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Abstract

This paper introduces a hierarchy of Euler and Venn diagrammatic reasoning
systems in terms of their expressive powers in topological-relation-based formal-
ization. At the bottom of the hierarchy is the Euler diagrammatic system intro-
duced in Mineshima-Okada-Sato-Takemura [13, 12], which is expressive enough
to characterize syllogistic reasoning in terms of unification and deletion rules. At
the top of the hierarchy is a Venn diagrammatic system such as Swoboda-Allwein’s
Euler/Venn diagrammatic system [23]. In order to understand the hierarchy uni-
formly, we introduce an algebraic structure, which also provides another descrip-
tion of our unification rule of Euler diagrams. We prove that each system S’ of
the hierarchy is conservative over any lower system S with respect to validity—in
the sense that S’ is an extension of S, and the semantic consequence relations of S
and S’ are equivalent for diagrams of S. Furthermore, we prove that a region-based
Venn diagrammatic system is conservative over our topological-relation-based Eu-
ler diagrammatic system with respect to provability.

1 Introduction

Euler diagrams were introduced by Euler (1768) [1] to represent logical relations
among the terms of a syllogism by topological relations among circles. Given two

Euler diagrams which represent the premises of a syllogism, the syllogistic inference
can be naturally replaced by the task of manipulating the diagrams, in particular of
unifying the diagrams and extracting information from them. For example, the well-

known syllogism named “Barbara,” i.A]l A are B and All B are C; therefore All A

are C, can be represented diagrammatically as in Fig. 1.

Another well-known diagrammatic representation system for syllogistic reasoning
is Venn diagrams. In Venn diagrams a novel syntactic device, nashaging, to
represent emptiness plays a central role in place of the topological relations of Euler
diagrams. Because of their expressive power and their uniformity in formalizing the
manipulation of combining diagrams simply as the superposition of shadings, Venn
diagrams have been very well studied. Cf. Venn-l, Il systems of Shin [19], Spider
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Fig.1 Barbara with Euler diagrams Fig.2 Barbara with Venn diagrams

diagrams SD1 and SD2 of [9], [14], etc. For a recent survey, see [20]. However, the
development of systems of Venn diagrams is obtained at the cost of clarity of Euler
diagrams. As Venn [25] himself already pointed out, when more than three circles
are involved, Venn diagrams fail in their main purpose of affording intuitive and sen-
sible illustration. (For some discussions on visual disadvantages of Venn diagrams,
see [8, 5]. See also [18] for our cognitive psychological experiments comparing lin-
guistic, Euler diagrammatic, and Venn diagrammatic representations.) Re&andy,
diagrams with shadingvere introduced to make up for the shortcoming of Venn dia-
grams: E.g., Euler/Venn diagrams of [23, 24]; Spider diagrams ESD2 of [14] and SD3
of [10]. However, their abstract syntax and semantics are still defined in terms of re-
gions, where shaded regions of Venn diagrams are considered as “missing” regions.
That is, the idea of theegion-basedtuler diagrams is essentially along the same line
as Venn diagrams.

We may point out the following complications of region-based formalization of
diagrams:

1. In region-based diagrams, logical relations among circles are represented not
simply by topological relations, but by the use of shading or missing regions,
which makes the translations of categorical sentences uncomfortably complex.
For example All A are B is expressed by a region-based diagram through a
translation to the statememhere is nothing which igl but notB as seen irDy
of Fig. 2.

2. The inference rule dfinification, which plays a central role in Euler diagram-
matic reasoning, is defined by way of the superposition of Venn diagrams. For
example, when we unify two region-based Euler diagrams d%iand D, of
Fig. 1, they are first transformed into Venn diagraRisandD3 of Fig. 2, respec-
tively; then, by superposing the shaded region®bfand Dy, and by deleting
the circle B, the Venn diagran£? is obtained, which is transformed into the
region-based Euler diagrasn In this way, processes of deriving conclusions are
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oftenmade complex, and hence less intuitive, in the region-based framework.

In contrast to the studies in the tradition of region-based diagrams, we proposed a
novel approach in [13, 12] to formalize Euler diagrams in terms of topological relations.
Our system has the following features and advantages:

1. Our diagrammatic syntax and semantics are defined in termogpological re-
lations, inclusion and exclusion relations, between two diagrammatic objects.
This formalization makes the translations of categorical sentences natural and
intuitive. Furthermore, our formalization makes it possible to represent a dia-
gram by a simple ordered (or graph-theoretical) structure.

2. Ourunification of two diagrams is formalized directly in terms of topological
relations without making a detour to Venn diagrams. Thus, it can directly cap-
ture the inference process as illustrated in Fig. 1. We formalize the unification
in the style of Gentzen’s natural deduction, a well-known formalization of log-
ical reasoning in symbolic logic, which is intended to be as close as possible
to actual reasoning (Gentzen [3]). This makes it possible to compare our Euler
diagrammatic inference system directly with natural deduction system. Through
such comparison, we can apply well-developed proof-theoretical approaches to
diagrammatic reasoning. See [13] for such proof-theoretical analyses.

From a perspective of proof-theory, the contrast between the standpoints of the
region-based framework and the topological-relation-based framework can be under-
stood as follows: At the level of representation, the contrast is analogous to the one
between disjunctive (dually, conjunctive) normal formulas and implicational formu-
las; at the level of reasoning, the contrast is analogous to the one between resolution
calculus style proofs and natural deduction style proofs.

From a perspective of cognitive psychology, our system is designed not just as an
alternative of usual linguistic/symbolic representations; we make the best use of ad-
vantages of diagrammatic representations so that inherent definiteness or specificity
of diagrams can be exploited in actual reasoning. See [18] for our experimental re-
sult, which shows that our Euler diagrams are more effective than Venn diagrams or
linguistic representations in syllogism solving tasks.

