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Abstract

This paper presents the Logical Query Facility (LQF), a high level program-
ming interface to query UML models. LQF is a Prolog library built on top of the
Model Manipulation Toolkit (MoMaT, cf. [8]). It provides a set of versatile pred-
icates that reflects the notions modelers use when reasoning about their models
which makes it easy to formulate queries in a natural way. In order to demon-
strate the capabilities of LQF in comparison to OCL, we have implemented it as a
plug in to the popular MagicDraw UML CASE tool [3], and evaluated LQF with
a benchmark suite of frequent model queries.

1 Introduction

1.1 Motivation
Over the last decade, model based and model driven development have turned into
mainstream approaches in large scale industrial software engineering projects.1 Visual
languages like UML, EPCs, BPMN, DSLs, etc. play a more and more prominent role
in such settings, and as a consequence, models have grown much larger (see cf. [9] and
Fig. 1).

Another consequence is that more and more people are involved directly in model-
ing activities. Today, most modelers in large scale projects are not software engineers,
but domain experts. In fact, the integration of domain experts is a crucial success factor
in medium to large scale software development efforts. Thus, providing an interactive
query facility for modelers is dearly needed in many if not all modeling projects.

From experience we know, however, that many modelers are challenged by the
complexity of modeling languages already. Often, they can’t (or won’t) cope with yet
another, complicated language for queries (such as OCL or QVT), let alone query APIs.
But the query facilities provided by many tools (full-text search and predefined queries)

∗Thanks to Alexander Knapp for generously sharing his OCL expertise.
1Since 2004, the author has participated in two such projects as lead methodologist and modeling coach.
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Figure 1: Real life models may become very large (cf. [9]).
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are not expressive and flexible enough. This paper reports on our attempt to provide a
better query facility which is expressive enough for all queries yet much easier to use.

1.2 Related work
Currently, there are four distinct types of UML model query facility: (1) tool specific
queries, (2) application programming interfaces, (3) visual query facilities, and (4)
abstract query facilities like OCL.

tool specific facilities Full text search and predefined queries are easy to use, but very
limited in terms of expressiveness. For instance, a text search cannot find model
structures or patterns, and sets of predefined queries cannot be easily extended.
In our experience from industrial modeling projects, this type of query facility is
too limited for many tasks.

APIs In contrast, an Application Programming Interface (API) offers complete con-
trol over a model and unrestricted expressiveness for querying. However, most
CASE tools’ APIs are very complex and are built on mainstream programming
languages like Java (MagicDraw), C# (Enterprise Architect), or Visual Basic
(Rational Rose). So, substantial commitment and effort is required before an
end user can use such an API.

visual queries There are also visual query facilities like Query Models [6, 7] and
VMQL [10]. Unfortunately, the Query Models approach has never been im-
plemented; VMQL has been implemented, but there are no evaluations of its
practical value yet.

logic based queries Today, the Object Constraint Language (OCL, [4]) is the de-facto
standard language for complex annotations of UML models (such as consistency
conditions, pre- and post-conditions). So, one could say that OCL is the “gold
standard” of logic based UML query languages. However, OCL lacks several
features essential for querying.

We will analyze OCL’s deficiencies for querying in detail in the next section as the
starting point for our own work.

1.3 Approach
As we have said before, OCL is the de-facto standard for expressing complex properties
of UML models but it suffers from several shortcomings as a language for end user
model querying. Analyzing these deficiencies will help us define a better query facility.

Pattern Matching OCL provides no pattern matching facilities, e. g., name matching
using wild cards. For most users concerned with ad hoc queries, the full power
of regular expressions are probably not required. Most of the time, it will be
sufficient to allow * and ? in names to match any number of characters and a
single character, respectively. Defining such a function is very hard with OCL.
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Conceptual Abstraction When expressing queries in OCL, the modeler needs to nav-
igate through concepts defined in the UML meta model which requires substan-
tial expertise. Also, since the concepts used in the UML meta model have little to
do with the notions a modeler uses when reasoning about models, a conceptual
mismatch arises that interferes with using OCL.

