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Abstract

This paper introduces a hierarchy of Euler and Venn diagrammatic reasoning
systems in terms of their expressive powers in topological-relation-based formal-
ization. At the bottom of the hierarchy is the Euler diagrammatic system intro-
duced in Mineshima-Okada-Sato-Takemura [13, 12], which is expressive enough
to characterize syllogistic reasoning in terms of unification and deletion rules. At
the top of the hierarchy is a Venn diagrammatic system such as Swoboda-Allwein’s
Euler/Venn diagrammatic system [23]. In order to understand the hierarchy uni-
formly, we introduce an algebraic structure, which also provides another descrip-
tion of our unification rule of Euler diagrams. We prove that each system S’ of
the hierarchy is conservative over any lower system S with respect to validity—in
the sense that S’ is an extension of S, and the semantic consequence relations of S
and S’ are equivalent for diagrams of S. Furthermore, we prove that a region-based
Venn diagrammatic system is conservative over our topological-relation-based Eu-
ler diagrammatic system with respect to provability.

1 Introduction

Euler diagrams were introduced by Euler (1768) [1] to represent logical relations
among the terms of a syllogism by topological relations among circles. Given two
Euler diagrams which represent the premises of a syllogism, the syllogistic inference
can be naturally replaced by the task of manipulating the diagrams, in particular of
unifying the diagrams and extracting information from them. For example, the well-
known syllogism named “Barbara,” i.e.,All A areB and AllB areC; therefore AllA
areC, can be represented diagrammatically as in Fig. 1.

Another well-known diagrammatic representation system for syllogistic reasoning
is Venn diagrams. In Venn diagrams a novel syntactic device, namelyshading, to
represent emptiness plays a central role in place of the topological relations of Euler
diagrams. Because of their expressive power and their uniformity in formalizing the
manipulation of combining diagrams simply as the superposition of shadings, Venn
diagrams have been very well studied. Cf. Venn-I, II systems of Shin [19], Spider
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diagrams SD1 and SD2 of [9], [14], etc. For a recent survey, see [20]. However, the
development of systems of Venn diagrams is obtained at the cost of clarity of Euler
diagrams. As Venn [25] himself already pointed out, when more than three circles
are involved, Venn diagrams fail in their main purpose of affording intuitive and sen-
sible illustration. (For some discussions on visual disadvantages of Venn diagrams,
see [8, 5]. See also [18] for our cognitive psychological experiments comparing lin-
guistic, Euler diagrammatic, and Venn diagrammatic representations.) Recently,Euler
diagrams with shadingwere introduced to make up for the shortcoming of Venn dia-
grams: E.g., Euler/Venn diagrams of [23, 24]; Spider diagrams ESD2 of [14] and SD3
of [10]. However, their abstract syntax and semantics are still defined in terms of re-
gions, where shaded regions of Venn diagrams are considered as “missing” regions.
That is, the idea of theregion-basedEuler diagrams is essentially along the same line
as Venn diagrams.

We may point out the following complications of region-based formalization of
diagrams:

1. In region-based diagrams, logical relations among circles are represented not
simply by topological relations, but by the use of shading or missing regions,
which makes the translations of categorical sentences uncomfortably complex.
For example,All A are B is expressed by a region-based diagram through a
translation to the statementThere is nothing which isA but notB as seen inDv

1

of Fig. 2.

2. The inference rule ofunification, which plays a central role in Euler diagram-
matic reasoning, is defined by way of the superposition of Venn diagrams. For
example, when we unify two region-based Euler diagrams as inD1 andD2 of
Fig.1, they are first transformed into Venn diagramsDv

1 andDv
2 of Fig.2, respec-

tively; then, by superposing the shaded regions ofDv
1 andDv

2 , and by deleting
the circleB, the Venn diagramEv is obtained, which is transformed into the
region-based Euler diagramE . In this way, processes of deriving conclusions are
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oftenmade complex, and hence less intuitive, in the region-based framework.

In contrast to the studies in the tradition of region-based diagrams, we proposed a
novel approach in [13, 12] to formalize Euler diagrams in terms of topological relations.
Our system has the following features and advantages:

1. Our diagrammatic syntax and semantics are defined in terms oftopological re-
lations, inclusion and exclusion relations, between two diagrammatic objects.
This formalization makes the translations of categorical sentences natural and
intuitive. Furthermore, our formalization makes it possible to represent a dia-
gram by a simple ordered (or graph-theoretical) structure.

2. Our unificationof two diagrams is formalized directly in terms of topological
relations without making a detour to Venn diagrams. Thus, it can directly cap-
ture the inference process as illustrated in Fig. 1. We formalize the unification
in the style of Gentzen’s natural deduction, a well-known formalization of log-
ical reasoning in symbolic logic, which is intended to be as close as possible
to actual reasoning (Gentzen [3]). This makes it possible to compare our Euler
diagrammatic inference system directly with natural deduction system. Through
such comparison, we can apply well-developed proof-theoretical approaches to
diagrammatic reasoning. See [13] for such proof-theoretical analyses.

From a perspective of proof-theory, the contrast between the standpoints of the
region-based framework and the topological-relation-based framework can be under-
stood as follows: At the level of representation, the contrast is analogous to the one
between disjunctive (dually, conjunctive) normal formulas and implicational formu-
las; at the level of reasoning, the contrast is analogous to the one between resolution
calculus style proofs and natural deduction style proofs.

From a perspective of cognitive psychology, our system is designed not just as an
alternative of usual linguistic/symbolic representations; we make the best use of ad-
vantages of diagrammatic representations so that inherent definiteness or specificity
of diagrams can be exploited in actual reasoning. See [18] for our experimental re-
sult, which shows that our Euler diagrams are more effective than Venn diagrams or
linguistic representations in syllogism solving tasks.

We roughly review our topological-relation-based Euler diagrammatic representa-
tion systemEUL in Section 2. (We also review our inference systemGDS in Appendix
A.) AlthoughEUL is weaker in its expressive power than usual Venn diagrammatic sys-
tems (e.g. Shin’s Venn-II [19], which is equivalent to the monadic first order logic in
its expressive power),EUL is expressive enough to characterize basic logical reasoning
such as syllogistic reasoning, see [12]. OurEUL-diagrams can be abstractly seen as
algebraic (or graph-theoretical) structure, where inclusion relations between diagram-
matic objects are reflexive transitive ordering relations, and exclusion relations are ir-
reflexive symmetric relations. Based on this observation, in Section 3, we introduce
EUL-structure, which provides another description and a verification of our unification
rule of Appendix A. In Section 4, based on theEUL-structure, we introduce a hierarchy
of Euler and Venn diagrammatic reasoning systems as seen in Fig. 3.
The most elementary systemEUL considers only circles and points as diagrammatic
objects;EUL is extended by considering intersection regionsX ∩ Y , union regions
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X ∪ Y , and complement regionsX asdiagrammatic objects, respectively, as well as
linking of points; Venn diagrams can be put at the top of the hierarchy of these ex-
tended systems. The algebraic structure thus obtained for Venn diagrams is essentially
the directed acyclic graph of Swoboda-Allwein [23]. We prove that each systemS′

of the hierarchy is conservative over any lower systemS with respect to validity—
in the sense thatS′ is an extension ofS, and the semantic consequence relations of
S andS′ are equivalent for diagrams ofS. Moreover, we prove that a region-based
Venn diagrammatic system is conservative over our topological-relation-based Euler
diagrammatic system with respect to provability. We also give a procedure to transform
a topological-relation-basedEUL-diagram through anEUL-structure to a semantically
equivalent region-based Venn diagram.