We roughly review our topological-relation-based Euler diagrammatic representa-
tion systemEUL in Section 2. (We also review our inference sys®DS in Appendix
A.) AlthoughEUL is weaker in its expressive power than usual Venn diagrammatic sys-
tems (e.g. Shin’s Venn-Il [19], which is equivalent to the monadic first order logic in
its expressive powerEUL is expressive enough to characterize basic logical reasoning
such as syllogistic reasoning, see [12]. @WL-diagrams can be abstractly seen as
algebraic (or graph-theoretical) structure, where inclusion relations between diagram-
matic objects are reflexive transitive ordering relations, and exclusion relations are ir-
reflexive symmetric relations. Based on this observation, in Section 3, we introduce
EUL-structure, which provides another description and a verification of our unification
rule of Appendix A. In Section 4, based on tBEL-structure, we introduce a hierarchy
of Euler and Venn diagrammatic reasoning systems as seen in Fig. 3.

The most elementary systelBUL considers only circles and points as diagrammatic
objects;EUL is extended by considering intersection regidns) Y, union regions
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Fig.3 Hierarchy of Euler and Venn systems

X UY, and complement regions asdiagrammatic objects, respectively, as well as
linking of points; Venn diagrams can be put at the top of the hierarchy of these ex-
tended systems. The algebraic structure thus obtained for Venn diagrams is essentially
the directed acyclic graph of Swoboda-Allwein [23]. We prove that each syStem

of the hierarchy is conservative over any lower systemith respect to validity—

in the sense tha’ is an extension of, and the semantic consequence relations of

S andS’ are equivalent for diagrams &f Moreover, we prove that a region-based
Venn diagrammatic system is conservative over our topological-relation-based Euler
diagrammatic system with respect to provability. We also give a procedure to transform
a topological-relation-basdelUL-diagram through aEUL-structure to a semantically
equivalent region-based Venn diagram.

2 Adiagrammatic representation system (EUL) for Eu-
ler circles and its set-theoretical semantics

In this section, we review our diagrammatic representation systgmof [13, 12].

2.1 Diagrammatic syntax ofEUL

The following definition of diagrams is slightly different from that of [13, 12] in that
(1) we regard inclusion relation as reflexive in this paper; (2) we exclude fr&tL-
diagrams only the empty diagram, on which no topological relation holds.

Definition 2.1 An EUL-diagram is a plane (IR) with a finite number, at least one, of
named simple closed curveg¢denoted byA, B, C,...) andnamed points(denoted

by a,b,c,...), where each named simple closed curve or named point has a unique
and distinct nameEUL-diagrams are denoted 1y, £, Dy, Do, . . ..

An EUL-diagram consisting of at most two objects is callediaimal diagram. Min-

imal diagrams are denoted by 3,, . ...

In what follows, a named simple closed curve is calledaaned circle. More-
over, named circles and named points are collectively callgects, and denoted by
s,t,u,.... We use a rectangle to represent a plane fdedh-diagram*

1Several Euler diagrammatic representation systems impose some additional conditions for well-formed
diagrams. E.g., at most two circles meet at a single point, no tangential meetings or concurrency etc. Cf.
e.g., [22]. However, for simplicity of the definition, those are all considered to be well-formedlin
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We define the following binary topological relations between diagrammatic ob-
jects:

Definition 2.2 EUL-relations are the following binary relations between diagram-
matic objects:

AT B “theinterior of A is inside ofthe interior of B,”

AHB “theinterior of A is outside othe interior of B,”

Apa B ‘“there is an intersection between the interiotdoénd the interior of3,”
bC A “bisinside ofthe interior ofA,”

bHA “bisoutside othe interior ofA,”

aHb “aisoutside ob (i.e. a is not located at the point @).”

We call<-relationcrossingrelation.
EUL-relationsH andr< are symmetric, while- is not. In this paper, we consider
C-relation as reflexive by allowing C s for each object.

Proposition 2.3 Let D be anEUL-diagram. For any distinct objects and ¢ of D,
exactly one of th&UL-relationss C t,t C s,s H t, s > ¢ holds.

Observe that, by Proposition 2.3, for a givEL-diagramD, the set ofEUL-
relations holding orD is uniquely determined. We denote the setr&lyD). We also
denote bypt(D) the set of named points @, by cr(D) the set of named circles @,
and byob(D) the set of objects db.

Although in this sectionob(D) = pt(D) U cr(D), in Section 4, diagrammatic ob-
jects are extended, in addition to named circles and points, by introducing intersection,
union, and complement regions respectively.

The following properties, as well as Proposition 2.3, charactéiize-diagrams.

Lemma 2.4 LetD be anEUL-diagram. Then for any objects (hamed circles or points)
s, t,u € ob(D), we have the following:
1. (Transitivity) If s C ¢, C u € rel(D), thens C u € rel(D).
2. (H-downward closednesH)s H ¢, u C s € rel(D), thenu H ¢ € rel(D).
3. (Point determinacylror any pointz of D, exactly one ok = s andz H sisin
rel(D).
4. (Point minimality)For any pointz (£ s) of D, s C x ¢ rel(D).

Equivalence betweeRUL-diagrams is defined as follows. (See [13] for a more
detailed explanation.)

Definition 2.5 When any two objects of the same name appear in different diagrams
(planes), we identify them up to isomorphism. ABYL-diagramsD and& such that
ob(D) = ob(€) aresyntactically equivalentwhenrel(D) = rel(£).

2We follow Gergonne [4] for our notations on topological relaticnsndH.
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Example 2.6 (Equivalence of diagrams)For example, diagram®,, Dy, D3, and
D, of Fig. 4 are equivalent sincesl(D;) = rel(Dy) = rel(D3) = rel(Dy) =
{AxB,A = C,B < C,a H A,a C B,a H C}. In the description of a set of
relations, we usually omit the reflexive relatien- s for each objecs.

& || |6 | @ || | @

Dl Dz D3 D4 D5 D6

Fig.4 Equivalence oEUL-diagrams.

On the other handD; andD; (resp. D; andDg) are not equivalent since different
EUL-relations hold on themA = C holds onD; in place of A x C of D; (resp.
C C AandC C B hold onDg in place ofA 1 C andC < B of D;). Cf. Example
4.5 and 4.7 of Section 4, whet®, D,, D3, andD, are distinguished.

Our equation of diagrams may be explained in terms of a kind of “continuous trans-
formation (deformation)” of named circles, which does not change any dEthe
relations in a diagram. (See [13] for an explanation.)

