
More-than-coherent logic for operations on
images

Paolo Bottoni1 Anna Labella1 Stefano Kasangian2

1 Dip. di Informatica, Università di Roma “La Sapienza”
2Dip. di Matematica, Università di Milano

Abstract

A model of computation on multi-dimensional words, based on the overlapping op-
eration, induces a categorical structure, to which a new type of logic corresponds,
whose formulae express properties of computations in a language containing all
first order formulae. While the resulting deductive system is strictly less powerful
than (intuitionistic) first order logic, it is more powerful than coherent logic. The
approach is illustrated through an example of an online game of map-colouring.

Keywords Categorical logics, operations on images, overlapping, online coloring.

1 Introduction
We investigate the properties of computations with images via the overlapping oper-
ation [1], as a particular case of interactive, non-deterministic, computations. To this
end, we exploit a categorical structure, called SymcatB, which was studied in [11] to
provide a formal setting for the study of concurrent processes [16] and bisimulations
between them. In particular, SymcatB is the category of symmetric B-categories and
B-functors, where B is a suitable 2-category (see [20]).

In this paper, we observe that a new type of logic can be associated with SymcatB,
in analogy with the association of (intuitionistic) first order logic with Heyting cate-
gories. Indeed, SymcatB is a coherent category [10], a subcategory of which is a
Heyting category. We introduce the notion of ”more-than-coherent logic” to describe
the logic associated with SymcatB. This exploits a full first order language, for which
a logic weaker than intuitionistic logic, but stronger than a coherent logic [10], is de-
fined. In particular, negative formulae behave as the intuitionistic ones.

By associating this logic with the categorical structure, we describe and reason on
computations with images, in which agents make moves by placing copies of private
images, interacting to construct a concurrent state, again defined by an image. Agents
can work concurrently on different parts of the (state) image, without having to act
sequentially on contiguous zones, but taking turns according to paths on a tree labeled
with the names of the executed actions. Overlapping contributions can be managed ex-
ploiting partial orderings imposed on the alphabets from which the pictures are formed.

2

We show how forms of interactive computing can be modelled in this framework
(by generalizing the original algebraic structure in [11], where B was obtained from a
meet-semilattice monoid), as contributions can overlap in any order on any area of an
image, provided that some conditions are met. This kind of computation is intrinsically
non deterministic, as the same apparent result can be obtained with different actions
from the involved agents. Hence, future behaviors can be influenced in different ways.

After mentioning related work in Section 2, in Section 3 we introduce the main def-
initions of pointed image and overlapping operation and propose the main example of
collaborative game and a tentative language to speak about it. Section 4 illustrates the
monoidal category of trees modeling concurrent computations, in particular computa-
tions with images. Section 5 introduces the category of symmetric B-categories in the
sense of [20]. Its coherent structure is studied and the existence of a subcategory which
is a Heyting category is shown. The resulting logical system is presented in Section 6,
and its instantiation to the current problem is proposed in Section 7. Section 8 draws
conclusions and points to future work.

2 Related work
We consider here two research traditions, related to the study of algebraic properties of
languages, notably two-dimensional ones, and to the categorical treatment of process
algebras to describe the behaviour of concurrent agents, respectively.

The algebraic characterization of 2-D languages started with the seminal works of
Kirsch [12] and Dacey [4], aimed at imposing some form of juxtaposition (reduced to
common concatenation in the 1D case) on 2D images. Horizontal and vertical versions
of concatenation were proposed, giving rise to generative models combining horizontal
and vertical rewriting [19]. However, these versions of concatenation are only partial
functions, being applicable only to pictures of compatible sizes. An algebraic char-
acterization has been given as doubly ranked monoids constructed from alphabets of
bidimensional elements, in which each individual operation is associative and compat-
ible with each other [7]. Survey of these topics, with particular emphasis on the notion
of recognisability of picture languages, can be found in [6].

Attachment positions for contour curves were introduced by Shaw to allow com-
position of curves so that the head of an element be attached to the tail of another [18].
Pointed drawings are described in [13] by a string of directions and a pair of depar-
ture and arrival positions. Connected pointed figures equipped with concatenation give
rise to a finitely generated inverse monoid, the set of generators being constituted of
coloured pixels with all possible positions for the arrival and departure points. While
this result concerns the descriptions of figures (shapes in black-and-white images), we
are interested in images, i.e. finite bidimensional structures.

The (im)possibility of recovering concatenation of images in the 2D world by sim-
ply enriching them with attachment points, or by allowing placement only over well-
behaved paths, is studied in [3]. The proposal of pointed pictures [1] avoids such
limitations, as they include information on attachment points, and allows translations
and rotations of the original content of the pictures and of the associated information.

Modeling the behavior of concurrent agents by trees labeled on a monoid of el-

3

ementary moves is standard practice in concurrent computing [16] and has been in-
terpreted in an enriched categorical context in [11]. There, several cases of the base
monoidal structure are considered (free monoid, trace monoid, etc.). In this paper we
consider for the first time a monoid which does not satisfy the left cancelation property.

