a spider in S(d). The set of
arrows which are either sourced or targeted on s in d, denoted A(s, d), is

A(s, d) = {(l, σ, τ) ∈ A(d) : σ = s ∨ τ = s}.

If an arrow a is sourced or targeted on s then we say a touches s. Similarly, we define
the set of arrows which touch a curve c in a diagram d, denoted A(c, d):

A(c, d) = {(l, σ, τ) ∈ A(d) : σ = c ∨ τ = c}.

68

We can transform diagrams by removing a spider provided it is not touched by an
arrow. In figure 5 s is removed from d1 to give d2.

d1 d2

-s. .
r

.
r

s

Figure 5: Transforming a diagram by removing a spider.

Formal definition Let d1 be a unitary diagram such that there exists a spider s ∈ S(d1)
which is not touched by any arrow, that isA(s, d) = ∅. The diagram d2 can be obtained
from d1 by removing s under the remove spider transformation, denoted d1

−s−→ d2,
where d2 = (Z(d1), Z∗(d1), S(d1)− {s}, A(d1)).

Transformation 4. Remove zone

We can transform a diagram by removing any zone which is not the habitat of any
spider. In figure 6 the zone ({A,B}, ∅) is removed from d1 to give d2.

d1 d2

-z

A B A B

Figure 6: Transforming a diagram by removing a zone.

Formal definition Let d1 be a unitary diagram such that there exists a zone z in Z(d1)
which is not the habitat of any spider. Then the diagram d2 can be obtained from
d1 by removing z under the remove zone transformation, denoted d1

−z−→ d2, where
d2 = (Z(d1)− {z}, Z∗(d1)− {z}, S(d1), A(d1)).

Transformation 5. Remove curve

We can remove a curve provided it is not touched by any arrow. In figure 7 the curve
labelled B is removed from d1 to give d2.

In diagram d1 in figure 7, the region inside the curve labelled A is partially shaded.
We could choose to define the transformation which removes B so that it removes
this partial shading or leaves as shaded all zones which were shaded in the original.
Actually, there are various choices for how to define a remove curve rule. We want to

69

d1 d2

-B

A

B
C.

A

C.

Figure 7: Transforming a diagram by removing a curve.

use the transformations as the basis for (useful) inference rules, so we have chosen to
define this transformation in such a manner that it removes partial shading: we know
that B−A represents the empty set through the use of this shading and, when deleting
B, we forget this information. In figure 8, the curve B can be removed, but this time
we retain the shading in A. We need our formalization to reflect when we must lose
shading and when we can retain it; for this purpose we need to appeal to missing zones.

-B

A

C

B A

C

Figure 8: Accounting for missing zones.

Definition 3.2. Let d be a unitary diagram. A zone z = (in, out) where in ∪ out =
C(d) that is not in Z(d) is said to be missing from d. The set of zones missing from d
is denoted MZ (d), so MZ (d) = {(in, out) ∈ Z : in ∪ out = C(d)} − Z(d).

Formal definition Let d1 be a unitary diagram and let c be a curve such that c ∈ C(d1)
and A(c, d1) = ∅. The diagram d2 can be obtained from d1 by removing c using
the remove curve transformation, denoted d1

−c−→ d2, where d2 has the following
components.

1. Z(d2) = {(in− {c}, out− {c}) : (in, out) ∈ Z(d1)},

2. Z∗(d2) is the union of the sets of zones Zi,o, Zi,m, and Zm,o where

(a) Zi,o is formed by removing c from the shaded zones of d1 that were split
by c into two zones (one inside and one outside):

Zi,o = {(in, out) : (in∪{c}, out) ∈ Z∗(d1)∧ (in, out∪{c}) ∈ Z∗(d1)},

(b) Zi,m is formed by removing c from the shaded zones of d1 that c was
entirely within:

Zi,m = {(in, out) : (in∪{c}, out) ∈ Z∗(d1)∧(in, out∪{c}) ∈ MZ (d1)},

70

(c) Zm,o is formed by removing c from the shaded zones of d1 that c was
entirely outside:

Zm,o = {(in, out) : (in∪{c}, out) ∈ MZ (d1)∧(in, out∪{c}) ∈ Z∗(d1)},

3. S(d2) = {si(in− {c}, out− {c}) : si(in, out) ∈ S(d1)},

4. A(d2) = A(d1).

3.2 Transformations that add syntax
The transformations that we define for adding syntax are counterparts of those which
remove syntax. For the first two transformations no examples are given since they are
very similar to their remove syntax counterparts.

Transformation 6. Add arrow

Formal definition Let d1 be a unitary diagram and let (l, s, t) be an arrow such that
s, t ∈ S(d) ∪ C(d) and (l, s, t) 6∈ A(d1). The diagram d2 can be obtained by adding
(l, s, t) to d1 using the add arrow transformation, denoted d1

+a−→ d2, where d2 =
(Z(d1), Z∗(d1), S(d1), A(d1) ∪ {(l, s, t)}).

Transformation 7. Add spider

Formal definition Let d1 be a unitary diagram such that there exists a zone z ∈ Z(d1)
and a spider si(z) 6∈ S(d1) where z ∈ Z(d1). The diagram d2 can be obtained by
adding s to d1 using the add spider transformation, denoted d1

+s−→ d2, where d2 =
(Z(d1), Z∗(d1), S(d1) ∪ {s}, A(d1)).

Transformation 8. Add shading

We can transform a diagram by adding shading to a zone. In figure 9, shading is added
to the zone ({A,C}, {B}) in d1 to give d2.

d1 d2

+z*

A B

C

A B

C

Figure 9: Transforming a diagram by adding shading to a zone.

Formal definition Let d1 be a unitary diagram and z ∈ Z(d1)−Z∗(d1). The diagram
d2 can be obtained from d1 by adding shading to z using the add shading transforma-

tion, denoted d1
+z∗−→ d2, where d2 = (Z(d1), Z∗(d1) ∪ {z}, S(d1), A(d1)).

71

d1 d2

+z

A B
f

A B
f

CC

Figure 10: Transforming a diagram by adding a zone.

Transformation 9. Add zone

We can transform a diagram by adding a missing zone. Figure 10 shows the addition
of the missing zone ({A,B}, {C}) to d1 to give d2.
Formal definition Let d1 be a unitary diagram and z be a zone such that z ∈ MZ (d1).
The diagram d2 can be obtained from d1 by adding z using the add zone transformation,
denoted d1

+z−→ d2, where d2 = (Z(d1) ∪ {z}, Z∗(d1), S(d1), A(d1)).

Transformation 10. Add curve

There are a number of ways of adding a curve to a diagram: the new curve can be added
in such a way that it is entirely outside of all existing curves, or is entirely contained
within one other curve, and so on. The relationship between the new curve and the
existing curve can be captured by appealing to its relationship with the existing zones:
the existing zones are either completely inside the new curve, completely outside the
new curve, or split by the new curve. Thus, we parametrise the transformation of
adding a curve to a diagram d1 using two subsets of zones which we call Zin and Zout,
where Zin∪Zout = Z(d1); those zones which will fall inside the new curve are in Zin,
those outside in Zout and those that will be split are in Zin ∩Zout. The case of adding
a curve which splits every zone in d1, for instance, is that of choosing Zin = Zout =
Z(d1). Figure 11 shows an example of adding a curve with Zin = {(∅, {A,B})} and
Zout = Z(d1)− Zin.

In addition, each spider can be inside or outside the new curve. Thus, we also
supply a two-way partition of the spider set, Sin and Sout, allowing us to specify the
habitats of the spiders after the curve addition. We must place constraints on the choice
of Sin and Sout to ensure consistency with the manner in which the curve is added.
For instance, we cannot place a spider si(z) in the set Sin if z ∈ Zout −Zin, since the
‘new’ habitat of the spider will not be present in the diagram after the curve addition.
Consequently, we only have a choice about whether a spider, si(z), is in Sin or Sout if
z ∈ Zin ∩ Zout. Note that this is a syntactic constraint and not related to soundness.
An appropriate choice of Zin, Zout, Sin and Sout allows the user to add curves in any
of the possible ways.

Recall that the set LC ∪ UC is the abstract set that corresponds to the labelled and
unlabelled curves that can appear in any diagram at the concrete syntax level. The set
C(d), for any unitary diagram d, is a subset of LC ∪ UC.

72

d

+c

A

r B

C

. .
A

r B

. .

1 d2

Figure 11: Transforming a diagram by adding a curve.

Formal definition Let d1 be a unitary diagram and let c be a curve that is not in d1,
that is c ∈ (LC ∪ UC) − C(d). Let Zin and Zout be subsets of Z(d1) such that
Zin ∪ Zout = Z(d1). Let Sin and Sout be a two-way partition of S(d1) such that

1. for all si(z) in Sin, z ∈ Zin and

2. for all si(z) in Sout, z ∈ Zout.

The diagram d2 can be obtained by adding the curve c to d1 using the add curve trans-
formation, denoted d1

+P−→ d2, where P = (c, Zin, Zout, Sin, Sout) and d2 has the
following components:

1. Z(d2) = Zin+c ∪ Zout+c where

(a) Zin+c is formed by adding c to the zones of d1 that we wish to contain c in
d2: Zin+c = {(in ∪ {c}, out) : (in, out) ∈ Zin},

(b) Zout+c is formed by adding c to the zones of d1 that we wish to exclude c
in d2: Zout+c = {(in, out ∪ {c}) : (in, out) ∈ Zout}.

2. Z∗(d2) = Z∗in+c ∪ Z∗out+c where

(a) Z∗in+c = {(in ∪ {c}, out) : (in, out) ∈ Zin ∩ Z∗(d1)},
(b) Z∗out+c = {(in, out ∪ {c}) : (in, out) ∈ Zout ∩ Z∗(d1)}.

3. S(d2) = Sin+c ∪ Sout+c where

(a) Sin+c = {si(in ∪ {c}, out) : si(in, out) ∈ Sin},
(b) Sout+c = {si(in, out ∪ {c}) : si(in, out) ∈ Sout}.

4. A(d2) = A(d1).

3.3 Completeness of the Transformations
The set of transformations defined above is complete because we can use them to trans-
form any unitary diagram into any other unitary diagram, although the resulting system
is (intentionally) not sound. The completeness of the transformation system means that
these transformations are sufficient for describing a set of sound and complete inference
rules for the unitary α-diagram fragment of both constraint diagrams and generalized
constraint diagrams.

73

Theorem 1. Let d1 and dn be unitary diagrams. Then there exists a sequence of
diagrams, (d1, d2..., dn) such that for each i, where 1 < i ≤ n, the diagram di can
be obtained from di−1 by the application of one of the above transformations. In other
words, the given set of transformations is complete.

Sketch. The transformations which remove syntax can be used repeatedly to transform
d1, regardless of its content, into the diagram (∅, ∅, ∅, ∅). The transformations which
add syntax can then be used to build d2.

Although there will often be faster ways to transform one diagram into another, we
can rely on the ‘brute force’ method of removing all diagrammatic elements from d1 to
produce the empty diagram then adding the elements of d2. This relies on choosing the
right order in which to apply the transformations, depending on their pre-conditions of
syntactic well-formedness; for instance, before using remove spider (transformation 3)
to remove a spider s which is the source of an arrow a in d1, we must first use remove
arrow (transformation 1) to remove a from d1.