In what follows, the diagrams which are syntactically equivalent are identified, and
they are referred by a single name.

Remark 2.7 (Expressive power oEUL) Our equation of diagrams in the basic sys-
tem EUL may seem to be counterintuitive since seemingly distinctive diagrams
D1, Do, D3, D, of Example 2.6 are identified®However, this slightly rough equa-

tion makes the description of unification of diagrams much simpler; see Appendix A.
Furthermore, it is shown th&UL is expressive enough to characterize basic logical
reasoning such as syllogistic reasoning; see [12]. In Section 4, we consider some ex-
tensions oEUL, whereD, , D, D3, andD, are distinguished by regarding intersection
and union regions respectively as diagrammatic objects. See, in particular, Examples
4.5 and 4.7. Note that, by introducing new diagrammatic objects in a representation
system,EUL-relations for these new objects are augmented, so that the system be-
comes more expressive. At the level of diagrammatic syntax, this means that more
fine-grained distinctions between diagrams are made possible.

2.2 Set-theoretical semantics dEUL

Our semantics is distinct from usual ones, e.g., [6, 8, 24, 10] in that diagrams are
interpreted in terms of binary relations. In order to interpretEhi -relationsC and

H uniformly as the subset relation and the disjointness relation, respectively, we regard
each point ofEUL as a special circle which does not contain, nor cross, any other
objects.

3Thisis also pointed out in Fish-Flower [2] as an drawback of the relation-based approach.
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Definition 2.8 A model M is a pair(U, I), whereU is a non-empty set (the domain

of M), and[ is an interpretation function which assigns to each named circle or point
a non-empty subset df such that/(a) is a singleton for any named point and

I(a) # 1(b) for any pointsa, b of distinct names.

Note that we assign a non-empty set to each named circle. This condition is es-
sential for our completeness. See the paragraph on the constraint for consistency in
Appendix A and footnote 7 there.

Definition 2.9 Let D be anEUL-diagram. M = (U, I) is amodel of D, written as
M = D, if the following truth-conditions (1) and (2) hold: For all objects, ¢ of D,
(1) I(s) C I(t)if sC ¢t holds onD, and (2) I(s) N I(t) = 0 if s H ¢ holds onD.

Note that whers is a named point, for somee € U, I(a) =
I(a) C I(t) of (1) is equivalent tee € I(¢). Similarly, I(a) N
equivalent tee & 1(t).

{e}, and the above
I(t) = 0 of (2)is

Remark 2.10 (Semantic interpretation ofc<-relation) By Definition 2.9, theEUL-

relation>< does not contribute to the truth-condition BUJL-diagrams. Informally
speaking,s < ¢ may be understood d§s) N I(t) = 0 or I(s) N I(t) # O, which is
true in any model. Cf. also Remark 2.7.

Definition 2.11 An EUL-diagramé is a semantically valid consequencef EUL-
diagramsDy, ..., D,, written asDy, ..., D,, i &, when the following holds: For any
modelM, if M |=D; and...andV/ = D,, thenM = £.

See Appendix A and [13] for our Generalized Diagrammatic Syllogistic inference
systemGDS, whose completeness holds with respect to the semantics of this section.

3 EUL-structure

In this section, we introduce an algebraic structure caltét -structure forEUL-
diagrams.

Definition 3.1 An EUL-structure (D,p(D),C,H) is a partially ordered structure,
whereD is a set whose cardinaligt D > 1, andp(D) C D:

. C is areflexive transitive ordering relation @n

. His an irreflexive symmetric relation ab.

1
2
3. (H-downward closedness) For any, u € D, s Htandt Juwimply s H w.
4. (Point determinacy) For anyce D andz € p(D),z C s or  H s.

5

. (Point minimality) For any € D andz € p(D) such thats # z, not(s C ).
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Cf. Lemma 2.4. Observe that the above properties (i), (ii), and (iii) imply that,
for any distinct pair of elements dp, at most one of the relatiors andH holds (cf.
Proposition 2.3); because if both of them hold, say ¢ ands H ¢, the property (iii)
implies s H s, which contradicts the irreflexivity dfi-relation.*

As seenin Section 2.1, given &L-diagramD, the setel(D) of relations holding
on it is uniquely determined by Proposition 2.&I(D) can be regarded as &UL-
structure.

Proposition 3.2 Let D be anEUL-diagram. The set oEUL-relationsrel(D) gives
rise to anEUL-structure(ob(D), pt(D), C,H).

For exampleyel(D;), rel(Ds) andrel(Dg) of Fig. 4 in Example 2.6 are expressed
graphically as follows: Here the ordering relatiansare expressed by--edges.

A C B E/ B A\ /B
rel(D1) rel(Ds) rel(Ds)

Obserne that there is no edge fou-relation.

Now we describe the unification rule of Definition A.1 of Appendix A in terms of
a graph-theoretical representationEdfL-diagrams, which may assist with the under-
standing and motivation of our unification rule.

Proposition 3.3 Let D be anEUL-diagram, andx be a minimal diagram. The set of
EUL-relationsrel(D + «), which is obtained by unifyin® and «, gives rise to an
EUL-structure.

Proof. In order to describe graphically the unificationEdfL-diagramsD andc, we
focus on the shared object Bfandc, say A, and express thEUL-structure ofrel(D)

as follows:

b

Y/gjj};M w

—-edgedenoteg_-relation
H-edge denotelsl-relation
) No edge for=-relation

/Z/'z" “...” denotes one of-, 7, H, x

rel(D)
The variablesX, Y, Z, W (resp.y, z) are representative circles (resp. points) which are
possibly related tod. When it makes no difference whether a possibly related object
is circle or point, we denote the object &3y (instead of simply writings). Each
dotted line between objects expresses that there may be one of the ratations, o<
between the objects. Note that there is no edge for eachlation, as seen between

A andW. We omit the trivial transitive edg& — X to avoid notational complexity.
In the following description of each unification rule fdrand«, we give a graphical

“Notethat, by the properties (i)—(iii), aBUL-structure( D, p(D), C, H) is anevent structuref Nielsen-
Plotkin-Winskel [15].
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representationf the EUL-structures ofel(D) in the left-hand graph, anél(D+«) in
the right-hand graph. We begin with3-rule sinceJ1 andU2 rules are rather untypical
cases:

U3 Under the constraint dfi3-rule, there is no circleZ such thatZ = A holds, and
no circleW such thatd < W holds, which is expressed by in the graph of
rel(D). According toU3-rule of Definition A.1,rel(D+ (b C A)) is represented
by the graph on the right.