Type System OCL is strongly typed, which many people perceive as disruptive in
interactive tasks (such as ad-hoc querying). Moreover, the OCL type system
lacks type variables, providing only a limited form of subtyping polymorphism,
but no parametric polymorphism (cf. [1]).

Notation Size & Complexity OCL has a rich and complex syntax with more than 50
keywords and standard library functions, plus all the usual operators and con-
stants for arithmetics, boolean logic etc., which implies a considerable learning
effort for any user.

Summing up, OCL lacks essential query facilities like pattern matching, it fails
to provide a useful abstraction layer on top of the meta model, and its syntax and
type system are not very helpful either. All in all, its complexity renders it effectively
unusable for the average modeler. As an attempt to overcome these limitations, we
have designed the Logical Query Facility (LQF) advancing our own prior work (see
[8]).

We pursue three goals with LQF. Firstly, LQF should be universal, that is, it should
allow all types of queries, including full text search. Secondly, LQF should be expres-
sive, i. e., as many queries as possible should be expressible in LQF, including those
predefined in typical CASE tools. Thirdly, LQF should be simple, that is, we aim to
make LQF much simpler to use than OCL or an API. To this end, LQF provides a set
of predicates that state important model properties in terms modelers are accustomed
to rather than in terms of the underlying meta model (as OCL does).

2 The Logical Query Facility
In this section we will describe the LQF, the MoMaT framework on which it builds,
and the MQLogic tool implementing LQF.

2.1 The MoMaT framework
The Model Manipulation Toolkit (MoMaT) is a framework for processing models such
as UML models using Prolog. It has been described eg. in [8], and we summarise it
here only so that this paper is more self contained.

MoMaT represents model elements as individual facts and models as sets of facts,
i. e., a Prolog Database. Consider the example shown in Fig. 3. It shows a simple
UML class diagram (top), and its representation as a Prolog module with a set of facts,
one for each model element. The blue italic numbers serve as identifiers of model
elements. These identifiers are completely arbitrary; any string could be used, or, in
fact, the original object identifiers provided for model elements by most contemporary
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modeling tools. Every fact describing one model element is described using the me/2
predicate. Fig. 2 shows how the arguments of theis predicate are to be interpreted.

me(class-42, [name-'A', ...]).
Each model element 
is represented by 
a Prolog fact me.

The element properties are 
described as a list of tag-value pairs.

tag: an arbitrary Prolog atom

value: an arbitrary Prolog atom or term

separator: an uninterpreted binary infix functor

an arbitrary Prolog atom: unique id

an arbitrary Prolog atom or term: type

an uninterpreted binary infix functor: separator

Type and name of the element together are 
used as the (typed) element identifier.

Figure 2: Schematic Prolog representation of a single model element.

The Prolog representation of models is created automatically by the MX tool (cf.
[2]). MX is a standalone tool that processes the files used to store models. Since
MX is highly configurable, it can process a very wide range of file formats, that is
different versions of UML, XMI, MOF/EMF/ECORE, and different tool manufacturers
interpretations of them, but also BPMN/BPEL, and ADL. So far, MX has been used
with MagicDraw, EnterpriseArchitect, VisualParadigm, and Adonis. Extending this
range is usually a matter of hours. Thus, MX (and MoMat, and LQF) may process a
wide variety of models today, and, with a little extra effort, potentially any modeling
language.

The Prolog representation shown in Fig. 3 is identical for every source language or
file format. The first argument contains the model element type (its meta class, in UML
terminology), and and identifier. Both are arbitrary Prolog atoms. The second argument
of me/2 is an unordered list of tag-value pairs, both of which may be arbitrary Prolog
expressions, including complex terms, lists, and so on. Note that this representation
is purely syntactic: a new modeling language with a different set of concepts (meta
classes) is treated just the same and does not require any changes to MoMaT.

This representation alone allows to manipulate models using arbitrary Prolog pred-
icates. For instance, querying for all attributes with type string in model m1 from
Fig. 3, we would have to load the output of MX into a Prolog system (“consult the file”
in Prolog terminology), and issue a small query at the command line prompt:

?- consult(’m1’).
?- m1:me(property-ID, Attributes),

memberchk(type-string, Attributes).