4 Using Transformations to Define Inference Rules

We are able to use the transformations to define inference rules in a variety of ways.
The motivation for using transformations in this way is by analogy with software en-
gineering. Functional and modular abstraction leads to systems with less code dupli-
cation and which are easier to understand and maintain. In a similar way, the shorter
inference rule definitions that result from abstracting syntactic details into transforma-
tions are easier to state, reason about and check for errors. We are able to compose
transformations in the definition of rules which make several changes to a diagram in a
similar way to composing referentially transparent functions in a functional program-
ming language. To use the transformations when defining inference rules, we may need
to place further conditions on when the transformation can be applied to ensure sound-
ness. In the case of the erasure of a spider, such a condition would be that the habitat
is not shaded.

We have defined a set of sound inference rules for the unitary α fragment of gen-
eralized constraint diagrams, and present three of their definitions below as examples.
Work on establishing a complete set for this fragment is ongoing. Four transformations
can immediately be used as sound inference rules: remove arrow, remove shading,
remove curve and add zone. The other transformations need not result in a semantic
consequence of the diagram to which they are applied. Some transformations are used
by several rules; for instance, (at least) five of inference rules that we have so far de-
fined use the add arrow transformation. An add shaded zone inference rule makes use
of two transformations. We have also begun work on defining inference rules whose
application results in a compound diagram, and expect a significant proportion of these
inference rules to use more than one of the transformations defined here, particularly
as compared to the unitary fragment, because the compound inference rules tend to be
more complex.

74

A

.
B

C.
l

d1

A

.C.
l

d2

A

.C.
l

d3

l A

.C.
l

d4

l

Figure 12: Using transformations to define inference rules.

To illustrate how we use the transformations to define sound inference rules, we
consider an example. Figure 12 shows a proof of d4 from d1. First, we apply the
remove curve transformation to d1 giving d2. We note that the remove curve transfor-
mation can be used directly as an inference rule; that is, applying the remove curve
transformation always results in a semantic consequence of the diagram to which the
transformation is applied. Next, we apply an add arrow rule to give d3. Unlike the
remove curve transformation, we cannot add arrows in arbitrary ways and obtain a se-
mantic consequence. The information provided by the new arrow must be deducible
from the information already present in the diagram and, as stated, we have defined a
number of rules which add arrows. The rule used to obtain d3 from d2 is called Add
arrow: contour to spider. Before defining the rule, we define the empty curves of a
diagram, or those within which every zone is shaded.

Definition 4.1. Let d be a unitary diagram. Define the empty curves of d, denoted
EC (d), as follows.

EC (d) = {c ∈ C(d) : ∀(in, out) ∈ Z(d) c ∈ in⇒ (in, out) ∈ Z∗(d)}.

Definition 4.2. Add arrow: contour to spider. Let d1 be a unitary diagram such that:

1. there is an arrow (l, s, t) in A(d1) such that t ∈ EC (d1), and

2. there is a spider σ ∈ S(d1) such that S(t, d1) = {σ}.

Let d2 be the diagram obtained by adding the arrow (l, s, σ) to d1 using the add arrow
transformation. Then we may replace d1 with d2.

As an example of the reuse of transformations, we include a second inference rule
which adds an arrow to a diagram. Informally, diagram d1 in figure 13 tells us that

75

the sum of the images of the relation r when restricted to the elements of A is the
empty set. This information is provided by the arrow labelled r which is sourced on A
and targets the shaded and unlabelled curve. It follows that we can add an arrow with
the same source and label which targets any other empty curve without changing the
meaning of the diagram. The inference rule Add arrow: empty set allows us to do this
and is used in d2 to add an arrow with the same source and label as the arrow in d1 but
which targets B.

A

B

r
A

B

r

r

d1 d2

Figure 13: An application of the inference rule Add arrow: empty set.

Definition 4.3. Add arrow: empty set. Let d1 be a unitary diagram which satisfies:

1. there is an arrow (l, s, t) in A(d1) where t ∈ EC (d1),

2. there is a curve t1 ∈ EC (d1) where (l, s, t1) 6∈ A(d1).

Let d2 be the diagram obtained by adding the arrow (l, s, t1) to d1 using the add
arrow transformation. Then we may replace d1 with d2.

Returning to figure 12, we obtain d4 from d3 using a combination of two transfor-
mations: add zone and add shading. The diagram d3 asserts that A ∩ C = ∅ since A
and C do not overlap, but we can assert this disjointness using a shaded zone, namely
({A,C}, ∅), justifying that d4 is a semantic consequence of d3. This intuition is for-
malized in the following inference rule.

Definition 4.4. Add shaded zone. Let d1 be a unitary diagram and z be a zone such
that z ∈ MZ (d1). Let d2 be the diagram obtained by applying the add zone transfor-
mation to add z to d1 obtaining d′1, then applying the add shading transformation to
shade z in d′1 obtaining d2. Then we can replace d1 by d2.

5 Extending to Compound Diagrams
The defined transformations focus on unitary diagrams. In both constraint diagrams
and generalized constraint diagrams, logical operators are used to form so-called com-
pound diagrams, albeit in rather different manners in the two notations. Our transfor-
mations can also be used in the context of compound constraint diagrams and gener-
alized constraint diagrams. For instance, figure 14 shows two compound constraint

76

diagrams, the second of which is a consequence of the first. In the first diagram we
have two unitary diagrams joined by a ∧ connective and, in one of those diagrams, d1,
an arrow labelled r is shown. The diagram d2 includes the source and target of the
arrow in d1 but not the arrow itself. Applying the add arrow transformation to add this
arrow to d2 is a sound inference step and results in the second compound diagram.

A B

.
r

d1

. A B

.
d2

. A B

.
r

d1

. A B

.
r

d3

.

Figure 14: A constraint diagram and the add arrow transformation.

Since non-unitary inference rules sometimes have more complex postconditions,
they are more likely to make use of several syntactic transformations than are unitary
inference rules. An illustration of this is is given by the rule excluded middle for zones,
adapted from [16]. This rule states that an unshaded zone either contains exactly the
number of spiders depicted, or the zone must contain at least one more spider than
depicted. Therefore, the conclusion of the rule is a disjunction of two diagrams, where
the add spider transformation had been applied to the first, and the add shading trans-
formation applied to the second. An example is shown in figure 15. The diagrams d2

and d3 are copies of d1 except that transformations have been used to add a spider to
zone {A,B} in the first and to shade the same zone in the second.

A

r B

..
A

r B

.
.A

r B

.. .

d1
d2 d3

Figure 15: Illustrating Excluded middle for zones.

Definition 5.1. Excluded middle for zones. Let d0 be a unitary constraint diagram,
let z be a non-shaded zone in d0, or z ∈ Z(d0)− Z∗(d0), and let s be a spider not in
S(d0). Let d1 be the diagram obtained by using the add spider transformation to add s
to z in d0, and let d2 be the diagram obtained by using the add shading transformation
to add shading to z in d0. Then d0 can be replaced by d1 ∨ d2.

6 Conclusion
In this paper we have presented a series of transformations that can be applied to unitary
diagrams (either constraint diagrams or their generalized form) and established that

77

they are complete. They provide a basis for defining inference rules, as illustrated in
section 4, for both constraint diagrams and generalized constraint diagrams. Defining
transformations with the right level of generality allows us to use them flexibly in the
definition of inference rules. In the future, we plan to use these transformations to build
a sound and, ideally, complete reasoning system for generalized constraint diagrams.

We are in the process of creating a proof assistant for reasoning with the abstract
syntax of constraint diagrams [2] which is intended to form a flexible basis for graph-
ical tools. The implementation of the tool uses the notion of modular, purely syntactic
transformations combined with preconditions to form inference rules in a manner very
close to the abstract definitions of the rules. This might in fact be called a “tradi-
tional” software engineering solution to the problem of creating such a tool. This close
symmetry and the fact that the tool uses a dependently typed language to create types
which correspond directly to abstract diagrams, transformations and inference rules,
helps when establishing the correctness of the tool.

Also in the context of tool support, significant research has been directed towards
the automated generation and layout of Euler diagrams, which form the bases of con-
straint diagrams, including [3, 6, 15, 21]. Moreover, other work has focused on how to
add spiders to the drawn Euler diagrams [12]. Thus, much work has been conducted on
how to automatically draw concrete diagrams from their abstract syntax. This diagram
drawing functionality provides a basis for making interactive proof assistants and the-
orem provers accessible to a range of users, not just those familiar, and confident with
using, the abstract syntax. Already, fully automated theorem provers have been devel-
oped for Euler diagrams [17] and spider diagrams [7]. Thus, whilst significant further
work is required to develop tool support for constraint diagrams, there is already a firm
basis on which we can build.

Acknowledgements. Jim Burton thanks the UK EPSRC for support through a DTA
studentship. Gem Stapleton acknowledges support from the UK EPSRC, grant number
EP/E011160/1, for the Visualization with Euler diagrams project
(www.eulerdiagrams.com).

References
[1] Barwise, J. and E. Hammer, Diagrams and the concept of logical system, in:

G. Allwein and J. Barwise, editors, Logical Reasoning with Diagrams, Oxford
University Press, 1996 .

[2] Burton, J., Diagrams and intuitive formal specifications, in: P. Bottoni, M. B.
Rosson and M. Minas, editors, Visual Languages and Human-Centric Computing,
IEEE (2008), pp. 262–263.

[3] Chow, S. and F. Ruskey, Drawing area-proportional Venn and Euler diagrams,
in: Proceedings of Graph Drawing 2003, Perugia, Italy, LNCS 2912 (2003), pp.
466–477.

[4] Fish, A. and J. Flower, Investigating reasoning with constraint diagrams, in: Vi-
sual Language and Formal Methods 2004, ENTCS 127 (2005), pp. 53–69.

78

[5] Fish, A., J. Flower and J. Howse, The semantics of augmented constraint dia-
grams, Journal of Visual Languages and Computing 16 (2005), pp. 541–573.

[6] Flower, J. and J. Howse, Generating Euler diagrams, in: Proceedings of 2nd
International Conference on the Theory and Application of Diagrams (2002), pp.
61–75.

[7] Flower, J., J. Masthoff and G. Stapleton, Generating readable proofs: A heuristic
approach to theorem proving with spider diagrams, in: Proceedings of 3rd In-
ternational Conference on the Theory and Application of Diagrams, LNAI 2980
(2004), pp. 166–181.

[8] Gil, J., J. Howse and S. Kent, Towards a formalization of constraint diagrams,
in: Proc IEEE Symposia on Human-Centric Computing (HCC ’01), Stresa, Italy
(2001), pp. 72–79.

[9] Gurr, C. and K. Tourlas, Towards the principled design of software engineering
diagrams, in: Proceedings of 22nd International Conference on Software Engi-
neering (2000), pp. 509–518.

[10] Howse, J., F. Molina, S. J. Shin and J. Taylor, On diagram tokens and types, in:
Proceedings of 2nd International Conference on the Theory and Application of
Diagrams (2002), pp. 146–160.

[11] Kent, S., Constraint diagrams: Visualizing invariants in object oriented mod-
elling, in: Proceedings of OOPSLA97 (1997), pp. 327–341.

[12] Mutton, P., P. Rodgers and J. Flower, Drawing graphs in Euler diagrams, in:
Proceedings of 3rd International Conference on the Theory and Application of
Diagrams, LNAI 2980, pp. 66–81.

[13] Shin, S. J., “The Logical Status of Diagrams,” CUP, 1994.