X

X

R S

Y/y H? W Y/y H?
\/z/z &ﬂ
rel(D) rel(D + (b C A))

It is easily seen thakl(D + (b T A)) is anEUL-structure: l.e., the augmented
edges do not violate the propertiesedfL-structure.

Note also that, without the constraint, i.e., if there is a citCler W as above,

in order to preserve Point determinacy, we should fix a relation betwegal

Z (resp. W) to C or H. However, neither of them is sound with respect to our
formal semantics oEUL.

U4 Under the constraint dfl4-rule, there is no circleX such thatd — X holds, no
circleY such thatd H Y holds, and no circlé/ such thatd o< W holds, which
is expressed by in the graph ofrel(D). According toU4-rule of Definition
Al rel(D+ (bH A)) is represented by the right hand graph below.

X
X/y 1A W LA
N IXT
Y7z b "2/~
rel(D) rel(D + (bH A))

It is easily seen thatl(D + (b H A)) is anEUL-structure: I.e., the augmented
edges do not violate the propertieseifiL-structure.

Without the constraint, i.e., if there is a circlé,Y or W as above, in order
to preserve Point determinacy, we should fix a relation betwesrd X (resp.
Y,W)toZ orH in rel(D 4+ (b H A)). However, none of them is sound with
respect to our semantics BJL.

U5 Under the constraint dfJ5-rule, there is no point such that: — B holds. Ac-
cording toU5-rule of Definition A.1,rel(D + (A C B)) is represented by the
right hand graph below.
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Y/yHB ' V}:W

N

Y7
rel(D) rel(D+ (A C B))

Without the constraint, i.e., if there is a pointas above, in order to preserve
Point determinacy, we should fix a relation betweemdA to C or H. However,
none of them is sound with respect to our semantidsldi.

U6 Under the constraint di6-rule, there is no poiny such thaty H A holds. Ac-
cording toU6-rule of Definition A.1,rel(D + (A C B)) is represented by the
right hand graph below.

Y/;KHAT W

N

Z/5

rel(D) rel(D+ (A C B))

Without the constraint, i.e., if there is a poiptas above, in order to preserve
Point determinacy, we should fix a relation betwgemd B to C orH. However,
none of them is sound with respect to our semantidsidf.

U7 Under the constraint dfJ7-rule, there is no poiny such thaty H A holds. Ac-
cording toU7-rule of Definition A.1,rel(D + (A H B)) is represented by the

right hand graph below.
1 o
N i ] T i
/\/Z/z . /\/Z/z .
rel(D) rel(D+ (AH B))

Without the constraint, i.e., if there is a pointas above, in order to preserve
Point determinacy, we should fix a relation betwgemd B to = or H. However,
none of them is sound with respect to our semantidsigf.

U8 Under the constraint dfi8-rule, there is no point irD. According toU8-rule of
Definition A.1,rel(D + (A 1 B)) is represented by the right hand graph below.

YA Vi w
/\/ZT/X /zT
rel(D) rel(D + (A B))
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Without the constraint, i.e., if there is a poinor z as above, in order to preserve
Point determinacy, we should fix a relation betwgedresp.z) and B to  or H.
However, none of them is sound with respect to our semantiE®Jaf

U1l Under the constraint dfi1-rule, there is no poing in D other tharb. According
to Ul-rule,rel(D + (b = A)) is represented by the right hand graph below.

- N
Y/ b Vi b/
rel(D) rel(D+ (bC A))

Without the constraint, i.e., if there is a pointas above, in order to preserve
Point determinacy, we should fix a relation betwgemdA to — or H. However,
none of them is sound with respect to our semantidsUi .

U2 Under the constraint dfi2-rule, there is no poing in D other tharb. According
to U2-rule,rel(D + (b H A)) is represented by the right hand graph below.

B 1
Y/uk— b Vit
A\/\

rel(D) rel(D + (b H A))

Without the constraint, i.e., if there is a pointas above, in order to preserve
Point determinacy, we should fix a relation betwgemdA to = or H. However,
none of them is sound with respect to our semantidsidi.

In U9, U10 rules of Definition A.1, the unified diagranf® and« share two cir-
cles, which makes the graphical description@{D) complicated. In order to avoid
notational complexity, we omit irrelevant objects and edges, which are retained after
the application ofJ9 andU10 rule, respectively.

U9 Under the constraint dfi9-rule, there is no objeat such thats — A ands H B
hold onD, i.e., in the following description ofel(D), the dotted line between
Y/y and A should not be—, and the dotted line betweefy z and B should not
beH. According toU9-rule of Definition A.1,rel(D + (A T B)) is represented
by the right hand graph below.

A B —iv

ZT/z - Z)z /

rel(D) rel(D+ (AC B))
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Obserne that, after the unification, some of the dotted linesfD) are fixed to
— orHinrel(D+ (A C B)) according to Definition A.1. We need to check that
rel(D + (A C B)) is anEUL-structure; for example, if the dotted line between
AandX inrel(D)is A H X (or A +— X), after the application ot)9-rule,
there are two incompatible edgels(resp.«<) and— betweend and.X, which
violates the irreflexivity of the--relation of EUL-structure. It is shown that,
because of our constraint faf9-rule, the dotted line betweeA and X is <
(i.e., no edge) or—. Observe that, if we havd H X in rel(D), by theH-
downward closedness edl(D), we haveZ/z H B in rel(D), which contradicts
the constraint. If we havel — X in rel(D), by the transitivity ofrel(D), we
have A — B in rel(D), which contradicts the presupposition d9-rule, i.e.,
there is no edge betweefrand B in rel(D). Thus the dotted line betweet
and X should bex (i.e., no edge) or-, either of which is compatible with the
edgeAd — X inrel(D + (A C B)). Similarly, it is shown that the other dotted
lines of rel(D) are compatible with the edges @d(D + (A = B)). Theniitis
easily checked thatl(D + (A C B)) satisfies Definition 3.1, and hence itis an
EUL-structure.