2 A diagrammatic representation system (EUL) for Eu-
ler circles and its set-theoretical semantics

In this section, we review our diagrammatic representation systemEUL of [13, 12].

2.1 Diagrammatic syntax ofEUL

The following definition of diagrams is slightly different from that of [13, 12] in that
(1) we regard inclusion relation@ as reflexive in this paper; (2) we exclude fromEUL-
diagrams only the empty diagram, on which no topological relation holds.

Definition 2.1 An EUL-diagram is a plane (R2) with a finite number, at least one, of
named simple closed curves(denoted byA, B,C, . . . ) andnamed points(denoted
by a, b, c, . . . ), where each named simple closed curve or named point has a unique
and distinct name.EUL-diagrams are denoted byD, E ,D1,D2, . . . .
An EUL-diagram consisting of at most two objects is called aminimal diagram. Min-
imal diagrams are denoted byα, β, γ, . . . .

In what follows, a named simple closed curve is called anamed circle. More-
over, named circles and named points are collectively calledobjects, and denoted by
s, t, u, . . . . We use a rectangle to represent a plane for anEUL-diagram.1

1Several Euler diagrammatic representation systems impose some additional conditions for well-formed
diagrams. E.g., at most two circles meet at a single point, no tangential meetings or concurrency etc. Cf.
e.g., [22]. However, for simplicity of the definition, those are all considered to be well-formed inEUL.
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We define the following binary topological relations between diagrammatic ob-
jects2:

Definition 2.2 EUL-relations are the following binary relations between diagram-
matic objects:

A @ B “the interior ofA is inside ofthe interior ofB,”

A ⊢⊣ B “the interior ofA is outside ofthe interior ofB,”

A ◃▹ B “there is an intersection between the interior ofA and the interior ofB,”

b @ A “b is inside ofthe interior ofA,”

b ⊢⊣ A “b is outside ofthe interior ofA,”

a ⊢⊣ b “a is outside ofb (i.e. a is not located at the point ofb).”

We call◃▹-relationcrossingrelation.
EUL-relations⊢⊣ and◃▹ are symmetric, while@ is not. In this paper, we consider

@-relation as reflexive by allowings @ s for each objects.

Proposition 2.3 Let D be anEUL-diagram. For any distinct objectss and t of D,
exactly one of theEUL-relationss @ t, t @ s, s ⊢⊣ t, s ◃▹ t holds.

Observe that, by Proposition 2.3, for a givenEUL-diagramD, the set ofEUL-
relations holding onD is uniquely determined. We denote the set byrel(D). We also
denote bypt(D) the set of named points ofD, by cr(D) the set of named circles ofD,
and byob(D) the set of objects ofD.

Although in this section,ob(D) = pt(D) ∪ cr(D), in Section 4, diagrammatic ob-
jects are extended, in addition to named circles and points, by introducing intersection,
union, and complement regions respectively.

The following properties, as well as Proposition 2.3, characterizeEUL-diagrams.

Lemma 2.4 LetD be anEUL-diagram. Then for any objects (named circles or points)
s, t, u ∈ ob(D), we have the following:

1. (Transitivity) If s @ t, t @ u ∈ rel(D), thens @ u ∈ rel(D).

2. (⊢⊣-downward closedness)If s ⊢⊣ t, u @ s ∈ rel(D), thenu ⊢⊣ t ∈ rel(D).

3. (Point determinacy)For any pointx ofD, exactly one ofx @ s andx ⊢⊣ s is in
rel(D).

4. (Point minimality)For any pointx (̸≡ s) ofD, s @ x ̸∈ rel(D).

Equivalence betweenEUL-diagrams is defined as follows. (See [13] for a more
detailed explanation.)

Definition 2.5 When any two objects of the same name appear in different diagrams
(planes), we identify them up to isomorphism. AnyEUL-diagramsD andE such that
ob(D) = ob(E) aresyntactically equivalentwhenrel(D) = rel(E).

2We follow Gergonne [4] for our notations on topological relations@ and⊢⊣.
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Example2.6 (Equivalence of diagrams)For example, diagramsD1, D2, D3, and
D4 of Fig. 4 are equivalent sincerel(D1) = rel(D2) = rel(D3) = rel(D4) =
{A ◃▹ B,A ◃▹ C,B ◃▹ C, a ⊢⊣ A, a @ B, a ⊢⊣ C}. In the description of a set of
relations, we usually omit the reflexive relations @ s for each objects.
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Fig.4 Equivalence ofEUL-diagrams.

On the other hand,D1 andD5 (resp. D1 andD6) are not equivalent since different
EUL-relations hold on them:A @ C holds onD5 in place ofA ◃▹ C of D1 (resp.
C @ A andC @ B hold onD6 in place ofA ◃▹ C andC ◃▹ B of D1). Cf. Example
4.5 and 4.7 of Section 4, whereD1,D2,D3, andD4 are distinguished.

Our equation of diagrams may be explained in terms of a kind of “continuous trans-
formation (deformation)” of named circles, which does not change any of theEUL-
relations in a diagram. (See [13] for an explanation.)

In what follows, the diagrams which are syntactically equivalent are identified, and
they are referred by a single name.

Remark 2.7 (Expressive power ofEUL) Our equation of diagrams in the basic sys-
tem EUL may seem to be counterintuitive since seemingly distinctive diagrams
D1,D2,D3,D4 of Example 2.6 are identified.3However, this slightly rough equa-
tion makes the description of unification of diagrams much simpler; see Appendix A.
Furthermore, it is shown thatEUL is expressive enough to characterize basic logical
reasoning such as syllogistic reasoning; see [12]. In Section 4, we consider some ex-
tensions ofEUL, whereD1,D2,D3, andD4 are distinguished by regarding intersection
and union regions respectively as diagrammatic objects. See, in particular, Examples
4.5 and 4.7. Note that, by introducing new diagrammatic objects in a representation
system,EUL-relations for these new objects are augmented, so that the system be-
comes more expressive. At the level of diagrammatic syntax, this means that more
fine-grained distinctions between diagrams are made possible.