The query returns all identifiers of model elements of type property (the UML jar-
gon for attribute) in the scope of module m1, that have the pair type-string among
their attributes. In this case, the answer is the set of identifiers 1 and 7. To under-
stand this type of expression, a user needs to know a number of Prolog conventions
and syntactic elements.
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CD m1

Person

name: string
age: int

*

get_job(Occupation) : void

Occupation

required_education: string

1

:-module(m1, [me/2,model/2]).
  model(cd-1,          [type-class_diagram, name-m1,language-'UML 2',
                        version-'2.2']).
  me(model-1,          [name-'Data',ownedMember-ids([2,3,5,7,10,12,15]),
                        level-analysis, author-stoerrle, qa-approved]).
  me(class-2,          [name-'Organisation',isAbstract-true,
                        ownedMember-ids([14])]).
  me(class-3,          [name-'Department',ownedMember-ids([4])]).
  me(generalization-4, [to-id(2),from-id(3),isSubstitutable-true]).
  me(class-5,          [name-'SmallDepartment',ownedMember-ids([6])]).
  me(generalization-6, [to-id(3),from-id(5),isSubstitutable-true]).
  me(class-7,          [name-'Person',ownedMember-ids([8,9,13,16,19])]).
  me(property-8,       [name-name,visibility-private,
                        multiplicity-interval(0,*),type-string]).
  me(property-9,       [name-age,visibility-private,
                        multiplicity-interval(0,*),type-int]).
  me(class-10,         [name-'Occupation',ownedMember-ids([11,17])]).
  me(property-11,      [name-required_education,visibility-private,
                        multiplicity-interval(0,*),type-string]).
  me(association-12,   [memberEnd-ids([13,14])]).
  me(property-13,      [type-id(2),visibility-private,association-id(12),
                        multiplicity-interval(1,1),type-id(2)]).
  me(property-14,      [type-id(7),visibility-private,association-id(12),
                        multiplicity-interval(1,1),type-id(7)]).
  me(association-15,   [memberEnd-ids([17,16])]).
  me(property-16,      [type-id(10),visibility-private,association-id(15),
                        multiplicity-interval(0,*)]).
  me(property-17,      [type-id(7),visibility-private,association-id(15),
                        multiplicity-interval(1,1)]).
  me(operation-18,     [name-'get_job',ownedMember-ids([19]]),
                        visibility-'public']).
  me(parameter-19,     [visibility-'public',type-id(10)]).

model properties
author: stoerrle
qa:  approved
level:  analysis

1 1Organisation

SmallDepartment

Department

2 10

3

5

7

14

12

13

4

6

8

9

17

19

19

11

16

15

Figure 3: A simple UML model (top), and its representation in Prolog (bottom). The
blue italic numbers serve as identifiers of model elements; for easier reference we
have added them in the UML model, close to the respective element. Many of the
model element’s properties are default values (e. g., visibilities, multiplicities and
isSubstitutable). The layout of the Prolog representation has been improved
for readability. The notation :-module is the syntax SWI Prolog uses to define a
module.
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Modules A module in the Prolog system we use is a flat name space. Elements in this
name space may be accessed by prefixing a predicate by the module name and a
colon.

Facts A Prolog fact is an identifier followed by a bracketed sequence of arguments
which are separated by commas. A fact is terminated by a full stop. The pred-
icate- is defined as an infix operator, so type-string really is identical to
-(type, string).

Variables In Prolog, all identifiers starting with a capital letter are logical variables.
The underscore character denotes the anonymous variable.

Queries Stating a fact prompts Prolog to try and find a variable binging that makes
this fact true relative to the currently known facts.

Lists Lists are enclosed in square braces, the list elements are separated by commas.

While this type of access brings the full power of Prolog to UML models, it re-
quires considerable knowledge both of Prolog and the respective modeling language.
MoMaT provides an abstraction layer that makes it easier to deal with complex opera-
tions on models of different kinds. However, since MoMaT provides the full spectrum
of operations, it has proved to be too complex for just querying, and definitely too dif-
ficult to learn for the casual user. LQF, on the other hand, provides a restricted and
specialised set of operators that makes this possible.