U10 Under the constraint df10-rule, there is no objectsuch that — A ands C B
hold onD, i.e., in the following graph ofel(D), the dotted line betweed’ />’
andA (and also betweeff/z and B) should not be—. According toU10-rule,
rel(D + (A H B)) is represented by by the right hand graph below.

A’—, B AHB

1K
Z[z e AN Z/z AN
rel(D) rel(D + (AH B))

We show that there are no incompatible edgeei(D + (A H B)). For the
dotted line betwee/z andB, it is not— by the constraint fotJ10-rule. Fur-
thermore, assume to the contrary that we hdye <« B in rel(D). Then, by
the transitivity ofrel(D), we haveA «— B in rel(D), which contradicts the pre-
supposition ofUl10-rule, i.e., there is no edge betwednand B. Hence the
dotted line betweelr/z and B should bex (i.e., no edge) o, either of which
is compatible with the edg€/z H B in rel(D + (A H B)). Similarly, it is
shown that the other two dotted linesref(D) are compatible with the edges of
rel(D + (A H B)). Then it is easily checked thatl(D + (A H B)) satisfies
Definition 3.1, and hence it is @BUL-structure. ]

For a givenEUL-structure(D, p(D), C,H), it can be shown that there is &hJL-
diagramD such thatel(D) is equivalent td D, p(D), C, H).

4 A hierarchy of EUL-diagrams and Venn diagrams

The representation systdatJL is extended by introducing new diagrammatic objects,
intersection, union, and complement regions, respectively. Extended systems are strat-
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ified in terms of their expressive powers.

In what follows, we do hot mention named points explicitly, since any named point
of EUL can be regarded as a special circle, which does not contain, nor cross, any
other objects. If we allow a point (as a special circle) to cross other circles, it amounts
to adopting linking between points, although it is slightly restricted compared with
usual linking as in Shin [19], among othePs.

We first extendEUL by considering intersection regions as diagrammatic objects.
Regionsof an EUL-diagram are defined recursively as usual, which are closed under
intersection, union, and complement, provided that each is non-empty in a diagram.
See, e.g., [10].

Definition 4.1 A non-empty region of anEUL-diagramD is anintersection region
when, for some(A;,..., A,} C cr(D), 1 = ()y<;<, in(Ai), wherein(A4;) is the
interior of circle 4;. An EUL-diagrams with intersections D is an EUL-diagram
where each intersection region= ), ., ,, in(A4;) has the namel; <;,<,, A;, which is
sometimes denoted byA,, for short. (In particular when = 1,M4; = A;.)

Note that, in arEUL-diagram with intersections, a region may have two names:
For example, wherl C B holds onD, circle A has another namel 1 B.
We define an algebraic structure BUL-diagrams with intersections.

Definition 4.2 An EUL-structure with greatest lower bounds (glbs) (D,C,H
,M) is an EUL-structure, where for any subsétd;,...,A,} C D such that
—Ji<jk<n(A4; H Ag holds onD), there is the greatest lower boung<;<,, A;.

Although we regard named points as special named circles, the operasamot
applied to them.

Lemma 4.3 Let D be anEUL-diagram with intersections. The set of relatiarE D)
gives rise to arEUL-structure with glbs.

Lemma4.4 EUL < EUL4M) Let (D, Z,H) be anEUL-structure. It is extended, by
introducing glbs, to areUL-structure with glbg D", =, H, ).

Proof. The domainD™ is defined as follows:
D" := DU {M<i<nAi | "F1<jr<n(4; H Ax holds onD)}

C and H relations onD are preserved oD" and they are extended for any
M<i<nA; € D" as follows: LetX,Y € D".

nA, C NA,

X CnA, iff XCAforalll<i<n
NA, C X iff A, C Xforsomel<i<n
XHY iff Xy ¢D"

SWe exclude a crossing relatien< d between distinct named points, since it amounisted or ¢ # d
(cf. Remark 2.10) but we always assumg d in our framework.
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It is immediate that thus construct¢®™, —,H, M) is an EUL-structure, which
satisfies Definition 3.1, andA,, is the glb of Definition 4.2. ]

Seealso Example 4.17.

WhenD is anEUL-diagram, we denot®™ an EUL-diagram with intersections
whose algebraic structure is constructed from Bt -structurerel(D) by Lemma
4.4, We say that the diagra®' is obtained from D.

By introducing intersection regions as diagrammatic objdetdl. with intersec-
tions are more expressive than the baslifi of Section 2.1. Let us see the following
example.

Example 4.5 EUL-diagrams with intersections) The three diagram®,, Dy, and
D3 of Fig. 4 in Example 2.6, which are identified in the origif@UL, are distin-
guished when they are regardedEdL-diagrams with intersections. The difference
among the three diagrams is more clearly seen by drawing Bhdirstructures with
glbs. (Here, for reasons of simplicity, we omit the pairdnd abbreviatei-relation by
stipulating thatX H Y holds whenX MY ¢ rel(D").)

C
A B C
ANB AfC BRC Ang Bne
ANMB AnNC Bnc
ANB
AnBNC =AnBnc
rel(DY) rel(D5) rel(D§)

In a similar way as intersections, by considering union regions as diagrammatic
objects we have another extensioriL.

Definition 4.6 An EUL-diagrams with unions D is an EUL-diagram where each
union regionr = J, .,,, in(A4;) has the namel, <,<, 4;, provided that it is con-
nected. -

EUL-structures with least upper bounds (lubs)for EUL-diagrams with unions
are defined in a similar way &JL-structures with glbs.
EUL with unions is also more expressive thadL.

Example 4.7 EUL-diagrams with unions) D; and D4 of Fig. 4 in Example 2.6

are distinguished when they are regardedbl -diagrams with unions. ThEUL-
structures with lubs for these two diagrams are represented by the following different
structures.