[14] Stapleton, G. and A. Delaney, Evaluating and generalizing constraint diagrams,
Journal of Visual Languages and Computing 19 (2008), pp. 499–521.

[15] Stapleton, G., J. Howse, P. Rodgers and L. Zhang, Generating euler diagrams
from existing layouts, in: Layout of (Software) Engineering Diagrams, Electronic
Communications of the EASST (2008), pp. 16–31.

[16] Stapleton, G., J. Howse and J. Taylor, A decidable constraint diagram reasoning
system, Journal of Logic and Computation 15 (2005), pp. 975–1008.

[17] Stapleton, G., J. Masthoff, J. Flower, A. Fish and J. Southern, Automated theorem
proving in Euler diagrams systems, Journal of Automated Reasoning 39 (2007),
pp. 431–470.

[18] The Precise UML Group, Untitled, http://www.cs.york.ac.uk/puml/index.html
(1997).

79

[19] UK Ministry of Defence, The procurement of saftey critical software in defence
equipment (1993).

[20] Unified Modelling Language, Untitled, http://www.uml.org/ (2006).

[21] Verroust, A. and M. L. Viaud, Ensuring the drawability of Euler diagrams for up
to eight sets, in: Proceedings of 3rd International Conference on the Theory and
Application of Diagrams, LNAI 2980 (2004), pp. 128–141.

[22] Warmer, J. and A. Kleppe, “The Object Constraint Language: Precise Modeling
with UML,” Addison-Wesley, 1998.

80

A Cognitive Exploration of the “Non-Visual”
Nature of Geometric Proofs

Peter W. Coppin∗† Stephen A. Hockema‡

Faculty of Information
University of Toronto

Abstract

Why are Geometric Proofs (Usually) “Non-Visual”? We asked this question as
a way to explore the similarities and differences between diagrams and text (visual
thinking versus language thinking). Traditional text-based proofs are considered
(by many to be) more rigorous than diagrams alone. In this paper we focus on
human perceptual-cognitive characteristics that may encourage textual modes for
proofs because of the ergonomic affordances of text relative to diagrams. We sug-
gest that visual-spatial perception of physical objects, where an object is perceived
with greater acuity through foveal vision rather than peripheral vision, is similar
to attention navigating a conceptual visual-spatial structure. We suggest that at-
tention has foveal-like and peripheral-like characteristics and that textual modes
appeal to what we refer to here as foveal-focal attention, an extension of prior
work in focused attention.

Keywords attention, visual thinking, proof, logic, geometry

1 Introduction
Why are geometric proofs usually “non-visual”? We asked this question as a way
to explore the similarities and differences between diagrams and text (visual thinking
versus language thinking [19]). We felt that the examples provided by text-based ge-
ometric proofs might be a microcosm for notation use in broader contexts, such as
education, a field similarly traditionally dominated by text relative to visual-spatial in-
formation [13]. We believe that ongoing research to increase an understanding of the
cognitive dimensions of visual-spatial notations relative to text could increase abili-
ties to conceptualize, comprehend, and communicate ideas in education, public policy,
and beyond by introducing principled approaches for using ergonomically appropriate
notations relative to an intended communication or comprehension purpose (cf. [5, 8]).
∗E-mail: petercoppin@gmail.com
†This material is based upon work supported under a National Science Foundation Graduate Research

Fellowship and a University of Toronto Fellowship (during different time periods).
‡E-mail: steve.hockema@utoronto.ca

81

mailto:petercoppin@gmail.com
mailto:steve.hockema@utoronto.ca

Despite a prima facie case that the subject matter of geometry and its underlying
theories seems to be about spatial forms and relationships, geometric proofs are most
often formally represented to people as text-based descriptions of geometric properties
that demonstrate how a geometric relationship is necessarily true as a series of logi-
cal relationships. As Tennant [17] described: “[The diagram] is only an heuristic to
prompt certain trains of inference; . . . it is dispensable as a proof-theoretic device;
indeed, . . . it has no proper place in a proof as such. For the proof is a syntactic object
consisting only of sentences arranged in a finite and inspectable array.” (as quoted in
[4])

For example, if block A is under block B and block C is above block B, then
logic tells us that block A is below block C. Alternatively, we can easily induce that
block A is below block C by observing a diagram, yet the logical text-based proof
is considered more rigorous than a diagram [17]. Indeed, for generations, Euclid’s
Elements was considered to be flawed because of its reliance on diagrams. As Mumma
[11] described: “for some of Euclid’s steps, the logical form of the preceding sentences
is not enough to ground the steps. One must consult the diagram to understand what
justifies it.” For this reason it is commonly felt that Euclid “failed in his efforts to
produce (an) exact, full explicit mathematical proof” [11]. (We will show an example
of this below in section 3.1.)

Barwise and Etchemedy [4] began to question the assumption that diagrams were
less rigorous than (non-diagrammatic) proofs, bolstering their perspective by using
evidence from cognitive psychology [9] that showed how maps enable problem solving
more effectively in certain situations. Nonetheless, text-based “language thinking”
and algebraic notations remain the dominant mode relative to diagrams throughout
mathematics [6]. We asked: “could there be ergonomic properties afforded by text
relative to diagrams that encourages textual modes for proofs?”

An inversion of our question might be phrased as follows: what do the represen-
tational modes of sequential symbolic proofs relative to diagrams reflect about human
cognition? Though others [1, 6, 12] have explored related questions and have described
the dominance of text over visual-spatial representations through historical explana-
tions, we focus our attention on human perceptual-cognitive characteristics that may
encourage proofs (and similar materials) to evolve towards text-based modes relative
to visual-spatial modes because of the ergonomic affordances of text relative to dia-
grams.1

1.1 Related Work
Relative to well developed studies of language in linguistics and related fields, studies
of formal visual representations are sporadic and fall across less connected fields [1, 4,
13]. Very little prior work was found that addressed our specific question (especially
from a perceptual-cognitive perspective), however, some work with results that can be
adapted to explore our question follow:

1We also narrow our focus to the presentation of proofs in their final form, as opposed to also considering
the discovery and construction process of proving geometric theorems. While the two are obvious related,
we believe there is enough to say about the former here that can stand on its own without considering the
latter.

82

Coming from an information processing (cognitive psychology) perspective,
Larkin and Simon [10] sought to explore the differences between information as di-
agrams versus sentences, concluding that sentences embody the characteristic of being
indexed on a list, with each element “adjacent” only to the next element in the list. In
contrast, diagrams are indexed by location on a plane, many elements may share the
same location, and each element may be adjacent to any number of other elements; in
this way, Larkin and Simon propose that diagrams may be more useful than sentences
for solving certain kinds of problems because they can support more efficient computa-
tional processes. (Larkin and Simon include human neurological processes when they
use the word “computational”.) They also noted that this efficiency depends on the
design of the diagram and the ability of the user to interpret the diagram.

Approaching the issue as mathematicians and logicians, Barwise and Etchemendy
[4] begin their work by noting that in the field of mathematics and logic, diagrams are
not considered valid parts of a proof, and are present only as a heuristic aid (Barwise
and Etchemendy [4] citing Tennant [17]). A major purpose of [4] is to overturn this
thinking, bolstering their case by citing cognitive psychologist Kosslyn [9], who used
maps to justify visual presentations as valid problem solving tools, also making the
point that sentences or visual representations offer advantages or disadvantages based
on the purpose of the task at hand.

Barwise and Etchemendy conclude (like Larkin and Simon in [10]) by describing
advantages offered by diagrams that are not offered by sentences, and by doing so offer
a suite of differences between sentences and diagrams that extend [10]. For example,
with diagrams relationships are often implicit, whereas with sentences, even the most
trivial consequences must be inferred explicitly (as demonstrated in the introductory
example). Additionally, they point out that a picture or diagram can support “count-
less facts” (by this they mean that a plurality of sentences can be constructed from a
diagram).

More recently, Mumma approached the question of why geoemtric proofs are
language-based by examining the so-called “flaws” in Euclid’s proofs where he made
use of diagrams and then seeking to provide a rigorous diagramatic foundation for
these proofs [12]. In so doing, Mumma proposed three interrelated factors why Eu-
clid’s reliance on diagrams in his proofs is regarded as non-rigorous These were what
he referred to as:

• the generality problem – proofs are meant to be more general than the particular
instance in a diagram but how should we generalize from a particular diagram to
a more general case?

• the modern mathematical understanding of continuity – diagrams may lead to
simplistic and invalid assumptions about the continuity of lines, e.g. with respect
to the existence of intersection points

• the modern axiomatic method, which requires that all axioms and deductive steps
be explicitly specified, and raises suspicion about the assumptions embedded in
diagrams.

Thus, like Barwise and Etchemendy, Mumma locates the answer in the subject matter
and norms of the field and then attempts to argue that the above three problems can be

83

overcome in a more carefully specified hybrid system. We will argue below that there
is also another component to the answer based on basic facts about human cognition.

Along these lines, Shimojima and Katigiri [16] sought to support Barwise and
Etchemendy [4] by gaining empirical evidence to show how diagrams reduce infer-
ential load by drawing on newer discoveries in cognitive science such as Ballard et al.’s
[2] theory of “deictic indices.” Deictic indices are mental pointers to particular objects
in external space. The theory suggests that through an attentional mechanism, people
can maintain a small pool of such indices at once and can easily direct focal (men-
tal) attention or gaze to any of these indices. In Ballard’s et al.’s [2] words “pointing
movements are used to bind objects in the world to cognitive programs.”

Shimojima and Katigiri [16] describe how these indices can be used to keep track
of (mental) “non-physical drawings” they may construct while doing inferences about
diagrams. They suggest that reasoners can then navigate their attention through these
“non-physical” (mental) drawings during reasoning tasks and that these non-physical
drawings are assisted by real drawings (diagrams) and that this assistance reduces “in-
ferential load” during reasoning tasks.

Thus, although none of these works specifically address our question about why
proofs are “non-visual,” we gain important insight regarding the differences between
text and diagrams that can guide our inquiry. The thread running through each prior
work listed above is that text/language/prose guides attention in ways that are different
from visual-spatial representations. The next section will attempt to demonstrate this
more explicitly.

1.2 Integrating and Extrapolating from Prior Research: Language
Appears to Guide Attention through Visual-Spatial Structures

From this loose collection of interrelated work, we can extrapolate some general prin-
ciples regarding the cognitive dimensions of illustrations relative to text.

Larkin and Simon suggested in [10] that a cognitive dimension of sentences is their
list-like structure, in that each item on the list is only adjacent to the item before or
after it on the list. In contrast, items in a diagram are adjacent to many items on a list.
This view is synergistic with Barwise and Etchemendy, who suggested that a picture or
diagram can support “countless facts” (by this they mean that a plurality of sentences
can be constructed from a diagram). In other words, many sentences could be created
by linking together elements in a diagram into a sentence (list-like structure).

In this way, we extrapolate that a list-like structure (as suggested by Larkin and
Simon) can be inferred or induced from a diagram. Each sentence inferred from a
diagram is like a path that guides attention through visual-spatial relationships in a
diagram. This extrapolation is demonstrated by Shimojima and Katigiri’s eye track-
ing study in [16] that showed how reasoners mentally guide their attention through a
“non-physical drawing.” They suggest that actual drawings thus support non-physical
(mental) drawings, thus reducing inferential load. To summarize, it appears that sen-
tences guide attentional paths through both physical and non-physical (mental) visual-
spatial structures. Further, it appears that Shimojima and Katigiri demonstrated that
rational language/propositional logic guides attention and motor movements (through

84

eye fixations) through non-physical visual-spatial representations.