2.2 Set-theoretical semantics ofEUL

Our semantics is distinct from usual ones, e.g., [6, 8, 24, 10] in that diagrams are
interpreted in terms of binary relations. In order to interpret theEUL-relations@ and
⊢⊣ uniformly as the subset relation and the disjointness relation, respectively, we regard
each point ofEUL as a special circle which does not contain, nor cross, any other
objects.

3This is also pointed out in Fish-Flower [2] as an drawback of the relation-based approach.
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Definition 2.8 A model M is a pair(U, I), whereU is a non-empty set (the domain
of M ), andI is an interpretation function which assigns to each named circle or point
a non-empty subset ofU such thatI(a) is a singleton for any named pointa, and
I(a) ̸= I(b) for any pointsa, b of distinct names.

Note that we assign a non-empty set to each named circle. This condition is es-
sential for our completeness. See the paragraph on the constraint for consistency in
Appendix A and footnote 7 there.

Definition 2.9 Let D be anEUL-diagram. M = (U, I) is a model ofD, written as
M |= D, if the following truth-conditions (1) and (2) hold: For all objectss, t of D,
(1) I(s) ⊆ I(t) if s @ t holds onD, and (2) I(s) ∩ I(t) = ∅ if s ⊢⊣ t holds onD.

Note that whens is a named pointa, for somee ∈ U , I(a) = {e}, and the above
I(a) ⊆ I(t) of (1) is equivalent toe ∈ I(t). Similarly, I(a) ∩ I(t) = ∅ of (2) is
equivalent toe ̸∈ I(t).

Remark 2.10 (Semantic interpretation of◃▹-relation) By Definition 2.9, theEUL-
relation ◃▹ does not contribute to the truth-condition ofEUL-diagrams. Informally
speaking,s ◃▹ t may be understood asI(s) ∩ I(t) = ∅ or I(s) ∩ I(t) ̸= ∅, which is
true in any model. Cf. also Remark 2.7.

Definition 2.11 An EUL-diagramE is a semantically valid consequenceof EUL-
diagramsD1, . . . ,Dn, written asD1, . . . ,Dn |= E , when the following holds: For any
modelM , if M |= D1 and . . . andM |= Dn, thenM |= E .

See Appendix A and [13] for our Generalized Diagrammatic Syllogistic inference
systemGDS, whose completeness holds with respect to the semantics of this section.

3 EUL-structure

In this section, we introduce an algebraic structure calledEUL-structure forEUL-
diagrams.

Definition 3.1 An EUL-structure (D, p(D),@,⊢⊣) is a partially ordered structure,
whereD is a set whose cardinality#D ≥ 1, andp(D) ⊆ D:

1. @ is a reflexive transitive ordering relation onD.

2. ⊢⊣ is an irreflexive symmetric relation onD.

3. (⊢⊣-downward closedness) For anys, t, u ∈ D, s ⊢⊣ t andt A u imply s ⊢⊣ u.

4. (Point determinacy) For anys ∈ D andx ∈ p(D), x @ s or x ⊢⊣ s.

5. (Point minimality) For anys ∈ D andx ∈ p(D) such thats ̸≡ x, not(s @ x).
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Cf. Lemma 2.4. Observe that the above properties (i), (ii), and (iii) imply that,
for any distinct pair of elements ofD, at most one of the relations@ and⊢⊣ holds (cf.
Proposition 2.3); because if both of them hold, says @ t ands ⊢⊣ t, the property (iii)
impliess ⊢⊣ s, which contradicts the irreflexivity of⊢⊣-relation.4

As seen in Section 2.1, given anEUL-diagramD, the setrel(D) of relations holding
on it is uniquely determined by Proposition 2.3.rel(D) can be regarded as anEUL-
structure.

Proposition 3.2 Let D be anEUL-diagram. The set ofEUL-relations rel(D) gives
rise to anEUL-structure(ob(D), pt(D),@,⊢⊣).

For example,rel(D1), rel(D5) andrel(D6) of Fig. 4 in Example 2.6 are expressed
graphically as follows: Here the ordering relations@ are expressed by→-edges.

A C B

a

6

rel(D1)

A

C

B

a

6

6

rel(D5)

A

C

B

a

6
Y >

rel(D6)

Observe that there is no edge for◃▹-relation.
Now we describe the unification rule of Definition A.1 of Appendix A in terms of

a graph-theoretical representation ofEUL-diagrams, which may assist with the under-
standing and motivation of our unification rule.

Proposition 3.3 LetD be anEUL-diagram, andα be a minimal diagram. The set of
EUL-relations rel(D + α), which is obtained by unifyingD and α, gives rise to an
EUL-structure.

Proof. In order to describe graphically the unification ofEUL-diagramsD andα, we
focus on the shared object ofD andα, sayA, and express theEUL-structure ofrel(D)
as follows:

X

A

6

Z/z

6
Y/y W

rel(D)

→-edgedenotes@-relation

⊢⊣-edge denotes⊢⊣-relation

No edge for◃▹-relation

“· · · ” denotes one of@,A,⊢⊣, ◃▹

The variablesX, Y, Z, W (resp.y, z) are representative circles (resp. points) which are
possibly related toA. When it makes no difference whether a possibly related object
is circle or point, we denote the object asY/y (instead of simply writings). Each
dotted line between objects expresses that there may be one of the relations@, A,⊢⊣, ◃▹
between the objects. Note that there is no edge for each◃▹-relation, as seen between
A andW . We omit the trivial transitive edgeZ → X to avoid notational complexity.
In the following description of each unification rule forD andα, we give a graphical

4Notethat, by the properties (i)–(iii), anEUL-structure(D, p(D),@,⊢⊣) is anevent structureof Nielsen-
Plotkin-Winskel [15].
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representationof theEUL-structures ofrel(D) in the left-hand graph, andrel(D+α) in
the right-hand graph. We begin withU3-rule sinceU1 andU2 rules are rather untypical
cases:

U3 Under the constraint ofU3-rule, there is no circleZ such thatZ @ A holds, and
no circleW such thatA ◃▹ W holds, which is expressed by× in the graph of
rel(D). According toU3-rule of Definition A.1,rel(D+(b @ A)) is represented
by the graph on the right.

X

A

6

×Z/z

6
Y/y ×W

rel(D)

X

A

6

z

6
Y/y

b

I

K

rel(D + (b @ A))

It is easily seen thatrel(D + (b @ A)) is anEUL-structure: I.e., the augmented
edges do not violate the properties ofEUL-structure.