Lawvere’s algebraic theories [14] are the first categorical description of the mod-
els of a theory, while Lawvere and Tierney’s elementary topos extends Grothendieck’s
(geometric) theory of toposes to the realm of logic, relating them to intuitionistic logic.
Since then, many categorical structures have been investigated from a logical view-
point, by associating with them a language and a deductive system. In particular, co-
herent categories are related to positive first order logic (coherent logic) [10]. Starting
from a coherent category containing a Heyting subcategory, we consider a language
more expressive and a deductive system stronger than the coherent ones.

The application of the language of more-than-coherent logic to interactive compu-
tations, seen as games, can be related to the computability logic proposed by Japaridze [9],
who exploits a wider language, called universal language, including different types of
existential and universal quantifiers. The universal language can indeed refer to indi-
vidual moves, whereas we refer to whole computations. However, we can introduce a
notion of factorization, to consider computations made of single moves.

3 Interactive computations on images
We consider here the problem of describing properties of interactive computations with
images, based on a simplified version of the positional overlapping operation intro-
duced in [1]. In this Section, as an instance of such a computation, we consider an
interactive game based on the 4-colour problem, i.e. the problem of finding a colouring
of a map using up to four colours, so that no two adjacent regions are coloured in the
same way. We first introduce definitions and properties for the overlapping operation.
In particular, overlapping is defined for (n-dimensional) images as an abstraction from
many significant pixel operators as well as visual interaction phenomena, in particular
in interactive construction of diagrams.

3.1 The overlapping operation
Definition 1 [Meet-semilattice]
A meet-semilattice L = (L,≤,∧,⊥) is a partial order w.r.t. ≤, such that ∧ is the
greatest lower bound function and ⊥ denotes the bottom element.

Definition 2 [Complete meet-semilattice]
A complete meet-semilattice L = (L,≤,∧,⊥) is a meet-semilattice, such that for any
non-empty family of elements its greatest lower bound exists.

Remark 1 A complete meet-semilattice has a join for every family that has an upper
bound, given by the meet of all upper bounds.

In the rest of the paper, we consider partially ordered finite alphabets, named V ,
which are complete meet-semilattices with bottom element denoted by τ . We can

4

interpret the order relation on V as an information about transparency of a cell. τ
denotes absolute transparency as well as undefinedness of color assignment to a cell.

Definition 3 [Image and pointed images]

1. An image ι on an alphabet V is a function ι : Zn → V , where Z is the set of
integer numbers and ι is almost everywhere equal to τ .

2. A pointed image (ι,−→xe,−→xt) is an image with two designated entry and exit posi-
tions.

3. PIV is the set of pointed images on V where all the images constantly equal to
τ are identified into ι0, forgetting about their entry and exit positions. We use
PI when V can be left understood.

4. A translation of a pointed image (ι,−→xe,−→xt) by
−→
k , also noted t−→

k
, is a pointed

image (ι′,
−→
x′e,
−→
x′t), where ι′(−→x) = ι(−→x +

−→
k),
−→
x′e = −→xe +

−→
k ,
−→
x′t = −→xt +

−→
k .

The set of pointed images PI is partially ordered: (ι,−→xe,−→xt) ≤ (ι′,
−→
x′e,
−→
x′t) iff

there exists a translation (ι′′,
−→
x′′e ,
−→
x′′t) of (ι′,

−→
x′e,
−→
x′t) such that ι ≤ ι′′ as functions and

−→x e =
−→
x′′e ,
−→xt ≤

−→
x′′t , i.e. (ι′′,

−→
x′′e ,
−→
x′′t) = t

(
−→
x′e−
−→xe)

((ι′,
−→
x′e,
−→
x′t)).

For the definitions above, each image induces a semilattice with the completely
transparent image at the bottom and the original image at the top.

Proposition 1 Let ι0 = (ι0,~0,~0), where ι0 is the image with all pixels transparent.
Then, (PI,≤, ι0) is a meet-semilattice.

The family of overlapping operations •op on PI , is parametric w.r.t. a binary asso-
ciative operation op : V × V → V : (ι,−→xe,−→xt)) •op (ι′,

−→
x′e,
−→
x′t)) = (ι′′,−→xe,

−→
x′′t)) with

(ι′′,−→xe,
−→
x′′t) = (ι,−→xe,−→xt)•op(ι′′′,

−→
x′′′e ,
−→
x′′′t), where (ι′′′,

−→
x′′′e ,
−→
x′′′t) = t

(−→xt−
−→
x′e))

((ι′,
−→
x′e,
−→
x′t))).

Figure 1 illustrates three instantiations of the operation for two pointed images,
where e and t indicate the entry and exit position, respectively, and 0 the origin of
the coordinates. The operation &1 preserves the value of the first argument, &2 the
value of the second, and &3 combines the two values where they are both defined, and
preserves the value of the defined image otherwise. Notice that in all three cases, the
set of positions of the resulting image is the same, as well as the origin and the entry
and exit positions.