1.3 Why does “Language Thinking feel More Precise than Visual
Thinking”?

At this point in the paper, we are almost ready to suggest a contributing reason to the
answer of why “geometric proofs are text-based.” We have suggested that sentences
guide attention through visual-spatial structures. However, a question remains: Why
does navigating attention through a visual spatial structure guided by rational lan-
guage (propositional logic) feel more “rigorous” than experiencing it as a diagram?
As described above, in [12] Mumma proposed a 3-part answer as to why the diagrams
are considered less rigorous by the field in general. Here we narrow the question to
focus on cognitive dimensions of individual mathematicians.

We propose that detailed scrutiny of visual-spatial structures (and perhaps concepts
in general) requires what we will refer to as “higher resolution” foveal-like attention,
even if those visual-spatial structures are conceptual (not directly sensed). We suggest
that visual-spatial perception in the physical world, where an object is perceived with
greater acuity through foveal vision rather than peripheral vision, is similar to attention
navigating a conceptual visual-spatial structure. We suggest that attention has foveal-
like and peripheral-like characteristics. Linkages to traditional (and synergistic) ideas
of attention (e.g., [18]) will be described later in this paper.

To explain how navigating non-physical (mental) drawings may have dimensions
that mimic visual-spatial perception of the external world through foveal and peripheral
vision, we can turn to Barsalou’s [3] theory of perceptual symbol systems where con-
cepts are based on inherently modal neural patterns rooted in direct sensory experience.
As Barsalou [3] describes:

During perceptual experience, association areas in the brain capture
bottom-up patterns of activation in sensory-motor areas.

In a top-down manner, association areas partially reactivate sensory-motor
areas to implement perceptual symbols.

The storage and reactivation of perceptual symbols operates at the level of
perceptual components not at the level of holistic perceptual experiences
[3].

In other words, an experience of a geometric visual-spatial structure is inherently
modal in that, if experienced through the eyes and visual cortex (for example), the
memory of that experience would reflect the experiential mode (i.e. visual versus audi-
tory experience). This means that concepts that emerge from the neurological patterns
created from sensory (modal) experience reflect the characteristics of the experiential
mode. This means that an experience of a visual-spatial structure that emerges as a
concept uses much of the same neurological machinery used to perceive (experience)
the visual-spatial structure.

This relationship between foveal attention and perceptual symbols is the basis for
our theory detailed in the next section.

85

2 Theory
Why are geometric proofs (usually) “non-visual?” We propose that perceptual archi-
tectures associated with foveal (sharper, center view, but narrower field of view [FOV]),
and peripheral (outside of the center view, less sharp, but a wider FOV) vision found in
the human eye, in V1, and the rest of the visual cortex extend into the “deepest levels”
of human cognition and are reflected both in conceptual structures and the architecture
of attention that “probes” those conceptual structures. In this paper, foveal attention is
analogous to (and parallels) foveal vision. Likewise, “peripheral perceptual-cognitive
attention” (shortened to peripheral attention [PA] for the rest of this paper) is analogous
to peripheral vision.

We suggest that foveal attention may by synonymous with “focused attention” as
proposed by Treisman [18], who suggested “attention must be directed serially to each
stimulus in a display whenever conjunctions of more than one separable feature are
needed to characterize or distinguish the possible objects presented.” By separable
feature, she means primitives such as basic shapes, objects, and colors prior to inte-
gration into a conceptual “whole.” Furthermore, Treisman uses a metaphor that easily
maps to our description of foveal attention:

Visual attention, like a spotlight or zoom lens, can be used over a small
area with high resolution or spread over a wider area with some loss of
detail. (Treisman [18] citing Eriksen and Hoffman [7])

We can extend the analogy in the present context to suggest that attention can either
be narrowed to focus on a single feature, when we need to see what other features are
present and form an object, or distributed over a whole group of items which share a
relevant feature [18].

This “narrowing of the spotlight” is synonymous with what we mean by foveal
attention. Relative to peripheral attention, we suggest that foveal attention is more pre-
cise and can detect more detail, paralleling Treisman’s spotlight/zoom lens metaphor.
Similar to how the eye must explore areas broader than the narrow FOV of foveal vision
via a sequence of saccades, we suggest that focal attention must also sequentially walk
through mental visual-spatial structures. However, perhaps differently from low-level
saccades, we suggest that language and language-thinking guides attention through
such structures in order to build more precise holistic ideas.

By building on Barsalou’s notion that concepts arise from neural patterns that are
rooted in modal experiences, and our own speculation (extrapolating from Triesman)
that foveal-focal attention may have a limited “FOV,” several explanations for why
proofs are usually text-based and propositional are proposed:

Why proofs are often sequential: Like foveal vision that must saccade to differ-
ent parts of a visual-spatial structure, we suggest that foveal-focal attention must also
“saccade” to different parts of a conceptual visual-spatial structure due to foveal-focal
attention’s narrower FOV (rather than experiencing / attending to the whole structure
at once).2

2It should be emphasized that we are using the notion of saccade here metaphorically; sequential move-
ment of attention to various parts of a structure will probably bear no resemblence to the way an eye actually

86

Why a diagram usually cannot constitute a convincing “holistic” proof: The
need for symbols to fall within the narrow FOV of foveal-focal attention means that
diagrams, and the spatial relationships they embody, usually cannot be taken in (i.e.
attended to) all at once. So they should instead be processed in a way that allows
linkages between earlier perceptual memories and later percepts.

Why text is effective for proofs: External symbolic representations such as text are
designed such that each symbol can sequentially fall within the narrow FOV of foveal
vision [15] and therefore, foveal attention and foveal-focal attention.

Why propositional logic is used for proofs: Propositional structures in proofs may
provide symbolic “short-cuts,” serving as stand-ins for visual-spatial relationships that
cannot all simultaneously be in the limited FOV of foveal attention. For example: The
statement “if C is below B“ references a perceptual symbol constructed from a previ-
ously considered image, and the statement “if B is below A” also references a percep-
tual symbol constructed from a previously considered image. The statement “therefore
C is below A” references the two previous symbols in order to support construction of
a new (mental) image that can serve as the basis for a new perceptual symbol (and that
can be used in future propositional statements).

To summarize our theory; we suggest that a visual-spatial structure, such as a ge-
ometric structure (irregardless of whether it is presented as a diagrammatic represen-
tation) is often beyond the “FOV” of foveal-focal attention. The purpose of sequential
symbolic representations such as text, organized as propositional statements, is to guide
foveal-focal attention through a sequence of patterns in order to create perceptual sym-
bols that are amenable to analytical neurological machinery.

Hence, in addition to being due to the norms of the field of mathematics, as well as
many other social and mathematically technical reasons that have been proposed, we
argue the answer to our initial question is also related to basic facts about how human
cognitition works.

3 Thought Experiment
A thought experiment may help clarify the role of the less-diagrammatic notation style
of propositional logic used in a geometric proof by imagining what a notation style
would look like that was designed to guide narrow FOV foveal-focal attentional pro-
cesses.

First, a notation style where symbols would fit the narrow FOV of foveal vision
would seem to be appropriate, although it is perhaps not the only style that could work.
For example, with a better understanding of processes linking perception and attention,
we might be able to use more “bandwidth” in parallel by providing just the right cues
to guide attention through a diagram (and hence, reduce or even avoid the need for
“symbols” altogether). Yet text appears to be an example of a notation system naturally
suited to the ergonomics of foveal vision [14].

saccades, such as to its ballistic nature for example. Further, the “sequence” implied by the word “sequential”
here is not necessarily imply a particular ordering, especially not one that might correspond with the actual
sequence of eye saccades. We assume that many cognitive and pragmatic factors play into determining in
what order structures must be attended.

87

Second, geometric structures expressed through the notation system would need
to be “serialized” as chunks/strings since more complex visual-spatial structures (i.e.
diagrams associated with non-trivial geometric proofs) will presumably require a FOV
that fall outside of the foveal attentional units of a notation system ergonomically de-
signed for foveal vision [14].

Third, the notation style would need to deliver those serialized chunks/strings in
ways that would direct foveal attention in specifically ordered trajectories and patterns
to build a network of foveal-focal perceptual symbols in order to construct and mentally
navigate a visual-spatial conceptual structure that falls outside of the “FOV” of foveal-
focal attention.

This is because sequential patterns of foveal-focal “saccades” support the creation
of perceptual symbols that can be referenced in later attentional “saccades.” This would
be a hierarchical structure of previously attended foveal-focal mental images (percep-
tual symbols) where latter parts of the conceptual structure reference previously at-
tended foveal-focal mental images.

In other words, a notation system that was custom designed to guide foveal-focal at-
tention through a visual-spatial conceptual structure would resemble the ergonomics of
sequential symbolic (i.e. text based) proofs consisting of serialized sequential symbols
(i.e. descriptions), and support the embedding of perceptual symbols, constructed from
previously experienced foveal mental images, into other mental images and perceptual
symbols (i.e. propositional logic).

3.1 Example
A more specific example may reveal the ergonomic characteristics and constraints de-
scribed above. Proposition 35 from Book I of Euclid’s Elements is a classic example
that we suggest demonstrates the way that text appears to focus foveal-focal attention.
It is also a useful example in that it is a hybrid proof, as will be described below, relying
on both text and diagram.

Proposition 35 is that parallelograms that are on the same base and in the same
parallels equal one another. Euclid’s proof proceeds as follows:

Figure 1: Diagram used in proof of Proposition 35

Proof.

88

(i) Let ABCD, EBCF be parallelograms on the same base BC and in the same paral-
lels AF, BC.

(ii) Since ABCD is parallelogram, AD equals BC (Proposition 34). Similarly, EF
equals BC.

(iii) Thus, AD equals EF. (Common Notion 1)

(iv) Equals added to equals are equal, so AE equals DF. (Common Notion 2)

(v) Again, since ABCD is a parallelogram, AB equals DC (Proposition 34) and angle
EAB equals angle FDC (Proposition 29).

(vi) By side angle side congruence, triangle EAB equals triangle FDC (Proposition 4).
Subtracting triangle EDG from both, we have that the trapezium ABGD equals
the trapezium EGCF (Common Notion 3).

(vii) Adding triangle GBC to both, we have that ABCD equals EBCF (Common No-
tion 2);

2

Note how the text references aspects of the visual-spatial concept in “chunks,”
revealing the visual-spatial concepts serially, possibly ergonomically optimized for
foveal-focal attentional processes. For example, the first line introduces the symbol
“ABCD”, which, in the presence of the figure, directs attention sequentially through
the verticies A-B-C-D and then to the parallelogram as a whole, separable from the
rest of the figure. However, the figure is not necessary for this step, for ABCD could
also serve the role of a simple “word” (term) in the logical proof without actually re-
ferring to the geometric figure at all. Further, for everything specified early on in the
proof—symbols and relationships—each line can be derived from the previous without
making reference to the figure at all. Although the figure can still play a helpful illus-
trative role, it does not play a role in sanctioning particular inference steps. Indeed, as
Mumma describes in [12], this is the case all the way up to step iv.3

For our purposes, the key point here is that in its linguistic form, devoid of the
figure, the above proof is amenable to cognitive processes, and this is revealed in as-
pects of its design. The structure of the language guides the reader through the proof
in “bite-sized” chunks – both in the the breakdown as to what constitutes an individual
step, and the number of symbols involved in each step – that can be linked together and
composed to gradually build up to the conclusion.