2.2 The LQF predicates
The Logical Query Facility (LQF) provides a small set of powerful and generic pred-
icates on top of MoMaT. The LQF predicates capture the properties and relationships
of model elements in the terms modelers are accustomed to rather than in terms of the
underlying meta model (as OCL does). See Table 1 for a complete reference of the
LQF-predicates currently defined. Note that most arguments may be either unbound,
bound to items, or bound to sets of items. Predicates from associated on also have
an additional optional last parameter indicating the number of steps (default is 1).

As a first example, consider again the query we defined in the previous section
to determine the string-typed attributes in model m1. Using LQF, this query may be
rewritten as

exists(property, ID, [type-string])

Now consider a more complex example. Assume, we want to check that two model
elements E1 and E2 are associated. Using OCL this requires us to navigate from E1 and
E2 to their respective ownedMembers, and find an association containing them both.
In order to find the opposite end of an association partner, a different OCL statement
is needed, and in order to get pairs of associated model elements, yet another OCL
statement is needed.

In contrast, the LQF predicate associated/2 may be instantiated in all three
ways, i. e., with both E1 and E2 bound (“check association between them”), with just
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one of them bound (“get the other end of an association”), or none of them bound (“find
associated pairs of elements”). Additionally, the LQF predicate provides an option to
check whether the association is indirect, that is, via a given number of steps (including
“any”). Also, it is defined on pairs of elements as well as on sets of elements (for n-ary
associations). Finally, it may be used for all kinds of model elements, whereas OCL
would require one definition for every pair of element types.

Similar options and usage modes are provided by all other LQF predicates. The
predicates concerned with relationships also have an additional optional last parameter
indicating the length of the path of the relationship type (“steps”), ranging from 1
(default) to * (any number of steps). For instance, is a(A,B) asserts that there is a
generalization relationship between model elements A and B, while is a(A, B, 3)
asserts that there is a chain of at most three generalizations between A and B. Similarly,
is a(A, B, *) asserts that there is a chain of generalizations between A and B, and
it may be of arbitrary length.

2.3 The MQLogic Tool
In order to explore our approach further, we have implemented MQLogic, a prototype
plug in to the popular MagicDraw UML CASE tool (cf. [3]). It uses the MX model
converter [2], some of the infrastructure of the MQ model query tool [11], SWI-Prolog
and the JPL Java-Prolog-Bridge library (see www.swi-prolog.org). The LQF
predicates are implemented as a set of SWI-Prolog modules. Fig. 4 shows an overview
of the structure of MQLogic. See Fig. 5 for a screenshot of MQLogic.

This chart is annotated with the steps involved in creating and executing a query.
We will start with the steps marked by white circles.








First, the user creates or obtains a model and starts the MQLogic system from
within MagicDraw.







The model is exported by MagicDraw and stored as a XMI-file in the local file
system.






Using the MX tool (cf. [2]), the XMI file is converted into a set of prolog facts.

Steps





and




are performed completely automatically. Note that




modifies
only the format, but leaves the semantic contents of the model completely unchanged.
After changes to the model the user must refresh its Prolog representation which repeats
steps





and




.
In order to execute a LQF query, the following steps must be executed (marked

with numbered black circles in Fig. 4).












 The user inputs an ordinary Prolog query as plain text to the MQLogic input win-
dow, using the predicates defined by LQF (see Table 1).

 The query is sent as-is to the Prolog engine via the JPL Java-to-Prolog bridge.