AuBUC AUB
AUB AUC BUC ALI‘C'\/éLIC
A B C A c B
rel(DY') rel(Dy)
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Definition 4.8 An EUL-diagram with intersections and unions D is an EUL-
diagram with intersections where union regions also have names.

Note that we only consider intersection (resp. union) regions of circles, and we
exclude other regions such@d N B) U (C'N D).

EUL-structure with glbs and lubs are defined by combinitidl -structure with
glbs andEUL-structure with lubs.

By considering the complement region of each circle as a diagrammatic object, we
further introduceEUL-diagrams with intersections, unions, and complements.

Definition 4.9 An EUL-diagram with intersections, unions, and complement® is
anEUL-diagram with intersections and unions, where each complerefta circle
A, i.e., the exterior of4, has the namel.

EUL-structuredor EUL-diagrams withn, U, ~ aredefined as follows.

Definition 4.10 An EUL-structure with glbs, lubs, and complements(D,C,H
,M,U,7) is an EUL-structure with glbs and lubsD, =, H, M, ) where, for each
A € D which is not of the fornT1C; norUC; (j > 2), the complementl of A is
definedin D.

Although we regard named points as special named circles, the operations
and— arenot applied to points.

Lemma 4.11 LetD be anEUL-diagram withn, U, —. The set of relationeel(D) gives
rise to anEUL-structure with glbs, lubs, and complements.

Lemma4.12 EUL+N+U < EUL+M+U+7) Let (D7, C,H,M,U) be an EUL-
structure with glbs and lubs. It is extended, by introducing complements, EdJan
structure with glbs, lubs, and compleme(i¥, —, H, 1,1, 7).

Proof. The domainD¢ is defined by adding complementfor eachA € D" which
is not of the formnC; norUC; (j > 2), and by extending glbs (of the for(mB;) M
(MA;)) and lubs (of the fornfuB;) LI (UA;)) in a similar way as Lemma 4.4.
C andH relations onD" are preserved ob¢ and they are extended as follows:
For anyA, B € D° not of the formnC; noruC; (5 > 2),

AHA

ACB iff BrC Ain D"

AC BandBC A iff AHBin D"
For anyX,Y € D¢ of the form (MB;) N (MA4;) (resp. (UB;) U (UA;)), C andH
relations are extended to be closed uridandu in a similar way as Lemma 4.4. m

Seealso Example 4.17.

Euler/Venn diagrams of Swoboda-Allwein [23] are obtained by adding shading of
minimal regions and linking of points 8UL-diagrams withn, U, —. ©

6Thereare some differences between our system and Swoboda-Allwein’s system: (i) we allow one circle
to cross with another circle any number of times; (ii) we allow union regions as diagrammatic objects, which
does not increase expressive power as compared to Swoboda-Allwein’s system; (iii) we do not allow a circle
to be completely shaded given our definition of semantics, where each circle denotes a non-empty set.
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EUL-structuredfor Euler/Venn diagrams, which we calenn-structures, are the
directed acyclic graphs DAGs of Swoboda-Allwein [23].

Lemma4.13 EUL+N+U+~ < Venn) Let (D¢ cC,H,m,U,~) be an EUL-
structure with glbs, lubs, and complements. It is extended to a Venn-strugtuod
Swoboda-Allwein [23] by introducing shading and linking.

WhenD is an EUL-diagram, we denote bpv (resp. D", D", D", D) an Eu-
ler/Venn diagram (resp EUL-diagram with intersections, unions, intersections and
unions, intersections and unions and complements) whose algebraic structure is con-
structed from th&UL-structurerel(D) by Lemma 4.4, 4.12, and 4.13. We say that the
diagramD? (resp.D"', D", D7, D) is obtained from D.

Various extensions dEUL introduced so far can be summarized by the following
EUL-hierarchy:

Venn

f

EUL with N, U, ~

f

EUL withn, U

N

EUL with N EUL with U

™

EUL
Fig.5 EUL-hierarchy

Note that the semantics BUL of Section 2.2 is essentially the same as the seman-
tics of Venn diagrams (e.g. [10, 19]), where the interpretation fundtiohcircles is
naturally extended to interpret regiongMX;) = N I1(X;), I(LUX;) = JI(X;), and
I(A) = U\ I(A). Note that the denotations of intersections, unions, and complements
are not assumed to be non-empty, while those of circles and points are non-empty.

Thus whenD* is a diagram obtained from a&UL-diagram D for % €
{M,u,0,¢,v}, D andD* are semantically equivalent since any relatiorfofs pre-
served inD* by constructions given in Lemmas 4.4, 4.12, and 4.13:

Lemma 4.14 Let D be anEUL-diagram. For eachx € {M,U, 0, ¢, v}, let D* be a
diagram obtained fronD. For any modelM, M = D* ifand only if M = D.

Based on Lemma 4.14, it is shown that each systeiBUif-hierarchy is conser-
vative over any lower system with respect to validity. We denot&@bg sequence of
diagramsDy, ..., D,,.

Proposition 4.15 (Semantic conservativity)Let S’ and.S be any systems of tiaJL -
hierarchy such that’ is an extension of. LetD, £ be diagrams of, andD*, £* be
diagrams ofS’ obtained fromD, £ for « € {M,U, 0, ¢,v}. ThenD* = £* iff D E £.
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In parallel to the extensions of representation sydi&s, we can obtain extended
inference systems @DS of Appendix A. It can be shown that each extended system
is a conservative extension of the most elemen®&Dy with respect to provability. In
particular, for Euler/Venn diagrammatic inference system of Swoboda-Allwein [24],
we have the following conservativity theorem:

Theorem 4.16 (Conservativity) Let D and £ be EUL-diagrams such thaD has a
model. If€? is provable fronD" in Euler/Venn diagrammatic system, th&is prov-
able fromD in GDS.