3.2 A 4-colour based game
Let a collection of maps K be given to two agents, called the Drawer and the Painter.
The Drawer starts by selecting a subset of regions from one map and challenging the
Painter to colour them according to the 4-colour constraint, using overlapping: once
a region has been painted, the colour of no cell in the region can be changed. After
the Painter has done colouring, the Drawer selects a new set of regions and the game
progresses. The Drawer wins if it can propose a region that the Painter is not able to

5

Figure 1: Instantiations of overlapping between pointed images.

colour, while the Painter wins if it achieves a complete colouring of a map. Drawn
regions are assigned the colour $, indicating that the region needs to receive its final
coloring. We define the alphabets C1 = {a, b, c, d}, C2 = C1 ∪ {$}, C = C2 ∪ {τ}, and
the partial order on C induced by < = {(τ, x) | x ∈ C2} ∪ {($, x) | x ∈ C1}. All the
regions are defined as pointed images with entry and exit position in (1, 1), and with
all symbols transparent except for those in one of the regions of one map. We denote
the set of available regions in a map k as Rk = {1, . . . , nk}. With R, we indicate the
disjoint union of all the regions in K.

Figure 2 shows two maps, each made of six regions, and two colourings satisfying
the 4-colour condition. The three central regions are defined by the same subimages in
the two maps, but receive different colours due to the 4-colour condition.

Figure 2: Two maps coloured in the correct way.

We model the colouring of a region R from a map K with a colour C as a move

6

(K,R,C) ∈ K ×RK × C. We callM[K,R,C] the resulting alphabet of moves. Where
no ambiguity arises, we omit the subscript K,R, C and only refer toM. We partition
M intoMd =MK,R,$ andMp =MK,R,C1 , to indicate that the Drawer can only use
moves with the $ colour and the Painter only ”real” colours. Moreover, a Painter can
perform a move (k, r, c) ∈ Mp for some k, r, and c only if a move (k′, r, $) ∈ Md

has been previously performed by the Drawer, where either k = k′ or r ∈ Rk ∩ Rk′ .
Note that, even if regions are taken from different maps, they are bound to agree on the
already performed moves.

A colouring of a map with n regions is a process with moves of the form (y,R, x),
and the resulting computation is a word onM∗[K,R,C]. Actually, the languages of in-
terest here are languages on the trace monoid M(E) = M∗[K,R,C]/ ≡E [15], where
the dependency relation E is induced by the complement of an independency rela-
tion I such that ∀k ∈ K ∀ri, rj ∈ R ∀ch, cl ∈ C1 ((k, ri, ch), (k, rj , cl)) ∈ I and
((k, ri, $), (k, rj , $)) ∈ I .

For a word ω ∈ M(E), we call α(ω) the set of moves used in ω. In gen-
eral, one distinguishes Drawer and Painter computations, but we omit the distinc-
tion when no ambiguity arises. For a given map k ∈ K, all computations ω satisfy
noReplication(ω) ≡ ∀r ∈ Rk, ch, cl ∈ C[¬∃ω1, ω2(ω = ω1 • ω2)[((k, r, ch) ∈
α(ω1)) ∧ ((k, r, cl) ∈ α(ω2))]], where • denotes concatenation of moves.

Moreover, admissible computations for the Painter satisfy predicate admp(ω) ≡
∀r, ri, rj ∈ Rk [adjk(ri, rj) =⇒ ((k, ri, c) ∈ α(ω) =⇒ ¬(k, rj , c) ∈ α(ω))],
where adjk(ri, rj) indicates that the two regions ri, rj are adjacent in map k.

Each agent can perform any legal computation on a map. For the Painter, this cor-
responds to sequences producing 4-coloured maps, while for the Drawer these are all
possible orders of presentations of regions from a map. After a Drawer’s move (k, r, $),
the Painter can observe only its projection (r, $) ∈ R × C and must replicate with a
move (k′, r, c) from a computation on a map k′ containing r. Analogously, the Drawer
will observe only the projection (r, c) of such a move. Once the Drawer has selected
a map, it has to go on playing with its original choice. In general, sameMap(ω) ≡
∀(k, r, c), (k′, r′, c′) ∈ α(ω)[k = k′]] indicates that a player always selects moves from
the same map, while playk is satisfied if a player’s computation satisfies sameMap,
selecting moves from map k.

Of interest here are alternating games, in which the Painter has to colour regions
exactly in the order in which they are proposed and progress is made only if the Painter
has coloured all of them. We adopt the point of view of an external observer, which
regards the game as a single computation ωo where moves are successions of projec-
tions on R × C of the moves played by the Drawer and the Painter. We introduce a
predicate alt(ωo) which is satisfied if ωo is admissible and, for any prefix ω1 of ωo,
| ω1 |{$} ≥ | ω1 |C1 . Moreover, for a word ωo satisfying alt(ωo), we introduce the
projections prd and prp providing ωd and ωp, respectively, up to the choice of the
map. If the game is played with a fixed number of drawn regions at each turn, we call
alternation step x this number. Alternating games give rise to words of the form ωo