Note also that, without the constraint, i.e., if there is a circleZ or W as above,
in order to preserve Point determinacy, we should fix a relation betweenb and
Z (resp.W ) to @ or ⊢⊣. However, neither of them is sound with respect to our
formal semantics ofEUL.

U4 Under the constraint ofU4-rule, there is no circleX such thatA @ X holds, no
circleY such thatA ⊢⊣ Y holds, and no circleW such thatA ◃▹ W holds, which
is expressed by× in the graph ofrel(D). According toU4-rule of Definition
A.1, rel(D + (b ⊢⊣ A)) is represented by the right hand graph below.

×X

A

Z/z

6
×Y/y ×W

rel(D)

A

Z/z

6
y

b

rel(D + (b ⊢⊣ A))

It is easily seen thatrel(D + (b ⊢⊣ A)) is anEUL-structure: I.e., the augmented
edges do not violate the properties ofEUL-structure.

Without the constraint, i.e., if there is a circleX, Y or W as above, in order
to preserve Point determinacy, we should fix a relation betweenb andX (resp.
Y,W ) to @ or ⊢⊣ in rel(D + (b ⊢⊣ A)). However, none of them is sound with
respect to our semantics ofEUL.

U5 Under the constraint ofU5-rule, there is no pointz such thatz @ B holds. Ac-
cording toU5-rule of Definition A.1,rel(D + (A @ B)) is represented by the
right hand graph below.
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X

B

6

×Z/z

6
Y/y W

rel(D)

X

B

6

Z

6
Y/y W

A

K

I

rel(D + (A @ B))

Without the constraint, i.e., if there is a pointz as above, in order to preserve
Point determinacy, we should fix a relation betweenz andA to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U6 Under the constraint ofU6-rule, there is no pointy such thaty ⊢⊣ A holds. Ac-
cording toU6-rule of Definition A.1,rel(D + (A @ B)) is represented by the
right hand graph below.

X

A

6

Z/z

6
×Y/y W

rel(D)

X

A

6

Z/z

6
Y W

B

��

rel(D + (A @ B))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andB to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U7 Under the constraint ofU7-rule, there is no pointy such thaty ⊢⊣ A holds. Ac-
cording toU7-rule of Definition A.1,rel(D + (A ⊢⊣ B)) is represented by the
right hand graph below.

X

A

6

Z/z

6
×Y/y W

rel(D)

X

A

6

Z/z

6
Y W

B

rel(D + (A ⊢⊣ B))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andB to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U8 Under the constraint ofU8-rule, there is no point inD. According toU8-rule of
Definition A.1,rel(D + (A ◃▹ B)) is represented by the right hand graph below.

X

A

6

×Z/z

6
×Y/y W

rel(D)

X

A

6

Z

6
Y W

B

rel(D + (A ◃▹ B))
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Without the constraint, i.e., if there is a pointy or z as above, in order to preserve
Point determinacy, we should fix a relation betweeny (resp.z) andB to @ or⊢⊣.
However, none of them is sound with respect to our semantics ofEUL.

U1 Under the constraint ofU1-rule, there is no pointy in D other thanb. According
to U1-rule, rel(D + (b @ A)) is represented by the right hand graph below.

X

b

6

×Y/y

rel(D)

X

b

6
Y

�
A

rel(D + (b @ A))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andA to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

U2 Under the constraint ofU2-rule, there is no pointy in D other thanb. According
to U2-rule, rel(D + (b ⊢⊣ A)) is represented by the right hand graph below.

X

b

6

×Y/y

rel(D)

X

b

6
Y

A

rel(D + (b ⊢⊣ A))

Without the constraint, i.e., if there is a pointy as above, in order to preserve
Point determinacy, we should fix a relation betweeny andA to@ or⊢⊣. However,
none of them is sound with respect to our semantics ofEUL.

In U9, U10 rules of Definition A.1, the unified diagramsD andα share two cir-
cles, which makes the graphical description ofrel(D) complicated. In order to avoid
notational complexity, we omit irrelevant objects and edges, which are retained after
the application ofU9 andU10 rule, respectively.

U9 Under the constraint ofU9-rule, there is no objects such thats @ A ands ⊢⊣ B
hold onD, i.e., in the following description ofrel(D), the dotted line between
Y/y andA should not be→, and the dotted line betweenZ/z andB should not
be⊢⊣. According toU9-rule of Definition A.1,rel(D + (A @ B)) is represented
by the right hand graph below.

X

B

6

Z/z

6
A Y/y

rel(D)

X
�

B

6

�

Z/z

6

�
A - Y/y

rel(D + (A @ B))
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Observe that, after the unification, some of the dotted lines ofrel(D) are fixed to
→ or⊢⊣ in rel(D+(A @ B)) according to Definition A.1. We need to check that
rel(D + (A @ B)) is anEUL-structure; for example, if the dotted line between
A andX in rel(D) is A ⊢⊣ X (or A ← X), after the application ofU9-rule,
there are two incompatible edges⊢⊣ (resp.←) and→ betweenA andX, which
violates the irreflexivity of the⊢⊣-relation of EUL-structure. It is shown that,
because of our constraint forU9-rule, the dotted line betweenA andX is ◃▹
(i.e., no edge) or→. Observe that, if we haveA ⊢⊣ X in rel(D), by the⊢⊣-
downward closedness ofrel(D), we haveZ/z ⊢⊣ B in rel(D), which contradicts
the constraint. If we haveA ← X in rel(D), by the transitivity ofrel(D), we
haveA ← B in rel(D), which contradicts the presupposition ofU9-rule, i.e.,
there is no edge betweenA andB in rel(D). Thus the dotted line betweenA
andX should be◃▹ (i.e., no edge) or→, either of which is compatible with the
edgeA → X in rel(D + (A @ B)). Similarly, it is shown that the other dotted
lines of rel(D) are compatible with the edges ofrel(D + (A @ B)). Then it is
easily checked thatrel(D + (A @ B)) satisfies Definition 3.1, and hence it is an
EUL-structure.

U10 Under the constraint ofU10-rule, there is no objects such thats @ A ands @ B
hold onD, i.e., in the following graph ofrel(D), the dotted line betweenZ ′/z′

andA (and also betweenZ/z andB) should not be→. According toU10-rule,
rel(D + (A ⊢⊣ B)) is represented by by the right hand graph below.