 The query is executed as-is, dynamically using LQF predicates.
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Table 1: The predicates defined by LQF.

exists(TYPE, ID, PROPS)

There is an element of type TYPE identified by ID with the properties listed in PROPS as Key-Value
pairs. Note that at least one of the Key or the Value must be instantiated.

sub type of(SUPERTYPE, SUBTYPE)

In the underlying modeling language, SUBTYPE is more special than SUPERTYPE.

attribute of(TYPE, ID, Value)

In the underlying modeling language, SUBTYPE is more special than SUPERTYPE.

name(ID, NAME)

The element identified by ID has the qualified name NAME.

match(VAL, PATTERN)

Value VAL matches the pattern PATTERN (both parameters must be instantiated).

distinct(IDS) All elements in IDS are distinct.

occurs in(ID, D)

The element identified by ID occurs in the diagram identified by D.

associated(ID-SET)

All elements in ID-SET are part of an nary association, where n ≥ |ID-SET|.
rel(ID, ID’, RTYPE)

There is a relationship of type RTYPE between the element(s) identified by ID1 and the element(s)
identified by ID2. If both ID1 and ID2 are sets, all pairs of identifiers must be in the relationship.

is a(ID, ID’)

There is a generalization relationship between the element(s) identified by ID and the element(s) iden-
tified by ID’. If both ID and ID’ are sets, all pairs of identifiers must be in the relationship.

depends(ID, ID’)

There is a dependency relationship between the element(s) identified by ID and the element(s) identified
by ID’. If both ID and ID’ are sets, all pairs of identifiers must be in the relationship.

connected(ID, ID’)

There is any kind of connection between the element(s) identified by ID and the element(s) identified
by ID’. If both ID and ID’ are sets, all pairs of identifiers must be connected.

precedes(ID, ID’)

There is a sequential ordering relationship between the element(s) identified by ID and the element(s)
identified by ID’ (e. g., before/after, incoming/outgoing etc.). If both ID and ID’ are sets, all pairs of
identifiers must be in the relationship.

calls(ID, ID’)

There is a calling relationship between the element(s) identified by ID and the element(s) identified by
ID’. If both ID and ID’ are sets, all pairs of identifiers must be in the relationship.

contains(ID, ID’)

There is a whole-part relationship between the element(s) identified by ID and the element(s) identified
by ID’ (e. g., class/attributes, package/members, state/substate etc.). If both ID and ID’ are sets, all
pairs of identifiers must be in the relationship.
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 The results are presented back to the user. Currently, this feedback is restricted
to simple values such as (qualified) names of model elements.

MagicDrawTM

MQLogic

Java-Prolog-
Bridge

Java-Prolog-
Bridge

create 

search

Model facts

Query predicate

create 





use dynamically

Results

views

LQF
Query

Model Base

Source Model

Prolog

Prolog

export 

transform 

XMI








send


LQF

report

Figure 4: Overview of our prototype implementation of MQLogic.

3 Evaluation
Since MQLogic allows us to run arbitrary Prolog queries against the model, we may
issue every computable query. So, in terms of expressiveness, LQF is equally powerful
as any API offered by any UML tool (assuming unrestricted read access to the complete
model by the respective API). Similarly, any computable function may theoretically be
expressed in OCL, so there is not difference in terms of expressiveness between these
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  - abort execution

Commands

Bindings in 
one result

Figure 5: Screenshot of the MQLogic prototype running in MagicDraw.

three alternatives. Now, the crucial question is, whether creating and/or understanding
queries in LQF is easier than in OCL. In order to find out, we tested the MQLogic tool.
Over the last years we have collected a suite of the ten most popular queries (beyond
full text search) people have wanted to run against their models (see Fig. 6). We will
use them as a benchmark to evaluate predefined APIs, LQF and OCL, contrasting how
they represent these queries. Due lack of space, we will discuss only the first six queries
in this paper.

• text search with pattern matching

• search for particular attribute values

• unconnected nodes/subgraphs

• all transitive super classes

• counting elements of given types

• undefined attributes

• elements of a given type

• structural patterns

• invisible model elements

• references to an element

Figure 6: Some of the most frequent types of queries in industrial modeling projects.
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3.1 Text search with pattern matching
Probably the most frequent query is to do a full text search for a given string over a
complete model. Most (though not all) CASE tools offer this functionality. A sample
application might be “Find all occurrences of ’foobar’ in any attribute of any model
element.” In LQF, this is a rather simple expression.

exists(_, Element, [Attr-Val]),
match(Val, ’*foobar*’).