Proof. LetD" F £V in Euler/Venn diagrammatic inference system. By soundness
(cf. [24]) we have, for any modeV/, M = D" = M = £Y. AssumeM E D. Then
we haveM = DY by Lemma 4.14. Thus we havd | £, thatis,M = £. Hence,
by the completeness (Theorem A.2)@DS, we haveD I £ in GDS. ]

The constructions of extensions BUL-structures given in Lemma 4.4, 4.12, and
4.13 provide a procedure to transformBdL-diagram to a Venn diagram. Let us see
the following example:

Example 4.17Let D be an EUL-diagram such that rel(D) =
{A~B,AHC,CC B}. By transforming theEUL-structure rel(D) through

an EUL-structure with glbsel(D)", we obtain a Venn-structurel(D)®. In rel(D)™
andrel(D)" below, we omit1 symbol and writeA B for A™1 B. Inrel(D)?, we further
omit lubs andH-relation, and represent arrows by lines in a hierarchical structure.
By extracting minimal unshaded regions (4BABC, ABC, ABC, A BC) from
rel(D)", we obtain a Venn diagraf@”, which is semantically equivalent to the original
EUL-diagramD.

EUL-diagram EUL-diagramwith N Venn diagram
%
0& B an
© &) Uy
D DN Do

Al—
rel(D)

b
s+l

a—w
?\
SRR
I
®
Q

,
D
=
)
N—
|

In this paper, we introduced a hierarchy of Euler and Venn diagrammatic reasoning
systems in terms of their expressive powers in our topological-relation-based formal-
ization. Because of the space limitation in this paper, we discuss our extenstodt of
mainly at the level of representation and semantics. This is why our conservativity re-
sults for these systems (Proposition 4.15) are kept at the level of semantics. We leave
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our explicit formalization of diagrammatic inference systemsHEai -diagrams with
intersections, with unions, with complements, respectively, as future work.
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A Diagrammatic inference systemGDS

In this section, we review Generalized Diagrammatic Syllogistic inference system
GDS of [13, 12], which consists of two inference rulasnificationanddeletion. In
order to motivate our definition afnification, let us consider the following question:
Given the following diagram®-, D, andD; of Fig. 6, what diagrammatic information

on A, B andc can be obtained? (In what follows, in order to avoid notational complex-
ity in a diagram, we express each named point,%a;jmply by its name:.) Fig. 6
represents a way of solving the question.

In Fig. 6, at the first step, two diagrar®®; andD, are unified to obtairD; + D-,
where pointc in D; andD,, are identified, and3 is added tdD; so thatc is inside of
B and B overlaps withA without any implication of a relationship betwednand B.
We formalize such cases, where two given diagrams share one obj&tt-+hi8 rules
of group (I) of Definition A.1. At the second step; + D, is combined with another
diagramDs to obtain(D; + Ds) + Ds. Note that the diagrani®; + D, andD; share
two circlesA andB: A 1 B holds onD; + D, and A = B holds onDs. Since
the semantic information off — B on D5 is more accurate than that df < B on
D + D4, according to our semantics BUL (recall thatA < B means just “true” in
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B A
Q)
Dl\ /’D2 Dy Dy Ds

e.B Fig.7 Indeterminacy
R CD 1 OO
Dy

B

n
(D1 + Ds) + Ds @

Fig.6 Unification Ds Dy

Fig.8 Inconsistency

our semantics), one keeps the relatibc B in the unified diagraniD; + D) + Ds.
We formalize such cases, where two given diagrams share two objedtf9-Hy10
rules of group (I1) of Definition A.1. Observe that the unified diagr@q + D) + D3
of Fig. 6 represents the information of these diagrdmsD-, andDs, that is, their
conjunction

We impose two kinds of constraints on unification. One isdbestraint for de-
terminacy, which blocks the disjunctive ambiguity with respect to locations of named
points. For example, two diagrarfis, andDs in Fig. 7 are not permitted to be unified
into one diagram since the location of the pairis not determined (it can be inside
B or outsideB). The other is theonstraint for consistengyvhich blocks represent-
ing inconsistent information in a single diagram. For example, the diagfzyrend
D, (resp. Dg andDy) in Fig. 8 are not permitted to be unified since they contradict
each other. Recall that each circle is interpreted by non-empty set in our semantics of
Definition 2.8, and hencB®g andDy are also incompatibl€.

We formalize our unificatiorf of two diagrams by restricting one of them to be
a minimal diagram except for one rule called th@oint Insertion-rule. Our com-
pleteness (Theorem A.2) ensures that any diag@ms. . , D,, may be unified, under
the constraints for determinacy and consistency, into one diagram whose semantic in-
formation is equivalent to the conjunction of that®f,...,D,. We give a formal
description of inference rules in terms BfJL-relations: Given a diagrar®® and a
minimal diagramw, the set of relationsel(D + «) for the unified diagranD + « is
defined. It is easily checked that the sg{D + «) satisfies the properties of Lemma
2.4 according to our constraints for determinacy and consistency, and hence locations
of points are determined in a unified diagram. (See also Section 3, where we give a

7 In place of our syntactic constraint, it is possible to allow unification of inconsistent diagrams such as
Dg and Dy (resp. Dg andDg) by extendingGDS with an inference rule corresponding to the absurdity
rule of Gentzen'’s natural deduction system: We can infer any diagram from a pair of inconsistent diagrams.
(For natural deduction systems, see, for example, [3, 17].) Such a rule is introduced in, for example, [10]
for spider diagrams; [7] for Venn diagrams; [23, 24] for Euler/Venn diagrams. However, such a rule requires
linguistic symbol, sayl, or some arbitrary convention to represent inconsistency, and hence we prefer our
syntactic constraint in our framework of a diagrammatic inference system.

8The following definition of inference rules @DS is slightly different from that of [13, 12] since we
regard_-relation as reflexive relation in this paper.
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graph-theoreticalepresentation of unification.)

For a better understanding of our unification rule, we also give a schematic dia-
grammatic representation and a concrete example of each rule. In the schematic rep-
resentation of diagrams, to indicate the occurrence of some objects in a context on a
diagram, we write the indicated objects explicitly and indicate the context by “dots” as
in the diagram to the right below.For example, when we need to indicate oAland
c on the left hand diagram, we could write it as shown on the right.

('@a : £

Definition A.1 Axiom, unification, anddeletion of GDS are defined as follows.

Axiom:
Al: For any circlesA and B, any minimal diagram wherd > B holds is an axiom.
A2: Any EUL-diagram which consists only of points is an axiom.