However, things get more complicated in steps iv through vii, in part, because the
author of the proof (Euclid via translation) seems to be making the assumption that we
will be using the figure to provide interpretation for the text statements, and thus both
allow the engagement of our natural perceptual-cognitive chunking abilities and relieve

3Step iv contains a so-called “flaw” in that in order to determine what the “equals” are that have been
added to AD and EF, one needs to realize that DE is a common segment shared by both AE and DF. The
step relies on an understanding that DE has been “added” to both AD and EF and it is reflexively self-equal.
However, while it is true, it was nowhere stated in steps i-iii that DE is a shared segment, i.e., that D lies on
segment AE and that E lies on segment DF. In the above proof, this is knowledge that must be gleaned from
the figure.

89

some of our memory burdens by using the figure as external memory. The proof can
be rewritten more “rigorously” to eliminate the need to refer to the figure and to rely
on text alone, but this presumably will also involve a simplification of steps iv through
vii by breaking them down into more, explicit steps that each demand less cognitive
work for the reader.

But could we go the other way? Could we prove the same thing by relying even
more on diagrams and using much less text? If so, what would it take? In the next
subsections we will attempt to do so in order to illustrate our thoery as to how deduc-
tive proofs require the explicit sequential guidance of attention through symbols, and
demonstarte the difficulties that arise when we attempt to employ diagrams for this
purpose.

3.2 Towards a more Visual Version
In the last subsection, we saw an example of a geometry proof that, while not entirely
avoiding reliance on a diagram, was primarily text-based. In light of our argument
above (that this is partly because text is better suited to guide foveal-focal attention
sequentially through the appropriate perceptual symbols), here we seek to illustrate
this point by describing the results of our attempt at a visual proof of Proposition 35.
How could this be achieved without the aid of text? Or in other words, how can one
draw attention without using text?

The most straightforward approach here might be to translate each line of text from
the proof into a diagram seeking to achieve the same thing. In so doing, one might seek
to direct attention to different parts or aspects of the diagram using graphical techniques
such as highlighting with color, luminance (value), shading, or adding arrows (to name
a few techniques). So, for example, to translate the step that establishes that AD equals
EF (step iii), we might highlight both of those seqments in red and add some sort
of connection beteween the two to denote equivalence. Further, we would need to
somehow add the justification for this, somehow refering to Common Notion 1.

After we attempted to do this in a systematic way, several things become apparent.
First, the guidance of attention within a diagram seemed harder to control relative to
text, and even somewhat arbitrary (somewhat like “black magic”) to a practitioner pri-
marily trained to express ideas through text. The guidance of attention with a diagram
seems to be something that requires a solid scientific understanding of how diagrams
are visually processed and/or considerable artistic sophistication and skill. Addition-
ally, relative to our experience with text, it was harder to be precise – to the “right”
degree of precision – in a diagram. For example, how can we call attention to just the
vertices, say, of a parallelogram, without also calling attention to the parallelogram it-
self via gestalt principles of perception? Similarly, as Mumma described in [12], it was
harder to make general points when dealing with specific diagrams, and there seemed
to be the potential to be misled by superfluous details in the diagrams.

So, a straightforward translation of a text-based proof into a visual one seemed to
presents several difficulties. Yet there may be other approaches to visual proof that
are not biased by the texual starting point, perhaps natively taking advantage of unique
affordances of diagrams. We speculate about this in the next subsection.

90

An open question is how text and diagrams can best be used together to comple-
ment each other’s strengths in a a hybrid approach. As noted, Euclid’s proof was not
entirely text based; the diagram was required for it to go through. It is instructive to
consider the role the diagram played in this case. In our theory, a primary function of
the diagram is to provide the basis for perceptual symbols to which the text can then
refer and “navigate”, i.e. guide attention through. We unpack this more in the next
paragraph.

As an example of how the diagram works together with the text, consider step vi
of the proof:

• By side angle side congruence, triangle EAB equals triangle FDC (Proposition
4). Subtracting triangle EDG from both, we have that the trapezium ABGD
equals the trapezium EGCF (Common Notion 3).

First, note that the diagram serves to confirm the applicability of Common Notion 3
in a way similar to how the diagram was used to justify step iv. While the text here
could be augmented to ostensibly stand on its own, it is still compelling to look at the
trapezia ABGD and EGCF in the figure to at least confirm that the text was properly
understood. (A reader can “double-check” that they did the subtraction in the right
way by checking that the trapezia they obtained were indeed describable as ABGD and
EGCF, that is, by unpacking the symbols—e.g., ABGD to A-B-G-D—to confirm the
correct vertices were involved.) Next, note that the first sentence not only establishes an
equivalence relationship, but also serves to focus attention on the two relevant triangles,
EAB and FDC, as quasi-independent parts of the diagram, which then makes them
available to mental manipulation (and thus, subsequent use in the text). The operation
of subtracting triangle EDG from both EAB and FDC requires manipulating it as a
“non-rivalrous” (reusable) symbolic unit. Further, as was previously discussed, [16]
has provided evidence of how the diagram is used when mentally reasoning about
such operations, with deictic indices being allocated to diagrammatic symbols from
a limited pool that constrains the number of symbols to which we can simultaneouly
attend. Thus, the mental subtraction requires manipulating holistic triangles as symbols
– each as one thing – as opposed to a loosely coupled collections of their component
vertices and edge segments which would quickly exhaust attentional resources. The
diagram helps to reify these component parts into unitary symbolic wholes thanks to
gestalt principles of perceptual grouping.

So one of the primary roles of the diagram seems to be to serve as the basis for per-
ceptual symbols that can play a role in compositional manipulations, analogous to how
words are composed via grammar in language. That is, the diagram, when it is being
used effectively in a hybrid text-diagram proof system, still seems to be guiding atten-
tion in ways similar to text (sybolically and sequentially). Yet, diagrammatic symbols
may afford more than textual symbols in that they can be unpacked and “inspected”
when necesary, as the trapezia were when verifying the subtraction. This warrants
more research into the affordances of diagrams relative to text in the context of proofs,
as opposed to in more general contexts.

91

3.3 Other Hybrid Systems
In the last subection, we started by considering how we might constuct a visual proof
from a primarily text-based one. But starting with text might bias us away from a proof
strategy that might better take advantage of the affordances of diagrams. What if we
were to start from scratch?

Ware points out in [19] that one of the more effective techniques used in HCI and
Information Visualization to draw attention is motion. This implies that animations
might be a useful tool in geometric proofs. However, since traditional (paper oriented)
document formats do not ordinarily support dynamic animations, for the purposes of
this paper a comic strip-like story-board will depict such a possible interaction by way
of example. Figure 2 shows a possible story-board (or comic strip), corresponding to
a potential animation sequence, for the proof of Proposition 35. This is just a tenta-
tive sketch to demonstrate the idea; it is has not been refined nor tested with math-
ematicians, nor has research been done on the proper balance between textual and
non-textual elements in such a medium.

Figure 2: A possible “storyboard” (or “comics”) hybrid proof

Storyboards (or comics), in their own right, also present a potentially useful hybrid
approach for directing attention during a visual proof. In our theory, the storyboard
has a useful property for proofs: the boxes help guide attention, much like the proof
steps and symbols in a text-based proof. Further, the domain of comics provides many
techniques to further refine the guidance of attention (such as cutaway shots) and help
with the problems described above that arise when trying to use diagrams in proofs. For

92

example, there are standard comics techniques to “zoom” in and out, both temporally
and spatially, across panels, which may be useful in addressing the problems with
precision.

One final point of interest here that emerged while creating this example is that this
form of reasoning “felt” more inductive than deductive. Our research seeks to increase
the understanding of how different media types might be better suited for diferent sorts
of inference. Understanding ergonomic factors that enable a principled approach to
attention guidance is an area of active future research for us.

4 Conclusion and Implications
We feel that demonstrating how propositional logic guides foveal-focal attention
through non-physical drawings has implications far beyond notation techniques for
geometric proofs; the issues surrounding the text-based nature of geometric proofs are
a microcosm for issues facing other materials, such as textbooks, because many edu-
cational concepts that are also visual-spatial in nature use illustrations in a supporting
role [13]. We feel that understanding how notation styles direct attention can enable the
creation of materials suited for different purposes and for different kinds of learners.

For example, the effectiveness of the Barwise and Etchemedy vision of using vi-
sual materials for logical problem solving would be a function of how well the mate-
rials support the guiding of foveal-focal attention in specific patterns. Indeed, many of
their ideas were rooted in classroom multimedia experiences geared for the teaching
of logic. Using today’s technology of the Web and multimedia (i.e. rollovers, mouse
events, etc.), the sequential symbolic characteristics of comics, and beyond, many op-
tions exist to direct foveal-focal attention using visual materials in ways that may serve
the attentional purposes provided by text-based proofs and text heavy materials. We
feel that such techniques could be extended for other information presentations as well,
finding uses in education, public policy, business, engineering, and beyond.

However, we suggest here that prose may direct attention in ways that may not be
possible through visual-spatial notations such as illustrations and diagrams. Because
text and other sequential symbolic “language” systems inherently require learning, they
may by their very nature “bypass” or “overcome” low level pattern detection neuro-
logical machinery in order to trigger “top down” processes that amplify attentional
neurological machinery in order to focus attention in specific ways on visual-spatial
diagrams or conceptual structures. A more intuitive notation system that relied more
on “natural,” “hard-wired.” or “gestalt-like” abilities might strengthen bottom-up pat-
terns instead, at the expense of the intended abstract reasoning encouraged by such
materials. Instilling neural patterns that overcome lower level neurological machinery
may be the very nature of some aspects of education. At the same time, visual thinking
has been proposed as a key part of “transformational thinking,” and many great dis-
coveries occurred through insights with a strong visual-spatial component [13] and by
individuals who do not learn well through textual modes [15].

Thus, many open questions remain about the ergonomic properties of textual and
diagrammatic modes.

93

Importantly, a better, more rigorous understanding of the explicit and implicit guid-
ance of attention is a necessary step, and a direction for our current and future research.

References
[1] Arnheim, R., “Visual thinking,” University of California Press, 2004.

[2] Ballard, D. H., M. M. Hayhoe, P. K. Pook and R. P. N. Rao, Deictic codes for the
embodiment of cognition, BEHAVIORAL AND BRAIN SCIENCES 20 (1995),
pp. 723—767.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.49.3813

[3] Barsalou, L. W., Perceptions of perceptual symbols, Behavioral and Brain
Sciences 22 (1999), pp. 637–660.
URL http://journals.cambridge.org/action/
displayAbstract?fromPage=online&aid=31859

[4] Barwise, J. and J. Etchemendy, “Visual information and valid reasoning,” Mathe-
matical Association of America, 1991 pp. 9–24.
URL http://portal.acm.org/citation.cfm?id=115667

[5] Blackwell, A. F., Ten years of cognitive dimensions in visual languages and
computing: Guest editor’s introduction to special issue, Journal of Visual
Languages & Computing 17 (2006), pp. 285–287.
URL http://www.sciencedirect.com/science/article/
B6WMM-4K5JBS2-1/2/d76e6d2adf8fbe31d1dcecf8ddfb7fca

[6] Brown, J. R., “Philosophy of mathematics,” Routledge, 1999, 215 pp.

[7] Eriksen, C. W., Temporal and spatial characteristics of selective encoding, Per-
ception and Psychophysics (1980).