Recall that all variables are written with leading capitals except the underscore
which is the anonymous variable. Analogously, we could ask for an element whose
name is restricted by a wild card pattern. For instance, when looking for all occurrences
of the factory-pattern, we might ask for “All classes whose name ends with ’Factory’”.
In LQF, this may be expressed as follows.

exists(class, C, [name-N]),
match(N, ’*Factory’).

To our knowledge, such queries can’t be expressed in OCL.

3.2 Search for undefined attributes or particular values
One of the most common queries is to ask for “unfinished work”, for instance, any
attributes that should be filled but are not. For instance, operations of classes may
or may not have a visibility. So, when looking for operations that lack a value for
“visibility”, in LQF we would have to say

exists(operation, Element, Attributes),
not(member(visibility, Attributes)).

while we could not express this in OCL.
Since most tools do not distinguish between attributes that are left empty on pur-

pose and attributes that have not yet been filled, it is common to set attributes of the
latter kind with a dummy default value like ’??’ or ’ToDo’, indicating unfinished busi-
ness (if an automatic default is not available, it may be replaced by manual work).
Then, a full text search could find such markers. However, it must also be possible to
restrict the search scope and the the text search must be guaranteed to access all fields.
Unfortunately, these preconditions are rarely met (we know of no such example). Thus,
querying for such values across all types of attributes is a convenient way of checking
for unfinished business. To our knowledge, this can’t be expressed in OCL. In LQF,
the query would read

exists(_, Element, [Attribute-’??’]);
exists(_, Element, [Attribute-’ToDo’]).
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3.3 All elements of a given type
The first query from our benchmark that may be expressed in OCL is a query for all
elements of a given type, say, classes, in a given model. Using LQF, this query could
be expressed as exists(class, C, []). In OCL, we would have to use the
allInstances construct, as in Class.allInstances().

context Package
self.packagedElement->select ( t | t.oclIsTypeOf(Class)).

Both queries are of approximately similar complexity, but it is already clear that the
second query requires knowledge of the UML meta model (i. e., the meta association
packagedElement), but also that the OCL syntax is rather complex (i. e., the dif-
ference between the . and the -> operator, and the keywords self, select and
oclIsTypeOf). This type of query is also easily expressed in many tools’ query
facilities using predefined queries.

3.4 All transitive super classes
Collecting all (transitive) super classes of a class named “Contract” amounts to com-
puting a fixed point, which is a rather challenging task for the ordinary modeler (and
for quite a computer science graduate, too). Expressing this in OCL adds an additional
level of syntactic complexity, as the following code demonstrates.

def:
superClasses_1_1(baseClass: Class) : Set(Class) =

if self.hasGeneralization()
then self.generalization.general.

oclAsType(Class)->asSet())
else Set{}
endif

def:
superClasses_n_1(baseClasses: Set(Class)) : Set(Class) =

baseClasses->forAll( bc | superClasses_1_1(bc) )
->flatten()->asSet()

def:
superClasses_n_n(baseClasses: Set(Class)) : Set(Class) =

let next = superClasses_n_1(baseClasses)
in if next.equals(baseClasses)

then return baseClasses
else return superClasses_n_n(next)
endif

We first define superClasses_1_1 to compute the set of direct super classes
of a single class, the simplest case. In the next step, we lift this function to sets of base
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classes, defining superClasses_n_1. The flatten operator transforms sets of
sets of items into sets of items. Finally, chains of inheritance relationships are com-
puted by superClasses_n_n, which also includes an implicit occurs check. Our
query for the super classes of Contract can thus be expressed as follows.

let baseClass = self.packagedElement
->select( x | x.oclIsTypeOf(Class)
->select( x | x.name = ’Contract’)
->asOrderedSet->at(1)

in superClasses_1_1(baseClass)

With LQF, all this complexity is encapsulated in the is a predicate so the respective
query is rather simple.

exists(class, Sub, [name-’Contract’]),
exists(class, Super, []),
is_a(Sub, Super, steps=*).

There are three reasons for this succinctness. First, the notion of “is a superclass of”
used to characterize the query in natural language is present in LQF, but not in OCL.
Creating such an abstraction in OCL requires considerable work and expertise. Second,
the OCL syntax is rather complex, thus difficult to master. Third, OCL’s type system
intervenes, forcing us to include type casting operations like asOrderedSet().