= ad1,1 . . . a
d
1,xa

p
1,1 . . . a

p
1,x . . . a

d
r,1 . . . a

d
r,xa

p
r,1 . . . a

p
r,x. The predicate altx(ωo) is satis-

fied if alt(ωo) and ωo is the unique word describing the alternating game of step x for
which ωd = prd(ωo) and ωp = prp(ωo) are the Drawer’s and Painter’s sequence of

7

Figure 3: The Drawer’s sequences for a game with two maps.

moves, respectively. This corresponds to the case of online colouring [8].
Two predicates can be defined on observer computations, denoting success for the

Drawer or the Painter, respectively, as follows:
succd(ωo) ≡ ∃(r, $) ∈ α(prd(ωo))[¬∃c ∈ C1[(r, c) ∈ α(prp(ωo))]]
succp(ωo) ≡ ∀(r, $) ∈ α(prd(ωo))[∃c ∈ C1[(r, c) ∈ α(prp(ωo))]]
Considering the set of maps K = {k1, k2} of Figure 3, one verifies Fact 1.

Fact 1 The following hold:

1. ∀ωd ∈Md(E)∀ωp ∈Mp(E)∀k ∈ K[(playk(ωd)∧playk(ωp)) =⇒ (∃ωo[ωd =
prd(ωo) ∧ ωp = prp(ωo) ∧ succp(ωo)])]

2. ∀h, k ∈ K[(¬h = k) =⇒ (∃ωd ∈ Md(E), ωp ∈ Mp(E)[(playh(ωd) ∧
playk(ωp)) =⇒ (∃ωo[ωd = prd(ωo) ∧ ωp = prp(ωo) ∧ succd(ωo)])])]

The Drawer’s strategy is to select one map in Figure 3 and present the common
regions indicated with 1, 2, 3 , in this order. After the Painter has selected the third
colour, the Drawer proposes the region identified with 4 in its map. The computation
will result in success for the Painter if the two were moving with respect to the same
map. Otherwise, the Painter will be forced to choose a colour for which no computation
can be successful. From the observer’s point of view, iterations of the game in which
the first three moves of each player are always the same can result into different games.
Such a situation occurs for alternating games of step 1 and 3, but not for any other step.

For any game, the property succp(ω1) ∧ perm(ω1, ω2) =⇒ succp(ω2) holds,
where predicate perm(ω1, ω2) is satisfied if one word can be obtained from the other
by permutation of the positions of the moves.

4 Computing with overlapping
We introduce here the categorical structure needed to describe computations occurring
on images through the use of the overlapping operation. This structure will result into
an instance of a SymcatB-category formally defined in Section 5. The language and
the logical structure associated with SymcatB in Section 6 will provide the proper
solution to the problem of finding a language to speak about collaborative computing
with images and characterise its logics.

8

4.1 The monoidal category of trees
In order to describe the possible evolution of a concurrent process from one state to
another, one exploits a set of computations labeled with elements from a complete
meet-semilattice L, representing possible observations of the behavior of an agent (in
our leading example the overlapping of visible moves performed by the two players).
The elements of L give the extent of the computation. Since for the observer the pro-
cess is a non-deterministic one, a further piece of information is needed to identify
the degree to which two given computations are indistinguishable to observation; in
general, this degree, called agreement, will not be maximal. Such a structure gives
rise to a generalized tree whose paths are computations, glued together via agreement.
This kind of definition can produce also pathological trees as, e.g. the empty one or a
tree where two paths are completely glued together. Actually, this construction can be
carried for any meet-semilattice L [11].

Definition 4 [Trees]

1. An L-tree (or tree) is a triple (X, eX , aX) where X is the set of paths, the extent
map eX : X → L is the labeling of the paths and the agreement aX : X ×X →
L is the gluing between paths, such that, ∀x, y, z ∈ X , it holds that:

(a) aX(x, x) = eX(x)

(b) aX(x, y) ≤ eX(x) ∧ eX(y)

(c) aX(x, y) ∧ aX(y, z) ≤ aX(x, z)

(d) aX(x, y) = aX(y, x)

2. An L-tree-morphism, or simulation, f : X → Y is a function mapping paths
into paths, strictly preserving labeling and non decreasing gluing between them:

(a) eX(x) = eY (f(x))

(b) aX(x, y) ≤ aY (f(x), f(y))

3. L-trees with their morphisms form the category TreeL, or Tree for short.

Figure 4 shows an example of trees, each with two paths, with equal extent, i.e. the
set of words {ac, ab}, but different agreement, as the agreement between the paths in
the left tree is the empty word and that for the right tree is the word labeled a.

? ?

@
@
@

�
�
�
a a

c b

x y

@
@
@R

�
�
�	

a

c b

x y

Figure 4: Two Trees.

9

Example 1 Let A∗ be the free monoid generated by an alphabet A. An A∗-category
X results in an A-labeled tree, with the set of labels ordered according to the prefix
relation.

From a monoid on which the prefix relation induces a complete meet-semilattice
structure (as for a free monoid), one obtains an instance of the theory developed so far.
The same construction can be performed for a trace monoid.