[8] Green, T. and M. Petre, Usability analysis of visual programming environments:
A ’cognitive dimensions’ framework, Journal of Visual Languages and Comput-
ing 7 (1996), pp. 131–174.
URL http://www.scopus.com/inward/record.url?eid=2-s2.
0-0030167097&partnerID=40

[9] Kosslyn, S. M., “Image and mind,” Harvard Univ Pr, 1980.

[10] Larkin, J. H. and H. A. Simon, Why a diagram is (sometimes) worth ten thousand
words, Cognitive science 11 (1987), pp. 65–100.

[11] Mumma, J., “Ensuring Generality in Euclids Diagrammatic Arguments,” 2008
pp. 222–235.
URL http://dx.doi.org/10.1007/978-3-540-87730-1_21

94

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3813
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3813
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=31859
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=31859
http://portal.acm.org/citation.cfm?id=115667
http://www.sciencedirect.com/science/article/B6WMM-4K5JBS2-1/2/d76e6d2adf8fbe31d1dcecf8ddfb7fca
http://www.sciencedirect.com/science/article/B6WMM-4K5JBS2-1/2/d76e6d2adf8fbe31d1dcecf8ddfb7fca
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030167097&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030167097&partnerID=40
http://dx.doi.org/10.1007/978-3-540-87730-1_21

[12] Mumma, J., Proofs, pictures, and Euclid, Synthese (2009, in press).
URL http://www.contrib.andrew.cmu.edu/˜jmumma/list.
html

[13] Ramadas, J., Visual and spatial modes in science learning, International Journal
of Science Education 31 (2009), pp. 301–318.

[14] Rayner, K. and J. H. Bertera, Reading without a fovea, Science 206 (1979),
pp. 468–469, ArticleType: primary article / Full publication date: Oct. 26, 1979
/ Copyright 1979 American Association for the Advancement of Science.
URL http://www.jstor.org/stable/1749329

[15] Schneps, M. H., L. T. Rose and K. W. Fischer, Visual learning and the brain:
Implications for dyslexia, Mind, Brain, and Education 1 (2007), pp. 128–139.
URL http://dx.doi.org/10.1111/j.1751-228X.2007.00013.x

[16] Shimojima, A. and Y. Katagiri, “An Eye-Tracking Study of Exploitations of Spa-
tial Constraints in Diagrammatic Reasoning,” 2008 pp. 74–88.
URL http://dx.doi.org/10.1007/978-3-540-87730-1_10

[17] Tennant, N., The withering away of formal semantics?, Mind & Language 1
(1986), pp. 302–318.
URL http://dx.doi.org/10.1111/j.1468-0017.1986.
tb00328.x

[18] Treisman, A. M. and G. Gelade, A feature-integration theory of attention, Cogni-
tive psychology 12 (1980), pp. 97–136.

[19] Ware, C., “Visual Thinking: For Design,” Morgan Kaufmann, 2008.

95

http://www.contrib.andrew.cmu.edu/~jmumma/list.html
http://www.contrib.andrew.cmu.edu/~jmumma/list.html
http://www.jstor.org/stable/1749329
http://dx.doi.org/10.1111/j.1751-228X.2007.00013.x
http://dx.doi.org/10.1007/978-3-540-87730-1_10
http://dx.doi.org/10.1111/j.1468-0017.1986.tb00328.x
http://dx.doi.org/10.1111/j.1468-0017.1986.tb00328.x

Implementing an Animated Visual �-Calculus

Torsten Strobl∗ Mark Minas†

Computer Science Department
Universität der Bundeswehr München

85577 Neubiberg, Germany

Abstract

�-calculus is a well-known formal system for investigating computability,
recursion, functional programming, etc. Reduction rules define its semantics.
Several visual representations have been proposed and used for making �-calculus
more comprehensible, easier to teach, or simply more fun to use. Alligator
Eggs [14] is an example of such a playful representation where abstraction is
represented by alligators and variables by alligator eggs. Alligator Eggs is also an
animated visual language where eating alligators correspond to function applica-
tion and hatching eggs to variable substitution. This paper shows how Alligator
Eggs can be implemented as an animated system using the diagram editor gen-
erator DIAMETA. Boolean logic is used as a running example where alligator
families model boolean terms. The generated animated system allows for an
animated illustration of boolean evaluation.

1 Introduction
�-calculus by A. Church [2] is a well-known formal system for investigating com-
putability, recursion, functional programming, etc. It has originally been invented as
an abstract computing approach, and was also the origin of functional programming by
inspiring LISP. But one can also use it for representing and evaluating boolean logic.

�-calculus is based on expressions, which can be transformed by so-called reduc-
tions to other semantically equivalent expressions. However, the textual representation
of �-calculus expressions is not very intuitive since (a) this representation of expres-
sions is difficult to grasp, and (b) the sequence of reductions does not immediately show
what is going on. This paper improves this representation with respect to these issues
(a) and (b). As a solution, we propose to utilize a visual representation of �-calculus
expressions. We apply animation for making immediately clear which reductions are
applied to which sub-expression with which effect.

Several visual representations have been proposed and used for making �-calculus
more comprehensible, or easier to teach. Alligator Eggs [14] is such a visual and
∗Email: Torsten.Strobl@unibw.de
†Email: Mark.Minas@unibw.de

96

playful language representing �-calculus expressions. This language has alligators and
their eggs as visual components. As an example, one type of reduction process can be
represented by an alligator that eats other alligators and eggs. Afterwards, the eating
alligator dies, but its eggs hatch into what the alligator ate. Alligator Eggs thus allows
for obvious and intuitive animations of the formal concept of reductions. Hence, we
chose Alligator Eggs for visually representing and animating �-calculus.

Meta-tools greatly simplify the process of implementing editors for a specified vi-
sual language like Alligator Eggs. Several meta-tools also allow for implementing
transformations of diagrams which can be used for realizing the reduction process. Ex-
amples for such meta-tools are DIAGEN/DIAMETA [10], DEViL [4], GenGED [6],
Tiger [1] and AToM3 [9]. However, the support for realizing a visual editor that also
allows for visualizing rather complex behavior by animations is limited. This paper
describes an extension of the meta-model-based editor generator DIAMETA which al-
lows for easy specification of visual languages with complex dynamic and animated
behavior. The animated visual language Alligator Eggs is used as a running example
although animating reductions of �-calculus expressions is rather straight-forward.

The rest of the paper is structured as follows: The next section is a short intro-
duction to the textual representation of �-calculus, the visual language of Alligator
Eggs and its dynamic behavior. Section 3 describes existing approaches in the con-
text of specifications of animated visual languages and other visual representations of
�-calculus. Section 4 then briefly explains the existing meta-model-based editor gen-
erator and how it has been used to specify and generate the static aspects of Alligator
Eggs. The extension of DIAMETA for animated visual languages is then described in
Section 5 using the example of Alligator Eggs. The last section concludes the paper
and reports about current work as well as plans for future work.

2 �-Calculus
Textual �-calculus expressions can be either a variable x, an application FG of an ex-
pression F to another expression G, or a �-expression, i.e., an (anonymous) function
�x.F where F is again an expression. The latter is the key concept which means a
function with a (bound) variable x as parameter that may be used in F . The semantics
of such expressions is defined by so-called reductions that reduce an expression to an-
other, but semantically equivalent expression. �-conversion changes bound variables,
e.g., variable x in �x.�y.x to another, unused variable z, i.e., �x.�y.x →� �z.�y.z.
�-conversion applies a function to its argument by replacing each occurrence of the pa-
rameter by the argument, e.g., (�x.�y.x)(�z.z) →� �y.�z.z. Of course, no variable
in the argument may be the same as any variable in the function. Otherwise, bound
variables must be changed by �-conversion first.

As mentioned previously, �-calculus can be used in order to evaluate boolean logic.
The boolean values are represented by so-called Church booleans true = �x.�y.x and
false = �x.�y.y. It is easy to verify that the representations not = �p.�x.�y.pyx,
and = �p.�q.pqp, and or = �p.�q.ppq actually are suitable definitions, i.e., reducing
expressions that represent boolean terms is equivalent to evaluating the represented

97

true =
�x.�y.x

false =
�x.�y.y

not =
�p.�x.�y.pyx

and =
�p.�q.pqp

Figure 1: �-expressions modeled by alligator families.

�x.x

Figure 2: Old alligator

boolean terms1. An example evaluation is:

and false true = (�p.�q.pqp)(�x.�y.y)(�x.�y.x)

→� (�q.(�x.�y.y)q(�x.�y.y))(�x.�y.x)

→� (�q.((�x.�y.y)q(�x.�y.y)))(�u.�v.u)

→� (�x.�y.y)(�u.�v.u)(�x.�y.y)

→� (�y.y)(�x.�y.y)

→� �x.�y.y

= false

The visual �-calculus language Alligator Eggs has hungry alligators, old alligators,
and eggs as visual components. Let E be an arbitrary �-calculus expression and ⟨E⟩
the representation of E in Alligator Eggs. ⟨E⟩ is a collection of visual components
that are arranged in a tabular shape. A variable x is represented by an egg ⟨x⟩ where
the egg color corresponds to the variable’s identifier x, i.e., different variables have
eggs of different color. The application FG of two expressions F and G with their
visual representations ⟨F ⟩ resp. ⟨G⟩ is drawn as ⟨F ⟩ and ⟨G⟩ side by side with ⟨F ⟩
left of ⟨G⟩, but aligned at their top. A �-expression �x.F is represented by an hungry
alligator (with open mouth) and the visual representation ⟨F ⟩ of F . The color of the
hungry alligator corresponds to the identifier x, i.e., every egg in ⟨F ⟩ that represents
x has the same color as the hungry alligator. The hungry alligator is drawn on top of
⟨F ⟩; its width is the same as the width2 of ⟨F ⟩. Altogether, they model a so-called
“family”. Figure 1 shows examples of expressions for boolean logic and how they
are represented in Alligator Eggs. Colors have been replaced by shades of gray and
hatching. Expressions in parentheses, (F), are represented by an old alligator (a white
alligator with closed mouth) and ⟨F ⟩. Again, the alligator is drawn on top of ⟨F ⟩ with
the same width as ⟨F ⟩. It is said that the old alligator “protects” ⟨F ⟩. An example is
shown in Figure 2.

�-conversion is translated into the eating rule in Alligator Eggs: The hungry alliga-
tor on top of ⟨�x.F ⟩ in an application ⟨(�x.F)G⟩ “eats” the family ⟨G⟩, i.e., ⟨G⟩ gets
deleted from the diagram. Then the hungry alligator dies, leaving ⟨F ⟩. However, each

1Please note that application in �-calculus is left-associative, i.e., EFG = (EF)G.
2This is an extension of the original description [14] of Alligator Eggs in order to make the language

unambiguous.

98

→� →� →� →�

Figure 3: Evaluation of not true = (�p.�x.�y.pyx)(�x.�y.x) in Alligator Eggs.

egg in ⟨F ⟩ with the same color as the died alligator gets replaced by ⟨G⟩. �-conversion
is also necessary in Alligator Eggs. This is realized by the so-called color rule that
appropriately changes the color of each hungry alligator and its eggs in ⟨�x.F ⟩ if this
color also occurs in ⟨G⟩.3 Finally, the old age rule defines the semantics of old alliga-
tors: An old alligator (representing parenthesis in Alligator Eggs) dies as soon as there
is only a single component directly below the old alligator (e.g. like in Figure 2). A
longer example, the evaluation of not true in Alligator Eggs, is shown in Figure 3.