Note also, that in the case of OCL, we would have to define similar functions for
every single type of relationship that may occur transitively. In LQF, on the other hand,
the rel predicate covers all type of relationships. Additionally, the most frequent
cases (generalization, calling, precedence etc.) are also provided with convenience
predicates.

So, while we could hide the complexity of the fixed point computations in OCL
behind suitable library functions created by experts, there would have to be a large set
of similar functions for different types and usage modes. Six years after the last OCL
version was finalized, no such library seems to exist. And even if it did exist, the user
still would have to learn a large set of functions with complex syntax.

3.5 Structural patterns
Consider next the query for a particular structure, e. g.: “Collect all actors associated
to at least two different Use Cases.” This query represents a large class of queries for
local model structures and are useful for design pattern mining. In OCL, this query
may be expressed as follows.

context Package
def:
actorUseCaseAssoc(a: Actor, u: UseCase) : Bool =
let types : set(Element) =
self.packagedElement->asSet()->
select(assoc | assoc.isKindOf(Association)).
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ownedElement.type->asSet().
in let participants : set(Element) = {a, u}.
in types.intersection(participants) = participants

def:
actorWithTwoUCs(a: Actor) : Bool =
self.packagedElement->asSet()-> select(ucs |

ucs.isKindOf(UseCase))
->collect( uc | actorUseCaseAssoc(a, uc))
->count() > 1

def:
allActorsWithTwoUCs() : Set(Actor)=
self.packagedElement->asSet()->
select(a | a.isKindOf(Actor))
->collect( a | actorWithTwoUCs(a))-> asSet()

endpackage

In LQF, this query would read as follows (this is also the query we show in Fig. 5).

exists(actor, Actor,[]),
exists(useCase, UC_1,[]),
exists(useCase, UC_2,[]),
distinct([U1, U2]),
associated([Actor,UC_1]),
associated([Actor,UC_2]).

3.6 OCL-APIs
While the OCL as such does not offer much to support querying. In that respect, it is
fairly well comparable to MoMaT without LQF as an additional abstraction layer on
top of it. It seems that no such query API exists for OCL. In fact, it seems that there
are few OCL APIs for whatever purpose publicly available.

One notable exception is the UML, however, which defines 77 auxiliary functions
and helpful abbreviations for defining OCL queries. These include a number that may
improve writing queries in OCL, for instance

• allParents() returning the transitive closure of the Generalization relation-
ship;

• general abbreviates generalization.general;

• <EXPR>[<TYPE>] abbreviates <EXPR>.oclAsType(<TYPE>)where <EXPR>
is any OCL expression and <TYPE> is any meta class (type cast in QVT);

• opposite abbreviates access to the opposite end of a (binary) association.
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This collection of OCL predicates and shorthands is not really an API, it has not
been designed to facilitate end user queries. It is just the collection that happened
to be helpful when defining the constraints of the UML standard document. So, it
is not complete or orthogonal. For instance, there is no predicate for the transitive
closure of the aggregation relationship, allParents lacks an occurs check, there is
no predicate to collect all inherited features, and so on. Also, many of the features of
LQF like pattern matching, and predicate overloading are not defined. Still, using these
auxiliary predicates makes OCL much better usable than pure OCL, as our experiments
have shown (see next Section).

4 Experimental evaluation of LQF
While we believe our approach is obviously better than OCL, we are biased of course,
compromising our judgment. Our claim of superiority is mostly concerned with the
usability, most notably the understandability of LQF as a model query language. Ob-
viously, such a claim can only be examined empirically. We have therefore devised a
questionnaire with a set of tasks to help answer these questions. A complete account of
these experiments, unfortunately, would be beyond the scope of this paper and will be
submitted elsewhere. Without going into the details, we only summarize our findings
here.