B

Z ′/z′

6
A

Z/z

6

rel(D)

B

Z ′/z′

6
A

Z/z

6

rel(D + (A ⊢⊣ B))

We show that there are no incompatible edges inrel(D + (A ⊢⊣ B)). For the
dotted line betweenZ/z andB, it is not→ by the constraint forU10-rule. Fur-
thermore, assume to the contrary that we haveZ/z ← B in rel(D). Then, by
the transitivity ofrel(D), we haveA ← B in rel(D), which contradicts the pre-
supposition ofU10-rule, i.e., there is no edge betweenA andB. Hence the
dotted line betweenZ/z andB should be◃▹ (i.e., no edge) or⊢⊣, either of which
is compatible with the edgeZ/z ⊢⊣ B in rel(D + (A ⊢⊣ B)). Similarly, it is
shown that the other two dotted lines ofrel(D) are compatible with the edges of
rel(D + (A ⊢⊣ B)). Then it is easily checked thatrel(D + (A ⊢⊣ B)) satisfies
Definition 3.1, and hence it is anEUL-structure.

For a givenEUL-structure(D, p(D), @,⊢⊣), it can be shown that there is anEUL-
diagramD such thatrel(D) is equivalent to(D, p(D),@,⊢⊣).

4 A hierarchy of EUL-diagrams and Venn diagrams

The representation systemEUL is extended by introducing new diagrammatic objects,
intersection, union, and complement regions, respectively. Extended systems are strat-
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ified in terms of their expressive powers.
In what follows, we do not mention named points explicitly, since any named point

of EUL can be regarded as a special circle, which does not contain, nor cross, any
other objects. If we allow a point (as a special circle) to cross other circles, it amounts
to adopting linking between points, although it is slightly restricted compared with
usual linking as in Shin [19], among others.5

We first extendEUL by considering intersection regions as diagrammatic objects.
Regionsof an EUL-diagram are defined recursively as usual, which are closed under
intersection, union, and complement, provided that each is non-empty in a diagram.
See, e.g., [10].

Definition 4.1 A non-empty regionr of anEUL-diagramD is anintersection region
when, for some{A1, . . . , An} ⊆ cr(D), r =

∩
1≤i≤n in(Ai), wherein(Ai) is the

interior of circleAi. An EUL-diagrams with intersectionsD is an EUL-diagram
where each intersection regionr =

∩
1≤i≤n in(Ai) has the name⊓1≤i≤nAi, which is

sometimes denoted by⊓An for short. (In particular whenn = 1, ⊓A1 = A1.)

Note that, in anEUL-diagram with intersections, a region may have two names:
For example, whenA @ B holds onD, circleA has another name,A ⊓B.

We define an algebraic structure forEUL-diagrams with intersections.

Definition 4.2 An EUL-structure with greatest lower bounds (glbs) (D, @,⊢⊣
,⊓) is an EUL-structure, where for any subset{A1, . . . , An} ⊆ D such that
¬∃1≤j,k≤n(Aj ⊢⊣ Ak holds onD), there is the greatest lower bound⊓1≤i≤nAi.

Although we regard named points as special named circles, the operation⊓ is not
applied to them.

Lemma 4.3 LetD be anEUL-diagram with intersections. The set of relationsrel(D)
gives rise to anEUL-structure with glbs.

Lemma 4.4 (EUL ≺ EUL+⊓) Let (D, @,⊢⊣) be anEUL-structure. It is extended, by
introducing glbs, to anEUL-structure with glbs(D⊓, @,⊢⊣,⊓).

Proof. The domainD⊓ is defined as follows:

D⊓ := D ∪ {⊓1≤i≤nAi | ¬∃1≤j,k≤n(Aj ⊢⊣ Ak holds onD)}

@ and ⊢⊣ relations onD are preserved onD⊓ and they are extended for any
⊓1≤i≤nAi ∈ D⊓ as follows: LetX, Y ∈ D⊓.

⊓An @ ⊓An

X @ ⊓An iff X @ Ai for all 1 ≤ i ≤ n
⊓An @ X iff Ai @ X for some1 ≤ i ≤ n
X ⊢⊣ Y iff X ⊓ Y ̸∈ D⊓

5We exclude a crossing relationc ◃▹ d between distinct named points, since it amounts toc = d or c ̸= d
(cf. Remark 2.10) but we always assumec ̸= d in our framework.
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It is immediate that thus constructed(D⊓,@,⊢⊣,⊓) is an EUL-structure, which
satisfies Definition 3.1, and⊓An is the glb of Definition 4.2.

Seealso Example 4.17.
WhenD is anEUL-diagram, we denoteD⊓ an EUL-diagram with intersections

whose algebraic structure is constructed from theEUL-structurerel(D) by Lemma
4.4. We say that the diagramD⊓ is obtained from D.

By introducing intersection regions as diagrammatic objects,EUL with intersec-
tions are more expressive than the basicEUL of Section 2.1. Let us see the following
example.

Example 4.5 (EUL-diagrams with intersections) The three diagramsD1,D2, and
D3 of Fig. 4 in Example 2.6, which are identified in the originalEUL, are distin-
guished when they are regarded asEUL-diagrams with intersections. The difference
among the three diagrams is more clearly seen by drawing theirEUL-structures with
glbs. (Here, for reasons of simplicity, we omit the pointa and abbreviate⊢⊣-relation by
stipulating thatX ⊢⊣ Y holds whenX ⊓ Y ̸∈ rel(D⊓).)

A B C

A⊓B

6 3
A⊓C

k 3
B⊓C

6k

A⊓B⊓C

k 63

rel(D⊓
1 )

A C B

A⊓C
63

B⊓C
6k

A⊓B
=A⊓B⊓C

k 3

rel(D⊓
2 )

A B C

A⊓B

6 3
A⊓C

k 3
B⊓C

6k

rel(D⊓
3 )

In a similar way as intersections, by considering union regions as diagrammatic
objects we have another extension ofEUL.

Definition 4.6 An EUL-diagrams with unions D is an EUL-diagram where each
union regionr =

∪
1≤i≤n in(Ai) has the name⊔1≤i≤nAi, provided that it is con-

nected.

EUL-structures with least upper bounds (lubs)for EUL-diagrams with unions
are defined in a similar way asEUL-structures with glbs.

EUL with unions is also more expressive thanEUL.

Example 4.7 (EUL-diagrams with unions) D1 andD4 of Fig. 4 in Example 2.6
are distinguished when they are regarded asEUL-diagrams with unions. TheEUL-
structures with lubs for these two diagrams are represented by the following different
structures.
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k 3
B
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Definition 4.8 An EUL-diagram with intersections and unions D is an EUL-
diagram with intersections where union regions also have names.

Note that we only consider intersection (resp. union) regions of circles, and we
exclude other regions such as(A ∩B) ∪ (C ∩D).

EUL-structure with glbs and lubs are defined by combiningEUL-structure with
glbs andEUL-structure with lubs.

By considering the complement region of each circle as a diagrammatic object, we
further introduceEUL-diagrams with intersections, unions, and complements.