Due to their relevance in our context, we now introduce some further operations
on Tree, in particular cases. We now consider a meet-semilattice which has also a
monoidal structure, according to Definition 5.

Definition 5 [Meet-semilattice with monoidal structure]
A meet-semilattice L = (L,≤,∧,⊥) has a monoidal structure iff it is a monoid
(L, •, 1) such that the following hold:

• h ≤ h′ implies k • h ≤ k • h′ (right monotonicity)

• k • (h ∧ h′) = (k • h) ∧ (k • h′) (right semidistributivity)

• k ≤ k • h (non decreasing property)

Proposition 2 If L = (L,≤,∧,⊥) has a monoidal structure (L, •, 1), then ⊥= 1.

Now we can lift the monoidal structure of L to the level of TreeL.

Proposition 3 Let L be a meet-semilattice with a monoidal structure (L, •, 1). Then
a tensor product ⊗ : TreeL × TreeL → TreeL exists, producing a (non symmetric)
monoidal category (TreeL,⊗, I), where I is the one-path tree with trivial labeling 1.

Remark 2 [11] If • is left-cancellative, the tensor (Tree,⊗, I) is left-closed, i.e. −⊗
Y has a right adjoint Tree(Y,−) for every Y . Monoidal left-closedness would allow
speaking of the “tree leading from one state to another state”, so that, going back in
time along a behavior, one could recover uniquely the remaining part of it from a given
state. However, this property is very strong and not verified for most examples here.

Proposition 4 A homomorphism of meet-semilattice monoids φ : L′ → L induces
two monoidal functors Φ : TreeL′ → TreeL and Φ′ : TreeL → TreeL′ .

Example 2 Given a set A, let A† = (A ∪ {†}). We now let the free monoids A∗† and
A∗ play the roles of L′ and L, respectively, and define a monoidal functor between
them by introducing a function on words in A∗† , deleting instances of † as follows:

DEL(s) =

 ε if s = ε
µ • DEL(s′) if s = µ • s′ and µ 6= †
DEL(s′) if s = † • s′

DEL can be extended to a monoidal functor ∆ from trees labelled with A ∪ {†} to
A-labelled trees, deleting †’s on paths. On the other hand, according to Proposition 4,
given the inclusion homomorphism i : A∗ → A∗† we obtain also a pair of functors,
namely the obvious inclusion functor INC : TreeA∗ → TreeA∗† and the functor
RES : TreeA∗† → TreeA∗ . The latter, given a tree X , erases from it all the paths with
labels containing †. This operation corresponds to what in concurrent process algebra
is called restriction. There is a (strict) mono res : INC(RES(X)) � X .

10

4.2 The case of overlapping operation
For the overlapping operations defined in Section 3 one proves the following:

Proposition 5 Let op : V × V → V be an associative monotonic operation with τ as
unit and satisfying Definition 5; then (PI,≤, •op, ι0) with •op defined point-wise and
coordinate-wise as above, is a meet-semilattice with a monoidal structure.

One can thus define generalized trees on PI as illustrated in Section 4.1.

5 The category SymcatB
We expose here for the sake of completeness the general categorical-theoretic argu-
ments which allow the introduction of the notion of more-than-coherent logic in next
section. The reader more interested in applications than in general theories can skip
this section or, better, substitute everywhere the locally posetal 2-category B with a
meet-semilattice L and SymcatB with TreeL. In Section 7 we will see that for our
purposes we need this particular instance only.

Given a suitable locally posetal 2-categoryB ([20]), one obtains the category SymcatB
where for every pair of objects b and b′ the hom-set hom[b, b′] of morphisms from b to
b′ is assumed to be cocomplete and sups are preserved by composition. We also assume
the existence of an operation on hom-sets, behaving as a meet w.r.t. the order. If B is
generated as the category of relations on a regular category B, the meet operation is
given by the pullback.

Definition 6 [Symmetric categories and functors]

1. [20] A symmetric B-category X =< X, eX , aX > is a set X equipped with an
extent function e : X → B and an agreement function a : X ×X → Mor(B)
satisfying: ∀x, y, z ∈ X: 1) aX(x, x) = eX(x); 2) aX(x, y) ≤ eX(x) ∧ eX(y);
3) aX(x, y) ∧ aX(y, z) ≤ aX(x, z); 4) aX(x, y) = aX(y, x) where ∧ denotes
the meet operation.

2. [20] A B-functor f : X → Y between two B-categories is a function f : X →
Y , satisfying ∀x, y ∈ X: eX(x) = eY (f(x)); aX(x, y) ≤ aY (f(x), f(y))

3. A B-functor f is called strict if the following equation holds: aX(x, y) =
aY (f(x), f(y))

Definition 7 [Cartesian and coherent categories][10]

1. A cartesian category C is regular if it has stable images under pullbacks.

2. A regular category C is coherent if it has stable unions under pullbacks.

In the following, we give a series of results needed to introduce more-than-coherent
logic in Section 6. As the focus of the paper is on logic rather than on categorical
constructions, we omit the proofs.

11

Proposition 6 If B is locally cocomplete, then SymcatB is a coherent category.