Unification: We denote byD + « the unified diagram dP with a minimal diagramuy.

D + « is defined wherD anda share one or two objects. We distinguish the following
two cases: () Whe® anda share one object, they may be unifiedet o by rules
U1-U8 according to the shared object and the relation holding.o&ach rule of (I)

has a constraint for determinacy. (I) Whénanda share two circles, if the relation
which holds onx also holds oD, D + « is D itself; otherwise, they may be unified

to D + « by rulesU9 or U10 according to the relation holding an Each rule of (II)

has a constraint for consistency. Moreover, there is another unification rule called the
Point Insertion-rule (111).

() The caseD anda share one object:

Ul: If b C A holds ona andpt(D) = {b}, thenD anda may be unified to a diagram
D + « such that the setl(D + «) of relations holding on it is the following:

re(D)U{bC A} U{A= X | X € cr(D)}

U1 is applied as follows:

<
o

D N\, u, ° D1 N\, u1, D-
S

°Notethat the dots notation is used only for abbreviation of a given diagram. For a formal treatment of
such “backgrounds” in a diagram, see, for example, Meyer [11].
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U2: If b H A holds ona andpt(D) = {b}, thenD anda may be unified to a diagram
D + « such that the setl(D + «) of relations holding on it is the following:

rel(D) U{bHA}U{A X | X € er(D)}

U2 is applied as follows:

C
T O
Ot @

T e b
Top D1 + D2

U3: If b= A holdsona andA € ¢r(D), and ifA C X or A H X holds for all circle
X in D, thenD anda may be unified to a diagrar® + « such that the set of
relationsrel(D + «) is the following:

re(D)u{bCc X |AC X €rel(D)JU{DHX | AH X €rel(D)}
U{bHz |z € pt(D)}

U3 is applied as follows:

D\ Us / o D, \ U3/ D2
B
¢
D+« D1 + D2

U4: If b H A holds ona and A € ¢r(D), and if X T A holds for all circleX in D,
thenD anda may be unified to a diagram® + « such that the set of relations
rel(D + «) is the following:

reD)U{HX | X T AcrelD)}U{dbHz |z € pt(D)}

U4 is applied as follows:

A
HONEE ™) O
TN o P
T A
Dta D1 + D2
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U5: If A C Bholdsona andB € cr(D), and ifz H B holds for allz € pt(D),
thenD anda may be unified to a diagram® + « such that the set of relations
rel(D + «) is the following:

re(D)U{AC X | BC X €rel(D)}
U{Ax X | XC BorXxBcrelD)}
U{AHX | XHBerel(D)}u{zHA|xept(D)}

U5 is applied as follows:

e el
D+ a Prt P2

Ué: If A C Bholdsona andA € cr(D), and ifx ©— A holds for allz € pt(D),
thenD anda may be unified to a diagra® + « such that the set of relations
rel(D + «) is the following:

relD)U{XCB|XC AecrelD)}U{zC B|zept(D)}
U{X~<B|ACXorAHXorAx X €rel(D)}

U6 is applied as follows:

oW ED

D\ .U.E.;...f/ a Dr ~ U6 _» D>
Dta Dy + D,

U7: If A H B holds ona andA € ¢r(D), and ifx = A holds for allz € pt(D),
thenD anda may be unified to a diagra® + « such that the set of relations
rel(D + «) is the following:

re(D)U{XHB|XC AcrelD)}U{zHB |z e pt(D)}
U{X<xB|ACXorAHXorAx X €rel(D)}

U7 is applied as follows:

O] 1@ |00

D N\ U7 Di_ N U7 D
OO} @)
D+« D1 + D2
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U8: If A > B holds ona and A € cr(D), and if pt(D) = 0, thenD anda may
be unified to a diagrar® + « such that the set of relationsl(D + «) is the

following:
re(D) U{X =< B | X € cr(D)}

U8 is applied as follows:

@3 | @D

e N s o

e
@9
Dta D; + D

(I WhenD anda sharetwo circles, they may be unified tB + « by the following
U9 andU10 rules.

U9: If A C B holds ona and A 1 B holds onD, and if there is no object such that
s C A ands H B hold onD, thenD anda may be unified to a diagra® + «
such that the set of relationd (D + «) is the following:

(rel(P)\{Y <X |Y C AandBC X €rel(D)} \{X =Y | X C AandY H B € rel(D)})
Uu{YCcX|YC AandBC X €rel(D)}U{XHY | X C AandY H B € rel(D)}

U9 is applied as follows:

v @ Di N\ W S D,
[OR ol(©)
D+a D1 + D2

U10: If AH B holds ona andA <1 B holds onD, and if there is no objectsuch that
s C Aands C B hold onD, thenD anda may be unified to a diagra® + «
such that the set of relationd (D + «) is the following:

(rel(D)\{X Y | X C AandY C B € rel(D)})U{X HY | X C AandY C B € rel(D)}

U10 is applied as follows:

OEH

OO

OO
/a

D\ U0 Dy N U0 S D,
A B
OO OB

D+a D1 + D2
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(1) Point Insertion: If, for any circlesX, Y and for anyd € {C, O,H,}, XOY €
rel(Dy) iff XOY e rel(D3) holds, and ifpt(D-) is a singleton{b} such thath ¢
pt(D1), thenD; andD, may be unified to a diagrar®; + D, such that the set of
relationsrel(D; + D») is the following:

rel(Dy) Urel(D2) U{bH z | z € pt(D1)}

Q0
&

Dy + D2

Deletion: Whent is an object ofD, t may be deleted fror® to obtain a diagrar®® — ¢
under the constraint th& — ¢ has at least one objects.

The notion ofdiagrammatic proofs (or, d-proofsy defined inductively as tree
structures consisting of unification and deletion steps. The provability relation be-
tweenEUL-diagrams is defined as usual. We denoteIbya sequence of diagrams
Di,...,Dp.

Theorem A.2 (Soundness and completeness@DS [13]) Let D,& be EUL-
diagrams, and letD have a model. £ is a semantically valid consequence Df
(D &), if, and only if, there is a d-proof & fromD (D + &) in GDS.
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