Definition 4.9 An EUL-diagram with intersections, unions, and complementsD is
anEUL-diagram with intersections and unions, where each complementA of a circle
A, i.e., the exterior ofA, has the nameA.

EUL-structuresfor EUL-diagrams with∩,∪, aredefined as follows.

Definition 4.10 An EUL-structure with glbs, lubs, and complements(D, @,⊢⊣
,⊓,⊔, ) is an EUL-structure with glbs and lubs(D, @,⊢⊣,⊓,⊔) where, for each
A ∈ D which is not of the form⊓Cj nor ⊔Cj (j ≥ 2), the complementA of A is
definedin D.

Although we regard named points as special named circles, the operations⊓,⊔,
and arenot applied to points.

Lemma 4.11 LetD be anEUL-diagram with∩,∪, . The set of relationsrel(D) gives
rise to anEUL-structure with glbs, lubs, and complements.

Lemma 4.12 (EUL+⊓+⊔ ≺ EUL+⊓+⊔+ ) Let (D2, @,⊢⊣,⊓,⊔) be an EUL-
structure with glbs and lubs. It is extended, by introducing complements, to anEUL-
structure with glbs, lubs, and complements(Dc,@,⊢⊣,⊓,⊔, ).

Proof. The domainDc is defined by adding complementA for eachA ∈ D2 which
is not of the form⊓Cj nor⊔Cj (j ≥ 2), and by extending glbs (of the form(⊓Bj) ⊓
(⊓Ai)) and lubs (of the form(⊔Bj) ⊔ (⊔Ai)) in a similar way as Lemma 4.4.
@ and⊢⊣ relations onD2 are preserved onDc and they are extended as follows:
For anyA,B ∈ Dc not of the form⊓Cj nor⊔Cj (j ≥ 2),

A ⊢⊣ A
A @ B iff B @ A in D2

A @ B andB @ A iff A ⊢⊣ B in D2

For anyX, Y ∈ Dc of the form (⊓Bj) ⊓ (⊓Ai) (resp. (⊔Bj) ⊔ (⊔Ai)), @ and⊢⊣
relations are extended to be closed under⊓ and⊔ in a similar way as Lemma 4.4.

Seealso Example 4.17.

Euler/Venn diagrams of Swoboda-Allwein [23] are obtained by adding shading of
minimal regions and linking of points toEUL-diagrams with∩,∪, . 6

6Thereare some differences between our system and Swoboda-Allwein’s system: (i) we allow one circle
to cross with another circle any number of times; (ii) we allow union regions as diagrammatic objects, which
does not increase expressive power as compared to Swoboda-Allwein’s system; (iii) we do not allow a circle
to be completely shaded given our definition of semantics, where each circle denotes a non-empty set.
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EUL-structuresfor Euler/Venn diagrams, which we callVenn-structures, are the
directed acyclic graphs DAGs of Swoboda-Allwein [23].

Lemma 4.13 (EUL+⊓+⊔+ ≺ Venn) Let (Dc, @,⊢⊣,⊓,⊔, ) be an EUL-
structure with glbs, lubs, and complements. It is extended to a Venn-structureDv of
Swoboda-Allwein [23] by introducing shading and linking.

WhenD is anEUL-diagram, we denote byDv (resp. D⊓,D⊔,D2, Dc) an Eu-
ler/Venn diagram (resp.EUL-diagram with intersections, unions, intersections and
unions, intersections and unions and complements) whose algebraic structure is con-
structed from theEUL-structurerel(D) by Lemma 4.4, 4.12, and 4.13. We say that the
diagramDv (resp.D⊓,D⊔,D2, Dc) is obtained from D.

Various extensions ofEUL introduced so far can be summarized by the following
EUL-hierarchy:

EUL

k
EUL with ∩

3

3
EUL with ∪

k
EUL with ∩,∪

6
EUL with ∩,∪,

6
Venn

Fig.5 EUL-hierarchy

Note that the semantics ofEUL of Section 2.2 is essentially the same as the seman-
tics of Venn diagrams (e.g. [10, 19]), where the interpretation functionI of circles is
naturally extended to interpret regions:I(⊓Xi) =

∩
I(Xi), I(⊔Xi) =

∪
I(Xi), and

I(A) = U \ I(A). Note that the denotations of intersections, unions, and complements
are not assumed to be non-empty, while those of circles and points are non-empty.

Thus whenD∗ is a diagram obtained from anEUL-diagram D for ∗ ∈
{⊓,⊔, 2, c, v}, D andD∗ are semantically equivalent since any relation ofD is pre-
served inD∗ by constructions given in Lemmas 4.4, 4.12, and 4.13:

Lemma 4.14 LetD be anEUL-diagram. For each∗ ∈ {⊓,⊔, 2, c, v}, let D∗ be a
diagram obtained fromD. For any modelM , M |= D∗ if and only ifM |= D.

Based on Lemma 4.14, it is shown that each system ofEUL-hierarchy is conser-
vative over any lower system with respect to validity. We denote byD a sequence of
diagramsD1, . . . ,Dn.

Proposition 4.15 (Semantic conservativity)LetS′ andS be any systems of theEUL-
hierarchy such thatS′ is an extension ofS. LetD, E be diagrams ofS, andD∗, E∗ be
diagrams ofS′ obtained fromD, E for ∗ ∈ {⊓,⊔, 2, c, v}. ThenD∗ |= E∗ iff D |= E .
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In parallel to the extensions of representation systemEUL, we can obtain extended
inference systems ofGDS of Appendix A. It can be shown that each extended system
is a conservative extension of the most elementaryGDS with respect to provability. In
particular, for Euler/Venn diagrammatic inference system of Swoboda-Allwein [24],
we have the following conservativity theorem:

Theorem 4.16 (Conservativity) Let D and E be EUL-diagrams such thatD has a
model. IfEv is provable fromDv in Euler/Venn diagrammatic system, thenE is prov-
able fromD in GDS.

Proof. Let Dv ⊢ Ev in Euler/Venn diagrammatic inference system. By soundness
(cf. [24]) we have, for any modelM , M |= Dv ⇒M |= Ev. AssumeM |= D. Then
we haveM |= Dv by Lemma 4.14. Thus we haveM |= Ev, that is,M |= E . Hence,
by the completeness (Theorem A.2) ofGDS, we haveD ⊢ E in GDS.