Corollary 1 In SymcatB, with every object X , a distributive lattice (Sub(X),∪,∩)
is associated, with ∪ and ∩ the join and meet, respectively. Given a morphism f :
X → Y , an image operator Σf : Sub(X) → Sub(Y) exists, which is left adjoint to
the inverse image operator f∗. The whole structure is stable under pullbacks.

We now consider strict morphisms in SymcatB: strictness is preserved by iden-
tity, composition and pullbacks; images are strict if the original morphisms are. We
call sSymcatB the subcategory of SymcatB where morphisms are strict. B can be
considered as the terminal object in SymcatB as well as in sSymcatB.

Proposition 7 If B is locally cocomplete, then sSymcatB is a Heyting category [10].

In other words, every object X in SymcatB is associated with a pair of categories
Sub(X) and sSub(X): the first one with a coherent structure, the second one, using
only strict monos, with a Heyting structure. In particular, for any morphism f : X → Y
and any strict mono m : X ′ → X , we define ΠfX

′ ≡ {y ∈ Y | ∀x ∈ X(f(x) =
y =⇒ x ∈ X ′)}, which will play the role of universal quantifier (right adjoint to
f∗). From the existence of a universal quantifier one derives the “negative” operators:
X ′ =⇒ X ′′ ≡ Πm(X ′ ∩ X ′′ � X ′), where m : X ′ � X and ¬X ′ ≡ X ′ =⇒ ⊥.

Proposition 8 For X in SymcatB we have functors i : sSub(X) → Sub(X) (in-
clusion) and s : Sub(X) → sSub(X), left-inverse left-adjoint to i. s has also a left
adjoint j.

For every sub-object structure in SymcatB, one defines all the usual set-theoretical
operators including the “negative” ones: negation, implication and universal quantifier.
However, these will have the expected adjunction properties for the strict subobjects
only. In fact, if we apply the definition of ΠfX ′ to non strict monos, the result will
be a strict one, while the correspondence necessary for the adjunction will work only
one-way, i.e., for f∗(Y ′) → X ′, there is a unique Y ′ → ΠfX ′, but the opposite is
not always true. The same happens for negation and implication. As for the positive
operators, they will be the same for both strict and non strict subobjects; only in the
case of strict ones will they coincide with those obtained from connectives/quantifiers
defined from the subobject classifier.

Proposition 9 The following hold: 1) A mono (an epi) in SymcatB is regular if and
only if it is strict. 2) There is an object Ω in SymcatB which classifies strict monos.

Remark 3 In set-theoretical terms, a non-strict mono corresponds to a subobject con-
taining “elements” of an object with both an evaluated membership and an evaluated
equality, in both cases possibly non maximal w.r.t. the object. Ω will classify only strict
subobjects, i.e. it will classify subobjects w.r.t. their membership. However, since it
ignores non-strict monos, it will be completely indifferent to the actual equality. On
the other hand, we are interested in non-strict monos in order to take into account seri-
ously non-determinism in computations; hence we need to consider a variation of both
membership and equality.

12

Actually, under a technical condition, which is satisfied in our case, we can prove
that SymcatB contains a topos, composed of skeletal Cauchy complete (see [21])
symmetric B-categories with strict B-functors between them.

6 More-than-coherent-logic
Given the categorical structure presented in Section 5 we can now introduce, in a stan-
dard way, a new logical system, intermediate between coherent and first order logics.

Definition 8 [Logics]

1. A coherent logic [10] is a sorted language with formulae built on constants >,
⊥, connectives ∧ and ∨, the existential quantifier ∃, the “equality predicate” and
whose deductive system comprehends rules α), β), γ), δ), ζ) and θ) in Table 1.

2. A first order logic [10] is a sorted language containing all formulae of the lan-
guage of coherent logic, plus those built on connectives ¬ and =⇒ and the
universal quantifier ∀, and whose deductive system comprehends all the infer-
ence rules for a coherent logic plus the rules ε) and η) in Table 1 (in this case,
rules in θ) are a consequence of the others, in particular of ε).

3. A more-than-coherent logic is a sorted language containing all the first order
logic formulae, and ewhose deductive system comprehends all the inference
rules of first order logic, except for the second parts of the ε) and η) rules.

We can interpret terms and formulae of the language in the usual way (see [10]),
by fixing a “context”, i.e. a finite set of variables containing those appearing as free
ones; a term is interpreted as a morphism from the product of the interpretations of the
types of the variables in the context to the interpretation of the type of the term, while
a formula is interpreted as a subobject of the product of the interpretations of the types
of the variables in the context. A sequent between two formulae is satisfied iff there is
an instance of the order between the corresponding subobjects.

Theorem 1 If B is locally cocomplete, SymcatB is a model for a more-than-coherent
logic.