3 Related Work
There are several tools supporting the generation of editors from visual language spec-
ifications and meta-models [6, 9, 1, 4]. However, only few of them allow animation
specifications or the creation of animated editors in general. Most tools or common ap-
proaches supporting animation specifications are very limited, e.g. there is no possibil-
ity for interaction during animation, the specification of concurrent animation steps is
complicated or impossible, or flexibility is missing. Also older versions of DIAMETA
rudimentarily support animations [11], but practically this only means that diagram
(state) changes, especially position changes, can be interpolated.

Some of the listed limitations are attributed to the utilization of transformation rules
in simulation and animation, because these transformations must basically be consid-
ered as atomic operations. Therefore, a lot of efforts are put into the investigation of
transformations with specified timed behavior. Transformation rules could contain a
(conditional) duration and further mechanisms like interruptibility. In articles like [7]
and [8] these topics are described in more detail. In [12] a graphical notion is shown,
and in [13] also an event-based approach is presented.

An exemplary generator system, which - similar to DIAMETA - also applies graph
models and transformations, is GenGED [6]. The system not only allows the imple-
mentation of visual language editors, but also to write (rule-based) simulation speci-
fications. The visualization of the simulation - in this case called animation - can be
specified separately, so this visualization can have a completely different layout com-
pared to the visual language itself. In this way, the animation can be presented in an-
other domain-specific layout, for which the term animation view has been introduced.
However, GenGED editors cannot show such views. Instead, an automatically running
“movie” has to be exported.

Next to Alligator Eggs, there are also other visual representations for �-calculus.
VEX uses circles for representing �-expressions and variables [3]. Parameters are rep-

3This color rule is a bit more specific that in [14].

99

Figure 4: Architecture of a diagram editor based on DIAMETA.

resented by internally tangential circles, application by externally tangential circles.
The binding of variables is explicitly represented by connecting lines.

4 DIAMETA

DIAMETA is a framework together with a specification tool for generating diagram
editors from a specification [10]. The abstract syntax of a diagram language has to
be specified as a meta model based on EMF [5]. Figure 4 shows the meta model for
Alligator Eggs which comprises the composite pattern: each expression as a diagram
represents an (expression) tree. Guardian comprises a composite node and represents
an object with a (horizontal) sequence of sub-diagrams below. Concrete sub-classes are
Root that represents a complete diagram, Alligator for hungry alligators, and OldAlli-
gator for old alligators. Each instance of these classes contains a sequence of protected
objects. Instances of Egg, which represents alligator eggs, are the leaves of this com-
posite pattern. The protects association is ordered from left to right (not shown in
Figure 4). Instances of this meta model, hence, uniquely represent Alligator Eggs dia-
grams.

Each editor generated by DIAMETA is a free-hand editor, i.e., the user may arrange
visual components freely on the screen. The specification must contain descriptions of
all required visual components. For Alligator Eggs, these are hungry and old alliga-
tors as well as eggs. When the editor user arranges such diagram components on the
screen, the editor has to check whether the arrangement is a correct diagram, and, if
so, what its syntactic structure is. Each editor generated by DIAMETA uses a generic
architecture for solving this problem, see Figure 5: The editor consists of a drawing
tool which is used by the editor user for arranging the diagram components on the
screen. The arrangement is then internally represented by a so-called graph model as a
homogeneous representation which can be used for all diagram languages. Figure 6(b)
shows the graph model for the simple Alligator Eggs diagram in Figure 6(a). Each
diagram component is represented by a component node, here alligator, egg, and root.
The latter represents an invisible component representing the whole canvas. The spec-
ification describes how each diagram component is represented: Each component has
a certain number of attachment areas. The canvas and eggs have a single attachment
area, alligators have two, the alligator shape itself, and the area from the alligator to the

100

DiaGen - Syntax Definition with Graphs, Graph Grammars and Metamodels Mark Minas, Universität der Bundeswehr München 54

DiaGen: Architecture of generated editors
 with Metamodels

Graph
model Modeler Instance

graph Reducer Model
analysis

Java
objects Diagram

Drawing
tool

Editor user

selects
operation

selects
operation

Graph
transformer
(optional) reads

reads

modifies reads

Highlights syntactically correct sub-diagrams

Layouter
(optional)

Figure 5: Architecture of a diagram editor based on DIAMETA.

bottom of the canvas. Each of these areas is represented by an attachment node that is
connected with its component node by an edge with labels canvas, shape, or below. A
relation edge connects two attachment areas that are related in a specific way. E.g., a
protects edge connects the corresponding nodes if an alligator or egg lies underneath
another alligator.

The graph model may grow quite large. E.g., a stack of n alligators requires O(n2)
protects edges. The reducer (see Figure 5) transforms this graph into the instance graph
by applying reducer rules in the specification. They are omitted here since they are not
crucial for the setting of this paper. The obtained instance graph represents an instance
of the specified meta model if the diagram is syntactically correct. This is checked by
the model analysis.4 Model analysis provides feedback to the user about diagram parts
that are not syntactically correct by highlighting those diagram components. Model
analysis also instantiates the EMF model that implements the meta model. This data
structure can then be used by an automatic layout facility for beautifying or layouting
the diagram.

Free-hand editing is complemented by (optional) graph transformation rules that
utilize a graph transformation facility. Graph transformations may be specified for
“implementing” complex diagram modifications that are triggered by the editor user.
However, such transformations that operate on the graph model, but that may use in-
formation from the instance graph, too, are also a helpful mechanism for animation
support.

5 Animated Alligator Eggs
This section describes how the animated aspects of Alligator Eggs can be specified.
First the desired animations are described, and subsequently the different animation
states are identified. Based on such states the used animation approach is explained,

4Model analysis is actually more sophisticated. Not all classes must have been determined by the reducer
rules. Model analysis uses constraint solving techniques for identifying undetermined classes [10].

101

(a)

alligator

egg

egg

root

shape

below

shape

shape

canvas

protectsprotects

protects

protects

(b)

Alligator

Egg

Egg

Root

protectedBy

protects

protectedBy

protects

protectedBy

protects

(c)

Figure 6: (a) Visual representation of (�x.x)y, (b) graph model, and (c) instance graph.

including an event-based strategy. Finally, the concept is compared with common ap-
proaches of other frameworks, which are similar to DIAMETA.

5.1 Animation Description
Section 4 has described in short how the static part of Alligator Eggs can be specified.
As a result, a fully functional editor for static Alligator Eggs diagrams can already
be generated. It has also been mentioned that DIAMETA supports the specification of
graph transformations. The step semantics of Alligator Eggs (see Section 2), can be
implemented by utilizing these transformations. Indeed, only one, but rather complex
graph transformation is required for this. The operation has to analyze the graph, de-
cide on the next applicable rule and finally arrange modifications in order to get the
results after the step. By triggering such a transformation the editor’s user can watch
the conversions step-by-step. However, users cannot follow the reduction process in
more detail, which could be crucial for a better understanding of Alligator Eggs and
the �-calculus. Therefore, it is desirable to generate an editor which also shows internal
processes by animating them. Each individual part of a rule application shall be visu-
alized in a movie-like fashion. Again, the description in [14] was used as orientation.

The eating rule is split into subparts. First, the alligator eats the family in front
of him. Therefore, the family moves towards the alligator’s mouth. Meanwhile, the
alligator is snapping, and it is also meaningful to decrease the victim’s overall size.
Afterwards, the alligator dies, so the shape actually rotates until the alligator is lying
on its back, and it disappears by shrinking. Intermediately, the “reborn family” will
hatch out of the according eggs. This means, that the egg cracks and the families
appear. This way, the user can track the way of the eaten family, and also the alligator,
which causes the action, can be identified. In order to have enough space for the new
structure the whole diagram is also re-layouted. The old age rule is applied similarly.
The old alligator dies and the diagram is layouted (both overlapping in time). Finally,
during the color rule affected components are recolored, which is transacted by cross-

102

Figure 7: Screenshot of the Alligator Eggs editor while alligator is eating

fading their colors. In Figure 7 an exemplary scene while processing the eating rule is
illustrated.5

5.2 Animation States
The previous description already indicates that required animations can be separated
into multiple, also concurrent, phases. The idea now is to encode informations about
currently running phases (along with possible parameters) within the diagram’s state
or even the state of individual components or component groups. Specific state transi-
tions then imply the transition from one phase to the next. Figure 8 shows a possible
translation of the textual animation description (see Section 5.1) into a state machine
diagram, even with more details like the duration of the individual phases. In partic-
ular, it depicts the states of one resp. two families during the execution of a rule, and
how individual members are animated in the meantime. In the lower left corner the
diagram’s start state Static can be found, the editor must not show animation for in-
volved diagram components here. If a rule shall be applied, the state switches to state
Animated, if possible. Before this transition, the system actually has to determine the
applicable rule as shown (also with according priorities).

In the following, the most complex substate of Animated will be exemplified: Eat-
ing Rule. In this state the associated rule with the same name is processed. Directly
after the rule is applied, involved components pass through the Eating Phase, also a
substate. 3 sec. afterwards, the state automatically passes over into the Rebirth Phase.
Concurrently, the dying alligator and the animated re-layout process are shown during
this phase. All substates again can pass over after 3 sec., however, the re-layout process
is delayed by 1.5 sec., so actually 4.5 sec. are required.

5An animated example can be found at: http://www.youtube.com/user/diametaanimated

103

Figure 8: State diagram - rule application

The example has shown the definition of animation states for a group of compo-
nents, but such states can also be defined for individual components. For instance, each
component can be in state Static or Animated. The Animated state itself can be sepa-
rated into multiple substates: Rotating, Shrinking, Moving, Snapping (only alligators),
Hatching (only eggs), etc. Again, concurrent states are possible, e.g., if an alligator is
rotating and shrinking. Figure 9 shows a timing diagram, which outlines the states of
individual diagram components while processing the eating rule.

5.3 Animation Concept
The way a visual language like Alligator Eggs is presented is specified by its concrete
syntax (in contrast to the abstract syntax, e.g., given by the meta-model). In DIAMETA
this syntax can be specified for each visual component. Until now, the possibilities
have been designed for specifying non-animated (static) components. Considering this
specification and the internal graph model together with attributes of component nodes,
e.g., the x and y-position of the component, the editor is able to draw the static vi-
sual representation. However, this basic approach is not necessarily limited to draw
static diagrams, if time is considered for the mapping of the graph to its representation.
Hereby, the time t could be a given parameter for the whole drawing process. Other
animation parameters can be stored within component nodes in exactly the same way
as parameters for the static representation. Possible animation parameters would be
a given start time, a start position or a constant velocity. With these informations a

104

Figure 9: Timing diagrams - eating rule Figure 10: State transitions
consuming time

component can be visualized at different x-positions depending on the drawing time
t. In an animation sequence with continuously increasing t and a periodically redrawn
diagram, this results in a smoothly animated motion. However, animation parameters
are not limited to simple values in the affected component node. Also the relations to
other components and their attributes can be taken into account, e.g. an attached arrow
component which specifies the movement direction.

In order to implement Alligator Eggs, we chose this approach and extend the DI-
AMETA framework by adding an animation package. This package provides the re-
quired functionality, e.g. the global time parameter. The specification for visualizing
the animated component itself is currently a programmed block of code in order to
allow flexible mathematical calculations depending on arbitrary information contained
in the graph model.