Theconstructions of extensions ofEUL-structures given in Lemma 4.4, 4.12, and
4.13 provide a procedure to transform anEUL-diagram to a Venn diagram. Let us see
the following example:

Example 4.17 Let D be an EUL-diagram such that rel(D) =
{A ◃▹ B,A ⊢⊣ C, C @ B}. By transforming theEUL-structure rel(D) through
anEUL-structure with glbsrel(D)⊓, we obtain a Venn-structurerel(D)v. In rel(D)⊓

andrel(D)v below, we omit⊓ symbol and writeAB for A⊓B. In rel(D)v, we further
omit lubs and⊢⊣-relation, and represent arrows by lines in a hierarchical structure.
By extracting minimal unshaded regions (ABC, ABC, AB C, ABC, AB C) from
rel(D)v, we obtain a Venn diagramDv, which is semantically equivalent to the original
EUL-diagramD.
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In this paper, we introduced a hierarchy of Euler and Venn diagrammatic reasoning
systems in terms of their expressive powers in our topological-relation-based formal-
ization. Because of the space limitation in this paper, we discuss our extensions ofEUL
mainly at the level of representation and semantics. This is why our conservativity re-
sults for these systems (Proposition 4.15) are kept at the level of semantics. We leave
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our explicit formalization of diagrammatic inference systems forEUL-diagrams with
intersections, with unions, with complements, respectively, as future work.
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A Diagrammatic inference systemGDS

In this section, we review Generalized Diagrammatic Syllogistic inference system
GDS of [13, 12], which consists of two inference rules:unificationanddeletion. In
order to motivate our definition ofunification, let us consider the following question:
Given the following diagramsD1,D2 andD3 of Fig.6, what diagrammatic information
onA,B andc can be obtained? (In what follows, in order to avoid notational complex-
ity in a diagram, we express each named point, say•c, simply by its namec.) Fig. 6
represents a way of solving the question.

In Fig. 6, at the first step, two diagramsD1 andD2 are unified to obtainD1 + D2,
where pointc in D1 andD2 are identified, andB is added toD1 so thatc is inside of
B andB overlaps withA without any implication of a relationship betweenA andB.
We formalize such cases, where two given diagrams share one object, byU1–U8 rules
of group (I) of Definition A.1. At the second step,D1 + D2 is combined with another
diagramD3 to obtain(D1 +D2) +D3. Note that the diagramsD1 +D2 andD3 share
two circlesA andB: A ◃▹ B holds onD1 + D2 andA @ B holds onD3. Since
the semantic information ofA @ B onD3 is more accurate than that ofA ◃▹ B on
D1 + D2, according to our semantics ofEUL (recall thatA ◃▹ B means just “true” in
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our semantics), one keeps the relationA @ B in the unified diagram(D1 +D2) +D3.
We formalize such cases, where two given diagrams share two objects, byU9–U10
rules of group (II) of Definition A.1. Observe that the unified diagram(D1 +D2)+D3

of Fig. 6 represents the information of these diagramsD1,D2, andD3, that is, their
conjunction.

We impose two kinds of constraints on unification. One is theconstraint for de-
terminacy, which blocks the disjunctive ambiguity with respect to locations of named
points. For example, two diagramsD4 andD5 in Fig. 7 are not permitted to be unified
into one diagram since the location of the pointc is not determined (it can be inside
B or outsideB). The other is theconstraint for consistency, which blocks represent-
ing inconsistent information in a single diagram. For example, the diagramsD6 and
D7 (resp.D8 andD9) in Fig. 8 are not permitted to be unified since they contradict
each other. Recall that each circle is interpreted by non-empty set in our semantics of
Definition 2.8, and henceD8 andD9 are also incompatible.7

We formalize our unification8 of two diagrams by restricting one of them to be
a minimal diagram, except for one rule called thePoint Insertion-rule. Our com-
pleteness (Theorem A.2) ensures that any diagramsD1, . . . ,Dn may be unified, under
the constraints for determinacy and consistency, into one diagram whose semantic in-
formation is equivalent to the conjunction of that ofD1, . . . ,Dn. We give a formal
description of inference rules in terms ofEUL-relations: Given a diagramD and a
minimal diagramα, the set of relationsrel(D + α) for the unified diagramD + α is
defined. It is easily checked that the setrel(D + α) satisfies the properties of Lemma
2.4 according to our constraints for determinacy and consistency, and hence locations
of points are determined in a unified diagram. (See also Section 3, where we give a

7 In place of our syntactic constraint, it is possible to allow unification of inconsistent diagrams such as
D6 andD7 (resp. D8 andD9) by extendingGDS with an inference rule corresponding to the absurdity
rule of Gentzen’s natural deduction system: We can infer any diagram from a pair of inconsistent diagrams.
(For natural deduction systems, see, for example, [3, 17].) Such a rule is introduced in, for example, [10]
for spider diagrams; [7] for Venn diagrams; [23, 24] for Euler/Venn diagrams. However, such a rule requires
linguistic symbol, say⊥, or some arbitrary convention to represent inconsistency, and hence we prefer our
syntactic constraint in our framework of a diagrammatic inference system.

8The following definition of inference rules ofGDS is slightly different from that of [13, 12] since we
regard@-relation as reflexive relation in this paper.
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graph-theoreticalrepresentation of unification.)
For a better understanding of our unification rule, we also give a schematic dia-

grammatic representation and a concrete example of each rule. In the schematic rep-
resentation of diagrams, to indicate the occurrence of some objects in a context on a
diagram, we write the indicated objects explicitly and indicate the context by “dots” as
in the diagram to the right below.9 For example, when we need to indicate onlyA and
c on the left hand diagram, we could write it as shown on the right.

B
F

A

E

D

c

b

A
c

Definition A.1 Axiom, unification, anddeletionof GDS are defined as follows.

Axiom:

A1: For any circlesA andB, any minimal diagram whereA ◃▹ B holds is an axiom.

A2: Any EUL-diagram which consists only of points is an axiom.

Unification: We denote byD+α the unified diagram ofD with a minimal diagramα.
D+α is defined whenD andα share one or two objects. We distinguish the following
two cases: (I) WhenD andα share one object, they may be unified toD + α by rules
U1–U8 according to the shared object and the relation holding onα. Each rule of (I)
has a constraint for determinacy. (II) WhenD andα share two circles, if the relation
which holds onα also holds onD, D + α is D itself; otherwise, they may be unified
toD + α by rulesU9 or U10 according to the relation holding onα. Each rule of (II)
has a constraint for consistency. Moreover, there is another unification rule called the
Point Insertion-rule (III).