The experiment consisted in a questionnaire where subjects were asked to match
queries described in natural language and queries described in OCL and LQF, the lat-
ter being our two experimental conditions. In a second task, subjects were asked to
judge as correct or not pairs of given matches of a natural language query and a query
expressed in OCL or LQF. Next, subjects were asked to compare the time and effort it
took them to complete OCL and LQF tasks, and their personal opinion of the under-
standability of the respective languages. Finally, some of the subjects participated in
structured interviews to further elaborate on their experiences and feelings concerning
the tasks.

Unsurprisingly, we could demonstrate that subjects made many more mistakes us-
ing OCL than they did using LQF, for all tasks, and for all categories of errors. Sub-
jects also consistently judged their effort with OCL tasks much higher than LQF tasks
and generally found LQF much better understandable than OCL (which was gener-
ally judged as very difficult to understand). These findings were also confirmed by
post-experiment interviews. Interestingly, the occupation of the subjects (students, IT
professionals, scientists) and their prior knowledge of OCL did not influence these
results substantially.

As we have said, none of these findings were surprising, quite the opposite. An
interesting phenomenon occurred, however, when adding another experimental condi-
tion besides OCL and LQF, namely, OCL plus the convenience functions defined en
passant in the UML standard (see [5]). We called this query language “OCL+UML”.

The error rates of OCL+UML were slightly lower than those of LQF, and similarly,
the subjective judgments were slightly better. However, when controlling for prior OCL
knowledge, the relation between LQF and OCL+UML flipped, both in error rates and
judgments. That is: subjects with no prior OCL exposure performed better on LQF
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than on OCL+UML, and subjects with OCL exposure performed better on OCL+UML
than on LQF. In most cases, the exposure was a rather substantial MDA course the
students acting as subjects had just finished.

5 Discussion

5.1 Summary
This paper presents the Logical Query Facility (LQF), a very high-level Prolog API
suitable for querying UML models ad-hoc by end-users. We have implemented the
MQL tool, a plug in to the popular MagicDraw CASE tool implementing LQF. It allows
to access all languages supported by MagicDraw, i.e., all of UML, a variety of UML
profiles, and BPMN. Executing a query in MQL amounts to translating a UML model
into a Prolog rule base, and executing the LQF-based query predicate on it. LQF builds
on the MoMaT system (see [8]). It shares some of the infrastructure of VMQL [10],
but follows a distinct approach defining its own language, and providing its own tool.

5.2 Contribution
Our approach attempts to achieve universality, expressiveness, and simplicity (cf. Sec-
tion 1.2). We have evaluated the universality and expressiveness of our approach
against these goals by collecting a test suite of common queries and checking that all
of these queries can be expressed in LQF. We have evaluated the simplicity of our ap-
proach by contrasting the OCL and LQF representations of these queries. It is obvious
that LQF expressions are much simpler and shorter than corresponding OCL expres-
sions. We have tried to confirm this finding by a controlled experiment. Although our
results seem to confirm our hypothesis, we do not have sufficiently many data points
yet to truly support our claim. Further experimentation is clearly called for.

LQF offers two advantages over OCL, today’s de-facto standard for querying UML
models. First, it shields the modeler from the complexity of the UML meta model
so that a modeler may express queries using familiar concepts. Second, it provides
a very small, yet powerful interface as all predicates may be used in different usage
modes (i. e., different patterns of instantiating parameters). As our experiments have
demonstrated, this interface is truly easy to understand.

While we cannot be sure that our sample of queries is truly representative for all
application contexts, it surely is sufficient to contrast the different approaches. Obvi-
ously, all text based query facilities for visual query languages suffer from the media
gap between query and model. To which degree this impedes querying is currently an
open question.

5.3 Future work
There are a number of promising routes for future work. First of all, LQF lacks means
to access the diagrammatic aspect of models, i. e., visual features of diagrams such as
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relative position, size, and so on. Also, accessing the meta model in the same way as
the model would allow parameterization over concepts.

Then, MQLogic is just a prototype. It currently lacks features for visualization of
query results, debugging support, and productivity features like syntax highlighting,
auto completion and so on.

Finally, the syntax seems to be suboptimal. Whether the improvements come from
visual notations like VMQL (cf. [10]) or controlled natural language constructs can
only be determined empirically.
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