Now, also the animation states described in Section 5.2 can be reconsidered. The
state of an individual component can be stored within the component’s attributes, and
this state is the basis for deciding how the component is animated. In addition, ani-
mation parameters (also attributes) can be required for the animated visualization. For
example, if an alligator is in state Rotating (see Figure 9), the following attributes are
used: animationStart, animationStop, angleStart, angleStop. Together with the
global time and a specified algorithm, e.g. linear interpolation between start/stop time
and start/stop angle, the animation can be calculated. Another example is an alligator’s
Eating state in which the alligator’s mouth is snapping. A simple flag snapping, along
with animationStart and animationStop, is sufficient in this case. The alligator’s
component is drawn via two images: the main body and the lower jaw. If the flag is not
set, the lower jaw is drawn statically onto the rest of the body. Otherwise, it is drawn
slightly rotated around the jaw’s joint. Thereby, the angle is interpolated (cosine-based)
between fixed values with periodic repetitions.

105

5.4 Events
Of course, animation parameters can be changed by the user like other attributes. Com-
ponents can be dragged via mouse, or property editors can be used to change internal
values. However, changing animation parameters this way does not make much sense
for many use cases. A useful mechanism in order to set animation parameters, or ani-
mation states to be more general, are graph transformations, which are already available
in DIAMETA. With them important values like start/stop times can be calculated auto-
matically, and complex diagrams can be analyzed and modified in an established way.
As a consequence, they can be used to change animation states. Some of these graph
transformations required in Alligator Eggs are already shown in Figure 8. For exam-
ple, if the eating rule shall be applied and the Eating Phase is entered, the startEating
graph transformation is applied on entry, and this transformation actually sets the new
animation state. Also arguments can be passed to the transformation, in this case that
is the alligator and its victims. A more complex transformation is startRelayout. It
is able to layout the whole diagram. Indeed, the functionality can be shared with the
static layout specification, which is already specified (see Section 2). The difference is
that the results of the algorithm are either used for the definite positions or the arrival
points of linear movements.

The remaining question concerns the point in time these graph transformations,
which actually control the animation flow, are executed. Therefore, it must be possible
to specify events. Whenever an event is triggered, the according transformation is
performed. DIAMETA already provides the specification of an obvious event type:
user events. It is possible to add editor buttons, which initiate graph transformation,
if clicked. However, also other unanticipated events can be considered as user events:
moving components via mouse, key strokes, adding or removing components. The
state transition from Static to Animated is an example of user events, because it is
actually triggered, if the user clicks on the button “Application” (see Figure 7).

The second type of events are timed events. In Figure 8 several transitions are fired
after specific time events, e.g. “after 3 sec”. Therefore, the DIAMETA animation pack-
age also includes an event queue, wherein timed events must be registered. Thereby,
the event times are calculated based on the graph model. For example, three seconds
must be added to the point in time when the Eating Phase was entered in order to ob-
tain the time of the next transition. Also more complex calculations are possible, e.g.
computing the time when two components collide on their trajectory, etc. Individual
component attributes as well as the whole graph structure can be taken as basis of the
calculation. Again, graph matching mechanisms can help finding and calculating the
times of these events. The time along with affected components, the event context, is
then stored in the event queue. The queue, hence, must be revised after each change of
the graph model. If components are added, removed or changed, it is also possible that
new events appear and already registered events must be modified or updated. As soon
as the global time t reaches the time of an enqueued event, the graph transformation
that has been specified for this event type gets triggered along with the actual event
context (affected components). As described, this can lead to a change of the anima-
tion state. If more than one event share the same time, the DIAMETA approach is to
priorize some events by specification.

106

Figure 11: State diagram - animation states of individual components

There is also a third event type: immediate events. They occur time-independently
as soon as a specific state is reached, e.g. after a graph transformations. An example
is the event which fires the transition from the Rebirth Phase to the Relayout Phase
(Alligator). Assuming the former state, the connected graph transformation (rebirth)
recreates an instance of the eaten family for each hatching egg. Directly afterwards,
the state changes to Relayout (Alligator) and the graph transformation for re-layouting,
startRelayout, is performed.

Otherwise, the work for creating the Alligator Eggs event specification for starting
animations based on the state machine diagram is straight-forward. However, there
is still the need to stop animations after specific phases end. Of course, these an-
imation stops could be initiated by individual events, which are triggered if a state
exits. Figure 11 shows an elegant alternative, if “animation stop” always means to re-
set all animation parameters, no matter which component type. The component’s state
shall switch to Static automatically, if the global time t reaches a component’s anima-
tion parameter animationStop. Regularly, this will cause the graph transformation
stopAnimation. However, as a nice additional feature, if the flag obsolete is set for
the component, it is marked for deletion and can even be deleted automatically by the
graph transformation deleteObsolete (cp. Figure 9).

5.5 Comparison With Other Approaches
As already mentioned in Section 3, animation within diagram editors, especially in
the field of generator frameworks, is often used as a supplement to simulation (e.g.
GenGED [6], DEViL [4]). Thereby, animation is used for user-friendly visualization
of individual simulation steps. Without additional techniques each step is an atomic
operation. However, its duration - which is actually 0 - must be stretched in time
in order to animate changes. Figure 10 shows the chronological sequence of state
transitions, which are applied this way. In the following, this animation concept is
called transition animation. On the contrary, the state animation concept outlined in
this paper sticks with instantaneous transitions (cp. Figure 9).

The Alligator Eggs editor can be generated via both approaches. Each rule applica-
tion can be considered as simulation step. With transition animations a way to specify
the whole animation for this single step is required. In case of the rather complex eating
rule, specification possibilities must be very flexible, e.g. an arbitrary amount of reborn
families must be animated. A specification following the concept of state animations

107

applies to shorter, usually less complex animation sequences, which can be described
via graph transformations and events.

Furthermore, transition animation sequences cannot overlap in time, because the
underlying simulation steps themselves cannot overlap. For example, the Alligator
Eggs rule applications - considered as simulation steps - must be executed consecu-
tively. However, it would be possible to execute several independent rule applications
simultaneously and time-shifted.6 Components can be animated independently, and by
using the event approach they could also interact with each other, e.g. collision events
during a movement. Even unpredictable interactivity while running the animation is
possible (user events), and user activities can be considered in the animated visual lan-
guage’s design. In case of the Alligator Eggs editor, it is possible to delete hatching
eggs or victims during the Eating Phase, for example.

Finally, the state animation concept also covers the animation of diagram lan-
guages, whose underlying models cannot be simulated. Animations could always be
used as eye-catcher to highlight particular diagram elements, for example.

6 Conclusions
This paper has shown that also animated editors for visual logic languages like Alliga-
tor Eggs can be successfully specified and generated using DIAMETA. The resulting
editor can be used in order to model visual �-expressions. Animations enable the user
to track changes during the reduction of expressions.

The DIAMETA framework has been extended in order to apply the presented ani-
mation strategy. This strategy differs from other approaches widely spread in the area
of meta-tools and editor generator frameworks. Even some limitations of other ap-
proaches are resolved. However, the specification complexity of animations and events
must still be improved. Currently, the concrete visualization and calculations must be
written by hand. Patterns for different animation types and processes including their
parameters would be desirable, even if loosing flexibility. With such patterns, it is
also more likely, that higher-level cartoon-like animations (e.g. by using predefined ef-
fects), which are especially suitable for an editor like Alligator Eggs, are used instead
of simple interpolated transformations. The approach should also be investigated with
regard to different types of animated visual languages. Perhaps certain specification
procedures, e.g. using state machine diagrams, can be identified and described in order
to simplify overly complex specifications. Finally, the applied strategy also seems to
be suitable for specifying highly interactive animated languages.

References
[1] E. Biermann, C. Ermel, J. Hurrelmann, and K. Ehrig. Flexible visualization of

automatic simulation based on structured graph transformation. In VLHCC ’08:
Proc. IEEE Symp. on Visual Languages and Human-Centric Computing, pages
21–28, Washington, DC, USA, September 2008. IEEE Computer Society.

6This feature has been realized with the concept presented in this article

108

[2] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:354–363, 1936.

[3] W. Citrin, R. Hall, and B. Zorn. Programming with visual expressions. In VL
’95: Proc. 1995 IEEE Symp. on Visual Languages, pages 294–301, Darmstadt,
Germany, Sep 1995. IEEE Computer Society Press.

[4] B. Cramer and U. Kastens. Animation automatically generated from simula-
tion specifications. In VLHCC ’09: Proc. IEEE Symp. on Visual Languages
and Human-Centric Computing, Corvallis, Oregon, USA, September 2009. IEEE
Computer Society.

[5] EMF – Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/,
2009.

[6] C. Ermel. Simulation and Animation of Visual Languages based on Typed Alge-
braic Graph Transformation. PhD thesis, Tech. Univ. Berlin, Fak. IV, Books on
Demand, Norderstedt, 2006.

[7] S. Gyapay, R. Heckel, D. Varro, and D. Varr. Graph Transformation with Time:
Causality and Logical Clocks. In ICGT ’02: Proc. 1st Int. Conf. on Graph Trans-
formation, pages 120–134. Springer-Verlag, 2002.

[8] H.-J. Kreowski and S. Kuske. Graph transformation units with interleaving se-
mantics. Formal Asp. Comput., 11(6):690–723, 1999.

[9] J. d. Lara and H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. In FASE ’02: Proc. 5th Int. Conf. on Fundamental Approaches to
Software Engineering, pages 174–188, London, UK, 2002. Springer-Verlag.

[10] M. Minas. Generating meta-model-based freehand editors. In GraBatTs ’06:
Proc. 3rd Int. Workshop on Graph Based Tools, Satellite event of 3rd Int. Conf.
on Graph Transformation, Natal, Brazil, September 2006.

[11] M. Minas and J. Gottschall. Specifying animated diagram languages. In TVL ’97:
Proc. Workshop on Theory of Visual Languages, Capri, Italy, 1997.

[12] J. E. Rivera, C. Vicente-Chicote, and A. Vallecillo. Extending visual model-
ing languages with timed behavioral specifications. In IDEAS 2009: Proc. 12th
Iberoamerican Conf. on Requirements Engineering and Software Environments,
pages 87–100, Colombia, April 2009.

[13] E. Syriani and H. Vangheluwe. Programmed Graph Rewriting with Time for
Simulation-Based Design. In ICMT ’08: Proc. 1st Int. Conf. on Theory and
Practice of Model Transformations, pages 91–106, Berlin, Heidelberg, 2008.
Springer-Verlag.

[14] B. Victor. Alligator eggs! A puzzle game. http://worrydream.com/AlligatorEggs/,
May 2007.

109

	vll09paper6.pdf
	Introduction
	Related Work
	Integrating and Extrapolating from Prior Research: Language Appears to Guide Attention through Visual-Spatial Structures
	Why does ``Language Thinking feel More Precise than Visual Thinking''?

	Theory
	Thought Experiment
	Example
	Towards a more Visual Version
	Other Hybrid Systems

	Conclusion and Implications

	paper5.pdf
	Introduction
	Related Work
	Integrating and Extrapolating from Prior Research: Language Appears to Guide Attention through Visual-Spatial Structures
	Why does ``Language Thinking feel More Precise than Visual Thinking''?

	Theory
	Thought Experiment
	Example
	Towards a more Visual Version
	Other Hybrid Systems

	Conclusion and Implications