Proof: As SymcatB is coherent, we interpret its positive logical operators according
to the rules for a coherent logic. As for the negative ones, we also interpret them using
the Ππ operator for the universal quantifier, Σπ for the existential quantifier, for some
suitable projection π, and the obvious correspondences for the other operators. We are
left to prove the validity of the first part of ε) and of η). To this end, one observes that
formulae involving negative operators are interpreted in strict subobjects. Hence, if φ
is interpreted in X1 and ψ in X2, for the first part of η) we have: X1 → X2 implies
s(X1) → s(X2), because s is a functor. The latter implies s(X1) → Ππ(s(X2)),
because the first part of η) holds in a Heyting category; then composing with X1 →
s(X1) and using the fact that Ππ(s(X2)) = Ππ(X2), we have X1 → Ππ(X2). In the
same way one can prove the first part of ε). 2

13

α) identity φ `~x φ
substitution φ `~x ψ

φ[s/x] `~y ψ[s/x] cut φ `~x ψ ψ `~x χ
φ `~x χ

β) equality > `~x x=x x=y∧φ `~x φ[y/x]

γ) conjunction φ `~x > φ ∧ ψ `~x φ φ ∧ ψ `~x ψ
φ `~x ψ φ `~x χ
φ `~x ψ ∧ χ

δ) disjunction ⊥ `~x φ φ `~x φ ∨ ψ ψ `~x φ ∨ ψ
φ `~x χ ψ `~x χ
φ ∨ ψ `~x χ

ε) implication φ ∧ ψ `~x χ
ψ `~x φ =⇒ χ

ψ `~x φ =⇒ χ
φ ∧ ψ `~x χ

ζ) existential quantifier φ `~x,y ψ
∃yφ `~x ψ

∃yφ `~x ψ
φ `~x,y ψ

η) universal quantifier φ `~x,y ψ
φ `~x ∀yψ

φ `~x ∀yψ
φ `~x,y ψ

θ) distributivity φ ∧ (ψ ∨ χ) `~x (φ ∧ ψ) ∨ (φ ∧ χ)) Frobenius φ ∧ ∃yψ `~x ∃y(φ ∧ ψ)

Table 1: Logical rules

A first order language with all the usual connectives and quantifiers can thus be
associated with SymcatB. Formulae corresponding to strict subobjects (in particular
the negative ones) will enjoy all the rules of a full first order (intuitionistic) logic, while
all the other formulae will enjoy all the rules of a coherent logic plus the first parts of
ε) and η).

7 Formulae on trees
We now give some examples illustrating the use of the language associated with SymcatB
with reference to the category Tree. In fact, we are able to define a first order language
to speak about paths on these trees, i.e. computations in a concurrent framework or, as
seen in Section 3, interactive computations on images.

A complete meet-semilattice L gives rise to a locally-posetal, locally-cocomplete
2-category L, in the way described in Section 5. The category TreeL, of L-labeled
structured computations and simulations between them, coincides with the category
whose objects are symmetric L-categories and whose morphisms are the L-functors
between them. The terminal object in Tree is given by L itself, thought of as a tree
(L, idL,∧). Namely, it has all the elements as paths and the agreement between all of
them is the meet.

14

Operations from Section 4.1 provide some predicates. For example, the mono res :
INC(RES(X)) → X is an interpretation of ∃x[P†(x)], where P†(x) means that
the computation x does not contain an occurrence of the elementary move †. Using
negation, one can also express the occurrence of a given elementary move in every
computation. Analogously, using the tensor product, one can express the factorization
of a computation. In particular, if the tensor product has a right adjoint we are also able
to say that ”p is a computation from a state s to a state s′” using the object [s′, s] and
the image of its unique morphism in the terminal tree. In this case the corresponding
mono is not in general strict.

Strict monomorphisms in TreeL are injective simulations that strictly preserve
agreement. In other words, a strict subtree X ′ of a given tree X contains some of
its paths with the same extent and the same agreement as they have in X . If a formula
is interpreted in such a kind of subobject, it will behave as a first order formula.

As example of a non ‘well behaved” formula, take ∃x∃x′[e(f(x)) = del(e(f(x′)))],
where the type of both x and x′ has been interpreted in X and f is a functional symbol
interpreted in a non-strict morphism f : X → Y1. In concurrent process parlance, this
means that we have a simulation of the process represented by X via the process rep-
resented by Y , which is more deterministic than X , and we state the existence of two
computations in X which are simulated by computations in Y with the same extent, up
to some extra labels in the second one. Due to non determinism, the subobject of Y
corresponding to this formula is not strict, i.e. we can find two computations satisfying
the condition, but their agreement could be smaller than the one they have when they
are simulated in Y .

In order to show the limitations of the deductive system of more-than-coherent logic
with respect to first-order logic, consider the formula ∀y[∃x∃x′[e(f(x)) = del(e(f(x′)))∧
a(f(x), y) = ⊥]], with x typed in X and y typed in Y , suppose it to be true for the
given X and Y , and that we interpret it w.r.t. the context Y . Then there will be a
mono from Y to its interpretation. If we now remove the universal quantification, the
new formula will be still interpreted as subobject of Y , but since it corresponds to a
non-strict one there will be no mono from Y to such a subobject. This fact falsifies the
second part of rule η).