(I) The caseD andα share one object:

U1: If b @ A holds onα andpt(D) = {b}, thenD andα may be unified to a diagram
D + α such that the setrel(D + α) of relations holding on it is the following:

rel(D) ∪ {b @ A} ∪ {A ◃▹ X | X ∈ cr(D)}

U1 is applied as follows:

b

D R

A

b

α
	U1

A

b

D + α

C B

b

D1 R

A

b

D2	U1
C

b

B

A

D1 + D2

9Notethat the dots notation is used only for abbreviation of a given diagram. For a formal treatment of
such “backgrounds” in a diagram, see, for example, Meyer [11].
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U2: If b ⊢⊣ A holds onα andpt(D) = {b}, thenD andα may be unified to a diagram
D + α such that the setrel(D + α) of relations holding on it is the following:

rel(D) ∪ {b ⊢⊣ A} ∪ {A ◃▹ X | X ∈ cr(D)}

U2 is applied as follows:

b

D R

A
b

α
	U2

A
b

D + α

B

b

C

D1

B

b

C

A

D1 + D2

A
b

R 	U2 D2

U3: If b @ A holdsonα andA ∈ cr(D), and ifA @ X or A ⊢⊣ X holds for all circle
X in D, thenD andα may be unified to a diagramD + α such that the set of
relationsrel(D + α) is the following:

rel(D) ∪ {b @ X | A @ X ∈ rel(D)} ∪ {b ⊢⊣ X | A ⊢⊣ X ∈ rel(D)}
∪ {b ⊢⊣ x | x ∈ pt(D)}

U3 is applied as follows:

A

D R

A

b

α	U3

A

b

D + α

A

B

C

D1 R

A

b

	U3 D2

A

b

B

C

D1 + D2

U4: If b ⊢⊣ A holds onα andA ∈ cr(D), and ifX @ A holds for all circleX in D,
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {b ⊢⊣ X | X @ A ∈ rel(D)} ∪ {b ⊢⊣ x | x ∈ pt(D)}

U4 is applied as follows:

A

D R

A
b

α	U4

A
b

D + α

B

A

D1 R

A
b

D2	U4

B

A

b

D1 + D2
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U5: If A @ B holdson α andB ∈ cr(D), and if x ⊢⊣ B holds for allx ∈ pt(D),
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {A @ X | B @ X ∈ rel(D)}
∪ {A ◃▹ X | X @ B or X ◃▹ B ∈ rel(D)}
∪ {A ⊢⊣ X | X ⊢⊣ B ∈ rel(D)} ∪ {x ⊢⊣ A | x ∈ pt(D)}

U5 is applied as follows:

B

D R

A

B

α	U5

A

B

D + α

C

B

E
F

D1 R

A

B

	U5 D2

A C

B

E
F

D1 + D2

U6: If A @ B holdson α andA ∈ cr(D), and if x @ A holds for allx ∈ pt(D),
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {X @ B | X @ A ∈ rel(D)} ∪ {x @ B | x ∈ pt(D)}
∪ {X ◃▹ B | A @ X or A ⊢⊣ X or A ◃▹ X ∈ rel(D)}

U6 is applied as follows:

A

D R

A

B

α	U6

A

B

D + α

C
A

E

D1 R

A

B

	U6 D2

E
C

A

B

D1 + D2

U7: If A ⊢⊣ B holds onα andA ∈ cr(D), and if x @ A holds for allx ∈ pt(D),
thenD andα may be unified to a diagramD + α such that the set of relations
rel(D + α) is the following:

rel(D) ∪ {X ⊢⊣ B | X @ A ∈ rel(D)} ∪ {x ⊢⊣ B | x ∈ pt(D)}
∪ {X ◃▹ B | A @ X or A ⊢⊣ X or A ◃▹ X ∈ rel(D)}

U7 is applied as follows:

A

D R

A B

α	U7

A B

D + α

A

a

C

E

D1

A B

R 	U7 D2

A

a

C

E

B

D1 + D2

59



U8: If A ◃▹ B holds onα andA ∈ cr(D), and if pt(D) = ∅, thenD andα may
be unified to a diagramD + α such that the set of relationsrel(D + α) is the
following:

rel(D) ∪ {X ◃▹ B | X ∈ cr(D)}

U8 is applied as follows:

A

D R

A B

α	U8

A B

D + α

C

A
E

D1 R

A B

	U8 D2

C

A
E

B

D1 + D2

(II) WhenD andα sharetwo circles, they may be unified toD + α by the following
U9 andU10 rules.

U9: If A @ B holds onα andA ◃▹ B holds onD, and if there is no objects such that
s @ A ands ⊢⊣ B hold onD, thenD andα may be unified to a diagramD + α
such that the set of relationsrel(D + α) is the following:(
rel(D) \ {Y ◃▹ X | Y @ A andB @ X ∈ rel(D)} \ {X ◃▹ Y | X @ A andY ⊢⊣ B ∈ rel(D)}

)
∪ {Y @ X | Y @ A andB @ X ∈ rel(D)} ∪ {X ⊢⊣ Y | X @ A andY ⊢⊣ B ∈ rel(D)}

U9 is applied as follows:

A B

RD

A

B

	U9
α

A
B

D + α

A B
CE

D1 R

A

B

	U9 D2

A

B

C

E

D1 + D2

U10: If A ⊢⊣ B holds onα andA ◃▹ B holds onD, and if there is no objects such that
s @ A ands @ B hold onD, thenD andα may be unified to a diagramD + α
such that the set of relationsrel(D + α) is the following:(
rel(D)\{X ◃▹ Y | X @ A andY @ B ∈ rel(D)}

)
∪{X ⊢⊣ Y | X @ A andY @ B ∈ rel(D)}

U10 is applied as follows:

A B

RD

A B

	U10 α

A B

D + α

A B

C FE

U10D1 R

A B

	 D2

A

C
E

B

F

D1 + D2
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(III) Point Insertion: If, for any circlesX,Y and for any2 ∈ {@, A,⊢⊣, ◃▹}, X2Y ∈
rel(D1) iff X2Y ∈ rel(D2) holds, and ifpt(D2) is a singleton{b} such thatb ̸∈
pt(D1), thenD1 andD2 may be unified to a diagramD1 + D2 such that the set of
relationsrel(D1 +D2) is the following:

rel(D1) ∪ rel(D2) ∪ {b ⊢⊣ x | x ∈ pt(D1)}

Point Insertion is applied as follows:

A
a

c

C

B

A b
C

B

D1 D2R 	

A
a

c
b

C

B

D1 + D2

Deletion: Whent is an object ofD, t may be deleted fromD to obtain a diagramD− t
under the constraint thatD − t has at least one objects.

The notion ofdiagrammatic proofs (or, d-proofs)is defined inductively as tree
structures consisting of unification and deletion steps. The provability relation be-
tweenEUL-diagrams is defined as usual. We denote byD a sequence of diagrams
D1, . . . ,Dn.

Theorem A.2 (Soundness and completeness ofGDS [13]) Let D, E be EUL-
diagrams, and letD have a model. E is a semantically valid consequence ofD
(D |= E), if, and only if, there is a d-proof ofE fromD (D ⊢ E) in GDS.
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