Coming back to our main example in Section 3, we can easily prove:

Proposition 10 The following hold:

1. PI is a meet-semilattice with monoidal structure on V .

2. An intrinsic first order language exists, equipped with a more-than-coherent
logic, to speak about non deterministic computations with images.

The same happens in particular for the trace monoid M(E). As a consequence,
once one defines all the terms and predicates mentioned in Section 3.2 using the oper-
ations defined onM(E), all the formulae appearing there are formulae of a first order
language equipped with a more-than-coherent logic. This fact shows the use of the pro-
posed language for computing with images, in particular in cooperative or interactive
processes, with reference to online coloring.

1We will abuse notation a bit here and identify syntactical and semantical symbols.

15

8 Conclusions
Computation on multidimensional words is becoming standard practice for multimedia
applications, as well as for representing evolution of distributed states. Ad hoc methods
are usually devised for different numbers of dimensions or for modelling semantics.

We have proposed a categorical setting for describing such computations based on
the ubiquitous operation of overlapping. This gives an interesting enriched categori-
cal structure, accommodating a new type of logical system, called more-than-coherent
logic, with the expressive power of first-order logic, but a weaker deductive system.

This supports reasoning on composition of different contributions where each in-
termediate state is ”more defined” than the previous one. In particular, such a logical
structure can be used to filter out moves which cannot contribute to reaching a desired
final state. In [2], filters were used to explore the power of the overlapping operation,
allowing the simulation of several rewriting mechanisms. Since more-than-coherent
logic naturally emerges from the properties of the overlapping operation, this logic
seems to provide a good setting for reasoning about different interactive phenomena
involving images, and we plan to investigate its properties more deeply.

The overlapping operation can be parameterized to any number of dimensions and
different types of value composition, preserving the required properties for a monoidal
structure. Moreover, pointed words introduce a natural notion of synchronization
where agents can cooperate in the construction of words defining the result of a com-
putation only on designated positions. The overlapping operation exploited here is a
point-wise one. An exploration of the structure underlying other types of operations
may uncover different types of logic. As an example, grey-scale image morphology has
been related to computations on complete lattices [17] and to fuzzy logic [5]. More-
over, it would be interesting to combine reasoning on computations with reasoning on
their results, for example composing filtering on computations and on results.

References
[1] Bottoni, P. and A. Labella, Pointed pictures, JVLC 18 (2007), pp. 523–536.

[2] Bottoni, P. and A. Labella, Cooperative construction of pointed pictures, Rom. J.
of IST (to appear).

[3] Bottoni, P., G. Mauri and P. Mussio, From strings to pictures and back, Rom. J.
of IST 6 (2003), pp. 87–104.

[4] Dacey, M. F., The syntax of a triangle and some other figures., Pattern Recogni-
tion 2 (1970), pp. 11–31.

[5] Deng, T.-Q. and H. J. A. M. Heijmans, Grey-scale morphology based on fuzzy
logic, J. of Math. Im. and Vis. 16 (2002), pp. 155–171.

[6] Giammarresi, D. and A. Restivo, Two-dimensional languages, , III, Springer,
1997 pp. 215–267.

16

[7] Grammatikopoulou, A., Prefix picture sets and picture codes,
web.auth.gr/cai05/papers/21.pdf.

[8] Halldórsson, M. M. and M. Szegedy, Lower bounds for on-line graph coloring,
TCS 130 (1994), pp. 163–174.

[9] Japaridze, G., Introduction to computability logic, Annals of Pure and Applied
Logic 123 (2003), pp. 1 – 99.

[10] Johnstone, P., “Sketches of an elephant,” Oxford Science Publications, 2002.

[11] Kasangian, S. and A. Labella, Observational trees as models for concurrency,
MSCS 9 (1999), pp. 687–718.

[12] Kirsch, R., Computer interpretation of english text and picture patterns, IEEE
Trans. EC 13 (1964), pp. 363–376.

[13] Latteux, M., D. Robilliard and D. Simplot, Figures composées de pixels et
monoı̈de inversif, Bull. Belg. Math. Soc. 4 (1997), pp. 89–111.

[14] Lawvere, F., Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci.
U.S.A. 50 (1963), pp. 869–872.

[15] Mazurkiewicz, A. W., Trace theory, in: Advances in Petri Nets, LNCS 255, 1986,
pp. 279–324.

[16] Milner, R., “Communication and concurrency,” Prentice Hall International, 1989.

[17] Ronse, C., Why mathematical morphology needs complete lattices, Signal Pro-
cessing 21 (1990), pp. 129 – 154.

[18] Shaw, A., The formal picture description scheme as a basis for picture processing
systems, Inf. and Cont. 14 (1969), pp. 9–52.

[19] Siromoney, R. and K. Krithivasan, Parallel context-free grammars, Inf. and Con.
24 (1974), pp. 155–162.

[20] Walters, R., Sheaves and Cauchy-complete categories, Cahiers de Topologie et
Geometrie Diff. 22 (1981), pp. 283–286.

[21] Walters, R., Sheaves on sites as Cauchy-complete categories, J. Pure Appl. Alge-
bra 24 (1982), pp. 95–102.

17

